
ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

452745Osobní číslo:DmytroJméno:LiaskoPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologieStudijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

VST plugin pro segmentaci hudby

Název bakalářské práce anglicky:

Music Segmentation VST Plugin

Pokyny pro vypracování:
Prostudujte standard VST pro realizaci pluginů v kontextu digital audio workstations (DAW). Prostudujte metody návrhu
a realizace adaptivní hudby. Realizujte VST plugin pro segmentaci hudebního signálu pro účely adaptivní hudby v prostředí
DAW. Tato segmentace nechť je řízena uživatelem pomocí grafického rozhraní tohoto pluginu. Výstupem pluginu nechť
jsou data kompatibilní s některým z existujících systémů pro realizaci adaptivní hudby (např. FMOD Studio). Integrujte
tento systém do pluginu tak, aby bylo možné ověřovat použitelnost výstupu pluginu během uživatelovy interakce s pluginem.

Seznam doporučené literatury:
[1] Snoman, R. (2012). The dance music manual: tools, toys and techniques. Focal Press.
[2] Rumsey, F. (1994). MIDI systems and control. Butterworth-Heinemann.

Jméno a pracoviště vedoucí(ho) bakalářské práce:

doc. Ing. Adam Sporka, Ph.D., Katedra počítačové grafiky a interakce

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 24.05.2019Datum zadání bakalářské práce: 13.02.2019

Platnost zadání bakalářské práce: 20.09.2020

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedrydoc. Ing. Adam Sporka, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Music Segmentation VST Plugin

Dmytro Liasko

Supervisor: doc. Ing. Adam Sporka, Ph.D.
May 2019

ii

Acknowledgements
I would like to express my gratitude to
my thesis supervisor doc. Ing. Adam
Sporka, Ph.D. for his support and advice
throughout my work on the project.

Declaration
I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

Prague, May 21, 2019

Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškerou použitou literaturu.

V Praze, 21. května 2019

iii

Abstract
This bachelor thesis aims to design and
implement a VST plugin for segmentation
of audio signal for the purpose of adaptive
music creation. The plugin receives the
audio signal input from a Digital Audio
Workstation. The segmentation will be
based on the data the plugin receives by
the user via the graphical user interface
of the plugin. The plugin produces out-
put compatible with Avalon music engine.
The plugin was written in C++ program-
ming language using JUCE framework
the plugin is based on the plugin that was
made by me as a part of my semestral
project.

Keywords: VST, MIDI, Adaptive music,
Audio signal processing, JUCE, C++

Supervisor: doc. Ing. Adam Sporka,
Ph.D.

Abstrakt
Cílem této bakalářské práce je navrhnout
a implementovat VST plugin pro segmen-
taci hudebního signálu za účelem tvorby
adaptivní hudby. Vstupní audio signál plu-
gin získává z programů typu Digital Audio
Workstation. Proces segmentace je řízen
na základě dat, který plugin získává od
uživatele pomocí grafického rozharni. Vý-
stupem pluginu jsou data kompatibilní s
systémem pro realizaci adaptivní hudby
Avalon. Plugin byl implementován v ja-
zyce C++ (s použitím frameworku JUCE)
a je založený na pluginu, který jsem imple-
mentoval v rámci semestrálního projektu.

Klíčová slova: VST, MIDI, Adaptivní
hudba, Zpracování audio signálu, JUCE,
C++

Překlad názvu: Music Segmentation
VST Plugin

iv

Contents
1 Introduction 1
1.1 Adaptive music common techniques 1
1.1.1 Horizontal re-sequencing 1
1.1.2 Vertical re-orchestration 2

1.2 Objectives . 2
1.3 Technology 3
1.3.1 VST . 3
1.3.2 MIDI . 3
1.3.3 JUCE . 4

Part I
Harvester VST

2 Plugin specification 9
2.1 Description of plugin midi events 10
2.2 Audio . 12
2.3 Export . 12
2.3.1 GUI . 13
2.3.2 Extra . 14

3 Design 15
3.1 Audio and MIDI input-output
processing . 15

3.2 Serialization 16
3.2.1 SerializedPattern 16
3.2.2 PluginSerialization 16

3.3 GUI . 16
3.3.1 AudioProcessorEditor 17
3.3.2 PluginListBox and
PluginListBoxModel 17

3.3.3 PatternInfoComponent 17
4 Realization 19
4.1 Plugin state 19
4.2 Timings . 20
4.3 Illustration of GUI 20
4.3.1 Detailed description 20

Part II
Harvester 2 VST

5 Plugin specification 25
5.1 GUI . 25
5.2 Audio . 26
5.3 Export . 26
5.3.1 .avalon_module 26
5.3.2 .avalon_bank 28

5.4 Collisions . 28
5.5 Hotkeys . 29

6 Design 31
6.1 Class diagram 31
6.2 Audio processing 32
6.3 GUI . 32
6.3.1 PluginEditor 32
6.3.2 ModulesTableListBoxModel . 32
6.3.3 TimelineButtonsComponent . 32
6.3.4
TimelineLeftColumnComponent . 32

6.3.5 TimelineComponent 32
6.3.6 WaveformComponent 33
6.3.7 ElementDetailComponent . . . 33

6.4 Serialization 34
6.4.1 Models 34
6.4.2 PluginSerialization 34

6.5 Data flow . 34
6.6 Extra . 35
6.6.1 Audio player 35
6.6.2 PluginUtils 35

7 Realization 37
7.1 Used software 37
7.2 Implementation 37
7.2.1 Audio processing 37
7.2.2 GUI . 38
7.2.3 Audio player 40
7.2.4 Serialization 41
7.2.5 Export 44

7.3 Testing . 45
7.4 GUI illustration 45
7.4.1 Overall 45
7.4.2 Pop-up menu 46
7.4.3 Metadata element editing . . 46

8 Conclusion 47

Appendices
A Bibliography 51
B CD contents 53

v

Figures
1.1 Cross fading scheme. 2
1.2 Direct switch scheme. 2
1.3 Vertical layering scheme. 2
1.4 Main screen of the Projucer. 4
1.5 Projucer IDE screen. 5

2.1 Example of project in DAW
Reaper [Cocb] 9

2.2 Example of MIDI mapping. 11
2.3 Example of possible changes. . . . 12
2.4 Lo-Fi GUI prototype. 13

3.1 The Harvester VST structure. . . 15
3.2 Structure of GUI. 16

4.1 GUI of synthesizer SAWER [Ima] 19
4.2 GUI. 21
4.3 Parts of GUI. 21
4.4 Different time display modes. . . . 22

6.1 The structure of the Harvester 2
VST plugin. 31

6.2 The data flow of Harvester 2 VST. 34

7.1 Example of waveform thumbnail. 39
7.2 Collision types. 43
7.3 The plugin hosted in DAW
Reaper. 45

7.4 The context menu. 46

Tables
2.1 Description of module MIDI
events. 10

2.2 Description of pattern MIDI
events. 10

2.3 Description of point and region
MIDI events. 11

5.1 The pattern types and representing
letters . 26

vi

Chapter 1
Introduction

The music production process is especially complicated when it comes to
a soundtrack creation. Unlike the common music, where the composer ex-
presses his feelings, vision, thoughts and ideas, soundtracks are music tracks
accompanying and synchronized to the images of a motion picture, television
program, or video game.

The difficulty of the soundtrack composition is primarily based on the type
of media content it plays along to. In soundtracks for movies, the composer
knows all details about the context of the ongoing scene. This allows a
composer to create music that stimulates the viewers’ emotions at exactly the
right moments. Videogames soundtrack creation process is more complicated
because we cannot accurately predict what is going to happen on the screen
next. It is impossible to know in advance how long will it take for the player
to pass through a location or what amount of health points the player will
have in 10 seconds after the battle started. That is the point where adaptive
music comes in. Adaptive music is background music that is dynamically
changed by reacting to some type of control input coming from the game.

1.1 Adaptive music common techniques

Among all of the adaptive music techniques, Horizontal re-sequencing and
Vertical layering are considered to be the most common [Kä18]

1.1.1 Horizontal re-sequencing

Horizontal re-sequencing is a method of adaptive composition where the pre-
composed music segments can be reshuffled according to the player actions.

Cross-fading

Cross-fading is one of the most common horizontal re-sequencing techniques.
Its idea is to create a smooth transition from one music track to another
where the first track volume is lowered to zero while the second track volume
is getting raised up.

1

1. Introduction

Figure 1.1: Cross fading scheme.

Direct switching

Direct switching is the simplest horizontal re-sequencing technique. The
transition from one music track to another is performed by stopping the
current track at the end of the current beat and starting the next track at
the same moment.

Figure 1.2: Direct switch scheme.

1.1.2 Vertical re-orchestration

Vertical layering is the adaptive technique where the music track is split into
multiple layers that are intended for one or a group of musical instruments.
The layers can be added or removed by certain events, that were predefined
by the game designer and composer.

Figure 1.3: Vertical layering scheme.

1.2 Objectives

The main objective of this is project is to create a VST plugin for segmentation
of audio signal inside a Digital Audio Workstation environment and integration
of Avalon music engine[wel18c] as a system for adaptive music creation into

2

..................................... 1.3. Technology

it. The plugin that is created in this work is based on the plugin that was
made by me as a part of the semestral project.

1.3 Technology

1.3.1 VST

Virtual Studio Technology (VST) is a digital interface standard that is used
to connect and integrate different software emulations of sound effects and
synthesizers in Digital Audio Workstation (software that is used for recording,
editing and producing of audio files) developed by Steinberg in 1996.

Listing 1.1: The description of the standart from the official documentation
[Ste99]

In the widest possible sense a VST-Plug-in is an audio
process. A VST Plug-in is not an application. It needs a
host application that handles the audio streams and makes
use of the process the VST plug-in supplies. Generally
speaking, it can take a stream of audio data, apply a
process to the audio and send the result back the host
application. A VST Plug-in performs its process normally
using the processor of the computer, it does not
necessarily need dedicated digital signal processors. The
audio stream is broken down into a series of blocks. The
host supplies the blocks in sequence. The host and its
current environment control the block-size. The VST
Plug-in maintains all parameters & statuses that refer to
the running process: The host does not maintain any
information about what the plug-in did with the last
block of data it processed.

In the year 1999, Steinberg updated interface specification to version 2.0.
This update made possible for plug-ins to receive MIDI data and introduced
to us new plug-in format - VSTi (Virtual Studio Technology Instrument).

1.3.2 MIDI

Musical Instrument Digital Interface (MIDI) is a technical standard, a digital
interface that describes a protocol for communication between electronic
musical instruments, computers, and related devices [MID96]. The main
thing is that sound is never sent via MIDI, just digital signals known as event
messages. MIDI messages can be split into channel messages (messages that
are transmitted on individual channels) and system messages (messages that
are not channel specific, such as start, stop, system reset). The type of a
message can be identified by its first byte that has its hex value between 80
and FF and followed by 0 to more data bytes. For example, message 90 48
7F is a channel message that means “play note C5 on channel 1”.

3

1. Introduction
1.3.3 JUCE

Most of VST plugins are written in C++. First of all, because the official
SDK is available for C++ only. There a lot of frameworks that make VST
plugins development easier, the most popular are Cockos WDL[Coca] and
JUCE[ROLb]. For this project, The JUCE framework was chosen because it
provides a large set of functions for audio processing, XML and JSON parsing,
networking and user-interface creation. One of the main features of JUCE is
its support of multiple plugin formats (VST/VST3/RTAS/AAX/AU) and
different platforms (Windows, Mac, Linux, Android, iOS).

Setting up the environment

The creation of JUCE application starts in Projcuer. This is an application
that allows a user to develop, manage and deploy cross-platform applications.

Figure 1.4: Main screen of the Projucer.

Projucer is also can be used as IDE or as an exporter to user-preferred
IDE. It supports export to Visual Studio, CLion, CodeBlocks, XCode.

The basic structure of JUCE plugin

The heart of every audio plugin developed in JUCE are the following classes:. AudioProcessor

4

..................................... 1.3. Technology

Figure 1.5: Projucer IDE screen.

This class handles the audio and MIDI IO and processing logic. The
main methods that every plugin must have implemented are:

Listing 1.2: Declaration of the prepareToPlay method
void AudioProcessor::prepareToPlay(double sampleRate,

int samplesPerBlock)

This method is being called every time before playback starts, to let the
processor prepare itself. Parameter sampleRate is the sample rate that
was set by the host and can’t be changed during the playback. Parameter
samplesPerBlock is a number of samples in every block passed to the
processBlock method.

Listing 1.3: Declaration of the processBBlock method
void AudioProcessor::processBlock(AudioBuffer<float> &

buffer, MidiBuffer & midiMessages)

This is the key method of every AudioProcessor that is called each time a
block of samples and MIDI data need to be handled. Parameter buffer is a
multi-channel buffer containing floating point audio samples. Parameter
midiMessages is a multi-channel buffer containing time-stamped midi
events.
The number of AudioProcessor class instances is strictly limited to 1.

5

1. Introduction
. AudioProcessorEditor

This class is responsible for GUI handling. Every JUCE audio-plugin can
have multiple instances of this class. It is best to consider the processor
as the parent of the editor because every editor has a reference to the
processor.

6

Part I

Harvester VST

7

8

Chapter 2
Plugin specification

The main purpose of this part of the project is to create a plugin that will
automate the process of export of sound and metadata from DAW based on
defined midi-mapping. Every project in DAW consists of tracks and sequences
of different patterns arranged to them. Under the term "pattern" we imply a
sequence of midi messages or a recorded audio sample.

Figure 2.1: Example of project in DAW Reaper [Cocb]

The project, where the Harvester VST plugin is used, has the following
structure:. Project has at least one module.Modules are consist of patterns. Patterns have points and regions

9

2. Plugin specification
2.1 Description of plugin midi events

According to the Avalon music engine documentation [wel18b], a module is a
principal unit of music, other words, for easier understanding, we can call it
a song.

Midi number Note Description
84+ C6 and up Module delimitation

Table 2.1: Description of module MIDI events.

As every song consists of different structure elements, such as introduction,
verse, bridge, an Avalon module consists of the patterns. Avalon music engine
defines 6 types of patterns, some of them are mapped to the classic song
structure.

. Pickup
This type represents the introduction part of a song, the part where the
song begins.

.Main
This type represents the verse part of a song. It can be described as a
repeatedly played main melody of a song.

. Ending
This type represents the outro part of a song. This part ends, completes
the played song.

Midi number Note Description

77 F5
Pickups (could be more than 1)
Note-on means ä pickup starts here"
Note-off means "that pickup ends here"

78 F# Mains (could be more than 1)
79 G5 Endings (could be more than 1)
80 G# Layer AUX (could be more than 1)
81 A5 Timed stinger AUX
82 A# Random stinger AUX

Table 2.2: Description of pattern MIDI events.

Every patterns consists of special points and regions.

10

............................ 2.1. Description of plugin midi events

MIDI
number

Note Name Description

65 F4 In-region Note-on event means the start of the
in-region, note-off means the end.
The point of alignment to the origin
beta is the end of the in-region

67 G4 Out-region Note-on event means the start of the
out-region, note-off means the end.
The point of alignment to the desti-
nation alpha is the beginning of the
out-region

68 F# Stinger
point

For timed stingers
Note-on of the event matters

69 A4 Alpha
point

Note-on of the event matters

71 B4 Beta point Note-on of the event matters
74 D5 Downbeat Note-on of the event matters.

The point of the first beat of the bar.
75 D# Beat Note-on of the event matters.

The point of the non-the-first beat of
the bar.

No special MIDI
markings needed

Leftmost The beginning of the pattern
Rightmost The end of the pattern

Table 2.3: Description of point and region MIDI events.

Figure 2.2: Example of MIDI mapping.

During the processing of the input MIDI messages, the plugin must extract
the information about the "event type" and "timestamp in samples" properties,
the rest of the message description is not important.

11

2. Plugin specification
2.2 Audio

The plugin should work in a project with a sample rate of 48000 samples per
second (48 kHz). The sample rate value is choice of the creators of Avalon
music engine. If the sample rate was set to another value, the plugin will
show to a user an error message.

The plugin must be able to export audio in Waveform Audio File Format
(.wav) with 32 bits per sample depth.

2.3 Export

Users must be able to set the location for audio and metadata export. If
the user didn’t, the plugin will use its default folder that was created inside
the user Application Data folder of OS. To prevent such situation when
different plugin instances share the same default folder, the plugin will use
the timestamp of its initialization as the default folder name.

Patterns audio and metadata files will be named according to the pattern
appearance in the DAW sequencer timeline in format WWhXXmYYsZZZ
where WW stays for hours, XX for minutes, YY for seconds and ZZZ for
milliseconds.

The plugin must react to any change made to any pattern timeline and
replace the result of previous export with the new one. Briefly, the plugins
default folder must keep only the result of the last export.

Figure 2.3: Example of possible changes.

During the export, the processed metadata must be converted to JSON
file format.

Listing 2.1: Example of exported module
{

"moduleName": "Module one",
"productionCode": "M01",
"leftmost": "0",
"rightmost": "658286",
"number": "",
"alpha": "0",
"beta": "658286",
"inregions": [

"324000",
"329143"

12

....................................... 2.3. Export

],
"outregions": [

"82286",
"87429",
"246858",
"252000",
"411429",
"416572",
"576000",
"581143"

],
"trackType": "78",
"beats": [

"downbeat,5.142854",
"downbeat,6.857146",
"downbeat,8.571438",
"downbeat,10.285708",
"downbeat,12.000000",
"downbeat,13.714292",
"downbeat,15.428562"

],
"locked": false,
"timedStingers": []

}

2.3.1 GUI

The user interface of the plugin will be split into 2 main parts. On the left
side of the screen, there will be an input field for setting up the plugins work
folder and list of the patterns that have already been exported and basic
information about it (pattern name, pattern type, module name and module
code). The right side will show information about the pattern user clicked on.

Figure 2.4: Lo-Fi GUI prototype.

13

2. Plugin specification
2.3.2 Extra

There are 2 ways the user can assign production code and module name to a
pattern:. User will fill corresponding input fields in the pattern information part

of GUI.. User will be able to create a file called “manifest.txt” in plugins working
folder. This file will be formatted as a CSV with the following structure:
[module MIDI note number],[production code],[module name]

Users will be able to “lock” patterns. Some items should not be re-exported,
so if there is any new input in those regions, it’s ignored.

14

Chapter 3
Design

According to the specification, the plugin structure can be split into 3 main
parts: Audio and MIDI input-output processing, user interface, and serializa-
tion.

Figure 3.1: The Harvester VST structure.

3.1 Audio and MIDI input-output processing

As it was mentioned earlier, AudioProcessor class is responsible for all op-
erations related to Audio and MIDI input-output processing. In our case
processing logic is simple. It is based on a state machine that reacts to MIDI
messages occurrences. When the plugin receives a MIDI message with a
note number in the range of 77-82 (pattern types) and note-on event type a
new instance of SerializedPattern class is created and the process of writing

15

3. Design..
the audio input to a file in the plugin working directory starts. If MIDI
message number is a special point or a region and the process of export has
already been started, it will be added to the suitable attribute of an instance
of SerializedPattern class. Otherwise, the message is ignored. The process
of audio export is handled by class AudioFormatWriter which is a part of
the JUCE framework. AudioFormatWriter::writeFromAudioSampleBuffer()
method is called every time when a block of audio samples must be written
to a file.

3.2 Serialization

The process of serialization is split between the following classes:

3.2.1 SerializedPattern

The class can be described as a Data Transfer Object (DTO) and is widely
used in all parts of the project. Process of (de)serialization of a pattern is
handled by JSON and var classes which are part of the JUCE framework.
JSON class has methods for converting JSON-formatted text to and from
var objects. Var class is a wrapper class, that can be used to hold a range of
primitive values.

3.2.2 PluginSerialization

The class is responsible for writing and reading a JSON formatted pattern
to/from a file.

3.3 GUI

The graphical part of the plugin consists of the 4 classes.

Figure 3.2: Structure of GUI.

16

.. 3.3. GUI

3.3.1 AudioProcessorEditor

This class can be considered as a parent for all the graphical components in
the plugin.

3.3.2 PluginListBox and PluginListBoxModel

JUCE’s ListBox is the abstract class that allows displaying tables. The
ListBox behavior is defined by ListBoxModel which describes the data model
that needs to be displayed. PluginListBox and PluginListBoxModel are
implementation of those classes.

3.3.3 PatternInfoComponent

This class is just a view that is updated every time user clicks on a Plugin-
ListBox item.

17

18

Chapter 4
Realization

4.1 Plugin state

Every VST plugin has its own memory where the entire plugins state can be
stored. Mainly it is used to keep parameter changes made by plugin users.
Just imagine that you have a synthesizer with more than 20 different knobs,
switches, and buttons and you need to restore them every time you open the
plugin again and again.

Figure 4.1: GUI of synthesizer SAWER [Ima]

In our case plugin memory is used not only as storage but as a method
of communication between AudioProcessor and GUI. The only value plugin
needs to be always stored is it’s working directory. The idea of using this
memory as a method of communication came to when I realized that there
is no easy way to send data from AudioProcessor to AudioProcessorEditor,

19

4. Realization......................................
but it was a necessary thing to make plugin update its GUI every time a new
pattern is exported. The algorithm is consists of the following steps:..1. Register AudioProcessorEditor as plugin memory listener..2. Every time new pattern is exported AudioProcessor sends a notification

that property memory’s property “pattern” was changed

This algorithm was implemented with the help of AudioProcessorValue-
TreeState class which is a part of the JUCE framework.

4.2 Timings

One of the most important parts of the plugin implementation is timing
precision. VST plugins work in real-time, getting as much data as possible
from all available sources. Even small kind of processing delay, or just a
situation when the plugin is out of sync, can be critical for the final output.

As a time tracking mechanism VST plugins use samples counting. When
playback starts, plugin receives the sample rate of the project and the number
of samples in every block which will be processed by AudioProcessor. The
first reason is that the plugin can detect only the current position of the audio
play head during the playback; the next reason is the way MIDI messages
are processed.

Listing 4.1: The description of the MIDI messages processing order from the
VST documentation [Ste99]

Just as a side issue, the MIDI events resulting from
sequencer playback are actually scheduled into the
future, or pre-fetched, to accommodate for audio device
latencies. This actually means you get events some time
ahead of the actual playback time in pure MIDI terms.

That explains why all the metadata exported by plugin mainly in the
“number of the samples from the start of the pattern” format.

4.3 Illustration of GUI

4.3.1 Detailed description..1. This is the component where the user can define the working directory
for the plugin..2. This component is the list of all the patterns that were exported to the
working directory of the plugin..3. This part consists of 2 blinking lights indicating that plugin receives
MIDI and Audio input

20

.................................. 4.3. Illustration of GUI

Figure 4.2: GUI.

Figure 4.3: Parts of GUI...4. This part has 2 input fields where user can arrange module name a
production code to a pattern..5. This part displays information about pattern points..6. This part displays information about pattern regions. Basically, it’s just
a list of pairs in “start-end” samples...7. This part has 2 checkboxes where you can lock the pattern to prevent
reexporting and change the mode of how to show information about the
pattern points, you can switch between samples and time format...8. This part is a list of checkboxes that describe pattern type

21

4. Realization......................................

Figure 4.4: Different time display modes...9. This button has to be clicked when the user made changes to pattern
metadata and wants to keep them saved.

22

Part II

Harvester 2 VST

23

24

Chapter 5
Plugin specification

Despite the fact that Harvester VST works well in the production process,
there are still some problems, most of them are from the UX point of view.
For example, one of the main disadvantages of the Harvester VST plugin is
its too much time-consuming workflow. Harvester VST was designed in such
a way that music and metadata creation process is performed in the DAW,
the plugin takes responsibility for automatic audio and metadata export and
metadata validation via GUI. Another problem is that neither audio format
nor metadata format is not compatible with Avalon music engine, therefore,
there must be some application that is used as a converter between these
formats.

The main idea of the Harvester 2 VST is to guarantee that the module
creation and export process will be performed only inside the plugin and
make that process faster and much user-friendlier.

5.1 GUI

If we compare GUI of both plugins, we can say that the Harvester VST
interface allows the user to see and verify what was created and could be
further converted into an Avalon module, then interface of Harvester 2 allows
the user to create, to see, to verify, to export. Briefly, the graphical interface
of the new plugin is going to be like DAW inside DAW.

The graphical interface will be split into 4 main parts: File chooser - a
component that migrated from the first version of the plugin. It allows
resetting the directory where plugin instance data will be stored. Timeline
component - a component that represents a timeline of the project. That
is the component where a user will be creating metadata for corresponding
audio slices. Control component - a component that consists of a set of
buttons that control all the actions performed in the timeline component,
buttons that control the built-in audio player and an editable box that shows
and also can be used for setting the current playback position. Exported
modules list - a component that represents the list of all modules that were
created by the user and exported by the plugin.

Also, the timeline component must have a built-in audio player that will
allow checking what audio user works with. One of the main requirements

25

5. Plugin specification
for the player is buffering support because it is possible that the user can
serialize several hours of audio data as one file. In that case, its file size can
reach a few gigabytes and to store such amount of data in memory is not the
best solution.

5.2 Audio

There is also a big difference in a way the plugins work with audio. Harvester
2 stores all the audio data that were played or rendered in the DAW. These
audio data will be stored as Waveform Audio File with a depth of 32 bits per
sample and will be used during the module creation phase.

5.3 Export

As in the previous version of the plugin, the user must be able to define
the working directory which will be used foremost for storing the results of
the export process, otherwise, the plugin will create and use a folder in user
AppData directory. Audio and metadata files of modules that are exported
must be in a format that is compatible with Avalon music engine.

An Avalon module consists of the following files:

5.3.1 .avalon_module

This is a proprietary JSON-like file format designed by welove.audio GmbH[wel18a]
as a part of Avalon Adaptive Audio technology. This is the file, where the
module’s metadata are stored. It has information about production code,
module name, sampling rate, number of channels and detailed description of
each pattern that belongs to the module.

Pattern description always begins as the key-value pair, where the key is
the word, that describes the pattern type and the value is corresponding to
its type letter and the serial number.

Pattern type Letter
Pickup I
Main M
Ending O
Layer AUX L
Timed Stinger AUX T
Random Stinger AUX R

Table 5.1: The pattern types and representing letters

The next entry is a signal_length that describes the length of audio files
in samples.

26

....................................... 5.3. Export

The last value is an array of points that describes sample positions of
inregions, outregions and alpha, beta points.

Listing 5.1: Example of .avalon_module file
module: "0000M"
{

display_name: "Miami";
sampling_rate: 48000;
channel: 2;
patterns
{

main: "M1"
{

signal_length: 2448000;
points {

alpha(0);
beta(2448000);
in(336000, 480000);
in(1056000, 1200000);
in(1536000, 1728000);
in(1968000, 2112000);
outs(39374, 75937);
outs(146249, 236250);
outs(281250, 348750);
outs(405000, 461250);
outs(489375, 542812);
outs(576000, 768000);
outs(880312, 1043437);
outs(1099687, 1209374);
outs(1295156, 1382343);
outs(1483593, 1622812);
outs(1694531, 1791562);
outs(1875937, 2002499);
outs(2046093, 2131874);
outs(2195156, 2332968);
outs(2400000, 2448000);

};
};
ending: "O1"
{

signal_length: 384000;
points {

alpha(0);
beta(384000);
in(44999, 191249);
outs(5624, 67499);
outs(112499, 196874);

27

5. Plugin specification
outs(236249, 298124);
outs(336000, 384000);

};
};

};
};

5.3.2 .avalon_bank

This is a proprietary file format designed by welove.audio GmbH[wel18a] as
a part of Avalon Adaptive Audio technology. This file has a straightforward
structure because it consists of a header and a set of audio files in the .ogg
format that represent patterns that were described in the corresponding
.avalon_module file.

Listing 5.2: Example of .avalon_bank file header
aaabank
bank {

chunk: "0000M-L1.ogg" { length: 100113; };
chunk: "0000M-M1.ogg" { length: 647693; };

};

The header consists of a string that determines that this file is actually
Avalon audio bank and list of audio files with their name and size in bytes.

5.4 Collisions

In the context of the plugin, a collision is an event in which the range of one
metadata element or audio segments intersects with the range of another. For
example, there is a pattern that has 48 000 and 326 000 as its start and end
samples positions. When the user creates another pattern that has 144 000
and 480 000 as its start and end samples positions, we have an intersection
in the [144 000,326 000] samples position interval. As a result, we have two
patterns that are layered on each other in the [144 000,326 000] samples
position interval and can be merged into one pattern.

The plugin must be able to detect and fix all the collisions that may
occur during the user’s interaction with the plugin. There are 2 types of
collision users can accidentally create - Audio and Metadata elements collision.
Basically, these collision types are similar, but the difference is the way they
must be treated. Audio elements collision is a much more serious issue because
it can lead to usage of extra space on the hard-drive and further complications
during the export process or usage of the built-in audio player.

28

.......................................5.5. Hotkeys
5.5 Hotkeys

As it was said earlier, UX is one of the most important parts of the Harvester
2 VST. The plugin must be able to react to the hotkeys that will trigger
appropriate events in the timeline component. The hotkeys that will be used
in the plugin are:..1. Ctrl + MouseWheelUp - zoom-in event..2. Ctrl + MouseWheelDown - zoom-out event..3. Ctrl + Z - causes undo event that will affect the last created metadata

element..4. MouseWheelUp - scroll the timeline component scrollbar to the right..5. MouseWheelDown - scroll the timeline component scrollbar to the
left

29

30

Chapter 6
Design

6.1 Class diagram

Figure 6.1: The structure of the Harvester 2 VST plugin.

31

6. Design..
6.2 Audio processing

This part of the plugin is represented only by AudioProcessor class. The class
will be responsible for the processing of the audio input that will be passed
to the plugin directly from the DAW during the playback. Due to the fact
that this class is also used by the plugin hosting code as the wrapper around
an instance of a loaded plugin, it will also be used for initialization of plugin
Logger and retrieving working directory from the plugin state or creating the
new one if the state is empty because the instance of plugin has not been
created earlier.

6.3 GUI

This part of the plugin is represented by the following classes:

6.3.1 PluginEditor

The class is used as the main component where the other components will be
placed.

6.3.2 ModulesTableListBoxModel

The class that implements a JUCE TableListBoxModel abstract class. It
will be used as the data model for a TableListBox that will be placed in the
PluginEditor and contain the list of the modules that were created by the
user and successfully exported by clicking the corresponding button.

6.3.3 TimelineButtonsComponent

The class that will contain buttons and text editors that will provide an
opportunity to control playhead of the builtin audio player or create metadata
elements on the plugin timeline. The class will hold a reference to the plugin
timeline component for easier audio player or metadata element creation
events dispatching.

6.3.4 TimelineLeftColumnComponent

The class its only task is to represent labels for easier recognition of the type
of metadata element that was placed on the timeline. The reason why such
basic thing as labels is placed in a separate component is to eliminate the
need for introducing the extra offset during the render of the timeline.

6.3.5 TimelineComponent

Except for the PluginEditor, this is the most important component of the
plugin because this is the component where most of the interactions with the

32

.. 6.3. GUI

plugin will be concentrated. The class will be responsible for the representation
of a timeline, handling metadata element creation event. Also, the class is
responsible for the creation of the built-in audio player and handling of the
related to its events that can be emitted by TimelineButtonsComponent or just
by clicking on the timeline. The class implements several mouse and keyboard
listeners for hotkeys and different mouse events handling, for example, the
user can perform undo action just by pressing Ctrl+Z combination or when
the user right-clicks on a metadata element a popup menu appears where
user can decide if he wants to delete or edit some properties of the chosen
element. The entire component can be split into 3 parts:..1. Header - the part that helps the user to determine the position of the

timeline..2. Metadata elements part - the part where the user can see, edit, delete or
create metadata elements..3. Audio part - shows to the user available segments of audio data that
were proceeded by the plugin and can be used during the audio bank
creation.

The component will be provided with a scrollbar that will be used for setting
the timeline position.

6.3.6 WaveformComponent

The main task of this class is to dynamically create waveform thumbnails
of the available audio data segments based on the current timeline scrollbar
position. The thumbnails are needed for increase of informativeness of the
timeline and make the process of metadata elements creation more precise so
plugin user can rely not just on ears, but eyes too.

6.3.7 ElementDetailComponent

The component that appears after the click on the corresponding menu item
that can be seen after the right-click on a metadata element. That component
consists of 2 types of input elements - common and situational. Common
elements are 2 text editors that are responsible for showing and editing of
metadata element start and end time. The second type of input element
is called situative because their display is based on the type of metadata
element that is being edited. They include 2 text editors for module name
and production code input, one text editor for setting the pattern number and
a dropdown select box for determining pattern type, and one slider for the
in/outregion fade shape property. Alpha and points are the only metadata
elements that use only common input type elements.

33

6. Design..
6.4 Serialization

As can be seen, the structure of this part is similar to the structure, the
previous version of the plugin had. The difference is that the Harvester 2
has a header file where the audio segment model and models of metadata
elements can be found. The reason for this separation is to make code cleaner,
because, for example, this version of the plugin has definitely more models to
describe, than the previous one had.

6.4.1 Models

According to the class diagram, it is clear that we have a class that is inherited
by classes that describe the metadata plugin works with. Also, there are two
DTO classes that will be used during the .avalon_module creation.

6.4.2 PluginSerialization

The header file that consists of only one class - Serializator. The class is
responsible for all processes that are related to the serialization of the data
plugin produces or consumes, e.g., save or get metadata element that was
created by the user, fix metadata element or audio segment collision and of
course convert and export the data in the Avalon music engine format.

6.5 Data flow

Figure 6.2: The data flow of Harvester 2 VST.

As can be seen in the diagram, input sources of the plugin are:. DAW that provides audio data

34

.. 6.6. Extra

. The user interaction with the TimelineComponent.

There are 3 data stores for the data plugin works with:. JSON file in the plugin working directory that contains information
about the metadata elements and audio segments that were created by
the user.WAV files in the plugin working directory that were created during the
audio processing. Exported modules storage is a subdirectory of the plugin working direc-
tory that stores all .avalon_module and .avalon_bank files that were
created by the plugin

6.6 Extra

6.6.1 Audio player

The class that represents the built-in audio player that will be used in the
TimelineComponent.

6.6.2 PluginUtils

This class is a substitution of HarvesterProperties class that was used in
the previous version of the plugin. The class holds the path to the current
working directory, as HarvesterProperties does, but also defines some static
methods, that will be used in different components all among the plugin, for
example, conversion from samples to human readable time format and vice
versa.

35

36

Chapter 7
Realization

In this section, I want to describe software that was used during the plugin
implementation and the way it was done.

7.1 Used software

AAAC_Editor. AAAC_Editor is a tool for testing of the Avalon modules.

Reaper. Reaper is a digital audio workstation and MIDI sequencer software
created by Cockos. During the implementation process, Reaper was used as
the main testing environment.

AudioPluginHost[ROLa]. AudioPluginHost is a digital audio workstation
that comes with the JUCE framework code. During the implementation
process, AudioPluginHost was used as an additional testing environment.

FFmpeg[FFm]. FFmpeg is the leading multimedia framework, able to
decode, encode, transcode, mux, demux, stream, filter and play pretty much
anything that humans and machines have created. It supports the most
obscure ancient formats up to the cutting edge. In the plugin, FFmpeg is
used as a tool for trimming audio files and conversion between WAV and .ogg
formats.

Audacity[Aud]. Audacity is a free, easy-to-use, multi-track audio editor
and recorder for Windows, Mac OS X, GNU/Linux, and other operating
systems. During the implementation, process Audacity was used as a tool for
checking the correctness of audio data that were serialized or merged during
the collision fix process.

7.2 Implementation

7.2.1 Audio processing

In comparison to the previous version of the Harvester VST, the processing
is pretty simple. The audio processing policy of Harvester 2 VST can be

37

7. Realization......................................
described as “Everything that was played or rendered in the DAW has to be
saved as a separate file in plugin working directory”. For the implementation
of the policy JUCE classes AudioFormatWriter and AudioPlayHead were used.
Inside the processBlock method of our AudioProcessor class, we update the
instance of AudioPlayHead class to receive information about the position and
status of sequencer moving play head. When the playback starts, the plugin
easily detects that change and reinitializes the instance of AudioFormatWriter
and writing of audio to a file begins. Also, during this process, the audio
data sample length is being counted. When playback stops the instance of
AudioFormatWriter is deleted to close outputStream and file the data are
being written to.

7.2.2 GUI

TimelineComponent

Unfortunately, the JUCE framework doesn’t have a component that represents
a timeline, so we need to implement our own. The timeline drawing process
consists of the following steps:..1. The lines that are used as borders for the other parts of the timeline and

the grey line that represent audio segments data are drawn..2. The vertical lines and the text elements that represent certain time
positions are drawn...3. Some parts of the gray line that represent audio are redrawn to green to
identify what audio segments were processed by the plugin..4. Rectangles that represent metadata elements are drawn...5. The red vertical line that depicts the current playback position of the
audio player is drawn...6. The content of the visual feedback buffer is drawn

The timeline is limited to show only 15 hours of data. First, there was
an idea that the number of hours will be based on the length of the DAW
project, but then it was discovered that there is no such functionality in
the VST standard. The default settings define the hour-pixel ratio as 1
hour is 120 pixels. Thus the default visible area is limited to approximately
5 hours 27 minutes, but at the maximal zoom in level, the visible area is
limited to 20 seconds. During the metadata element creation process, the
user can see the visual feedback to the performed actions. After the click on
a metadata element creation button, we start to listen to the user’s mouse
actions. After the first click, we create the Rectangle, that is used as the
visual feedback buffer, where x coordinate of the click position is initial
x of the Rectangle, the width is calculated from the actual mouse cursor
position, the height and y position properties are constant values defined

38

................................... 7.2. Implementation

in the TimelineComponent class. The mouse listener of the component is
also responsible for handling zoom in/out and visible position change events.
The keyboard listener handles the Ctrl+Z combination press by calling the
suitable method of the TimelineComponent class. The undo is performed
by retrieving the last element from the list of types of the created metadata
elements, based on the metadata element type, the last element of suitable
metadata elements buffer is removed, the last element of the types list is
removed as well.

WaveformComponent

The component that displays dynamically creates thumbnails of processed
audio segments based on the current visible sample positions. The component
is initialized in the PluginEditor class and then passed by reference to the
TimelineComponent. The reason why initialization is not performed in the
TimelineCompoent is to avoid extra work with mouse listeners, such as
modification of mouseDown event coordinates to make the change of the
playhead position by clicking on every point of TimelineComponent possible.
Every time when the visible area of the TimelineComponent changes, the
updateData method of the class is called. The method iterates over the list
of visible audio segments and during the iteration calculates the position and
creates corresponding waveform thumbnails objects. The paint method draws
the thumbnails. The important thing is to use AudioThumbnailCache for
the created thumbnails. The cache runs a single background thread that is
shared by all the thumbnails that need it, and it maintains a set of low-res
previews in memory, to avoid having to re-scan audio files too often. Thus,
we can avoid additional audio files scanning for example during the zoom
in/out events.

Figure 7.1: Example of waveform thumbnail.

ElementDetailComponent

The component is placed inside of the dialog window that appears every time
the user clicks on the corresponding item of the metadata element menu. The
component is adaptive to the type of the metadata element that is being
edited, i.e. it changes the input elements visibility according to the element
type.

39

7. Realization......................................
7.2.3 Audio player

The audio player extends JUCE AudioAppComponent class. The class was
designed first of all for the creation of desktop apps that will interact with
the audio input and output devices, and it can be described as a simplified
combination of AudioProcessor and PluginEditor classes. The main feature of
this class is that it provides a basic AudioDeviceManager object so that we can
shift the responsibility for initialization and setting of the audio output device
onto the framework. The audio data reading and playback were implemented
with the usage of the following classes:

AudioFormatManager

The class that holds a list of the audio formats JUCE framework can read or
write. Also, it comes with a factory method that creates a suitable reader for
the file that it takes as its only parameter.

AudioFormatReader

The class that is used for reading the samples of an audio file.

AudioSource

AudioSource is a class that can produce a continuous stream of audio data.

AudioFormatReaderSource

AudioFormatReaderSource is a type of AudioSource that will convert the
output from AudioFormatReader into the audio data stream.

AudioTransportsource

This is a type of AudioSource that can be repositioned, played, stopped,
started, etc.

Every time the user changes the playback position, the audio player re-
ceives the filename and a number of samples it must start file reading from,
then AudioTransportSource instance is reinitialized according to the new
parameters.

Listing 7.1: The method that is responsible for audio player initialization
void initialize(std::string filename, int64 playbackOffset)
{
m_playbackOffset = playbackOffset;

File audiofile(PluginUtils::getWorkingDirectoryPath()
+ filename
+ ".wav"

40

................................... 7.2. Implementation

);

if (!audiofile.exists())
{

changeState(Stopping);
}

m_visualOffset = int64(std::stoi(filename));

auto* reader = formatManager.createReaderFor(audiofile);

if (reader != nullptr)
{

std::unique_ptr< AudioFormatReaderSource> newSource(
new AudioFormatReaderSource

(reader, true)
);

transportSource.setSource(newSource.get(),
0,
nullptr,
reader->sampleRate);

readerSource.reset(newSource.release());
}

}

7.2.4 Serialization

Global metadata storage

The storage for processed audio segments and user-created metadata elements
is represented as a JSON file. The reason for using JSON is the simplicity
of the format and native support by the JUCE framework. The file must
be named “globalMetadata.json” and located directly in the plugin working
directory.

Listing 7.2: Example of globalMetadata.jsonenumerate
{

"audio": [
[

0,
1968128

]
],
"modules": [

41

7. Realization......................................
{

"start": 240000,
"end": 1200000,
"name": "Testovaci",
"code": "0001T"

}
],
"patterns": [

{
"start": 242160,
"end": 360000,
"type": 77,
"number": 1

}
],
"outregions": [

{
"start": 840000,
"end": 870000,
"fadeShape": 127

}
],
"inregions": [

{
"start": 600000,
"end": 630000,
"fadeShape": 34

}
],
"betas": [

[
360000,
360000

]
],
"alphas": [

[
1080000,
1080000

]
]

}

42

................................... 7.2. Implementation

Metadata element serialization and collision fix

The algorithm for serialization of metadata elements is trivial enough. For
example, when the user creates a new module metadata element, the module
is pushed to the suitable vector in the TimelineComponent and then the vector
is passed by reference to the corresponding update method of Serializator
class. The update method sorts the vector using the std::sort function and
the process of collision fix begins. There are 2 types of collision that can
occur.

Figure 7.2: Collision types.

. In the first case, there are 2 metadata elements and according to their
positions, we can see that one of them is inside of the other. That
situation is fixed by removing the shorter element.. In the second case, there are 2 metadata elements we can call them i,
j, the collision occurs under the following conditions: i.start <= j.start
<= i.end AND i.end <= j.end. The solution for that issue is merge of
the elements.

The last part of the algorithm is the creation of JSON representation of
the metadata elements vector and replacement of the suitable item of global
storage with the new data.

Audio data segments collision

The process of audio data segments collision fix is more complicated than the
process of metadata elements collision fix because it is not enough to update
the global metadata storage, stored audio files must be updated as well. In
the first case, when we have audio files layered, according to their positions,
we can solve the issue just by deleting the shorter audio file. In the second
case, the audio files must be merged. The merging process is implemented
by using MixerAudioSource - a type of AudioSource that mixes together the
output of a set of other AudioSources. The algorithm of the merging process
consists of the following steps:..1. Calculate the offset of audio segments start positions..2. Create a zero-filled AudioBuffer (other words silence) with the length of

calculated offset...3. Create a temporary audio file that begins with the zero-filled audio buffer
and ends with the audio data of the segment that has a bigger samples
start position value.

43

7. Realization..4. Initialize AudioFormatReaderSources for the audio file that has a smaller
start samples position value and the file from step 3...5. Initialize MixerAudioSource and set AudioFormatReaderSources from
step 4 as its input...6. Write the output of MixerAudioSource to a new file...7. Delete the temporary file that was created in step 3 and file that has
smaller start samples position value...8. Rename the output audio file from step 6 to a file that had bigger start
samples position value.

7.2.5 Export

The process of export of the created metadata elements and the processed
audio segments as an Avalon music engine module begins by collecting the list
of processed audio segments positions because we need to exclude possibility
of export of metadata elements that do not have corresponding audio data.
Then we iterate over the module type metadata elements that can be found
in the range of the existing audio segments positions. During the iteration,
the instance of ExportData class is being filled with data of patterns, that
are located in the range of module position, and their special points and
regions. Then the ExportData instance is passed to corresponding functions
for .avalon_moulde and .avalon_bank files creation.

.avalon_module creation

Due to the fact that the .avalon_module file structure is strictly defined, the
task of its generation can be characterized as straightforward. We just need
to convert the data that the ExportData instance holds into a formatted
string.

.avalon_bank creation

The process of .avalon_bank file creation is more complicated. First of all,
we need to trim processed audio files according to the sample positions of
the pattern type metadata elements; then the trimmed audio files must be
converted into the .ogg format. The trimming and conversion processes were
implemented by using the following FFmpeg commands:

Listing 7.3: Example of the FFmpeg commands used during the .avalon_bank
creation process

//Audio file trimming by the sample positions
ffmpeg -i in -af atrim=start_sample=0:end_sample=48000
out

//Wav to .ogg conversion

44

....................................... 7.3. Testing

ffmpeg -i audio.wav -acodec libvorbis audio.ogg

The commands are being invoked by using the system() function.
When the trimming and conversion processes are over, we can start creating

the header of the file. As it was described in the specification, the header
consists of the string that determines that the file is an Avalon music engine
module and the list of .ogg sound banks. After the header creation, we start
to append the content of generated .ogg files to the .avalon_bank file end. In
the end, all .ogg and wav files inside the export directory are deleted, so the
directory will contain only .avalon_module and .avalon_bank files.

7.3 Testing

Testing is one of the most difficult and time-consuming parts of the VST
plugin development process. Unfortunately, there are no testing frameworks
for such a specific task, and the only option is to perform the tests manually.
JUCE AudioPluginHost and Reaper were used as the host applications for
debugging.

7.4 GUI illustration

In this section there are screenshots of different parts of the plugin.

7.4.1 Overall

Figure 7.3: The plugin hosted in DAW Reaper.

The screenshot shows a plugin instance hosted in DAW Reaper. There are
waveforms for 2 processed audio data segments and a set of data elements
that were created by the user. On the right half of the screen the list of the
exported modules located.

45

7. Realization......................................
7.4.2 Pop-up menu

The screenshot shows the context menu that pops up when the user right-clicks
on a metadata element.

Figure 7.4: The context menu.

7.4.3 Metadata element editing

The screenshots show how the content of ElementDetailComponent changes
depending on the metadata element type.

(a) : Module details (b) : Pattern details

(c) : Inregion details (d) : Alpha point details

46

Chapter 8
Conclusion

In this work, I have studied the principles and common techniques of the
adaptive music creation process. I became more familiar with the concept of
Digital Audio Workstation software, the principles of VST plugins functioning
and MIDI standard.

As the result of this project I created 2 VST plugins: Harvester VST is a
plugin for music segmentation based on the MIDI events mappings. Harvester
2 VST is a plugin for music segmentation based on the user’s interaction with
plugin GUI. Unlike the first version, Harvester 2 VST is directly integrated
with Avalon Music Engine by producing data in the engine defined propri-
etary format. The functionality of both plugins was tested in different host
applications. The correctness of the output was approved by testing in the
special application for testing of Avalon Music Engine modules.

Both plugins are written in C++ programming language with the help of
the JUCE framework.

This work may be continued in the future to bring more enchantments
into the structure, GUI or workflow of both of the plugins. For example,
the problem of beat detection. The beat detection of the Harvester VST
plugin is based on the midi mapping that can be considered as a good and
reliable solution from a functionality perspective, but unfavorable from the
perspective of UX.

47

48

Appendices

49

50

Appendix A
Bibliography

[Aud] Audacity Team, Audacity - Free, open source, cross-platform audio
software, [online] https://www.audacityteam.org/, Accessed: 15-
05-2019.

[Coca] Cockos Inc., Cockos WDL framework, [online] https://www.
cockos.com/wdl/, Accessed: 15-05-2019.

[Cocb] , Digital Audio Workstation Reaper, [online] https://www.
reaper.fm/, Accessed: 15-05-2019.

[FFm] FFmpeg Developers, FFmpeg - A complete, cross-platform solution
to record, convert and stream audio and video., [online] https:
//ffmpeg.org/, Accessed: 15-05-2019.

[Ima] Image Line Software nv, Synthesizer SAWER, [online] https://www.
image-line.com/plugins/Synths/Sawer/, Accessed: 15-05-2019.

[Kä18] Lassi Kähärä, Producing adaptive music for non-linear media, Bach-
elor’s thesis, Tampere University of Applied Sciences, 2018.

[MID96] MIDI Manufacturers Association (MMA), The complete midi
1.0 detailed specification, 1996, [online] https://www.midi.org/
specifications-old/item/the-midi-1-0-specification, Ac-
cessed: 15-05-2019.

[ROLa] ROLI Ltd., JUCE AudioPluginHost, [online] https://github.
com/WeAreROLI/JUCE/tree/master/extras/AudioPluginHost,
Accessed: 15-05-2019.

[ROLb] , JUCE framework, [online] https://juce.com/, Accessed:
15-05-2019.

[Ste99] Steinberg, Virtual Studio Technology Plug-In Specification 2.0
Software Development Kit, 1999, [online] http://jvstwrapper.
sourceforge.net/vst20spec.pdf, Accessed: 15-05-2019.

[wel18a] welove.audio GmbH, Avalon Adaptive Audio, 2018, [online] https:
//welove.audio, Accessed: 19-05-2019.

51

https://www.audacityteam.org/
https://www.cockos.com/wdl/
https://www.cockos.com/wdl/
https://www.reaper.fm/
https://www.reaper.fm/
https://ffmpeg.org/
https://ffmpeg.org/
https://www.image-line.com/plugins/Synths/Sawer/
https://www.image-line.com/plugins/Synths/Sawer/
https://www.midi.org/specifications-old/item/the-midi-1-0-specification
https://www.midi.org/specifications-old/item/the-midi-1-0-specification
https://github.com/WeAreROLI/JUCE/tree/master/extras/AudioPluginHost
https://github.com/WeAreROLI/JUCE/tree/master/extras/AudioPluginHost
https://juce.com/
http://jvstwrapper.sourceforge.net/vst20spec.pdf
http://jvstwrapper.sourceforge.net/vst20spec.pdf
https://welove.audio
https://welove.audio

A. Bibliography.....................................
[wel18b] , Avalon Adaptive Audio. Technical documentation., 2018.

[wel18c] , Avalon Music Engine, 2018, [online] https://www.
adaptive.audio, Accessed: 15-05-2019.

52

https://www.adaptive.audio
https://www.adaptive.audio

Appendix B
CD contents

./
BP_Liasko _2019.pdfThesis
PluginSource code, projects, libraries

Harvester 2.jucerProjucer project file
BuildsIDE projects folder

VisualStudio2017Visual Studio project folder
JuceLibraryCodeJUCE library code
SourceThe source code of the plugin

53

