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Abstract

Robust estimation is an important open problem, which has applications in many
areas. One of the most popular robust estimation algorithm is RANdom SAmple
Consensus, that is able to efficiently provide good estimation using even fairly con-
taminated data. Robust estimation of parametric models has been improving in many
respects over the last decades. The proposed in this study universal framework USAC++
for random sample and consensus includes novel superior (so far) methods for robust
estimation. The most used RANSAC-based algorithms are reviewed, discussed and im-
plemented in a more accurate, faster and simple way. The framework is written in C++
and was tested on multiple view geometry problems and evaluated on different publicly
available datasets.

Keywords: RANSAC, robust estimation, local optimization, homography, epipolar
geometry.

Abstrakt

Robustńı odhad je d̊uležitý otevřený problém, který má aplikace ve mnoha oblastech.
Jedńım z nejpopulárněǰśıch robustńıch algoritm̊u pro odhad je RANdom SAmple
Consensus, který je schopen efektivně poskytnout dobrý odhad s využit́ım i poměrně
kontaminovaných dat. V posledńıch desetilet́ıch se ve mnoha ohledech zlepšil robustńı
odhad parametrických model̊u. Navržený univerzálńı rámec USAC++ pro náhodný
výběr a konsenzus obsahuje v této studii (zat́ım) lepš́ı metody pro robustńı odhad. Ne-
jpouž́ıvaněǰśı algoritmy založené na RANSACu jsou přezkoumáńı, diskutované a imple-
mentované přesněǰśım, rychleǰśım a jednodušš́ım zp̊usobem. Rámec je napsán v jazyce
C++ a byl otestován na úlohách v́ıcepohledové geometrie a vyhodnocován na r̊uzných
veřejně dostupných datových sadech.

Kĺıčová slova: RANSAC, robustńı odhad, lokálńı optimalizace, homografie, epipolárńı
geometrie.
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1 Introduction

Parametric model estimation is an important task in many areas. The estimated model
must have desired relation to the given data. The contamination level, large size and/or
high dimensionality of the data often complicates estimation problem. The data could
be contaminated by outliers – the unexpected, possibly incorrectly stored or measured
data. Non-robust methods mostly could not find good estimation in very contaminated
data and often fail, whereas the robust algorithms usually succeed.

The robust estimation is a difficult problem. Not only the result accuracy, but also
computational costs play important role. Many estimation algorithms use different
techniques. The quality of those methods could be evaluated by at least two important
factors: the solution confidence and required computational time. These factors objec-
tively describe the properties of the algorithm. One of the popular and widely used
algorithm that provides right balance between solution confidence and computational
expense is RANdom SAmple Consensus.

RANSAC is robust algorithm proposed by Fischler and Bolles [11]. The simple
estimation procedure is ”repeatedly generate-verify model of minimal random sample
and save so-far-the-best one”. The sample is subset of points used to estimate the
model. The single outlier in a sample could completely destruct estimated model and
this is one of the reasons why estimation fails for larger sample set. RANSAC tries
to find randomly good samples to generate model and avoid outliers. The support of
a model is i.e., a set of inliers (the points consistent with the model). The solution
confidence is obtained using probability of drawing a good sample. RANSAC can be
seen as an optimisation method too, because its goal is to find a model with the largest
support.

Generally, RANSAC could be used in various problems requiring estimations, al-
though, it is mostly popular in computer vision tasks. The examples of RANSAC
application are image matching, statistics, geometric relation estimation (e.g., multiple
view geometry), image rectification, image mosaicing [14], short / wide baseline stereo
matching [30, 27], motion segmentation [30] etc. In image processing problems the data
can be contaminated by noise or incorrectly detected points, thus robust estimation is
worth using. As it is shown in figure 1.1a, RANSAC managed to find the correct line
model despite the high fraction of outliers (95%). Another example is the panoramic
image depicted in figure 1.1b, which was obtained by a RANSAC-based homography
estimation.

The challenge of model estimation consists in not only the data contamination, but
also in the size of the (contaminated) data. The computational time increases signifi-
cantly with decrease of the inlier ratio. In the cases of high image noise and/or data
degeneracy, the performance of the original RANSAC can be significantly affected. This
lead to continuous improvements of the RANSAC in many respects over the last years.
For example, the additional model verification tests save evaluation time, this idea was
implemented in randomised RANSAC with Td,d [5], RANSAC with sequentional prob-
ability ratio test (SPRT) [20], and RANSAC with Bail-out test [26]. The new sampling
procedure based on quality of points, their spatial coherence or confidence in each point
was proposed in PROSAC [6], (P-)NAPSAC [1, 22], EVSAC [12]. The local optimi-
sation methods that refine so-far-the-best model were presented in LO-RANSAC [8],

1



1 Introduction

or GC-RANSAC [2]. The degeneracy handling was discussed in DEGENSAC [10] or
QDEGSAC [13]. The new model cost function was suggested in MSAC [32], MLE-
SAC [31] and MAGSAC [3]. There are many other RANSAC-based algorithms that
have different improvements.

The first universal framework including all advanced RANSAC-like algorithms was
Universal RANSAC proposed by Raguram et al. [28]. However, several new methods
such as GC-RANSAC [2], P-NAPSAC [1] or MAGSAC [3] provide more accurate results.
The proposed framework USAC++ can be considered as an improvement of the above
mentioned Universal RANSAC, due to not only inclusion of new algorithms, but also
better architecture and implementation.

In the next sections the following parts of the RANSAC-based algorithms are reviewed
and discussed:

1. The design of USAC++ framework,

2. Sampling methods,

3. Verification and evaluation of estimated model,

4. Degenerate configurations,

5. Local optimisation,

6. Termination criteria.

In the end, the implementation details of the proposed framework USAC++ are
provided. The RANSAC-based algorithms that included in the framework are evaluated
on publicly available real-world datasets of several multiple view geometry estimation
problems.

a) Line estimation b) Panoramic image

Figure 1.1 Example of line estimation in data with 95% of outliers. The second figure is
example of panorama and rectification using homography.
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2 Background

2.1 Design

The simplicity is one of the greatest features of RANSAC. Briefly the algorithm could
be summarized in few steps: draw sample of minimal number, generate model, evaluate
model, store so-far-the-best model.

Another good property of RANSAC is the small number of input parameters. The
main arguments are points, threshold and confidence solution. The confidence is desired
probability (closed to 100%) for getting good result. The threshold value is allowed
tolerance of point error to model e.g., for computer vision estimation problems the
threshold is measured in pixels. The threshold determines if point is inlier or outlier.

Algorithm 1 Random Sample Consensus.

Input: P, τ, p – points, threshold, solution confidence.
Output: θ̂∗ – the best model of RANSAC.
1: inliers count∗,max iters := 0,∞
2: while iter < max iters do
3: S := random sample (P) . Draw minimal random sample
4: θ̂ := estimate (S). . Estimate model with sample S.
5: inliers count := get inliers count (θ̂, τ) . Get number of inliers.
6: if inliers count > inliers count∗ then
7: θ̂∗ := θ̂ . Save so-far-the-best model and score
8: inliers count∗ := inliers count
9: max iters := get max iterations (inliers count∗, p)

10: iter := iter + 1

The extended RANSAC algorithm has following abstract functions: Sampling, Es-
timation, Verification, Evaluation, Degeneracy, Local Optimization, Termi-
nation Criteria. The extended version was designed by exploring various of RANSAC-
like algorithms so the each RANSAC-based method could be derived from the extended
algorithm. For example, sampling does not need to be at random, or score does not
need to be sum of inliers. Note, that not every step in algorithm 2 is necessary. The
input parameters could be also extended w.r.t. used methods.

3



2 Background

Algorithm 2 Extended Sample Consensus.

Input: P – points; {τ, p, ...} – set of input parameters.
Output: θ̂∗ – the best found model.
1: score∗ := −∞
2: while termination criteria T not met do
3: S := sample (P) . Draw minimal sample
4: if ! good sample (S) then . Verify sample set.
5: continue
6: Θ̂ := estimate (S). . Estimate set of models with sample S.
7: for θ̂ ∈ Θ̂ do . For each model in estimated model set.
8: if ! good model (θ̂) then . Verify model.
9: continue

10: score := evaluate (θ̂, τ) . Get model score.
11: if better (score, score∗) then . Check if new score is better
12: if degenerate (θ̂) then . Verify model θ̂ on degeneracy.
13: continue or try to ’fix’ degenerate model

14: θ̂LO := refine (θ̂) . Local optimization of model
15: scoreLO := evaluate (θ̂LO, τ).
16: if better (scoreLO, score) then
17: θ̂∗ := θ̂LO . Save so-far-the-best model and score.
18: score∗ := scoreLO
19: else
20: θ̂∗ := θ̂
21: score∗ := score
22: T := termination (θ̂∗, p) . Update termination criteria

23: θ̂∗ := estimate (Iθ̂∗) . Refine the best found model by estimation on all inliers.

Note, that arguments of some functions in algorithm 2 were skipped for the sake of
readability.

2.2 Two-View Geometry

The two-view geometry estimation problems are widely used in computer vision. The
cameras usually used to provide the views. Every camera has extrinsic and intrinsic
parameters. Consider a pinhole camera, which parameters could be easily written in
matrix form.

The intrinsic matrix entails information about principal point offset (e.g. half of width
and height), skew and focal lengths of camera. The aim of K is mapping points from
image-pixel 2D coordinate to camera 3D coordinate system and back (K is invertible).

The extrinsic matrix includes rotation R (defined by pitch, row and yaw angles) and
translation t (3D position) of camera location in the world. It describes how world
is transformed relative to the camera. Extrinsic model [R t] maps world 3D point
to camera coordinates. And inverse transformation from camera to the world is also
possible.

Extrinsic and intrinsic matrices altogether allow to project world point (xw, yw, zw)>

to the image coordinates. Then two points x = (x, y, 1)> and x
′

= (x
′
, y
′
, 1)> corre-

4



2.2 Two-View Geometry

spond if two cameras map the same world point:

d

xy
1

 = K [R t]


xw

yw

zw

1



d
′

x
′

y
′

1

 = K
′
[R
′
t
′
]


xw

yw

zw

1


d is distance from 3D world point to camera origin and x,x

′
are points in homogeneous

coordinates.
In general, K,R, t remain to be unknown and usually denoted as ground Truth param-
eters, because they lead to solution of estimation problems.
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3 Estimation problems

In this section are presented some of the most popular computer vision / algebraic
estimation problems.

3.1 Line in 2D

Figure 3.1 Example of
linear trend estimation.
Black points are inliers,
red – outliers.

Line estimation in two dimensional subspace is the most
popular example of RANSAC. The best line must cover
the biggest number of points within predefined threshold.

The real world examples are approximation of data
points with linear trend. In the figure 3.1 all points are
e.g., some measurements. Suppose, those points must have
linear trend, although the red ones do not agree with as-
sumption and could be viewed as outliers. RANSAC can
robustly estimate the desired linear trend (line).

3.2 Homography matrix (H)

x
′ ∼ H x

The homography 3×3 matrixH project 2D planar points
in homogeneous coordinates from position on the first view
(image) to the same position on the second view and back-
ward (H is inverse). Unlike affine transformation the ho-
mography preserves also the perspective projection.

Figure 3.2 Homography ma-
trix estimation

For estimation is using Direct Linear Transforma-
tion (DLT) algorithm [15]. The homography matrix
has 8 degrees of freedom thus four points are required
for estimation (each point gives 2 equations). In [15]
was investigated that origin and scale of image co-
ordinate may have negative influence on DLT algo-
rithm and make it unstable, especially when the set
of equations is overdetermined. In [15] was suggested
to use normalization of points so that the average
distance of a point x from the origin is equal to

√
2.

Then searching (planar) homography is

H = T
′−1H̃T , where

T
′
, T stand for normalization matrices (x̃ = Tx)

The homography estimation has various applica-
tion. For example, image rectification, image stitch-
ing (mosaicing, panorama see 1.1b), image matching
etc. The problem of estimation is to find the homog-

raphy with the biggest support – i.e., number of correctly (within threshold) projected
points.

7



3 Estimation problems

In the figure 3.2 are two corresponded images. The green points are given. The red
points on the first image are projected points from the second image using homography
matrix and similarly red points on the second image are projected points from the first
image. The given points on the left building are mismatched – outliers, their projections
are bad. The black lines show the found matches – when the distance from projected
and given point is less than threshold.

3.3 Fundamental matrix (F )

x
′>F x = 0

F = K−>2 R1,2 [t1,2]×K−1
1 (3.1)

Figure 3.3 Fundamental
matrix estimation

The limitation of homography transformation is neces-
sity of points on plane, which means that features out of
plane could not be matched correctly. The idea of funda-
mental 3×3 matrix F is generating (epipolar) lines in image
coordinates that go through two correspondent points. The
points on line in this case could be considered as matches.
Then Fx is line on the second image, and x

′>F is line on
the first image.

Fundamental matrix has seven degrees of freedom, be-
cause points are homogeneous (F33 = 1) and fundamental
matrix also has zero determinant 1 constraint. F could
be estimated with seven-points algorithm [15] with up to
three solutions. Or by eight-points algorithm with perfect
(i.e. noise-free) points. The normalization of points as in
homography case is also recommended in [15]: F = T

′>F̃ T
In the figure 3.3 the black lines show again matches by

the criterion if two corresponded points lie within threshold
on epipolar line. However, the matches must not necessary be real correspondences,
because even incorrectly detected pairs by coincidence could lie on the same line.

3.4 Essential matrix (E)

y
′>E y = 0

E = R1,2 [t1,2]× = K2
>F K1 (3.2)

The idea of essential 3× 3 matrix E is similar to fundamental matrix, but the epipolar
lines go through normalized (by third coordinate) points y,y

′
corresponding to the

3D camera scene. E has five degrees of freedom: translation and rotation has by
3 unknowns, but essential matrix also has also zero determinant constraint. Thus
minimal model could be estimation using five-points algorithm [24] with are up to ten
solutions.

The examples of epipolar geometry application is image rectification or constraining
data points in images by epipolar lines to detect wrong correspondences.

From equations 3.1 and 3.2 fundamental and essential matrices can be found from
camera parameters, where R1,2, t1,2 stand for rotation and translation between cameras.
1F,E have rank 2, because were constructed by multiplication of skew symmetric matrix [.]×, rank

(AB) ≤ min(rankA, rankB).
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4 Sampling

The key of robustness in RANSAC over other estimation algorithms (e.g. Least Squares
Fitting) is sampling procedure. In presence of noise or high outlier percentage the non-
robust iterative minimisation methods could not find the best model and usually con-
verge to local minimum instead of global. This happens because computation is based
on large or entire subset of points. Whereas RANSAC makes estimation on minimal
number of sample required. The main question is: what points should be chosen. In
this chapter we describe the most popular samplers.

The simple observation about estimation problem is:

The model is good if it was generated by inliers.

But what is actually inlier? In the statement above inliers mean the subset of points
that lie under ground Truth model and equivalently generate it. Neither inliers nor
GT model we never know as no estimation is needed then. Also by (estimated) inliers
we may consider points that are closed to be inliers. In some context virtual inliers are
points that in current state could be viewed as inliers.

4.1 Random Sample Consensus

The main idea of original RANSAC proposed by Fischler et al. [11] is random sampling.
Independently in every iteration needed minimum numberm from allN points are taken
uniformly at random for estimation. Assume choosing samples without repetition

(
N
m

)
to avoid degeneracy.

So, RANSAC tries to find inliers randomly to make a correct estimation.

4.2 Progressive Sample Consensus

The more advanced and efficient (progressive) sampling was presented by Chum and
Matas [6]. The assumption of PROSAC is data ordering by quality function q(x) which
assigns a given point x the score. Thereby points are descendingly ordered from the
highest quality, that also implies probability of being inlier

∀i, j ∈ [1, N ] : i < j ⇒ q(xi) ≥ q(xj)⇒ Pxi∈I ≥ Pxj∈I

Intuitively, by this assumption every sample should be drawn from the top-ranked
points. Authors of PROSAC derived and explained algorithm in [6] how to do sampling
correctly, which is briefly summarised in this section.

First of all we need to know the sample range of the most quality points, which
will be progressively increased by number of iterations (drawn samples). Thus we need
to define subset Ul of size l ∈ [m,N ] highly ranked points and stopping length l∗ –
maximum size of Ul, l ≤ l∗. Also denote Tl, Tl+1 as average number of samples of size
m which consist of points only from Ul, Ul+1 resp. and are drawn by RANSAC. Tl+1−Tl
is again number of samples that contain one point xl+1 from Ul+1 = Ul∪xl+1 and m−1
points from Ul. Because Tl+1 − Tl is not integer define:

9



4 Sampling

T
′
l+1 − Tl

′
= dTl+1 − Tle if l = m then Tl

′
= 1

So sampling procedure in PROSAC is drawing T
′
l+1 − T

′
l samples that contains xl

and m− 1 points from Ul at random. By implementation reasons the growth function
g(t) that defines size of U should be also introduced as

g(t) = min {l | T ′l ≥ t}

It says that subset Ul of top-ranked points has minimal size l such that RANSAC’s
average number of samples containing points from Ul is bigger than t iterations of
PROSAC.
Now, sample set of PROSAC in t-th iterations is:

St = xg(t) ∪ S
′
t , S

′
t ⊂ Ug(t)−1, |S

′
t | = m− 1

From all above PROSAC converges (with the worst case) to RANSAC.
Termination length l∗ will be described in termination criteria section.

4.3 N adjacent points Sample Consensus

Figure 4.1 Line estimation. In-
liers (black) points are closer than
outliers (gray).

It was observed that inliers are usually closed to
each other. In the figure 4.1 black points are in-
liers and gray points are outliers. Inliers in the
figure are closed, whereas outliers are not.

In NAPSAC by Myatt et al. [22] was proposed
a new local sampling with assumptions that inliers
are tend to be closer than outliers. (Without loss
of generality) assume that inliers are perturbed
by Gaussian noise and outliers are uniformly dis-
tributed. In D-dimensional subspace exist local
structures of d-dimensional (d ≤ D) manifold. In
this case number of inliers within hypersphere of
radius r centered in point of manifold x is propor-
tional to rd and number of outliers is proportional
to rD. Then roughly probability of inlier inside
this hypersphere is bigger for smaller radius

P
x′∈I(r,d)x

≈ α rd

α rd+β rD
= 1

1+ β
α
rD−d

r→0−−−→ 1

in the figure 4.1 points inside green circle are all inliers, but points inside red circle
include outliers too.

NAPSAC’s sampling procedure is next:

1. Select initial point x0 (uniformly) at random from all points.

2. Select m− 1 points at random inside hypersphere of radius r with centre in x0.

3. If not enough points for minimal sample size m then choose another initial point.

So, outliers will be chosen less than inliers, because by assumption they do not have
big neighborhood. By experiments in [22] NAPSAC is much better than RANSAC in
high noise and high dimension subspace.

10



4.4 Progressive NAPSAC

Nevertheless, NAPSAC has considerable disadvantages. The worst case of NAPSAC
would be if inliers are not closed, e.g. uniformly distributed. Or for practical estimation
problems, as image matching, NAPSAC could select ill-samples that lead to degenerate
configurations. For example, closed points generates bad homography, or points from
same plane produce incorrect epipolar geometry.

4.4 Progressive NAPSAC

One of the biggest benefit of NAPSAC over RANSAC is performance in high dimension
subspace: ”... required iterations (of RANSAC) increases exponentially with dimen-
sionality.” [22]. But disadvantages as unexpected distribution of inliers or trend to
degeneracy for H − F − E estimations make NAPSAC in those cases even worse than
RANSAC. Also, for some other practical problems as rigid motion the global sampling
could be worth than local.

Barath et al. in [1] proposed more general sampling that starts locally as NAPSAC
and progressively converges to global RANSAC sampling. The goal is to keep positive
sides of NAPSAC as finding local structures earlier and avoid cons as degeneracy and
local addiction.

The first step of algorithm in [1] is to choose initial point x from all points e.g. at
random. Then comes progressive sampling based on neighborhood system N ⊆ P ×P
(denoteNi,j as point xi has neighbor xj). Rest of sample of sizem−1 are drawn from the
closest neighbors progressively including the farthest ones. By this it reminds PROSAC,
but because every point may belong to different local structure, in P-NAPSAC growth
function, iteration counter and subset of top-ranked points are given independently for
each point xp. The subset of l closest neighbors of point xp is denoted as Up,l. Then
quality function represents distance from point xp to its neighbors, so neighbors that
closer points has bigger ’quality’:

i < j ∈ [1, l]⇒ ||ui − xp||2 ≤ ||uj − xp||2, ui,uj ∈ Up,l ⊆ Np

Growth function g(tp) is the same as in PROSAC with exception that T
′
l is average

number of samples of size m − 1, because the first point is chosen from all points.
Iteration number tp increases for point xp if xp is initial xp0 or the closest neighborhood
of xp0 contains xp and vice versa.

Finally, sample of p-th point in iteration tp is

Sp,tp = {xp0 ,ug(tp)} ∪ S
′
p,tp , S

′
p,tp ⊆ Up,g(tp)−1, |S

′
p,tp | = m− 2

Within neighborhood points are drawn at random.

4.5 Groups Sample Consensus

GroupSAC proposed by Ni et al. [23] is another sampling method which assumes
that points (correspondences) could be divided into groups. Recommended and tested
grouping in [23] was by optical flow based clustering or image segmentation.

The main idea of GroupSAC is under assumption that some groups may contain big
inlier ratio and other groups contain mostly outliers. For example, for homography
estimation the groups with bigger number of inliers are planes.

The sampling strategy reminds both PROSAC and NAPSAC, because it starts sam-
pling from smaller groups and those ones that have big number of points and pro-
gressively converges to global RANSAC sampling. Groups could be viewed as local
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4 Sampling

structures too. It was shown in [23] that smaller groups and groups with high number
of correspondences have bigger inlier ratio, so it is more likely to draw correct sample
earlier.

According to the experiments in [23], GroupSAC could be even more efficient that
PROSAC. However, the evident disadvantage of this method is grouping of data. Be-
cause sometimes it may require a prior knowledge of the estimation problem or con-
struction and searching for the groups needs a time too.
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5 Model Evaluation

The evaluation procedure should be careful part of each algorithm, because it basically
classifies model as good with big support and bad with small support. Obviously, the
mismatched classification must be avoided. The RANSAC considers all models with so-
far-the-biggest support as good. The model evaluation consist with three computation
steps provided by:

1. the error function – gives the point its error distance w.r.t. evaluated model.

2. the score function – gives the point score based on its error.

3. the cost function – gives the cost of model based on point scores.

5.1 Error function

Denote error function ε : Rn → R as fitness of (concatenated correspondence) point
dimension n to the model θ and d : Rm × Rm → R distance function of ||.||2 between
inhomogeneous points of dimension m.

Affine and projective geometry
Consider 2D transformation (i.e. isometry, scale, rotation, affine, homography etc.)
represented by 3× 3 matrix M such that exists inverse transformation by M−1. Then
reprojection error is calculated as geometric distance between measured and estimated
point. In [15] was recommended to use symmetric transfer error which is sum of repro-
jection distances of forward and backward mapping:

ε([xx
′
]) = d(x

′
, Mx︸︷︷︸

x̂′

) + d(x,M−1x
′︸ ︷︷ ︸

x̂

) (5.1)

However, vectors (x
′ − x̂

′
), (x− x̂) (denote already homogeneous points) in most cases

appears to be collinear and computationally it is very inefficient to calculate both er-
rors. The spent time for two errors computation is not worth a little rise in accuracy.
The calculation of one reprojection error is enough.

Epipolar geometry
Continue with Two-View geometry, denote epipolar lines, which are generated by M3×3,
here M is for example F fundamental or E essential matrix. The quality of (epipolar)
lines Mx and x

′>M can be measured by geometric distance from given points to them.
Then error is sum of distances from both points to estimated lines:

ε([xx
′
]) =

|x′>Mx|
||((Mx)1, (Mx)2)||2

+
|x′>Mx|

||((x′>M)1, (x
′>M)2)||2

(5.2)

Another, even more used quality of M is Sampson distance (first-order geometric error):

ε([xx
′
]) =

(x
′>Mx)2

(Mx)2
1 + (Mx)2

2 + (x′>M)2
1 + (x′>M)2

2

(5.3)
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5 Model Evaluation

5.2 Score function

Denote score function s(x) : Rn → R of point x. RANSAC could have unlimited
number of score functions using various combinations of kernel, threshold and error
distances. Here we describe the most used ones.

5.2.1 Binary Score

RANSAC assumes that inlier is the point which error to estimated model is smaller
than allowed boundary τ . Then binary score is the clearest way for evaluation: 1 -
Inlier, 0 - Outlier:

sRSC(x) =

{
1, ε2(x) < τ2

0, otherwise
(5.4)

5.2.2 MSAC score

The biggest problem of binary score is that geometrically more accurate model may
have same number of inliers as less accurate. Although M-estimator is a whole class of
estimators, in [32] Torr et al. presented score as truncated quadratic function. Experi-
mentally and intuitively score defined using error distance is better than binary score,
because it also carries information about error distance of inlier.

sMSC(x) =

{
ε2(x), ε2(x) < τ2

τ2, otherwise
(5.5)

5.2.3 MLESAC score

Another way of computing score was presented in [31] by Torr et al. The assumption
holds that noise in image is Gaussian with 0 mean and uniform standard deviation
σ. Hence using maximum likelihood estimation the probability density function of
presence of noise in data could be defined. The expected error distance of inlier has
normal distribution and error of outlier is distributed uniformly. For the reason that
features could be mismatched then fairly to use probability of error as mixture of normal
and uniform distributions. Denote γ – mixture parameter and 〈−v

2 ; v2 〉 is pixel range of
outlier.

In general σ, v and γ are unknown, but it is possible to make estimation of them.
For instance, in [31] was proposed to obtain mixture parameter γ with Expectation-
Maximisation algorithm treating inlier-outlier as missing data and making suitable
expectation.

Pεinlier(x) =
e−

ε2(x)

2σ2

√
2πσ

, Pεoutlier(x) =
1

v
(5.6)

Pε(x) = γPεinlier(x) + (1− γ)Pεoutlier(x) (5.7)

For sake of minimisation problem, MLESAC minimise sum of negative logarithmic
likelihood and score in this case is:

sMLSC(x) = − log Pε(x) (5.8)
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5.3 Cost function

error distance (px)
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Figure 5.1 Score functions.

Note, that MLESAC and MSAC as well are classes of estimators. MLE approach for
Gaussian noise is only expected example and MLESAC could derive for other distribu-
tions of noise too.

According to the experiments in [31], MLESAC is slightly better than MSAC and
more accurate up to 10% than RANSAC.

Note, that figure 5.1 shows only score (not loss) of point x which has error distance
ε2(x). So, RANSAC maximises a (binary) score, while MSAC and MLESAC minimise.

5.3 Cost function

For most RANSAC-like algorithms the cost C of model θ is defined as sum of scores
over points P to model θ:

C(θ) =
∑
x∈P

s(x) (5.9)

5.4 Evaluation

In standard RANSAC cost of model is calculated over all points and it implies time-
consuming evaluation process for large number of data size N . While time required to
calculate minimal model is constant. Evidently, for big N time to qualify i.e. incorrect
model much exceeds time for its estimation. The average time of running standard
RANSAC is:

tRANSAC = k (tS + tΘ + |ΘS | teval) (5.10)

Where k is number of samples drawn, tS is time to generate sample, tΘ is time to
compute models, |ΘS | is average number of models per sample and teval is time to
evaluate the model. So time to generate sample and compute model is not significant,
whereas evaluation of model takes the most running time.

It was proposed several methods to reduce evaluation time by rejecting bad models.

Note, by good model is meant that it was computed by inliers and bad model was
generated by contaminated sample, but occasionally happens that outlier or quasi-
degenerate data might produce correct model, e.g. in epipolar geometry. However, in
computation this fact was ignored.
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5 Model Evaluation

5.4.1 The Td,d test

The idea of Td,d test proposed by Chum and Matas in [5] is verification if all d from d
points randomly chosen from whole data set are inliers to current hypothesized model.
If they are inliers then comes further evaluation of model on the rest points, otherwise
new model is generated. The average time of evaluation with this verification test is:

teval = PS⊆I (αN + (1− α)tα) + (1− PS⊆I)(βN + (1− β)tβ), α = εd, β = δd (5.11)

α is the probability that all d random points are inliers (ε is inlier ratio) and β is the
probability that d points consistent with ’random’ model. Similarly tα, tβ is average
time spent in verification of d points.

In [5] was derived the optimal number of points for verification d∗ = 1.

5.4.2 The Bail-Out test

The concept of Bail-Out test presented by Capel in [26] is similar to Td,d test. Again,
the decision about model rejection is based on subset of d random points. The main
factor is inlier ratio εd of d-points, if εd < ε∗ then it is very unlikely that tested model
is good.

The odds if current model, that was evaluated on d points, has bigger support I
(number of inliers) than so-far-the-best model is

P (I > I∗) =
N∑

I=I∗

P (I|Id, d,N) (5.12)

Desirably, P (I > I∗) should be high, so if it below threshold (e.g. 1%) then model is
bad. Calculation of this probability is quite inefficient, so in [26] was suggested to use
approximation of Id. The recommended ones are hypergeometric, binomial (low bound
for small d) and normal for large d.

Id ∼ N (µ, σ2) (5.13)

The minimal support Imin
d = bd ε̂ − zconf σc for each d makes the decision if model is

bad.

Input: θ – model to evaluate.
Output: Score of θ, e.g. I – number of inliers.
1: I := 0, d := 0
2: for x ∈ randomized points set P do
3: d := d+ 1
4: if x is inlier then
5: I := I + 1

6: if I < Imin
d then

7: Model is bad. Terminate verification.

5.4.3 Sequential probability ratio test

The more advance method of evaluation similar to Td,d or Bail-Out test was presented
in [20] by Matas and Chum. It includes Wald’s Sequential Probability Ratio test to
decide if model is good or bad. So, the errors of two types are: 1) rejecting a good model
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5.5 Marginalizing Sample Consensus

and 2) acceptance of bad one, but in RANSAC only error of the first kind could be
observed. The goal is again to minimise time of evaluation.

Denote α as probability of rejecting good estimation Hg, and Hb is label for bad
model. Then consistency of j-th point to good model is based on likelihood ratio:

λj =

j∏
i=1

P (xi|Hb)

P (xi|Hg)
(5.14)

P (xi|Hg), P (xi|Hb) are conditional probabilities of belonging point xi to good and bad
model resp. P (xi|Hg) could be approximated as inlier ratio ε among all points, and
P (xi|Hg) = δ, where δ is the probability of random event (parameter of Bernoulli
distribution). The initial probabilities δ0 and ε0 are difficult to estimate as it requires
the knowledge of problem beforehand. Although in [20] was recommended to obtain δ
by geometric considerations, i.e. as a fraction of the area that supports a hypothesised
model. And ε0 could be guessed as the lowest bound of inlier ratio.

The verification test must be on randomized data points. If for j the likelihood ratio
λj is bigger than decision threshold A then model is bad, otherwise increment j and
continue testing. After the test the good model is accepted or bad is denied.

The probabilities ε and δ are changing during the algorithm. The lower bound of
ε̂ is inlier ratio of the biggest support so far and δ̂ could be estimated as the average
fraction of consistent data points in rejected model. If model is accepted and has the
biggest support then ε ← ε̂ and δ ← δ̂. If tested hypothesis is rejected and δ̂ differs
than δ more than 5% then δ ← δ̂.

In [7] was experimented performance of RANSAC with Td,d, Bail-Out and SPRT.
Among three of them the best one w.r.t. time seemed to be RANSAC with SPRT.

5.4.4 Preemptive RANSAC

Completely new way of fixed-time evaluation was proposed by Nister in [25]. Denote
positive (exponentially) decreasing function f(i), i = 1..N which defines how many
models should be verified in i-th step. Only f(1) hypothesis are generated in the
beginning. For each i only f(i) so-far-the-best models are evaluated based on score of i
points. The procedure stops if i > N or f(i) = 1. In any case the best model is chosen.

Because the algorithm has almost constant time of running it became popular for
real-time problems as live structure or motion estimation, or where fixed computational
time is required.

However, the limitation of preemptive RANSAC as was mentioned in [20] is ”...
fixed number of models is evaluated, which is equivalent to an a priori assumption that
the fraction of inliers is known”. Basically, for cases with small number of inliers the
method would rather fail, whereas standard RANSAC tests more samples and has
bigger chances to find a good model.

5.5 Marginalizing Sample Consensus

The previous methods and score functions in this section depends on very important
user defined threshold value τ . If threshold is too big or low, the estimation result will
change significantly. For example, big threshold value could tolerate outliers. Or if data
points are fairly perturbed by noise than estimation is inaccurate and small threshold
is very pessimistic in this case. Also threshold should depend on the resolution of
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image, because for computer vision estimation problems threshold is usually measured
in pixels. The recommended threshold in [31] is based on standard deviation of image
noise τ = 1.96σ, but σ in most cases unknown.

Barath et al. in [3] proposed novel RANSAC-like algorithm that does not require
threshold τ . Unlike RANSAC that decides if point is inlier by threshold MAGSAC
marginalise the likelihood of point being inlier over standard deviation of noise. In this
case MAGSAC needs the upper bound of noise level σmax, which could be fairly large
(e.g. 10 px [3]).

Assume that standard deviation of noise is uniformly distributed σ ∼ U(0, σmax),
because no prior information is given. The distribution of inliers and outliers is uniform:
inlier ∼ U(0, σ), outlier ∼ U(0, v) (v is e.g. image range, recall MLESAC above).
Suppose that the residuals of inliers in every dimension of ρ-dimensional subspace are
independent and normally distributed with zero mean and standard deviation of image
noise N (0, σ2). Then fractions ε2

σ2 have chi-squared distribution X 2(ρ) with ρ degrees
of freedom.

The distribution of inlier residuals in this case is given by density function g(ε | σ)
and distribution of outlier residuals is uniform within interval [0; v].

Using the maximum likelihood estimation in MAGSAC was derived the likelihood of
model θ for std. dev. of noise σ: L(θ,P | σ). The cost function in MAGSAC is based
on the likelihood of model marginalised over the σ.
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6 Degeneracy

”The state or quality of being degenerate.”

a) Line estimation b) F estimation

Figure 6.1 In a) is example of degeneracy in line estimation. The red line has the biggest found
support – points within threshold, but those points that make circles are outliers. The desired
green line lie on inliers. In b) is example of degeneracy in fundamental matrix estimation from
adelaideRMF dataset. The first pair of images has correct epipolar geometry, the epipolar
geometry on the second pair is degenerate and has big support. The epipolar geometry on
the third pair is ’fixed’ second one using plane-and-parallax algorithm.

Originally RANSAC considers the model with biggest found support as so-far-the-
best. Intuitively, model with smaller score is worse, but this assumption is not com-
pletely true. By contradiction, could be shown that exists model with less score which
is better.

In [15] Hartley et al. defined term degenerate as follows:

”A situation where a configuration does not determine a unique solution for a
particular class of transformation is termed degenerate.”

Similarly, degenerate data – points that provide not enough constraints to compute
correct relation [13], which, basically means that degenerate data imply degenerate
configuration. So, the stronger assumption for so-far-the-best model, slightly modified
from [4] is:

A model consistent with a sample that is not contaminated by outliers or degenerate
data and does not contain a degenerate configuration has larger support.

The estimation problems have different degenerate configuration and data:
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6 Degeneracy

6.1 Line in 2D

This is simplest case to show degeneracy which can occurred in RANSAC. In the figure
6.1a estimated line has the biggest found number of inliers, but obviously, desired
model must lie on the points with linear trend. The cause of degeneracy in this case is
estimation by sample containing outliers.

Degenerate configuration for line is estimation from two exactly the same points.
Because, then line has arbitrary orientation and by Hartley’s et al. definition there is
no unique solution.

6.2 Homography matrix

In [15] Hartley et al. showed that for homography matrix estimation using DLT algo-
rithm require four points, where every triple of them are not collinear.

If three points are collinear on one correspondent image and not collinear on second,
it means that H does not exist, because homography preserves collinearity. If three
points are collinear on both correspondence then in DLT algorithm eight equations are
linearly dependent and no unique solution could be found (degenerate configuration).
So, degenerate data are collinear points.

6.3 Fundamental matrix

In [15] Hartley et al. classified degeneracies that could happen in F -estimation as follow:

i Estimation from n ≥ 8 perfect (noise-free) points in general position using 8-points
algorithm gives unique non-degenerate solution.

ii Estimation from n = 7 correspondences using 7-points algorithm generates 1-3 solu-
tions, some of them may be (non-)degenerate.

iii Estimation from n ≥ 6 perfect points related by homography x
′
i ∼ Hxi produces

family of solutions.

In [15] was also mentioned, that degeneracy occurs when all points lie on a same plane:
”In this case, all the points plus the two camera centres lie on a ruled quadric surface,

namely the degenerate quadric consisting of two planes – the plane through the points,
plus a plane passing through the two camera centres.”

Generally, in Two View Geometry Unaffected by Dominant Plane proposed by Chum
et al. [10] has been shown and proved that 5 or more points from 7 that are inliers and
lying on dominant plane produce wrong epipolar geometry that might have big score.

In [10, 15] degeneracy was causing by H-degenerate configuration. Because epipolar
geometry in this case is consisted with homography: x

′
i ∼ Hxi satisfy x

′
iFxi = 0.

6.4 PLUNDER

Pick Least Undegenerate Randomly algorithm described in [33] by Torr et al. was
the first algorithm that tried to find degeneracy for different estimation problems in
RANSAC. The method is divided on sampling and model selection parts. In sampling
phase, sample selected at each iteration, determines the model that will gain support
from them. And in model selection part the most appropriate model is picked to
describe the data.
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6.5 DEGENSAC

In [10] a novel part of RANSAC algorithm for detecting and fixing degeneracy in fun-
damental matrix estimation was presented. Method checks so-far-the-best F ∗ model of
RANSAC on H-degenerate sample test. If 5 or more points are related by homography
then (optionally) new H homography matrix is computed and also new fundamental
matrix FH is estimated by plane-and-parallax algorithm [15]. If FH has bigger support
than F ∗ then F ∗ ← FH .

Briefly, H-degenerate sample test attempts to estimate plane homography from fun-
damental matrix. According to [15], 3 points and F is enough to find homography. If
constructed in this way homography is consistent with at least 5 sample points then F
is degenerate.

In the figure 6.1b yellow (7) points were used for minimal estimation. The first
epipolar geometry is correct and has the biggest support, only 4 points are on the
dominant plane. The second one is degenerate, because all points lying on the same
plane. The third one was fixed using plane-and-parallax algorithm, two additional
random points marked red colour generated new fundamental matrix that has almost
twice bigger support than degenerated.

6.6 QDEGSAC

A more universal approach to estimate different models on (quasi-)degenerate data was
proposed in [13] by Frahm and Pollefeys.

One of the ideas of QDEGSAC is that mapping (represented by matrix L), con-
structed from degenerate data, for model θ estimation (e.g. L θ = 0) does not con-
strained enough. Which means L does not have a full rank required for unique estima-
tion. Authors also mentioned that proposed algorithm could be interpreted as a robust
measurement of rank L.

QDEGSAC unlike DEGENSAC is not component of RANSAC (however includes it)
and is divided on 3 parts. In the first phase RANSAC estimates a full model assuming
that data are non-degenerate. Output is inliers and outliers. In model selection part
the robust rank detection is performed on generated constraints from inliers. In the last
model completion phase the outliers are tested for non-degenerate inliers to compute
the correct relation.

6.7 Closure

In conclusion of this chapter, degeneracy is quite important problem in RANSAC:
”degenerate data are likely to lead to a numerically ill-conditioned estimation” [15]
which one might have even large support. It is worth to have additional tests and
constraints for sampling or estimation parts for sake of evaluation time savings. For
example, some non time-expensive tests (i.e, test on collinearity) could be applied for
every sample.
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7 Local Optimization

Local optimization (LO) is definitely the most improving part of original RANSAC.
The basic idea of LO in RANSAC-like algorithms is updating so-far-the-best model
during the run (locally) with non minimal estimation using different techniques.

7.1 Locally Optimized RANSAC

Locally Optimized RANSAC is the first LO method proposed by Chum and Matas [8].
Authors explained general idea by observation that, experimentally, generating model
from minimal number of sample leads to poor estimation in the presence of noise. On
another side, the main reason for minimal estimation is that every next point in the
sample exponentially decreasing the probability of being inlier (( |I|N )m

m→∞−−−−→ 0). As
a result one outlier ruins estimated model. Hence, sample that are drawn from inliers
produce geometrically more precise model, though size of sample should not be too big
due to time complexity (in [8] suggested number is min( |I|2 , 12) for homography and

min( |I|2 , 14) for epipolar geometry).

LO-RANSAC could be divided into Inner and Iterative parts which could be run
both and separately:

7.1.1 Inner RANSAC

Inner phase executes when so-far-the-best model was found and there are enough inliers
for non minimal estimation. Sample of predefined size are drawn (e.g. at random) from
inliers consistent with so-far-the-best model and new model is estimated. If new model
has bigger support than so-far-the-best model then new model is stored. This procedure
repeats k times (e.g. k = 10 in [8]).

7.1.2 Iterative RANSAC

Iterative part may run independently as Inner RANSAC or after it.

Anyway, the first step is to find data points of the new threshold τ
′

:= Kτ , K is
positive threshold multiplier. Those points could be viewed as (virtual) inliers consistent
with so-far-the-best model and τ

′
. Then iteratively, new model is estimated with all

inliers, and data points of new model and reduced threshold τ
′

are generating again.
This procedure repeats until new threshold is not equal to original τ

′ 6= τ .

7.2 Fixing Locally Optimized RANSAC

Iterative RANSAC from previous section has one disadvantage that was discussed by
Lebeda et al. in [18]

”For a large number of inliers, this procedure can dominate the execution time, even if
executed only once.” [18]
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7 Local Optimization

So, this is actually mean that all-inliers estimation in iterative part as was proposed in
[8] is very time-consuming for big set of points. Furthermore those ’inliers’ correspond
to threshold Kτ which means that for bigger K the procedure slows downs too. The
proposed solution in [18] is sampling from inliers inside Iterative part as well as in Inner
RANSAC. The suggested in [18] sample size is 7m (m is minimal sample size).

This improvement sped up computational time several times, but on another hand
the accuracy (not significantly) decreased, which is understandable, because estimation
now is based on the subset of inliers.

7.3 Weighted Local optimization
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Figure 7.1 Histograms of point errors to the ground truth models. x-axis is threshold, y-axis
is number of points in corresponded bins.

A lot of algorithms use weighting function to improve results. The weights usually seem
like additional information that could improve estimation. For the vision problems it
is very practical, because it is expected some noise or outliers in data. Intuitively,
(correctly) weighted data points should refine estimation model.

In MAGSAC [3] by Barath et al. was proposed the σ-consensus algorithm to improve
the good model of RANSAC by weighted least-squares. Weights of points are based on
the likelihood of being inlier marginalised over the standard deviation of image noise σ.

In figures 7.1a - 7.1d are histograms of point errors. For fundamental matrix residuals
(Sampson distance) of ground truth inliers are mostly in the error range [0; 1] so the
rest points out of this range are outliers. Similarly, for the homography matrix, the
(reprojection) errors of inliers are within range [0; 3]. Since MAGSAC does not require
inlier-outlier threshold, the outliers could be avoided by correct weighting using the
right distribution of inlier residuals.

7.4 Graph-Cut RANSAC

7.4.1 Energy minimisation

Graph-Cut RANSAC proposed by Barath and Matas [2] was presented as the most
geometrically accurate LO among state-of-the-art techniques. The idea was formulated
as energy minimisation. Assume labeling L s.t. ∀i ∈ 1, ..., |P| : Li = 1 if point i is
inlier, 0 otherwise, |P| is number of points. For example, the binary loss is 1 if the
classification (inlier-outlier) is wrong w.r.t. error distance ε and threshold τ , and loss is
0 if classification is correct. So far this definition reminds plain RANSAC, but recalling
to MLESAC [31] the binary loss function was changed in GC-RANSAC to continuous
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7.4 Graph-Cut RANSAC

loss using Gaussian kernel K(ε, τ) = e−
ε2

2τ2 . Then unary energy term EK(L) is:

EK(L, ε, τ) =

|P|∑
i=1

{
1−K(εi, τ) Li = 1

K(εi, τ) Li = 0
(7.1)

Remark, (1 − K(ε, τ))
ε→{0,∞}−−−−−−→ {0, 1} and K(ε, τ)

ε→{∞,0}−−−−−−→ {0, 1} and classification
loss is similar to binary.

The energy minimisation could be more accurate by considering also the spatial
coherence of points. In other words, it is assumed that close points are more likely
belong to the same model. Therefore, considering the point proximities in the energy
minimisation leads to improvement in accuracy.

In [2], Barath et al. modified the Potts model, which penalizes neighbors having differ-
ent labels. The pair-wise energy term for each neighbor pair (edge) from neighborhood
graph G is

ES(L) =
∑

(p,q)∈ifGE


1 Lp 6= Lq
1
2(K(εp, τ) +K(εq, τ)) ifp, q are outliers

1− 1
2(K(εp, τ) +K(εq, τ)) ifp, q are inliers

(7.2)

The total energy is calculated then

E(L) = EK(L) + λES(L), (7.3)

where λ is spatial coherence parameter balancing the energy terms. The recommended
value in [2] is 0.1 .

7.4.2 Graph Cut

The optimal labeling L∗ that minimise 7.3 is found by using the source-target graph-
cut algorithm. The construction of graph G = (P, E) using unary and pair-wise energy
terms is in details discussed in [2, 16]. Edges E are represented by neighborhood system
N ⊆ P × P (xi has neighbors {x′ | x

′ ∈ P}).

7.4.3 Local Optimization

The local optimization part of GC-RANSAC can be briefly summarized in following
pseudo code:

The sample size for estimation is 7m (suggested in [2]). The quality of model (function
better) could be either standard binary or MSAC score or the recommended support
function in [2] is based on kernel K

C(θ) =

|P|∑
i=1

K(εi, τ), εi is error distance from model θ to point i. (7.4)
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7 Local Optimization

Algorithm 3 GC-RANSAC

Input: θ̂∗ – so-far-the-best model of RANSAC, N – neighborhood of points
Output: Updated θ̂∗

1: changed← 1
2: while changed do
3: changed← 0
4: G ← build (θ̂∗,N ) . Build neighborhood graph.
5: L← graph cut (G) . Get optimal labeling using graph-cut algorithm.
6: for i = 1, ..., n do . n is maximum number of iterations
7: S ←sample (L) . Get sample from inliers using given labeling.
8: θ̂GC ← estimate (S) . Estimate new model.
9: if better (θ̂GC , θ̂

∗) then
10: θ̂∗ ← θ̂GC . Update so-far-the-best model
11: changed← 1
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8 Termination criteria

Termination is essential part of every algorithm. In RANSAC stopping criteria are
based on probabilities of finding a good model. We will describe in this section the
termination conditions of different RANSAC-like algorithms. It is worth to note that
termination is quite fragile phase, because any additional component or even small
changes in algorithm structure could ruin the whole idea and assumptions of completion
process.

8.1 RANSAC sampling

Termination criterion used in RANSAC is about confidence that model was estimated
by inliers. In previous section we have shown that sampling is uniformly at random
without replacement

(
N
m

)
, so probability to drawn sample S of size m from inliers of

size |I| and total number of points N is

PS⊆I =

(|I|
m

)(
N
m

) =
m−1∏
i=0

|I| − i

N − i
(8.1)

In other words, w = |I|
N is inlier ratio. Roughly, probability of picking inlier at random

is w. Hence, the joint probability that independently at random m points were chosen
to be inliers is

PS⊆I ≈
m∏
i=1

w = wm (8.2)

and (1 - PS⊆I) is the odds that from m points at least one is outlier. Desirably,
the probability (1 - PS⊆I) should be as less as possible. Thus in k steps of random,
independent and uniform sampling, the probability of having at least one outlier in
sample of size m should be closed to zero (1−PS⊆I)k < η → 0%. Usually p is denoted
as desired probability of getting useful result, so 1− η = p→ 100% and final equation
is:

(1− PS⊆I)k = 1− p (8.3)

k∗ =
log (1− p)

log (1− PS⊆I)
(8.4)

Note, that PS⊆I is only lower bound probability of good sample, because real number
of inliers |I(GT )| is unknown. The used way to obtain tentative number of inliers
is counting points under threshold. Another way to approximate probability of good
sample is using some data distribution.

In [1], a relaxation of PS⊆I was proposed. Although, this method is more suitable for
(P-)NAPSAC sampling, where we assume local structures and closed points are likely
to be inliers. By positive constant number γ the RANSAC termination criterion can

27



8 Termination criteria

be relaxed as follows

k∗ =
log (1− p)

log (1− (w + γ)m)
, 0 ≤ γ < 1− w (8.5)

To the experiments in [1], a suitable value of γ∗ is 0.1 leading to significantly fewer
iterations with no noticeable deterioration in accuracy.

8.2 MAGSAC

Since MAGSAC [3] does not need an inlier-threshold, a new termination condition was
proposed in [3]. Let us denote the expected number of samples to drawn (see equations
above) by RANSAC as k(τ) given a manually set threshold τ . Then number of iterations
in MAGSAC is calculated marginalizing k(τ) over the noise level σ as follows:

k∗MAGSAC =
1

σmax

∫ σmax

0
k(σ) dσ ≈ 1

σmax

K∑
i=1

(σi − σi−1) log(1− p)
log(1− |I(σi)|

|P| )
(8.6)

The integral can be replaced by the sum over the K smallest sigmas, σ1 ≤ σ2 ≤ ... ≤
σK ≤ σmax ≤ ... ≤ σ|P|. However, to avoid the expensive computation over K smallest
std. dev. of noise in [3] was suggested to uniformly divide interval [σ1;σmax] into d� K
partitions. The used d in MAGSAC is 10.

8.3 PROSAC sampling

In sampling section was described procedure of choosing samples from subset of top-
ranked points Ul of size l. Let us recall also termination length l∗, that determines
maximal range of sampling, denote Il∗ as subset of inliers within Ul∗ . So, PROSAC
terminates if two next conditions for |Il∗ | are satisfied:

8.3.1 Non-randomness

non-randomness – the probability that |Il∗ | out of l∗ data points are by chance inliers
to an arbitrary incorrect model is smaller than Φ (e.g. 5%) [6].

By the growth function, the subset Ul of l points with the highest quality is pro-
gressively enlarged by points with lower probability of being inlier. This causes that
sample by chance may consistent with outliers. The distribution that determines the
size i of those top-ranked random ”inliers” within Ul is binomial (denote PRndl (i)) with
parameter β – the probability of a random point being consistent with a contaminated
model.

As a result the minimal size of inliers within Ul is calculated so the probability of
such size being random is smaller than threshold Φ.

∀l : |Iminl | = min {j |
l∑
i=j

PRndl (i) < Φ} (8.7)

Finally, the condition which is satisfied usually first is |Il∗ | ≥ |Iminl∗ |
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8.4 DEGENSAC

8.3.2 Maximality

maximality – the probability that a solution with more than |Il∗ | inliers in Ul∗ exists
and was not found after k samples is smaller than than η0 (e.g. 5%) [6].

This criterion reminds RANSAC’s termination condition, though difference is that sam-
pling is not from all points but inside the range l

PS⊆Il =

(|Il|
m

)(
l
m

) (8.8)

and similarly (1− PS⊆Il∗ )k must fall under threshold η0.

The stopping length l∗ is chosen to maximise confidence solution subject to non-
randomness constraint.

8.4 DEGENSAC

Let us recall F -estimation with 7-points algorithm. The probability that all 7 points
are inliers or good sample is P7/7 = w7 by RANSAC sampling. But some of the points
could be H-degenerate and probability of inlier can not be simply predicted as inlier
ratio. Chum et al. in [10] derived new formula of calculating this probability including
fraction of homography consistent inliers wH :

P
(F )
7/7 =

5∑
i=0

(
7

i

)
wiH(w − wH)7−i (8.9)

So, P
(F )
7/7 = P7/7 if wH = 0, otherwise P

(F )
7/7 < P7/7. For now the confidence of finding

good solution is even less than in RANSAC, but we could use plane-and-parallax algo-
rithm to recover degenerate estimation. In this case at least 5 from 7 points must be

H-degenerate, this probability is P
(H)
5/7 =

∑7
i=5

(
7
i

)
wiH(1−wH)7−i. However, probabili-

ties P
(H)
5/7 and P

(F )
7/7 include correspondences that are both good and H-degenerate with

odds Pr
(F )
7/7 ∩ Pr

(H)
5/7 =

(
7
5

)
w5
H(w − wH)2. The final probability that epipolar geometry

is recovered by drawing a single sample is:

P = P
(F )
7/7 + P

(H)
5/7 − (Pr

(F )
7/7 ∩ Pr

(H)
5/7 ) (8.10)

Now, P ≥ P7/7 and DEGENSAC terminates earlier than RANSAC with the worst case
when wH = 0.

Nevertheless, authors of DEGENSAC computed probability P7/7 to be confident in
any solution.

8.5 SPRT

To decide if tested hypothesis is bad in [20] was introduced decision threshold A. The
main properties of A is minimising average time of running, hence if A is too big time
for evaluation would increase, on another side if A is small then probability of rejecting
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8 Termination criteria

a good model would rise. Denote, the time of evaluation dependent on A as

t(A) =
1

PS⊆I(1− α)
(tΘ + |ΘS |

logA

C
) (8.11)

Where α ≈ 1
A is the probability of rejecting good model and logA

C is average number

of checked data points while testing a bad model. The optimal A∗ = arg minA′ t(A
′
)

minimises verification time. After derivation of equation above to reach minimum, exist
two solutions and using numerical analysis the optimal A∗ could be found (see [20]).

The termination condition for RANSAC with SPRT is ”The algorithm is terminated,
when the probability of missing a set of inliers larger than the largest support found so
far falls under a predefined threshold η0 (e.g. 5% ) [20]”. Recall the odds α of rejecting
a bad model. For i-th sequence of SPRT the probability of α w.r.t. εi (probability that
point is consistent with good model) and δi (probability that point is consistent with
good model) is

αi = A−hi , ε(
δi
εi

)hi + (1− ε)(1− δi
1− εi

)hi = 1, εi < ε ≈ |I|
N

(8.12)

The solutions of second equation above are two, the first one is for hi = 0 and second
could be found numerically. The probability of having at least one outlier and not
rejecting a good model in k steps is

ηi = (1− PS⊆I(1− αi))ki (8.13)

It is worth to notice, that in standard RANSAC α is zero.
Denote ki number of samples processed during i-th likelihood ratio test from sequence
of r independent tests in RANSAC. Then the probability η is given

η(r) =

r∏
i=1

ηi (8.14)

And upper bound number of iteration for r-th test is

k∗r =
log η0 − log(η(r − 1))

log(1− PS⊆I
Ar

)
(8.15)
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9 Neighbors Searching

In the previous sections we note that spatial coherence and as a result neighborhood of
points has influence on estimation problems. For instance, P-NAPSAC and NAPSAC
outstrips RANSAC when inliers are closed by assumption. Or GC-RANSAC is better
than LO-RANSAC because by one of the reasons that cooperates with neighbors of
points.
There is three options to obtain neighborhood

9.1 Radius Search

Points within hypersphere of radius r centered in target point x are neighbors of x. This
is the standard approach to find neighborhood of point, which also suits for NAPSAC
sampling.

9.2 K Nearest Neighbors Search

The implementation benefit of KNN over Radius-Search is the fixed number of neighbors
for every point. However the neighbors may not be adjacent, moreover could be even
fairly distant from the target point.

9.3 Grid Search

Non-trivial implementation of previous methods requires construction of k-dimensional
trees, but for two-view A − H − F − E estimation problems it is unnecessary. The
point could be viewed as four-dimensional after concatenating of two 2D corresponded
points.

The advanced method of searching neighbors of correspondent points is tiling the
data set. Suppose, we have (uniformly) divided grids of two images then

Two points are neighbors if they are in the same cell in both correspondent images.

Using hash tables this implementation is much simpler and faster than KNN or
Radius-Search. The complexity is linear O(N) for data size N , while k-d tree has
O(N logN) complexity.
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10 Implementation

USAC++ framework is written in C++ language. Each component (sampling, local
optimization, termination criteria etc.) has an abstract class. Thus new parts could
be easily added to the framework. In the implementation of framework for the sake of
efficiency was avoided using complex data types and large usage of memory. The main
used library is OpenCV. The minor libraries are Graph Cut Optimization (GCO) [16],
Nanoflann (for k-nearest neighbors search) and OpenMP (for parallel evaluation).

By having an abstract score function RANSAC is possible to change e.g., to Least
Median Squares estimator so the score is median of residuals.

The main parts of USAC++ framework are RANSAC, PROSAC, NAPSAC, P-
NAPSAC sampling. The local optimisation methods are Inner RANSAC, (Fixing)
Iterative RANSAC, GC-RANSAC. The implemented abstract solvers are for homog-
raphy, fundamental, essential, affine matrices and line in 2D estimation. The abstract
quality and score classes are binary-RANSAC, MSAC, MLESAC and MAGSAC. The
termination criteria are for RANSAC, PROSAC and MAGSAC, for DEGENSAC in
[10] was used same termination condition as for RANSAC. There are also many other
things in the framework such as degeneracy test and plane-and-parallax algorithm for
fundamental matrix or oriented epipolar constraint which benefits was discussed by
Chum et al. in [9].

10.1 Randomness
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Figure 10.1 Histogram of random
values.

For RANSAC is very important to be random,
but standard random functions are not reli-
able, hence we implemented pseudo-random
Fisher-Yates shuffle. This method generate
uniformly distributed unbiased permutation
and unique random subset is easily extracted.
Although, it requires allocation of array of
points size.

Similarly, shuffled array is using for random-
ized evaluation e.g. for RANSAC with sequen-
tial probability ratio test.

in the figure 10.1 is histogram of values from
C++ function random(). The total number of
values equals to the random range, so desirably
each bin should have only one value (red line). The entropy of random() for tested data
size is 9.34 and maximum entropy is 9.90.

10.2 Estimation

The common step to obtain any of A−H−F−E matrices is solving the set of equations
generated from sample. However, overdetermination or complication of equations leads

to the optimisation problem. Denote matrix L ∈ Rm×n (L
′ ∈ Rm×n

′
) that represents
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10.3 Sorting points

desired mapping to obtain the model θ, and b ∈ Rn is a vector of given values. Then
minimisation task is

θ∗ = arg min
θ
||L θ − b||2 (10.1)

Or
θ∗ = arg min

θ′
||L′ θ′ ||2, s.t.||θ′ ||2 = 1 (10.2)

There are similar approaches to find the optimal solution, although each of them lead
to different result w.r.t. computational time and accuracy (see experiments).

1. Least Squares
It could be shown that solution of 10.1 that minimises the sum of residuals is
θ∗ = (L>L)−1L>b (assume L has full column rank)
However numerically the inner product is expensive and inaccurate.

2. Principal Component Analysis
In 10.2 θ

′
minimise perpendicular distances. The optimal solution could be found

using PCA. Then θ∗ is eigen vector corresponded to the highest eigen value of L
′>L

′
.

Similarly the inner product is still necessary to calculate.

3. Singular Value Decomposition
SVD is very popular numerical method for nullspace extraction and as a result could
be used to solve 10.2. The optimal eigen vector from PCA could be decomposed from
L
′

without explicit calculation of L
′>L

′
.

4. QR factorisation
QR factorisation is universal method that solves 10.1 and 10.2. The matrix L could
be decomposed to orthogonal Q ∈ Rm×m and upper triangular R ∈ Rm×n.
The solution of least squares problem then is θ∗ = R−1 Q> b

Let the Q
′ ∈ Rn

′×n′ is orthogonal matrix obtained by QR-decomposition of L
′>.

Suppose L
′

has rank r. Then the last n
′ − r columns are orthogonal nullspace of L

′

and the optimal θ∗ could be extracted from them.
In [24] was suggested to use QR decomposition for epipolar geometry estimation.

10.3 Sorting points

In PROSAC [6] the used ordering of correspondences was based on SIFT descriptors[19].
The top-ranked points have the smallest ratio of distances of the best and second
match. Basically, the ordering is about confidence that two detected points are really
correspond to each other. However, such information of any feature detector is often
remain unknown.

Another way to order points by their quality is dense sorting. It does not require
knowledge of descriptor’s scores but assumption that closed points are detected correct.
Denote Nx,r,N

′
x,r as the closest neighborhood of corresponded points x,x

′
within ra-

dius r . Intuitively, if all neighbors of x correspond to neighbors of x
′

then these two
points and their neighbors are very likely to be correctly matched. For bigger neighbor-
hood this likelihood is increasing, unless all correspondences inside neighborhood are
mismatched. Then ordering of points based on feature density could be for instance,
following:

i < j ⇒ |Nxi,r ∩N
′

x
′
i,r
| ≥ |Nxj ,r ∩N

′

x
′
j ,r
| (10.3)
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Point xi has higher quality if the number of corresponded neighbors of [xx
′
]i is bigger

than [xx
′
]j ’s. Or density of correspondences could be measured in four dimensional

subspace (concatenation of two 2D points). Then concatenated point has bigger quality,
if sum of distances to the k closest neighbors is smaller.

i < j ⇒
k∑
t=1

||[xix
′
i]− [xi,tx

′
i,t]||2 <

k∑
t=1

||[xix
′
i]− [xi,tx

′
i,t]||2 (10.4)

The biggest disadvantage of proposed sorting is that points without the closest neigh-
bors may be wrongly considered as incorrect matches.

It worth to note that presented sort is also compatible with NAPSAC assumption that
inliers are tend to be closer. The inliers have in this case bigger neighborhood rather
than outlier hence a bigger quality. In the figure 1.1a or 4.1 the inliers distributed closer
than outliers. PROSAC with density sort found correct line significantly faster than
RANSAC or NAPSAC.
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11 Experiments

11.1 Dense sort

To evaluate points sort by their density the neighborhood of points must be obtained.
It could be efficiently done with Grid search. The main parameter is the size of cell in
images. To find the optimal cell size was randomly chosen different image pairs with
ground truth annotation. The loss function is based on the number of same neighbors
within cell size of point on the first and second correspondent images. The loss is 1 if
point is correct match but has not closed neighbors. If the match is incorrect then loss
is number of the nearest neighbors. The total loss L of assumption that better point
has bigger same neighborhood of the correspondent pair is

L(P,N , r) =
∑

(x,x′ )∈P


1 |Nx,r ∩N

′

x′ ,r
| = 0 ∧ (x,x

′
) is correct match

|Nx,r ∩N
′

x′ ,r
| |Nx,r ∩N

′

x′ ,r
| ≥ 1 ∧ (x,x

′
) is incorrect match

0 otherwise

(11.1)
Nx,r is neighborhood of point x from points set P of radius r (cell size). |Nx,r ∩N

′

x′ ,r
|

is the number of same neighbors of x and x
′
.

The optimal cell size is 42. The figure 11.1a is example how loss is changing to the
cell size.

In the figure 11.1b is example of sort of one image pair. The green points are correct
matches, red – incorrect. The first line is classification of top-ranked points using SIFT
score. The next lines show points classification by density of the different cell size.
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Figure 11.1 Dense sort
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11.2 Model Estimation

For estimation the geometric relation (e.g., homography or epipolar geometry) the
least-squares problem must be solved. The minimisation of perpendicular distances
10.2 is using more often than vertical ones 10.1. The task then is to find the optimal
nullspace. This could be done by PCA, SVD or QR. To determine which method is
better we evaluated them w.r.t. error and time on different data size (see table 11.1).
The QR decomposition, not surprisingly, is more accurate for epipolar geometry for
minimal sample size. However, the PCA for non minimal estimation is much faster and
a bit more accurate than SVD or QR and furthermore use much less memory allocation.
The estimation of minimal sample size could be done by SVD for homography and QR
for epipolar geometry.

To obtain (full) SVD and PCA was used OpenCV library, for (full) QR-decomposition
was used Householder transformation from Eigen library.

PCA QRf SVDf

m
in

si
ze

H
T 12.4158 ± 5.05 106.1188 ± 22.06 10.8416 ± 3.53
E 0.0142 ± 0.09 0.0000 ± 0.00 0.0000 ± 0.00

F
T 14.8020 ± 4.54 86.4059 ± 8.26 10.0495 ± 0.43
E 0.3418 ± 0.72 0.0001 ± 0.00 0.0004 ± 0.00

E
T 16.1485 ± 5.65 64.4356 ± 18.12 10.4356 ± 2.51
E 0.2051 ± 0.43 0.0002 ± 0.00 0.0011 ± 0.00

si
ze

=
20 H

T 25.9109 ± 4.33 313.5049 ± 29.99 30.8218 ± 4.01
E 0.3477 ± 0.13 2.3733 ± 5.32 0.4372 ± 0.13

F,E
T 15.0297 ± 6.31 235.52 ± 14.88 33.0099 ± 4.42
E 0.0442 ± 0.26 1.2198 ± 5.18 0.0068 ± 0.00

si
ze

=
15

00 H
T 139.6931 ± 2.68 11556.5938 ± 333.79 94160.5781 ± 5631.14
E 4.3206 ± 0.06 24.7286 ± 35.58 5.0085 ± 0.45

F,E
T 85.0495 ± 2.74 4939.7524 ± 161.87 12030.0986 ± 5339.82
E 0.0813 ± 0.00 2.6306 ± 4.26 0.0805 ± 0.0014

Table 11.1 The nullspace estimation time and error for homography matrix and epipolar ge-
ometry. 100 random samples of minimal size (4 – homography, 7 – fundamental, 5 – essential
matrix), size of 20 and 1500 were used for estimation. T is average estimation time (microsec-
onds). E is average estimation error. The error from 10.2 is sum of perpendicular distances
of estimated nullspace to data matrix. For minimal sample size for epipolar geometry the
error is average of sums, because for fundamental and essential matrix two and four resp.
nullspaces were calculated.

11.3 All

The RANSAC, PROSAC, fixing locally optimised RANSAC, Graph-Cut RANSAC,
Progressive NAPSAC and RANSAC with SPRT were tested on homography and epipo-
lar geometry estimation problems. The data images were taken from publicly available
real-world datasets: Extreme View Dataset EVD [21], homogr and kusvod2 from
Lebeda [17], adelaideRMF from Wong and strecha [29].

All optimal parameters for algorithms that were discussed in previous sections were
used in experiments. The evaluation of algorithms was unbiased and equal. The de-
generacy test and epipolar constraint were applied for epipolar geometry estimation.
The test on collinearity was applied for homography estimation. The threshold for each
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algorithm was set to 2 pixels.

The quality score for PROSAC is the ratio of the first and second match based on
SIFT detector and FGINN ratio [21] for EVD dataset. PROSAC with sorted points by
density was also tested.

The most accurate algorithm from the tested ones is GC-RANSAC, the average error
is much less on every tested dataset on each estimation problem.

PROSAC is the fastest algorithm almost on all datasets. However the error especially
for strecha dataset is quite big, which could be explained by sensitivity to the given
scores. Similarly, the density sort does not need to be suitable for all images, it is easy
to shown that for images with distant points such sorting would fail.

The cause of big error for EVD is very small inlier ratio in some image pairs. The
maximum limit of iterations was set to 5000, which is too small for some pairs.

For RANSAC with SPRT is important not to overestimate the initial probabilities
δ0 and ε0 (belonging point to bad and good model resp.). To avoid this problem SPRT
starts verification only after the fixed number of drawn samples so the initial parameters
δ0, ε0 could be approximated.

Confidence 95%

RSC PSC PSCd FLO SPRT GC P-NSC

1,
#

14

F

E 2.66 3.49 5.36 1.29 3.01 0.25 4.03

T 8.66 1.38 0.49 7.77 3.8 6.63 5.69

S 166.84 18 9.92 138.38 150.23 96.46 121.8

F 0 0 0 0 framework for 0 0 0

2,
#

15

F

E 1.11 2.28 4.2 1.15 1.09 1.04 1.33

T 1.55 4.81 8.17 1.16 1.1 2.13 2.57

S 30.7 358.29 358.35 19.58 36.11 21.52 32.76

F 0 0 0 0 0 0 0

3,
#

12

H

E 1.29 1.16 2.54 1.19 1.29 1.07 1.08

T 1.05 0.28 0.24 1.27 0.66 2.4 1.94

S 53 7.25 6.83 33.79 44.79 35.25 25.91

F 0 0 8.33 0 0 0 0

4,
#

15

H

E 50.6 49.91 47.79 49.28 59.09 45.6 52.45

T 74.23 15.94 27.17 71.69 20.75 74.23 71.59

S 3457.66 827.33 1157.7 3254.73 3595.6 3287.13 2900.33

F 29.73 15.53 23.46 21.6 46.4 22.06 28.73

5,
#

20

E

E 2.82 12.19 7.36 0.73 2.74 0.3 2.52

T 33.97 10.34 8.26 18.21 19.5 20.67 23.89

S 60.75 19.45 15.65 28.7 51.8 29.55 36.25

F 0 12.75 11.75 0 0 0 0

Table 11.2 The tested datasets are 1 – kusvod2, 2 – adelaideRMF, 3 – homogr, 4 – EVD
and 5 – strecha. # is the number of image pairs tested. The algorithms RSC – RANSAC,
PSC – PROSAC with SIFT ratio score with and FGINN ratio score for EVD dataset, PSCd
– PROSAC with dense sort, FLO – fixing Locally Optimized RANSAC, SPRT – RANSAC
with sequential probability ratio test, GC – Graph-Cut RANSAC. The score function for
each method is truncated error distance (MSAC score). Each image pair was run 100 times.
E is average error (px) of all image pairs average errors to ground truth inliers in dataset.
Similarly T is average time (milliseconds), S is average number of main RANSAC drawn
samples, F is average number of fails.
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Confidence 95%

RSC PSC PSCd FLO SPRT GC P-NSC

E 1.3 ± 0.0 1.4 ± 0.4 1.6 ± 0.2 0.88 ± 0.3 1.2 ± 0.3 0.8 ± 0.4 0.8 ± 0.2

T 0.9 ± 0.2 0.5 ± 0.1 0.8 ± 0.2 1.6 ± 0.5 1.1 ± 0.15 2.8 ± 0.7 3.1 ± 0.3

S 34.2 ± 1.0 14.8 ± 1.1 23.2 ± 6.2 30.3 ± 5.2 69.9 ± 5.7 29.9 ± 9.5 19.1 ± 6.1

E 2.5 ± 2.1 7.9 ± 5.1 9.8 ± 6.7 1.8 ± 1.7 6.5 ± 6.3 0.7 ± 0.2 4.2 ± 2.3

T 7.1 ± 3.9 0.8 ± 0.2 0.9 ± 0.4 6.2 ± 1.6 5.1 ± 1.7 7.8 ± 1.7 8.1 ± 3.3

S 113.7 ± 65.2 5.6 ± 2.7 4.6 ± 2.9 59.6 ± 46.3 229 ± 123 37.8 ± 26.8 69.7 ± 39.6

E 2.3 ± 0.6 4.3 ± 0.9 3.1 ± 0.9 1.3 ± 1.1 2.4 ± 0.6 0.35 ± 0 2.4 ± 0.6

T 17.8 ± 7.9 4.9 ± 2.1 4.6 ± 1.1 16.7 ± 5.9 13.2 ± 5.2 18.3 ± 5.5 13.7 ± 5.2

S 39.7 ± 17.2 12.1 ± 5.33 10 ± 2.2 33.5 ± 13 36.6 ± 19.8 33.3 ± 29.5 26.4 ± 13.5

Table 11.3 Similarly to previous table, some randomly chosen correspondent pairs from ho-
mogr (H), kusvod2 (F ) and strecha (E) datasets were tested on the same algorithms.
The number of runs for each image pair is 1000.
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12 Conclusions

The universal framework for Random Sample Consensus USAC++ consists of following
algorithms: RANSAC, MSAC, MLESAC, DEGENSAC, PROSAC, (F)LO-RANSAC,
(P-)NAPSAC, MAGSAC, GC-RANSAC, RANSAC with SPRT.

PROSAC – is so-far the most efficient algorithm that should be used when quality
score for each data point is given. For image matching problem the recommended
quality is ratio of the best and the second match of descriptors. However, the such
score is often unknown, but could be approximated using the density of features.

In the presence of noise, the model estimated from minimal sample, has poor quality.
The Locally Optimised RANSAC significantly improves the so-far-the-best model of
RANSAC using non minimal sample estimation.

GC-RANSAC is so-far the most accurate method that considering the spatial coher-
ence of points minimise energy loss by s-t graph-cut algorithms. By experiments it has
the smallest errors among other algorithms.

If the inliers are distributed closely and the outliers are not, then the local structures
with high inlier ratio can exist. The benefit of NAPSAC sampling is in finding good local
structures earlier than by global-RANSAC sampling. However, the global sampling also
has good properties for some estimation problems. NAPSAC with progressively growing
neighborhood is an optimal choice preserving the benefits of local and global sampling.
The efficient Grid neighbors search for the two view correspondence problem could be
used to find the neighborhood of points.

The verification steps save a lot of time required for model evaluation, thus sequen-
tially probability ratio test, collinearity tests, degeneracy tests and oriented constraints
for epipolar geometry are included in the framework.

The score function plays important role in model evaluation. The binary-RANSAC
score is not accurate. MSAC that use truncated error distance or MLESAC considering
the likelihood of error improve the estimation.

Inlier/outlier threshold is important input parameter for all previous algorithms,
whereas for MAGSAC threshold is not required. The method use weighted least squares
to find estimation based on the likelihood of point being inlier.

The framework USAC++ was evaluated in terms of speed and accuracy on some
two-view geometry estimation problems on different annotated real-world datasets. The
most accurate result provide GC-RANSAC and FLO-RANSAC, the fastest algorithms
are PROSAC and RANSAC with SPRT. The RANSAC-based algorithms were thor-
oughly implemented in C++. The main parts of RANSAC such as i.e, sampling or
evaluation has abstract class in implementation so framework could be extended by
adding new algorithms.

The robust estimation is an important open problem. Different algorithms use dif-
ferent techniques based on some assumptions to provide good estimation. Individually,
not each method could desirably with respect to time and accuracy solve all types of
estimation problems. The proposed universal framework USAC++ includes so-far-the
most used, accurate and efficient methods that could be used for various estimation
tasks.
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[3] D. Baráth, J. Noskova, and J. Matas. Magsac: marginalizing sample consensus.
06 2019. 2, 18, 24, 28

[4] O. Chum. Two-view geometry estimation by random sample and consensus. PhD
dissertation. Czech Technical University in Prague, 2005. 19

[5] O. Chum and J. Matas. Randomized ransac with t d,d test. In Image and Vision
computing, pages 448–457, 2002. 1, 16

[6] O. Chum and J. Matas. Matching with PROSAC-progressive sample consensus.
In Computer Vision and Pattern Recognition. IEEE, 2005. 1, 9, 28, 29, 33

[7] O. Chum and J. Matas. Optimal randomized ransac. IEEE Trans. Pattern Anal.
Mach. Intell., 30(8):1472–1482, August 2008. 17

[8] O. Chum, J. Matas, and J. Kittler. Locally optimized ransac. In Joint Pattern
Recognition Symposium. Springer, 2003. 1, 23, 24

[9] O. Chum, T. Werner, and J. Matas. Epipolar geometry estimation via ransac
benefits from the oriented epipolar constraint. In International Conference on
Pattern Recognition, 2004. 32

[10] O. Chum, T. Werner, and J. Matas. Two-view geometry estimation unaffected
by a dominant plane. In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 772–779, 2005. 2, 20, 21, 29, 32

[11] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commu-
nications of the ACM, 1981. 1, 9

[12] V. Fragoso, P. Sen, S. Rodriguez, and M. Turk. Evsac: Accelerating hypotheses
generation by modeling matching scores with extreme value theory. In 2013 IEEE
International Conference on Computer Vision (ICCV), pages 2472–2479, 2013. 1

[13] J. M. Frahm and M. Pollefeys. RANSAC for (quasi-)degenerate data (QDEGSAC).
In CVPR (1), pages 453–460. IEEE Computer Society, 2006. 2, 19, 21

[14] D. Ghosh and N. Kaabouch. A survey on image mosaicing techniques. J. Vis.
Comun. Image Represent., pages 1–11, 2016. 1

[15] R. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cam-
bridge university press, 2003. 7, 8, 13, 19, 20, 21

41



Bibliography

[16] V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph
cuts? In Proceedings of the 7th European Conference on Computer Vision-Part
III, ECCV ’02, pages 65–81, Berlin, Heidelberg, 2002. Springer-Verlag. 25, 32

[17] K. Lebeda. Robust sample consensus. In Master Thesis. Czech Technical University
in Prague, 2013. 36

[18] K. Lebeda, J. Matas, and O. Chum. Fixing the locally optimized ransac. In British
Machine Vision Conference. Citeseer, 2012. 23, 24

[19] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J.
Comput. Vision, 60(2):91–110, November 2004. 33

[20] J. Matas and O. Chum. Randomized ransac with sequential probability ratio test.
International Conference on Computer Vision, page 1727–1732, 2005. 1, 16, 17,
29, 30

[21] D. Mishkin, J. Matas, and M. Perdoch. MODS: Fast and robust method for two-
view matching. Computer Vision and Image Understanding, 2015. 36, 37

[22] D. R. Myatt, P. H. S. Torr, S. J. Nasuto, J. M. Bishop, and R. Craddock. Napsac:
high noise, high dimensional robust estimation. In In BMVC02, pages 458–467,
2002. 1, 10, 11

[23] K. Ni, H. Jin, and F. Dellaert. Groupsac: Efficient consensus in the presence of
groupings. 2009 IEEE 12th International Conference on Computer Vision, pages
2193–2200, 2009. 11, 12

[24] D. Nistér. An efficient solution to the five-point relative pose problem. Transactions
on Pattern Analysis and Machine Intelligence, pages 756–770, 2004. 8, 33

[25] D. Nistér. Preemptive ransac for live structure and motion estimation. In ICCV,
pages 199–206. IEEE Computer Society, 2003. 17

[26] D. P. Capel. An effective bail-out test for ransac consensus scoring. 01 2005. 1, 16

[27] P. Pritchett and A. Zisserman. Wide baseline stereo matching. In Proceedings of the
Sixth International Conference on Computer Vision, ICCV ’98. IEEE Computer
Society, 1998. 1

[28] R. Raguram, O. Chum, M. Pollefeys, J. Matas, and J-M. Frahm. USAC: a universal
framework for random sample consensus. Transactions on Pattern Analysis and
Machine Intelligence, 2013. 2

[29] C. Strecha, R. Fransens, and L. Van Gool. Wide-baseline stereo from multiple
views: a probabilistic account. In Conference on Computer Vision and Pattern
Recognition. IEEE, 2004. 36

[30] P. H. S. Torr and D. W. Murray. Outlier detection and motion segmentation. pages
432–443, 1995. 1

[31] P. H. S. Torr and A. Zisserman. MLESAC: A new robust estimator with application
to estimating image geometry. Computer Vision and Image Understanding, 2000.
2, 14, 15, 18, 24

42



Bibliography

[32] P.H.S. Torr and A. Zisserman. Robust computation and parametrization of mul-
tiple view relations. In ICCV, pages 727–732, 1998. 2, 14

[33] P.H.S. Torr, A Zisserman, and S.J. Maybank. Robust detection of degenerate
configurations for the fundamental matrix. In IEEE International Conference on
Computer Vision, pages 1037 – 1042, 07 1995. 20

43



13 CD content

Ransac

usac

estimator

sampler

degeneracy

local optimization

quality

ransac

termination criteria

utils

math

neighbors search

random generator

dataset

homography

adelaidermf

EVD

kusvod2

strecha

detector

reader

generator

helper

include

gco; nanoflann

test

thesis

44


	Introduction
	Background
	Design
	Two-View Geometry

	Estimation problems
	Line in 2D
	Homography matrix (H)
	Fundamental matrix (F)
	Essential matrix (E)

	Sampling
	Random Sample Consensus
	Progressive Sample Consensus
	N adjacent points Sample Consensus
	Progressive NAPSAC
	Groups Sample Consensus

	Model Evaluation
	Error function
	Score function
	Binary Score
	MSAC score
	MLESAC score

	Cost function
	Evaluation
	The Td,d test
	The Bail-Out test
	Sequential probability ratio test
	Preemptive RANSAC

	Marginalizing Sample Consensus

	Degeneracy
	Line in 2D
	Homography matrix
	Fundamental matrix
	PLUNDER
	DEGENSAC
	QDEGSAC
	Closure

	Local Optimization
	Locally Optimized RANSAC
	Inner RANSAC
	Iterative RANSAC

	Fixing Locally Optimized RANSAC
	Weighted Local optimization
	Graph-Cut RANSAC
	Energy minimisation
	Graph Cut
	Local Optimization


	Termination criteria
	RANSAC sampling
	MAGSAC
	PROSAC sampling
	Non-randomness
	Maximality

	DEGENSAC
	SPRT

	Neighbors Searching
	Radius Search
	K Nearest Neighbors Search
	Grid Search

	Implementation
	Randomness
	Estimation
	Sorting points

	Experiments
	Dense sort
	Model Estimation
	All

	Conclusions
	Bibliography
	CD content

