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Abstract

A model of NAO humanoid robot was
modified and artificial skin with touch-
sensitive taxels was added to it. Simu-
lation environment based on ROS and
Gazebo physics simulator was developed.
In this environment, a series of experi-
ments in self-exploration inspired by re-
search in developmental psychology was
conducted. The goal was to learn forward
and inverse models of robot’s body using
self touch with artificial skin as the only
source of sensory feedback. Explauto li-
brary was used for the exploration and
model learning. As little prior informa-
tion about the structure of robot’s kine-
matic chain was provided to exploration
algorithms: only number of joints used
in the experiment was known. Several
forward models, inverse models and ex-
ploration strategies available in explauto
library were tested and compared. Mean
reaching error over several goals on robot’s
body was used as an empirical measure
of the quality of learnt models. Results
of the conducted experiments show that
out of all options available in explauto,
nearest neighbor model produces smallest
mean reaching error. Results also show
that goal-based exploration strategies are
better than strategies based on motor bab-
bling. They converge faster and allow
learning of models with smaller reaching
error. Among all exploration strategies
available in explauto, fixed discretization
of observation space produced best results.
This strategy focuses exploration in re-
gions of most interest, so that amount of
new information added to the model is
maximized. Some possibilities open for
further investigation and research are dis-
cussed in the closing chapter of this work.
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robot, body representation, goal
babbling, motor babbling, forward model,
inverse model, exploration, intrinsic
motivation, developmental robotics, ROS,
Gazebo, NAO
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Abstrakt

Upravili jsme model humanoidního robota
NAO v prostředí založeném na ROS a fy-
zickém simulátoru Gazebo tím, že jsme
přidali umělou kůži citlivou na dotek. V
tomto prostředí byla provedena série ex-
perimentů inspirovaných výzkumem vývo-
jové psychologie v oblasti zkoumání vlast-
ního těla. Cílem bylo naučit se dopředné a
inverzní modely těla robota pomocí sebe-
dotyku s umělou kůží jako jediným zdro-
jem zpětné vazby. Pro průzkum a učení
modelů byla použita knihovna explauto.
Cílem bylo využívat co nejméně informace
o struktuře kinematického řetězce robota:
byl znám pouze počet kloubů použitých v
experimentu. Bylo testováno a porovnáno
několik dopředných modelů, inverzních
modelů a průzkumných strategií dostup-
ných v knihovně explauto. Jako empirická
míra kvality naučených modelů byla po-
užita průměrná chyba dosažení několika
cílů na těle robota. Výsledky provedených
experimentů ukazují, že ze všech možností
dostupných v knihovně explauto, posky-
tuje model nejbližšího souseda (nearest
neighbor) nejmenší střední chybu dosa-
žení. Výsledky také ukazují, že průzkumné
strategie založené na dosažení cílů (goal
babbling) jsou lepší než strategie založené
na motor babbling. Konvergují rychleji a
umožňují učení modelů s menší chybou.
Ze všech výzkumných strategií, které jsou
k dispozici v knihovně explauto, bylo do-
saženo nejlepších výsledků pomocí pevné
diskretizace pozorovacího prostoru. Tato
strategie se zaměřuje na zkoumání v re-
gionech, které jsou nejzajímavější, takže
množství nových informací přidaných do
modelu je maximalizováno. V závěrečné
kapitole této práce jsou diskutovány ně-
které možnosti dalšího výzkumu.

Klíčová slova: umělá kůže, humanoidní
robot, reprezentace těla, goal babbling,
motor babbling, dopředný model,
explorace, inverzní model, vývojová
robotika, ROS, Gazebo, NAO

Překlad názvu: Efektivní
sebe-explorace a tvorba modelu těla u
humanoidního robota s umělou kůží
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Chapter 1

Introduction

Most modern robots consist of rigid links connected by joints of various
types, e.g. linear, rotational, spherical etc. Dimensions of robot’s links
and limits of robot’s joints are provided by the manufacturer in technical
documentation and manuals, and robot’s inverse and forward kinematic
functions are available. However, there are several reasons for robots to
perform self-exploration and to build models of their bodies autonomously:

. Although it is presumed that all robots of same make and model will
have perfectly identical dimensions and hence kinematic equations, this
is not true. Imprecisions and errors can be introduced at any point
during fabrication and assembly of the robot. Dimensions of robot’s
rigid links can also change during operation, for example because of
thermal expansion and contraction of materials, or because of mechanical
wear and tear. Therefore, a robot must be calibrated before it can be
put to use and periodically during its operation. One method for such
calibration involves self-exploration of the robots body.. Robot’s body can undergo undesirable changes due to damage taken
from environment. In scenarios where robot must continue its operation
regardless of taken damage, it would be necessary for the robot to assess
sustained damage by means of self-exploration and change the internal
model of it’s body accordingly.. Other paradigms for construction of robot’s body exist, for example soft
robotics. Soft robots are inspired by living organisms. Instead of system
of rigid links, bodies of soft robots are made of compliant materials,
often actuated by pneumatics or hydraulics. Such robots do not have
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1. Introduction .....................................
fixed body morphology. Their motion is harder to model, and it would
be beneficial for compliant robots to be able to learn the model of their
ever-changing body.

Several ways to perform self-exploration exist. One of such methods,
investigated in this work, involves covering surface of robot’s body with a
layer of capacitive artificial skin that responds to touch.

A parallel can be drawn between a robot that knows nothing about structure
of it’s body and an infant. Therefore, research in developmental psychology
can be applied to the problem of robot learning model of it’s body by means
of self-exploration. Research shows that sensation of touch plays important
role in early infant developing the model of their body.
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Chapter 2

Related work

A body of research in developmental psychology studies development of
reaching behaviors and emergence of forward and inverse body models in
infants. Corbetta et al. reviewed the literature on development of reaching
behaviors in infants [7] to study the evolution of views on this problem.
Von Hofsten [29] studied quantitatively how infants 12 to 18 weeks old
approach stationary and moving objects. He analyzed relative length of
reaching paths, approach time, acceleration of movements and concluded that
reaching skill improves extensively and in predictable way during the studied
period. Focusing on reaching to own body, Hoffmann et al. observed how
infants between 3 and 21 months react to vibrotactile stimulation [17]. In
their experiments, buzzers were connected to various parts of infant bodies
and their reactions to stimulation from attached buzzers were recorded and
analyzed. They have reported developmental progression from general to
specific movement patterns, more so in the first year of infant’s lifetime.

Artificial skin can be used in robotics for calibration of kinematic chains
represented with the standard Denavit-Hartenberg parameters, as Roncone
et al. did in [27]. In this work, I investigate different approach, inspired
by developmental studies of infants. I make as few assumptions about the
structure of the robot’s kinematic chain as possible. Instead of learning
parameters of the representation, I try to learn a non-parametric model of
robot’s body.

Rolf in his dissertation [26] conducted an exhaustive research of goal
babbling exploration strategy. He demonstrated that goal-based exploration
in observation space is more effective than exploration in action space based
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2. Related work.....................................
on motor babbling. He had also substantiated the necessity to add exploratory
noise to exploration process in order to avoid singular configurations. He
tested his ideas in several robotic morphologies: planar arm in 1D and 2D,
humanoid robot and bionic elephant trunk in 3D. In all his experiments,
the observation space directly corresponded to the position of robot’s end
effector in Euclidean space. In this work I have applied goal-based exploration
strategies to efficient self-exploration of humanoid robot with artificial skin.
Observation space in my experiments does not directly correspond to position
in Euclidean space. Instead, it corresponds to artificial skin taxels activated
by robot’s movements.

Experiments similar to mine were conducted by Mannella et al. in [21].
However, they conducted their experiments on a planar robot in non-physical
environment that only considered robot’s kinematics. In contrast, I have
conducted experiments in 3D environment that simulated robot’s physics and
geometry collisions.

Comprehensive study of intrinsically motivated exploration and active
learning of inverse body models was done by Adrien Baranes, Pierre-Yves
Oudeyer and Clément Moulin-Frier in [3], [2] and [22]. They introduce
SAGG-RIAC (Self-Adaptive Goal Generation - Robust Intelligent Adaptive
Curiosity) architecture for active learning of inverse models in redundant
spaces. The main idea is to divide goal space into regions in a way that
maximizes competence improvement for reaching those goals.

Explauto is an open source Python framework for active learning and
exploration developed in the Inria FLOWERS research team [23]. Explauto
implements numerous goal-based exploration strategies, several possibilities
for representation of forward and inverse models, and provides tools for
comparing quality of learnt models. All exploration processes and model
learning in this work are based on explauto library.
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Chapter 3

Methods

3.1 NAO humanoid robot

NAO is an autonomous humanoid robot developed by Aldebaran Robotics
primarily for education and research purposes [14]. NAO has height of 58 cen-
timeters and weighs 5.5 kilograms (without modifications). NAO is powered
by lithium battery which provides up to 90 minutes of autonomous operation.
Robot’s head is equipped with central processing unit and operating memory.
In addition to that, NAO robot contains several custom designed integrated
circuits based on Microchip 16 bit microcontrollers that are responsible for
actuator servo-control, sensor and power management.

(a) : Front view of NAO robot (b) : NAO with artificial skin

Figure 3.1: Aldebaran Robotics NAO humanoid robot.
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3. Methods.......................................
Body Part Number of sensors Number of sensors

(low resolution) (high resolution)

Torso 25 250
Head 24 240
Left wrist 27 270
Right wrist 27 270

Table 3.1: Number of artificial skin sensors per body part.

NAO has a total of 25 degrees of freedom (DOF). In this work, 12 DOF in
the upper body of the NAO robot were utilized: 2 in the head and 5 in each of
the arms. NAO is equipped with a variety of sensors (cameras, microphones,
sonars, inertial measurement units, bumpers). However, these sensors are not
utilized in this work.

3.2 Artificial skin

The artificial skin used in this project [20] is a network of capacitive touch
and temperature sensors mounted on the robot’s torso, head and wrists
(Fig. 3.2). Artificial skin is constructed of interconnected triangular patches.
Each patch contains 10 individual circular touch sensors and a microcontroller
unit responsible for processing of sensory data and network communication.

There are more than 1000 sensors on the robot’s body (Tbl. 3.1). Individual
touch sensors produce 8 bit output that indicates magnitude of pressure that
is applied to the sensor. In this work, I model individual artificial skin sensors
as binary devices with 1 bit output (on/off).

(a) : Physical artificial skin sensors (b) : Artificial skin mounted on
NAO robot

Figure 3.2: Artificial skin.
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................................ 3.3. Simulation environment

3.3 Simulation environment

(a) : Low resolution artificial skin (b) : High resolution artificial skin

Figure 3.3: Model of NAO humanoid robot modified for the purpose of artificial
skin simulation.

The simulation environment is based on ROS Melodic [25] and Gazebo 9
physics simulator [11]. Different aspects of the simulation are implemented
in separate ROS nodes which communicate via ROS services and topics (Fig.
3.4). All program code developed for this project is available online in GitLab
repository [12].

Learning and exploration:
nao_explauto.py

ROS topic:
/gazebo_contact_info Gazebo 9

ROS Melodic Core

NAO robot model:
- nao_description
- nao_gazebo_plugin
- nao_dcm

ContactSensor pluginROS service:
/get_joint_properties

ROS topic:
/nao_dcm
(position control)

Figure 3.4: Essential ROS nodes, topics and services forming the backbone of
simulation environment architecture.
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3. Methods.......................................
A model of default NAO humanoid robot is available online in URDF

format (Fig. 3.3). I have made a number of augmentations to that model:

. Robot’s base torso link was fixed in space for the purpose of this simula-
tion.

. Several parts of the robot’s body were removed because they were unused
in the simulation: legs, gripper, fingers, cameras, sonar sensors.

. New child links representing plastic casings that house the artificial skin
were added to robot’s torso, head and both wrists.

. Numerous contact sensors (taxels) were placed as child links of the plastic
casings. Touch sensory feedback was enabled with Gazebo ContactSensor
plugin (courtesy of Ing. Martin Jílek, jilekma1@fel.cvut.cz) adapted
to support Gazebo 9 API.

. A cylindrical pen tool with spherical endpoint was attached to robot’s
wrist.

Process of exploration, model learning and evaluation is coordinated from
nao_explauto ROS node written in Python. The node implements a custom
environment within explauto framework [23]. It communicates with Gazebo
simulation through 3 channels:

. By calling /gazebo/get_joint_properties ROS service, the node ac-
quires information about current joint states of the simulated NAO
humanoid robot.

. By subscribing to /gazebo_contact_info ROS topic, the node acquires
information about current sensory feedback from the artificial skin.

. By publishing to /nao_dcm/**joint**_position_controller/command
ROS topic, the node applies motor commands to the simulated robot.

8
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................................ 3.4. Exploration framework

Joint name Lower limit [rad] Upper limit [rad]

HeadPitch −0.67 0.51
HeadYaw −2.09 2.09
LShoulderRoll −0.31 1.33
LShoulderPitch −2.09 2.09
LElbowRoll −1.54 −0.03
LElbowYaw −2.09 2.09
LWristYaw −1.82 1.82
RShoulderRoll −1.33 0.31
RShoulderPitch −2.09 2.09
RElbowRoll 0.03 1.54
RElbowYaw −2.09 2.09
RWristYaw −1.82 1.82

Table 3.2: Limits of joint values [19, p.20].

3.4 Exploration framework

3.4.1 Explauto library

Explauto is an open-source Python library developed in the Inria FLOW-
ERS research team [23]. Explauto is a framework designed to study, model
and simulate exploration and learning in robotic agents. High-level architec-
ture of explauto framework (Fig. 3.5):

. The role of interest models is to provide goals for the sensorimotor model.
An interest model implements the active exploration process.. Sensorimotor model implements the iterative learning process from sen-
sorimotor experience. It uses the internal model of robotic agent to
perform forward and inverse predictions provided by the interest model.. Sensorimotor system encapsulates physical properties of the interaction
between the robot’s body and the environment in which it evolves.

Explauto library provides several forward and inverse models, multiple
motor- and goal-based exploration strategies and tools for evaluation and
comparison of learnt models.

9



3. Methods.......................................

X
Interest
model

M
Sensorimotor

model
S

S

Sensorimotor
system

Figure 3.5: The Explauto framework architecture.

3.4.2 Action and observation spaces

Action space Q represents all possible actions of the robot. Each action
q ∈ Q causes an outcome x ∈ X in some observation space X. The causal
relationship between action space and observation space is defined by some
forward function f [26, p.5]:

f : Q→ X
f(q) = x

(3.1)

In explauto framework, exploration is performed in the interest space.
Explauto framework defines interest space as an alias for either action space
or observation space. If the interest space corresponds to action space, the
exploration is performed using motor babbling strategies. If the interest space
corresponds to observation space, the exploration is performed using goal
babbling strategies.

Explauto framework uses the notion of lazy learning. Lazy learning methods
defer processing of training data until a query needs to be answered [1].
During exploration process a database of attempted actions and corresponding
observations is maintained. Forward and inverse models are constructed
implicitly from this database. The models are therefore improved with every
new entry added to the database. Entries in the database are tuples:

(q, x)
q ∈ Q
x ∈ X

(3.2)
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................................ 3.4. Exploration framework

An action q ∈ Q is defined in this work as a particular configuration of
robot’s joints. The upper body of NAO humanoid robot has a total of 12
degrees of freedom (DOF): 2 joints in the head and 5 joints in each arm.
Joints have upper and lower limits on their angles (Tbl. 3.2), therefore in the
scope of this work we can define action space Q of the robot as:

Q ⊆ R12 (3.3)

Depending on the performed experiment, a subset of available joints is
selected to constitute robot’s action space. E.g. in an experiment that
considers head and one of the arms, the action space would be Qe ⊆ R7.

It is important to note that the action space of the robot is non-convex, and
the outcome in observation space depends not only on the executed action,
but also on previous configuration of the robot. For example, consider the
following scenario: robot’s hand is located on the left side of robot’s torso,
and a command is executed that should move robot’s hand to the right side
of the torso. In that case, the hand will collide with torso and artificial skin
on the left side of torso will be activated, producing wrong observation. This
issue is overcome by periodically resetting the simulation to home posture, as
suggested in [26, p.51].

Dimensionality and underlying structure of observation space X depends
on the amount of prior information about artificial skin configuration. Three
possibilities were investigated in this work:

No prior information about artificial skin configuration is available.
The sensory feedback information is encoded as a set of binary values, each
value representing a state of a single taxel (on/off). The observation space is
discrete, its dimensionality is equal to the number of taxels T in the artificial
skin, which grows quickly both with surface area of the skin and with its
spatial resolution (number of taxels per unit area):

X0 = {0, 1}T (3.4)

Although Euclidean distance between two points in observation space
can be calculated in this representation, it doesn’t provide any meaningful
information, because two observations that are close to each other do not
necessarily represent two taxels that are close to each other in the artificial
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3. Methods.......................................
skin. Therefore this representation cannot be used to construct interest
models by exploration in observation space. This option was successfully used
to construct NN-based sensorimotor model using motor babbling.

Incidence graph. The structure of artificial skin is encoded as an inci-
dence graph, where nodes of the graph represent artificial skin taxels, and
nodes representing neighboring taxels are connected by an edge (Fig. 3.6a).
The dimensionality of observation space in this case also equals the number
of taxels T:

XI = {0, 1}T (3.5)

However, as distance between two points in observation space can be
extracted from the graph using Dijkstra’s algorithm [8], this option can be
used to construct interest models using goal babbling and other efficient
exploration strategies in observation space.

(a) : Incidence graph

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(b) : Planar projection

Figure 3.6: Observation spaces for artificial skin on robot’s torso.

Planar projection. Taxels are projected onto a flat surface, and the
coordinates of their planar projections are used as points in continuous
observation space. A separate two-dimensional observation subspace is used
for every body part. If several taxels on a single body part are activated as a
result of robot executing an action, the centroid of their planar projections is
calculated. Let B be the number of body parts considered in the experiment.
The observation subspace is two-dimensional for every body part, hence the
observation space is:

XP ⊆ R2×B (3.6)

12



................................ 3.4. Exploration framework

Observation subspace for every body part is centered at the origin (0, 0).
This option is the most beneficial:

. Dimensionality of the observation space remains low as it does not depend
directly on amount of taxels or area of the artificial skin.. Euclidean distances between points in observation space provide mean-
ingful information.. Interest models can be constructed naturally in explauto framework using
goal babbling and other efficient exploration strategies in observation
space.

Two methods of projecting artificial skin taxels onto a flat surface were
used in this work:

. Parallel projection onto a plane (Fig. 3.7a, 3.7b) was used for low
resolution artificial skin.. Central projection onto a cylindrical surface (Fig. 3.7c, 3.7d) was used
for high resolution artificial skin.

13



3. Methods.......................................

(a) : Parallel projection of artifi-
cial skin taxels on robot’s head onto
a plane

(b) : Parallel projection of artifi-
cial skin taxels on robot’s torso onto
a plane

(c) : Central projection of artificial
skin taxels on robot’s head onto a
cylindrical surface

(d) : Central projection of artificial
skin taxels on robot’s torso onto a
cylindrical surface

Figure 3.7: Projection representations of artificial skin taxels.
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................................ 3.4. Exploration framework

(a) : Parallel projection of artifi-
cial skin taxels on robot’s head onto
a plane

(b) : Parallel projection of artifi-
cial skin taxels on robot’s torso onto
a plane

(c) : Central projection of artificial
skin taxels on robot’s head onto a
cylindrical surface

(d) : Central projection of artificial
skin taxels on robot’s torso onto a
cylindrical surface

Figure 3.8: Projection representations of artificial skin taxels (continued).
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3. Methods.......................................
3.4.3 Forward and inverse models

Forward models available in explauto framework

Forward model f̂ approximates the forward function f and predicts the
outcome of an action [26, p.9]:

f̂(q) = x̂ (3.7)

Nearest neighbor (NN). Given a motor command q ∈ Q, the NN
forward model scans the database and returns observation x ∈ X that
corresponds to motor command that is closest to q [9].

Weighted nearest neighbor (WNN). Given a motor command q ∈ Q,
the WNN forward model finds its k nearest neighbors in the database and
returns a weighted average of their corresponding observations x ∈ X, where
weight coefficients are proportional to Euclidean distance between q and
database entries [9]. Here k is a parameter of the model.

Locally weigthed linear regression (LWLR) [1, 9]. Given a motor
command q ∈ Q, the LWLR forward model finds its k nearest neighbors
in the database and computes a linear regression of of their corresponding
observations x ∈ X. Here k and σ2 are parameters of the model. The
algorithm uses normalized Gaussian weights. Let di be the distance between
q and its i-th nearest neighbor, wi the i-th regression weight, then:

w′i = e−
d2
i

2σ2

wi = w′i∑k
j=1w

′
j

(3.8)

16



................................ 3.4. Exploration framework

Inverse models available in explauto framework

Inverse model suggests an action necessary to produce a desired outcome
in observation space [26, p.9]:

f̂−1(x∗) = q̂ (3.9)

Nearest neighbor (NN). Given an observation x ∈ X, the NN inverse
model scans the database and returns motor command q ∈ Q that corresponds
to observation that is closest to x [9].

Weighted nearest neighbor (WNN). Given an observation x ∈ X, the
WNN inverse model finds its k nearest neighbors in the database and returns
a weighted average of their corresponding motor commands q ∈ Q, where
weight coefficients are proportional to Euclidean distance between x and
database entries [9]. Here k is a parameter of the model.

Optimization inverse models. Given an observation x ∈ X, these
inverse models use optimization algorithm to return motor command q that
minimizes error [9]:

e(q) =
∥∥∥f̂(q)− x

∥∥∥2
(3.10)

Several optimization algorithms are available in explauto framework:

.COBYLA (Constrained Optimization by Linear Approximation) is a
numerical optimization method designed for constrained problems where
the derivative of objective function is not known. This optimization
algorithm works by constructing linear polynomial approximations to
the objective and constraint functions [24]..BFGS (Broyden–Fletcher–Goldfarb–Shanno algorithm) is a quasi-Newtonian
optimization method that uses iterative approximations of the Hessian
matrix to find stationary points of the objective function [5, 10, 13, 28].

17



3. Methods.......................................
. L-BFGS-B (Limited-memory BFGS with bound constraints) [6] is a

variation of BFGS algorithm that is adapted for limited computer memory
and is capable of handling constraints on variables of the following form:

li ≤ xi ≤ ui (3.11).CMA-ES (Covariance Matrix Adaptation - Evolutionary Strategy) is
an evolutionary optimization algorithm that adapts arbitrary, normal
mutation distributions within a completely derandomized adaptation
scheme [15].

3.4.4 Exploration strategies

Random motor babbling

A motor configuration q ∈ Q is sampled uniformly from the action space.
Selected action is executed, observation x ∈ X is recorded and database
is updated. This exploration strategy is the most naive and least effective
method for learning forward and inverse models.

Random goal babbling

Goal babbling is the bootstrapping of a coordination skill by repetitively
trying to accomplish multiple goals related to that skill [26, p.23]. In random
goal babbling, a goal x ∈ X is sampled uniformly from the observation space.
Robot then uses inverse model learnt so far to execute action q ∈ Q.

Goal babbling with direct optimization

In random goal babbling, robot executes a single motor command q ∈ Q
after selecting a goal. However, it is possible to improve this single movement
by performing an optimization process. A temporary surrogate forward
model is created and optimized in vicinity of the chosen goal for a maximum
of nmax iterations. After the optimization process is completed, resulting
motor command qopt is inserted into the main model database.

18



................................ 3.4. Exploration framework

Here nmax is a parameter of the strategy. This strategy uses CMA-ES op-
timization method and LWLR surrogate forward model. The main drawback
of this strategy is additional time required to perform optimization process.

Discretized progress

Interest space is statically discretized into xcard cells. A cell for goal generation
is selected randomly, with probability proportional to current value of interest
in each cell. After the cell is selected, a goal xg ∈ X is generated randomly
inside the selected cell. Here xcard is a parameter of the strategy.

Interest value I is computed as the absolute value of derivative of com-
petence C for each cell [9]. This means that interest value of a cell is high
when competence either rapidly increases or rapidly declines. Distance d
between selected goal xg and actual observation x is used as the measure of
competence:

C ≡ d = ‖xg − x‖

I =
∣∣∣∣dCdt

∣∣∣∣ (3.12)

(a) : Discretized progress, 15x15
grid. Iteration number: 250

(b) : SAGG-RIAC, max 20 points
per region. Iteration number: 250

Figure 3.9: Exploration strategies with discretization of interest space. Warmer
colors indicate regions with higher value of interest.
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3. Methods.......................................
SAGG-RIAC

SAGG-RIAC (Self-Adaptive Goal Generation - Robust Intelligent Adaptive
Curiosity) is an intrinsically motivated goal exploration mechanism which al-
lows active learning of inverse models in high-dimensional redundant robots [3].
This exploration strategy relies on dynamic discretization of interest space.
When a goal is generated inside a region of observation space, a total number
of goals in that region is checked. If the total number of goals exceeds value
of parameter nmax, the region is split into two sub-regions along alternating
axes, analogous to k-d tree [4]. The splitting is performed in a way that allows
to maximally discriminate sub-regions according to their levels of interest.

3.4.5 Handling motor commands that produce
no observation

Motor commands that produce no observation constitute a significant portion
of robot’s action space. Such motor commands produce no contact between
robot’s end effector and the surface of artificial skin. In this work, I have
tested two strategies of handling such motor commands:..1. If a motor command q ∈ Q produces no observation, ignore it and do

not update the model database...2. If a motor command q ∈ Q produces no observation, create a virtual
observation xv ∈ X, set all its coordinates to infinity and update model
database with a tuple (q, xv).

It may seem that the second strategy is more robust, because it provides
larger amount of information to the model. Experiments show that choice
of strategy for handling motor commands that produce no observation have
negligible effect on the quality of learnt model. However, first strategy requires
less memory to store the model database.
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Chapter 4

Results

4.1 Experimental design

A series of experiments was performed to estimate the quality of models
learnt with explauto library. In each performed experiment, the simulation
was executed for 500 iterations. In each iteration, a motor command q ∈ Q
was obtained either directly (motor babbling) or using one of goal-based
exploration strategies. The motor command was executed in the simulation
environment, a corresponding observation x ∈ X was obtained and model
database was updated with tuple (q, x).
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Figure 4.1: Details of experimental design, artificial skin on robot’s torso.
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4. Results .......................................
In experiments involving exploration strategies based on goal babbling,

observation space X was limited to a region with area 9 times larger than
the area of artificial skin (Fig. 4.1b):

∆x = xmax − xmin

∆y = ymax − ymin

X = 〈xmin −∆x, xmax + ∆x〉 × 〈ymin −∆y, ymax + ∆y〉
(4.1)

As suggested in [26, p.34], exploratory noise was added to motor commands
executed during learning process. Without added noise, goal-driven explo-
ration may produce degenerated data sets and get stuck in intermediate local
minima. I have used Gaussian noise with σ = 0.05. No exploratory noise was
added when testing the quality of learnt models.

4.1.1 Progress Evaluation

Every 10 iterations, exploration process was paused and the quality of model
learnt so far was estimated. Results were recorded for further analysis. The
following procedure was used to estimate the quality of a model:..1. A 5 × 5 grid of goals was generated and fed to the model (Fig. 4.1a).

These target goals were positioned at the coordinates of some artificial
skin taxels, in a pattern that resembles a slightly distorted rectangular
grid...2. The model attempted to reach target goals, and reaching error for each
goal was recorded. Mean reaching error computed over all target goals
was used as an empirical measure of model quality. For high quality
models this empirical measure would approach 0.

4.2 Comparison of inverse models

Experiments showed that out of the three inverse models provided by explauto
framework, nearest neighbor (NN) inverse model was the most precise.
NN inverse model guarantees that the motor command q ∈ Q inferred by the
model will produce some observation x ∈ X on artificial skin.
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Figure 4.2: Comparison of exploration strategies.

Other available inverse models use weighted sums or linear regression
to infer motor commands. Execution of motor command inferred in such
manner may produce no contact with artificial skin and hence no observation
whatsoever. These models may be well suited for environments where the
position of robot’s end effector in 2- or 3-dimensional Euclidean space is
observed directly, e.g. as in [26, p.57] or [21]. However, in environments
where observations are limited exclusively to sensation of touch, usage of NN
inverse model may be preferred.

4.3 Comparison of exploration strategies

Fig. 4.2 illustrates how mean reaching error to target goals gradually drops
during the exploration process. The rate of decrease is higher at the be-
ginning of exploration process. In this phase, the discovered artificial skin
taxels are those that are easy to reach, and hence have higher probability of
discovery. After about 250 iterations, the exploration process with random
motor babbling and random goal babbling strategies virtually stops, new
taxels are discovered rarely by pure chance. On the contrary, exploration
strategies with discretization of observation space continue to discover new
taxels by focusing exploration in regions of higher interest.

Fig. 4.3 illustrates the advantage of advanced goal-based strategies over
random goal babbling. Goals generated with random goal babbling (Fig. 4.3a)
are distributed uniformly over observation space X. Exploration does not
take advantage of the fact that only part of the observation space is reachable.

23



4. Results .......................................
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Figure 4.3: Distribution of goals generated in experiments involving exploration
strategies based on goal babbling.

On the contrary, the majority of goals generated with advanced exploration
strategies like discretized progress (Fig. 4.3b) are located in regions of high
interest. Some taxels on the robot’s artificial skin are not discovered after
500 iterations of exploration process. The reason for this is purely kinematic –
these taxels are harder for the robot to reach.

4.4 Discretized progress exploration strategy

Experiments showed that discretized progress exploration strategy is very
effective for exploration of artificial skin and learning the model of robot’s
body. This strategy divides observation space into a fixed grid of rectangular
regions. I have tested two discretization sizes, with 15x15 (Fig. 4.4) and
32x32 (Fig. 4.5) grid. Regardless of the size of discretization, this strategy
conducted effective exploration and produced good quality model with mean
reaching error to target goals of about 5 mm.
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.........................4.4. Discretized progress exploration strategy

(a) : Body parts: torso, right hand.
Iteration number: 100

(b) : Body parts: torso, right hand.
Iteration number: 250

(c) : Body parts: head, right hand.
Iteration number: 100

(d) : Body parts: head, right hand.
Iteration number: 250

Figure 4.4: Fixed discretization of observation space with discretized progress
exploration strategy, 15x15 grid. Warmer colors indicate regions with higher
value of interest.

(a) : Body parts: torso, right hand.
Iteration number: 100

(b) : Body parts: torso, right hand.
Iteration number: 200

Figure 4.5: Fixed discretization of observation space with discretized progress
exploration strategy, 32x32 grid.
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4. Results .......................................
4.5 SAGG-RIAC exploration strategy

Contrary to discretized progress, this exploration strategy divides observation
space dynamically. This method did not work well with my experimental
design, resulting in body models of pure quality. For some reason, this
strategy assigned high values of interest during active phase of exploration
to regions that contained no taxels, resulting in performance close to that of
random goal babbling. This phenomenon requires further investigation.

(a) : Observation space after
first two divisions. Iteration num-
ber: 80

(b) : Active phase of exploration
process. There are several regions
of high interest. Iteration num-
ber: 250

(c) : By the end of exploration
process, almost no new information
can be obtained. Iteration num-
ber: 400

(d) : Final division of observation
space. Iteration number: 500

Figure 4.6: Division of observation space into sub-regions with SAGG-RIAC [3]
exploration strategy (implemented in explauto library [9] as tree interest model).
Warmer colors indicate regions with higher value of interest.
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Chapter 5

Conclusion, Discussion, Future Work

5.1 Conclusion

This work consisted of two primary parts:..1. Modelling of artificial skin on NAO humanoid robot and building simu-
lation environment for the experiments...2. Performing experiments with self-exploration and learning of robot’s
body models.

First part of this work was completed in full. Two versions of artificial skin
models were created:..1. Low-resolution model of artificial skin with fewer taxels..2. High-resolution model of artificial skin that closely resembles the arrange-

ment of artificial skin on the real NAO robot

The simulation environment based on ROS Melodic and Gazebo 9 was built.
It included Gazebo plugins for processing skin contact events, ROS topics and
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5. Conclusion, Discussion, Future Work ..........................
services for communication between simulation environment and exploration
libraries. Explauto library developed in the Inria FLOWERS research
team [23] was used for the purposes of exploration and model learning.

A series of experiments was performed and their results analyzed. The
experimental results confirmed that goal strategies based on discretization of
observation space outperform motor babbling strategies.

Out of all possibilities for representing forward and inverse model of robot’s
body available in explauto library, nearest neighbor (NN) model provided
best results. Reasons for and implications of this are discussed in section 5.2.

All program codes and data files created during this project are available
online at the CTU Faculty of Electrical Engineering GitLab repository [12].
A Youtube channel was created [30] for demonstration purposes. Youtube
channel contains recorded videos of exploration process along with informative
data visualization overlays.

5.2 Discussion

Explauto framework is based on the notion of lazy learning. Essentially the
library keeps a database of motor actions and corresponding observations. No
explicit model is created that can be represented with mathematical function
or formula. Instead, to answer a request for forward or inverse prediction,
the model queries the maintained database.

The biggest drawback of this approach is computational time and space
complexity. The size of the database grows linearly with the number of
samples. With every new request for forward or inverse prediction, the model
must perform new search and possible regression computation. Although
explauto stores data effectively using k-d tree data structure [4], such method
is still time consuming.
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..................................... 5.3. Future work

The experiments have shown that nearest neighbor (NN) inverse model
in explauto framework provides best results in the quality of learnt models.
There are several reasons for that:

. The only source of sensory feedback in the experiments was the artificial
skin. It was therefore very important to maintain contact between end
effector tool and the surface of artificial skin. NN model guarantees that
there will be contact with artificial skin (for a bootstrapped model that
contains at least one entry)..Other models available in explauto framework (WNN, LWLR) rely on
interpolation and regression of motor commands. Kinematic chain in
robot’s arm used for self-touch is redundant, therefore a combination of
different poses for reaching same taxel may produce wrong result.

Nearest neighbor model would perform poorly in noisy environments, where
false activation of taxels could be possible, e.g. by insects landing on the
surface of artificial skin. Once a faulty action-observation tuple is entered
into the database, it remains there indefinitely and affects the result of future
model predictions.

5.3 Future work

In this work I have considered outputs from simulated artificial skin taxels as
binary variables (on/off). However, the real physical artificial skin is capable
of producing outputs as 8-bit unsigned integers. The range of output values
could be utilized during learning process to estimate strength of contact with
artificial skin and to improve the quality of learnt models.

All robot configurations that produce no contact with artificial skin are
mapped to a single point in observation space. This is a big drawback that
may complicate the learning process. One possible solution to this problem
would be to incorporate visual feedback either from robot’s own cameras
or from external cameras. Another possible solution would be to utilize
temperature sensors within the artificial skin and to use end effector tool
with heating. This could potentially enable the robot to feel the end effector
positioned in close proximity to the surface of artificial skin but not directly
touching it.
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5. Conclusion, Discussion, Future Work ..........................
Another possibility for efficient self-exploration could be to use continuous

sliding micro motions along the surface of artificial skin. In such experimental
setup, broken contact with artificial skin could be resolved either by reverting
the motion several steps back and continuing it in another direction, or by
resetting and restarting the simulation from the home posture. Outputs from
artificial skin taxels could be used to calculate contact strength, which in
turn could be fed into a feedback controller that would help produce constant
contact strength and smooth exploration of entire robot’s body.

It would be worthwhile to implement and test other learning methods,
e.g. reinforcement learning and convolutional neural networks, and compare
obtained models with models produced in this work using explauto framework,
lazy learning and exploration strategies based on goal babbling.

In this work, I have made as few assumptions about the structure of robot’s
kinematic chain as possible. Only the number of joints was required so
that sensorimotor system could execute motor commands. A possibility for
future work is to impose the structure of robot’s kinematic chain and perform
learning by tuning parameters of the model. For example, one could assume
open kinematic chain, describe it in terms of Denavit-Hartenberg parameters
[16] and try to learn these parameters.

In my experiments, I have primarily used planar projection of artificial
skin taxels onto a flat surface as my observation space. Another possibility
for representation of artificial skin is somatosensory robotic homunculus [18].
Much like a planar projection, it also is a distorted 2D representation of
artificial skin. However, this representation can be learned with self-organizing
map (SOM) algorithm. A combination of this artificial skin representation
with exploration strategies from explauto library could produce interesting
results.
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