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Abstract
Using bicycle rides as a leisure activity
is very widespread these days. Most of
the cycling-focused applications offer plan-
ning methods that are great to use when
traveling from place to place but are not
useful when planning routes suitable for
recreational cycling. That’s why I decided
to propose and implement a solution that
would offer planning of such tours. I did a
thorough research of papers with a similar
scope. Then I chose one of them, which
was focused on planning closed routes,
and I implemented and modified it for
my problem. To achieve this, I defined
the problem of planning recreational tours
formally. Then I described components
necessary for its solution, for example,
tour pleasantness and roundness. Next, I
covered the solution itself, drawn from the
mentioned paper, but extended to plan
point-to-point recreational routes as well
as closed ones. I identified weak points
of the solution and created a modified
version where they were targeted. More-
over, I implemented both solutions in Java
and created a web service on top of them.
The web service comes together with a
client which can demonstrate capabilities
of these algorithms to the user. The last
section is dedicated to experiments that
are comparing the solutions of the origi-
nal application with the modified one and
identifying their differences. These ex-
periments have shown that there is not
any significant difference in the quality of
results from the modified version of the
algorithm. However, there is a significant
improvement in the overall running time.

Keywords: route planning, cycles,
cycling, graph search

Supervisor: doc. Ing. Michal Jakob,
Ph.D.
Fakulta elektrotechnická, Resslova 307/9,
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Abstrakt
Rekreační jízda na kole se v poslední době
stává čím dál více rozšířenou kratochvílí.
Většina cykloaplikací nabízí plánování,
které funguje skvěle pro nejkratší cestu
z bodu do bodu, ale pro plánování rekre-
ačních tras se moc nehodí. Proto jsem
se rozhodl vytvořit řešení, které by tyto
trasy nabízelo. Udělal jsem důkladný prů-
zkum prací s podobnou tématikou. A poté
jsem z nich jednu, která se zabývá pláno-
váním okružních výletů, vybral, abych ji
implementoval a modifikoval pro svůj pro-
blém. Musel jsem kvůli tomu tento pro-
blém formálně definovat. Poté jsem po-
psal komponenty potřebné k jeho řešení,
jako je příjemnost a kulatost těchto tras.
Dále jsem rozebral samotné řešení, které
se inspirovalo zmíněnou prací a rozšířil ho
kromě okruhů i na rekreační trasy z bodu
do bodu. Později jsem identifikoval jeho
slabiny a vytvořil upravenou verzi řešení,
kde se na ně zaměřuji. Navíc jsem imple-
mentoval obě řešení v Javě a vytvořil nad
nimi webovou službu, společně s klientem,
který může jejich možnosti demonstrovat
uživateli. Poslední část je věnovaná ex-
perimentům, které mají za úkol porov-
nat obě řešení a pojmenovat jejich rozdíly.
Tyto experimenty ukázaly, že výsledky
modifikovaného algoritmu nejsou výrazně
odlišné od původní verze. Nicméně, al-
goritmus zaznamenal výrazné zlepšení v
oblasti časové náročnosti.

Klíčová slova: plánování cest, cykly,
cyklistika, prohledávání grafu

Překlad názvu: Plánování tras pro
rekreační cyklistiku
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Chapter 1
Introduction

1.1 Motivation

Cycling is a way of transport which has been here for almost exactly 200
years[1] now, and in the last years, it experienced very rapid growth because
of numerous factors.

It is a convenient, cheap and most of all environment-friendly way to
get yourself around on a shorter distance. These are also the reasons why
governments and municipalities support this movement.[2][3] And that is a
significant boost to it. We can see the road network improving rapidly by the
construction of more and more roads with a dedicated lane for cyclers or even
standalone cycleways. This improves the comfort of cycling and attainability
of various areas. Lastly, we can also witness a major technical boom in this
sector, which reflects itself in various bicycle related applications as well as in
the improvements of the vehicle itself.

These circumstances that are listed above also contribute to the expansion
of recreational cycling among people. By recreational cycling, in this context,
we mean riding a bike not to get only from point A to B by the shortest
path possible but for the pleasure from the riding itself or to get your daily
dose of physical activity. There are numerous ways to use the bike in this
manner, ranging from a healthy workout routine up to the exploration of the
landscape by wandering through the country on your bike.

A large portion of the people is nowadays used to use GPS based navigation
as a part of their daily routine in almost every aspect of their travels. And
even though many planners do an excellent job in planning point-to-point
routes optimized for bikes, there are just a few applications focused on
providing similar plans for recreational trips on a bicycle. That’s the main
reason why I chose to dive into it in this thesis and offer a user-friendly
solution of my own. I think that, mostly because of factors mentioned at the
start, the importance of such services steeply rises. Moreover, this problem
can fit many outdoor activities as is, for example, jogging, inline skating,
and others. The application offering personalized on-demand plans for such
outdoor recreational activities will probably quickly find its audience. It
seems to me like an exciting field of route planning, which is widely applicable
and also not much described so far.
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1. Introduction .....................................
1.2 Scope of the Thesis

The thing specific for cycling is that it is not carried out on one spot, but you
have to come up with some specific plan or at least a greater area where you
will ride your bike to enjoy it. That plan has to be proportionally suited to
the desired amount of sporting, and the surrounding or infrastructure has to
fit the activity as well. The main goal of this thesis is to describe, implement,
and test some of the methods for planning recreational cycling tours that
satisfy these properties.

Note that a suitable area could mean a wide range of things. To mention
some of them, you can prefer to cycle on roads with smooth surfaces, a
minimal amount of traffic, clean air, or an eye-catching surrounding. The
system searching for these areas can take into account any combination of
these criteria. It could even be an user-specific combination that takes into
account the personal preferences of the user to plan an ideal tour for him.
I will refer to this as pleasantness. It describes the quality of the tour (or
individual segments) for the user.

Further, the length of the tour has to correspond with your appetite for
physical activity. The user himself knows the best what the interval where
the length of the planned trip should lie, what is too much or too little effort
to him is. So we should let him specify this as another part of the input.

Last important aspect of planning such tours is a geospatial diversity of
individual segments of the trip. I think it is evident that even though the
simple tour in which you circle one interesting spot over and over again is a
solution to the problem we defined, it is not a particularly good one for most
people. We want to let the user specify how important is it for him to visit as
many distinctive roads as possible in tradeoff with overall tour pleasantness.
We will call this property of the tour roundness, and I will further describe
the exact means to count and use this metric in cooperation with the user
and his wishes.

Round trips starting and ending at one place are fairly the most common use-
case for outdoor recreational activities. There are already several applications
with this functionality that are taking into account similar aspects as are
described above. And it is also the use case I was focused on most. But it
is not the only one. The user has to, for example, get home from work by
bike. But instead of going through the city by the shortest path possible, he
is interested in some relaxation. He wants to cycle through some beautiful
parts of the city for the next few hours and end up home by the evening. I
modify the algorithm to be perfectly suitable for planning such routes as well.

To wrap up all these things - I aimed to create an algorithm which could
plan tours constrained by length, origin and destination (where origin and des-
tination can be identical) and optimized by the pleasantness of the individual
segments in combination with the tour roundness.

I proposed two solutions to this problem as a part of this thesis, each one
with a slightly different approach to it. I thoroughly described these solutions
and its components in the following chapters. Thereafter I implemented them

2



..................................1.2. Scope of the Thesis

to verify the practical results. The last chapter of this thesis is dedicated to
the various experiments I conducted to compare both methods by several
important factors as is the solution quality or their overall performance. These
experiments bring a deeper understanding of their differences and should be
used to plan further optimizations and improvements.

The last thing I aimed to achieve was to demonstrate the abilities of this
implementation to the broader audience. I made this possible by wrapping
the algorithms in a web service, exposing its methods over REST API.[13]

In order to make the service accessible to the end user I created a web client
that communicates with the service running on a remote server. This client
helps user to create and submit a request to the service in a well-arranged
user interface. As it gets planned tours as a response it visualizes them over
the real world map and displays statistics about their properties.

3



4



Chapter 2
Related Work

There are already several papers out there, which I researched before my
work and which have scope similar to mine. This section is meant to do a
quick overview of all of them. I am also going to mention the way by which
each of them is relevant to my work and compare properties of the ones that
introduce some specific method to plan recreational tours.

2.1 Cycling trips in East Flanders

The paper from Souffriau[4] was the only work where recreational trips where
planned between two distinctive locations that I managed to find. Every
other paper in this section was focused on planning tours with an identical
origin and destination. This short paper first defines an infrastructure where
every road segment bears some cost. After that, it defines a problem of
getting from A to B where summative cost of used edges cannot exceed a
given user-defined threshold. It uses GRASP[5] algorithm to find such a route
in a graph.

This approach has relatively quick response times, as is demonstrated in
the paper, but unfortunately, it is not suited for our problem. This is mostly
because revisiting the edges is banned in this search and that is simply not
a good strategy because it can make some parts of the graph completely
invisible to the algorithm. On top of that, there is no lower bound for the
summative cost and this is also in a contradiction to the problem we defined.

2.2 Minimum Mean Cycle

One of the most general papers laying down the theory needed for the solution
of this problem is the problem of finding the minimum mean cycle in the
graph[6]. It is defined as finding the sequence of edges in the graph that
starts and ends in the same node. And that have minimal sum of weights
over all its edges divided by the count of edges in this sequence.

Karp provides a formula that yields the minimum mean of the mentioned
cycle with linear complexity. Moreover, he shows a simple technique to obtain
not only this number but also the actual cycle from the same calculation.

5



2. Related Work.....................................
We cannot use this method as a solution by itself, without modifications, for
several reasons. Firstly it completely ignores the pleasantness criterion, and
as we have seen earlier, this is one of the key components to our problem.
And secondly, its search for the best mean cycle is not constrained by the
length interval, which is also part of our problem definition. However, some
of the mentioned papers used a slightly modified version of this algorithm as
a base for their work.

2.3 Solutions proposed by Gemsa

The next paper I researched is from Gemsa and outright introduces multiple
techniques to generate feasible enclosed jogging routes.[7]

2.3.1 Greedy Faces

At first, we have to define a term face. If you imagine a road network, then
face is a planar object which is bounded by road in every direction. In
practice, it can be a block of flats, square, etc. The algorithm from this paper
firstly identify every face in the road network graph and creates a new graph,
where every face is listed as a node. These nodes are connected by an edge in
a new graph only if they share one or more outlining edges in the original
graph. We call the resulting graph a dual graph to the original one. As a
next step, the algorithm computes a "force field" for each of these nodes in
the dual graph. That is basically a vector which points in the direction where
is the biggest count of pleasant faces. This is the end of the preprocessing
step of this algorithm.

The actual search for a valid jogging route is realized with the help of
breadth-first search (BFS)[8]. Each stage of this search contains multiple faces
marked for expansion. The search expands the faces in the order determined
by the direction of the biggest pleasantness derived from force field as is
described above. At the end of each step, the outer edges of expanded faces
create the jogging route as far as two conditions are met. First of those
conditions is that the search tree has to be connected. Secondly, it has to
exclude at least one face incident with the edge, where is the user located to
ensure that his starting location is part of that border (and hence part of the
route). The BFS finishes when the length criterion is met.

Although this approach is excellent for finding round and almost regular
routes, it lacks a few key components that our problem requires. One of the
minor issues is that the input to this algorithm specifies only one number
representing length. Whenever this length is exceeded the algorithm stops,
and although we could continue and sample all the routes above this limit,
and under the upper bound, it is not desirable. These routes would be very
similar to each other, distinguished only by one or a few faces enclosed in the
inner circle. The second issue, which is the main reason why we didn’t employ
this method, is that it is very computationally exhaustive. The fact that
there are going on several computations under the hood - the preprocessing,

6



............................. 2.3. Solutions proposed by Gemsa

BFS, counting force field for multiple faces in each iteration, etc. is also the
reason why Gemsa employed this method to short jogging routes only. There
is no optimization at the time of writing, which would make it acceptable for
the tours exceeding twenty kilometers and longer, as is often the case with
cycling trips.

2.3.2 Partial Shortest Paths

Another approach which is introduced in the very same paper is called Partial
Shortest Paths.[7]

It finds the minimal cost path to every node from the starting node. This
search tree is called a ring. The search criterion is the tour pleasantness and it
is constrained by one-third of the length of the final route. From these results,
we select one, and we compute its ring again using the same parameters.
Then we can take the intersection area of both rings and pick the third point
of the triangle from there. The last step is to compute shortest paths (or in
our case paths with the minimal cost) between all three mentioned nodes.
That yields one of the feasible cycles. All the results from this process are
then filtered to provide just the ones with best mean pleasantness.

This approach provides further improvements. For example, we could
limit the ring bound distance to one-fourth of the desired cycle length and
pick two points instead of one. From these points, we can backtrack a little
bit (to improve the smoothness of the resulting path) and run another two
ring searches. In their intersection lies nodes that are on both paths from
nodes originating the search and also the nodes from which we originally
backtracked. These nodes are the fourth vertices of the rectangle. Now we
can compute the shortest paths to complete this rectangle. Results are then
filtered in the same manner as before.

Another way the algorithm can be improved is by implementing a bidirec-
tional search to found the fourth point in the intersection of rings. This is
also great for parallelization of the algorithm.

Overall this is the algorithm with really good running times comparing
to Greedy Faces. There is just one major problem with this algorithm, the
roundness is not specified for it and the only way we can somewhat ensure
it is by choosing these three or four points in the process. But that is far
from ideal. We could count the roundness of the resulting tours afterward
(we will show how in the next chapters) and add it as a filtration parameter,
but it is far more effective to add the roundness right into the optimization
term as you have to count far more tours to filter otherwise. There is also
another minor issue, without roundness in the optimizing term there is no
policy which would penalize tours that contain returns, i.e., traveling the
same segment multiple times during one tour. These returns occur when
one of the chosen points is in the dead-end street or when the minimal cost
path to and from one of the nodes share segments. It would seem that this is
solvable by simply banning repetition of edges in path, but as I will explain
in the Solution chapter, this is not particularly good policy.

7



2. Related Work.....................................
2.4 Tour Suggestion for Outdoor Activities

Maervoet [9]used pretty similar method of computing minimal cost paths
between a subset of acceptable nodes and connecting them afterward into a
cycle. But a slightly different method was used to choose them.

We assume that there is some graph loaded with points of interest (POIs)
and each one of them has a value that represents its attractiveness. Then
we define a feasible window. This is a bounding box around a starting node.
Size of this bounding box is constrained by the wanted length of the tour in
that manner that nodes out of this box couldn’t be part of the valid tour
anyway. The algorithm starts by creating such a window around the starting
node. In this window, the most attractive POIs are localized and added to a
set of candidates to acceptable via points.

The size of the set is bounded by two numbers chosen at the start of the
algorithm as its parameters. If the set is too small algorithm proceeds by
counting the summative cost of edges associated with nodes in the feasible
window and promoting the ones with the best results to candidates.

On the other side, when the size of the set exceeds the upper bound, the
candidates are filtered by spatial location. Grid is created on top of the
window, and just one candidate from each grid tile is chosen.

The final step is to find several subsets of size two from candidates and
run mentioned partial shortest path algorithm in both directions - clockwise
and anticlockwise. This results in a closed walk that contains the starting
node and chosen candidates. However, this process does not run for every
combination of feasible candidates, as this would be resource exhaustive. The
author mentions running a competitive learning system on top of this triangle
search to pick several promising combinations. This learning system works
with geospatial diversity as well as with the ratios of distances between nodes,
although we don’t get a further description in the paper

Lastly, the found closed walks are filtered by length constraints and op-
timized by the total combined cost of POIs and edges contained in the
tour.

Such an approach seems like a modification of the Partial Shortest Paths
approach described earlier, and it also shares its flaws. However, it offers
several improvements to it, for example, using the competitive learning
algorithm seems like an interesting and effective way to choose the candidates
inside the window as it is hard to describe with some conditions before we find
the shortest paths themselves. Writing and training the learning algorithm
would take a greater effort than the algorithm itself, but it is an excellent
idea to further improve any of the algorithms mentioned before. Also, this
approach is heavily focused on the POIs in the network and that’s the main
reason I didn’t implement this approach. I am more interested in the planning
of the recreational tours in general, using properties of edges in the road
network as a way to their optimization.

8



.................2.5. Generating Constrained Length Personalized Bicycle Tours

2.5 Generating Constrained Length Personalized
Bicycle Tours

Last paper directly dealing with a problem similar to ours is Generating
Constrained Length Personalized Bicycle Tours.[10] This paper defines Cycling
Problem. It is a problem of optimizing closed walks in graph not only by the
cost of the edges itself but in combination with the roundness of the whole
tour as well. The algorithm then works in two stages.

First is called forward routing, and the goal of this part is to find a set of
candidates similarly as in the previous algorithm. From these candidates, one
or more are chosen at random, or by some predefined strategy and handed
over to the next stage.

The second part of the algorithm is to run another search from multiple
nodes on the optimal path between the starting point and candidate. That
search is targeted for the original starting point, and it continuously computes
edge penalty based on roundness against the original forward path.

These searches will yield paths which in combination with trimmed forward
paths forms closed walks. This walks are further filtered by length criterion
and optimized by a linear combination of roundness and pleasantness.

The paper is then focused on several optimizations of the algorithm. The
most important of them is joining edges. This optimizes the most compu-
tational exhaustive part - counting roundness penalty, which is added to
the optimizing term of backward search on the fly. In this process, you join
multiple edges from an already found path into one long edge, which has
the same properties when counting roundness penalty as the original edges
set. Another one is, for example, computing reaches to limit the number of
candidates from the first phase.

The most significant difference from previous algorithms is the joined
optimizing term, which contains pleasantness as well as edge roundness
penalty. This is the approach which seemed most flexible to me. It penalizes
revisiting of edges or whole regions but does not ban it completely, which is
an important feature that solves most of the issues described with previous
algorithms. And secondly, it let the user specify the tradeoff between the
roundness of the tour and its overall pleasantness as well as the size of the
region which should not be revisited.

These are the main reasons why I drew most from this paper, using
unoptimized of its algorithm as a base for my work. Moreover, I was able to
propose meaningful modifications on my own. These include new strategies to
select the candidate nodes or applying the modified version of this algorithm
to point-to-point planning, which was part of the problem specification.

The last advantage is the various optimizations mentioned in the paper,
which makes the algorithm faster and more usable and are ready to be used
as further improvements to my solution.
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Chapter 3
Problem

We introduce some concepts and their notation in order to define the problem
formally.

3.1 Graph

.Our problem is based on directed graph G = (V,E)..We further consider the graph to be a representation of a real world road
network which means that every node from this graph n ∈ V represents
intersection of some sort or an end of the road. Also, we expect that
every node has a mapping to its coordinates. Formally: loc(n) : V → R2. Every edge e ∈ E represents a road or its individual segment that
connects two nodes. Therefore we define them as ordered pair of nodes
e = (n1, n2);n1, n2 ∈ V . We call first one start node of the edge, the
second one end node of the edge.. Every one of these edges has its nonegative length. Formally we introduce
function l : E → Z+ which represents this length, i.e physical distance
to be traveled from one end node to the other..We also define second projection from edge space. This projection has a
prescription w : E → Z+ and basically correspond to edge unpleasantness
in different contexts. The smaller the number the more desirible is for
the tour to comprise this segment..We than define path in the graph which is simply a sequence of edges
P = [(n0, n1), (n1, n2), ..., (nn−1, nn)]. For every pair of consecutive edges
in this path holds that end node of the first edge is simultaneously start
node of the second one.. Closed path (or respectively cycle) is a special type of path, where holds
n0 = nn.. The total length of the path is counted as l(P ) =

∑n
i=1 l(ei). Similary the

total unpleasantness of the whole path is counted as w(P ) =
∑n
i=1w(ei).

11



3. Problem.......................................
3.2 Constraint Length Bicycle Tour Problem

We define Constraint Length Bicycle Tour Problem in order to unify problems
of finding closed and point-to-point paths. Every path that satisfy hard
constraints of our problem and is therefore a valid solution to it is further
refered to as tour.

The tours are in the text further classified as closed tour, if the origin
and destination are identical, and any other tour, which is refered to as
point-to-point tour in the text.

3.2.1 Inputs to the Problem. First input is the mentioned graph itself G = (V,E).. Then we choose pair of nodes s, g ∈ V which we will refer to as the origin
and destination node of the tour. It can happen that s = g. In that case
we request tour that is closed path containing this node.. Last parametr will define the length constraint. Which can be entered
as upper and lower bound of the interval lmin ∈ R+, lmax ∈ R+.

3.2.2 Formal Description of the Problem

Now that we have defined all necessary inputs to our problem we can describe
it as a whole. We will be searching for a tour ρ which has to comply to the
following criteria:. The first edge of the tour starts from the origin. Last one ends in the

destination.. The value of length l(ρ) lies in the interval L. The value of weight w(ρ) is as close to the optimal as possible.. The tour visits same region as little as possible. This property should be
customizable on the input of the algorithm.

12



Chapter 4
Solution Proposal

4.1 Tour Roundness

We need to introduce just one more tour property which we use in the solution,
and that is the roundness of the tour ρ, denoted pavg(ρ). This property defines
how often the tour revisits the same edges or regions of the map and is based
on a relation between displacement and distance of two points on the circle
(as shown in 4.1).

We take two points on a circumference of a circle with radius r. We know
from elementary math that for displacement and distance of these points
holds:

disP = rφ (4.1)

disT = 2πrφ (4.2)

Where we use φ as their angular displacement in radians. When we put
these equations in a relation, we get:

disT

disP
= 2π (4.3)

which points at sinusoidal relation between these two properties.
We obtain displacement between two nodes n1, n2 by computing great

circle distance between them. We will mark this displacement as dreal. Then
we will define dexp : V 2 → R+ which represents the expected displacement
of these nodes on a perfect circle. This value is counted from length of path
between these two points that is part of the tour ρ. But to use the sinusoidal
relation to compute the dexp we would need to know l(ρ), which is not known
yet and lies somwhere in L. We could be using one of the interval bounds
to approximate this value, but we are going to choose different approach
instead. We will approximate the relation itself to make it picewise linear.
This function is clearly symetric by l(ρ)

2 mark. In other words we get a
function which meets

dexp(x) = dexp(l(ρ)− x) (4.4)

This means we can always appoint the shorter distance by circumference to
the first half of our function. The last step is to exactly express this funtion,
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4. Solution Proposal...................................

displacement

dista
nce

Figure 4.1: Visualization of distance and displacement in a circle

we get

dexp(x) = 2min(disT, lmax − disT )
π

(4.5)

where we approximated the total tour length by lmax. Which means that this
function is independent on total length of circumference - that is important
fact for continuous resolution of tour roundness.

One more property of the edges have to be defined in order to use this
function on them. It is the location in the middle of the edge. This location,
denoted as m(n0, n1), n0, n1 ∈ V is simplified to loc(n0)+loc(n1)

2 .
Now, we can define dexp for edges as well as for individual points around

the tour. The expected displacement of two edges e1, e2 will be defined by
dexp(m(e1),m(e2)). For the distance around circumference of the tour from
which the dexp is counted we use distance traveled between m(e1) and m(e2)
on this tour.

This metric has one more important feature, it can be customized to differ-
ent scales of penalization for not completely round tours. We just need to add
a parameter which will determine the wanted level of roundness. This envolves
defining the roundness penalty function between two edges in one tour as

p(e1, e2) =


σdexp(e1,e2)−dreal(e1,e2)

σdexp(e1,e2) if dreal(e1, e2) < σdexp(e1, e2)
0 otherwise

(4.6)

Where σ ∈ [0, 1] parameter is called strictness and in practise define how is
the perfectly round tour defined for the algorithm. To give out some examples
- with values of σ close to zero, only edges really close to each other are
penalized. We could get a tour with close to zero roundness penalty even
though it won’t be round at all, with shape similar to very tall oblong or
rectangle. When we increase the strictness we are giving out the signal that
we want more round tours but for values still further from 1 even oval tours
are enough to get a perfect score. With σ = 1 every tour with not perfectly
round shape is penalized.
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...................... 4.2. Original Method for Generating Closed Tours

Figure 4.2: Description of original algorithm

Finally we can define the average roundness penalty for whole tour ρ as:

pavg(ρ) =
N∑
i=0

N∑
j=0

p(ei, ej)l(ei)l(ej)
l(ρ)2 (4.7)

this expression should approximate the average penalty between two points
randomly chosen on the tour. This means that it gets more accurate when
the number of edges and length of the tour increases. This function therefore
express the overall roundness of planned tour and we use its value computed
with strictness set to 1 as somewhat absolute meassure of tour roundness.

4.2 Original Method for Generating Closed Tours

This is the first method that I have implemented and it follows the unoptimized
version of the closed tour algorithm described in the paper from Stroobant[10].
The algorithm runs in two stages.

Where the first stage named forward routing (Section 4.2.1) aim to find
candidates for a turning point. Turning point is a node t ∈ V to which we
have found a optimal path from the origin node in terms of its weight, noted
ρs→t. We use this node to get a start for the second stage of the procedure
named backward routing (Section 4.2.2). This stage will get path ρt→s which
will be optimal in terms of pleasentness combined with roundness penalty.

The pseudocode bellow describes this algorithm and is further breaked down
in the following sections. The value of λ is defined by specific implementation
or by user in the input. Its meaning is discussed in the Section 4.2.3.

15



4. Solution Proposal...................................
4.2.1 Forward Routing

First stage, is meant to find all nodes which can serve as acceptable turning
point for the backward search.

First we have to find every candidate c ∈ V . Base method to find all
candidates is rather simple, althoug we can mount many optimalizations to
it as well. For the sake of simplicity let’s now consider as candidate every
node c that satisfies the condition

dreal(s, c) + l(ρs→c) ∈ L (4.8)

From this specification we can derive the actual procedure to find mentioned
candidates. We are going to run a graph search algorithm (in our imple-
mentation we use the Dijkstra[11] graph search) that starts from the origin
defined in the problem input. This search doesn’t search for any specific
destination node but it is hard constrained by length criterium presented
earlier. Moreover, it uses the weight criterium for edge cost evaluation rather
than its length. There is a fair reason for that. When candidate is found we
can immidiately obtain the weight optimal path ρs→c mentioned earlier.

As you can see in the pseudocode 4.2 we restrain the obtained path in
some manner before sending the nodes from it further into next stage of the
algorithm. Let us introduce the parameter β. This value will determine how
many points from forward route we use as turning points. Specifically we will
take into account only nodes n for which stands

dreal(s, n) > β
lmin − ε

2 , 1 > β > 0 (4.9)

For values of β closer to zero we get almost every node on the forward path
and we use them as a turning point for backward routing. Values close to
one will drop the whole first half of the path ρs→c and we select the rest as a
suitable turning points.

4.2.2 Backward Routing

I am going to assume we have just one turning point t linked with proper
forward path ρs→t found in first stage. Now we have to find suitable path
back from this turning point.

This path ρt→s has to follow the condition

l(ρs→t) + l(ρt→s) ∈ L (4.10)

Moreover, it should optimalize the weight w in combination with tour penalty
p. To obtain such back path, we launch yet another graph search, now from
t. This search is aimed toward s, constrained by L. On top of that, we
need to include geospatial diversity against forward path to the overall cost c
of every edge e expanded by this search. We can get a number expressing
this diversity by computing the roundness penalty against every edge in the
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...................... 4.2. Original Method for Generating Closed Tours

forward path, normalized by tour length.

p(e, ρs→t) = 2λ
lmax

∑
e′∈ρs→t

p(e, e′)l(e)l(e′) (4.11)

We approximated the tour length (which is not known in the time of compu-
tation) as a upper bound on the tour length. Next, we combine this value
together with edge weight to get a expression describing an overall cost of an
edge.

c(e) = w(e) + p(e, ρs→t) (4.12)
This overall cost fulfills every property which we defined in the problem
definition. It makes harder to revisit the same edge on the path back. Level
of this resistance is proportional to user defined parameter λ.

But note that it never straight out ban the revisiting. And this is also
an important feature which has a great positive effect on solvability. Such
restriction would effectively exclude from planning every part of the graph
that is connected by one edge only to the rest of the network. And that
would make the search completely unusable in some areas.

Also, this penalization does not work with edges only, user get to define σ
to choose what is the actual size of surroundings around forward path, where
will be backward path search penalized. This is also a neat feature, beacuse
it allows user to prefer perfect round tours or on the other side turn off this
penalization all together.

The search could end by two ways. The first is when there is no path ρt→s
that would fullfil the length criterium. In that case we simply have to move
to another turning point and repeat the process.

The second way is when the search reaches the origin point. In this moment
we got two paths ρs→t and ρt→s by their combination we got a valid solution
to our problem.

However, this is only a solution to the smaller subproblem dependent
on chosen forward path. As we can see in the pseudocode at the start of
this chapter we should search from multiple turning points that are part of
different forward paths to get a bigger chance to found the global optima of
the problem instance defined by the specific input combination.

4.2.3 Selecting the Best Result

The input to this final stage of the algorithm is multiple tours, which meet
the hard criteria defined by input parameters. Next up we need to restrict
this set or at least sort it, to get the most promising tours from it.

In order to achieve this we define the property which we are trying to
optimize as:

cavg(ρ) = wavg(ρ) + λpavg(ρ) (4.13)
Where cavg represents overall mean cost of the tour, wavg mean pleasentness
and pavg stands for mean roundness of the tour as described earlier.

The λ parameter in this expression represents the emphasis on tour round-
ness in comparison to the tour pleaseantness. It is easy to spot by plain sight
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4. Solution Proposal...................................
that λ close to zero will not take roundness into account much, the main
component of the final cost will be the cost of individual edges in the walk
only. However greater values of λ can lead to another extreme where penalties
for roundness overshadows edge cost and algorithm searches for round tour
with zero roundness penalty rather than optimalizing cost of the edges. This
parameter will allow to use more flexible evaluation based on user preferences
or local conditions.

4.2.4 Extension to Point-to-Point Tours

As is mentioned in the introduction, the recreational cycling is not restricted
to the closed tours and so should not be our algorithm. But to achieve this
there are two modifications that have to be done on the original algorithm.

This first one is to extend the forward routing routine to work with the
destination point g. In the point-to-point version, we aim for this node and
therefore we have to restict the forward routing search by:

dreal(g, c) + l(ρs→c) ∈ L (4.14)

The second modification concerns the computation of roundness. We
defined the roundness which is not dependent on the total length of the
resulting tour as far as we always plug in the shorter distance around the
supposed circumference. This shorter distance was computed from the path
length between two edges disT or the lmax − disT . It is clear that we cannot
use the second expression anymore as it would falsely assign a very small
displacment to two edges at the opposite sides of point-to-point tour.

What we will do instead is that we will always insert the disT value into
the formula. Together with this we will naturally restrict the edges too far
away from actual edge from the set against which its penalty is computed.
This has a straightforward logic as this edges shouldn’t be a concern for our
user, because point-to-point tours are not restricted to perfect half circles only.
For example, imagine tour which curls back and forth multiple times between
the origin and destination point. This tour is still completely suitable for
our purpose as it does not visit any region twice. Roundness penalty defined
like this could result in a curly path where it takes care of minimal number
of returns and traveling by the same segments of the road. The bigger the
strictness, the biger is the diameter of these curls.

4.3 Modified Version of Generating Tours

When running the original version version of the algorithm I noticed that
there are two key factors in the performance of the algorithm. The factor
which has the biggest impact on the solution quality is the selection of the
candidate node and forward path associated with it. The factor which has
the biggest impact on the running time of the algorithm is the backward
routing stage and how many individual backward searches runs in this stage.
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.......................... 4.3. Modified Version of Generating Tours

Therefore I decided to modify the original algorithm and address these two
issues in this modification.

The fact we have to realize is that there excessive number of candidates
in the set grouped closely together. And the smaller the distance between
two candidates the higher the probablity that the optimal paths from the
origin point share most of the segments with only small diversion at the end.
This has the consequence of using many turning points multiple times in the
backward routing stage. These searches will also result in a tours which are
similar or outright identical with one another. Therefore even a lot of used
candidates in the same area with high unpleasantness won’t find the optimal
solution and on top of that it is a complete waste of computational resources.

The first thing I have changed is that I implemented a mechanism which
will run one or multiple filters over the candidate set to remove the ones with
the smallest potencial. These filteres and their working is the main topic of
the next section 4.3.1.

The second step I took was to completely abandon the multiple backward
searches from the nodes on the path from origin to the selected candidate
technique. This step saves a computational resources in a very notable way.
Moreover, with a smart choice of filters and selecting mechanism from the
candidate set, there almost isn’t drop in planned tours quality.

4.3.1 Filtering and Selecting Candidates

From now on I am working with set of candidates obtained in the first stage
of the algorithm.

The most simple approach to the selection would be to simply select from
this set at random but that has obvious impact on the result quality. Instead,
we could easily point the selecting mechanism to the candidate set that has
much better probability to result in close to optimal set of solutions. One of
the options is to sort the candidates by best mean cost of their forward paths.
These paths have higher probability to be included in the optimal solution.

Another technique is to take into account the geographic location of picked
candidates. We can favor picking sets of turning points which are most
geospatially diverse. This has several benefits. For one it makes higher the
chance to find the optimal solution to the problem instance as the algorithm
will search through much bigger space. And for the second this technique is
also benefical for the end user. It naturally yields geospatial diverse sets of
solutions. And we know these results are the most attractive for people that
use external suggestions for recreational tours as it bring more distinctive
choices for the user to choose from.

But by far the most effective technique is to filter out the most unpromising
candidates all together. I am going to describe multiple filters in this section
that aim to find and remove such nodes.

19



4. Solution Proposal...................................

(a) : Removing dead ends (b) : Node contraction

Figure 4.3: Examples of candidate filtering

Dead End Filter

The first filter is the one most convenient method to avoid unnecessary returns
along the planned tour. The idea behind this filter is to remove all candidates
that would, if picked, result in tours that have in the immediate surroundings
of the turning point one or more recurring segments. Part of one such tour is
displayed in the 4.4. Aside from this positive effect, there is also one tradeoff
that has to be done. In this problem we take into account the hard constraint
on the total length of the tour determined by interval L. By limiting the
candidate set you can encounter cases where every tour found is too short
and this small segment of return around turning point would add up the
length needed in order to get above the lower bound of the interval.

The filtering itself run in multiple steps. The first one will remove all the
nodes that have only one neighbour in the graph. Each next step will extend
this rule to ignore already removed candidates as neighbours. Both steps are
pictured in the 4.3a where black nodes show candidate nodes, orange ones
show nodes removed in the first step and the purple one is the node removed
in the next step.

Contraction Node Filter

Second filter which we proposed and implemented is again intended to lower
the total number of candidates and higher their mean distance. It achieves
this by removing candidates from the set that are surrounded by exactly two
other acceptable candidates.

Let us imagine the case of one simple edge between two points (say f and
n) with single via node v in the middle. The via point is of degree 2 and the
nodes at the start and end of the edge are of degree 2 or more. Moreover all
three nodes are in the candidate set. We choose the point v as our turning
point. It is easy to prove that the path found to this node is (except the very
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.......................... 4.3. Modified Version of Generating Tours

Figure 4.4: Tour with return from turning point located in one of dead ends of
the graph

last segment) the same as path found to either f or n. To revolve around
specific case let’s think of f . The best path back from v goes either through
n or f again. The latter case results in path which is very similar to the one
we would get if we chose the node f itself, except it has the return around
turning point similar to the one described in previous section. The former
would result in nice smooth tour. But if this is the case, we would get exactly
the same result choosing f or n as turning point. Therefor we can neglect
that via node with ease.

One of these candidates to be removed is pictured in orange in 4.3b.
On the top of positive effects on the candidate set mentioned in the opening

paragraph of this section we get the same tradeoff as in the previous case with
this filter. It prunes the solution space from many solutions that contains
returns. As mentioned previously this is beneficial to the smoothness of
found solutions but also some quite acceptable solutions with returns will be
inevitably pruned.

Path to Distance Ratio Filter

The last from these filters that I have implemented works by comparing
the length of the minimal cost path to each candidate found in the forward
routing stage and great circle distance to the destination node. It filters
candidates with extreme values of this ratio.

The reasoning behind this approach is that such an approach greatly
increases the number of round tours in the solution set without the need to
count an excessive number of tours to find these "pretty" tours. Just imagine
how this candidate with extremely low or high ratio looks like. These are in
most cases nodes that are extremely close to origin or destination node of
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4. Solution Proposal...................................
the request. And by choosing such candidates we will plan either extremely
short path to or from this candidate to the destination node. Both of these
cases are problematic, as we count the roundness penalty against forward
route when planning backward route. The first case results in a very small
penalty for each edge on backward route, which could lead to tour revisiting
the same region multiple times because there is no penalization for it. And
in the second mentioned case there is simply no space for a tour to take
an acceptable shape by planning a short backward route with roundness
penalty. The filter is therefore proposed to let the developer specify the upper
and lower bound ratio. Only nodes whose shortest path and distance to
destination satisfy this ratio are passed to the next stage.
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Chapter 5
Implementation

To demonstrate algorithms described above I implemented them in a Java
8 application using Open Source libraries. This part of the project and its
dependencies are managed in Maven.

The individual components and architecture of this implementation are
further discussed in Section 5.1.

This application is furthermore wrapped as a webservice exposing REST
API.[13] Every application can submit parameterized requests for route
planning. The best routes are then returned as a response. Inner structure
and endpoints of this service are broken down in Section 5.2.

On top of that, I build a simple web client in Javascript which can consume
the web service and make the process easier for the user. It also provides
visualizations and debug data. A brief description of this client is located in
Section 5.3.

There is a public version of both client and server codes available in the
root repository for this thesis.[14] Instructions on how to use them are at the
end of this chapter.

5.1 Algorithm Implementation

For the representation of the graph and its individual features I chose to
implement interfaces from base-structures library provided to me by the
Umotional company.1 The interfaces I used (specifically INode , IEdge and
GraphStructure ) encapsulate the basic methods that should be available
on the graph objects in order to make it more convenient to work with them.
Implementations of all these interfaces I used are available in model package.
The second great motivation for this approach was the ability of other libraries
to work with these interfaces.

The graph loaded into the TourGraph object should be stored in the
CSV file. This CSV file does specify every edge in the graph. Edges are
specified in terms of IDs of end nodes, their GPS location, edge length, and
cycling inconvenience. Several examples of these files can be found in the
repository[14].

1Residing at https://umotional.com/.

23

https://umotional.com/
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Figure 5.1: Graph objects structure

The original graph, which was used as a base for the service as well as
in the experiments, was once again provided by the Umotional.2 It is a
variation of a graph downloaded from the Geofabrik server3, cropped to
Prague and its closest surroundings. Graphs on this server are extracted from
OpenStreetMap project data and cleaned from all superfluous metadata. The
data was further processed by its tools to make it more suited for bicycle
trips planning, which means removing highspeed roads, interpolating long
edges, etc.

To implement forward and backward routing I chose to use yet another open
source library from Umotional company.3 It is core-planning-algorithms
. The library provides a functional framework to implement almost any graph
search algorithm. It creates a higher level of abstraction with the help of
several general interfaces that encapsulates the basic actors and methods
present in every graph search algorithm. Everyone can then create their own
implementation of these interfaces. Moreover, this library already provides the
implementation of basic well-known algorithms as is, for example, Dijkstra[11]
or A*[12]. I used this implementation of Dijkstra, in combination with custom
made classes pictured in Figure 5.2. All code concerning these searches is
located in the packages forwardpath and backpath .

The core class of the implementation is PlannerService . It plays main
role in both standalone application run locally and web service. It is outlined
together with its dependencies in Figure 5.3. This static class manages all
backend logic. At the start of the application it loads graph, creates an index

2Residing at https://umotional.com/.
3Available from http://download.geofabrik.de/.
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..................................... 5.2. Web Service

Figure 5.2: Structure of objects used in searches

over all nodes, creates complementary objects as are CandidateFinder or
BackpathFinder and more. After this boot-up phase, it is ready to accept
requests for planning.

The last important pieces of code are to be found in the utils package.
This package provides methods that are not specific to one of the classes or
process but are used extensively throughout the whole codebase. It includes
classes as IOUtils that is taking care of visualization and dumping to the
local files. Or TourUtils where are the computations of distances between
objects, length of the paths, etc.

5.2 Web Service

I implemented the API using Jersey Framework 4 in combination with standart
Java Servlet API. This framework makes creating RESTful APIs[13] much
easier. It enables using of specific annotations, package specification, custom
request filters and more.

Classes created with the help of the framework are located in the api
package. These clases defines the endpoints described in Section 5.2.1 and
handles traffic that is comming through them. They are connected to the
PlannerService class that is created at the start of the web service and
that is managing the actual computations to provide adequate response to
the planning requests.

On top of that Jersey gives out the Jersey Maven plugin that is used for
deployment of this service.

4Avaiable from https://jersey.github.io.
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Figure 5.3: Service objects structure

5.2.1 API

There are several methods that can be invoked via web call to relevant
endpoint. Each method accepts data in form of querry parameters that are
passed on to the service implementation as arguments.

Tour request

Planned tours response

REST

SERVER WITH PLANNING
WEB CLIENT
WITH VIZUALIZATION

Figure 5.4: Simple schema of implementation part of this project.

Closed Tours and P2P Tours Endpoint
/closed
/p2p

These are the core endpoints of the service that are used for planning of
the recreational routes, both of them are connected to the PlannerService
class.

The nature of the tour is given by the choice of the endpoint to call. Both
of them share the same query parameters that are defined in the Chapter
4. These parameters are parsed to the TourRequest object. They provide
TourResponse object as an answer to the call. Structure of both objects is
depicted in Figure 5.5

If the request is poorly specified the service will answer with the HTTP code
400. This can sign, for example, non-existing node as origin or destination
parameter. When no tour is found within the current input the service returns
HTTP code 404.
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Figure 5.5: Planning request and response objects

Available parameters:. start - ID of origin. goal - ID of destination.minLength - lmin.maxLength - lmax. strict - σ. factor - λ. count - Size of candidate subset.method - which algorithm to use (1 - modified, 0 - original)

Nearest Node Endpoint
/map

The core functionality of the service i.e. the planning of the tours described
above is designed to accept just a node ID as a part of the TourRequest.
Although this makes the communication easier from development side of view
it is not very convenient for the end user. Therefor this endpoint is available
- to translate pair of coordinates into the ID of the nearest node in the graph.
The most obvious use case for this endpoint which is also used in my client
implementation is to let the user click at some point in the map and obtain
the nearest node ID to use in the actual request.

The inner working of this method is provided by KDTree object. This
object is slightly edited version of KDTree from javaml library.5 This static
object is created together with the service and filled up with every node in
used graph. We choose object dimension in the size of two as our coordinates

5Avaiable from http://java-ml.sourceforge.net/.
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has two components also. This allow us to use the basic great circle distance
of two points as the resolver function when searching through the KDTree.
In the end this approach greatly outspeed sorting or filtering nodes in simple
list, but with slightly worse space complexity.
Available parameters:. lon - longitude of location to map. lat - latitude of location to map

Graph Borders Endpoint
/border

This is just a simple enpoint that serves to either visualize the graph borders
in the client appliccation or to restrict the requests entered by user to fit
currentlly loaded graph. It returns the greater bouunding box of the graph
in GeoJson format.

5.3 Client Implementation

This section describes individual parts of the web client located in the
frontend folder. The client was implemented in the mix of HTML, CSS
and Javascript.

5.3.1 User Interface

The user interface provides a handy way to specify every parameter of the
request. After the page is loaded, the client calls the Graph Borders endpoint
and visualizes the response; this shows the user the part of the map that
supports the tour planning. This area is defined by a black rectangle as you
can see in the 5.6.

The most significant part of the user interface is a request console that you
can find on the left side. This console allows you to set every parameter of the
TourRequest . Moreover, it offers a switch at the bottom with which you can
control if the server returns tours planned by the first or the second method as
described in Chapter 4. Entering these parameters is pretty self-explanatory.

The only thing worth of closer explanation is the input of both the origin
and the destination node. At the top of the console there is a control which
switches the mode of the search from closed tours to point-to-point tours
and back. The nodes themselves are then chosen by a user click into the
map. This click invokes a call to the backend, which gives back to the client
the GPS location mapped to the nearest node. Following this exchange, the
client fills in the node ID to the input and puts a marker into the map for
an easier orientation. After submitting the whole form, the client creates a
request with all the inputs used as a query parameter.
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Figure 5.6: UI of the web client

5.3.2 Tour visualization

When the server returns the TourResponse object to the client it loads all
the returned Tour objects into the page. You can switch between them by
list selector located in the lower left area. The debugging information about
tour is always provided right below this selector.

The visualization of the tour shows three important things. The first one is
the tour itself laid over the real world map. Second is the original candidate
of this tour marked by a green dot. And the third one is a used turning point
marked by a blue dot. In the modifed version of the algorithm these two
points are identical. Example of such visualization can be found in Figure
5.7.

5.4 How to Run

The code available in the repository is entirely ready to be run locally as either
Java application or web service. The Java application does accommodate all
experiments from Chapter 6 the web service follows the definition outlined in
Section 5.2.

5.4.1 Web Service and Client

You can run it easily as web server by using the Maven Jetty plugin. It takes
just one command on the project directory level. mvn clean jetty:run
will wrap the whole project and deploy its server instance. After quick boot
up, the server is ready to accept requests on endpoints described in 5.2, which
are to be found on the port 8080. There is a default setup in place that uses
an example graph representing a smaller part of Prague, which is stored in
resources. You can overwrite the configuration in PlannerService source file
where you can even specify one of your CSV files if it follows the same format
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Figure 5.7: Tour visualized in the web client

as CSV files attached to the project. If you wish to deploy the service in
any other way you can use mvn compile war:war to obtain the WAR file
with it. The client is set up to work with the server deployed through the
Jetty plugin. If you simply open index.html file from the frontend folder
it will interact with it as described. To use the frontend with a remote server
on a different location, change the address parameter at the top of the
script.js file to its location.

As a time of writing there is also a functioning demo available to try at
the address http://test.umotional.net/tour-planner-frontend/.

5.4.2 Experiments

If you wish to run the experiments specified in chapter 6 you can use command
mvn clean install to get a JAR file with their implementation. This JAR
file will prompt you for an arguments specifying which experiments will be
conducted and what is the path to the base graph. But note that to run this
experiments on other graph than prague.csv (included in the attachements)
you have to change the IDs of tested nodes in the class ExperimentMain .
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Chapter 6
Evaluation

In this chapter, I focused on the evaluation of proposed solutions and their
implementation. There are three distinctive experiments. Each experiment is
testing exactly one input parameter. In each experiment, multiple requests
are evaluated by both versions of the algorithm - the original and the modified
one. The combination of experiments will help us understand the differences
between the two versions and their performance in different environments.

All experiments were conducted on the closed tour planning, the main
reason being that the roundness experiments (Section 6.3) are practically non-
telling in the point-to-point tours. But there should be no major deviations
from the results of other experiments if we use the point-to-point planning
as the modifications I described in Section 4.2.4 have no practical impact on
properties tested in these experiments.

The graph which I have used for all experiments is a graph of Prague and
its surroundings obtained by the same procedure as described in Section 5.1.
This graph features 205130 nodes and 559398 edges in between them.

The most crucial factor influencing the algorithm performance is the choice
of origin and destination of the tour. The quality of results can vary from
place to place depending on the road network - its density, the length of the
nearby segments, the average degree of nearby junctions and so on. And there
are of course areas where it is not possible to find even one tour with the
chosen parameters. To mitigate these effects, we chose ten distinctive nodes
across the whole graph and run identical request on every one of them. These
nodes were used as origin locations in each one of these experiments. The
results you can see in diagrams are the averaged values from these requests.
This helps us to relate the experiments to each other as they are undistorted
by this factor.

All experiments were conducted on a machine with four cores of Intel(R)
Core(TM) i7-7700 CPU @ 3.60GHz. The experiments were requesting around
19 GB of vitual memory, the amount of resident memory did not exceeded
512MB.
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Figure 6.1: Mean costs of best found tour in relation to candidate subset size

6.1 Selected Candidates

As you can recall from Chapter 4, which was describing the solution, after
the forward routing phase comes the part where we pick some smaller subset
of candidates from all of the acceptable nodes. Then we use this subset in a
following backward search.

The first experiment is meant to observe and describe the relationship
between the performance of the algorithm and the total size of this subset.
We are going to compare the performance of both described methods over
identical instances of the problem. The performance is measured by two
metrics - computation time and mean cost of the best solution.
The setup of this experiment:.Minimal length: 16000m.Maximal length: 18000m. Factor: 450. Strictness: 0.9

The first thing we notice in Figure 6.1 is that the modified version of the
algorithm outperforms the original one in this instance of the problem. That
is a very positive sign for our work because it means that our assumption
about the importance of rightly chosen candidates was probably right, but
we will further test the quality of both methods in Section 6.2.

Another thing we can observe is that the results of the original method are
a little bit more consistent than in the modified version of the algorithm. We
can see this on the spikes of both methods in the graph. But this has a logical
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explanation, as the second method is much more dependent on the choice of
the right candidate. On the contrary, when the original method chooses a
candidate from some unfavorable area, there is a good chance it will more
or less compensate this choice by backtracking the candidates’ optimal path
and selecting a turning point which would be more prosperous for the best
available path.

For example, two major spikes in the best found tour quality found by the
modified version of the algorithm when limiting the candidate set to 7 an 13
candidates are caused by this very same property of the modified algorithm.
There is a tour with much better quality than others, starting at one of the
origins, and the modified algorithm simply failed to find this tour at the place
of these spikes, resulting in a noticeable drop in the tour quality. A similar
effect can be observed on the graph of the original version of the algorithm at
the mark of 8, but we see that this drop is relatively small compared to the
two spikes mentioned earlier. This is the consequence of the compensation
which was described above.

The solution for the modified algorithm could be to simply select more
candidates. Evidence that supports this theory could be also found in Figure
6.1. Note that the results for the modified version of the algorithm are
becoming more and more consistent the more we move along the horizontal
axis.

The last conclusion we can draw from these results is the influence of the
size of candidates subset to the overall performance. We see that there is a
trend toward better quality with the growing size of the candidate subset.
However, this trend is not by far as strong as the increase of computational
resources we can see in Figure 6.2. The reason behind this is the geospatial
diversity we are employing when selecting candidates into this subset. We
conclude that around twenty candidates are enough to cover most of the
searched area when chosen with respect to their location. This has a practical
impact on the usage of the algorithm; we can define a reasonable tradeoff
between the tours’ quality and the use of resources, as everything above
this determined threshold would be simply ineffective with just a minor
improvement of the overall tour quality.

The last conclusion we can draw from these results is the influence of the
size of candidates subset to the overall performance. We see that there is a
trend toward better quality with the growing size of the candidate subset.
However, this trend is not by far as strong as the increase of computational
resources we can see in Figure 6.2. The reason behind this is the geospatial
diversity we are employing when selecting candidates into this subset. We
conclude that around twenty candidates are enough to cover most of the
searched area when chosen with respect to their location. This has a practical
impact on the usage of the algorithm; we can define a reasonable tradeoff
between tours quality and use of resources as everything above this determined
threshold would be simply ineffective with just a minor improvement of the
overall tour quality.
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Figure 6.2: Response time of each method in relation to candidate subset size

6.2 Tour Length

The second experiment is meant to show how the algorithm and each of its
versions are performing on planning shorter and longer tours.

The setup which was used for this experiment:.Minimal length: 1000m - 22000m.Maximal length: 3200m - 24200m. Factor: 450. Strictness: 0.9. Num. of candidates: 30

Firstly, the result in the form of Figure 6.3 shows that the length of the
tour specified in the input is a much more important factor influencing the
tour quality then the candidate count. This is in line with our previous
mentions of the influence of the road network around the origin node on the
final result.

Next, we can see that the results of the original and modified method are
not very distinctive and that one does not prevail over another. There are
lengths where the network favors the original method, and there are others
favoring the modified version. This is also part of the explanation of the
result in the first experiment. We see that around the length which was used
in it, the modified method bears better result than the original method.

The average of all the best found paths in these experiment was 149.3 for
the original method and 147.7 for the modified version. The lowest recorded
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Figure 6.3: Mean costs of best found tour in relation to lower bound of the
interval

values sit at 142.0 for the original and 142.8 for the modified version.
In conclusion, we see that the modifications which were done on the

algorithm have their meaning. They did press down the factor with which the
time of computations grows as a result of the length (as seen in Figure 6.4).
This did not affect the overall quality of its result, which are comparable and
on average even slightly better than the ones from the original method.

6.3 Tour Roundness

The last two experiments I conducted should serve as an assurance that the
input parameters which we defined as a way to control the roundness of the
tour serve their purpose. Both of these experiments work with the average
roundness penalty as defined in Section 4.1.

Moreover, I feel like these experiments show a good example of what is
the actual difference between λ(factor) and σ(strictness) as both of them are
influencing the roundness, but in a different manner and reader can easily
misunderstand their effects and importance.

As a quick sum up of relevant parts from the chapter 4 where are both of
these concepts described:

. Strictness is way to define "perfectly round tour", i.e. how far away have
to two edges be to not recieve any roundness penalty

. Factor is a way to define how great will be the recieved penalty, if the
distance requirement is not satysfied
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Figure 6.4: Response time of each method in relation to lower bound of the
interval

The setup that both experiments share:.Minimal length: 13000m.Maximal length: 16000m. Num. of candidates: 20

6.3.1 Factor

This experiment, whose results are visualized in Figure 6.5, did indeed prove
that the factor has an influence over the average tour roundness.

We can even estimate the rough interval in which this factor is an effective
way to control roundness by this experiment. There is a rapid decline in the
first half of the graph. This is an important finding that could be used in the
later integrations of this service. To be clear, there is no way a user would
know how—for him—an abstract number controls the planning and what its
relation to his needs is. By estimating this interval, we can provide a more
convenient control element as is, for example, a slider to let him express his
wishes. In this specific case, the interval would be most convenient ranging
from 0 to 650 where the average roundness penalty reaches local minima
before it starts to rise again and oscillate around the mean value of 1.77 for
the original algorithm and 0.168 for the modified one.

This result is also specific to the set of nodes used as the origin point and
even more to the used graph. The planning is working with pleasantness and
its values can have very distinct values in various graphs. Anyone interested
in using the factor in such way should conduct a similar experiment on his
own over the graph where the algorithm will be used.

On the other side, there is a mild spike in the average roundness penalty

36



................................... 6.3. Tour Roundness

Figure 6.5: Average roundness penalty of best found tour in relation to value of λ

in the second half of the experiment. This spike can be probably explained
by a smaller size of the testing sample as it contains only ten tours with the
best mean cost. This makes the experiment pretty inclined to be influenced
by factors such as bad choice of candidates or extremely pleasant tours with
high roundness penalty.

6.3.2 Strictness

The last experiment is meant to show the influence of strictness on the tour
roundness and it is successful at it. There is no continuous decline in the tour
roundness, which may be confusing, but it is not an incorrect result.

This should give us a better insight into the results depicted in Figure 6.6.
The interpretation of these results is that most of the best tours found in the
first half of the experiment have such a shape that the low values of strictness
have almost zero impact on them. In the first part of the experiment, the
selected candidates and characteristic of the method have a far greater impact
on the overall roundness than the roundness penalty and that’s the reason
the results are inconsistent in this part.

But then we observe a quick drop in the roundness penalty when the σ
gets to 0.7. That’s the moment when the shape of these so far planned tours
does not meet this "perfectly round tour" criterion and the penalization starts
to manifest itself.

This finding has its applications. Mainly it can be used in generic tour
planning where you have no intention to let the user specify the actual
strictness but merely present him with some good-looking tours. In this form
of planning you are looking to fix its value to one specific number which will
suit most of the users. But note that this result is specific for each graph and
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Figure 6.6: Average roundness penalty of best found tour in relation to value of σ

you should run an experiment over your graph to get this specific number.
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Chapter 7
Conclusion

The first and most important goal of this thesis was to find a useable solution
to the problem of planning closed and point-to-point tours for recreational
cycling and implement them.

At the beginning, I defined this problem formally in a form that fit both
closed as well as point-to-point recreational tours.

After that, I researched multiple approaches to the problem and described
them in detail in the opening section of this thesis. From these approaches,
one particular solution called Generating Constrained Length Personalized
Bicycle Tours[10] was chosen as a promising base for my future work. I
analyzed this solution and broke it down to the individual components as are
the specification of tour roundness, forward routing, and backward routing.
These components are defined in the formal way providing further insight
into the problematics.

Then I further extended the solution to solve the complete problem that I
have defined at the beginning of my work by editing the roundness penalty of
the tour and the forward routing stage of the original algorithm. Afterward,
the second solution with the modified process of planning these tours was
proposed and described in a standalone section. This modification includes
multiple filters for candidate nodes found in the forward routing stage.

Besides the theory, I also implemented both aforementioned solutions in
Java. I integrated two Open Source libraries into the solution and wrote it
such a way so that it be easily extendable by new search algorithms, filters,
and other key parts. Moreover, the web service using REST API[13] was
built on top of this implementation providing an easy way to integrate the
planning of recreational tours to any application consuming this service. The
last piece of software that was created for this thesis is a Javascript web client.
In this client, you can customize your request for the service and consume the
resulting plans. These plans are thereafter visualized over the real-world map
and you can also view statistics about them in a well-arranged user interface.

Lastly, I proposed, implemented and run multiple experiments over the
utilized algorithms. These experiments were targeting various factors of
the planned tours as are roundness, response time and average cost. I offer
evaluation of these experiments at the end of the thesis.

These experiments showed that there is no significant difference in the
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quality of tours planned by the modified version of the algorithm and the
original one, but the computational time was taken down in a very significant
manner.

In the future, I plan to build on my findings and work done in this thesis
and implement several more improvements into the modified version of the
algorithm. The obvious choice seems to be adding the optimizations of the
original solution and combining this approach with ideas from other papers
mentioned above. Also, the candidate nodes filters seem to be such an effective
method that it would certainly be beneficial to dive into this concept more.
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