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Abstract
Sequencing technologies produce a high amount of bioinformatic
data. These data are then processed by various algorithms, gath-
ering the information about the DNA structure, the cell condition
and many others.
In this thesis, we introduce the basic concepts and methods used
to process the sequenced data. Specifically, we focus on the gene
expression analysis.
Standard approaches are based on aligning the input sequences to
the reference. Unlike these reference-based pipelines, our main goal
is to categorize the input sequences according to the membership to
the different genes without any reference.
Finally, we compare our solution to the reference-based algorithm.
Keywords: clustering, reads, gene expression, reference-free.

Abstrakt
Technológie na sekvenovanie produkujú vel’ké množstvo bioinfor-
matických dát. Z týchto dát je možné získat’ celé spektrum infor-
mácií, ako napríklad štruktúru DNA, stav buniek a vel’a d’alších.
V tejto práci uvedieme základné koncepty a metódy používané na
spracovanie dát získaných sekvenovaním. Zameriame sa najmä na
analýzu génovej expresie.
Bežný prístup je založený na prirad’ovaní sekvencií na úseky v
referenčnom ret’azci. Na rozdiel od prístupov založených na re-
ferencii, naším ciel’om bude rozdelit’ sekvencie podl’a príslušnosti
k jednotlivým génom bez znalosti referenčného ret’azca.
Na záver porovnáme naše riešenie so štandardným algoritmom za-
loženým na metóde využívajúcej referenciu.
Kl’účové slová: zhlukovanie, ready, génová expresia, bez referen-
cie.
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1 Introduction

The sequencing technologies allow us to analyze the DNA and the genome. As the
DNA encodes the essential information to perform the protein synthesis, it is rather
desirable to study it and use the information it provides.

Moreover, if the financially available techniques were developed, it would be
beneficial also in the medical analysis.

The output of the sequencing technologies consists of sequences that are further
processed.

In this thesis, we first provide a brief introduction to molecular biology to explain
the basic terminology.

Secondly, we describe the most common methods, such as read-assembly. The
task of the read assembly is to compose the longer sequences from the smaller ones
or to compose the whole genome. However, the computational complexity of com-
posing long genomes remains enormous. We also offer a brief overview of the RNA-
seq.

Thirdly, we discuss the essential clustering methods.
The main part of this thesis begins in Chapter 7. We focus on the read cluster-

ing according to the gene expression levels. Since the reads originating from the
same region (gene) have a similar expression, we can use a clustering method (by
expression) to sort reads into categories. These categories should correspond with
the genes, determining which read belongs to which gene. However, if we used only
reads from one subject, multiple genes could have similar expression, which would
lead to merging reads that belong to different genes. Therefore, we use multiple sub-
ject to increase the dimension of the clustering space. The more subjects differ from
each other, the easier it is to distinguish between the genes.

Thus, we try to create the collections containing reads that have a similar expres-
sion in multiple subjects. However, we do not obtain information about the gene
names corresponding to the resulting clusters. After that, we design a pipeline that
solves the problem presented above.

We also describe the standard approach. Its main drawback is the requirement
of the reference and the time-consuming aligning, which we avoid entirely in our
solution.

Finally, we compare our results to the reference-based approach. We also try to
estimate the best parameters of our algorithm producing the lowest error.

We conclude the thesis with a discussion of possible future applications of our
algorithm.
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2 Molecular Biology Background

Human genetic information and genetic information of most living creatures is
stored in the DNA. It is inherited over generations, stored in a nucleus and mito-
chondria of most cells. The importance of DNA is very significant, as its function-
ality influences many processes and its corruption in the early stages of life leads to
various organism dysfunctions. The RNA molecule is very similar to the DNA. Both
of them are crucial in the life of a cell (and therefore in a life of a whole organism).
However, RNA has a slightly different structure and functionality.

2.1 DNA and RNA Structure

DNA consists of 2 strands that are forming a double-stranded alpha helix as shown
in Figure 2.1. Each strand is built from nucleotides (adenine, cytosine, guanine,
thymine) attached to deoxyribose and phosphate group. RNA is only single-
stranded. It also consists of a phosphate group and nucleotides, but instead of
thymine there is uracil, and the deoxyribose is replaced by the ribose. In this
thesis, we will represent strands as strings of nucleotides (T-thymine, A-adenine,
G-guanine, C-cytosine, U-uracil) in the same order as it is in the DNA-strand.

2.2 3‘-5‘ end of DNA strand

The carbons of the deoxyribose are numbered such as in Figure 2.2. The phosphate
groups are attached to 5‘ and 3‘ carbons. This results to the difference between the
ends of a strand. We denote as 3‘-end the one that has „free“ 3‘ carbon (another
phosphate group is replaced by -OH group). Similarly, we denote the other end as
5‘-end, as the last base has „free“ 5‘ carbon (bouned with a phosphate group). In
our string notation, we start from 5‘-end as it is the natural order of reading DNA
strands.
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FIGURE 2.1: 3D DNA structure reused from [40]

2.3 Strand Complementarity

Complementarity is an important property of DNA strands. Guanine is comple-
mentary to cytosine and adenine to thymine (uracil in RNA), this is also known as
Watson-Cricks-rule [40] . If we read one strand from one end to the other (e.g., AC-
CGTAA), the other strand is its complement (TGGCATT). However, the complement
is read from the other end (from 5‘-end to 3‘-end, resulting in TTACGGT). Figure 2.2
shows the chemical bonding between the paired bases.
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FIGURE 2.2: DNA chemical structure reused from [32]

2.4 DNA - Function

DNA encodes information needed to synthesize proteins. This process is called
proteo-synthesis. Proteo-synthesis consists of transcribing and translating DNA.

It starts with transcribing DNA to mRNA in the nucleus of the cell. That means
the synthesis of the complementary RNA strand to the original DNA. Then the
mRNA is processed by the ribosome in the cell cytoplasm. This step is called the
translation. Small segments of RNA called t-RNA containing precisely three bases
(these are also called codons) carrying amino-acids are being attached to the m-RNA
according to the complementarity rule. The amino-acid is bonded to the growing
polypeptide (protein). Hence, the order of amino-acids is determined by order of
the nucleotides, as every amino-acid is determined by three succeeding bases. This
process is terminated by attaching the stop codon.

The DNA molecule can be further split into smaller segments. It turns out, that
not whole DNA molecule is transcripted in the first phase of protein biosynthesis,
rather these smaller segments called genes. Thus, corruption of a part of the strand
usually influences only the synthesis of some proteins. However, only specific parts
of the gene called exons are translated and further processed in the ribosomes.

The result of proteosynthesis is a protein. We will discuss the importance of
proteins in the following section.
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FIGURE 2.3: DNA translation reused from [9]

2.5 Protein Function

Proteins are biocatalysts of chemical reactions (such as sugar decomposition), so it
is highly important to synthesize them sufficiently. Enzymes are made of proteins,
and these control the whole life cycle of a cell, and decisions it has to make. For
example, when the cell should replicate or how to react on the extern stimulus. If
this mechanism does not work, it leads to various negative consequences, such as
cancer if a cell does not recognize that it should die.

2.6 Applications

Since DNA is so important, it seems reasonable to maintain as much information
about it as it is possible. Naturally, scientists wanted to know the exact structure of
the human genome, which segments are responsible for which proteins. It is also in-
teresting, whether there are any similarities of DNA through different species. Mul-
tiple projects emerged to answer these question, such as Human genome project
(international project research focusing on determining the precise sequence of hu-
man DNA [6]). Another international project research creating a detailed catalog
of the human genome of at least 1000 different ethnic groups named 1000genomes
started in 2008 and was completed in 2012 [5] . Therefore, it was necessary to de-
velop some tools to read sequences of nucleotides. We will describe these in the
following chapter.



7

3 Sequencing Methods

In this chapter, we will discuss different approaches to DNA/RNA sequencing. The
variety of sequencing methods is huge. As the length of DNA-strand is high and we
want to sequence multiple copies to minimize the error probability, the efficiency of
the chosen method is essential. Scientists try to maximize the accuracy and speed
of sequencing and simultaneously minimize the cost. The possibility of using DNA-
sequencing in clinical medicine highly depends on these parameters. As it is hard
to optimize all of these requirements at the same time, each method is suitable in a
different situation.

3.1 A General Approach to DNA Sequencing

Although the variability of sequencing methods is huge, the overall structure is com-
mon. The process of sequencing usually consists of these steps:

• To sequence the DNA molecule we firstly need to extract it from the cell.

• After that, we need to cut DNA into smaller segments.

• Then we proceed by making many copies of the segments. This lowers the
probability of the error and enables us to sequence parts of DNA parallely
which reduces the required time of sequencing.

• After that, we read the bases of each molecule in the corresponding order. The
read sequences are called reads (see 3.2), and they differ in length (the length
is typically expressed in the number of base-pairs or bp).

• Last, we assembly the read regions into the original DNA sequence. This is a
computationally expensive task, and therefore we use computers to complete
the assembly. We will look closely to this part in Chapter 4.

3.2 Terminology

Let us introduce some new terminology (commonly used in DNA/RNA-sequencing).

• Read is a sequence of bases (A, T, C, G) in the same order as in the sequenced
DNA region obtained by a seq-method.
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• K-mer is a sequence of bases (A, T, C, G) of given length k in the same order as
in the sequenced DNA region.

• Contig represents a subsequence of the original sequence that we assembled
(we will discuss assembling in Chapter 4).

• Paired reads are 2 reads obtained by reading a single DNA region. Each of the
two is read from a different end of complementary strands.

• Mate-pairs is a technique providing additional information about the se-
quence. We read a segment of sequence and another (paired) segment at a
known distance from the first one. This distance should be large enough to
avoid obtaining two reads from the same repetitive region. This helps us to
determine the order of contigs (as we obtain the distance between some of
them).

3.3 Sanger Sequencing

One of the first developed methods was Sanger sequencing [44] (also known as chain
termination method). It was developed by Fred Sanger and his team in 1977 and was
used in the Human Genome Project [7, 5, 6] . The main idea of this approach is based
on DNA replication [42] .

Steps of Sanger sequencing:

1. Preparing copies of the desired DNA region.

2. Performing a standard polymerase chain reaction [15]. However, modified
(dideoxy) nucleotides are included in addition to the normal ones (adenosine,
cytosine, guanine, thymine). They act similarly, except for these modified nu-
cleotides terminate DNA replication. When the dideoxy-nucleotides bond to
the growing strand, no further base can be attached to that strand. Comparison
between modified and standard nucleotides is shown in Figure 3.1.

3. The result of step 2 is multiple DNA strands that vary in length, according
to the termination point ending with the dideoxy-nucleotide. The strands are
separated by the gel electrophoresis. The gel electrophoresis is a process in
which the shorter molecules move faster than the longer ones in a fluid.

4. The ending base of the strand is detected by the laser excitation and the spectral
emission of termination nucleotides analysis.

5. The order of bases is determined by a decreasing length of the DNA strand
(one at a time) as can be seen in Figure 3.2.

However, Sanger sequencing is very slow, expensive and thus inappropriate for
a larger datasets analysis. Next-generation sequencing (NGS), on the other hand,
are:
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FIGURE 3.1: Dideoxy-nucleotide reused from [42]

FIGURE 3.2: Sanger sequencing reused from [14]

• highly parallel: many sequences are being read at the same time,

• fast,

• low-cost.
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3.4 NGS

The length of the reads is lower than in Sanger sequencing. Generally, there are
multiple ways to determine the base in a sequence. A common technique is to detect
some fluorescence signal that is unique for every base. Also widely used technique
is based on the detection of pH change, but this is generally less accurate than the
fluorescence signal. We will mention two approaches: sequencing by synthesis in
Section 3.5 and microarrays in Section 3.6.

3.5 Sequencing by Synthesis

Numerous methods belong to this category. We will focus on SBS CRT (Illumina,
Qiagen). The principle is similar to Sanger sequencing. Initially, we have multiple
DNA single strands that we want to read. The whole process repeats in cycles. In
each cycle 3‘-blocked deoxynucleotides (dNTPs) are added. DNA polymerase bonds
the corresponding dNTP to the replicated strand (just one at a time to every strand,
the dNTP is blocking further elongation [17, 24]). The fluorescence signal caused
by ligation is analyzed. As every base produces a unique signal, we can determine
which nucleotid was bonded. Then the blocking group is cleaved, and the cycle
repeats until no more bases can be attached [16].

3.6 Microarrays

Microarrays main idea is rather simple. We have some known sequences of the DNA
attached to the distinct areas on a chip. These sequences are called probes. We also
have an unknown sequence of the DNA.

Target DNA is labeled with a fluorophore. When it hybridizes to the probe, we
detect a signal. The intensity of the signal is used to determine the number of bound
molecules [16]. Hence, we obtain the desired information about the unknown se-
quence. Detection of a signal means that the subsequence complementary to the
probe is contained in the unknown strand. The main advantage of microarrays tech-
nique is its low cost.

In the next chapter, we will focus on assembling reads obtained by the sequenc-
ing methods.
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4 Sequence Assembly Methods

In the previous chapter, we obtained reads contained in the sequenced DNA. Now,
we need some tool to reconstruct the whole DNA molecule.

There are many algorithms that provide multiple different approaches to this
problem. They vary in complexity, error rate, and cost.

The human genome was sequenced in 2001 [48]. Though it was a great success,
the used method is not sufficient to sequence a huge amount of data that is emerging
nowadays. Therefore, next-generation sequencing methods (NGS) are being devel-
oped. These methods are minimizing the cost of sequencing and have brought it to
1000$ per genome [39].

There are two main concepts that are widely used for the read assembly: the
overlap-layout consensus (OLC) and de Bruijn graphs [38].

4.1 OLC

Suppose we have a set of reads, and our goal is to produce the sequence of nu-
cleotides in the strand from which these reads originated. OLC provides a solution
to this problem. It first constructs a graph in which every read of the set is denoted
as a vertex. An edge between two vertices exists if and only if there is an overlap in
reads they represent. Two reads overlap if the suffix of the first read is the prefix of
the second.

For example, ACCGTAA and CGTAACC are overlapping as the last 5 letters of
the first sequence are the same as the first 5 letters of the second. The length of the
required overlap is scalable, allowing us to set a different length of a suffix and a
prefix overlap.

A reconstruction of the original sequence is done as follows: We want to include
all reads, and we want to order them so that the reads joined by a directed edge
are neighboring in a reconstructed sequence . For example, let us have the same
reads as used above: ACCGTAA, CCGTAACC. Hence, the overlapping sequence
is CGTAA. The reconstructed sequence would consist of the prefix of the first read
(AC), the overlap (CGTAA) and the postfix of the second read (CC), resulting in AC-
CGTAACC. We can formulate this as finding Hammiltonian path in the constructed
graph. It visits each vertex precisely once and reads in the reconstructed sequence
are succeeding only if they have overlap. Thus, the order in which we visit the
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vertices determines their order in the original molecule.

This approach was used in Sanger sequencing reconstruction. Furthermore, k-mers
(defined in Section 3.2) can be used instead of whole reads . Though the concept is
rather simple, the complexity of finding a Hamiltonian path (or circle) is very high
(NP-complete problem) and it might not have any solution.

4.2 DeBrujin Graphs

The main idea of deBrujin graphs is to formulate the problem described above in
a way that would provide a less computational expensive solution. This time, we
proceed as follows:

1. Firstly, we generate all k-mers from the reads.

2. After that, we denote all k-1 -mers as vertices.

3. Then we add an edge between two vertices if there exists a k-mer having the
first one of them as a prefix and the other as a suffix.

4. Finally, we construct the Euler path in the constructed graph.

Euler path is such a path that visits each edge exactly once.
Note that in this case, similarly to the OLC solution, we visit each k-mer present.
However, the complexity of finding the Euler path is much lower, and there is a very
simple algorithm to find it. Furthermore, we know that a solution exists if every
node is balanced (the number of edges connecting a vertex to other vertices is even).
On the other hand, it is not guaranteed, that the solution is unique. Therefore, we
try to choose the most likely solution from a set of possible solutions.

Although this formulation enables us to process the data faster, it has some negative
aspects. DeBrujin assembly is sensitive to the sequencing errors. Sequencing tools
usually do not have 0% error rate, and if a nucleotide is misinterpreted, the de Bruijn
graph will not reconstruct the sequence correctly. Most of the modern assemblers
provide some method to handle errors. We can use the fact, that there are multi-
ple reads of the same region and recognize and remove edges that have low quantity.

The worse problem is that the DNA is repetitive. DeBrujin finds the simplest so-
lution, that means, from sequence AACTAACT (and length of k-mer 3) it would
reconstruct AACT, which is not correct. If we could provide k-mers longer than
repeats, this problem would not emerge. However, the repeats in DNA are often
very long. One possibility to solve this is using the mate-pairs (see Section 3.2).
Another is to alter the graph so that we allow multiple edges between two vertices,



4.2. DeBrujin Graphs 13

one for every occurrence of the k-mer (if the number of occurrences is known).

Another deBrujin assembly problem is that some regions of DNA can be unse-
quenced. That results in the creation of contigs, the parts of the assembly that
cannot be further merged as they do not overlap. The contigs also emerge from mul-
tiple possible paths in the graph; the assembler has multiple choices where neither
is better than the other. Determining the order of these contigs is hard, and mate
pairs reads proved to be useful also in this task. For further details about graphs in
bioinformatics, the reader is kindly reffered to [23] .
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5 Introduction to the Clustering

Methods

In this chapter, we will introduce some basic methods of clustering. Clustering is a
method allowing us to organize datapoints into multiple groups, each group repre-
senting one cluster. Naturally, we put similar points in the same group. Generally,
we want to maximize the distance between different clusters and minimize the dis-
tance between the points within one cluster.

For example, let us have two kinds of datapoints: women and men. Each datapoint
has a vector of features: height and weight. We do not know which datapoint repre-
sents a woman and which a man. If we can organize data into two groups (ideally
corresponding to men and women) that are similar in these parameters, then we
should be able to determine to which group a new unknown datapoint belongs.

Generally, success is not guaranteed. It might turn out, that the provided parame-
ters cannot distinguish between groups. In addition, the number of groups can be
unknown. There are multiple approaches to clustering, it depends mostly on the
data, which one is the most appropriate to use. One of the best-known methods is
k-means. It was independently discovered in different scientific fields by [30, 46, 2,
31]. We will discuss it in the next section.

5.1 k-means

K-means is a very simple and useful clustering algorithm. It divides data into k
groups. The brief overview of the algorithm is as follows [30]:

1. choose k different points N1...Nk - centroids,

2. for every datapoint find the nearest centroid and label the datapoint according
to the centroid,

3. calculate the mean of every set of common-labeled datapoints and denote them
as new centroids,

4. goto step 2. and proceed until no datapoint changes its label during step 2.
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The main advantage of this algorithm is its simplicity. However, we can only use it
if the mean function is defined. For example, if the datapoints have features such
as „yes/no“, it is not possible to count mean. Another drawback is that we have to
know the number of the desired clusters in advance.

If we lack information about the number of clusters, we can run the k-means
algorithm multiple times with different k-s and try to determine the best one. We
will look at this approach in the next section. It also turns out, that the initialization
of the k-means algorithm in step 1. might significantly influence the quality of the
result. We will discuss the ways to improve the initialization in Section 5.1.2 .

5.1.1 Determining the Best k

As we want to minimize the distance within one cluster, adding more centroids
seems to improve the solution. If we had a separate centroid for every datapoint,
this distance would be 0. However, such a solution would not be satisfying as it
would not show anything about similarities between datapoints. An approach to
determine the best k is increasing k and observing how the minimized distance de-
creases. We stop increasing when the decreasing slows down. For a more detailed
explanation see the elbow method [27].

5.1.2 Initialization of k-means

There are multiple ways to choose initial centroids. The easiest way is to randomly
pick k centroids among datapoints. We can improve this method by picking the
datapoints so that the distance between them is maximized [21].

Despite the problems emerging from the undefined mean function or the un-
known number of clusters, the k-means algorithm is a very common clustering tech-
nique. It is also guaranteed that it will converge to a solution. To find more details
about k-means we recommend [21] .

5.2 Hierarchical Clustering

Hierarchical clustering is a clustering method that either starts with one cluster that
is divided into more smaller clusters (in case of divisive clustering) or starts with
each datapoint in a separate cluster and then merges them into the bigger clusters
(that is called agglomerative clustering) [41].

5.2.1 Divisive Hierarchical Clustering

In the beginning, we add all datapoints into one cluster. Then we recursively divide
this cluster into smaller ones. As there are 2N ways how to divide a set of N points



5.2. Hierarchical Clustering 17

into two groups in each step, this approach is more computationally expensive com-
pared to the agglomerative clustering. We stop dividing when we reach the desired
number of clusters.

5.2.2 Agglomerative Hierarchical Clustering

Initially, every datapoint represents one cluster. Then the closest clusters are merged
into one. This requires at most N ∗ (N − 1)/2 (every cluster compared with all the
others) operations where N denotes the number of clusters.

Determining which cluster is the closest differs. The most common criteria are:

1. Single-link clustering
The distance between two clusters equals the shortest distance from any mem-
ber of one cluster to any member of the other cluster [45].

2. Complete-link clustering
The distance between two clusters equals the longest distance from any mem-
ber of one cluster to any member of the other cluster [26].

3. Average-link clustering
The distance between two clusters equals the average distance from any mem-
ber of one cluster to any member of the other cluster. Such clustering algo-
rithms may be found in [49].

4. Centroid-link clustering
The distance between two clusters is equal to the distance between their cen-
troids.
A centroid is a point in a cluster (does not necessarily belong to the datapoints)
that has some property. For example, it has the minimum sum of square dis-
tances to all points in the cluster.

These criteria are common for both agglomerative and divisive clustering.
Similarly to divisive clustering, we stop merging clusters when the desired num-

ber of clusters is reached.
If the number of clusters is unknown, a common approach is merging the clusters

until just two remain and construct a dendrogram. Dendrogram is a tree showing
which clusters were merged together. Then the final clusters are determined from
the dendrogram according to some criterion.

All of the previously discussed methods require the desired number of the clus-
ters in advance. In the next section, we will introduce the density-based clustering
that does not require that.
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5.3 Density-based Clustering

Density-based clustering is an approach allowing us to distinguish between clusters
that have a complicated shape. If we have many datapoints in the region, we say that
the region has a high point density. Similarly, if there are none or few datapoints
in the region, we say that the region has a low point density. The main idea of
the density-based clustering is that clusters are regions of high point density and
they are separated by space where the point density is low. The data that lie in the
separating regions are called outliers. Unlike other clustering methods, we do not
need the number of clusters as the input parameter. On the other hand, we need to
set distance threshold r and frequency threshold k. The algorithm works as follows
[28]:

1. We first evaluate the frequency k of each datapoint. The frequency is the num-
ber of points located within a distance r of the datapoint.

2. Then we remove the noise points where the frequency does not reach the
threshold.

3. After that, we cluster the remaining points by the single-linkage.

4. Finally, we can add the noise points to the suitable cluster.

One of the best-known density based clustering algorithms is DBSCAN [13] . See
[28] for more detailed explanation of DBSCAN.

Figure 5.1 shows how not convex sets of datapoints are clustered by density-
based clustering. For more clustering techniques we recommend [29].

FIGURE 5.1: Density-based clustering reused from [4]
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6 RNA-seq

In this chapter, we will discuss RNA-seq. It is a sequencing method that reads RNA
from a cell and then processes the gathered information.

Let us introduce a dictionary for this chapter :

• Expressed genes are the active genes in a cell. That means only these genes
translate to proteins. See Section 2.4 for more detailed description.

• A gene expression stands for a number that represents the abundance of the
transcribed genes.

• Gene isoforms represent multiple forms of gene: mRNAs are produced from
the same locus but differ in their transcription.

• Splice isoforms are various forms of genes transcribing. As it is possible
that only some sections of gene are transcribed, multiple different transcripts
emerge due to ommiting some of these sections.

RNA-seq is mostly used for observing the gene expression. It also allows us to iden-
tify which genes are expressed in a cell at a given time, as the expressed genes are
represented in RNA within the cell.

Compared to DNA-microarrays that we mentioned in Chapter 3, RNA-seq de-
tects lowly expressed transcript and provides less false positive rates [50].

There are many applications of RNA-seq, such as the detection of gene expres-
sion changes, which is the most common application of RNA-seq, as well as the de-
tection and the quantification of non-genic transcripts or splice isoforms. However,
we will focus on the gene expression, for more details see [11].

RNA-seq begins with the data preparation. This process includes:

• RNA extraction: a microbiology procedure gathering the RNA from a cell.

• Library preparation: preparing DNA/RNA fragments we want to sequence.

• Sequencing (discussed in Chapter 3). As only expressed genes are transcribed,
the reads we obtain originate from the expressed genes.

As RNA-seq provides information about the gene expression, we can observe its
state under different circumstances. We can also compare the expression of a healthy
individual to the expression of an unhealthy one.
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To avoid biases in such experiments, the following steps are taken:
Blocking – grouping the samples into blocks according to the known sources of
variation, such as sex, weight, or the cell cycle status;
Randomization – when testing a factor, such as drug treatment, select the cells ran-
domly to avoid bias caused by subtle differences in the activity of the animals or the
growth pattern of cell lines.

After data preparation, we can proceed to the data processing (bioinformatics). In
the next section, we will discuss read alignment, which is a commonly used tech-
nique to identify the transcripts present in a specific sample.

6.1 Read Alignment

In this section, we will introduce the read alignment. It is a method used to identify
which genes are expressed. However, we can perform this operation only if we have
the reference genome or transcripts.

In this reference genome, we already know which segments correspond to which
genes. We can assign (map) the reads we sequenced to the most likely locus at the
known transcriptome or the known genome and thus provide information about the
expression of the particular gene. This expression is proportional to the number of
reads mapped to the given gene segment.

However, aligning itself is a very complex process. The most problematic aligns
are caused by a spliced alignment of exon-exon-spanning reads. Since only exons are
expressed (as mentioned in Section 2.4), aligning parts of the read to the different
locations in the genome means that we must consider multiple possibilities of the
splice region. Figure 6.2 illustrates the exon-exon-spanning reads.

Thus, aligning to the transcriptome (visualized in Figure 6.1) seems to be a better
option, but it is limited to known transcripts. Another complication is sequencing
error, causing that alignment might to not fit perfectly.

FIGURE 6.1: Mapping to the transcriptome
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FIGURE 6.2: Mapping to the genome

Moreover, mapping ambiguity appears as many reads overlap with more than one
isoform. There exist numerous programs for read aligning, such as STAR [10],
Tophat [25], GSNAP (see [12] for a review of RNA-seq aligners). To choose above a
variety of these programs, it is important to know the specification of the reads one
needs to align as some tools might provide the optimization for the specific sample
characteristics.

6.2 Read Quantification

One of the crucial steps of the read analysis is read quantification. By counting reads
that were mapped to the particular gene, we can determine the number of transcrip-
tions of that gene to proteins. This value corresponds to the gene expression. The
main goal is to compare expression levels of mapped reads, knowing the number
of mapped reads. This number corresponds with the expression levels, though it
is necessary to perform some normalization (we will discuss normalization later in
Section 6.4).

However, computer programs developed for the read quantification may differ
in handling the following:

• overlap size,

• reads overlapping multiple genomic features of the same kind,

• reads overlapping introns,

• multi-mapping introns.

Although the read alignment to the reference genome and the following quantifica-
tion works, the new tools for measuring the gene expression have emerged recently.
We will introduce them in the next section.
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6.3 Probabilistic Measure – Algorithms

As read alignment is a rather complex and difficult task and it is computationally
expensive to find the best alignment, this new group of algorithms avoids aligning
reads. Thus, speed improves significantly.

Instead, the algorithms use a probabilistic measure of the number of reads
present in each transcript. The main idea is that it is not necessary to know the exact
locus in a transcript from which a read originated. It is sufficient to know which
transcript is represented by the read. However, these tools cannot be used to detect
novel isoforms [11].

Sailfish [35] (or the more updated version – Salmon [36]) and Kallisto [3] are
examples of these tools.

6.4 Normalizing Reads Counts

In this section, we will discuss a quantification normalization. As the number of
reads aligned to genes is influenced by multiple factors alongside with the expres-
sion level, a normalization step is required.

These factors are:

• length of the gene: the longer the gene is, the higher number of mapped reads,

• the sequencing depth: depends on the number of reads within the sample,
more reads increase the depth,

• the expression of all other genes within the sample.

To compare the gene expression level, it is therefore necessary to divide it by the
total number of reads and the length of the gene.
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7 Clustering of RNA-seq Reads by

Gene Expression Levels

In this chapter, we will introduce the main idea of read clustering by gene expres-
sion. We will formally define the problem and proceed to our solution in the next
chapter. There are many approaches and algorithms that analyze RNA-seq data dif-
fering in goal and efficiency.

In this thesis, we will focus on the reads clustering. Our overall goal will be to
assign reads that originate from the same gene to the same cluster. Hence, each clus-
ter will represent one gene (a region, where the read can be found). However, as
genome contains repetitive sections, it is possible, that one read is assigned to multi-
ple clusters (genes). This is considered a normal phenomenon. Moreover, our solu-
tion will not require any reference genome. It will avoid aligning reads completely,
thus allowing us to use it on reads from species whose genome is not known.

7.1 The Main Idea of Clustering By Gene Expression

As discussed in Chapter 6 , a gene expression reflects the amount of transcripts from
a particular gene. In other words, the more the gene is expressed, the more reads
originating from it are sequenced. Also, a highly expressed gene means that a cell
synthesizes higher levels of a corresponding protein.

A low expression can lead to a lack of some proteins, resulting in a disease. How-
ever, too high levels of protein can also have negative consequences.

Proteins, besides hormones, influence, and control many processes in the organ-
ism. Therefore, it is highly probable that individuals with a certain dysfunction dif-
fer in some gene expression levels.

To illustrate this: imagine we have two individuals, I1 (healthy) and I2 (un-
healthy). Also, imagine that only two genes: gene A and gene B are expressed and
there are no common sequences of sufficient length amongst them. Now, suppose
that:

• Gene A is highly expressed in I1 (meaning that we read many subsequences of
gene A multiple times) , and highly expressed in I2.

• Gene B is lowly expressed in I1, and highly expressed in I2 (as visualized in
7.1).
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I1 I2
A (10 0)
B (0 20)

TABLE 7.1: The different expression example

We can therefore assume, that sequences highly expressed in I1 and simultane-
ously lowly expressed in I2 belong to the same gene (A), analogically for the second
row (gene B).

This is the reason why we need reads from more individuals (increasing the di-
mension), and it is beneficial if these individuals differ from each other.

7.2 The Formal Definition of the Problem

In this section, we will formally define the problem and introduce important nota-
tion that will be used in the following chapters.

• read is a structure having two attributes, where
readID stands for a unique name within the file identifying read
readSeq is represented by a string a1a2 . . . an, n = length of the sequence, ai ∈
{A, C, T, G}, i ≤ n, i ∈N.

• k-mer is a string a1a2 . . . ak, k is k-mer length, k ∈ N, ai ∈ {A, C, T, G}, i ≤ k, i ∈
N.

• k-mer set from a read: Km is a function defined on reads. It produces a set of all
k-mers contained in a particular read. A k-mer is contained in a read if for read
sequence a1a2 . . . an and k-mer b1b2 . . . bk holds:
[∃l : ∀bi, i ∈ [1, k], i ∈ N : bi = al+i]. In other words, a read contains a k-mer if
the given k-mer is a substring of the read string.

• nucleotide complement t is a function t from {A, C, T, G} to {A, C, T, G} defined
as : t(A) = T, t(T) = A, t(G) = C, t(C) = G

• reversed complement : a sequence of nucleotides A a1a2 . . . an is reversed com-
plement to a sequence B
b1b2 . . . bn if n = length of A and
bi = t(an−i+1), i ∈ [1, n], i ∈N

• membership table : a set of rows r, where each row consists of read-ID and vector
v, such that ∑n

i=1 vi = 1, n = length of vector
We introduce two helper functions : ID , assigning each read the correspond-
ing ID and v, assigning each read corresponding vector v mentioned above.
Each component of a vector represents how much the read belongs to the cor-
responding cluster.
In the following chapters we will refer to two kinds of membership tables :
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– M - out membership table obtained by our clustering algorithm,

– R - reference membership table obtained by a reference based approach.

7.3 The Task

The main goal consist of two parts :

1. Our aim is to create out membership table for r in reads of one individual. Once
created, we should have sufficient information to determine reads belonging
to the same gene. Furthermore, we can compare our read assignment to the
different clustering method (as we discuss later in Chapter 9). That leads us to
the part two:

2. The second part is to minimize the error between our proposed solution and
the standard reference-based solution. That includes determinating parame-
ters of our algorithm and developing a metric to compare the read assignment
in both our (reference-free) method and the reference-based method.
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8 The Proposed Solution

In this chapter, we will describe our prototype of the algorithm solving the problem
described in the section above (7.2).

Firstly, let us examine the input data.

8.1 The Datastructure

The input data consists of files containing reads sequenced by Illumina [20] . These
reads originate from multiple subjects.

Each subject has exactly two corresponding files. The first file contains forward
reads (see Section 3.2), the other contains reverse reads.

However, we have no further information to determine, which one of the two
files contains forward reads. 1

To provide a simple example:

Suppose Strand1 is ACCTG.

Complementary strand then results to TGGAC.

Forward read of length 5 is ACCTG (corresponding to Strand1)

Reverse read of length 5 is CAGGT (this sequence is reversed complement to
ACCTG as defined in Section 7.2)

It will be necessary to keep this in mind when processing files.

Notation: We will refer to forward and corresponding reverse file as to R1-file and
R2-file. Remember, that we cannot distinguish which of them contains forward
reads.

Now, we will outline the algorithm. It consists of 4 steps, and we will discuss
each of them in the following sections.

8.2 Step One : Computing k-mers Occurences in All Files

As we show in Section 7.1, our aim is to assign each read a corresponding gene
expression. However, read-sequences are too long (around 75-100 nucleotides, de-
pending on a sequencing technology). Therefore, we will take shorter sequences

1 Reminder: Forward reads originate from one strand of DNA and reverse reads from the comple-
mentary strand. Moreover, reverse reads are sequenced from the opposite end of the strand.
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called k-mers (see definition in Section 7.2). A length of k-mer is roughly 25. We
will discuss a better estimation of k in Section 11.1. Consequently, we will compute
a number of occurrences of each k-mer present for each file.

As we do not know, if a k-mer originated from a forward or a reverse read, we
will merge the k-mer and its reverse complement (defined in 7.2), keeping only one
of them and assigning it a sum of both occurrences. It is common to keep the k-mer
that comes first lexicographically.

To compute counts for each file in the dataset we will use jellyfish [33]. The main
advantage of this tool is efficient and parallel counting all k-mers.

In the next section, we will process these k-mers and create a table.

8.3 Step Two : Creating a Table of k-mers

In this step, we will construct a table, where rows will represent all k-mers found in
all files of datasets. The occurrences of a particular k-mer in each column will refer
to one subject from the dataset, containing occurrences of a particular k-mer in reads
associated with that subject.

That means summing a k-mer occurrences in R1-file and R2-file for every subject.
Moreover, we pad zeroes to k-mers that do not occur in every subject. However, the
k-mers that occur only few times in each file are not significant, as they provide a
few information. Hence, we filter out k-mers that do not exceed lower bound in any
of the input files.

A result of this step is similar to Figure 7.1, only A and B are k-mers, and the
dimension corresponds to the number of subjects. Finally, k-mer counts represent
expression of a particular k-mer (similarly to a gene expression).

8.4 Step Three : Clustering k-mers

In the previous step, we generated a table of k-mer counts. We can imagine this table
as a set of rows, where each row consists of a k-mer and N-dimensional vector (N is
be the number of subjects).

In this step, it is essential to realize, that gene expression (amount of a gene tran-
scribing) almost equally increases all k-mer counts present in that gene. Except for
k-mers at the ends of the reads as illustrated in Section 8.4.1.

Thus, similar counts at all positions of two k-mer vectors in the previously con-
structed table would indicate membership to the common gene.

Note, that this approach does not distinguish between uniformly distributed
genes. That is the reason, why it is important to have multiple different subjects.

So, relating to the idea that k-mers belonging to the same gene are close to each
other in the vector space we created, we proceed to the clustering of k-mers.
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8.4.1 Clustering Method Selection

We considered multiple vector-based clustering algorithms (see Chapter 5 ). For in-
stance, agglomerative clustering, k-means clustering, and DBSCAN clustering dis-
cussed in Chapter 5. All of them are implemented in sklearn python library [37].

However, due to the huge amount of data it is impossible to cluster all of the
k-mers present in the table. Luckily, it is not necessary. As one read sequence has
length 2 l , it contains l − k + 1 k-mers (where k usually varies from 20 to 30). How-
ever, these k-mers overlap. In fact, most of the read sequence positions are covered
by k k-mers (except for the ends of read sequence). Therefore, we do not need to
cluster all of the k-mers, as the read can be determined by a smaller portion of them.

Nonetheless, k-means and agglomerative clustering run out of memory very fast,
even when taking only a small sample from the table. On the other hand, DBSCAN,
unlike the previous two algorithms, has an eps-bound, causing a rapid decrease of
comparisons. The eps-bound determines the maximum distance within a cluster.
That means dividing the vector space into subsections that do not need to be com-
pared.

Due to these reasons, we decided to use sklearn [37] DBSCAN clustering, allow-
ing us to take 10% of the table constructed in step two and process it in a reasonable
time. Determining eps will be discussed later in Section 11.1.

Then, results of DBSCAN are the labels for each vector and −1 label for noise.
Finally, we sort clusters by size.

8.4.2 Selecting the Imporant Clusters

When provided with clusters from DBSCAN clustering, we sort them by size. The
largest cluster is noise and we do not further process it.

The second cluster should contain k-mers that are uniformly distributed and
does not offer much information (roughly 3 10000) k-mers belong to that cluster).
On the other hand, we are interested in middle-sized clusters. These follow right
after the second cluster and contain roughly 10-50 k-mers.

We will keep in memory which clusters belong to this important cathegory.
Finally, we define it as follows:

important cathegory I = {∀n : n ∈ N ∧ n ∈ [v, u]}, v < u, where u− v is a number of
important clusters. Here u stands for the upper bound and v for the lower bound,
in our case the upper bound is 50 and lower bound 2. This means that we mark the
second, the third · · · the 50-th largest cluster as important.

2l is usually roughly 100, in our case l equals 76
3while the number of human genes is more than 40000 [43]
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(A) k = 20, eps = 6, dataset 1 (B) k = 24, eps = 6, dataset 2

(C) k = 25, eps = 10, dataset 2 (D) k = 25, eps = 12, dataset 2

FIGURE 8.1: Clusters of k-mers projected to 2D

8.4.3 Visualizing Results

As the vectors have more dimensions than 3, it is hard, though not impossible to
visualize result clusters. Hence, we use PCA-dimension reduction implemented in
sklearn [37] to transform vectors to 2-dimensions and plot some of the clusters (each
cluster having a distinct color in the transformed vector space).

However, the outliers squish the axes so that the most of the points merge. There-
fore, we use the z-score filtering to remove these distant points (with z equals 3).

The number of plotted clusters can be set, but for illustration purposes, we
choose 17 clusters from the important cathegory discussed above (omitting noise
and uniformly distributed k-mers).

We need to remember that we squished vector space to a smaller dimension.
Hence some clusters project to the similar place.

In the Figure 8.1, we show the PCA-reduced graphs of first 17 k-mer clusters
with multiple different setting of k and eps and dataset. The same colored points
belong to one cluster. We can observe that the points belonging to the same cluster
are projected into the similar position.



8.5. Step Four : Clustering Reads 31

However, as the points originally have more dimensions (10), some of the points
of different clusters overlap in the 2D space.

To illustrate the difference between the clusters including and excluding noise,
we show the DBSCAN plot with noise in Figure 8.2. Obviously, the noise provides
no information about the clusters. Furthermore, it completely shadows the other
points (as the noise contains much more points than the not-noise points that we
plot).

FIGURE 8.2: Clusters of k-mers projected to 2D including the noise

8.5 Step Four : Clustering Reads

In the previous step, we created clusters of k-mers based on an expression. However,
our goal is to cluster the original reads in files. Hence, we need to cluster reads. As
a read can belong to multiple genes, we will use soft clustering. That means a read
can be partially assigned to multiple clusters, each with some percentage summing
to 1.

The result will be a membership table as defined in Section 7.2. Each read will
have a vector of membership to the previously constructed clusters.

Firstly, we will process all data files containing reads (as specified in Section 8.1).
We will process data from R1-file and R2-file simultaneously. For processing reads,
we will use the python library Bio [8]. For each read A, we determine to which
clusters it belongs.

We will do that as follows:

1. If k-mer ∈ Rm(A), then add 1 to membership vector on position corresponding
with the cluster containing k-mer.
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2. We act the same if k-mer ∈ Rm(reverse complement of A). That is because k-
mer and the reverse complement of k-mer are equivalent (as described in step
one).

3. After that, we will normalize the vector of membership by the sum of the ele-
ments to obtain percentual membership.

As a result, we will have a table of membership, determining for each read to
which clusters it belongs.

To analyze if these clusters correspond with real genes, we will use the standard
reference-based approach for comparison. We will describe the analysis by STAR
[10] in the next chapter.
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9 Analyzing Data Using the

Standard Reference-Based

Approach

In this chapter, we will discuss the standard approach for RNA-seq analysis. The
standard reference-based approach aligns reads to a reference genome. Hence, ref-
erence is always required. We will introduce the STAR algorithm [10].

STAR consists of 2 steps:

1. Firstly, it generates index to provide faster aligning in the next step. This
phase requires a reference. For our purpose, we used the reference genome:
Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa.gz and the anotation:
Homo_sapiens.GRCh38.86.gtf.gz from the ensembl database [18]

2. After that, aligning takes place. This step is parallel and results to aligned
.BAM files. These files contain the index in reference, where the read aligns for
each subject (merging R1-file and R2-file). However, not all reads are aligned.
This can be caused by sequencing errors, as well as the uniqueness of each
organism.

Next, we need to create a reference membership table (defined in Section 7.2). We
take output .BAM files produced by STAR.

Firstly, we translate each read index in gtf-file to gene name corresponding with
the index position using python library HTSeq [1] . Then we make a list of genes L.

Secondly, we construct the reference table of membership where positions of vector
correspond to genes. vectori (i ∈ [1, N], N = length of the list L) is assigned 1, if read
belongs to a gene on i-th position in the list of genes L. As the genome contains repet-
itive regions, one read can map to multiple different regions (genes). After that, the
membership vector is normalised by the number of assigned genes.

As a result, we obtain the reference membership table that can be used for com-
parison with the table constructed in Section 8.5. The following chapter will discuss
it further.
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10 Comparing our Algorithm With

the Reference-based Approach

In this chapter, we will analyze the results from our solution presented in Chapter 8.
Firstly, we prepare the reference-membership table described in Chapter 9. Then,

we generate the membership-table with our algorithm discussed in Chapter 8. We also
prepare the list of the Important category I. This list contains clusters, that should
represent the well-distinguished genes (see Section 8.4.2 for more details).

Now, we have all the necessary information to compute the error defined in
Section 7.2. This error shows, how much our reads assignment differs from the
reference-based approach for each subject. We define the error as 3-dimensional vec-
tor E = (E1, E2, E3). In addition, we define the normalized error N = (N1, N2, N3).
We will explain each component of the error and provide the corresponding for-
mulas. For required notation to understand formulas see the formal definition in
Section 7.2.

10.1 Error Explained

10.1.1 The First Component of the Error

Let us suppose that read A has a vector v1 assigned by our algorithm and vector v2

assigned by STAR. These vectors should ideally provide the same information.
However, the components of v1 and v2 do not necessarily have the same order.

This is caused due to the fact that though components of v1 express the membership
to clusters representing genes, the order of these genes is not the same as in v2.
Moreover, we do not know which elements in v1 correspond to which elements in
v2.

Therefore, we take 2 reads, read A and read B. For these reads holds that if they
belong to the same gene in the reference-membership table, they should be in the same
cluster in our table.

To provide a simple example:
Suppose we have two vectors in the reference-table, A : Are f = (1, 0, 0) and B : Bre f =

(1, 0, 0). It is clear, that if the dot product of A and B equals 1, both of reads belong
to the same gene and only one gene. On the contrary, if the dot product is 0, they do
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not share any gene membership. If A and B partially belong to multiple genes, the
product of components referring to these genes is weighted by the percentage.

All in all, if read vectors in reference-membership table and out-membership table
differ only in the order of elements (this order is the same amongst one table), the
dot product of two reads with IDs A and B from one table should stay the same as
the dot product from the other one with the same IDs A and B .

Hence, we sum the squares of differences. Squares will prevent the error from
being negative.

If the domain of variables is obvious, we omit it. For further purposes the no-
tation read ∈ R or read ∈ M means that such a read exists in the corresponding
membership-table.

Formally,
Sample S1 = {(i, j, k, l)| i 6= j, k 6= l, ri ∈ R, rj ∈ R}

E1 = ∑
(i,j,k,l)∈S1

(v(ri) · v(rj)− d1)
2, d1 =



v(mk) · v(ml) if mk ∈M and ml ∈M,

ID(mk) = ID(ri),

ID(ml) = ID(rj)

0 otherwise
(10.1)

The variable d1 in 10.1 represents the dot product in the out membership table.
Hence, we can only compute it if the reads with corresponding IDs appear in the out
membership table. If we removed the reads during our solution (in the table creation
with threshold or during DBSCAN sampling), the E1 increases (as we subtract 0
from the positive number instead of another positive number).

Consequently, we normalize E1 to obtain N1 by the number of summed elements
(couples of compared reads). Moreover, as we powered the difference that is be-
tween −1 and 1, we decreased the error. Therefore, we will take the square root of
the normalized error. Hence, we obtain the quadratic mean

N1 =

√
E1

|S1|
.

10.1.2 The Second Component of the Error

The second component is highly similar to the first one. Except, we focus on reads
we consider well-distinguished by our method. These reads are defined by having
non-zero elements on the position corresponding to any cluster from the important
cathegory (described in Section 8.4.2).

This enables us to avoid computing error on uniformly expressed genes and
noise. However, as the goal is to minimize the error, this could result to not marking
any of the clusters as important. Therefore, the third component is necessary.
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Formally,

Sample S2 = {(i, j, k, l)| i 6= j, k 6= l,

mi ∈M, mj ∈M,

∃o ∈ I : v(mi)o 6= 0,

∃p ∈ I : v(mj)p 6= 0}

E2 = ∑
(i,j,k,l)∈S2

(v(mi) · v(mj)− d2)
2, d2 =



v(rk) · v(rl) if ri ∈ R and rj ∈ R,

ID(mi) = ID(rk),

ID(mj) = ID(rl)

0 otherwise
(10.2)

The variable d2 in (10.2) works the same as d1 in the first element of the error.
Except, this time we pick the reads from the out membership table and we are searching
for the same IDs in the reference membership table. As the reference membership table is
composed only of reads that were aligned to the reference, it is possible that some of
the reads exist only in the out membership table.

Similarly to the normalization of E1, we normalize E2 as follows:

N2 =

√
E2

|S2|
.

10.1.3 The Third Component of the Error

Imagine that read A is marked important. All reads belonging to the same gene
should also be marked important.

The third component of error expresses the number of reads that should be
marked important, but are not. In this step, for each important read A from reference-
membership table we find all reads belonging to the same gene and not marked im-
portant.
To obtain error caused by omitting some important cluster, we firstly sum member-
ship to clusters of reads marked unimportant. As a result, we have the partial error.
After that, we normalize the partial error by the number of summed elements, ob-
taining the normalized partial error. We weigh these partial errors by the percentage
of membership of the particular read. After that, we sum the obtained results of all
reads marked important, gaining the infromation about the rate of the reads marked
unimportant despite being important. Finally, we multiply this rate by number of
unimportant reads.
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Formally, we will denote significant reads from the reference table as SR and non
significant reads as NS.

SR = {r| ∃m∃k : v(m)k 6= 0, ID(m) = ID(r), m ∈M}

NS = {r| r ∈ R, r 6∈ SR}

avgnonS =
1
|NS| ∑

r∈NS
v(r)

E3 = |NS| ∑
r∈SR

v(r) · avgnonS (10.3)

To avoid a long table search, we implement it more efficiently, though equivalent.
See Chapter 11 for more details.

Lastly, to get the normalized error we perform a normalization process similarly
to previous errors.

N3 =
E3

|SR|

for E3 from (10.3).

10.2 Sampling

However, it would be very computationally expensive, if we computed dot products
for every pair of reads. As there are roughly 4000000 reads in the reference-membership
table, it would result in (4000000

2 ) pairs. That is roughly 7 · 1012 pairs.
Therefore, we will use sampling and take only 0.0009% of pairs (thus normaliz-

ing error by the sample size, which is around 250000).
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11 Implementation

In this chapter, we will provide information about implementation. All of the scripts
are implemented in python3.6.7. We used the following libraries : HTSeq [1], Bio [8],
sklearn [37], scipy [22], numpy [34], matplotlib [19]. We also used jellyfish software
[33] for counting k-mers.

All of the scripts with a brief description, ordered by the position in the pipeline
can be found in Appendix A.

In the next section, we will discuss setting the parameters to obtain better results.

11.1 Parameter Setting

The result clusters strongly relate to eps used in the DBSCAN clustering. Eps de-
termines maximum distance within a cluster. Thus, changing eps could have a high
influence on results.

Similarly, the length of k-mers (k-size) could also influence results. As too low k-
size would cause assigning (almost) all reads to all clusters. To illustrate this, imag-
ine the extreme value of k where k equals 1). Likewise, too long k-mers would
provide little information about each read.

As the results depend on multiple parameters, we will design experiments that
will try to estimate the optimal values of eps and k-size in the next chapter.
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12 Experiments

In this chapter, we will describe the performed experiments. Firstly, we will examine
the relation between the error and the parameter setting in our pipeline, as discussed
in Section 11.1.

As we want to avoid a biased result, we will perform the experiments on two
different datasets. Admittedly, the size of both datasets (a number of contained sub-
jects) is the same amongst them. For further purposes we will denote them as dataset
1 and dataset 2. The source of the data is described in [47].

Overall time of running the whole pipeline on Metacentrum fluctuates between
14 and 19hours. For more detailed time description of all steps see Appendix A.

12.1 Eps setting

Initially, we will run our algorithm with multiple values of eps, while k is fixed.
We will observe the influence of eps on all components of the normalized error de-
scribed in Section 10.1. In the performed experiment we set the k to 25.

Figure 12.1 shows all components of the normalized error for multiple values of
eps. As each subject has its own values of N1, N2, and N3, we show the averaged
error through the particular dataset.

At this point, we will discuss all of the error components.
N1 does not hint any relation to the eps changes. It remains around 0.38 through

all values of eps. N2 stands for the error of the read assignment amongst all reads.
On the contrary, the second component focuses on the reads from the important

cathegory. Our algorithm should distinguish better amongst these reads. And truly,
if we compare N1 with N2, N2 is much smaller, it does not even exceed 0.2 in any of
the datasets.

However, neither N1 nor N2 seems to have decreasing or increasing tendency.
Furthermore, the local minima differ amongst datasets. That leads us to the conclu-
sion that either we chose the wrong interval of eps, or eps has only a minor impact
on the resulting error.

Moreover, the third component of the error does not show any trend. We will
discuss the results of the third component of the error in Section 12.4.
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FIGURE 12.1: Errors of both datasets with k set to 25

12.2 K setting

In this section, we will choose multiple values of k (representing the k-mer length)
and perform the experiments similar to those described in Section 12.1. Due to the
previous results, we fix eps to the value 6, as the smaller eps speeds up the algorithm
and consumes significantly less memory.

Figure 12.2 shows all three components of the error. The figure illustrates that the
first component of the error has the decreasing tendency in both datasets. However,
the values of extreme values of k do not vary significantly (the difference is only
0.03).

As for the second component of the error, in both cases, the graph hints some
kind of a periodic function. However, the local minima do not correspond amongst
the datasets. Therefore, the N2 does not imply any optimal value of k. Similarly to
the eps-setting, the third component of the error does not suggest any trend.

All in all, according to the first component of the error in both datasets, the op-
timal k from our range is 30. The decreasing tendency of N1 suggests that with
increasing k, we get the lower error.

Despite these results, it is improbable that the maximum value of k should be
optimal. As we explained in Section 11.1, both too short and too long k-mers should
cause the error incrementation. This leads us to the conclusion that we chose too
small interval of k.



12.3. Unaveraged error 43

FIGURE 12.2: Errors of both datasets with eps set to 6

12.3 Unaveraged error

Since we only showed the average of the errors of all subject in Figures 12.2 and 12.1,
we will look closely to the second component of the error amongst all subjects in the
dataset.

As Figure 12.3 shows, all of the subjects have a similar error. In other words, the
standard deviation is low and averaging did not distort the previous results.



44 Chapter 12. Experiments

FIGURE 12.3: Errors amongsts the subjects with k set to 25

12.4 The results of N3

In this section, we will analyze the results of the third component of the error. As
Figures 12.1 and 12.2 illustrate, the value of N3 varies from 668 to 883 in all cases.
This means that for one read marked significant exist 668-863 reads that should be
marked significant but are not. On the other hand, these unmarked reads might
overlap.

To explain these values, we will look at Figure 12.4

FIGURE 12.4: Histogram of the significant reads rate

This figure shows the percentage of the reads marked important in the reference
table amongst the subjects from the dataset 1. The eps is set to 6 and the k-value
equals 25. We can see that the percentage of the significant reads does not exceed
0.35%. Due to this rate combined with the values of the third component, we sup-
pose that we marked too few reads as significant.
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13 Future Work

In this chapter, we will discuss how to improve our solution. We will also suggest
the possibilities of the application of our algorithm.

As for the improvement of our algorithm, there are several features that we could
optimize.

Firstly, we could perform an experiment on all the parameters that are set to a
constant. These are for instance the upper bound in the second step of the proposed
solution (see Section 8.3) and the range of the Important cathegory. Unlike the upper-
bound, which would probably not highly improve the outcome, setting the Important
cathegory offers more space for the improvement.

The range of the Important cathegory is now set to 50, meaning that we take the 48
largest clusters (excluding the first two) of k-mers in the third step (see Section 8.4)
of our pipeline. Moreover, we exclude the noise and equally distributed k-mers.

Now, changing the range of the Important cathegory should have a rather high
impact on the second component of the errors. If the Important cathegory contained
fewer clusters; we would mark fewer reads as important. However, this would
result in fewer distinguished reads.

Another improvement to our algorithm could be another modification in the
third step of our solution. As we sampled the k-mers, taking only 10% of the data,
some information could be lost. Thus, we could assign each unassigned k-mer the
cluster number of the nearest neighbor. On the contrary, this would increase the
memory usage and might not significantly increase efficiency due to the explanation
in Section 8.4.1.

We could also expand the range of k in our experiment to find the global extreme.
To decrease the required time of our pipeline we could also rewrite it from

python to C++. If optimized, it could take less time than the standard approach.
In the next section, we will discuss the further applications of our algorithm.

13.1 Further Possibilities of Application

In this section, we will introduce the disciplines, where our algorithm could be well-
used. Obviously, as our approach does not use any reference to cluster reads, it could
be highly appreciated in processing reads from species despite having no informa-
tion about its genome.

As annotating the whole genome (meaning we know where in the DNA-
sequence the particular gene starts and where it ends) and creating the reference
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genome is non-trivial, our solution can spare time and money necessary for creating
it.

Our algorithm could improve the transcriptome assembly, as it could divide the
input reads into multiple groups corresponding to different regions (genes). There-
fore, if the transcriptome-assembly method searched for the succeeding reads, it
would not take into consideration reads from a completely different sector.

Hence, the read assembly efficiency would increase.
Finally, our solution could be helping in regards to the subject classification. We

could determine whether the subjects gene expression levels of important clusters is
closer to the sample of healthy or unhealthy subjects. Moreover, we could determine
the difference between the samples of healthy and unhealthy subject and thus reveal
the reads (genes) responsible for the particular disease.
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14 Conclusion

The importance of efficient data processing is rather high in the field of bioinformat-
ics. The information gathered from DNA sequencing can tell us a lot about organism
it originated from.

This thesis consists of two parts. In the first part, we introduced a microbiology
background. After that, we reviewed the current methods of DNA or RNA sequenc-
ing processing, such as the read assembly and read alignment.

We also provided a brief overview of the clustering methods.
In the second part, we focused on read clustering according to their membership

to genes. We described the STAR algorithm, the method which uses the known
reference genome to align reads.

However, the main disadvantage of this approach is the requirement of the ref-
erence. Therefore, we presented the concept of read clustering by gene expression.
The main idea of the concept is, that reads from one gene have similar expression
through multiple subjects.

Consequently, we compared the reference-base pipeline to our solution. Unfor-
tunately, our method had the error of around 0.34. On the other hand, when taking
into account only reads that our algorithm distinguishes well, the error decreased
rapidly (to around 0.18).

Then we designed the experiments to estimate the optimal parameters. As a
result, we suggest to set the value of k to 30 or perform more experiments on setting
k to find the global minimum of the error.

The further experiments, primarily changing the range of k-mers we consider
well-distinguished, could also improve the efficiency of our algorithm.

Finally, we discussed the future application of our algorithm. The main advan-
tage of our pipeline is no need for the reference genome. Therefore, it might be used
when no reference is available. It also has the potential to increase the performance
of the read assembly.
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A Implementation

1. The first step (Proposed solution Section 8.2) :
To make usage of jellyfish easier, we wrote python script to run jellyfish on all
input files (path is set to mypath by default).
Provided script: genJellyCom.py
Parameters: –datadir (path to the input data folder) –ksize (k-mer length)
Input: folder containing R1 and R2 files for each subject
Output: script (.sh) that runs jellyfish on input data using 4 threads and saves
results to Results folder, each input file name with corresponding output-file
name. Each output file contains k-mers present in the input file with its count.
Time: this step runs approximately 40 minutes

2. The second step (Meging counts as described in the proposed solution Section
8.3):
Provided script: dictionary.py
Parameters: –restable (result table name)
Input: folder with the output of jellyfish
Output: table.txt described in Section 8.3
Time: this step takes roughly 25 minutes

3. The third step (Clustering k-mers as described in the proposed solution Section
8.4):
Provided script: DBSCAN-clustering2.py
Parameters: –inptable (input table name) –eps (number)
Input: table name from output of the second step, eps - parameter of DBSCAN
Output: clusters.txt, each line containing k-mers in one cluster, lines sorted by
size,
graph showing some of the resulting clusters after PCA-dimension reduction,
sizes.txt containing information about the size of clusters,
plot.pkl containing data necessary to generate graph
Time: this step takes around 3 hours

4. The fourth step (Clustering reads according to contained k-mers described in
Section 8.5):
Provided script: readClustering3.py
Parameters: –ksize (the length of k-mers) –dbtable (result table name) –datadir
(the folder containing data as described in Section 8.1)
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Input: clusters.txt from the previous step, original data described in the pro-
posed solution Section 8.1
Output: membership-table for every subject in data
Ressig folder containinf ID-s of reads in Important cathegory for every subject
Time: this step runs approximately 11 hours

5. Generating the reference-membership table as described in Chapter 9.
Provided script: reads2Gene2.py
Parameters: None
Input: Aligned .BAM files (output from STAR)
gtf - reference file
Output: reference-membership table
Time: this step takes roughly 7 hours

6. Comparing results (generates file for one dataset, on each line containing a
name of subject-reads file and error between our assignment of reads and
reference-based approach as described in Section 7.2).
Provided script: comparing3.py
Parameters: –refclust (the name of folder containing ref-membership-tables)
–myclust (the name of folder containing our-membership-tables) –ressig (the
name of folder containing the Important cathegories)
Input: folders described in parametres
Output: results2.txt (containing error for each subject from dataset)
Time: this step takes 3 to 6 hours (when sample size is 0.0009%)
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B CD content

• Mertanova_BP.pdf containing the text of the thesis

• README with information about running scripts

• all of the script described in Appendix A (comparing3.py, DBSCAN-clustering2.py,
dictionary.py, genJellyCom.py, readClustering3.py, reads2Gene2.py)

• scripts to run STAR: IndexGen.sh, Alignment.sh

• script to generate the reference-membership table from the STAR output:
ref2pkl.sh

• script for running our pipeline on metacentrum including comparing with the
reference-membership table: runAll.sh

• the final results (folder Results) for various parametres of dataset1 (resfin1.zip)
and dataset2 (resfin2.zip)

• the folder Visualizing with python scripts + manual for visualizing the re-
sults (DBSCAN-plotting.py, plotFinHist.py, plotFinNEps.py, plotFinN2Eps.py,
plotFinNKsize.py, README)
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