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Abstract

Simulation of snowy landscape transfor-
mations by wind erosion is not a common
topic of computer graphics. While sand
movement simulation, which is very sim-
ilar and also challenging, is a widely ex-
plored and studied subject, as the great
number of published scientific papers
proves.

This work proposes a slightly simpli-
fied implementation of Wang and Hu’s
physically based sand simulation method.
Then, the idea of transforming the pro-
posed model into snow simulation is in-
troduced, including the necessary changes
and new parameters that derive from the
comparison of sand and snow in real envi-
ronments.

The method is extended with a hard,
unalterable surface under the sand, which
might be crucial for the formation of some
sand and snow patterns. In the conclusion,
the achieved results are presented and
compared with the reference method.

Keywords: particle system, snow, sand,
wind erosion

Supervisor: Ing. Jaroslav Sloup
Katedra počítačové grafiky a interakce,
Fakulta elektrotechnická
ČVUT v Praze

Abstrakt

Simulace přetváření zasněžené krajiny vli-
vem větrné eroze není úplně běžné téma v
oblasti počítačové grafiky, zatímco simu-
lace přenosu písku, která je svou podsta-
tou velmi podobná a stejně náročná, je
široce zkoumanou a studovanou oblastí,
o čemž svědčí i velké množství publikova-
ných vědeckých studií.

Tato práce se zabývá návrhem a im-
plementací mírně zjednodušené verze fy-
zikálně založené metody Wanga a Hua
pro simulaci písku. Následně je předsta-
vena myšlenka transformace uvedeného
modelu pro simulaci sněhu, včetně potřeb-
ných změn a zavedení nových parametrů
vycházejících z porovnání chovaní písku a
sněhu v reálných podmínkách.

Metoda je rozšířena o tvrdé, nezměni-
telné podloží pod pískem, které může být
podstatnou součástí formace některých
písečných i sněhových útvarů. V závěru
práce jsou uvedeny dosažené výsledky a
porovnány s referenční metodou.

Klíčová slova: částicový systém, sníh,
písek, větrná eroze

Překlad názvu: Přetváření povrchu
zasněžené krajiny vlivem větrné eroze
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Chapter 1

Introduction

Snow bedforms are geological phenomena that exist in many shapes, forms,
and sizes. They exhibit various features that are also recognizable in deserts
or even river bottoms. The most common patterns are dunes and ripple marks
(see Figure 4.2). As Filhol and Sturm [1] point out, there is little scientific
interest in these features. Only a few studies have been published, yet they
are rarely cited compared to the studies of the equivalent sand features. They
suggest that the reason for such sparse interest may be the low population in
the areas where snow bedforms occur, or rather that the snow features have
a much shorter lifespan than the sand features.

Figure 1.1: Example of sastrugi, an erosional bedform, with author (Clea
Bertholet) for scale, photo looking downwind. Photo by Kelly Kochanski [2].

In the field of computer graphics, little to no research can be found on snow
in connection to wind erosion. There are efforts to model fallen snow on
various surfaces, such as Fearing’s [3] combination of an accumulation and
stability model. This essentially simulates a snow cover, with no real focus
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1. Introduction .....................................
on wind transportation, yet not entirely omitting it either.

The generation of sand covered landscape though is a widely studied topic
of computer graphics. Researchers have developed various methods of sand (or
dust) simulation, some of which are only appearance-based, but most of them
are based on physical parameters. Some methods make use of a height field
[4, 5] or a height map [5], others include a particle system [5, 6] to simulate
the granular properties of sand. Another interesting option is simulating sand
as a fluid [7] rather than independent particles, which approximates very fine
grain sand.

Wang and Hu [8, 9] focus on the wind erosion on sand surface. They take
the physical approach and discuss the physics of blown sand. Their work
involves research topics from sand grain and sand bed modeling through
rendering complete desert scenes.

Figure 1.2: Evolution of sand ripples. Simulation results (left to right) after 0,
100, 200 and 400 seconds. Image taken from [9].

As they mention, their research is a kind of erosion study [9]. They used
a height field to represent the simulated sand bed and an aeolian erosion
model (see Figure 1.2). This thesis relies almost entirely on [8, 9], to a certain
extent, implementing their sand bed and erosion model as a base for later
transformation into snowy landscape simulation. The final goal of this work
was to simulate snow features resembling Figure 1.1 for example.

The contents of the following chapters are organized as follows. Chapter 2
discusses the different forms of sand grain movement and the wind, according
to [9]. Chapter 3 describes the sand model from [8, 9], which serves as a base
of the implementation. In Chapter 4, the differences and similarities between
sand and snow bedforms are discussed as well as the physical aspects of
particles, the process of snow compression (sintering) and the necessary new
parameters for snow simulation. The proposed implementation is described
and illustrated with pseudo code in Chapter 5. Then, the achieved results and
conclusions are presented and discussed in Chapters 6 and 7 respectively.
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Chapter 2

Sand Movement

If wind with sufficient velocity blows over a sandy surface, some grains will
get caught up in the air. Wang and Hu [9] assume that every grain has
a threshold velocity, which, when exceeded, the grain will surely begin to
move. They describe it as granular material in fluid, the fluid being the air.
Therefore the movement itself is mainly affected by the density of air and the
density of sand, and the shape and size of a given sand grain.

Figure 2.1: Three forms of aeolian sand grain movement. Image taken from [8].

There are three different ways of sand movement, namely suspension,
saltation, and creep (see Figure 2.1). The first, suspension involves long
distance movement, where the grains entrained in the air will either travel
many kilometers before deposition or will not deposit at all for a significant
period of time. Also, this type of transport will only affect the smallest grains,
with diameters under 0.05 mm, and it has no significant effect on the resulting
shapes. Therefore in a simulation as small-scaled as this, there is no point in
taking suspension into account. Creep, on the other hand, will move bigger
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2. Sand Movement ...................................

Figure 2.2: Diameter of sand grains. Image taken from [9].

grains, whose diameters range from 0.25 to 2 mm. These grains are often
too heavy for the wind to be lifted, so they will only roll and slide along
the surface. Wang and Hu [8] also describe sand collapses as a kind of creep
caused by gravity instead of the wind.

The third form, saltation, is the main mode studied and simulated in [9],
which affects grains with diameters mainly between 0.1 and 0.5 mm. It is
kind of a jumping motion, where grains will get caught up in the air, but will
only travel short distances before hitting the ground. Apparently, saltation is
responsible for the transport of most of the sand in real environments. This
kind of sand movement is able to create basically two different landscape
features, sand ripples (or waves) and dunes. These forms sometimes appear
in combination: ripples may form on the surface of sand dunes as an effect of
changing wind conditions. The different qualities of these forms are further
discussed in Chapter 4, where sand and snow features are compared.

Figure 2.3: Various sand ripples on the surface of dunes, with plants (left) and
sand ripples resembling those simulated in [9] (right). Photos taken from [10]
and [11].
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................................ 2.1. Dune field morphology

2.1 Dune field morphology

The previously described grain movement also enables the formation of other
patterns besides ripples, which also classify as dunes. Different wind condi-
tions allow for different dunes to appear. Some of these features have exact
analogies in snow, which are covered in Chapter 4. Here, a dune classification
from [12] is adopted, where they focus on free dunes. These appear in almost
entirely flat and vegetation-free, completely dry desert environments, which
arguably simplifies the conditions for modelling them.

Figure 2.4: Schematic views of typical dunes: (a) dome dune, (b) barchan dune,
(c) transverse dune, (d) linear dune, (e) star dune and (f) network dune. Arrows
show the predominant wind directions. Figure 1 from [12].

According to Bishop et al.[12], free dunes can be separated into three
categories, namely transverse, linear, and star dunes. Some of these can be
seen in Figure 2.4. The transverse category includes barchan and transverse
dunes, among others. A barchan dune has a crescentic plan-shape opening
downwind [12], sometimes described as an arrowhead or a laundry iron [1].
Transverse dunes have their crests transverse to the wind and they usually
move downwind. Under linear dunes, Bishop et al.[12] mention seif dunes and
sand ridges, the former being a sinusoidal pattern with a sharp crest and the
latter a partly vegetated linear dune that is larger than a seif [12] (see Figure
2.4(d)). The star dune category also includes network dunes (see Figure 2.4(e)
and 2.4(f)), both are results of complex, changing wind conditions.

Figure 2.5, also adopted from [12], shows how the amount of available
sand is related to the variability of wind directions. On the wind axis, the
uni-directional end means that wind blows in one major direction nearly all
the time. The other end, complex suggests wind changes between more than
two distinct directions, or that there is no definite wind regime. Figure 2.5
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2. Sand Movement ...................................
strongly implies that the more complex the wind conditions and the more
available sand there is, the more interesting and complicated the forming
patterns become. According to this, the proposed implementation classifies
as a mostly uni-directional wind model with the option of changing the sand
availability.

Figure 2.5: Dune type diagram with regard to sand availability and wind
direction variability. B, I, L, T denote barchan, isolated, linear and transverse
dunes respectively. Figure 2 from [12].

2.2 Wind

Simulating realistic wind conditions is a very complex and time-consuming
task, therefore Wang and Hu[8] adopted a simplified wind field model. They
assume that the wind direction does not change during the simulation. After
omitting the constants they set to zero, the formula for the mean wind velocity
at height z above the surface is

U(z) = u∗
k

ln ( z
z0

) (2.1)

where u∗ is the friction velocity, k=0.4 is the dimensionless Von Karman’s
constant and z0 is the aerodynamic roughness length, the height at which
the wind speed reaches zero [8]. As they work with vegetation on the surface,
they further calculate z0. For a bare sand covered surface, they refer to
Bagnold[13], who suggests to set z0 = d

30 , with d being the diameter of the
grain.

In this implementation, it is possible to change the wind direction during
the simulation as one wishes, but it does not change without interaction.
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Chapter 3

Sand Model

The presented sand model is a simplified alternative of Wang and Hu’s
sand model in [8, 9] with a bit different approach to sand collapses and
redistribution. Most of the model, such as grain initialization, transportation
and collision are directly implemented as described in [8, 9]. As Wang and
Hu, we assume a uniform particle diameter of 0.15 mm, and particles are
generated with random starting velocities and directions.

3.1 Grain initialization

Wang and Hu [9] assumes that there is a lift off velocity V for each grain,
when friction velocity u∗ exceeds threshold friction velocity u∗t. The value of
u∗t can be calculated as mentioned in [14]:

u∗t =
√

0.0123(sgd+ 3.0 · 10−4

ρ · d
) (3.1)

where s is the sediment to fluid density ratio, g is gravity (m s−2) and d the
diameter (mm). [9] states that the initial velocity Vy is proportional to the
friction velocity.

Vy = Bu∗ (3.2)
where B is between 0.8 and 2. The corresponding direction is 21◦ to nearly
90◦ with respect to the horizontal axis. To represent the direction of lift off
velocity, spherical coordinates (φ, ψ) are used, where 0 ≤ φ ≤ π

2 is assigned
randomly and 0 ≤ ψ ≤ 2π is the wind direction.

7



3. Sand Model .....................................

0°

180° 21°

88°

wind

range of ϕ

Figure 3.1: Illustrating the angle generation ranges. φ is the lift-off direction
(blue) and ψ is given by the wind direction (red).

Finally, the lift off velocity V is given by

Vx = ‖V‖ cosφ cosψ, (3.3a)

Vy = Bu∗ = ‖V‖ sinφ, (3.3b)
Vz = ‖V‖ cosφ sinψ, (3.3c)

where ‖V‖ =
√
V 2
x + V 2

y + V 2
z is the magnitude of V. Sand grains are allo-

cated uniformly on the surface at position P

Px = rand(), (3.4a)

Py = h(i, j), (3.4b)
Pz = rand(), (3.4c)

where h is the height map and rand() refers to the random number generator
used [9].

3.2 Transportation

From the many different forces acting on grains in the air, they only consider
gravity Fg and drag force Fd [8, 9].

Fg = (0,−mg, 0), (3.5)
Fd = B‖∆V‖∆V, (3.6)

where ∆V = U−V is the difference between wind velocity and the velocity
of flying sand. Fd and ∆V have the same direction. With the help of these
forces, the change in velocity and position is calculated iteratively:

Vcurr = Vprev + Fd + Fg
m

∆t, (3.7)

Pcurr = Pprev + Vcurr∆t. (3.8)
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................................3.3. Deposition and Collision

3.3 Deposition and Collision

When a grain reaches the ground, it can either deposit there, or collide with
the other grains and push some into the air, or get caught up again [8, 9]. In
our simulation, no other grains are actually being pushed into the air. The
velocity of the incoming grain V1 is divided into a normal and tangential
component [9]. Then the new, reduced velocity V2 is calculated as

V1n = (V1 ·N) ·N, (3.9a)

V1t = V1 −V1n, (3.9b)

V2 = −V1n · fatten + V1t · ffrac, (3.9c)

where N is the terrain’s normal vector, n and t mark the normal and tan-
gential directions, and fatten and ffrac are damping parameters to simulate
momentum attenuation and friction force respectively [9]. If the outgoing
velocity falls below a threshold, it is set to zero, to avoid infinite jumping.

V1 V1n

V1t

V2

Figure 3.2: Illustrating the velocity decomposition, V1 and V2 with black, V1t

and V1n with red arrows.

3.4 Collapsing

Every granular material has a specific angle of repose, that is the steepest
angle of descent to which the material may be piled without sliding. For
loose sand, this angle is around 34-35◦, above which the built up sand pile
will collapse, the excess grains sliding down the slope.

9



3. Sand Model .....................................

35°

Figure 3.3: The angle of repose, 35◦ for loose sand. The steepest angle at which
granular material stays stable, the excess material on the slope will slide down.

Wang and Hu[8] simulate this collapse by making the excess grains scatter
around the deposition point. They formulate the process as

hcurr(i, j) = hprev(i, j) +G∆hs̃tep(tan θ, T∆h) (3.10a)

∆h = 2−
√

2
4

∑
N4

hprev(i, j) +
√

2− 1
4

∑
N8−N4

hprev(i, j)− hprev(i, j) (3.10b)

s̃tep(a, b) = 1 when b ≥ a, and 0 when b < a (3.10c)

where h always marks the height at (i, j) and N4, N8 are the neighbouring
points on the grid (see Figure 3.4). T is a scale factor and G is related to
gravity. They do this on GPU through selective filtering [8].

(a) : N4 (b) : N8

Figure 3.4: N4 and N8 neighbourhoods (red) of a grid point (black).

As the proposed implementation is not on a GPU, a simplified method
was chosen for checking the height difference and making the sand to scatter.
First, it was done by a shallow recursion with limited nesting depth, where
the function checks the eight neighbouring grid points and calculates the
height differences, then the current angle of the slope. If it exceeds the angle
of repose (set to 30◦ and even 25◦ for testing purposes), the excess sand is
distributed to the neighbour with the biggest height difference. This concept
was later changed to better mirror the method in [8, 9], where collapsing
is done on GPU [9]. With the recursion omitted, the CallRedistribute
function calls Redistribute once for each grid vertex, effectively smoothing
the terrain to a certain extent.
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Chapter 4

Snow

Snow bedforms come in many different shapes and sizes, and exhibit various
patterns. Some of them, like dunes and ripple marks, are also found in
deserts or river bottoms. There is a surprisingly low scientific interest in
snow bedforms, whereas they appear on approximately 8-11% of the Earth’s
surface, including the ice of Antarctica and Greenland [1]. Sturm and Filhol
[1] also point out that the importance of these snow covers extends beyond
the shapes, they influence the surface roughness in the Arctic and Antarctic,
largely affecting the regional energy balance, ice melt rate, the exchange of
air between the atmosphere and firn, etc.

4.1 Sand and snow

The key differences between sand and snow are in the spatiotemporal stability
and the granular properties of the materials. Sand features almost entirely
form through saltation, but snow bedforms are also largely affected by creep.
Although suspension can occur, just like with sand, this has no significant
effect on the formation of bedforms.

Despite the differences, ripple marks, for example, do form in both sand and
snow and they look very much alike. Also, ripples may appear underwater,
on beaches or river bottoms.

11



4. Snow ........................................
Snow bedforms are spatially and temporally variable shapes. There is

certainly more variability to them then there is to sand features. Some dunes
in deserts may be hundreds of years old, whereas their snow counterparts
form within a few hours and hardly ever last longer than a few months [1].
This spatiotemporal variability creates the different key characteristics of
snow bedforms, according to which they are depositional or erosional. As
opposed to sand, these patterns are usually lower and flatter. For example,
sand barchans can be 10 m high, 100 m wide and 150 m long, but snow
barchans only range from 3 to 20 m in length, 5 to 12 m in width and are
only about 0.1 to 0.5 m tall [1]. This is where the materials’ characteristics
come into play.

4.2 Particles

Another big difference is in the size and density of particles. Knowing these
parameters allows for calculating the mass of the simulated grains, which is
essential in the equations from [9].

According to Sturm and Filhol [1], the density of snow particles is 917
kg m−3 (the actual density of ice) and 2650 kg m−3 for sand (essentially the
density of pure quartz). Although this assumption ignores the fact that real
sand has other constituents apart from quartz, it is not inherently wrong.

For example, in [15], two sand samples were collected (for unrelated pur-
poses) in the United Arab Emirates and their densities were measured. The
samples were mainly constituted of calcite and quartz. Table 4.1, adopted
from [15], shows the particle density of the samples.

Sample 1 2

Bulk density (kg m−3) 1493.14 1588.20
Particle density (kg m−3) 2612.00 2656.58
Porosity 0.43 0.40

Table 4.1: Density values of the samples. Table taken from [15].

In the same study, they also separated the samples through a series of sieves
to see how many grains are of certain sizes. Figure 4.1 from [15] shows that
around 60% of the sand in each sample stopped between sieves of dimensions
0.1 and 0.2 mm. This also confirms that it is safe to assume the simulated
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...................................... 4.3. Sintering

grains have a diameter of 0.15 mm, as these conditions do occur in real sandy
environments.

Figure 4.1: Size distributions for sample 1 (left) and sample 2 (right) from [15].

With the density and grain diameter set, we can calculate the weight of our
particles. Given these values, they should weigh only about

2.65 mg mm−3 · 0.014 mm3 = 0.0371 mg ∼ 0.04 mg. (4.1)

4.3 Sintering

Sintering is the process by which snow particles bond at temperatures below
the melting point [16]. This process is completely absent in sand but plays a
major role in the formation of snow bedforms. It is the reason for the huge
age (and height) difference between sand and snow dunes.

First, depositional features start to form thanks to saltating snow particles
in the wind. Sturm and Filhol [1] think of sintering as a timer - it starts
at the moment the grain is deposited. If it remains in the same position
long enough, it becomes bonded. They also state how this long enough is
a function of many values and that this bonding rarely takes more than 24
hours. After the bond occurs, the bedforms become erosional as it becomes
harder for the wind to lift individual particles into the air.

4.4 Bedforms

There are seven different snow bedforms that are recognized: transverse,
barchan and whaleback dunes, pits, crag and tails, ripple marks, and sastrugi
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4. Snow ........................................

Figure 4.2: Photographs of typical bedforms encountered at the surface of the
snow. The black arrow indicates the wind direction. (a) Snow waves (transverse
dunes) viewed from an airplane, (b) barchan dunes surrounded by small pits, (c)
a whaleback dune (photograph by C. Carmagnola), (d) ripple marks, (e) crag
and tail features formed behind ice nucleus, (f) pits with the handle of a ski pole
for scale, and (g) sastrugi (showing bedding or lamellae) with a glove for scale.
Picture adopted from [1].

(see Figure 4.2). Each of these shapes forms in different weather conditions,
and in certain situations some will never occur. Take ripple marks as an
example. They are wave-like bedforms, typically small with wavelengths
around 5 to 20 cm. It has been estimated that they only form at certain wind
speeds (see Figure 4.3).

Figure 4.3: Illustrating necessary conditions for ripple marks to form. Image
taken from [1].

As mentioned in Chapter 2, some of the sand patterns have analogous forms
in snow, namely ripple marks and barchan and transverse dunes. Figure 2.5
shows these forms in the uni-directional end of the wind scale, the linear
dunes being in the middle, where the bi-directional wind is supposed to be.
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................................... 4.5. New parameters

This is probably similar for the snow features of the same forms, considering
Sturm and Filhol [1] mostly discuss patterns that formed in winds of one
major direction.

4.5 New parameters

To modify and extend the sand implementation to simulate snow instead, new
parameters have to be introduced. The overall weather has to be considered,
not only the wind direction and speed. The changes of temperature play a
major role here. Not only does it affect how long it takes for the snow to
bond in sintering, but the snow particles themselves should be different in
size and shape.

There is little to no comprehensive or universally applicable data on the
perfect conditions for a certain pattern to form. And some of the existing
studies have incomplete measurements or simply can not be compared (see
[1]).

Figure 4.4: Bedforms as a function of average wind speed. A generalized
interpolation of the data, in which all bedforms seen in the data are plotted, with
shading to show where the points could fall. Thick lines represent separation
between movement of bedforms, and dotted lines represent speculation as to
where the data could fall. Figure adopted from [2].

However, there is a thesis on snow bedforms, describing and connecting
them to the wind and time exactly as previously discussed. The study was
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4. Snow ........................................
conducted in the winters of 2016 and 2017 in Niwot Ridge (Colorado, USA),
an alpine ecology research site. The wind speeds there vary from 3-20 m s−1

with gusts around 4-25 m s−1 and the temperature can fall as low as −20 ◦C.
Bertholet [2] discusses the various bedforms observed and plots them as a
function of wind speed and snow age. The figures are very informative as
to when do which types of bedforms become stationary, and how much they
move up to that point.

Figure 4.4 plots the observed snow features as a function of average wind
speed in m s−1 and the snow age in days. Overall, the older the snow, the
less the bedforms move. This is also generally true for the wind, the slower it
is the less movement appears. The most frequently occurring features seem
to be sastrugi and snow edges. These are terraced features with heights of a
few millimeters, appearing as flat layers. These bedforms are not mentioned
as a separate form by [1]. Bertholet [2] hypothesizes they are also eroded by
wind.

Figure 4.5: Edges at Brainerd Lake in Colorado. Author (Clea Bertholet) for
scale. Photo by Kelly Kochanski [2].

Contrary to Figure 4.3 from [1] showing ripples in 5-8 m s−1, Figure 4.4
shows moving ripples in wind speeds of about 8 to 18 m s−1. We can assume
that the different temperatures in the observed locations are responsible for
such a difference, as it affects particle size and the time it takes particles to
bond in sintering.
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Chapter 5

Implementation

This work is a simplified version of Wang and Hu’s [8, 9] simulation method,
using a height map and a particle system for simulating wind erosion on a
bare sandy surface. The implementation described in this chapter serves as
a base for expansion into the simulation of snow bedforms (see Chapter 4).
The implementation is done in C++ using OpenGL 3.1. The visualization is
done by displaying the height map using triangle strips in OpenGL, utilizing
the code in [17].

int main() {
//initialize GLUT (OpenGL UTility)
//set glut functions like glutDisplayFunc, glutReshapeFunc, etc.
// to call our functions

init(); //initializes shaders and shader attributes
//calls generateTerrain()
//sets up vertex arrays and buffers for drawing

createMenu(); //creates the menu for changing simulation parameters

glutMainLoop(); //calls the refresh function
//where the particle update and regeneration happens
//Redistribute for surface smoothing is called
//and init() is called to recalculate the triangle strips

cleanup(); //deletes allocated buffers and shaders
return 0;

}

Listing 5.1: Illustrating the main function of the application.
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Figure 5.1: Simulation workflow.

Figure 5.1 illustrates the basic workflow of the simulation, with the main
loop on the left and the UpdateParticle method on the right. Each function
is further discussed in detail in the following sections.

After the initial particle generation is done, the program enters the main
loop, which consists of regenerating inactive particles and updating the active
ones, then the iteration counter decides, if there will be a call to Redistribute
and to recalculate triangle strips before redrawing. The UpdateParticle
function (see Listing 5.5) tests the particle for hitting the ground, then either
recalculates its position and velocity, or stops and deactivates the particle.
Recalculation happens in every call according to equations (3.7)-(3.8), but
the flowchart shows only the exceptions: settling and bouncing.
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.......................................5.1. Particles
5.1 Particles

Each moving sand grain is represented by a Particle. It is represented as a
structure containing its position, velocity, mass, and diameter. And a boolean
variable signalling if the particle is active or not. The uniform mass of a grain
is set to 0.04 mg (see equation (4.1)) and the diameter of grains to 0.15 mm,
just like in [9].

5.1.1 Generating particles

Particle generation happens differently in different phases of the program. At
the start, the GenerateRandom function generates NUM_PARTS number of ran-
domly positioned particles on the grid, which are returned in a std::vector.
After this, as the program begins to iterate through this vector, each settled
particle, those with zero velocity in every direction, gets reinitialized by the
GenerateParticle function. This generates a new random location for the
particle and a new starting velocity and direction.

//Velocity
function GenerateVelocity {

y = B ∗ frictionvel;
normV = y / sin(phi); //normV is length of V=(vx,vy,vz)
x = normV ∗ cos(phi) ∗ cos(psi); //calculate direction from wind (psi)
z = normV ∗ cos(phi) ∗ sin(psi); //and random lift−off angle (phi)
return (x, y, z);

}

//Position
function GeneratePosition {

x = rand();
z = rand(); //generate x, z
y = map.getValue(x, z); //get height at (x, z)
if (below hard terrain) //no sand at (x, z)

discard;

norm = computeNorm(x, z); //calculate normal
if (dot(norm, wind) > 0) //if facing downwind

discard;
else { //if facing upwind

map.setValue(x, z, y − diameter);
}
x, z = getCoordFromIndex(x, z); //make coordinates from index
return (x, y, z);

}

Listing 5.2: Pseudo code of new velocity and position generation.
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5. Implementation....................................
5.1.2 Update

The UpdateParticle function takes one particle at a time. First, it checks if
the particle is within field boundaries and converts the current position of
the particle into map indices, then it finds the triangle (in terms of OpenGL-
drawn triangles) the particle is currently above or under. Then it checks if
the particle has reached the surface (IsUnder function). In case it has not, it
will recalculate the particle’s position and velocity based on ∆t (equations
(3.8) and (3.7)). Otherwise, the particle bounces off the surface with reduced
velocity calculated according to equation (3.9). If the particle is too slow
at the moment of reaching the terrain, its velocity is set to zero (and it is
marked as inactive), to prevent near infinite jumping.

//Update particle
function UpdateParticle {

actual = GetIndex(p.position); //make indices from coordinates
CoordCheck(actual); //check boundaries
vertices = PosToTriangle(actual); //find triangle

if (IsUnder(p.position, norm, verts[0])) { //is particle above or under the triangle
if (p.velocity below threshold) { //particle too slow

nearest = FindNearest(); //find nearest vertex in triangle

//add new grain to nearest vertex
map.SetValue(nearest, map.getValue(nearest) + p.diameter);

p.velocity = (0, 0, 0); //set velocity to zero
p.active = false; //deactivate particle

} else {
Bounce(p); //recalculate bounce velocity and new position

}
}

}

Listing 5.3: Pseudo code of the UpdateParticle function.

5.1.3 Collapsing

As the method described in [8] for redistribution of the excess sand was a bit
more complicated than necessary and not useful for this implementation, a
slightly different idea was introduced here. It is basically the same, but it
does not distribute the excess sand between the neighbours, only chooses one
with the biggest height difference. As the images in Chapter 6 prove, this
creates a very similar smoothing effect to that in [9, 8].

20



.......................................5.1. Particles
//Redistribute
function Redistribute {

for (i = x−1; i < x+2) {
for (j = z−1; j < z+2) {

if (i == x && j == z) continue; //the same vertex

//calculating tangent of slope angle as in a right triangle
//opposite of angle − the height difference
opposite = map.getValue(x, z) − map.getValue(i, j);

//adjacent to angle − unit grid distance
adjacent = (transverse) ? deltax ∗ sqrt(2) : deltax;
tan = opposite / adjacent;

//find biggest difference
if (abs(tan) > abs(maxtan)) {

maxtan = tan;
maxopp = abs(opposite); //maxopp − the biggest height difference

}
}

}
//correction: difference − allowed max = real excess sand
maxopp −= repose ∗ adjacent;

//if angle exceeds repose angle
if (abs(maxtan) > repose) {

if (maxtan > 0) {
//(x, z) is higher − avalanche
map.setValue(x, z, map.getValue(x, z) − maxopp);
map.setValue(i, j, map.getValue(i, j) + maxopp);

} else {
//(x, z) is lower − fill the hole
map.setValue(i, j, map.getValue(i, j) − maxopp);
map.setValue(x, z, map.getValue(x, z) + maxopp);

}
}

}

Listing 5.4: Pseudo code of Redistribute.

First, the Redistribute function was implemented as a recursive method
with a limited nesting depth. It was called for each grid vertex where a new
grain had just landed - and also for each vertex where a new particle was
(re)generated, therefore taken away and reducing the height at that point.

The function takes a grid vertex and checks the height difference with
each of its neighbours. It calculates the tangent of the slope angle by taking
the height difference between the two vertices as the opposite and the unit
distance on the grid as the adjacent side relative to the angle as in a right
triangle. This unit distance is readjusted for transverse neighbours (see Figure
5.2).
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Figure 5.2: Neighbour distances on grid. Distance for direct neighbours (red) is
the grid unit. Correction happens for indirect (or transverse) neighbours (blue) -
the grid unit distance is multiplied by

√
2.

5.2 Height map

The height map is a simple two-dimensional array of floats, marking the
height of the terrain at a grid vertex. As in [9], the simulation happens on a
256x256 grid. In [9], they also use a 512x512 grid for some of the shapes, but
for our purposes, the smaller one seemed sufficient. Also, in the presented
simulation, there is another grid of exactly the same size under the sand map
functioning as the hard, unalterable terrain (e.g. rocks, see Figure 5.3).

Figure 5.3: Two height maps, terrain and sand layer.

There are four terrains available in the application (see Figure 5.4). One
is perfectly flat, setting each point to 0 and the sand map to sandlevel.
The second has a smooth hump in the middle, which is calculated with a
two-dimensional Gaussian function. The third terrain type resembles a gentle
dune, created by another Gaussian function, which will be evenly covered
with sand. The fourth is a slight valley-like wave calculated from a stretched
sine function.

There is a separate class, MyMap, that handles most of the work around the
grid. It takes care of the map initialization and the particle generation, stores
the height fields, and provides functions for setting and retrieving terrain or
sand height at a specified index. The map itself is cyclic - if a particle is
carried away from above it, that particle appears on the opposite side and
continues its movement. Therefore theoretically, the height map could be
copied and positioned to simulate larger terrains, as in [9].
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(a) : Flat terrain (b) : Small hump

(c) : Dune (d) : Valley

Figure 5.4: Showing the different terrain types available, without the sand cover.
(a) Flat, (b) with a hump in the middle, (c) dune form, (d) gentle valley.

5.3 Visualization

The code from [17] was modified to visualize the changes of the terrain. The
GlutMainLoop calls the refresh function, that is where the particle update
happens. UpdateParticle is called for every active particle in the vector
of particles. If a particle settled, that means it has its velocity set to 0 in
every direction, it is reinitialized by GenerateParticle. The simulation is
not actually real-time as Wang and Hu’s [9]. Here, the terrain gets redrawn
only after a certain number of iterations of particle updates.

5.3.1 Triangle strips and normals

At the start and on every redraw, the grid representing the sand cover is
calculated in the generateTerrain function. The other grid, representing
the terrain under is only calculated once at the start, or when its shape
is changed from the menu. The height values for both grids are simply
stored in two-dimensional float arrays, from which the triangle strips are
created for drawing. The vertices of these triangle strips are saved in the
terrainVertices and underTerrainVertices for sand and hard terrain
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5. Implementation....................................
respectively.

//Terrain generation
// px, pz − point to coordinates in
// dx, dz − unit grid distance on x, z axis
// vertIndex − index of a vertex; +0 for x, +1 for y, +2 for z
// idx − triangle indices
// gen − iteration counter
// opt − terrain choice
// attribs − number of vertex attributes: x,y,z, nx,ny,nz ... 6 (8 with texture x,y)

fucntion generateTerrain(float dx, float dz, int opt) {
if (gen == 0) {

Map.setDelta(dx, dz); //set unit grid distance
initTerrains(opt); //fill in the height map of hard terrain
Map.GenerateRandom(); //generate particles
//generate triangle strips for hard terrain − same as for sand below
//calculate normals of hard terrain − same as for sand below

}

pz = − 2.5f; //lowest z coordinate
for (int z = 0; z < N; z++) {

px = − 2.5f; //lowest x coordinate, starting new strip
for (int x = 0; x < N; x++) {

vertexArray[attribs ∗ vertIndex + 0] = px; //x
vertexArray[attribs ∗ vertIndex + 1] = Map.getValue(x, z); //y
vertexArray[attribs ∗ vertIndex + 2] = pz; //z

//save two indices to this strip
triangleIndices[idx++] = vertIndex;
triangleIndices[idx++] = vertIndex + N;

vertIndex++;
px += dx; //move one grid unit, end of strip

}
pz += dz; //move one grid unit

}
//calculate normals
for (int iz = 0; iz < N; iz++) {

for (int ix = 0; ix < N; ix++) {
//norm = (nx,ny,nz);
norm = sum(count); //count − number of neighbouring triangles

//sum the normals
norm = normalize(norm); //(nx,ny,nz) = (nx/length, ny/length, nz/length)

vertexArray[attribs ∗ (iz∗N + ix) + 3] = nx;
vertexArray[attribs ∗ (iz∗N + ix) + 4] = ny;
vertexArray[attribs ∗ (iz∗N + ix) + 5] = nz;
//vertexArray[attribs ∗ (iz∗N + ix) + 6] = textureX;
//vertexArray[attribs ∗ (iz∗N + ix) + 7] = textureY;

}
}

}

Listing 5.5: The generateTerrain function.
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The normal vector for each vertex is calculated as follows. The function

takes all the normals of triangles the current vertex occurs in, sums them up
and normalizes it. Then the nx, ny, nz values of the normal are saved as
the next three vertex attributes after the vertex coordinates.

Figure 5.5: Neighbouring normals Ni are summed and the sum normalized to
get N (black), the normal of the current vertex. Image taken from [18].

5.3.2 Shaders

The color of the terrain is calculated in the fragment shader, where different
colors are passed for the hard terrain and the sand surface. Also, there is
an option to switch between texture modes during the simulation: clear
and contours. The clear mode only uses the current color passed to the
shader, while with the contours mode chosen, it performs a height calculation,
according to which it uses black instead of the color. The goal was to achieve
something like in Figure 5.6, the lines marking certain heights of the terrain
(see Figure 6.5 for results).

Figure 5.6: Terrain heights marked by black lines. Figure 5(c) from [12].
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Chapter 6

Results

The proposed implementation was tested with different hard terrain types
and wind velocities. Most of the images show the resulting patterns after up
to 3000 iterations, which takes 210 seconds on average (NVIDIA GeForce
GTX 1060 Max-Q, Intel Core i5-7300HQ, 2.5 GHz).

(a) : Flat (b) : Small hump

(c) : Dune side (d) : Valley

Figure 6.1: Various terrain types compared, each after 3000 iteration in 10 m/s
western wind.
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By default, the resulting images were generated in western wind (from right

to left), a sand level of 500 grains and with 200.000 available particles, from
which approximately 60-70.000 were active in each iteration. The sequences
in Figures 6.2-6.4 show sand ripple evolution after 0, 1000, 2000, and 3000
iterations in that order, with the starting point being a completely flat surface
in each case, but in stronger and stronger winds. The pattern gets more
pronounced and their wavelengths increase in stronger winds, with higher
crests and wider ripples. This is in agreement with Bagnold’s observations
[13], and consistent with the simulation results of Wang and Hu in [9, 8], who
also compared their results to Bagnold’s field observations.

Figure 6.2: Sand ripples in default wind (10 m/s).

Figure 6.3: Sand ripples in stronger wind (12 m/s).
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Figure 6.4: Sand ripples in strong wind (15 m/s).

As seen in Figure 6.1, the various unalterable terrain types under sand have
an interesting effect on ripple formation as sand grains accumulate differently
around obstacles and on flat surfaces. On an absolutely smooth surface,
ripples form freely, whereas a hump in the middle causes the grains to settle
on the leeward side from where they will hardly get caught up again by the
wind. Slightly more oblique ripples form on the side of a dune, as gravity
makes the grains to slide down on the slope. On the contrary, the ripples
become flatter, the higher they are on the slope in a shallow valley.

As mentioned in Section 5.3.2, there is an option to show height contours
on the sand surface, which can be seen in Figure 6.5. The dune shaped terrain
was chosen for this, as the oblique ripples on the side of the dune make for an
interesting sight. These lines can also be seen in Figure 6.6, which illustrates
the avalanche effect. The hump in the middle is too high for the sand to stay
on it too long, therefore it slowly flows down in a glacier-like fashion. Sand
grains can also be seen largely accumulating at the bottom of the windward
slope. The black parts are either a level area or the hard terrain with no sand
to cover it.

According to the information about snow, in a similar situation to Figure
6.6, with a reasonably steep hump or other obstacles, snow would show less
downward flow because of sintering. After a certain long enough period
(discussed in section 4.3), the snow particles would bond strongly enough
to become an erodable surface instead of a loose particle layer. It is safe to
assume, that this would lead to the formation of sastrugi and snow edges. As
for snow, the ripples on flat terrain would become flatter and also lower in
height, probably transforming into sastrugi after some time.
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Figure 6.5: Comparing the same patterns with and without contours (both
western wind, 10 m/s, 4000 iterations on dune shaped terrain).

Figure 6.6: Showing the avalanche effect on a steeper hump, from top view
allowing for better observation (western wind, 15 m/s, steep hump, after 1000,
2000 and 3000 iterations left to right). The black parts either mark a larger level
area or the unalterable terrain showing from under the sand, where all grains
have already fallen or been blown away.
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Chapter 7

Conclusion

The initial aim of this thesis was to achieve credible snowy landscape simula-
tions to be able to compare them with real snow features. However, this task
proved to be more complex than expected.

First, I thoroughly studied Wang and Hu’s [9, 8] sand simulation method
pursuing the idea to simulate snow features created by wind erosion. This
thesis presents an implementation of this method and then introduces the
presumably necessary new parameters that would have to be included for
snow. The Snow chapter gives a detailed summary of the information backing
the assumptions made about snow and providing a comparison of sand and
snow particles and their behavior.

The generated results prove that this implementation is functional and can
yield reasonably satisfying results, although not as sophisticated as Wang
and Hu’s in [9, 8]. However, I compare ripple formation on various terrain
types instead of introducing vegetation.

I believe this work provides an acceptable basis for further study of snow
particle movement and wind erosion on snowy surface, allowing for the
extension of my implementation.
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