
Bachelor thesis
Estimating the Parking Capacity

in Cities Using Aerial Images

Matouš Dzivjak

Supervisor: Ing. David Fiedler

Department of Cybernetics
Faculty of Electrical Engineering

Czech Technical University in Prague
May, 2019

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

469831Personal ID number:Dzivjak MatoušStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Computer and Information ScienceBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Estimating the Parking Capacity in Cities Using Aerial Images

Bachelor’s thesis title in Czech:

Odhad parkovací kapacity ve městech s použitím leteckých snímků

Guidelines:
1. Explore the possibilities of information extraction from aerial images with a focus on the traffic field. Additionally, study
the state of the art methods for parking capacity estimation from other data sources.
2. Create a short review of the methods for parking capacity estimation and information extraction from aerial images in
similar research areas.
3. Design the method for parking capacity estimation using aerial images.
4. Implement the designed method and test its accuracy on some publicly available dataset.

Bibliography / sources:
[1] H. Tayara, K. Gil Soo and K. T. Chong, "Vehicle Detection and Counting in High-Resolution Aerial Images Using
Convolutional Regression Neural Network," in IEEE Access, vol. 6, 2018.
[2] Q.Wu, C. Huang, S.Wang,W. Chiu and T. Chen, "Robust Parking Space Detection Considering Inter-Space Correlation,"
2007 IEEE International Conference on Multimedia and Expo, Beijing, 2007.
[3] K. Liu and G. Mattyus, "Fast Multiclass Vehicle Detection on Aerial Images," in IEEE Geoscience and Remote Sensing
Letters, vol. 12, no. 9, pp. 1938-1942, Sept. 2015.
[4] Volodymyr Mnih, Geoffrey E Hinton, "Learning to detect roads in high-resolution aerial images" in Computer Vision-ECCV
2010, Springer, pp. 210-223, 2010.
[5] T. Nathan Mundhenk, Goran Konjevod, Wesam A. Sakla, Kofi Boakye: A Large Contextual Dataset for Classification,
Detection and Counting of Cars with Deep Learning. CoRR abs/1609.04453 (2016).

Name and workplace of bachelor’s thesis supervisor:

Ing. David Fiedler, Artificial Intelligence Center, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2019Date of bachelor’s thesis assignment: 15.01.2019

Assignment valid until: 30.09.2020

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. David Fiedler
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Author statement for
undergraduate thesis:

I declare that the presented work was developed independently and that I have
listed all sources of information used within it in accordance with the methodical
instructions for observing the ethical principles in the preparation of university
thesis.

Prague, date.............. signature

v

Acknowledgements:

I want to thank Ing. David Fiedler for his valuable advice, factual comments, and
helpfulness in the bachelor thesis consultations and Martin Koryťák, for his
invaluable insight into the process of training neural networks. Furthermore, I
would like to thank my family and girlfriend, who supported me throughout my
studies and last but not least, the Czech Technical University for the provided
education and knowledge.

vi

Abstract

Estimating parking capacity from aerial images can be used for demographic
modeling, customer flow analysis, and city planning. This topic has a lot of
applications in both the commercial and government sectors. To accurately
estimate parking capacity, we need to count both occupied and unoccupied parking
spaces on streets and properties as well as in parking lots. We explore previous
research that focuses mainly on parking lots capacity estimation and thus does not
apply to many European countries where parking places exist alongside roads and
in front of houses. We design and implement a method for parking capacity
estimation from aerial images using neural networks focusing on the on-street
parking. We evaluate this method on data from Brno and Prague, Czech Republic.
Our parking capacity estimation method for individual streets achieves accuracy of
6.83%.

Key words: detection in aerial images, deep learning, parking capacity estimation,
aerial images, parking places detection

Abstrakt

Většina velkých měst je v dnešná době pokryta satelitními snímky ve vysoké
kvalitě, které se dají využít k analýze rozličných vlastností města. Jedna z možností
je ze satelitních snímků odhadovat parkovací kapacitu. V této práci nejdříve ve
stručnosti ukážeme předchozí výzkum na tomto poli, který pochází především z
USA a zabývá se hlavně kapacitou parkovišť, v tomto je charakteristika evropských
měst jiná, většina parkovacích míst se nachází na krajích silnic a tak tyto výzkumy
lze využít pouze omezeně. Dále navrhneme a naimplementujeme metodu pro odhad
parkovací kapacity z leteckých snímků pomocí neuronových sítí a evalujeme tuto
metodu na datech z České republiky.

Klíčová slova: detekce ze satelitních snímků, hluboké učení, odhad parkovací
kapacity, letecké snímky, detekce parkovacích míst

Contents

1 Introduction 1
1.1 Targets of this Thesis . 2

2 Problem Analysis 3
2.1 Object Counting Using Neural Networks 3
2.2 Car Detection . 4
2.3 Parking Spots and Parking Lots Detection 5
2.4 Data . 7

2.4.1 Tools . 9
2.5 Our Approach . 9

2.5.1 Car Detection and Parking Capacity Estimation 10
2.5.1.1 Object Detection With Deep Learning 10
2.5.1.2 Image Classification 10
2.5.1.3 Parking Places Counting 10

2.5.2 Street classification . 11

3 Car Detection 13
3.1 Dataset . 13
3.2 Neural Networks and Machine Learning 14

3.2.1 Convolutional Neural Networks 14
3.2.1.1 Regular Neural Nets 15
3.2.1.2 CNNs . 15
3.2.1.3 Convolutional Layer 16
3.2.1.4 Pooling Layer . 16
3.2.1.5 Fully-connected Layer 17

3.2.2 Network Architecture . 17
3.2.2.1 Resnet . 17
3.2.2.2 RetinaNet . 17
3.2.2.3 R-CNN . 18
3.2.2.4 YOLOv3 . 18

3.2.3 Neural Nework Accuracy . 19
3.3 Our Approach . 20

iii

4 Detecting Parked Cars 23
4.1 Dataset . 23

4.1.1 Data Augmentation . 24
4.2 Classification Network . 25

4.2.1 Network Architectures . 25
4.2.1.1 AlexNet . 25
4.2.1.2 Resnet . 25
4.2.1.3 Densenet . 25

4.2.2 Loss Function and Optimization Algorithm 26
4.2.3 Transfer Learning . 26

4.2.3.1 CNN as Fixed Feature Extractor 26
4.2.3.2 Fine-tuning . 27
4.2.3.3 When to use Transfer Learning 27

4.3 Training . 27
4.3.1 Metacentrum . 28

4.4 Results . 28
4.4.1 Fighting with Overfitting . 28

4.4.1.1 More Training Data 29
4.4.1.2 Batch Size . 30
4.4.1.3 Number and Size of Hidden Units 30

4.4.2 Discussion . 30
4.4.3 Statistical Classification . 31

4.5 Summary . 32

5 Parking Capacity Estimation 35
5.1 Street Classification . 35
5.2 Street Parking Capacity Estimation 35
5.3 Results . 37

6 Conclusion 39
6.1 Car Detection . 39
6.2 Car Classification . 39
6.3 Parking Capacity Estimation . 40
6.4 Future Work . 40

Bibliography 44

A More Experiment Results 45

B DVD Contents 47

iv

List of Figures

2.1 Orthographic views project at a right angle to the datum plane.
Perspective views project from the surface onto the datum plane
from a fixed location. 7

3.1 Showcase of our trained YOLT model showing detected cars over Salt
Lake City, Utah, USA. 14

3.2 Dimension transformation of input image in convolutional neural
networks.[20]. 15

3.3 Maximum pooling vs average pooling 16
3.4 Architecture of RetinaNet. 18
3.6 Comparison of different detection frameworks.[31] 19
3.5 YOLO detection network has 24 Convolutional layers followed by 2

Fully-connected layers. Image taken from[31] 19
3.7 Intersection over Union (IoU, or Jaccard Index) visualy explained. . 20
3.8 Dependence of F1 score on GSD.[11] 21
3.9 Different pictures over Prague and accuracy of our detector. Green

squares are driving cars and blue squares are parked cars as deduced
from the information about parking zones. 22

4.1 Examples of patches of cars with context (real size 25× 25 m). . . . 23
4.2 Training progress of ResNet and DenseNet architectures on augmented

data. 29
4.3 Histograms of distances to the nearest road by road type and car class

for 4 street types with highest car count. 32

5.1 Process of estimating the length of the street that is available for
parking. The red line is the center of the street and places where
it is split into individual parts. Black lines are segments that were
removed from the length of the road. Blue lines show perpendicular
lines from the detected car to the street. Slight inaccuracies are caused
by transfering between coordinates and pixels. 36

5.2 Streets with on street parking showing datacted cars with their
classification and predicted parking capacity. 38

v

A.1 More streets with on street parking showing datacted cars with their
classification and predicted parking capacity. 46

vi

List of Tables

4.1 Size and error rate of training dataset for car classification neural
network . 24

4.2 Car classification by nearest street type. Our occuracy for given street
type and number of cars for driving and parked class. 31

5.1 Street parking type classification results. PPC stands for Parking
Places Count. 37

vii

Abbreviations:

GSD Ground Sample Distance

YOLO You Only Look Once

COWC Cars Overhead With Context

YOLT You Only Look Twice

SIMRDWN . . . Satellite Imagery Multiscale Rapid Detection with
Windowed Networks

GIS Geographic Information System

mAP mean Average Precision

FPN Feature Pyramid Network

OSM Open Street Maps

viii

Chapter 1

Introduction

Parking capacity estimation from aerial images has multiple use cases in a
humanitarian and commercial domain. Urbanization and city growth is associated
with a loss of green space and wildlife habitat.[18] Better knowledge of parking
capacity in individual city areas would allow for better planning of city growth and
minimization of parking lot areas necessary for smooth transportation and parking.
Furthermore, the solution would also make it possible to locate the most crowded
places and allow urban planners to address the shortcomings and in the future
provide vital information for autonomous fleet routing.

Searching for parking spots also imposes a significant economic burden with
drivers in the U.S., Germany, and the U.K. wasting on average 34 hours a year
when searching for a parking place at an estimated cost of e136.4 billion.[1]
Accurate knowledge of parking capacity thus provides vital information not only
for the government but for the commercial sector as well.

Parking capacity detection would allow people to find parking during high traffic
hours easily. In less populated areas, cities could easily plan where to build the next
parking lot to maximize its usage and minimize the distance from areas that need
parking the most. In commercial domain parking lot owners could easily plan new
parking lots and adjust their costs to match the demand in the given area.

Existent business problems that may benefit from this research include
demographic modeling and customer flow analysis, which is useful mainly for those
in the retail sector, festival and conference organizers, and governments. Parking
places and parked cars detection can be used to monitor peak business hours by
counting the number of parked vehicles at a given time and also, if accurate
enough, to extrapolate useful customer information such as marital status, income,
and even political inclination classifying the types of vehicles the people
own.[42][29]

In future GPS navigation could automatically detect free parking places and
navigate you there. Finding a free parking spot is a tedious process, especially
during working hours. Studies of cruising in busy downtowns have found out that
it takes around 7 minutes to find a vacant space, and that 35 percent of the traffic

1

is cruising for parking which sums up to over 30 extra kilometers each year to find
curb parking space.[35] Drivers are also willing to pay more for on-street parking if
it is closer to their destination making the subject of parking capacity estimation
interesting for a commercial sphere as well.[22]

A few big problems arise when working with satellite images. One is that vehicles
in the imagery are usually tiny; around 20px in size, which makes it harder to extract
features and abstract on top of low-resolution objects. Next, the objects can be
rotated in any way around the unit circle. Input images are huge, ranging in size
from tens to thousands of megapixels. Loading them and working with them as
a whole in memory is often very complicated and as such other workarounds need
to be used, such as splitting images into smaller patches or intentionally lowering
their resolution. Last but not least, there is a relative scarcity of data, which makes
training neural networks on aerial images hard. Many efforts in recent years try to
improve this issue and provide free and open source datasets; example be Imagenet
project that provides one of the biggest and well-known datasets for image recognition
and classification.

On the other side, satellite images have some real properties as well. The scale
of the object (in pixels in meters) is usually known in advance. The observation
angle stays mostly the same, and in orthophoto images, there is not an observation
angle all. These properties help with the configuration of neural networks and make
detection tasks easier.

1.1 Targets of this Thesis

The target of this thesis is to create a complete method for parking capacity
estimation over a given area with the main focus on on-street parking. We focus on
on-street parking because it is the least researched part of this problem and
provides the most prominent space for improvement. We suggest a few different
approaches to this problem and discuss their benefits and shortcomings. We show
the reasoning behind these methods and how they build on previous work that is
described in the same chapter. We describe the state of the art methods for vehicle
detection, parking lot parking spaces detection, and capacity estimation and object
counting in images. Then we implement a method for parking capacity estimation
and finally test our approach on the city of Prague and estimate its accuracy.
Throughout this thesis, we introduce the topic of object detection in general,
machine learning and methods for working with aerial images.

2

Chapter 2

Problem Analysis

The problem of object detection and counting in aerial images has gained its
popularity in recent years thanks to better availability of aerial images and
improvement in their quality. Still, scarcity of well-annotated data sets of objects
in aerial scenes complicates the efforts, and this is especially true in our case, where
the dataset of parked cars does not exist at all. It is the same when it comes to
research conducted in this field. We found many papers dealing with the problem
of parking spot detection (Gou Koutaki and Uchimura [14], Young-Woo Seo and
Urmson [41], Yu [42]) but all of them assume that the parking places are part of a
parking lot. These facts drove our decision in the method design as we explain later
in this chapter 2.5.

Due to the lack of research on parking places detection and counting, we decided
to divide the task into sub-tasks that were either entirely or partially solved and
which could further serve as a basis for our method. We decided that the following
methods could serve as building blocks for our method.

2.1 Object Counting Using Neural Networks

First, we looked into object counting in images, which would be the easiest and most
straightforward path to take as one method would do all the work.. . .

Santi Seguí and Vitriá [34] explored 2 different approaches to object counting in
images in his paper. First, training an object detector, and second, training an object
counter. As written in the paper, for the first method to work, we need a broad set
of objects examples with correct labels and localization. In the second case, the only
thing that is needed is the number of objects instances in the image. They trained
CNN to count handwritten digits in the image. Using the dataset of handwritten
digits1 to synthesize the training images, they achieved accuracy of 93.8%. They also
tried their method on the task of counting pedestrians in surveillance cameras. On a
dataset of 200,000 synthetic images base network achieved 0.74 mean absolute error
and 1.12 mean square error. These results sound promising; what made us unsure

1MNIST dataset, http://yann.lecun.com/exdb/mnist/

3

about using this method is the distinction between parked and driving cars. The
difference between these two is small and mainly in details and although the network
in this paper learned the distinction between odd and even numbers it needed a
tremendous amount of data, extensive training, and the training images were several
times smaller than the satellite images we will be using.

The process of counting objects using CNNs is also theme of work by Wang et al.
[38] and Boominathan, Kruthiventi, and Babu [3]. Both teams developed methods
for densely packed objects counting; in both cases, people in the crowd. Accuracy in
both papers was low, and the task of counting densely packed objects proved to be
harder than expected. This method could be used for estimating the count of parked
cars in parking lots where the vehicles are densely packed. However, the accuracy
in the mentioned papers was low, and we believe that there is a little chance of
significant improvement. Furthermore, this would solve only part of the problem
of parking capacity estimation, and we would need to use more methods to count
on-street parking cars and parking places as well.

2.2 Car Detection

Splitting the task into individual sub-tasks brings us to the problem of car detection
in general. Many new methods for processing of large images emerged in recent
years, and new hardware makes this processing fast and affordable. Modern detection
frameworks work at an astonishing and can detect objects on an area of one square
kilometer per second[9] compared to approximately 1 minute for a square kilometer
with lower resolution and accuracy in 2001.[10][28] These speeds could be used for
near real-time surveillance and monitoring as well as make any reconnaissance faster
and cheaper thus more lucrative for commercial use. The current state of the art
CNNs can not only classify the images as a whole but also find multiple objects and
their bounding boxes. We discuss a few of them here, namely RetinaNet 3.2.2.2 and
YOLOv3 3.2.2.4.

Before the emergence of deep learning and neural networks, hand-crafted features
combined with a classifier were the mostly adopted ideas to detect cars in aerial
images. Even so, the hand-crafted features cannot generalize, and the resulting
classifiers need to be modified to adapt to new features.[40] Methods using hand-
crafted features can be divided into two groups, appearance-based and feature-based.

Appearance-based methods for object detection use example images (templates)
of the object to perform recognition and detection. As the object in different images
might have different lighting, viewing angle and size and shape, one template usually
is not enough and the set of templates that the detection framework checks against
quickly grows. In appearance-based methods belong methods such as edge matching,
divide-and-conquer search, histograms of receptive field responses, etc.[37]

Feature-based object detection includes methods that compute abstraction of
the image and make a local decision at every point of the image, whether there is a
feature or not. Features can be edges, corner (interest points), and blobs (regions of

4

interest points). Once the features are detected, they are extracted to the so-called
feature vector. Resulting feature vector is then compared to the feature vector of
the template and if a certain threshold of matching features is met, a positive match
is returned.

Feature-based methods were used in the first attempts to detect cars in aerial
images, which come from the start of this millennium when images were only in
greyscale, and the resolution was low. Zhao and Nevatia [43] firstly did a
psychological experiment on human subjects to determine what features we use to
detect cars in aerial images. They found out that the most important is car
boundary, windshield, and the shadow of the car. They used these features and
tried to detect them in various positions in the image to identify a car. As
mentioned before, this approach worked but needed to be modified to new features
and tasks.[28]

In recent years, the detection slowly evolved to the usage of neural networks. Yang
et al. [40] worked with more modern approach. They modified R-CNN (described
in 3.2.2.3), a particular type of neural network, using ResNet architecture as the
backbone of their method (4.2.1.2). Their network learned on images with 10 cm
GSD and achieved a recall rate of 89.44%, precision rate 64.61% and F1 score 0.75.

Paper by Etten [10] presents The Satellite Imagery Multiscale Rapid Detection
with Windowed Networks (SIMRDWN), the current state of the art detection
network. This network is an upgrade of the YOLO detection framework (3.2.2.4)
tuned for aerial and satellite images. It follows the Tensorflow object detection API
and builds on top of Darknet2. SIMRDWN further handles large splitting images
into smaller chips (416 pixels by default) as well as combining these chips back
together after detecting target objects.

One article which explores the problem of object detection from aerial images
from all the perspectives was recently released by Alouini [2]. They participated in
the Kaggle’s Airbus Challenge where the task was to detect ships in aerial images.

Etten [8] also has a great series of articles about aerial object detection, data
preprocessing for the detection frameworks and also about the YOLO and
SIMRDWN frameworks 3. These articles first describe the detection of boats and
airplanes, then detection of cars, and finally analyze in detail the effect of
resolution on deep neural network image classification accuracy. Codes from these
articles are also publicly available on GitHub3.[8]

2.3 Parking Spots and Parking Lots Detection

While there are many papers focused on detecting and tracking occupation of
parking places, most of them work with images from cameras on parking lots
(Jordan Cazamias [19]) or can be used on parking lots only. That is

2Darknet is an open source neural network framework written in C and CUDA.
https://pjreddie.com/darknet/

3https://github.com/avanetten/yolt

5

understandable for countries like the USA where most vehicles actually park in car
parks, but not for European countries where cars often park along the roads or on
parking places unmarked by lines. Our method will need to detect parking spots in
parking lots as well as alongside the road or in the driveway of a house.
Throughout this paper, we will focus mainly on the on-street parking since the
problem of parking lot detection has already solutions with sufficient quality.[1]

An interesting approach is shown in Gou Koutaki and Uchimura [14], and
although it aims mainly for parking lots, many facts and steps can be applied to
our problem as well. Their team took a closer look at the geometric properties of
parking lots. They created a pipeline in which they pre-process the data to make
the cars better visible, detect cars and parking spaces, and then merge this data.
Parking columns and parking rows are then estimated based on the various vehicle
and parking space candidates extracted in the previous step of the pipeline. They
are then grouped based on the geometric parking lot model, and the whole schema
of the parking lot is created. Even if methods from this paper could not be used for
onstreet parking places detection, they can prove useful for parking capacity
estimation.

Gou Koutaki and Uchimura [14] use a DSM (Digital Surface Model). DSMs can
be obtained through UAVs or drones with infrared cameras4 or laser scanners. For
vehicle detection, they presume a fixed scale of all the images and use a Haar-like
detector and AdaBoost. A Haar-like detector considers adjacent regions at a specific
area in a detection window, sums up the pixel in each region and calculates the
difference between these sums; this creates feature of the given region. AdaBoost
then takes care of classifying and detecting cars based on these features by assigning
each feature its weight in the process of training; the result of the classification is
a weighted sum of the features. For parking space detection, they used template
matching (2.2) with manually created template models for white and yellow lines.
They further modified the templates by artificially adding shadow to the templates to
adjust for parking spaces with missing bounding lines. In the last step, the grouping
of previously detected parking spaces and cars is applied. They group parking places
based on the distance of their centroids and add a margin to account for imperfect
detection methods; other methods are used as well to handle the imperfections in
detections. This complicated method achieved outstanding results and would be a
perfect fit for parking lot parking capacity estimation.

Young-Woo Seo and Urmson [41] describes another approach that uses multiple
image processing steps such as line extraction, line clustering, and (parking) block
prediction. Then parking extrapolation and interpolation were used to extend the
detected areas to the whole parking lot. This approach again works with the
assumption that the parking places are clearly marked by lines, although with
worse results then Gou Koutaki and Uchimura [14].

All the mentioned papers and research achieved good results and accuracy, but
they all work only with parking lots and omit the parking places on streets alongside

4They used eBee drone by senseFly

6

roads. This is not a big deal in the U.S.A. where the majority of the parking places
are in parking lots, but in Europe, where the parking is primarily on streets and
properties these methods would not work.

2.4 Data

Data are as important as the methods that we use.[4] For our research, aerial
images and street annotations and properties are the most important data we need
to obtain. We obtain geographical data of the road network over areas of interest
from OpenStreetMap (OSM)5, a collaborative editable map of the world.
OpenStreetMap works similarly to Wikipedia but for maps, it supports public
contributions, and the content is freely available. This data contains the whole
street network and street types and names.

The images that we work with are mostly adjusted to being orthographic.
Orthophoto or orthographic images is satellite imagery that is geometrically
corrected so that the scale of objects in the image is uniform. The exact distance
can be measured in such images, and there is no perspective in these pictures.
Difference between orthographic images and image with perspective is shown in
figure 2.1.

Figure 2.1: Orthographic views project at a right angle to the datum plane.
Perspective views project from the surface onto the datum plane from a fixed
location.

Before we describe datasets of satellite and aerial images, it is important to
explain the GSD and OpenAerialMap platform. GSD (Ground Sample Distance) is

5https://www.openstreetmap.org/#map=18/49.57747/14.53958

7

the distance between pixels measured on the ground level. For example, images with
30cm GSD which we use in this paper mean, that the adjacent pixels in the image
are 30cm apart on the ground. OpenAerialMap is a service that provides open access
to a commons of openly licensed map layers and imagery. It is open to the public,
and anyone can contribute and access data on this service.

One very recent and popular dataset is a dataset of Zanzibar satellite images
collected via the Zanzibar Mapping Initiative6. It is available on OpenAerialMap
with the resolution of 7.5 GSD. This dataset has no annotations for cars, only for
buildings and roads. These labels could be manually created to obtain a
high-resolution dataset of a large area with many cars. Although the higher
resolution might help with car detection and would be more precise, it is proven
that the difference is insignificant for our needs. F1 score degrades only by 5% as
the resolution changes from 0.15m to 0.60m GSD. We will have this dataset as a
backup option to either visually estimate the accuracy of our method or to add
annotations and use it to extend our training dataset.[11]

Another large dataset is DOTA (A Large-scale Dataset for Object Detection in
Aerial Images). Xia et al. [39] describes the DOTA dataset, which is a large dataset
of aerial images with annotated objects such as cars, ships, planes, soccer fields, and
more (15 categories in total). This dataset has not only bounding boxes but also
their angle from the horizontal direction of the standard bounding box which proves
to be more difficult to detect (they compare results with the YOLOv2 framework
and achieve half the accuracy on cars compared to bounding boxes without angle).
In contrast with COWC it contains 2 806 large images (800-4000px) and 188,282
bounding box instances. These images were collected from various platforms with
multiple resolutions. As this dataset was released only two years ago, there are still
not many articles about the performance of individual detection frameworks on this
dataset except the comparison in the paper itself, which is the reason why we went
with the COWC dataset instead.

DigitalGlobe, a yearly organizer of SpaceNet challenge, provides a lot of freely
accessible data as well. These data are collected and provided by DigitalGlobe
partners, among theme are big companies like Mapbox. Previous year the challenge
was to detect road network; this year the task was to discover off-nadir buildings.
Sadly, no dataset with annotated cars was provided yet, but at least these images
might be used to test and estimate the quality of our detection method on different
kinds of data. Russakovsky et al. [33] describe more in-depth (worthy 43 pages) the
origin od ImageNet dataset and its contribution to the research of classification and
detection of objects in aerial images. Methods for collecting and annotating
datasets of such size are thoroughly described.[36]

The dataset that will be used the most throughout this thesis is COWC (Cars
Overhead With Context)7, which was assembled by members of the Computer
Vision Group within the Computation Engineering Division at Lawrence Livermore

6http://www.zanzibarmapping.com/
7https://gdo152.llnl.gov/cowc/

8

National Laboratory. It contains aerial images at 15 cm per pixel resolution (15 cm
GSD). This dataset contains images from six locations: Selwyn New Zealand,
Potsdam, and Vaihingen (Germany), Toronto (Canada), Columbus and Utah
(United States). In total, there are 32 716 annotated cars. The data is collected
from other aerial platforms then satellites but resembles satellite imagery in its
properties (nadir view angle, orthorectified). Data labels are images of the same
size as the satellite image, all black with white pixels denoting centroids of
annotated cars.

Even though all of these datasets provide a strong foundation for training
classifiers, they miss for us crucial class of objects which is parked cars. These data
sets can be used to train car detection framework which we will do in 3, but for the
task of detecting parked cars only, we will have to search further or create our
dataset.

2.4.1 Tools

Visual data are challenging to work with without specialized tools. For manual
analysis and to visually examine the data we use QGIS, a free and open-source
desktop GIS application.8 GIS (Geographic information system) is a system for
satellite imagery manipulation, analysis, editing, viewing, and storing. GIS can
relate multiple data sources using location as the key index and in general, makes
the work with aerial imagery easier and quicker.

2.5 Our Approach

As we have shown several methods were used before to detect parking places or
parked cars, and although these methods provide insight into what might and what
might not work, they mostly work with parking lots and vehicles on parking lots.

The first method that we propose and that will be implemented and throughout
tested further in this thesis is multi-step pipeline which first detects cars then
classifies these cars based on the broader context (their surroundings) and then
estimates the number of parking places in the given area either using statistical
methods and the number of detected parked cars or by extrapolating parking
spaces along the roads. This method was chosen because it separates the problem
into individual steps that can be further optimized and that were already solved
before with sufficient quality and accuracy or at least similar research already exist
in the given topic. For car detection, we will use the YOLO framework (3.2.2.4),
which achieves excellent results on cars. For classification, multiple image
classification methods will be used and compared (4).[30][8]

The second method builds on the assumption that parking type is usually the
same on the whole street segment; for example, there’s perpendicular parking
alongside the entire street. We can then classify the whole street segment and

8https://www.qgis.org/en/site/

9

determine the parking style, then use statistical methods to estimate the parking
capacity as multiple of parking spots per meter for given street parking type and
length of the segments in meters. This method is shorter and more comfortable to
implement but introduces few caveats. For example, the length of street segments
varies a lot, and we would have to train the neural network to either classify the
parts regardless of its size, or to classify longer sections on more places, and that
combine these classifications.[5]

Other methods could be attempted as well. For example, detecting empty
parking spots using the lines around them. This method would need higher
resolution images than that are currently available as the lines have lousy visibility
on the most commonly available resolutions of satellite images and most are absent
on the streets altogether. Other than that, we could try detecting parked cars right
in the detection neural network in the first proposed method.[14]

2.5.1 Car Detection and Parking Capacity Estimation

Here we in detail describe individual steps of the method that we proposed as our
primary objective.

2.5.1.1 Object Detection With Deep Learning

In our proposed method, we build on top of car detection in aerial images. As this
is the first step on which the rest of the pipeline depends, it is essential to achieve
sufficient quality and provide excellent and accurate results for the following classifier.
We can build on top of the work already done by many teams in competitions and
research.[24][36]

2.5.1.2 Image Classification

With detected cars and thanks to data provided by Czech Geodetic and Cadastral
Office9, we can easily split recognized cars into two classes - parked and driving,
which can be easily done. We classify the car as parked if it layers within any of the
parking zones. With this dataset, we train the classifier.

2.5.1.3 Parking Places Counting

Counting parked cars would not be enough to accurately predict the parking capacity
of the given area as it leaves empty parking places out. Empty parking places are hard
to detect hence it is easier to classify the type of parking for given street segments
and then use it to estimate it is parking capacity or uses available statistics to count
the number of parking places from the number of parked cars or even the number of
vehicles detected in a given area.

9https://www.cuzk.cz/

10

2.5.2 Street classification

Another method we proposed and that we will examine further is the classification
of street segments. Street segments can have parking either on one or on both sides
(or no parking at all). And the parking can be parallel or perpendicular. We decided
to keep this method as our second option as it is harder to create a dataset for the
training of the neural network.

11

Chapter 3

Car Detection

The first step in our pipeline is car detection. The detection of vehicles in aerial
images has caught increasing attention in both academic and industrial fields and is
widely applied in many applications, e.g., vehicle tracking, traffic monitoring, parking
lot analysis, and planning, etc. We decided to use state of the art YOLO framework
(3.2.2.4) for the detection and large COWC dataset (2.4) to train it on.

3.1 Dataset

The AI can be only as good as the data.Canter [4] Data will be base of all our
methods whichever we decide to use. Following datasets are publicly available and
can be used for tasks related to transportation analysis.

For this part of the problem, we used the COWC data set that we described in
2.4. With one slight change; Vaihingen and Columbus images are in greyscale, and
as such, we will not use them for our research.

COWC dataset proved to be a good basis for car detection and counting in
numerous articles. Etten [8] showcases YOLT2 detection framework on COWC
dataset and achieved F11 score of 0.91± 0.09. He trained YOLT2 convolutional
neural network for four days; he discarded greyscale images from the dataset and
downsampled the images to 30m GSD which is justified by current best available
satellite images being of 30m GSD resolution as well. For training, all the locations
except Utah were used, which is 13 303 cars for training and 19 807 vehicles for
testing. The lower number of cars for training then for testing makes sense because
YOLT2 demonstrated consistent results even with small training sets.

Douillard [7] used COWC dataset in NATO innovation challenge. This
challenge was about making decisions in a landlocked country where a contagious
infection is spreading. The approach was left to the solvers, but one part of the
solution was car detection in satellite images that they used for the prediction of
traffic congestion. Instead of YOLT2, they used RetinaNet architecture which was

13.2.3

13

Figure 3.1: Showcase of our trained YOLT model showing detected cars over Salt
Lake City, Utah, USA.

published by Facebook FAIR2 in 2017 and the paper behind this architecture[26]
won the Best Student Paper of ICCV 2017 (International Conference on Computer
Vision).

3.2 Neural Networks and Machine Learning

As we decided to use neural networks for car detection, we will provide a brief
introduction to them, especially to convolutional neural networks that are mostly
used for images.

3.2.1 Convolutional Neural Networks

Convolutional neural networks (CNNs/ConvNets) is a type of deep neural network
commonly used on images and photos. They are very similar to ordinary Neural
Networks. Neural networks are inspired by the human brain; they are made of
neurons. Each neuron has learnable weights and biases, it is, in fact, a function that
receives multiple inputs (numbers), performs a dot product, adds bias, optionally
uses non-linearity and outputs a number that is used further in the network. The
base idea is that we can train the neuron in the sense of setting weights to individual
inputs such that the function provides useful information that can be used further
in the network. It can be things such as detecting edges or shapes.

2https://research.fb.com/category/facebook-ai-research/

14

Figure 3.2: Dimension transformation of input image in convolutional neural
networks.[20].

3.2.1.1 Regular Neural Nets

Regular Neural Networks receive a single vector a through series of hidden layers
transform it. Each hidden layer is made out of individual neurons that are fully
connected with all neurons in the previous layer. Neurons in any single layer function
independently; they do not share weights or connections. The last layer called the
"output layer" and represents class scores.

Regular Neural Networks scale badly to full images. For example for image of
size 64× 64× 3 (64 pixels in height and width and 3 channels for colors - red, green,
blue) neuron in first hidden layer would have 64 × 64 × 3 = 12 288 weights which
does not seem like much, but the problem of scaling to images of bigger sizes can
be seen. Image of commonly used size 1 920× 1 080× 3 would cause the neurons to
have 1 920× 1 080× 3 = 6 220 800 weights. Furthermore, we would use more of these
neurons, and the weights would add up quickly. We can see that the full connectivity
is wasteful, for single layer processing full HD image we have 6 220 800 weights and
neural networks can have multiple layers with this size, and that a large number of
parameters would cause overfitting.

3.2.1.2 CNNs

Convolutional Neural Networks build on the fact that the input is an image. Unlike in
Regular Neural Networks, the layers in CNNs have neurons arranged in 3 dimensions
- width, height, and depth3.

Convolution neural network consists of 3 types of layers: Convolutional layers,
Pooling layers and Fully-connected layers as in standard multilayer neural network.
The benefit of CNNs is that they are easier to train and have fewer parameters than
fully connected networks whiles keeping the number of hidden units the same.

3depth is the number of channels/colors that the image has

15

3.2.1.3 Convolutional Layer

The convolutional layer, as the name suggests, is the core building block of
convolutional neural networks. The convolutional layer consists of a set of filters.
Every filter has a small spatial size4 but is applied through the full depth of the
input channels. A typical filter can, for example, have a size 5 × 5 × 3 (5 pixels
width, 5 pixels height and 3 for all three color channels). The filter is then slid
(convolved) across the whole image and computes the dot product between input at
any position and filters weights. As we convolve the filter we get a two-dimensional
map with activations of the filter (response of the filter to the input at every spatial
position). Intuitively the filters will be trained to detect some features such as
color, edge, or orientation on the first layer and gradually more sophisticated
features such as wheel-like or eye-like patterns on higher layers in the network. We
will have multiple filters in each layer, and each filter will produce its map. We will
stack these maps along the depth dimension and create new output volume.

3.2.1.4 Pooling Layer

The pooling layer is usually periodically inserted in-between convolutional layers to
reduce the number of parameters, to progressively reduce the volume of the
representation, and therefore to also prevent or control overfitting. The pooling
layer works on all depth slices independently and reduces their size spatially using
either MAX or MEAN operation (the latter being used rarely). The most
commonly used pooling filter is of size 2 × 2 and is applied with a stride of 2. The
filter downsamples every depth slice to half width and half height, thus reducing
the size to 25% (in other words, discarding 3/4 activations). MAX operation would
take a maximum of the four activations (2 × 2) and MEAN operation would take
the mean. Pooling leaves the depth dimension unchanged.

Figure 3.3: Maximum pooling vs average pooling

4small size compared to the size of the input

16

3.2.1.5 Fully-connected Layer

As in regular neural networks, neurons of the fully connected layer have connections
to all activations in the previous layer. Hence the activations are computed using
matrix multiplication and adding the bias.

3.2.2 Network Architecture

As described before, convolutional neural networks are made up of three types of
layers: convolutional, pooling, and fully-connected. These layers follow some
patterns when being stack together to form whole CNNs. The most common CNNs
stack a few convolutional layers followed by the pooling layer, repeat this pattern
until the spatial size is small enough. Then the network transitions to
fully-connected layers and the last of fully-connected layers hold the output such as
class scores. Object detection architectures are split into two categories:
single-stage and two-stage.

Two-stage architectures first classify potential target objects into two categories:
Foreground and background. Then all the foreground’s potential targets are classified
into the desired classes, such as cat, dog, airplane, etc. Two-stage architecture is thus
slower but more accurate. The most famous two-stage state of the art architecture
is Faster-RCNN.

Single-stage architecture classifies objects in the first pass. It is, in general,
faster but less accurate nevertheless with the advancement and further research,
both architectures currently are on par and achieve similar results in a similar time.
RetinaNet and YOLO object detection frameworks belong here.[15][30]

3.2.2.1 Resnet

ResNet is an architecture of a convolutional deep neural network released in the year
2015. As we will use this architecture in step two (4.2.1.2) we will discuss it further
there.[15]

3.2.2.2 RetinaNet

RetinaNet is the first neural network architecture we considered for the training of our
detector. It uses Resnet at its core but instead of taking ResNet’s last feature maps
(of shape 7×seven×2048), using average pooling and feeding the result into a Fully-
connected layer, it adds Feature Pyramid Network. RetinaNet picks feature maps
from different layers inside ResNet and uses them as rich and multi-scale features.
As the smaller feature maps are too crude, RetinaNet first upsamples them to the
size of bigger feature maps and then takes their sum. Each of the FPN encodes at a
different scale different information hance all the feature maps contribute to the final
object detection. FPN takes the output of the third (512 channels), fourth (1024
channels), and fifth (2048 channels) layers of ResNet.[26][25][7]

17

At each level of FPN, several anchors are moved around the feature maps.
Anchors are base frames in which the object is being detected. RetinaNet uses five
sizes and three different ratios for the anchors, thus using 15 unique anchors scaled
accordingly to the spatial dimensions of the FPN level where they are being
used.[26][7]

All the previous features have been used before. What RetinaNet introduced
that made it state of the art detection framework was Focal Loss.[26] Traditional
single-stage architectures are usually overwhelmed by the background objects that
are often selected as a potential target object. Focal Loss deals with this by giving
well-classified examples lower weight hence forcing the model to learn on harder
examples.[26][27]

Figure 3.4: Architecture of RetinaNet.

3.2.2.3 R-CNN

R-CNN is another detection system that works in two steps. In the first step, regions
of interest are proposed using features-based detection method 2.2. Its second step
it classifies these regions. R-CNN creates region proposals using Selective search
- it looks on the image through windows of different scales and sizes and for each
window tries to group adjacent pixels by color, texture, or intensity. Once proposals
are created they are warped to square size and passed to AlexNet, classification
neural network.[12][32]

3.2.2.4 YOLOv3

YOLOv3 (You Only Look Once version 3) is another state of the art, real-time, object
detection system. Instead of applying classifier or localizer on multiple scales and
locations on the image, YOLOv3 applies a single neural network to the full image.
The network itself divides the image into smaller regions and predicts probabilities
and bounding boxes for each region. Schema of YOLOv3 architecture is in figure
3.5. This approach has one significant advantage, and that is that the network
looks at the whole image and thus can create predictions that are informed by the
global context in the image. Furthermore, unlike some other systems such as R-
CNN, this network is evaluated just once over the whole image. Evaluating just once

18

Figure 3.6: Comparison of different detection frameworks.[31]

makes YOLOv3 extremely fast, which makes both the training and detection faster.
Comparsion of accuracy and inference speed of YOLOv3 with RetinNet is shown in
figure 3.6.[31][30]

Figure 3.5: YOLO detection network has 24 Convolutional layers followed by 2 Fully-
connected layers. Image taken from[31]

3.2.3 Neural Nework Accuracy

It is important to know the accuracy of a neural network on a given task, but when
it comes to measuring the quality of the neural network or detection framework

19

accuracy is not the only measure, many methods and formulas exist. Precision
precision in detection frameworks means how many of our positive predictions are
correct 3.1. Recall measures how accurate we are finding the positives 3.2. F1 score
combines precision and recall into one statistic. It is the harmonic average of the
recall and precision 3.3. IoU (Intersection over Union), also known as the Jaccard
index, measures how much our predicted region and the ground truth region overlap
3.7.5 mAP (Mean Average Precision) is a metric for the measure of the accuracy of
object detectors. The mAP is the average of the maximum precisions at different
recall values.[17]

Precision =
TP

TP + FP
(3.1)

Recall =
TP

TP + FN
(3.2)

F1 = 2× Precision×Recall

Precision+Recall
(3.3)

Where TP, FP, and FN denotate true positive, false positive, and false negative
respectively.

Figure 3.7: Intersection over Union (IoU, or Jaccard Index) visualy explained.

3.3 Our Approach

We used the YOLO framework for car detection. We trained it using the COWC
dataset with resolution reduced from 15m GSD to 30m GSD hence reducing the
overall size of the dataset by 75% (this step is justifiable because the F1 score and
accuracy change negligibly as shown in the figure 3.8) which made handling of the
data easier and training of the detector faster. Following article by Etten [8], we
trained the detector for four days on Cloud Engine (Google Cloud Platform) VM
with 4 cores, 14GB RAM and 1 NVidia tesla p100 GPU. We taught the network for

5https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-
detection/

20

2 200 epochs, but the accuracy did not change a lot from the 1000th epoch further.
Although they improved, slightly overall performance did not vary by more than 20%.
We then tested our network on the aerial images of Utah from the COWC dataset
achieving an F1 score of 0.91. We also tested the network manually on images of
the city of Prague. Overall performance on clearly visible cars was satisfactory but
streets of the Prague are more narrow with taller buildings than most of the images in
COWC dataset and as such it introduces new problem of some cars being in shadow
(partly or wholly) or being for example partially covered by the adjacent building
as not all the images available were fully orthographic and had some perspective
artifacts. Because of these conditions we detected 572 cars out of 697, about 82 %
of vehicles. The false-positive rate was low overall, and we identified only 20 non-car
objects like cars. We calculated this accuracy over ten randomly selected images
from Prague. Accuracy over the city of Brno was on par with Prague; 0.81 over ten
randomly selected images.

Figure 3.8: Dependence of F1 score on GSD.[11]

21

(a) Example of high accuracy of our
detector over urban area with little
to no shadow and clearly visible cars.

(b) Example of low accuracy of our
detector over urban area with narow
streets and cars partially or fully in
shadow.

Figure 3.9: Different pictures over Prague and accuracy of our detector. Green
squares are driving cars and blue squares are parked cars as deduced from the
information about parking zones.

22

Chapter 4

Detecting Parked Cars

In this section, we design a method that classifies the detected cars as driving or
parked based on the wider context - it is surroundings. We could statistically estimate
the number of parking places based on the number of detected cars alone ([6] provides
the number of parking places per car) But recognizing parked vehicles provides us
with more information. Also, it can help us better localize parking capacities.

Figure 4.1: Examples of patches of cars with context (real size 25× 25 m).

(a) Examples of parked cars.

(b) Examples of driving cars with context. Last image shows wrongly detected driving
car.

4.1 Dataset

Because we could not find a dataset of parked cars, we created such dataset ourselves
using the annotation of parking zones in Prague and Brno. We detected cars in the
annotated areas with our previously trained model for car detection and used the
parking zones data to put these detected cars into two categories: parked and driving.

23

class examples error rate
driving 8 577 19%
parked 49 569 2%

Table 4.1: Size and error rate of training dataset for car classification neural network

Data about parking zones contain 9 024 zones around the whole of Prague, mainly
in the city center. This data also includes the parking capacity of the given area and
its pricing. We wanted our data to be as clean as possible for the next neural network,
and thus we checked all the zones and fixed missing spots, added parking lots and
other areas where cars were parking. We added over 2 000 additional zones with a
total area larger than the original zones.

We then combined the data about parking zones with previously detected cars.
For each detected car we took its centroid and checked whether it lays within any
zone. This way we created a dataset for car classification with 49 569 cars; 40 336
parked and 8 577 driving. Thanks to the low false-positive rate and manually added
zones we were able to catch a lot of misclassified cars but we were not able to spot and
mark all of them thus the error rate was approximately 19% (9% wrong detections
that ended mostly in driving cars dataset and 10% parled cars classified as driving).
Even though almost 50 000 seems like a significant number, it is quite a small amount
for the training of the classifier. For example the ImageNet dataset contains more
than 14 million images in 20 000 categories[24].

4.1.1 Data Augmentation

Neural networks with a large number of parameters trained on a small dataset are
prone to overfitting. Overfitting happens when the neural network remembers the
training data and can classify them correctly while having a significant error on
testing data. This occurs when the neural network learns to recognize small details
and noise on training images, and these concepts do not apply to new data.

One of the methods to prevent the overfitting of the convolutional neural
network on a small dataset is data augmentation1. Data augmentation is an
artificial transformation of images to create new images for a dataset of small fixed
size. However, these transformations cannot be arbitrary because they would
confuse the convolutional neural network. For example, in the classification of
animals, horizontal flipping cannot be used. For aerial images, this option can be
used because the images are captured from the bird’s-eye view. All our images are
captured from constant height with constant zoom; as such, we can not use zoom
transformation. Shifting cannot be used as well because the car is always in the
center of the image. The rest of the transformations that we used is listed,
described, and showcased lower.

1https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-
tricks#data-processing

24

4.2 Classification Network

Convolutional Neural Networks have in the past years shown break-through results
in image classification tasks. In the section, we explain how convolutional neural
networks can be applied to classifying cars into two categories. We also introduce
3 state of the art architectures for neural networks, Resnet50 4.2.1.2, Densenet121
4.2.1.3, and AlexNet 4.2.1.1.

4.2.1 Network Architectures

We decided to try as many state of the art architectures as possible to find the one
that is best for our task. Thanks to the computational power of Metacentrum 4.3.1
we were able to run them with easy and continue our work while they were running.
We experimented with the following architectures.

4.2.1.1 AlexNet

AlexNet is named by its author Alex Krizhevsky. This architecture won the ImageNet
Large Scale Visual Recognition Challenge in 2012 and achieved a top-5 error of 15.3%,
which is more than 10.8 percent less than that of the second place. It was one of
the first deep neural network models, and the training was only made viable thanks
to the utilization of GPUs. AlexNet contains eight layers. The first five layers are
convolutional, some of them followed by max-pooling layers, and the last three layers
are fully connected layers.[23]

4.2.1.2 Resnet

Resnet came after AlexNets successes in the year 2015, and its authors tried to tackle
a few issues that came with deeper neural networks. Namely, the vanishing gradient
problem and the trainability of deep neural networks. The core idea of ResNet is
the introduction of so-called “identity shortcut connections” that skips one or more
layers. The basic version of ResNet consists of 34 layers. Each layer performs 3x3
convolution with a fixed feature map and every second layer bypasses the input.[15]

4.2.1.3 Densenet

Densely Connected Convolutional Networks (Densenet) solves the problem of slowly
vanishing information about input in deep neural networks by directly connecting all
layers with matching feature-map sizes. Each layer in the network obtains additional
inputs from all previous layers in the network and also passes to all forward layers
its own feature map. In contrast to ResNet, the weights are never summed before
passed to the layer; they are appended instead. The counter-intuitive effect of this
architecture is the lower amount of weights needed in the network. Authors of
Densenet further observed that dense connections have a regularizing effect, thus
reduce over-fitting of the network smaller data set sizes.[16]

25

4.2.2 Loss Function and Optimization Algorithm

The backpropagation algorithm was chosen to solve the problem. Since this is a
regression problem where the network tries to minimize the difference between the
actual class of the car and the predicted class, the loss function for this problem is
most often Binary Cross-Entropy, equation 4.1.[13]

Hp(q) = − 1

N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (4.1)

Where y is the label (1 for driving points and 0 for parked) and p(y) is the
predicted probability that the car is driving for all N cars.

Three optimizing algorithms, Nadam, RMSProp, and SGD, were used to
optimize the loss function. Optimization algorithms serve to find a suitable
(optimal) solution to a problem, especially when a mathematical description of a
problem solution is unknown. Nadam and RMSProp are adaptive optimization
algorithms, while SGD offers greater control over selected parameters such as
learning rate or momentum, which reduces the risk of deadlock at local minima and
increases the speed of convergence.2

4.2.3 Transfer Learning

Learning neural networks from scratch requires a vast amount of data and is rather
computationally demanding, requiring up to weeks of training. Instead, it is a
common practice to pre-train convolution network only once on a huge dataset
(e.g., ImageNet with 1.2 million images in 1000 categories) or use weights already
pre-trained and then use this pre-trained model as initialization or fixed3 feature
extractor for the given task. Many researchers release their final checkpoint for the
benefit of others who can then use these weights for fine-tuning on their own
dataset.[21]4

4.2.3.1 CNN as Fixed Feature Extractor

By taking CNN pre-trained on ImageNet, removing the last fully-connected layer
and treating the rest of the network as a fixed feature extractor for the new dataset,
we obtain a vector (called CNN codes) that contains activations of the hidden layer
right before the classifier. Once we extract these CNN codes for all images in our
dataset, we can train a linear classifier for the new dataset. This has the benefit of
faster training because the weights for the lower part of the network5 stay fixed. The
lower part of the network is also usually trained on large datasets such as Imagenet,
and thus the network learns to extract various features.

2http://cs231n.github.io/neural-networks-3/
3The weights are frozen, and only the upper part of the network is trained.
4http://ruder.io/transfer-learning/
5Lower part of the networks are the layers that the image is directly fed to.

26

4.2.3.2 Fine-tuning

Another method of transfer learning is Fine-tuning. In this approach, we not only
replace the classifier on top of the convolutional neural network that handles the
classification but we also unfreeze the weights of pre-trained model and train them
(fine-tune them) with the last custom layer(s) by continuing the backpropagation.
This also allows the rest of the network to fit the new data and adjust the recognized
features to fit the new data better.

4.2.3.3 When to use Transfer Learning

When deciding whether to use Transfer Learning on a new task, a few things matter
the most: The size of the dataset, which is compared relative to the size of the dataset
the network was initially trained on and the number of weights, and the similarity to
the original dataset, the network was trained on. In our case, the dataset is relatively
small and very different from Imagenet. Since the dataset is small, it is a good idea
to train just the top-most layer(s) and since the dataset is very different it might
work better if we do not train the dataset from top but instead from activations
earlier in the network.[21]

4.3 Training

We tested various architectures for the part of the neural network the extracts the
features, and for the fully connected layers that create the classification. We
worked with Resnet50 4.2.1.2, Densenet121 4.2.1.3, and AlexNet 4.2.1.1. For the
implementation, we use Tensorflow6 and Keras7 libraries in python, which allow us
to focus on the architecture and training itself and handles the underlying
mechanisms.

We started by training the detector based on ResNet with one fully connected
layer (512 wrights) and DenseNet with two fully connected layers (512 and 256
weights respectively). For both models, we used weights pre-trained on Imagenet
for the lower part of the network. We froze the lower layers to lower the number of
learnable parameters and to see whether at least some results can be achieved given
the small amount of training data.

6https://www.tensorflow.org/
7https://keras.io/

27

#!/bin/bash
#PBS -N train-densenet
#PBS -q gpu
#PBS -l select=1:ncpus=4:mem=16gb:ngpus=2:gpu_cap=cuda35
#PBS -l walltime=8:00:00
PYTHONPATH=$PYTHONPATH:"$DIR/workdir" python train_network.py

Listing 4.1: Bash script for network training with the virtual machine
configuration.

We trained on Metacentrum on a virtual machine with 16 GB ram, 4 CPUs and
2 GPUs. Each experiment took from 2 to 8 hours to run. Configuration of the
machine is part of PBS commands used to submit task into the computation queue
and is shown in 4.3

4.3.1 Metacentrum

All calculations related to network training were performed at the Metacentrum8.
The Metacentrum is a free project for academics and students. These users have
access to computing and storage capacity. The Metacentrum operates several
powerful computers across the Czech Republic. We used machines equipped with
NVIDIA GeForce GTX TITAN X graphics cards to train the convolutional neural
network. In addition to the graphics card, the cuDNN11 library is needed, which
effectively calculates common operations in deep neural networks. Tasks are
queued and run by PBSPro. The script used for training is shown in 4.3. As part
of this work, 228 days of processor time were used, and about 120 GB of storage
space was required to store all training images.

4.4 Results

When the first set of experiments finished, we witnessed an accuracy of 0.5 on testing
data for both networks, which is the same accuracy as if we decided the classes on
random. For ResNet, we see from the training data that the accuracy for training
data as well as for validation data was the same, e.g., 0.5 which means that our
neural network could not generalize from the data and did not learn anything. For
Densenet architecture, the training took another path. The network overlearned
almost entirely in the first epoch and achieved accuracy of 0.899 on training data,
but the accuracy on validation and testing data was still 0.5, which means that the
network over-fitted.

4.4.1 Fighting with Overfitting

The first experiments ended with bad results. We tried multiple things to prevent
overfitting and achieve better results with our network. We obtained more data

8https://metavo.metacentrum.cz/

28

using data image augmentation and adding images from the Brno 4.4.1.1. We tried
different batch sizes 4.4.1.2 to make the weight updates more random and enable
the network to escape local minima. We also tried different configurations network
configuration 4.4.1.3.

4.4.1.1 More Training Data

First, we try to boost the amount of data using Data Augmentation (4.1.1). For
each original image of a driving car, we create three augmented images using 0 to 5
augmentations in random order. This way we obtain a dataset with 40 336 parked
and 25 731 driving cars, in total 66 067. We augment only the driving cars to make the
dataset more balanced. Although it is possible to train the network on unbalanced
datasets using weights to compensate it is better to have balanced data.

Training with the augmented dataset showed only a slight improvement of 5%
with the Densenet architecture, we did not have a random classifier anymore but
classified 55% of the cars correctly. Although that is still a bad result, it showed us
that the assumption that the training dataset is too small was correct and that we
might get a better result with more data.

Figure 4.2: Training progress of ResNet and DenseNet architectures on augmented
data.

(a) DenseNet (b) ResNet

Next, we tried to obtain more examples of driving cars. We added data for Brno
that we left out previously because of their small size. This provided another 1 374
driving car samples. We also added more cars from Prague from areas that were not
used before because we were missing information about parking in these areas. To
obtain these cars, we detect all vehicles over the given region and took only the cars
that were close (< 1m) to a street on which cars never park, such as the highway.
We had to be very conservative with this approach in order not to add to many
misclassified cars. The distance of 1m and less had an accuracy of 90%, as shown in
the statistics in figure A.1a. In total, we added another 2 409 cars which summed up
to 32 958 driving car samples after boosting.

After training with the once again bigger dataset, the results again improved

29

only slightly, from 0.550 to 0.559 accuracy. We also tried this dataset with all the
architectures we mentioned (ResNet, AlexNet, etc.). All of them achieved worse than
Densenet with accuracy 0.56.

4.4.1.2 Batch Size

Using too large a batch size can hurt the accuracy of the network during training
because it reduces the randomness of the gradient descent. Using a smaller batch size
produces stochastic and choppier weight updates, which can have two positive effects.
Firstly, it can help the training to exit local minima in which it might have gotten
stuck previously. Secondly, it can cause the training to settle in flatter minima, which
generally indicates better generalization. We started training all networks with the
recommended batch size 16. After the first unsuccessful results, we tried both smaller
batch size (2, 4, and eight images per batch) and bigger batch size (16 images per
batch) without any significant influence on the training results except longer running
time for the smaller batch size and vice versa.

4.4.1.3 Number and Size of Hidden Units

In some cases, using too many or too few hidden units can make the network
challenging to train. With too few units the network might not have the capacity
to express the task required, and with too many, it may become slow to train. We
tried a different number of hidden units as well as a different number of FC layers.
For all architectures, we tried: 1 hidden unit connected to the last layer of
underlying feature extractor, One layer with 256, 512 or 1024 units connected to a
single unit that outputted the class, and two layers each with 256, 512 or 1024
units again connected to a single unit as the output. The larger number of hidden
units usually resulted in faster overfitting and divergence of accuracy on the
training and validation set. Smaller sizes tended to produce better results. The
best architecture used only 1 unit connected to the last layer of the DenseNet
model, the python model of this configuration is shown in 4.4.1.3.

model = Sequential()
model.add(DenseNet121(include_top=False, pooling=’avg’, weights=

’imagenet’))
model.add(Dense(1, activation=’sigmoid’))
model.layers[0].trainable = False
model.compile(optimizer=’Adam’, loss=’binary_crossentropy’,

metrics=[’accuracy’])

Listing 4.2: Python script with the setup of DenseNet model for training.

4.4.2 Discussion

The difference between the networks and the reason why one over-fitted while the
other did not learn anything, is most likely caused by the different architecture and

30

thus various features and their weights that are learned and that the network outputs
in the last layer. For Densenet, these features were different enough for our fully
connected layers to pick up the slight differences between images and overfit while
for ResNet the output most likely represented features that were similar between
images and from which the network could not generalize.

4.4.3 Statistical Classification

Although this part of our method failed, we wanted to continue our experiment.
The assumption is that with more resources and data, this part would be
successfully solved. To compensate for the classification neural network, we used
statistic methods to classify the cars. For each detected car, we found the nearest
street segment as obtained from OSM. We then separated the cars by the type of
the closest street. Four main categories with the highest car count were residential,
primary, secondary, tertiary (descriptions of the types can be found on OSM wiki9).
Histograms with a description of individual street types are shown in figure A.1.
For each street type we then the select distance from the street, where cars under
this distance are classified as driving and cars further are classified as parked. This
distance is selected based on the available data to provide the best possible result.
Accuracy of this method was 0.881. Accuracy for individual street types is in
table.4.2.

Street Type Cars Count Accuracy Driving Cars Parked Cars
residential 26532 0.908 2445 24087
tertiary 4456 0.831 1164 3292
secondary 3134 0.752 1722 1412
primary 2317 0.845 1697 620
trunk 572 0.862 376 196
living_street 323 0.882 39 284
secondary_link 109 0.972 67 42
trunk_link 90 0.889 70 20
primary_link 88 0.898 72 16
unclassified 34 0.853 6 28
tertiary_link 13 0.923 10 3

Table 4.2: Car classification by nearest street type. Our occuracy for given street
type and number of cars for driving and parked class.

9https://wiki.openstreetmap.org/wiki/Key:highway

31

Figure 4.3: Histograms of distances to the nearest road by road type and car class
for 4 street types with highest car count.

(a) Residential; roads accessing
residential areas or around residential
areas.

(b) Primary; a major highway linking
large towns, normally with 2 lanes.

(c) Secondary; a highway which is not
part of a major route, but nevertheless
forming a link in the national route
network.

(d) Tertiary; roads linking villages and
towns.

4.5 Summary

The main complication for parking vs. driving cars classification was the scarcity
of data, which is a solvable problem for more prominent institutions that can afford
the creation of a bigger and accurate dataset for this step. Our results have shown
that more data improved the resulting accuracy of the network, and this trend would
probably continue if we were able to obtain more data. Another improvement would
have a cleaner dataset. Obtaining such dataset is hard because even if the data
about parking zones were complete and accurate there is still a lot of people that
park on places where they should not, outside of these annotated zones. Even though
the second method, statistical classification 4.4.3, that we used to substitute the
classification neural network achieved good results, it is not well suited for this

32

task because it classifies almost all cars on residential roads as parked. The neural
network, on the other hand, could learn to differentiate driving from parking cars no
matter what the street type is.

33

Chapter 5

Parking Capacity Estimation

As the name of the paper suggests, our primary goal is to provide estimates of the
parking capacity of individual areas. Because of the complexity of the task, there
is not much research publicly available to build on. Davis et al. [6] estimated the
parking lot footprints in the Upper Great Lakes Region of the USA. They calculated
the parking lot of coverage from digitized orthophotos. The time and labor intensive
nature of this task forced them to use sampling for larger scale areas. They estimated
the number of parking places per car to be in the range from 2.49 in Indiana to 2.95
in Michigan.

5.1 Street Classification

We were mainly interested in the on-street parking capacity as there already exist
solutions for parking lot parking capacity estimation but not any yet for on-street
parking. We took previously classified parked cars. As we are interested in the
streets, we filtered out cars that are further than 5 m from the closest road. We then
assigned each street the cars that are closest to this street. If the street did not have
a car assigned, we considered it non-parking. If there were cars assigned we check
whether they are on the same side or both sides of the street. This way, we classified
the street as either with parking on one side or both.

5.2 Street Parking Capacity Estimation

To obtain an accurate prediction of the parking capacity of each street, we went
through all segments that form the street as obtained from OSM. Segments meet in
the middle of the crossing, which means that part of the segment is always without
parking. In the EU, it is also not allowed to park closer than five meters1 from the
crossing. We took the length of each segment, subtracted 14 meters from its length
for each end; previously mentioned 5 meters and 2 meters for the part that is in the

1StVO §12

35

crossing. This process is illustrated in figure 5.1 In the Czech Republic as well as
in the rest of EU the size of one parking spot must be at least 2.20m× 6.0m for
parallel parking and 2.40m× 5.30m for perpendicular.2 We did not differentiate
parallel and perpendicular parking in our estimation method, so we assumed the size
of one parking spot to be 5m, close to the average. To obtain the parking capacity
for a street segment, we then divided the adjusted length by 5m.

Figure 5.1: Process of estimating the length of the street that is available for parking.
The red line is the center of the street and places where it is split into individual
parts. Black lines are segments that were removed from the length of the road. Blue
lines show perpendicular lines from the detected car to the street. Slight inaccuracies
are caused by transfering between coordinates and pixels.

2ČSN 73 6056

36

5.3 Results

To assess the accuracy, we went through 10 randomly selected streets and manually
counted the parking capacity from satellite images and compared them with the
predicted capacity. For streets with parking on both sides, the average real3 parking
capacity was 45. Our method had an average error of 13, out of the ten streets only
one was wrongly classified as having parking on both sides while it had parking only
on a single side. Four examples are shown in figure 5.2. For streets with parking on
one side, we again took ten random streets. The average parking capacity was 23.1,
and our average error was 7.2. Three of the ten streets were wrongly in the category
of streets with one side parking and had parking space on both sides. The overall
average error was 0.327; average real street parking capacity was 34.217 cars, which
we predicted with average error 10.542 cars. All results are in table 5.1.

Street Class Avg. PPC Deviation of PPC Avg. Error
Parking on both sides 45.1 ±13.0 0.386
Parking on one side 32.1 ±7.2 0.251

Both 39.6 ±10.5 0.327

Table 5.1: Street parking type classification results. PPC stands for Parking Places
Count.

3as counted by us

37

Figure 5.2: Streets with on street parking showing datacted cars with their
classification and predicted parking capacity.

(a) Chelčického, classified as both-side
parking street with capacity 56 cars, real
capacity ∼60 cars.

(b) Marie Cibulkové, classified as both-
side parking street with capacity 32 cars,
real capacity ∼22 cars.

(c) Víta Nejedlého, classified as both-side
parking street with capacity 36 cars, real
capacity ∼25 cars.

(d) Bohuslava ze Švamberka, classified as
both-side parking street with capacity 70
cars, real capacity ∼40 cars.

38

Chapter 6

Conclusion

We proposed, implemented, and tested a new method for on-street parking capacity
estimation using aerial images. Parking capacity estimation has a wide variety of
use cases. It can be used by the government for city growth planning or in the retail
sector for customer flow analysis and peak business hours monitoring. Further usage
could be automatic navigation to nearest free parking sport which could save up to
e136.4 billion a year in the U.S., United Kingdom and Germany alone. Our method
consists of several steps which are described in the following sections and can be
applied at any location assuming that aerial images with sufficient resolution exist.

6.1 Car Detection

For car detection, we used the current state of the art convolutional neural network
architecture YOLOv3 implemented in Darknet. We trained the network for four days
on the COWC dataset containing 32 716 unique cars. We achieved accuracy on par
with recent research. Our method detected 91% of the cars in the validation dataset
of images over Utah. We further estimated the accuracy in the city of Prague to be
0.821, 9% less than on Utah. This is caused mostly by the shadow cast by buildings
into the narrow streets partially or fully obscuring the cars.

6.2 Car Classification

We used three state-of-the-art convolutional neural networks, DenseNet, Resnet, and
AlexNet pre-trained on the ImageNet dataset to classify previously detected cars as
either parking or driving. We were unable to achieve the desired accuracy because of
the small dataset with a high error rate. Our networks overfitted on the data quickly
and were unable to distinguish parked from driving cars. We used several methods to
prevent overfitting. We augmented the images to have a bigger dataset for training.
We tried multiple network architectures and configurations all without success. Our
method correctly classified 55.9% of the cars. We also introduced a statistical method
that classified cars based on the distance and type of nearest street. This method

39

has accuracy 88.1% on data from Prague but is unable to distinguish cars on the
residential roads, which are the most common type of road with on-street parking.

6.3 Parking Capacity Estimation

Further, we introduced a method for estimation of parking capacity for on-street
parking. Our method can assign to the street one of three classes: street with
parking on one side, on both sides and without parking, with 80% accuracy. Based
on the class and length of the street parking capacity of the given street is estimated
with an accuracy of 67.3%.

6.4 Future Work

Our work leaves a lot of space for further research and improvement, mainly in
the topic of driving vs. parking car classification and parking capacity estimation.
Our method might find its usage in GPS navigation and map systems, surveillance
software, or in government surveys.

40

Bibliography

[1] Ali Ahmad. “Quantified Parking - Comprehensive Parking Inventories for
Five Major U.S. Cities”. In: June 2018. url:
https : / / www . mba . org / 2018 - press - releases / july / riha -
releases- new- report- quantified- parking- comprehensive-
parking-inventories-for-five-major-us-cities.

[2] Yassine Alouini. Lessons Learned from Kaggle’s Airbus Challenge. Jan. 2017.
url: https://medium.com/@YassineAlouini/lessons-learned-
from-kaggles-airbus-challenge-252e25c5efac.

[3] Lokesh Boominathan, Srinivas S. S. Kruthiventi, and R. Venkatesh Babu.
“CrowdNet: A Deep Convolutional Network for Dense Crowd Counting”. In:
CoRR abs/1608.06197 (2016). arXiv: 1608 . 06197. url:
http://arxiv.org/abs/1608.06197.

[4] Marc Canter. “Your AI is only as good as its Data”. In: (Nov. 2016). url:
https://medium.com/ai-blogging/your-ai-is-only-as-good-
as-its-data-cb8cb783f351.

[5] V. Coric and M. Gruteser. “Crowdsensing Maps of On-street Parking Spaces”.
In: 2013 IEEE International Conference on Distributed Computing in Sensor
Systems. May 2013, pp. 115–122. doi: 10.1109/DCOSS.2013.15.

[6] Amélie Y. Davis et al. “Estimating parking lot footprints in the Upper Great
Lakes Region of the USA”. In: Landscape and Urban Planning 96.2 (2010),
pp. 68–77. issn: 0169-2046. doi:
https://doi.org/10.1016/j.landurbplan.2010.02.004. url:
http : / / www . sciencedirect . com / science / article / pii /
S0169204610000356.

[7] Arthur Douillard. Object Detection with Deep Learning on Aerial Imagery.
July 2018. url: https://medium.com/data-from-the-trenches/
object-detection-with-deep-learning-on-aerial-imagery-
2465078db8a9.

[8] Adam Van Etten. Car Localization and Counting with Overhead Imagery, an
Interactive Exploration. Mar. 2017. url: https://medium.com/the-
downlinq/car- localization- and- counting- with- overhead-
imagery-an-interactive-exploration-9d5a029a596b.

41

https://www.mba.org/2018-press-releases/july/riha-releases-new-report-quantified-parking-comprehensive-parking-inventories-for-five-major-us-cities
https://www.mba.org/2018-press-releases/july/riha-releases-new-report-quantified-parking-comprehensive-parking-inventories-for-five-major-us-cities
https://www.mba.org/2018-press-releases/july/riha-releases-new-report-quantified-parking-comprehensive-parking-inventories-for-five-major-us-cities
https://medium.com/@YassineAlouini/lessons-learned-from-kaggles-airbus-challenge-252e25c5efac
https://medium.com/@YassineAlouini/lessons-learned-from-kaggles-airbus-challenge-252e25c5efac
https://arxiv.org/abs/1608.06197
http://arxiv.org/abs/1608.06197
https://medium.com/ai-blogging/your-ai-is-only-as-good-as-its-data-cb8cb783f351
https://medium.com/ai-blogging/your-ai-is-only-as-good-as-its-data-cb8cb783f351
https://doi.org/10.1109/DCOSS.2013.15
https://doi.org/https://doi.org/10.1016/j.landurbplan.2010.02.004
http://www.sciencedirect.com/science/article/pii/S0169204610000356
http://www.sciencedirect.com/science/article/pii/S0169204610000356
https://medium.com/data-from-the-trenches/object-detection-with-deep-learning-on-aerial-imagery-2465078db8a9
https://medium.com/data-from-the-trenches/object-detection-with-deep-learning-on-aerial-imagery-2465078db8a9
https://medium.com/data-from-the-trenches/object-detection-with-deep-learning-on-aerial-imagery-2465078db8a9
https://medium.com/the-downlinq/car-localization-and-counting-with-overhead-imagery-an-interactive-exploration-9d5a029a596b
https://medium.com/the-downlinq/car-localization-and-counting-with-overhead-imagery-an-interactive-exploration-9d5a029a596b
https://medium.com/the-downlinq/car-localization-and-counting-with-overhead-imagery-an-interactive-exploration-9d5a029a596b

[9] Adam Van Etten. Satellite Imagery Multiscale Rapid Detection with Windowed
Networks. Sept. 2018. url: https://arxiv.org/pdf/1809.09978.pdf.

[10] Adam Van Etten. “Satellite Imagery Multiscale Rapid Detection with
Windowed Networks”. In: CoRR abs/1809.09978 (2018). arXiv:
1809.09978. url: http://arxiv.org/abs/1809.09978.

[11] Adam Van Etten. The Satellite Utility Manifold; Object Detection Accuracy
as a Function of Image Resolution. Apr. 2017. url: https://medium.
com/the-downlinq/the-satellite-utility-manifold-object-
detection-accuracy-as-a-function-of-image-resolution-
ebb982310e8c.

[12] Ross B. Girshick. “Fast R-CNN”. In: CoRR abs/1504.08083 (2015). arXiv:
1504.08083. url: http://arxiv.org/abs/1504.08083.

[13] Daniel Godoy. Understanding binary cross-entropy / log loss: a visual
explanation. Nov. 2018. url: https :
/ / towardsdatascience . com / understanding - binary - cross -
entropy-log-loss-a-visual-explanation-a3ac6025181a.

[14] Takamochi Minamoto Gou Koutaki and Keiichi Uchimura. “EXTRACTION
OF PARKING LOT STRUCTURE FROM AERIAL IMAGE IN URBAN
AREAS”. In: International Journal of Innovative Computing, Information
and Control 12.2 (2016). url:
http://www.ijicic.org/ijicic-1509-0005.pdf.

[15] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: CoRR
abs/1512.03385 (2015). arXiv: 1512.03385. url: http://arxiv.org/
abs/1512.03385.

[16] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. “Densely Connected
Convolutional Networks”. In: CoRR abs/1608.06993 (2016). arXiv:
1608.06993. url: http://arxiv.org/abs/1608.06993.

[17] Jonathan Hui.mAP (mean Average Precision) for Object Detection. Mar. 2018.
url: https://medium.com/@jonathan_hui/map-mean-average-
precision-for-object-detection-45c121a31173.

[18] Michael P Johnson. “Environmental Impacts of Urban Sprawl: A Survey of the
Literature and Proposed Research Agenda”. In: Environment and Planning A:
Economy and Space 33.4 (2001), pp. 717–735. doi: 10.1068/a3327. eprint:
https://doi.org/10.1068/a3327. url: https://doi.org/10.
1068/a3327.

[19] Martina Marek Jordan Cazamias. “Parking Space Classification using
Convoluional Neural Networks”. In: (Aug. 1999). url: https :
//cs231n.stanford.edu/reports/2016/pdfs/280_Report.pdf.

[20] Andrej Karpathy. Convolutional Neural Networks (CNNs / ConvNets). url:
http://cs231n.github.io/convolutional-networks/#conv.

42

https://arxiv.org/pdf/1809.09978.pdf
https://arxiv.org/abs/1809.09978
http://arxiv.org/abs/1809.09978
https://medium.com/the-downlinq/the-satellite-utility-manifold-object-detection-accuracy-as-a-function-of-image-resolution-ebb982310e8c
https://medium.com/the-downlinq/the-satellite-utility-manifold-object-detection-accuracy-as-a-function-of-image-resolution-ebb982310e8c
https://medium.com/the-downlinq/the-satellite-utility-manifold-object-detection-accuracy-as-a-function-of-image-resolution-ebb982310e8c
https://medium.com/the-downlinq/the-satellite-utility-manifold-object-detection-accuracy-as-a-function-of-image-resolution-ebb982310e8c
https://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
http://www.ijicic.org/ijicic-1509-0005.pdf
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1608.06993
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
https://doi.org/10.1068/a3327
https://doi.org/10.1068/a3327
https://doi.org/10.1068/a3327
https://doi.org/10.1068/a3327
https://cs231n.stanford.edu/reports/2016/pdfs/280_Report.pdf
https://cs231n.stanford.edu/reports/2016/pdfs/280_Report.pdf
http://cs231n.github.io/convolutional-networks/#conv

[21] Andrej Karpathy. Transfer Learning. url: http://cs231n.github.io/
transfer-learning/.

[22] Martijn B.W. Kobus et al. “The on-street parking premium and car drivers’
choice between street and garage parking”. In: Regional Science and Urban
Economics 43.2 (2013), pp. 395–403. issn: 0166-0462. doi: https://doi.
org/10.1016/j.regsciurbeco.2012.10.001. url: http://www.
sciencedirect.com/science/article/pii/S0166046212000890.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet
Classification with Deep Convolutional Neural Networks”. In: Advances in
Neural Information Processing Systems 25. Ed. by F. Pereira et al. Curran
Associates, Inc., 2012, pp. 1097–1105. url: http :
//papers.nips.cc/paper/4824- imagenet- classification-
with-deep-convolutional-neural-networks.pdf.

[24] Large Scale Visual Recognition Challenge (ILSVRC). url: http://image-
net.org/challenges/LSVRC/.

[25] Tsung-Yi Lin et al. “Feature Pyramid Networks for Object Detection”. In:
CoRR abs/1612.03144 (2016). arXiv: 1612.03144. url: http://arxiv.
org/abs/1612.03144.

[26] Tsung-Yi Lin et al. “Focal Loss for Dense Object Detection”. In: CoRR
abs/1708.02002 (2017). arXiv: 1708 . 02002. url:
http://arxiv.org/abs/1708.02002.

[27] K. Liu and G. Mattyus. “Fast Multiclass Vehicle Detection on Aerial Images”.
In: IEEE Geoscience and Remote Sensing Letters 12.9 (Sept. 2015),
pp. 1938–1942. issn: 1545-598X. doi: 10.1109/LGRS.2015.2439517.

[28] Helmut Mayer. “Automatic Object Extraction from Aerial Imagery—A Survey
Focusing on Buildings”. In: Computer Vision and Image Understanding 74.2
(1999), pp. 138–149. issn: 1077-3142. doi: https://doi.org/10.1006/
cviu.1999.0750. url: http://www.sciencedirect.com/science/
article/pii/S1077314299907506.

[29] Andrew Myers. An artificial intelligence algorithm developed by Stanford
researchers can determine a neighborhood’s political leanings by its cars. Oct.
2017. url:
https://news.stanford.edu/2017/11/28/neighborhoods-cars-
indicate-political-leanings/.

[30] Joseph Redmon and Ali Farhadi. “YOLOv3: An Incremental Improvement”. In:
CoRR abs/1804.02767 (2018). arXiv: 1804.02767. url: http://arxiv.
org/abs/1804.02767.

[31] Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Object
Detection”. In: CoRR abs/1506.02640 (2015). arXiv: 1506 . 02640. url:
http://arxiv.org/abs/1506.02640.

43

http://cs231n.github.io/transfer-learning/
http://cs231n.github.io/transfer-learning/
https://doi.org/https://doi.org/10.1016/j.regsciurbeco.2012.10.001
https://doi.org/https://doi.org/10.1016/j.regsciurbeco.2012.10.001
http://www.sciencedirect.com/science/article/pii/S0166046212000890
http://www.sciencedirect.com/science/article/pii/S0166046212000890
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://image-net.org/challenges/LSVRC/
http://image-net.org/challenges/LSVRC/
https://arxiv.org/abs/1612.03144
http://arxiv.org/abs/1612.03144
http://arxiv.org/abs/1612.03144
https://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1708.02002
https://doi.org/10.1109/LGRS.2015.2439517
https://doi.org/https://doi.org/10.1006/cviu.1999.0750
https://doi.org/https://doi.org/10.1006/cviu.1999.0750
http://www.sciencedirect.com/science/article/pii/S1077314299907506
http://www.sciencedirect.com/science/article/pii/S1077314299907506
https://news.stanford.edu/2017/11/28/neighborhoods-cars-indicate-political-leanings/
https://news.stanford.edu/2017/11/28/neighborhoods-cars-indicate-political-leanings/
https://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640

[32] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks”. In: CoRR abs/1506.01497 (2015). arXiv: 1506.
01497. url: http://arxiv.org/abs/1506.01497.

[33] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition
Challenge”. In: International Journal of Computer Vision (IJCV) 115.3
(2015), pp. 211–252. doi: 10.1007/s11263-015-0816-y.

[34] Oriol Pujol Santi Seguí and Jordi Vitriá. “Learning to count with deep object
features”. In: CoRR abs/1505.08082 (2015). arXiv: 1505.08082. url: http:
//arxiv.org/abs/1505.08082.

[35] Donald C. Shoup. “Cruising for parking”. In: Transport Policy 13.6 (2006).
Parking, pp. 479–486. issn: 0967-070X. doi: https://doi.org/10.1016/
j.tranpol.2006.05.005. url: http://www.sciencedirect.com/
science/article/pii/S0967070X06000448.

[36] SpaceNet Challenge. url: https://spacenetchallenge.github.io/.

[37] Sebastian Türmer et al. “Evaluation of selected features for car detection in
aerial images”. In: ISPRS Hannover Workshop 2011. June 2011, pp. 1–6. url:
https://elib.dlr.de/70366/.

[38] Chuan Wang et al. “Deep People Counting in Extremely Dense Crowds”. In:
Proceedings of the 23rd ACM International Conference on Multimedia. MM
’15. Brisbane, Australia: ACM, 2015, pp. 1299–1302. isbn: 978-1-4503-3459-4.
doi: 10.1145/2733373.2806337. url: http://doi.acm.org/10.
1145/2733373.2806337.

[39] Gui-Song Xia et al. “DOTA: A Large-scale Dataset for Object Detection in
Aerial Images”. In: CoRR abs/1711.10398 (2017). arXiv: 1711.10398. url:
http://arxiv.org/abs/1711.10398.

[40] Michael Ying Yang et al. “Vehicle Detection in Aerial Images”. In: CoRR
abs/1801.07339 (2018). arXiv: 1801 . 07339. url:
http://arxiv.org/abs/1801.07339.

[41] Nathan Ratliff Young-Woo Seo and Chris Urmson. “Self-Supervised Aerial
Image Analysis for Extracting Parking Lot Structure”. In: (Aug. 2018). url:
https://www.ijcai.org/Proceedings/09/Papers/305.pdf.

[42] David Yu. Parking Lot Vehicle Detection Using Deep Learning – GeoAI –
Medium. Aug. 2018. url: https://medium.com/geoai/parking-lot-
vehicle-detection-using-deep-learning-49597917bc4a.

[43] Tao Zhao and Ram Nevatia. “Car detection in low resolution aerial images”.
In: Image and Vision Computing 21.8 (2003), pp. 693–703. issn: 0262-8856.
doi: https://doi.org/10.1016/S0262-8856(03)00064-7. url:
http : / / www . sciencedirect . com / science / article / pii /
S0262885603000647.

44

https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
https://doi.org/10.1007/s11263-015-0816-y
https://arxiv.org/abs/1505.08082
http://arxiv.org/abs/1505.08082
http://arxiv.org/abs/1505.08082
https://doi.org/https://doi.org/10.1016/j.tranpol.2006.05.005
https://doi.org/https://doi.org/10.1016/j.tranpol.2006.05.005
http://www.sciencedirect.com/science/article/pii/S0967070X06000448
http://www.sciencedirect.com/science/article/pii/S0967070X06000448
https://spacenetchallenge.github.io/
https://elib.dlr.de/70366/
https://doi.org/10.1145/2733373.2806337
http://doi.acm.org/10.1145/2733373.2806337
http://doi.acm.org/10.1145/2733373.2806337
https://arxiv.org/abs/1711.10398
http://arxiv.org/abs/1711.10398
https://arxiv.org/abs/1801.07339
http://arxiv.org/abs/1801.07339
https://www.ijcai.org/Proceedings/09/Papers/305.pdf
https://medium.com/geoai/parking-lot-vehicle-detection-using-deep-learning-49597917bc4a
https://medium.com/geoai/parking-lot-vehicle-detection-using-deep-learning-49597917bc4a
https://doi.org/https://doi.org/10.1016/S0262-8856(03)00064-7
http://www.sciencedirect.com/science/article/pii/S0262885603000647
http://www.sciencedirect.com/science/article/pii/S0262885603000647

Appendix A

More Experiment Results

45

Figure A.1: More streets with on street parking showing datacted cars with their
classification and predicted parking capacity.

(a) Vršní, classified as one-side parking
street with capacity 19 cars, real capacity
∼16 cars.

(b) Rostislavova, classified as both-side
parking street with capacity 110 cars, real
capacity ∼95 cars.

(c) V Domcích, classified as one-side
parking street with capacity 14 cars, real
capacity ∼13 cars.

(d) Wichterlova, wrongly classified as
both-side parking street with capacity 36
cars, real capacity ∼26 cars.

46

Appendix B

DVD Contents

This chapter contains a list of files that are included on the disc.

/src.zip Archive with source codes.

/thesis.pdf Thesis in PDF format.

/thesis_src.zip Archive with source codes of this thesis.

47

	Introduction
	Targets of this Thesis

	Problem Analysis
	Object Counting Using Neural Networks
	Car Detection
	Parking Spots and Parking Lots Detection
	Data
	Tools

	Our Approach
	Car Detection and Parking Capacity Estimation
	Object Detection With Deep Learning
	Image Classification
	Parking Places Counting

	Street classification

	Car Detection
	Dataset
	Neural Networks and Machine Learning
	Convolutional Neural Networks
	Regular Neural Nets
	CNNs
	Convolutional Layer
	Pooling Layer
	Fully-connected Layer

	Network Architecture
	Resnet
	RetinaNet
	R-CNN
	YOLOv3

	Neural Nework Accuracy

	Our Approach

	Detecting Parked Cars
	Dataset
	Data Augmentation

	Classification Network
	Network Architectures
	AlexNet
	Resnet
	Densenet

	Loss Function and Optimization Algorithm
	Transfer Learning
	CNN as Fixed Feature Extractor
	Fine-tuning
	When to use Transfer Learning

	Training
	Metacentrum

	Results
	Fighting with Overfitting
	More Training Data
	Batch Size
	Number and Size of Hidden Units

	Discussion
	Statistical Classification

	Summary

	Parking Capacity Estimation
	Street Classification
	Street Parking Capacity Estimation
	Results

	Conclusion
	Car Detection
	Car Classification
	Parking Capacity Estimation
	Future Work

	Bibliography
	More Experiment Results
	DVD Contents

