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Abstract

This work presents a vehicle dynamics con-
trol algorithm based on a novel approach
in nonlinear control, which uses the Koop-
man operator to construct a linear predic-
tor of a nonlinear system. The predictor
is able to approximate the dynamics of
the nonlinear system in a whole subspace
of the nonlinear state-space, unlike the
common linearization method based on
the Taylor series, which approximates the
nonlinear system only around an operat-
ing point. The procedure to construct this
predictor is completely data-driven and
uses only convex optimization methods.
This work presents a set of nonlinear ve-
hicle dynamics models of varying fidelity
to be used for the predictor construction
and validation. The contruction of the
predictor is demonstrated in detail on a
nonlinear singletrack model. The impact
of all parameters influencing the predictor
construction is discussed in detail. The
linear predictor is then used in the Koop-
man model predictive control framework
of [KM18a] to create a nonlinear control
algorithm based entirely on linear model
predictive control methods.

Keywords: Koopman operator,
nonlinear control, model predictive
control, vehicle dynamics control, vehicle
models, identification

Supervisor: Ing. Tomáš Haniš, Ph.D.

Abstrakt

Tato práce představuje algoritmus pro ří-
zení dynamiky vozidla, založený na nové
metodě v nelineárním řízení, která vyu-
žívá Koopmanův operátor k sestrojení li-
neárního prediktoru, schopného prediko-
vat chování nelineárního systému. Predik-
tor je schopen aproximovat dynamiku ne-
lineárního systému v celém podprostoru
nelineárního stavového prostoru, narozdíl
od známé metody linearizace založené na
Taylorově rozvoji, která aproximuje neli-
neární systém pouze v okolí provozního
bodu. Postup k sestrojení tohoto predik-
toru je kompletně založený na datech a
využívá výhradně konvexních optimalizač-
ních metod. Tato práce představuje sadu
sadu nelineárních modelů dynamiky vozi-
dla různých přesností, která bude použita
k sestrojení a validaci prediktoru. Sestro-
jení prediktoru je detailně demonstrováno
na nelineárním dvoukolovém modelu. Do-
pad všech parametrů ovlivňujících sestro-
jení prediktoru je do detailu prodiskuto-
ván. Lineární prediktor je pak použitý v
přístupu Koopmanova prediktivního ří-
zení z [KM18a] pro vytvoření nelineárního
řídícího algoritmu založeného výhradně na
lineárních metodách prediktivního řízení.

Klíčová slova: Koopmanův operátor,
nelineární řízení, prediktivní řízení, řízení
dynamiky vozidla, modely vozidel,
identifikace

Překlad názvu: Řídicí systém
dynamiky vozu založený na MPC
algoritmech
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Chapter 1

Introduction

It is said that God created a safe paradise called Eden and created Adam and
Eve to live there under the condition that they will not eat from the Tree
of Knowledge. They did. God banished them from Paradise, from the safe
haven, into to horrors of chaos and violence. Utilizing the gift of Knowledge,
humanity has advanced quite a lot since that time. Eating from the Tree
made man self-conscious, aware of his own being. It allowed him to exploit
his surroundings in order to survive. It made him able to learn how the world
works. To discover the natural laws binding our existence. This gave rise to
physics, which can be dated back to 7th century BC to philosopher Thales
of Miletus, and mathematics whose roots go back to 2000 BC to ancient
Mesopotamia and Egypt. This work falls into a field called control systems
engineering. The study of control systems is relatively young compared to
physics and mathematics, from which this field emerged. The first formal
study of control systems began in 1868 with the work On governors [gov68]
by James Clerk Maxwell who demonstrated the usefulness of mathematical
models for control purposes. The field of control engineering underwent
substantial changes since then. Through control of mechanical systems and
linear control of SISO (Single-input single-output) systems, the field advanced
quite a lot in areas such as aerospace and process control with the control of
nonlinear, MIMO (Multiple-input multiple-output) systems. Today, with the
everlasting growth of the electronics in our everyday lives, control engineering
has seen applications in the automotive industry as well. More so with the
rather recent increase in popularity of all-electric vehicles.
This gave rise to the study of vehicle dynamics from the control engineering
point of view. Until then, vehicle control and stability were concerns mostly
for mechanical engineers.
Most of the studies are concerned with keeping the vehicle stable and not
reaching the dangerous nonlinear states. But as with everything, people push

1



1. Introduction .....................................
the boundaries. The control of aircrafts did not stop when the planes were
able to transport passengers, dive bomb or shoot other planes. Nowadays
a fighter aircraft can perform incredible maneuvers such as the Pugachev’s
Cobra.
Seeing these accomplishments, one has to ask: Was is really that bad to eat
the forbidden apple from the Tree of Knowledge? I think not.
Now it is time for automotive industry to incorporate advanced control system
into vehicles, to make the vehicles controllable even in conditions where now
only the most experienced drivers would prevail, thus making them safer. Let
us have a taste from the Tree of Knowledge once again and explore the limits
of vehicle handling.

This thesis is a beginning of a long journey that aims to do just that.

1.1 Goals

The aim of this work is to create a nonlinear control algorithm for control
of vehicle dynamics. Vehicle features lot of nonlinearities such as coordinate
systems transformations and tire models. Today, nonlinear control is done
either by linearizing the model in multiple operating points or by numerically
solving the nonlinear equations. Both approaches have their pros and cons.
The first approach enjoys the linearity of individual systems but needs detailed
knowledge of the controlled system, to know when to switch between the
linearized models and how densely should the operating points be placed
in the state-space. The numerical approach suffers from the computational
burden of nonlinear equations while being able to provide globally optimal
solutions.

A new approach has been evolving lately - the Koopman operator. The idea
evolves around global linearization of the nonlinear model with a higher order
linear model. Allowing the usage of the classic linear control theory to control
nonlinear system in its whole state-space. The Koopman operator could be
regarded as a step towards unifying the two previously mentioned approaches
into one framework while using the best of both worlds: enjoying the global
validity of the designed control law while exploiting the well-developed linear
control theory.

This thesis uses the Koopman operator approach to represent the nonlinear
vehicle model in a predefined subspace with a linear system and to design a
linear control algorithm based on the linear system. The nonlinear vehicle

2



...................................... 1.2. Structure

model will then be controlled by a linear control algorithm that is valid
in the whole (operating) subspace of the nonlinear model, unlike the local
linearization methods which are valid only around the operating point.

The goals of this thesis are following:

1. Derive and implement nonlinear control design and validation vehicle models.
2. Create a linear representation of the control design model in a

predefined operating subspace.
3. Design model predictive control algorithm based on the linear representation of a vehicle.
4. Validate the control law on a high fidelity validation model.

1.2 Structure

This work is structured as follows:

Chapter 2 Derivation of nonlinear vehicle models for control design and validation.
Chapter 3 Explanation of the Koopman operator framework for control purposes.
Chapter 4 Linearization of the nonlinear vehicle control design model

in an operating subspace.
Chapter 5 Design of a linear Model predictive control algorithm.
Chapter 6 Validation the designed algorithm on a high fidelity validation model.

3
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Chapter 2

Mathematical vehicle models

The

All vehicle models necessary for this work will be described in this chapter.
The baseline model is the 16-state nonlinear twin-track model with Pacejka
tire model, all other models are derived from the baseline model.

2.1 Twin-track model

The twin-track model was based on community recognized model derivation
introduces by Schramm ([SHB14]). Most of the model is implemented using
MATLAB functions, where suited the Simulink environment was exploited.
The purpose of this model is validation of control system design introduced
in chapter Chapter 5. This model does not include suspension kinemat-
ics, meaning that the model cannot simulate various types of suspension
(MacPherson strut, double wishbone, trailing-arm, etc.) and their effects
(such as roll centers axis, camber change rates, etc.). The reasons for not
including suspension geometry is high complexity and low payoff because this
model was not designed to simulate a racecar but a generic vehicle having
some basic physical parameters, which is sufficient for validation of the control
algorithm. For more information about suspension geometry, see [MM96].

Linear approximation for purposes of control system design is derived based

5



2. Mathematical vehicle models..............................
on trimming and local equilibria linearization. Trimming tools which were
also developed in MATLAB can find equilibria points for a straight-driving
vehicle or for a steady-state turn.

Chassis
Suspension

Tire interface

Pacejka model

Vehicle Body

PowertrainInputs

States
State 

derivatives

Figure 2.1: Scheme of the twin-track model.

Vehicle dynamics structure. The vehicle dynamics model is traditionally
divided into 3 main parts: Chassis (suspension and tire interface), Powertrain
and Vehicle Body, as seen in Fig. 2.1.

The inputs to the model are steering angles on all 4 wheels and input
torques on all 4 wheels. The steering angles go directly into the Tire interface
which generates the longitudinal and lateral forces acting on the Vehicle body.
The input torques go to the Powertrain, where they influence the angular
velocity of the wheels.

Notation. The notation used in this chapter is shown in Fig. 2.2.

6



...................................2.1. Twin-track model

Figure 2.2: Description of the notation used in this chapter. Adopted from
[SHB14] page xvi

State vector. The model has 16 states.

States Units Description Dimensions
sE (m) Position of the vehicle body in earth-fixed frame. [3× 1]
vV (m/s) Velocity of the vehicle body in body-fixed frame. [3× 1]
ωV (rad/s) Angular velocities the of the vehicle body in the body-fixed frame. [3× 1]
φ,Θ,Ψ (rad) Euler angles (earth-fixed frame). [3× 1]
ρ̇Ri

(rad/s) Wheel angular velocities, each in ith wheel frame. [4× 1]

The 4 wheels are numbered according to the drawing in Fig. 2.3.

1 2

3 4
Figure 2.3: Wheel numbering

7



2. Mathematical vehicle models..............................
Coordinate systems. The vehicle coordinate system and inertial coordinate
system are depicted in Fig. 2.4. The wheel coordinate system is depicted in
Fig. 2.5.

Figure 2.4: Inertial (earth-fixed) coordinate system and Vehicle (body-fixed)
coordinate system.
Adopted from [SHB14]

Figure 2.5: Coordinate system of ith wheel.

Coordinate systems transformations. The following rotation matrices are
used for transformation between the three coordinate systems. Goniometric
functions sin and cos have been replaced by s and c for simplicity. Wheel-
fixed coordinate system to body-fixed coordinate system can be transformed
by
V TRi = c (δi) c (Θ) −s (δi) c (Θ) −s (Θ)
s (φ) s (Θ) c (δi) + c (φ) s (δi) −s (φ) s (Θ) s (δi) + c (φ) c (δi) s (φ) c (Θ)
c (φ) s (Θ) c (δi)− s (φ) s (δi) −c (φ) s (Θ) s (δi)− s (φ) c (δi) c (φ) c (Θ)

 ,
(2.1)

8



...................................2.1. Twin-track model

where δi is the steering angle of wheel i, φ and Θ are Euler angles (roll and
pitch angle respectively).

Transformation from body-fixed frame to inertial frame is done by

ETV =c (Θ) c (Ψ) s (φ) s (Θ) c (Ψ)− c (φ) s (Ψ) c (φ) s (Θ) c (Ψ) + s (φ) s (Ψ)
c (Θ) s (Ψ) s (φ) s (Θ) s (Ψ) + c (φ) c (Ψ) c (φ) s (Θ) s (Ψ)− s (φ) c (Ψ)
−s (Θ) s (φ) c (Θ) c (φ) c (Θ)

 ,
(2.2)

where φ, Θ and Ψ are Euler angles: roll, pitch and roll respectively.

Inverse transformations can be obtained by transposition, since both ma-
trices are rotation matrices.

RiTV =
(
V TRi

)−1
=
(
V TRi

)T
(2.3)

ETV =
(
V TE

)−1
=
(
V TE

)T
(2.4)

For more clarification on how these matrices were derived, see [SHB14].

Figure 2.6: Top view of the vehicle model.
Adopted from [SHB14].
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2. Mathematical vehicle models..............................

Figure 2.7: Side view of the vehicle model.
Adopted from [SHB14].

Vehicle model diagrams. Note that the tire forces calculated from tire
model are denoted as FRi,x/y whereas the actual force acting on the chassis
is denoted as Fix/y

. These forces are identical, their only difference is the
coordinate system in which they are represented (wheel-fixed frame for FRi,x/y

and body-fixed frame for Fix/y
).

2.1.1 Vehicle body

The vehicle body is modeled as a rigid body with Newton-Euler equations.
The Newton equation for body-fixed frame in vector frame can be written as

m (v̇V + ωV × vV ) = F, (2.5)

where F denotes the vector of the total force acting on the body. All vectors
are in body-fixed frame. The equation (2.5) can be expanded as

mv


v̇xv̇y
v̇z

+

ωxωy
ωz

×
vxvy
vz


 =

4∑
i=1

Fi,x

Fi,y

Fi,z

−1
2cwρA

√
v2
x + v2

y

vxvy
0

+V TE

 0
0

−mvg

 .
(2.6)

Forces Fi,x/y/z are in body-fixed coordinates, the matrix V TE transforms
the earth-fixed gravitational acceleration to body-fixed coordinates. The rest

of the variables are in body-fixed frame. The term −1
2cwρA

√
v2
x + v2

y

vxvy
0


models air-resistance, where cw is drag coefficient, ρ

(
kg ·m−3) is air density

and A
(
m2) is the total surface exposed to the airflow.
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...................................2.1. Twin-track model

The Euler equation in vector form can be written as

ΘV ω̇V + ωV × (ΘωV ) = M, (2.7)

where ΘV is inertia matrix of the vehicle body and M is total torque acting
on the body. The (2.7) can be expanded as

Θv

ω̇xω̇y
ω̇z

+

ωxωy
ωz

×
Θv

ωxωy
ωz


 =

4∑
i=1

ri ×

Fi,x

Fi,y

Fi,z

+ rw × Fw, (2.8)

where Fw is a vector of aerodynamic forces acting at point rw, the vector rw
is w.r.t. center of gravity in vehicle coordinates. It can be used to shift the
center of aerodynamic pressure. The vectors ri are set according to Fig. 2.6
and Fig. 2.7.

r =


r1
r2
r3
r4


T

=


 lv
sl
−sz

 ,
 lv
−sr
−sz

 ,
−lhsl
−sz

 ,
−lh−sr
−sz


 (2.9)

2.1.2 Chassis

Suspension

The suspension is modeled as spring-damper systems acting on each wheel
individually.

Spring force acting on ith wheel is defined as follows

V FFi = − (cai∆lFi) V TE

0
0
1

 ,∀i ∈ {1, 2, 3, 4}, (2.10)

where cai (N/kg) is the stiffness coefficient of spring i. ∆lFi (m) is the compres-
sion of spring i, V TE is a rotation matrix, transforming inertial coordinates

to vehicle coordinates. The multiplication by the vector

0
0
1

 means that the

force acts only along the (inertial) zE-axis (the spring is assumed to always

11



2. Mathematical vehicle models..............................
point upwards with respect to the inertial coordinates). Damping force acting
on ith wheel is defined as follows

V FDi = −
(
dai∆l̇Fi

)
V TE

0
0
1

 , ∀i ∈ {1, 2, 3, 4} (2.11)

Where dai (N · s/m) is the damping coefficient.

Tire interface

Slip variables used by tire models will be defined here. All tire models use
slip ratio λ and slip angle α as their inputs. The notation in this section will
differ from [SHB14] at some places, most importantly, the slip angle will be
denoted by λ instead of s.

Slip variables. Longitudinal (circumferential) slip:

λi =
Ri ẋRi − rρ̇Ri

max
(
|rρ̇Ri |, |Ri ẋRi |

) (2.12)

Slip angle:

αi = − arctan
(

Ri ẏRi

|Ri ẋRi |

)
(2.13)

Where Ri ẋRi/Ri ẏRi is velocity of the wheel center point along x/y axis in
the wheel-fixed coordinate system , r is wheel radius (note that there is no
distinction between effective and nominal radius of the wheel, for simplicity)
and ρ̇Ri is angular velocity of wheel i

12



...................................2.1. Twin-track model

Figure 2.8: Clarification on the meaning of wheel center point vector rRi and
the pivot point Ai . Both vectors are in the body-fixed frame, with respect to
the origin OV .
Adopted from [SHB14].

The wheel center point velocities can be obtained fromRi ẋRi
Ri ẏRi
Ri żRi

 = RivRi = RiTV
V vRi (2.14)

Where V vRi is wheel center point velocity with respect to body-fixed coordi-
nates and can be obtained from

V vRi =

V ẋRi
V ẏRi
V żRi

 = V vV +V ωV ×V rRi +V TE

 0
0
−l̇Fi

 ,∀i ∈ {1, 2, 3, 4} (2.15)

Where V vV is vehicle velocity with respect to vehicle coordinate system, V ωV
is vehicle angular velocity with respect to vehicle coordinate system and V rRi

is the position of the wheel center point with respect to vehicle coordinate
system and can be calculated as

V rRi = V rAi + V TE

 0
0
−lFi

 , ∀i ∈ {1, 2, 3, 4}, (2.16)

13



2. Mathematical vehicle models..............................
where V rAi is position of the spring anchor with respect to the vehicle
coordinate frame and lFi is length of the spring.

The vector V rAi points to the point where the spring is anchored to the
vehicle chassis and where the tire forces are applied to the chassis as seen in
Fig. 2.6 and Section 2.1.2.

2.1.3 Tire models

Three tire models with varying levels complexity and accuracy will be de-
scribed now. Simplified Pacejka model, simplified Pacejka with friction ellipse
and full Pacejka tire model.

Simplified Pacejka. The simplified model was modelled according to [Lor12].
The model uses constant coefficients B,C,D,E for the Magic formula:

F = D cos (C arctan (Bx− E (Bx− arctan (Bx)))) (2.17)

where x is either sideslip angle α or longitudinal slip λ. F is either Fy,Mz

or Fx, depending on the input argument x. For calculating the longitudinal
force Fx, the argument x would be substituted by λ whereas Fy and Mz

are calculated by substituting α. Coefficients B,C,D,E are generally time-
variant and dependant on what F means. In this model, B,C,D,E are
constant for given F . So for calculating Fy,Mz and Fx, one would need 3 sets
of these parameters.

This approach makes the forces Fx and Fy independent on each other,
which is never the case in the real world. This dependency is often expressed
with traction ellipse (also called friction ellipse or Kamm’s circle).

14



...................................2.1. Twin-track model

Figure 2.9: Traction ellipse for constant parameters B,C,D and E.
x-axis is for λ, y-axis is for α. Note that maximum force can be achieved only
when either λ or α are zero.
Adpoted from [Lib16].

A method called “Combined Slip with friction ellipse” adopted from a
document describing the tire model in Adams multibody simulator ([Lor12])
is used to capture this dependency.

Combined Slip with friction ellipse. Let’s call the forces calculated from
(2.17) Fx,0 and Fy,0. The slip ratio λ and slip angle α are used to calculate
the following:

α∗ = sin (α) (2.18)

β = arccos
(

|λ|√
λ2 + α∗2

)
. (2.19)

Then friction coefficients are defined.

µx,act = Fx,0
Fz

µy,act = Fy,0
Fz

(2.20)

µx,max = Dx

Fz
µy,max = Dy

Fz
(2.21)

µx = 1√(
1

µx,act

)2
+
(

tan(β)
µy,max

)2
(2.22)

µy = tan (β)√(
1

µx,max

)2
+
(

tan(β)
µy,act

)2
(2.23)
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2. Mathematical vehicle models..............................
Finally, the forces from (2.17) are scaled using the friction coefficients.

Fx = µx
µx,act

Fx,0 (2.24)

Fy = µy
µy,act

Fy,0 (2.25)

Forces Fx and Fy are now respecting the traction ellipse from Fig. 2.9. The
force Fz is the tire load, the resultant force from the spring-damper system.

Pacejka2002. The last considered model is Pacejka2002, implemented
according to well-known work of Hans B. Pacejka ([Pac02]), which is the
current industry standard for tire simulation.

This model is very accurate, unfortunately parametrizing it is rather
difficult. The model uses over 100 parameters that cannot be derived from
physical properties of the tire but instead they have to be measured. Also the
Pacejka tire model changed a little with each release of [Pac02] (see [Pac12]
for example) so even after finding a publicly available set of parameters one
has to verify for which version of the model were they measured.

This work uses the model Pacejka2002 as introduced in [Pac02]. The pa-
rameters were adopted from the Automotive challenge 2018 [Aut18] organized
by Rimac Automobili.

2.1.4 Powetrain

Rather simple model of Powertrain is considered. For wheel i, it holds that

JRi ρ̈Ri = Ma,Ri −Mb,Ri
sign (ρ̇Ri)− rFRi,x, (2.26)

where JRi is the wheel moment of inertia, ρ̇Ri is the angular velocity of
the wheel. Ma and Mb are input and braking torques respectively, r is the
wheel radius and FRi,x is the longitudinal force of the wheel (in wheel-fixed
coordinate system).

Enhancement is done by limiting the input torque Ma by a constant
maximum torque Tmax (N ·m) or by the motor maximum power Pmax (kW ),
according to the equation (2.27).

Ma,max = Pmax
ρ̇Ri

, (2.27)
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.................................. 2.2. Single-track model

Comparison between Ma,max and Tmax can be seen in Fig. 2.10.
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Figure 2.10: Blue line represents the variable limit on Ma influences by the
motor maximum power and the current wheel angular velocity. Red line is a
constant maximum torque limitation. For each wheel angular velocity ρ̇Ri

, the
lesser of the two values is used to saturate the input torque Ma. The plotted
values are for Pmax = 250kW and Tmax = 2000Nm.

2.2 Single-track model

This section describes single-track model, which will be used for control
design in Chapter 5. The single-track is a planar model with its four wheels
merged into two. The model can have 5 or 3 states, depending on whether
the Powertrain dynamics is present (Section 2.2.1) or not (Section 2.2.2).

The following subsections will present 3 versions of the single-track model,
all derived from the twin-track model Section 2.1.
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2. Mathematical vehicle models..............................

Figure 2.11: The single-track model. Forces FR2 and FR4 are not depicted
in the figure because in a general case with symmetric tires FR2 = FR1 and
FR4 = FR3 .

2.2.1 5 state single-track

The single-track model includes the Powertrain and is depicted in Fig.Fig.
2.11. The states and parameters of this model are a subset of states and
parameters of Section 2.1. State vector of the single-track model is

xsingle =


vx (m/s)
vy (m/s)
ψ̇ (rad/s)
ρ̇f (rad/s)
ρ̇r (rad/s)

 (2.28)

where vx/y is longitudinal/lateral velocity in body-fixed coordinates, ψ̇ is
yawrate and ρ̇f/r are front/rear wheel angular rates.

This model has 4 wheels, with two wheels always being in the same place.
This allows for usage of asymmetric tire models, reduces the work needed
to transition to twin-track model and is less error-prone than the standard
approach (with only two tires modeled, one has to remember that each tire
should generate twice as much force).
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.................................. 2.2. Single-track model

The vehicle body is modeled as a rigid body using Newton-Euler equations,
similarly as in Section 2.1.1.

mv

([
v̇x
v̇y

]
+ ψ̇

[
−vy
vx

])
=

4∑
i=1

[
Fi,x

Fi,y

]
− 1

2cwρAw
√
v2
x + v2

y

[
vx
vy

]
(2.29)

Jzzψ̈ =
4∑
i=1

riFi,y (2.30)

JRi ρ̈Ri = Ma,Ri −Mb,Ri
sign (ρ̇Ri)− rFRi,x,∀i = 1, 3 (2.31)

Where

r =


r1
r2
r3
r4


T

=


lv0

0

 ,
lv0

0

 ,
−lh0

0

 ,
−lh0

0


 (2.32)

is the vector describing position of each wheel with respect to the center
of gravity. The wheels are numbered in this order: front-left, front-right,
rear-left, rear-right. mv is the vehicle mass, Fi,x/y is a force acting on i-th
wheel along x/y axis in body-fixed coordinates. FRi,x is a force acting along
x axis in wheel coordinate system (direct output of the tire model). The term

−1
2cwρAw

√
v2
x + v2

y

[
vx
vy

]
is an approximation of air-resistance, cw is a drag

coefficient, ρ is air density and Aw is the total surface exposed to the air flow.
Jzz is the vehicle inertia about z-axis. JRi the wheel inertia about y-axis.
Inputs are wheel torques Ma,Ri (throttle), Mb,Ri

(break) and steering angles
δf/r.

Since this is a 4-wheel single-track model, the following holds:

ρ̇R1 = ρ̇R2 (2.33)

ρ̇R3 = ρ̇R4 . (2.34)

The forces
[
FRi,x

FRi,y

]
are the output of the tire model from Section 2.1.2.

2.2.2 3 state single-track

To further simplify the model, (2.31) can be omitted, resulting in a model
with only 3 states:

[
vx vy ψ̇

]T
. The inputs are then longitudinal slips
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2. Mathematical vehicle models..............................
(which were previously derived from ((2.31))) and steering angles. Note that
this assumes existence of a longitudinal slip controller (traction control).

2.2.3 3 state single-track without tire model

To simplify the model even more, one can omit the tire model and use the

tire forces
[
Fi,x
Fi,y

]
as input, assuming the existence of a higher level control

system controlling the tire forces and thus securing the assumption that the
car can be controlled directly by force reference.
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Chapter 3

The Koopman operator

Koopman operator for representing nonlinear dynamics of a vehicle by a
higher-order linear system is used in this work. The linear representation of
vehicle dynamics will then be used for control system design. The vehicle
system typically features a lot of nonlinearities such as rigid-body dynamics,
coordinate system transformations and most importantly the tire model
using Pacejka magic formula. The aim of this thesis is to represent these
nonlinearities by a higher-order linear system obtained from the Koopman
operator framework. The nonlinear system will then be controlled by a
linear controller based on the linear Koopman system, allowing to control the
nonlinear system in a predefined subspace of the nonlinear state-space using
well-developed linear control theory. Here, the method of choice is linear
MPC but any other linear control methods such as LQR and H∞ (see [SS05])
can be used.

3.1 Basic idea of the Koopman operator

The theory of the Koopman operator states that any nonlinear uncontrolled
dynamical system can be globally represented by a linear system of infinite
order with zero error. This idea was first introduced by Koopman in [Koo31].
The idea to use the Koopman operator for control was proposed by Mezić
([MB04]) in his work dealing with exploitation of the Koopman operator to
compare dynamics of physical systems and their nonlinear models. The exten-
sion of the Koopman operator framework to controlled nonlinear dynamical
systems was done very recently by Korda in [KM18a], where the framework
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3. The Koopman operator ................................
for designing a linear MPC based on Koopman operator was first introduced.

The Koopman operator framework. Consider discrete-time nonlinear sys-
tem with sampling time Ts (s):

xk+1 = f (xk, uk) , (3.1)

where k denotes the sample at time k·Ts, uk is the input vector with dimension
Nu and xk is the state vector with dimension Nx.

The vector xk is transformed by so-called basis functions φ : RNx → R to
a higher order linear state space of the Koopman operator. The state space
of the Koopman operator will be denoted as lifted space in this work and
the lifted state vector will be denoted by zk. The lifted state space evolves
linearly with the system (3.2). Note that the Koopman operator is generally
infinite-dimensional, the system (3.2) (or more precisely, the matrix A) is its
finite-order approximation.

zk+1 = Azk +Buk

yk = Czk

for z0 = φ (x0)
(3.2)

A, B and C are complex matrices of a discrete-time LTI (linear time-invariant)
system with lifted state vector zk. The lifted state vector zk can be trans-
formed back to the original nonlinear space via linear transformation if the
output vector yk is selected as xk (as is the case in this thesis), meaning that
xk = Czk. The relationship between (3.1) and (3.2) is shown in Fig. 3.1.

Figure 3.1: Discrete-time scheme showing the relationship of a nonlinear system
xk+1 = f (xk, uk) and linear Koopman system zk+1 = Azk +Buk. The nonlinear
state vector xk can be lifted upwards to the linear state vector zk. The lifted
state vector zk can be then projected back down to xk via multiplication by the
matrix C.
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.......................... 3.1. Basic idea of the Koopman operator

3.1.1 One-step prediction with general basis functions

A method to approximate the matrices A and B simultaneously from data
was proposed in [KM18a]. The method uses Extended Dynamic mode decom-
position (EDMD) [WKR15] to create LTI system functioning as a one-step
predictor. The selection of basis functions isn’t clear however and there is no
deterministic way on how to select them in order to approximate the system
with desired accuracy. This approach was used on a singletrack model in
[CHH]. However, the approach proved to be very sensitive to the selection
of the basis functions φ, rendering the method unsuitable for some systems,
such as the singletrack model.

3.1.2 Multi-step prediction with deterministic basis function
selection

Then a method providing a formal description for the basis functions φ was
introduced in [KM18b].

Consider a basis function defined according to (3.3)

φ
(
xjk

)
= λkg

(
xj0

)
, (3.3)

where λ ∈ C, g : RNx → R is generally any function and xj0 is a starting
point of some trajectory j of the system (3.1) and xjk is a point on the same
trajectory at sample k. The set of starting points xj0 will be denoted as Γ.

Note that for the basis function (3.3) it holds that

φ
(
xjk+1

)
= λφ

(
xjk

)
, (3.4)

because
φ
(
xjk+1

)
= λk+1g

(
xj0

)
= λ · λkg

(
xj0

)
= λφ

(
xjk

)
. (3.5)

This means that the function evolves linearly, i.e. the future value of φ can be
predicted by multiplying the current value by λ. Such a function is defined
as an eigenfunction of the Koopman operator in [KM18b] and the complex
number λ is the associated eigenvalue. The rest of this thesis will consider
only basis functions defined according to (3.3), so the terms basis function
and eigenfunction will be used interchangeably.

The theory of Koopman eigenfunctions is beyond the scope of this thesis.
For more explanation, please see [KM18b].
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3. The Koopman operator ................................
Reconstruction of A matrix. Note that in the method from Section 3.1.1,
the matrix A (along with B) was constructed from the data based on pro-
vided basis functions. In this case however, the approach is reversed. The
eigenfunctions are constructed from data and the matrix A is then simply
a diagonal matrix with their eigenvalues on the diagonal. Equation (3.4)
describes a scalar case with A = λ.

Multi-step prediction. The definition (3.3) allows to formulate an optimiza-
tion problem that allows to approximate the whole trajectory j, i.e. all xjk for
k = 1, 2, ..K, where K is the total number of samples. This contrasts with
the approach from [KM18a], mentioned in Section 3.1.1, which is concerned
with predicting only the next step xjk+1.

The aforementioned optimization problem is formulated in Section 3.2.1
and the capability of multi-step prediction is then exploited in Section 3.2.3.

3.2 Selection of g functions

Although the basis functions defined according to (3.3) have now a formal
description, the values of the parameter λ and the function g are still unknown.
This section describes the selection of g. The heuristics for choosing λ are
described in Section 4.1.1.

The selection of the g functions can be done with two approaches. In
the first approach, described in the first draft of [KM18b], the g functions
as well as the eigenvalues were selected by the user. More accurately, the
sets Λ = {λ1, λ2, ....λNΛ} and G = {g1, g2, ...gNg} were chosen. So for some
general point x in the nonlinear state space, each eigenfunction φλ,g (x) had
some value dependent on the selection of G and Λ. In order to retrieve the
nonlinear, unlifted states, the matrix C was optimized to provide optimal
linear combination of the eigenfunctions that would fit the desired output
(the state vector x). This approach was used on the singletrack model in
[CHH] and showed much better results than the EDMD approach mentioned
in Section 3.1.1.

The new approach from [KM18b] creates the g functions, or rather their
boundary values in the Γ set, optimally. The boundary values of G are
optimized so that the eigenfunctions immediately provide the system output.
The set Λ is still selected by the user, because as of now there is no method
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................................ 3.2. Selection of g functions

to select the set optimally. But the selection of g is now deterministic and
the algorithm requires less input based on some knowledge about the system,
making the approach more general. This approach will be described in the
following subsection.

3.2.1 Finding optimal g functions

For pth output on some trajectory j at time-step k, the equation (3.6) must
hold:

yjp,k = φ1,p
(
xjk

)
+ φ2,p

(
xjk

)
+ · · ·+ φNΛ,p

(
xjk

)
, (3.6)

where φi,p is a basis function defined according to (3.3), associated with ith
eigenvalue and pth output. The equation (3.6) can be expanded with (3.3) as

yjp,k = λk1g
j
p,1 + λk2g

j
p,2 + λk3g

j
p,3 + ......λkNΛ

gjp,NΛ
, (3.7)

where gjp,i is boundary value (at time t = 0) of the function gjp,i (x) associated
with pth output yp, jth trajectory and ith eigenvalue λi. In other words,
gjp,i = gjp,i (x0). The values gjp,i are optimized so that (3.7) holds (at least
approximately), for a given set Λ = {λ1, ...λNΛ} as is shown in Fig. 3.2.
Evolution of (3.7) in time is shown in Fig. 3.3. Note that each trajectory
has different gjp,i values. So there is Ny ×NΛ gjp,i values per trajectory and
Ny ×NΛ ×NT g

j
p,i values in total, with NT being the number of trajectories,

NΛ the number of eigenvalues and Ny the size of the output vector.
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g1+g2 g1 1+g2 2

g1 1+g2 2
2 2

g1 1+g2 2

k k

y0 y1

y2

yk

Figure 3.3: Visualization of (3.7) on a concrete trajectory for Nλ = 2. The
indices p and j were dropped for simplicity.

The equation (3.7) can be approximated by a least-squares problem

||Lgp − Fp||22 + γ||DLgp||22 + ζ||gp||22, (3.8)

where the first term performs the approximation of (3.7) and the second and
third term provide regularization controlled by the parameters γ and ζ. All
three terms will be described below in detail.

Data fitting. The first term, ||Lgp − Fp||22 is a matrix form of (3.7) for

L =
[
L1, L2, . . . LNΛ

]
(NΛ·NT )×(NΛ·NT )

, (3.9)
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3. The Koopman operator ................................
where

Li =




λ1
i

λ2
i
...
λKi


K×1 

λ1
i

λ2
i
...
λKi


. . . 

λ1
i

λ2
i
...
λKi




(K·NT )×NT

(3.10)

with K being the number of samples in each trajectory, NT being the number
of trajectories and

Fp =




yp,1
yp,2
...

yp,K


1


yp,1
yp,2
...

yp,K


j

...
yp,1
yp,2
...

yp,K


NT


(K·NT )×1

, (3.11)

where Fp is a column vector of pth outputs from allNT trajectories (trajectories
are denoted by superscript of the submatrices).

Regularization of nearest neighbours. The second term, γ||DLgp||22 is used
for regularization or smoothening the eigenfunction values. The matrix D is
constructed according to (3.12).

D = Ds · S (3.12)
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for

Ds =


d1

d2
. . .

dkD·K·NT


−1

, (3.13)

where Ds is a diagonal matrix of distances between two neighbouring points
from the sampled trajectories and

S =




1
1
...
1




0 0 −1 0
0 0 0 −1
0 −1 0 0
0 −1 0 0


K·NT

1
1
...
1




0 0 −1 0
0 0 0 −1
0 −1 0 0
0 0 0 −1


K·NT

. . . ...
1
1
...
1


kD×1


0 0 −1 0
−1 0 0 0
0 −1 0 0
0 −1 0 0


K·NT


(kD·K·NT )×(K·NT )

,

(3.14)
where S is a matrix that selects the closest neighbours - each row selects two
neighbouring points. For each point from the sampled trajectories, kD nearest
neighbours (across all trajectories) are selected by S, eigenfunction values
at these kD points are evaluated (by Lgp) and the difference of these values
is penalized with respect to the distance (in Ds) between the neighbouring
points. The effect of regularization can be seen in Fig. 3.4.
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0

0

Without regularization

With regularization

Figure 3.4: Blue lines represent output values along some trajectories, the
outputs are approximated by red eigenfunctions. Without regularization, the
eigenfunctions have large difference in values near the point 0. With regular-
ization, the difference is lessened for the cost of worse fit on the individual
trajectories.

Regularization of gp. The last term ζ||gp||22 is used to control the magnitude
of the values in gp. This is used to prevent numerical problems which may be
caused by magnitudes close to the machine-precision.

3.2.2 Matrices A and C

Having the eigenfunctions φ estimated, the matrices A and C are trivial. The
A matrix is a diagonal matrix with the eigenvalues from Λ on the diagonal.
The Λ set is repeated Ny times, ordering depends on the order of the φ
functions. The previous approach results in Ny ·Nλ eigenfunctions. Let φp,i
be an eigenfunction associated with pth output and ith eigenvalue. Then let
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................................ 3.2. Selection of g functions

Φ be a vector containing all eigenfunctions in the following order:

Φ =



φ1,1
φ1,2
...

φ1,NΛ

φ2,1
φ2,2
...

φ2,NΛ
...

φNy ,1
φNy ,2
...

φNy ,NΛ



. (3.15)

Then

A =



λ1
. . .

λNΛ

λ1
. . .

λNΛ

λ1
. . .

λNΛ


(Ny ·NΛ)×(Ny ·NΛ)

(3.16)

and

C =


[
1 1 . . . 1

] [
1 1 . . . 1

] [
1 1 . . . 1

]
1×NΛ


Ny×(Ny ·NΛ)

(3.17)

3.2.3 Matrix B

Having the matrices A and C, the matrix B can be optimized over the whole
trajectory, allowing for multiple-step prediction, unlike the one-step prediction
of the EDMD method mentioned in Section 3.1.1. The optimization problem
can be formulated as

min
Mt,c∑
j=1

Ms,c∑
k=1
||ξ
(
xjk

)
− ŷk

(
xj0

)
||22, (3.18)
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3. The Koopman operator ................................
where

ŷk
(
xj0

)
= CAkzj0 +

k−1∑
i=0

CAk−i−1Buji (3.19)

for
zj0 = φ

(
xj0

)
(3.20)

is output vector predicted by the matrices A,C and ξ
(
xjk

)
is the actual

output vector of kth sample on jth trajectory.

For optimizing over shorter interval of length M , the equation (3.19)
changes as follows

ŷk
(
xj0

)
= CAk−lkd zjlk +

k−1∑
i=lk

CAk−i−1Bdu
j
i (3.21)

where lk = max (k −M, 0) and zlk = φ̂
(
xjlk

)
.

The problem (3.18) can be written in matrix form

min ||Θb− θ||22 (3.22)

where b = vec (B) with vec (.) being a column-major vectorization of the
matrix B.

Θ =
[
ΘT

1 ΘT
2 . . .ΘT

Mt

]T
, θ =

[
θT1 θ

T
2 . . . θ

T
Mt

]T
(3.23)

for

Θj =



(
uj0

)T
⊗ C

...∑k−1
i=lk [

(
uji

)T
⊗
(
CAk−i−1

)
]

...∑Ms−1
i=lk [

(
uji

)T
⊗
(
CAMs−i−1

)
]


, θj =



ξ
(
xj1

)
− CAzj0
...

ξ
(
xjk

)
− CAMzjlk
...

ξ
(
xjMs

)
− CAMzjMs−M


,

(3.24)
where ⊗ is the Kronecker product. The problem (3.22) can be augmented as

min ||Θb− θ||22 + η||b||22 (3.25)

for some η ∈ R. The term ||b||22 simply penalizes the magnitude of the
numerical values in B, which is useful for practical applications where (3.22)
might result in large numbers which are close machine precision. The matrix
B can be recovered as

B = vec−1 (b) . (3.26)
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Chapter 4

Approximation of the Koopman operator
on a singletrack model

The singletrack model described in Section 2.2.2 will be approximated by a
linear Koopman system in this chapter. As described in ??, the approximation
can be done in two steps. The first step is to approximate the uncontrolled
nonlinear dynamics with a matrix A and lifting functions φ. The second step
uses the results from the first to find optimal B matrix.

4.1 Uncontrolled dynamics

The approximation of uncontrolled dynamics is influenced by many parameters.
Most importantly, the selection of eigenvalues Λ, the number of trajectories
NT , interpolation method of φ̂ and the regularization weight γ.

The number of neighbours kD used for regularization will be considered
constant kD = 5 because higher values make the problem (3.8) very demanding
in terms of memory and processing power.

All uncontrolled trajectories will start on an ellipse composed of states with
constant kinetic energy Ek = 500kJ which is an equivalent of a car weighting
1300kg and riding straight at 100km/h. The ellipse is depicted in Fig. 4.1.
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Figure 4.1: The constant-energy ellipse with Ek = 500Kj. All points from every
Γ set of initial conditions lie on this ellipse.

The following text will evaluate the influence of previously mentioned
parameters. Note that testing every possible combination would be com-
putationally very exhausting, so a baseline set of parameters will now be
established. The impact of each individual parameter will be evaluated with
respect to the baseline parameter set.

The baseline parameters are shown in Table 4.1.

Parameter Value
NΛ 35
NT 456
γ 0
ζ 1e−8

Table 4.1: Baseline parameters

NΛ is the number eigenvalues, NT is the number trajectories and γ is the
regularization cost.
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................................ 4.1. Uncontrolled dynamics

The matrices A and eigenfunctions Φ will be evaluated on a testing dataset
Ttest with NTtest = 500. The initial conditions of Ttest were randomly chosen
inside the ellipse described above. The trajectories from Ttest were sampled
at Ts = 0.01s for TF,test = 0.1s.

The parameters will be evaluated by the values of RMSE on the testing
dataset Ttest as defined in (4.1)

RMSE = 100

√∑
k ||xkoop (kTs)− xreal (kTs) ||22√∑

k ||xreal (kTs) ||22
, (4.1)

where xkoop denotes state vector estimated by the Koopman system and xreal
is a state vector of the nonlinear singletrack described in Section 2.2.2.

4.1.1 Selection of Λ

There is no direct approach describing the optimal selection of Λ. This work
will compare three heuristic approaches and select the best one.

All three heuristics are based on Dynamic mode decomposition (DMD)
described in [Sch10]. Consider dataset X = {x1, x2, ...xK} with state vectors
xk. The DMD algorithm consists in finding a matrix ADMD for which it
holds: 

x2
x3
...
XK

 = ADMD


x1
x2
...

XK−1

 . (4.2)

The matrix can be calculated as

ADMD =


x2
x3
...
XK




x1
x2
...

XK−1


†

, (4.3)

where the † symbol denotes Moore-Penrose pseudoinverse.

DMD on individual trajectories

This approach computes ADMD for each trajectory individually, resulting in
a set ΛDMD of Nx ·NT eigenvalues. The set Λ is then created from the NΛ
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4. Approximation of the Koopman operator on a singletrack model ..............
most dominant eigenvalues in ΛDMD. The calculation of ΛDMD is described
in Algorithm 1.

Data: Set of trajectories T
Result: Set of eigenvalues ΛDMD

for j ← 1 to NT do
ADMD = Tj (:, 2 : end) /Tj (:, 1 : end− 1);
ΛDMD = [ΛDMD, eig (ADMD)];

end
Algorithm 1: Calculating eigenvalues for each trajectory individually.

DMD on individual trajectories without unstable eigenvalues

This approach is similar to the previous one, except that the Λ set contains
only stable eigenvalues. Any unstable eigenvalues from ΛDMD were shifted
inside the unit circle so that their distance from the unit circle remained the
same (for example λ = 1.3 would be changed to λ = 0.7).

DMD on the whole dataset

The final approach consists in applying the DMD algorithm only once but
on the whole dataset instead of individual trajectories, resulting in just Nx

eigenvalues in the set ΛDMD. The set Λ is chosen as Λ = mesh (ΛDMD) for

mesh (Λ) = {
q∑

k=1
αkλk|λk ∈ Λ, αk ∈ N, q ∈ N,

q∑
k=1
≤ dλ}, (4.4)

where dλ ∈ N si chosen by the user. This approach was adopted from
[KM18b].

4.1.2 Comparison of Λ-selection heuristics

The algorithms and their resulting Λ sets will be referred to in the order they
were established according to Table 4.2.
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Number Λ set Description
1 Λ1 DMD on individual trajectories
2 Λ2 DMD on individual trajectories without unstable eigenvalues
3 Λ3 DMD on the whole dataset

Table 4.2: Ordering of compared heuristics and their Λ sets.

The eigenvalues obtained by the first approach are depicted in Fig. 4.2.
The algorithm resulted in over 400 eigenvalues from which 35 most signicifant
were chosen. The significance of eigenvalues was determined by a histogram
as shown in Fig. 4.3.
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Figure 4.2: The set ΛDMD is depicted by the blue circles. Red points are the
eigenvalues Λ1.

The third approach resulted in 3 real eigenvalues in ΛDMD and the set of
35 eigenvalues was calculated as Λ3 = mesh (ΛDMD) for dΛ = 4.
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Figure 4.3: Histogram of the set ΛDMD from the first and second approach.
The centers of 35 squares which contained the most eigenvalues were selected as
Λ1.
The red line symbolizes the unit circle, dividing stable and unstable eigenvalues.

Comparison of the Λ sets is show in Fig. 4.4. The Λ sets were compared
on the testing dataset Ttest with RMSE defined in (4.1). The results are
shown in Table 4.3. The best heuristic is the approach DMD on individual
trajectories described in Section 4.1.1.

4.1.3 Number of eigenvalues NΛ

The influence of parameter NΛ is investigated in this subsection. The values
of NΛ were drawn from the set NΛ,X = {10, 22, 35, 51, 70, 95}. The values of
NΛ,X were selected so that the eigenvalues were symmetrical around the real
axis, as in Fig. 4.2.
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Figure 4.4: The eigenvalues from the first algorithm are depicted in the leftmost
image. The middle one contains similar values with the exception of unstable
eigenvalues, which were moved inside the unit circle (black line). The rightmost
image contains eigenvalues Λ3 obtained by the third approach.

1 5 10 15 20 30 50
Λ1 6.70 4.82 4.23 4.08 4.11 4.29 4.86
Λ2 6.71 4.82 4.24 4.08 4.12 4.30 4.87
Λ3 7.15 5.41 4.82 4.65 4.67 4.82 5.34

Table 4.3: Comparison of heuristics for selecting Λ for different numbers of
k-neighbours used for interpolation of Φ̂. The best results were obtained by the
first approach. The optimal number of neighbours was 15 in all 3 cases.

The Λ sets were selected using the heuristic approach from Section 4.1.1.
The results are depicted in Fig. 4.5. The most reasonable value of NΛ is 51,
higher values do not show any significant improvement.

4.1.4 Datasize NT

The influence of the number of trajectories NT is investigated next. The
results can be seen in Fig. 4.6. Note that the RMSE decreases steadily even
for large values.

4.1.5 γ regularization

The parameter γ along with constant kD = 5 did not show any improvements,
as seen in Section 4.1.5. It might due to the low value of kD. However, the
size of the regularization matrix D increases with kD, making the problem
(3.8) much more demanding in terms of hardware resources.
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(a) : Minimal achievable mean RMSE for a given NΛ. The
colored points represent the same points as in the graph below.
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Figure 4.5: RMSE for different values of NΛ. The colored points signify optimal
values for each NΛ, they represent the same set of points in both graphs.
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(a) : Minimal achievable mean RMSE for a given NT . The
colored points represent the same points as in the graph below.
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Figure 4.6: RMSE for different number of trajectories NT . The colored points
signify optimal values for each NT , they represent the same set of points in both
graphs.
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Note that this measurement was done with ζ = 0 in order to prevent any

influence of the other regularization term on the results.
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Figure 4.7: The γ parameter did not provide any improvement of the minimal
achievable mean RMSE. This might be due to the fact that the nearest-neighbour
interpolation implicitly performs local regularization (depending on kNN ) around
the interpolated point, which might be sufficient for this system. Note that
although the x-axis is logarithmic, the value 0 has been added to show the
influence of γ = 0.

4.1.6 ζ regularization

The parameter ζ had a significant impact on the order of magnitude of vectors
from the lifted space while having little to no influence on the RMSE (actually,
quite similar to the γ parameter).

Usage of ζ does not have any severe impact on the dimensions of (3.8),
providing a simple way to prevent possible numerical difficulties.

Note that this measurement was done with γ = 0 in order to prevent any
influence of the other regularization term on the results.
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Figure 4.8: Small values of ζ have very little influence on RMSE while providing
considerable decrease in the magnitudes of the vectors in the lifted space. The
values 0 has been added to the logarithmic scale to show the influence of ζ = 0.

4.1.7 Prediction horizon

The parameters were selected based on the results of previous subsections in
order to provide sufficient prediction accuracy without inflating the problem
(3.8) and making it impossible or unnecessarily difficult to solve on a laptop.
The final parameter set for estimation of A and Φ can be found in Table 4.4.

Parameter Value
NΛ 51
NT 1078
γ 0
ζ 1e−12

Table 4.4: Final parameters for A and Φ estimation.

In order to evaluate the prediction capabilities of A and Φ, RMSE was
calculated for varying prediction times TF,test ∈ {0.01s, 0.05s, 0.1s, 0.3s, 0.5s}
for Ts = 0.01s. The results can be seen in Fig. 4.9.

The following section will use prediction horizon TN = 0.1s with mean
RMSE at 2.5% and maximum RMSE 24.5%. Comparison of these values can
be seen in Fig. 4.10.
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(a) : Minimal achievable mean RMSE for a given prediction
horizon TF,test. The colored points represent the same points
as in the graph below.
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Figure 4.9: RMSE for different values of TF,test. The colored points signify
optimal values for each TF,test, they represent the same set of points in both
graphs.
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Figure 4.10: Comparison of RMSE = 2.5% and RMSE = 24.5% on two trajec-
tories.
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4.2 Adding control

The prediction horizon M , defined in Section 3.2.3, was chosen as

M = TN
Ts

= 10 (4.5)

The optimization was done with 500 trajectories with random control
inputs. The control inputs were uniformly distributed in following intervals:

λf [0, 0]
λr [−1, 1]
δf [−26°, 26°]
δr [0, 0]

,

where δf/r (◦) denotes front/rear steering angle and λf/r stands for front/rear
longitudinal slip. The value of δr was chosen based on the steering angles
of today’s vehicles, 26° is the maximum steering angle of AUDI A4. The
datasheet [aud] lists turning circle diameter 11.5m and wheelbase of 2818 mm
which gives

δf = 90°− arctan
(11.5/2

2.818

)
= 26°. (4.6)

The values were chosen to simulate Rear-wheel drive vehicle with only front
steering.

Note that the dataset size of 500 provided sufficient precision and will
remain fixed. Only the influence of the regularization parameter η will be
tested.

4.2.1 η regularization

The parameter η had very little influence on the prediction precision on the
tested interval. The results are shown in Fig. 4.11.

The value of η used in the following chapter will be η = 10−6.
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Figure 4.11: The parameter η decreased the Frobenius norm of B for almost
no cost on the mean RMSE. The value 0 was added to the logarithmic scale to
show the influence of η = 0.
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Chapter 5

Model predictive control design

Model predictive control (MPC) originated in 1970’s and quickly became very
popular in chemical sectors due to its ability to handle complex dynamical
system with hundreds of inputs and outputs, while respecting the system
constraints . Information about history and industry applications can be
found in [QB03]. Some of the strengths of MPC are the ability to include
input-output constraints and to predict the plant’s behaviour in the future.
Most other controllers such as PID and LQR are reactive, however MPC can
incorporate information about future reference and act before the reference
arrives.

In automotive, MPC for nonlinear vehicle models has already been used in
numerous applications. Vehicle stability control based on planar nonlinear
3DOF model in [TJ03]. Then vehicle stability control via brake torque
distribution was introduced in [CG07], this works approach was based on
linearizing the model around non-equilibrum operating points and it was
verified on a 8DOF nonlinear vehicle model. An MPC based torque vectoring
system to prevent vehicle rollover was introduced in [YZG17].

The MPC control strategy consists in solving an open-loop optimization
problem over a fixed horizon of length N , resulting in N open-loop control
input vectors. The first input vector is then applied to the controlled system
and the whole optimization is done again at the next time-step - resulting in
a closed-loop controller.

This chapter describes the linear MPC design based on the linear Koopman
system established in Chapter 4. This approach was first introduced in
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5. Model predictive control design.............................
[KM18a] for the EDMD method referred to in Section 3.1.1 and then in
[KM18b] for the method described in Section 3.1.2, which is used in this
thesis.

The Koopman MPC will be compared with a MPC based on a locally
linearized model.

5.1 MPC problem formulation

Linear MPC is defined as a quadratic optimization problem

min
uk

N∑
k=0

[(yk − rk)T Qy (yk − rk) + uTkRuk + sTSs] (5.1)

(5.2)
s.t. (5.3)
zk+1 = Azk +Buk k = 0..N − 1 (5.4)
yk = Czk k = 0..N − 1 (5.5)
ymin − s ≤ yk ≤ ymax + s k = 0..N − 1 (5.6)
umin rate ≤ uk+1 − uk ≤ umax rate k = 0..N − 1 (5.7)
umin ≤ uk ≤ umax k = 0..N − 1, (5.8)

where Qy,S and R are positive semidefinite cost matrices, N is the prediction
horizon, ymin/max are soft constraints on the output vector yk with slack
variables s and umin/max rate are constraints on the system input rates.

Both MPC regulators were parametrized as follows:

Qy =

1
1

1

 , R =


0

100
30

0

 , S = 105 ·

1
1

1

 (5.9)

ymin = −

25
2
2

 , ymax =

25
2
2

 , umin = −


0
1

0.45
0

 , umax =


0
1

0.45
0

 (5.10)

umin rate = −


0

0.1
0.8
0

 , umax rate =


0

0.1
0.8
0

 . (5.11)
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The scheme of the Koopman MPC is depicted in Fig. 5.1. The implemen-
tation of (5.1) was done in YALMIP [Lö].

N1 20

Quadratic optimization

Nonlinear vehicle model

Open-loop prediction

State lifting

Figure 5.1: Scheme describing the Koopman MPC algorithm. Areas operating
in the lifted state-space are depicted in orange color, The non-linear space is
depicted in violet.

5.2 Comparison with local linearization-based
MPC

This section will present comparison between Koopman MPC and MPC based
on locally linearized model. The linearization was done at operating point

xtrim =

16.7
0
0

 , (5.12)

meaning that the car was driving straight on with velocity 60km/h.

The scenarios for the comparison will be constructed as follows: The initial
state will always be in an unstable state where the car is well outside its
linearity region. The goal will always be to stabilize the car as quickly as
possible. Linearity region is meant as a subspace of the vehicle’s state space
where the tires exhibit linear behaviour. The studies of such regions for
singletrack model were performed in [Fil18].
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The reference rk will be set as rk =

−15
15
15

 for all tests.

Note that for simplicity, the MPC controller based on the locally-linearized
singletrack model will be called linear controller because even though both
MPC controllers are based on LTI systems, the Koopman MPC exhibits
nonlinear behaviour (which is the point of the whole Koopman framework).

5.2.1 Test 1

The first test put the vehicle at arbitrary initial condition x0 =

−15
15
15

. The
results can be seen in Fig. 5.2. The Koopman MPC reached the reference
much faster (approximately in 0.7s, compared to 1.5s) and with much less
slipratio on input.

5.2.2 Test 2

In this test, the vehicle starts with initial condition at x0 =

 0
15
0

, meaning

that the vehicle is sliding sideways, to the left. The results are in Fig. 5.3.
First thing to notice is that even though the car is sliding to the left, the
linear controller steers to the right, unlike the Koopman MPC.
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......................5.2. Comparison with local linearization-based MPC
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Figure 5.2: Results for x0 = [−15, 15, 15]T on the singletrack model. In this test,
the Koopman MPC was faster and more economic in terms of control action.
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Figure 5.3: Results for x0 = [0, 25, 0]T on the singletrack model. In this test,
the Koopman MPC stabilized the system faster and with less control action.
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........................... 5.3. Validation on the twin-track model

5.2.3 Test 3

In this test, the vehicle starts with initial condition at x0 =

−20
0
2

, meaning

that the vehicle is driving backwards and turning to the right. Note that
for forward-driving car positive yawrate means turning to the left, but for
backwards-driving car, it means the opposite because the backwards-driving
car exhibits non-minimum phase behaviour. The results are in Fig. 5.4. Not
only did the Koopman MPC stabilize the system faster, it also accounted for
the non-minimum phase behaviour and steered the front wheels to the right
which helped to stop the turning momentum.

5.3 Validation on the twin-track model

The greatest difference between the singletrack and the full twintrack model
is the phenomenon of weight transfer, which is not present in the planar
singletrack. This will show the same tests done in Section 5.2 on the twintrack
model.

Note that the measurements of body-fixed velocities vx and vy were cor-
rected for the pitch and roll angles, because the singletrack-based controllers
expect planar velocities.

5.3.1 Test 1

The first test put the vehicle at arbitrary initial condition x0 =

−15
15
15

. The
results can be seen in Fig. 5.5. Neither controller was able to stabilize the
system. Both controllers exhibit oscillatory behaviour.
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Figure 5.4: Results for x0 = [20, 0, 2]T on the singletrack model. The Koopman
MPC was faster because it accounted for the non-minimum phase behaviour of
the backwards-driving vehicle.
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Figure 5.5: Results for x0 = [−15, 15, 15]T on the twin-track model. Neither
controller managed to stabilize the system.
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5. Model predictive control design.............................
5.3.2 Test 2

In this test, the vehicle starts with initial condition at x0 =

 0
15
0

, meaning

that the vehicle is sliding sideways, to the left. The results are in Fig. 5.6.
The Koopman MPC managed to stabilize the system much faster. However,
after stabilizing the system, the steering angle of the Koopman MPC system
started oscillating, unlike the linear MPC.

5.3.3 Test 3

In this test, the vehicle starts with initial condition at x0 =

−20
0
2

, meaning

that the vehicle is driving backwards and turning to the right. Both controllers
oscillate but the linear MPC manages to reach the reference state during the
last second, the Koopman MPC which destabilizing the vehicle even more,
considering the yawrate graph.

5.4 Summary

The Koopman MPC showed promising results on the singletrack model. The
results on the validation twin-track model show that the singletrack model
might not be sufficient as a control design model. Similar conclusion was
presented in a paper dealing with the problems of state estimation of a racecar
[HEPH16].
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Figure 5.6: Results for x0 = [0, 25, 0]T on the twin-track model. In this test,
the Koopman MPC stabilized the system faster, but the steering angle started
oscillating after the stabilization.
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Figure 5.7: Results for x0 = [20, 0, 2]T on the twin-track model. The Koopman
MPC was unstable and did not manage to track the reference. The linear MPC
managed to stabilize the system.

60



Chapter 6

Results

The goals of this thesis were set as follows:

1. Derive and implement nonlinear control design and validation vehicle models.
2. Create a linear representation of the control design model in a

predefined operating subspace.
3. Design model predictive control algorithm based on the linear representation of a vehicle.
4. Validate the control law on a high fidelity validation model.

Their fulfillment:

1. Both vehicle models are presented in Chapter 2.
2. Linear representation is done in Chapter 4
3. The MPC design based on the Koopman predictor is presented in Chapter 5
4. The validation was performed in Section 5.3.

The results were unsatisfactory, stimulating more research
to be done in terms of validity of the singletrack model as a control design model
for applications involving the nonlinear areas of vehicle dynamics.
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Chapter 7

Conclusions

This thesis created a nonlinear control algorithm for control of vehicle dy-
namics with the usage the the Koopman operator framework, which was
used to approximate the vehicle nonlinearities in a predefined subspace. The
control algorithm is based on a Koopman predictor, which is an LTI system
approximating the nonlinear model via multi-step prediction.
The predicted nonlinear system was a singletrack model with the full, high
fidelity Pacejka tire model. The Koopman system was able to predict the
singletrack trajectory for 0.1s with mean prediction error RMSE = 2.5% in
uncontrolled scenario and with RMSE = 4% in controlled scenario.

The Koopman system was used for linear MPC design. The Koopman
MPC showed good results on the singletrack model. However, it did not
perform well during the validation on the full twintrack model.
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Chapter 8

Future research

Future research will involve study of the differences between singletrack and
twintrack model, hopefully resulting in a more suitable, low fidelity control
design model.

Another topic of interest will be incorporating the input nonlinearities into
the system. The current approach allows for approximating the uncontrolled
nonlinearities via lifting the nonlinear states, with the control added afterwards
through the linear B matrix. One way approach could be incorporating the
input vector as an additional state vector, as was done in [KM18a], the
question is whether this is possible while not losing the multi-step prediction
capabilities, which proved to be a crucial element of the algorithm presented
here in comparison with the method from [KM18a]. A comparison of these
two approaches is done in [CHH].

Next, the parameter γ defined in (3.8) showed surprisingly no improvement
of the prediction. The reason could be the fact that although the γ parameter
performs global regularization, the interpolation method of nearest neighbours
might be sufficient to locally regularize the lifted state. This could mean that
the costly computations with γ regularization might not be necessary if a
suitable interpolation method is used.

To sum up, my goals in the future are to improve the Koopman vehicle
control framework introduced in this thesis to provide a simple yet effective
framework for vehicle dynamics control. I plan on doing so during my Ph.D.
studies with Ing. Milan Korda, Ph.D., the author of the Koopman model
predictive approach, as my supervisor.

65



66



Appendix A

Bibliography

[aud] TECHNICAL SPECIFICATIONS: 2018 AUDI A4
2.0 TFSI QUATTRO KOMFORT ALLROAD, https:
//www.auto123.com/en/new-cars/technical-specs/audi/
a4/2018/allroad/20-tfsi-quattro-komfort/#suspension,
Accessed: 2019-05-21.

[Aut18] Rimac Automobili, Automotive challenge, 2018.

[CG07] Sehyun Chang and Timothy J. Gordon, Model-based predictive
control of vehicle dynamics, International Journal of Vehicle Au-
tonomous Systems 5 (2007), no. 1/2, 3.

[CHH] Vit Cibulka, Tomas Hanis, and Martin Hromcik, Data-driven
identification of vehicle dynamics using koopman operator.

[Fil18] Jan Filip, Trajectory tracking for autonomous vehicles, 2018.

[gov68] I. on governors, Proceedings of the Royal Society of London 16
(1868), 270–283.

[HEPH16] Martin Haudum, Johannes Edelmann, Manfred Plöchl, and
Manuel Höll, Vehicle state estimation from a sports-car appli-
cation point of view focusing on handling dynamics, Advanced
Vehicle Control AVEC’16, Crc Press, dec 2016, pp. 521–526.

[KM18a] Milan Korda and Igor Mezić, Linear predictors for nonlinear
dynamical systems: Koopman operator meets model predictive
control, Automatica 93 (2018), 149–160.

[KM18b] Milan Korda and Igor Mezić, Learning koopman eigenfunctions
for prediction and control: the transient case.

67

https://www.auto123.com/en/new-cars/technical-specs/audi/a4/2018/allroad/20-tfsi-quattro-komfort/#suspension
https://www.auto123.com/en/new-cars/technical-specs/audi/a4/2018/allroad/20-tfsi-quattro-komfort/#suspension
https://www.auto123.com/en/new-cars/technical-specs/audi/a4/2018/allroad/20-tfsi-quattro-komfort/#suspension


A. Bibliography.....................................
[Koo31] B. O. Koopman, Hamiltonian systems and transformation in

hilbert space, Proceedings of the National Academy of Sciences 17
(1931), no. 5, 315–318.

[Lib16] Max Liben, Wr-217e architecture design, 2016.

[Lor12] Vittorio Lorenzi, Using the pac2002tire model, 2012.

[Lö] J. Löfberg, Yalmip, https://yalmip.github.io/, Accessed: 2019-05-
21.

[MB04] Igor Mezić and Andrzej Banaszuk, Comparison of systems with
complex behavior, Physica D: Nonlinear Phenomena 197 (2004),
no. 1-2, 101–133.

[MM96] William F. Milliken and Douglas L. Milliken, Race car vehicle
dynamics, Society of Automotive Engineers Inc., Great Britain,
1996.

[Pac02] Hans Pacejka, Tyre and vehicle dynamics, Elsevier LTD, Oxford,
2002.

[Pac12] , Tire and vehicle dynamics, Elsevier LTD, Oxford, 2012.

[QB03] Joe S. Qin and Thomas A. Badgwell, A survey of industrial model
predictive control technology, Control Engineering Practice 11
(2003), no. 7, 733–764.

[Sch10] Peter J. Schmid, Dynamic mode decomposition of numerical and
experimental data, Journal of Fluid Mechanics 656 (2010), 5–28.

[SHB14] Dieter Schramm, Manfred Hiller, and Roberto Bardini, Vehicle
dynamics, Springer Berlin Heidelberg, 2014.

[SS05] Ian Postlethwaite Sigurd Skogestad, Multivariable feedback control,
John Wiley & Sons, 2005.

[TJ03] Petter Tondel and Tor A. Johansen, Lateral vehicle stabilization
using constrained nonlinear control, 2003 European Control Con-
ference (ECC), IEEE, sep 2003.

[WKR15] Matthew O. Williams, Ioannis G. Kevrekidis, and Clarence W.
Rowley, A data–driven approximation of the koopman operator:
Extending dynamic mode decomposition, Journal of Nonlinear
Science 25 (2015), no. 6, 1307–1346.

[YZG17] Hongliang Yuan, Dong Zhang, and T. J. Gordon, Road vehicle
rollover prevention torque vectoring via model predictive control,
2017 36th Chinese Control Conference (CCC), IEEE, jul 2017.

68



Appendix B

Parameters of used vehicle models

Vehicle body parameters

Name Value Unit Description
m 1300 kg mass of vehicle body
g 9.81 m/s−2 gravitational constant
Jxx 200 kg ·m2 moment of inertia in x-axis
Jyy 1300 kg ·m2 moment of inertia in y-axis
Jzz 1400 kg ·m2 moment of inertia in z-axis
Sz 0.25 m vertical distance between CG and spring anchor
wheelbase 2.745 m wheelbase (lf + lr)
cw 0.18 − drag coefficient
ρ 1.22 kg ·m−3 air density
A 2 m area exposed to aerodynamic forces
Jw 1 kg ·m2 wheel moment of inertia
r 0.33 m wheel radius
ca,1,3 30000 N/kg front spring stiffness
ca,2,4 40000 N/kg rear spring stiffness
da,1,3 8000 N · s/m front damping coefficient
da,2,4 8000 N · s/m rear damping coefficient
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B. Parameters of used vehicle models ...........................
Tire parameters

LONGVL 16.5 LFZ0 1
LCX 1 LEX 1
LKX 1 LHX 1
LVX 1 LGAX 1
LCY 1 LMUY 3
LEY 1 LKY 1
LHY 1 LVY 1
LGAY 1 LTR 1
LRES 0 LGAZ 1
LXAL 1 LYKA 1
LVYKA 1 LS 1
LSGKP 1 LSGAL 1
LGYR 1 LMX 1
LVMX 1 LMY 1
PCX1 1.63 PDX1 1.06
PDX2 -0.0492 PDX3 -2.29
PEX1 0.5 PEX2 -0.11
PEX3 -0.06 PEX4 0
PKX1 19.7 PKX2 -0.15
PKX3 0.18 PHX1 -0.0005
PHX2 8.5e-5 PVX1 0
PVX2 0 RBX1 9.0
RBX2 -8.6 RCX1 1.131
REX1 0.081 REX2 -0.15
RHX1 -0.029 PTX1 1.98
PTX2 0.0003 PTX3 -0.31
PCY1 1.28 PDY1 -0.92
PDY2 0.22 PDY3 -4.55
PEY1 -1.1 PEY2 0.65
PEY3 -0.65 PEY4 -12.41
PKY1 -13.06 PKY2 1.77
PKY3 0.19 PHY1 0.0034
PHY2 -0.003 PHY3 0.044
PVY1 0.044 PVY2 -0.030
PVY3 -0.176 PVY4 -0.44
RBY1 6.4 RBY2 7.91
RBY3 -0.059 RCY1 1.16
REY1 0.22 REY2 0.43
RHY1 0.0007 RHY2 0.023
RVY1 0 RVY2 0
RVY3 0 RVY4 10
RVY5 1.94 RVY6 -50
PTY1 1.8 PTY2 1.8
QBZ1 8.40 QBZ2 -2.96
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............................ B. Parameters of used vehicle models

QBZ3 0.45 QBZ4 -0.45
QBZ5 -0.45 QBZ9 3.45
QBZ10 0 QCZ1 1.2
QDZ1 0.1 QDZ2 -0.003
QDZ3 -0.55 QDZ4 8.4
QDZ6 -0.003 QDZ7 0.005
QDZ8 -0.11 QDZ9 0.11
QEZ1 -2.9 QEZ2 -0.50
QEZ3 0 QEZ4 -0.12
QEZ5 -3.71 QHZ1 0.003
QHZ2 0.00084 QHZ3 0.158
QHZ4 0.121 QSX1 0.032
QSX2 0.49 QSX3 0.12
QSY1 0.010 QSY2 0
QSY3 0 QSY4 0
SSZ1 0.023 SSZ2 0.019
SSZ3 0.5 SSZ4 -0.28
QTZ1 0.2 MBELT 4.10
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