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Abstract

The evolution of autonomous vehicles
is rapidly progressing forward. In order
to achieve fully automotive vehicles, as
much data about the vehicle behaviour
is needed to be known, as possible. The
budget is often restricted and cost is very
important for the project. Sometimes,
the physical quantities are very difficult
to measure. The measurements are
very often distorted by a surrounding
noise, making the results not clear.
These situations are examples of where
filtering and algorithms
come forward, clearing the noise out of
the measurements and allowing us the
"prediction" of state values at different
levels (full vehicle, tyres). The algorithms
act as a virtual sensor, which can save
the total budget. The aim of this thesis
is to estimate the vehicle states, which
are not directly measured at both levels,
using a restricted measurement vector
and a system model.

estimation

At the beginning of the thesis a
Single-track vehicle modelling approach is
introduced, followed by a data-generation
process and an electric formula used for
real data validation is presented. Later
on, the Kalman filter is described with
the extension to Extended Kalman filter
for non-linear systems. Then the achieved
results are shown with a few methods
checking the estimate basic assumptions.
In the last chapter a future work is being
suggested.

Keywords: Single-track vehicle model,
Pacejka Magic Formula, Electric formula,
Extended Kalman filter, vehicle states
estimation, Kalman filter performance
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Abstrakt

Vyvoj autonomnich vozidel se velmi
rychle posouva vpred. Aby bylo mozné
dosdhnout plné autonomnich vozidel, je
nutné ziskat co nejvice dat, ktera popisuji
chovani vozidla. Rozpocet projektt byva
omezeny, proto hraji celkové naklady
dilezitou roli. Veli¢iny by obcas mohly
byt pouze velice obtizné méritelné a
Casto je méreni zasuméné vlivem okoli.
Nameérené hodnoty pak nejsou presné.
V téchto pripadech se vyuzije filtrace
a odhadovani, které nejdiive odstrani
velkou ¢ast Sumu z méfeni a zaroven
"predikuji" hodnoty veli¢in (jak na
urovni celého vozidla, tak i pneumatik).
Algoritmy slouzi jako virtudlni senzor,
ktery muze usetrit celkové naklady vyvoje.
Cilem této prace je odhadovani stavovych
velicin vozidla za pouziti omezeného
vektoru namérenych hodnot a modelovani
systému.

Zacatek prace predstavuje jednos-
topy model vozidla a vytvoreni stavového
popisu systému, nasledné je predsta-
vena elektricka formule, na které byla
nameéiena realnda data a modely, které
se v praci pouzivaji. Déle je vysvétlena
funkénost Kalmanova filtru s rozsitenim
na tzv. Extended Kalman filter, urceny
pro nelinearni systémy. Poté jsou zob-
razeny vysledky simulaci a porovnéani
s namérenymi daty, nékteré vysledky
jsou rozsiteny o testovani zakladnich
predpokladti pro odhad. V posledni
kapitole jsou navrzena mozna rozsiteni
této prace.

Klicova slova: Jednostopy model
vozidla, Pacejka Magic Formula,
elektricka formule, Rozsiteny Kalmanav
filtr, odhadovani stavii vozidla,
vyhodnoceni vysledktt Kalmanova filtru

Preklad nazvu: Odhadovani stavu

vozidla



Contents
Acronyms

Nomenclature

1 Introduction 1
1.1 Motivation and approach .......
1.2 Goals of the thesis ............. 2
1.30utline.......................
2 System modelling 3
2.1 Dynamics.....................

2.1.1 Vehicle dynamics ...........
2.2 Kinematics ................... 6l
2.3 Wheels modelling . .............

2.3.1 Tyre modelling .............

2.3.2 Friction ellipse.............. 9

2.3.3 Pacejka’s tyre model .......

2.3.4 Two-line tyre model ........
2.4 Modelling outputs ............
3 Data generation 13
3.1 Non-linear model ............. [14]
3.2 Linearised model .............
3.3 The eForce formula ........... 18]
4 Kalman filtering 23
4.1 Kalman filter abilities .........
4.2 Kalman filter structure ........ 26/
4.3 Noise covariance matrices . . . ...
4.4 Kalman filter algorithm .......

4.4.1 Data-update step ..........

4.4.2 Time-update step ..........
4.5 Extended Kalman filter........ 32|
4.6 Goals of the Kalman filtering. . .
5 Experiments 35|
5.1 Simulation results............. 35

5.1.1 Design of the experiments . . .
5.1.2 Linear and non-linear model

comparison ................... 136
5.1.3 Filtering and smoothing . ...
5.2 Results validation on the real data [38
5.2.1 System inputs .............
5.2.2 Model fitting ..............
5.2.3 Filtered states .............
5.2.4 Estimated states ........... 44|
6 Performance evaluation 47
6.1 Data-driven and whiteness test . [48§]
6.2 Consistency testing ...........

6.3 Unbiasedness testing ..........

6.4 Efficiency testing .............

7 Conclusions
7.1 Summary . ...
7.2 Future work. .................

A Bibliography
B CD contents

8 & gas =



Figures

2.1 Non-linear model block diagram
2.2 The single track model, adopted

from [I0] ............. o il
2.3 The vehicle coordinate system,

adopted from [20] ................
2.4 Tyre slip angles, adopted from [20]
2.5 The friction ellipse ............. 9|
2.6 Comparison between Pacejka’s and

Two-line tyre model, adopted

from[IO] ......... ... oo L

3.1 The FEE eForce Formula, adopted

from [9) ...l
3.2 The NED coordinate system and

Euler rotations, adopted from [4] .
3.3 The formula velocities from two

coordinate systems comparison . ..
4.1 Linear stochastic system .. .....

4.2 Kalman filter structure diagram
4.3 A priori and a posteriori data

visualisation ................... 28|
4.4 Data and time-update step.....
5.1 Non-linear and linearised model

COmMPArison .................... 136
5.2 Filter performance in a very noisy

signal ....... ... ... . L.

5.3 The formula elapsed trajectory .
5.4 Formula driving and braking
torques comparison ............. 40|
5.5 Formula front wheel steering angle
5.6 Yaw rate non-linear model
comparison with formula

measurements .................. [47]
5.7 Non-linear model comparison with

formula measurements........... 1421
5.8 EKF measurable states

comparison .................... 43

5.9 Estimate of vehicle side-slip angle
5.10 Estimate of the peak factor and

wheel load .....................
5.11 Estimate of tyre slip angles ...
6.1 Sum of wheel velocities whiteness

test ..o 48]
6.2 Yaw rate goodness of fit .......

vi

6.3 Innovation magnitude bound test

of the vehicle velocity



Acronyms

ADAS Advanced driver-assistance systems.
CoG Centre of gravity.

d-q direct and quadrature axis motor model.
EKF Extended Kalman Filter.

ESC Electronic stability control system.
FEE Faculty of Electrical Engineering.
GPS Global positioning system.

IMB Innovation magnitude bound.

IMU Inertial measurement unit.

KF Kalman Filter.

LMS Linear mean-square.

MS Mean square.

NED North,East,Down coordinate system.
NIS Normalised innovation squared.

NRMSE Normalised root-mean-square error.

PMF Pacejka’s Magic formula.
RPM Revolutions per minute.
S-T Single-track.

SNR Signal-to-noise ratio.

TR Transmission ratio.






Nomenclature

Symbol Description

OF R

Front/rear tyre slip angle

Side slip angle of the vehicle

Yaw acceleration of the vehicle
Front/rear wheel angular acceleration
Steering angle of the front/rear wheel
Side-slip rate of the vehicle

Yaw rate of the vehicle

Front/rear wheel angular velocity
Acceleration of the vehicle
Measurement error

Estimate of the state

Tyre slip ratio

Friction coefficient of the road
Innovation

Rotational velocity

Roll angle

Yaw angle

Standard deviation of a sample
Braking torque of the front/rear wheel

Driving torque of the front/rear wheel

rads™!
rad

rad
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State covariance matrix

Normalised innovation

State and measurement noise covariance matrices
Radius of the front/rear wheel

Revolutions per minute of the motor
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System input

rad

kg
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v Velocity of the vehicle CoG
Vei Circumferential velocity of the wheel
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Chapter 1

Introduction

Nowadays, the evolution of autonomous vehicles is on the rise. Year after
year there are new innovations in the control and safety system development,
everything is heading towards the full autonomy. Right now, the vehicle sys-
tems like ADAS (Advanced driver-assistance systems) are focused on the best
car handling from the safety point of view, helping the driver in unordinary,
sometimes critical situations. These systems require lots of data from various
quantities. Unfortunately, all the measured data contain some amount of
added noise, making it not accurate or sometimes false.

B 1.1 Motivation and approach

In the case, where budget is concerned, it could be very beneficial to anal-
yse the requirements and needs. There is a possibility of omitting several
hardware sensors (and thus saving more money), if the estimation algorithm,
acting as a virtual sensor, is accurate and fast enough for a particular project.
Not every time it is possible to have a sensor fit into the vehicle for particular
physical quantity measurement and sometimes it would be very difficult to
measure the desired value. Approaches, that determine the side-slip angle
from the side-slip rate integration, are often prone to uncertainty and errors
from sensor biases [I12]. This is where estimation of vehicle states can be
useful for the use in the vehicle active control systems. These are nowadays
also parts of the vehicle safety systems or as a performance enhancing systems,
as an example can be electronic stability control (ESC), which detects the
loss of traction and tries to help in reducing the skidding using the brakes.

As noted in [11], while commercial customised solutions for vehicle state
estimation exist, such as the RT3002 [27], these may be unavailable in proto-
type projects with a restricted budget or for use in series production. Another
problem with the custom made solutions might be in the device flexibility -
the results may become unreliable when the driving conditions change.

It has been demonstrated by researchers in [6] that a combination of GPS and
inertial sensors can provide accurate measurements of the vehicle side-slip
and tyre slip angles. This is why the vehicle velocity v and its yaw rate v are
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used as the main measurement quantities. Methods, that design observers
to estimate the side-slip, often depend on accurate tyre parametrization,
which might be problematic, since these vary based on the road surface
[I7]. The advantage of our approach is that some of the tyre parameters are
estimated, creating a flexibility for changes of the road surface during the ride.

. 1.2 Goals of the thesis

There are two main goals of the thesis:

® Filtration of vehicle measured states: its velocity, yaw rate and estimation
of a side-slip angle

® Estimation of tyre variables: the wheel load and peak factor

First part uses modelling of the vehicle to provide an accurate description
of the vehicle, using Kalman filter for the estimation, which is compared
to measured data. The measurements are data obtained from an electric
formula.

Second part uses the available measurements (estimates) from the first part
to estimate tyre variables. The main focus is on the vehicle side-slip angle
and variables from Pacejka’s magic formula, describing the forces acting on
the tyre, the peak factor and wheel load combined. Using these estimates it
is further possible to get the estimate of a tyre slip angle.

. 1.3 Outline

The main topic of the thesis is Kalman filtering and estimation of vehicle
states. The work is divided into several parts. At the beginning, Ch.2: [System
modelling describes the modelling approach used for the description of the
vehicle. Later on, Ch.3: |Data generation) is walking through the process
of data generation, what conditions have been used, the setup for the data
and also the post-processing of measured values. Ch.4: |[Kalman filtering is
serving as a basis for the Kalman filter algorithm, describes how it works,
its possible versions and the goals, which we want to achieve using it. Ch.5:
Frperiments presents the results of both virtual experiments demonstrating
the filtering abilities and comparing the linearised model with the created
non-linear one. The validation on the real measured data follows, with the
verification of created model and estimation of values being presented in
the process. Ch.6: |Performance evaluation|identifies additional methods for
Kalman filter performance testing, using the error and some of the statistical
tests. The tests are also used for tuning and setup of Kalman filter initial
parameters, that process is described within the chapter. Last chapter, Ch.7:
Conclusions summarizes the work done, comments on the results and suggests
the future work related either by extension of the thesis topic or in further
control design.



Chapter 2

System modelling

This chapter is adopted from the master’s thesis from Denis Efremov [10].
Above all, we need to describe the system we are working with as accurately,
as possible, to minimise the room for errors and improve the performance
of a Kalman Filter (KF) . His thesis serves as a foundation for further work.
Our goal focuses on the estimation of a single-track non-linear model (S-T)
vehicle states and thus it uses the following derivations and assumptions.

® All lifting, rolling and pitching motion of the vehicle is neglected.
® Vehicle mass is assumed to be concentrated at the centre of gravity.

® Front and rear tyres are being represented as a single tyre at the centre
of each axle.

® Imaginary contact points of tyres on the surface are assumed to lie along
the centre of axles.

® Pneumatic trails and aligning torques resulting from a side-slip angles of
tyres are neglected.

® Mass distribution on the axles is assumed to be constant.

A full model takes into account both dynamics and kinematics of the vehicle
all the way down to tyres. As mentioned in the assumptions, we are using
a representation of a single tyre on the front, respectively rear side of the
vehicle. Therefore we have a separate input for each wheel.

We have three inputs for each wheel, resulting to six in total, first two being
steering angles, dr, dr of the wheel, next pair is the driving torques 7p, T
and the last pair is the braking torques 75r, TBR.
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The system model is divided into several parts, which can be easily intro-
duced using the following chart diagram. The inputs are marked in blue and
the outputs in green. The states are highlighted in red :

/" Steering angle \

projection ]
Dynamics
OF
O F, » F, \ » Y1)
> FxF
F > F B H-
> Fp Y y
> FxR Mz » Mz \ :( Y2 )
> FyR \ /
( Wheels \
— 2
yres T
R
Fyr S Tor |€—(Us)
F ) u
yF VR B I'DF TBR
FxR | FXF <
F b=
R Vol Pr Fir [«
VxF pF < F VxF <
” VxR Pr € VxR
> Y ;/T

Figure 2.1: Non-linear model block diagram

B 21 Dynamics

The vehicle dynamics describe the behaviour of the vehicle after some of
the driver inputs are performed - in our case we are talking about steering,
acceleration and braking. The important system variables, which help us
map these changes, are forward velocity v, side slip angle 8 and yaw rate w

These three variables have been selected as states of the system and using
equations for S-T model alongside with the degrees of freedom movements
we can make out some of the state-space equations.
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B 2.1.1 Vehicle dynamics

An early assumption we have made is that the two tyre slip angles on the
same axle (front, respectively rear) are the same. Under this assumption we
can use the simplification of a one wheel at the centre of each axle. Every
wheel is affected by longitudinal and lateral forces, F, and F),. Figure [2.2
shows all forces, angles and velocities used for modelling the vehicle dynamics.

Yt

| )
Figure 2.2: The single track model, adopted from [I0]

We can see from figure 2.2| that in this system we have three degrees of
freedom:

® Longitudinal motion, described by force F),

E, = micos(B) — mu(B + )sin(B) (2.1)
® Lateral motion, described by force F

F, = msin(8) — mo(§ + ¥)cos(8) (2.2)
® Vertical (yaw) motion, from the moment around the z-axis, M,

M, = Ly (2.3)

Here m is a mass of the vehicle, v, ¥ is the velocity, resp. acceleration of the
vehicle’s CoG, 3, 5 is the side-slip angle, resp. angular velocity of the vehicle
and I, is the vehicle’s moment of inertia around the z-axis.
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From the equations above we can express the movements as functions of
individual forces acting in each direction:

mu(B + 1) —sin(B) cos(B) 0| | Fy
mo = | cos(B) sin(B) O | Fy . (2.4)

Combining equations [2.6| and 2.4, we get the state space model description
for the velocity v, side-slip angle 8 and yaw rate v, which are the states of
state equations:

0= 1 [Fycos(B) — Fysin(B)] — W

muv
§ = (Fysin(8) + Facos(9) (25
. 1
Y= TzMz

This set of equations describes the vehicle dynamics, and is also called a
Dynamics equation. It incorporates the steering angle projection into the
dynamics and provides a good insight into the vehicle’s behaviour.

. 2.2 Kinematics

Every movement of a rigid body can be considered as a superposition of two
movements: the translational movement of a fixed body point and the rotation
of the body around this point [I6]. In the kinematics block we are focusing
mostly on wheels and tyres of the vehicle. These include highly non-linear
relations, which make the estimation and Kalman filtering a challenging task.
Since we are using a S-T model, all of the equations apply to this scenario.

B Coordinate system vehicle

Zec Vertical
motion

We are using a three dimensional
Cartesian coordinate system with the
x-axis pointing towards the observer

for a description of our dynamics. s
The directions and rotations can be &
. . e

seen in figure 2.3. The z-axis de- XeoG A rollin

X X 2 . R vehicle mo tio[rgz
scribes a longitudinal motion, y-axis longitudinal -

. epy s motion steering

lateral, and the z-axis a lifting mo- motion

tion. The yaw rate 1 is positive, if
the vehicle is turning to the left hand Figure 2.3: The vehicle coordi-
side. nate system, adopted from [20]
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The acting forces can be projected using the steering angles dr g:

F, cos(6p) —sin(0p)  cos(oR) —sin(0g) ?”f
Fy,| = | sin(0p)  cos(dp) sin(dR) cos(dR) Fyf
M, lrsin(0p) lrcos(dp) —lysin(6r) —lrcos(dr) FM

yr

(2.6)

Equation [2.6| is called a force coordinate transformation and it is a good way
to show what effects do the front and rear steering angles dr r have on the
forces acting in each direction on the Centre of Gravity (CoG) of the vehicle.

B 2.3 Wheels modelling

For the description of wheels we are using the same coordinate system as for
the whole model in [2.2], meaning that the x-axis is facing the observer. The
state variable we have chosen for wheels is a rotation velocity of front, resp.
rear wheel, pr g, where the state equations show the rotation acceleration as
follows [10]:

.. 1 1 )
W:j*mfRﬂH*“W@ﬂ@R*@%H
- (2.7)

B, 1 Lo
Pr = j(TR — R Fyr — Szgn(PT)TBF - krvxr)

T

Here the constants are radii of wheels Ry, and coefficients of the road
drag for each wheel k¢ .. The inputs are the driving torques 7 g and braking
torques 7p;. . Other variables in the equation are moments of inertia for each
wheel Jy,., forces acting on the centre of each wheel along the x-axis (from
wheel rolling motion) Fj, and the wheel travel velocity vy, defined in eq.
2.9/ A free rolling wheel can be identified by its circumferential velocity[28]:

vei = piRi . (2.8)

The travel velocity differs in direction to the circumferential velocity by a
tyre slip-angle «. This can be seen in fig. 2.3] and the relation between these
two velocities is used to calculate the slip ratio A. Travel velocity each wheel
(front,rear) is defined as [10]:

v, = veos(B)cos(87) 4 (vsin(B) + Lpi)sin(dy)

. Ny (2.9)
Vzr = veos(B)cos(d,) + (vsin(B) — 11)sin(0,)

This velocity can be obtained from the odometry measurement.
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An important relation describing the tyre longitudinal movement is between
the longitudinal force F}, acting on the wheel and its slip ratio A. The slip ratio
has more alternative definitions, but we are using the SAE J670 definition,
for tyres pointing straight ahead from [5],[25]:

Vei — Ugi
\p= (2.10)
(7
where —1 < A < 1, the ratio is negative, when braking and positive when
driving.

B 23.1 Tyre modelling

Tyre characteristics are of crucial importance for the dynamic behaviour of
road vehicle [28]. The main parameters we are working with are the tyres’
slip angles ap r, which show us an angle between the wheel plane and the
velocity of the wheel ground contact point [20]. These angles are important
for the process of estimation, because they are dependent on the steering
angles 0r r, and the states: side-slip angle /3, velocity of the vehicle’s centre
of gravity v and the yaw rate 11) These variables except for the side-slip angle
can be easily measured by the combination of GPS and on-board inertial
sensors. Once we get the estimate of vehicle slip angles, we could use the
tyre slip angles for further modelling and estimation of the tyre lateral forces
models which are described later in this chapter.

longitudinal
Xogp vﬁhzcle QXIS X
NS
~~ ' . S — v
SAN Uy SIN(Oyy-O) & WR
% | wheel turn angle &, i
S | tire side slip angle o, = f
ISl
SV
wheel plane and
longitudinal vehicle axis

front wheel rear wheel

Figure 2.4: Tyre slip angles, adopted from [20]
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Using the figure 2.4 and the equations in [20] we can express the tyres’ slip
angles as:

[vsin(f5) + lfd:J]cos(éF) —vcos(f)sin(df)
[[vsin(B) + Lg]sin(6F) + veos(B)cos(0F)|

ap = —arctan

(2.11)
[vsin(B) — ZMZ:J]COS((SR) —wvcos(B)sin(0g)
[vsin(B) — L¢]sin(dr) + veos(B)cos(OR)|

where [ r are distances from the vehicle’s centre of gravity to the front,
resp. rear wheels.

ar = —arctan

In order for a tyre to produce a force, a slip must occur [30]. The knowledge
of tyres’ lateral and longitudinal forces allows us to get certain variable pa-
rameters of the car, like its wheel loads F,, which vary on different roads and
also during driving manoeuvres. The wheel load can simply be pre-computed
as a constant, however, the next estimations could not be accurate for the
full duration of the ride.

B 2.3.2 Friction ellipse

The friction ellipse (or for specific cases
called the Kamm’s circle) shows us how
much of the force is being transferred
from the tyre to the road surface. The
combination of longitudinal and lateral

forces acting on the wheel cannot be - -
greater than the wheel load F,. These
combined slips occur during the acceler-
ation or braking situations. If the geo-
metric sum of longitudinal and lateral
wheel forces lies within the ellipse, the
resultant tyre forces can be transmitted

to the ground [26]. We can see the bor-
ders in figure 2.5 where F, grows during acceleration and diminishes while
braking.

The combined force from a friction ellipse is defined as:

F=\/aF2+bF? < uF, (2.12)

where a, b are parameters of the ellipse and p denotes the friction coefficient
of a road (examples from [17]: pavement p = 1, gravel u = 0.6).

Figure 2.5: The friction ellipse

There are several models which can be used for modelling of the tyre forces.
These are well compared by Lukas Haffner in [I4]. We will compare only
two of them, the very famous Pacejka’s Magic formula (PMF) and its linear
two-line approximation. Both models depend on tyre slip angle o, which was
explained and defined on the previous page.

9



2. System modelling

B 2.3.3 Pacejka’s tyre model

The modelling approach allows that the characteristics of the lateral guiding
forces, the braking forces and the aligning torque are described mathematically.
Used formulas are capable of describing the circumferential force, lateral force
and aligning torque as functions of the longitudinal and lateral slip with a
high degree of accuracy [31]. Wheel forces for each wheel (i=front,rear) can
be obtained through following formula from Pacejka [28)]

Fyi = DyF;sin [Cyarctan(Byo; — Ey(Bya; — arctan(Byoy)))]
(2.13)
Fyi = Dy F,;isin [Crarctan(Bg i — Ey(Bz\i — arctan(BgX;)))]

where in the lateral force we are using the tyre slip angle « and in the
longitudinal case the tyre slip ratio A, the coefficient B is a stiffness factor, C'
a cornering stiffness, D is a peak factor including the tyre friction coefficient
1 which varies on different road surfaces and E is a curvature factor. All of
these coefficients can be expressed as functions of the nominal wheel load F,
and are different for wheel lateral forces Fy and F.
The equation [2.13|is called a Simplified Pacejka Magic formula, because it is
a lighter version of the original PMF, which includes many more coefficients.
For our application this simplified formula is more than satisfying, there is
therefore no need to use the full PMF.
As we can see from eq. [2.13], this description is highly non-linear, which might
cause problems with further use, especially in the region around A = 0, or
very small tyre slip angles « - see fig. 2.5, This is why the knowledge of
coefficients B, C, D, F is very useful and allows us using this accurate tyre
model. They are, however, not always known. Depending on the tyre rubber
materials, it is mostly a secret of the tyre manufacturing companies. In case
we do not know these, we could use the less accurate, but very similar and
linear two-line tyre model.

10



Lateral force F, [N]

2.3. Wheels modelling

B 2.3.4 Two-line tyre model

The main purpose of a two-line tyre model is to get as close to Pacejka’s
approximation as possible with not as many coefficients. It consists of two
saturations and a linear function for the most problematic areas, around
A =0, resp. a = 0. The linear part is a first-order approximation of the
tyre force characteristics and it is obtained from Taylor expansion of the tyre
cornering force characteristics [11]:

_8Fy

Ca= 22 (2.14)

a=0

This constant is the same as the cornering stiffness C), in eq The two-
lines model (or sometimes called a Linear bicycle model of lateral vehicle
dynamics [25]) is defined for lateral case as [10]:

F, = {Cao‘i i < Fg2=, (2.15)

Hmazx ‘051| > ,ug%

where fimqz 18 a maximal friction coefficient depending on the road surface.
Similar relations would apply in the longitudinal case, where in equations
and we would change the tyre slip angle « for the slip ratio A and
the lateral force Fy, for longitudinal F,. That gives us different coefficient C'\
for eq.

In our non-linear modelling we are using the Pacejka’s Magic formula because
of the accuracy, the Two-line tyre model is used for linearised model only for
its simplicity. Both models can be seen in fig|2.6|

5000 T T
O |- -
—Pacejka
—Two-Lines
-5000 | 1 I 1 |

-15 -10 -5 0 5 10 15
Slip angle o [deg]

Figure 2.6: Comparison between Pacejka’s and Two-line tyre model, adopted

from[10]
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2. System modelling

B 24 Modelling outputs

The modelling done above gives us several outputs. Firstly, we have a set of
non-linear equations describing the model we are using for our data validation
in 3.1. This model shows us the accuracy of our approach and estimations
when set for a particular vehicle (very different configurations for normal
cars like Skoda, Porsche and for Formula) - with the weights, moments and
dimensions of the real vehicle. The incorrect setup might lead to vehicle
instability.

Secondly, we can also get a linearised model using various assumptions. This
model is derived in chapter |3.2 and can be useful for comparison between
a linear approach and fully non-linear modelling. Another use of linearised
model can be for controllers design, where a simplified model description
might be sufficient. This model can also help avoiding the problematic non-
linear areas with an operating point chosen correctly.

12



Chapter 3

Data generation

This chapter describes the process and options for data generation. Firstly,
the individual car constants are loaded. There are several different car
configurations available to choose from: Skoda Fabia, BMW, Porsche 911,
Porsche 928 and Formula.

Secondly, we also obtained data from the eForce FEE Prague Formula'|. This
set of data is interesting from the point of view where we validate the created
algorithms, containing all the noises and other unexpected scenarios, testing
the KF robustness. On the other hand it is also rather challenging task using
this set of data, because of the fast changes of the vehicle states during high-
speed manoeuvres. We also got the dimensions and other properties of the
formula, thus we were able to create an additional configuration simulating
the formula behaviour in the option Formula.

The utilized models correspond to the vehicle kinematics and dynamics
equations described in chapter 2: [System modelling. We have created two
scenarios to validate and demonstrate the vehicle behaviour:

® Steady straight ride with a constant velocity
®8 Steady turning ride with constant turning rate and velocity

Steady straight ride is useful for the simulation where we want to observe

the raw behaviour of the vehicle without any additional forces distorting the
measured signals. On the other hand, the steady turning ride can be useful
for testing the robustness of the algorithm, since it adds more complicated
characteristics to work with and challenges the estimation in an additional
way - for some inputs the vehicle becomes unstable.
The simulations performed have taken into account various inputs character-
istics starting from a doublet all the way to some sine-wave inputs on the
steering wheel imitating the steer from one side to another with no steady
periods. Distinct torque acceleration and braking inputs have also been tried
out.

!eForce FEE Prague Formula - https://eforce.cvut.cz/

13



3. Data generation

Because of the KF usage, we added noise to the measured data as well.
The state noise can symbolise some fault inside the vehicle (for instance
a tyre defect) and the measurement noise can be of a faulty or inaccurate
measurements. For further testing of the KF algorithm, we used different
levels of the signal-to-noise ratio (SNR) on the measured data. Furthermore,
the states of the vehicle have been also subjected to the noise in order to get
a fully stochastic system.

. 3.1 Non-linear model

The non-linear model uses the modelling approach from chapter 2: |System
modelling| for as accurate description of the vehicle as possible. The block
representation of the model is provided in fig. [2.1

The input vector u is formed by steering angles 6 r, wheel torques 77z and
braking torques 7gr R:

]
| . (3.1)

TBF [Nm]
LT8R [Nm]]

The state non-linear representation we are using contains five states: the
vehicle forward velocity v, side-slip angle 3, yaw rate ¢ and front wheel
rotation velocities py,. Combining the equations describing wheels [2.7| and
the dynamics equations 2.5 we get the state non-linear representation:

b= —[Fyeos(8) — Fusin(8)] — ¢

8= % [Fysin(B) + Fycos(S)]

b= }ZMZ (3.2)
pr = Jlf(TF — Ry Fyy — sign(ps)Ter — kfvas)

br = i(TR — Ry Fyy — sign(pr)TBr — krvar)

<

T

where the moment of the vehicle around z-axis is:

M, = Fy¢lycos(6r) — Fyplycos(6r) + Fyplpsin(op) + Feplpsin(dr) ( . |
3.3

14



3.2. Linearised model

The basic state vector therefore is:
v [ms™!]
B [rad]
r= |9 [rads™] . (3.4)
pf [rads1]
pr [rads™!]

The word basic has been used on purpose, because in the estimation part we
would also like to estimate the coefficient DF, in the Pacejka’s magic formula
(2.13), in that case we add two artificial states to the state vector, D, F.y,
resp. DF,,.

Finally, the output measurement vector does only contain the velocity v and
yaw rate of the vehicle 1}, because both of these states can easily be measured
(using the on-board odometry and gyroscopic sensor) for estimation of the
side-slip angle 3, in the case of DF), a sum of rotational velocities p has been
added.

y— [,v [ms "] ] 53
Y [rads™!] ’ '

. 3.2 Linearised model

For linearisation of the non-linear model additional assumptions have been
made [10]:

® The steering angles 6 r are smaller than 10°
® Side-slip angle of the vehicle 8 is smaller than 10°
These assumptions result into a general simplification:

cos(xs)iz(? - (3.6)

Applying the linearisation of a S-T model from [2] and using all the simplifi-
cations we will get the eq.2.4in a form of:

mo(B + 1) -8 1 0| [F
mi =1 B 0||F, . (3.7)

Also, at the beginning of this chapter there are two scenarios listed. Both
are working with a constant travelling velocity v. From this design we can
simplify © = 0. Using this simplification we will get in the second row of
eq.3.7t F, = —pBF,.

15



3. Data generation

Furthermore, the vehicle side-slip angle § is small, with a property from [2]:
% < 1. We can simplify eq.3.7 to:

[mv(ﬁ' +1))
LA

Fy
(B o9

In the perspective of tyres, the slip angles are simplifying eq. 2.11 into [14]:

OéF:ﬁ—l-#—(sF ( )
. 3.9
Ly
ar = f3— v¢—5R

Following this simplification and taking into account the second assumption,
that the steering angles dr g are small, we can now use the Two-line tyre
model as a linear approximation around « = 0. In this region, the lateral
forces from eq. |2.13| are now the approximated through the first part of |2.5;

1
Fyr = Capap = Coy (ﬁ"‘fvw—(sF)

(3.10)

.
Fyr = CaRaR = CaR </8 - :}d} - 5R>

The total lateral force acting on the wheel Fy is from the eq. [2.6|following:
Fy = Fyysin(6p) + Fypcos(0F) + Fyprsin(dr) + Fyrcos(0r) . (3.11)

But applying the assumptions from the beginning of this chapter and also
3.6, the longitudinal parts can be omitted (F,rsin(d0p) ~ Fpf0p ~ 0, resp.
Fyrsin(0,) &~ Fyp 0, = 0). The omission corresponds with the general assump-
tion that the car is travelling with small steering angles. Lateral force is then
altered to:

Fy=Fy+F, . (3.12)

Combining all the simplifications made due to linearisation, we can write the
linearised state space representation as [2]:

Bl lann an g bi1 bi2| |dF
L/J] B [am CLQZ] Lﬁ] * [bm 6221 Lﬁz] ) (3.13)
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3.2. Linearised model

where the coefficients are:

ai] = _Cap + Cag
muv
1,Cqp — 1Cy
ayy = R 2f F_ 1
muv
1,Co, — 1:Cy,
a9 = R I fYap
13Cap +17Cay
G2 = ==
o 2 (3.14)
by = —F
=
Ca
big = —=
mu
1:Cy
byt — fIZ v
1,Cy,
bao = —TR
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3. Data generation

. 3.3 The eForce formula

The last set of data we worked with is from the electric racing student formula
(shown in fig. , which we were given by a colleague Ing. Marek Laszlo,
who is also a driver of the formula. Some of the data like mass and inertia
tensors with a display of CoG in the coordinate system can be seen in his
Master’s thesis [22]. An undisputed advantage in working with this set of
measurements is the fact that it was obtained from a real vehicle, not through
a simulation output in ideal conditions. We can therefore try to compare the
created non-linear model from with the behaviour of formula after defin-
ing its parameters, or simply try to test the EKF algorithm on measured data.

The formula is shorter in length compared to classic cars (the distance
between front and rear wheels is about 1.5m, Skoda Fabia? has the wheelbase
of almost 2.5m) and the biggest difference is in weights of various components
resulting into much smaller total mass of the vehicle. Due to the relatively
heavy Skoda (mass cca.1500 kg) we have not taken into account the driver’s
weight, since it represents only about 5% of the total mass. In the case of
a formula, the heaviest part of the vehicle is the driver, and the ratio is
significantly different, of about 1/3 of a total weight. For the illustration of
this substantial assumption, the sum of the driver’s and accumulator weight
is more than 50% of the total formula mass.

}m;rw! .
Lo‘lm- hwm CVRE 30—y
= =

Figure 3.1: The FEE eForce Formula, adopted from [9]

2data from Skoda Fabia owner’s manual [23]
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3.3. The eForce formula

Due to the data being measured by the Internal measurement unit (IMU)
are not always in a form of what is needed for further calculations, but are
tailored as a feedback for the driver, we need to make the transformations
or simplifications in a full compliance with the S-T model assumptions and
used modelling approach. These include specifically:

® Rotation from NED coordinates (North-east-down)

® Averaging of wheels

® Computation of driving and braking torques

® Unit conversion (angular, torque)

The measured velocities are in the NED coordinates. This coordinate
system is widely used in aviation and flight control. As we can see in fig/3.2]
the body (index b) and the vehicle carried NED coordinates (index nv) are
two Cartesian frames rotated from one another [4]. Using the Euler rotation
angles sequence " Yaw-Pitch-Roll" we can convert the NED coordinates to the
body frame coordinate system. This is necessary in order to use the equations
from modelling chapter.

Yav

Xb

Zint/ Zov

Bs ) Xav Zony (parallel 07 1)
(parallel to X )

(parallel to X int1)

Yint1/Yin2

_ Kinez

Xiull“

Figure 3.2: The NED coordinate system and Euler rotations, adopted from [4]
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3. Data generation

The first rotation, around the z-axis, is described by a yaw angle . The
rotation matrix between the local (nv) coordinates and intermediate (int) is
as follows:

cos(v)  sin(y) 0
Rintl/nv = —Sm(l/J) 003(¢) 0 : (315)
0 0 1

Second rotation is around the y-axis, the pitch rotation, using the pitch
angle 6:

cos(#) 0 —sin(0)
Rinsojimn = 0 1 0 : (3.16)
sin(d) 0  cos(0)

And the last rotation is performed with a fixed x-axis using the roll angle ¢.

1 0 0
Ryjint2 = |0 cos(¢)  sin(¢) . (3.17)
0 —sin(¢p) cos(o)

The total rotation and coordinate transformation are then:

Ry jnv = Rint1nvBint2jint1 By jint2

Lo T (3.18)
Y| = [Ynv Rb/nv
2 Zno

Using this equation in a similar way we can substitute velocities for coordi-
nates and get its vectors for each direction.

The second possible option to obtain the vehicle velocity might be using
the particular wheel speeds, which are also available from the measured data.
Firstly, we have to do the average wheel speed since we are using the S-T
model, which assumes a single tyre at the centre of each axis, therefore we
merge the two front (resp. rear) wheels into one on the particular axle with
an average speed. This method can be used for a comparison of results using
different approaches.

Furthermore, since two of the states are the wheel angular velocities pr/g,
which can be computed just by multiplication (eq. 2.10: p = vy R ) using the
formula’s wheel radius (R = 0.195 m) and a wheel velocity v.;, we can also
observe the wheels’ angular velocity to make the output vector more detailed
for better KF error comparison.

20



3.3. The eForce formula

Formula velocity coordinate systems

lCIJ
£ ]
>
= |
a
[$) A
E | H\f
(4
< _
g
G
> i
Total v
North v | |
Eastv
Down v

_8 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90

Time t[s]

Figure 3.3: The formula velocities from two coordinate systems comparison

For a better practical use, the formula’s motor performance is measured
using the revolutions per minute (RPM). However, in our model we are using
driving/braking torques, which have to be in Nm. For the knowledge of the
motor torque we still need to get the power of the motor.

In the formula, the induction motor voltage and current is measured using
the direct and quadrature (d-q) axis model, which is used for easier control
applications. By having the voltage and current quantities in d-q frame, it
is possible to control the speed of the machine by controlling the flux and
torque independently [29].

Using the motor RPM request signal and its power, we are able to get the
torque generated. Using the rotational velocity w = 2m/60 [rads™!] we are
able to use the RPM in an equation:

P

— (3.19)
wRPM

™

The wheel driving torque goes from the motor through the transmission
with a particular ratio (TR) and it can be computed as:

w =TuTR . (3.20)
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3. Data generation

Similarly, there is a ratio between the the steering wheel turning angle and
the real turn performed on the tyres. This ratio is about 3.8, meaning that
if the steering wheel is turned by 95°, the wheels turn by 25°. The conver-
sion was needed, because the measured signal was the steering wheel angle,
which we do not need precisely, since we are interested in tyres’ steering angles.

The process of getting braking torques was a bit more complicated. The
measured data from brakes was only in braking pressure (kPa). Since we
did not exactly know the size of the braking pads (from which we would use
the braking area) and their friction coefficient, we were not able to compute
precisely the braking torque. Based on the experienced estimate from the
driver, the braking pressure was converted into torque linearly, with the basic
approximation of p = 3000k Pa ~ 800Nm of braking torque and shifted by a
constant offset for the braking torque to reach around zero when the car is
not using brakes (the use of brakes was indicated in a separate binary signal
measuring if the braking pedal has been stepped on).
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Chapter 4

Kalman filtering

Every real, measured signal is exposed to some level of a noise. These systems,
which are affected not only by a given deterministic input, but also with
other, random processes, are called stochastic systems [15]. This addition of
a random quantity lead to the system states and outputs being also random
processes. The source of a disturbance can be external, from another device
causing interference via electromagnetic radiation or simply due to incorrect
measurement from the sensor, resulting into a noise, which is distorting the
results. This type of a noise is called a measurement noise.

Another type of the noise comes from the inside of a system. When the states
of a system change over time, with unknown exact details of when/how those
changes occur, we need to model them as a random process. An example of
this change can be illustrated as a defect within the system itself providing
inaccurate measurements. For instance, in our case of a vehicle system, we
can have a damaged tyre, which supposedly with no damage is rotating with
a known rotational velocity. Even with a correct and precise measurement of
wheel rotation we will still be getting different (wrong) values of the velocity
from the known ones - the tyre dynamics are perturbed and therefore the
system does not behave as expected. This difference is caused by a process
noise.

In many dynamic mechanical systems, it is often unrealistic to assume

that all states describing the system’s behaviour can be measured [7]. In
some cases, the states are not accessible for sensors or they simply cannot be
measured. This provides us with a problem where estimation and filtering
can become very useful as a solution, using other, easily measurable signals
to derivate a particular state value, which can be used for control design. The
real challenge is to provide accurate state estimates without decreasing its
accuracy or the algorithm robustness.
The Kalman filter is a powerful tool for analysis and the use of stochastic
system measurements. It allows us to filter the noisy signals sometimes even
through a very noisy signal when set correctly and also estimate the states
we are not able to measure.
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4. Kalman filtering

v(k) e(k)
u(k) x(k) y(k)

B © d C ~o——

A

D

Figure 4.1: Linear stochastic system

Fig. [4.1] shows a structure of a discrete linear stochastic system with a time
delay d, state-space description matrices A, B, C, D and both types of noises
mentioned earlier. The measurement noise, e(k), is added to the output of
the system, the process noise is labelled as v(k) and we can see that it is
added to the state equation.

The noises can be thought of as random variables defined by their mean value

and covariance [15]:
) .

v(k1)| |v(

o { L’(’“l)} ’ [‘5’(

Our used assumptions for KF have been:
® Stable system state matrix A

® The system is fully observable

® Process noise and measurement noise are not correlated (S = 0) [15]

Data-update and time-update step can be performed separately [15]

The state estimate is a linear mean-square (LMS) estimate
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4.1. Kalman filter abilities

B 4.1 Kalman filter abilities

Kalman filter can be used in several applications. The most known are:
® Estimating the states (or filtering, smoothing noisy values)
B8 Used as a whitening or noise shaping filter

Estimation or observation means the extraction of information of any physical
variable not available from direct sensors, by using only available information
[7]. This is mostly done with the use of Kalman gain in the KF computed
using the system model, along with the setup of noise covariance matrices
@, R. The state estimate is found as an optimal LMS estimate minimising
its optimality criterion.

Noisy signals are not welcome in the following signal processing. The
measured signals can be distorted by different strengths of noise, making
some of the measurements very hard to work with. That is why a KF is
used, estimating the mean value of the noisy signal for a "clean" result of a
measured values. The KF algorithm is quite powerful, working even with
relatively large SNR, where the output signal does not show any usable data
and the noise prevails. The application of a KF on a very noisy signal can be
seen in the chapter 5.;Experiments

The noise entering the system can be of different properties - that is why

it is divided into two main groups: the white noise and the coloured noise.
These names have originated from the analogy with light spectra. If we get a
spectrum of white light, all the frequencies are being present uniformly. On
the other hand, with coloured light, some frequencies are dominant, which
disturbs the homogeneity of the spectrum.
Same occurs in the frequency domain of noise spectra. White noise is
a uniform mixture of energy being present at every frequency. The very
important property of white noise is a zero expected mean value, which is
used later in KF algorithm. Various colours of noise are specifically used
in audio and video engineering. In order to get the coloured noise, a white
noise has to be shaped. This can be done by a Kalman filter, working as a
high /low-pass filter, with an output of a random process of particular spectral
density (and consequently a desired colour of noise). On the contrary, if we
have a coloured noise sequence, and need to use the stochastic system model,
which assumes a white noise input, we add a Kalman filter as a whitening
filter (its output is a white noise sequence).
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4. Kalman filtering

. 4.2 Kalman filter structure

To start with a description, the best way is to note a similarity between the
deterministic approach and the stochastic systems. In the deterministic case,
we would have used a state observer. If the linear system is in an observable
canonical form, by linearly injecting the output into the dynamics, we replace
A by (A — KC). If all the observer poles lie in the left half of the complex
plane (in the continuous time domain), the error €(¢) is asymptotically stable,
it approaches zero as time goes forward. The matrix K is then an observer
gain matrix [24].

Similarly, in stochastic systems we are using this structure with a few differ-
ences. We can list first the most obvious one, the noise addition. In this case,
we cannot be certain of the system behaviour, since the output of the system
is a stochastic process too. The only deterministic part of the system is the
input. Based on the input, system model and the measured output we are
able to estimate the system state in the next time step (in the discrete time).
Kalman filter then uses the conditional probability density function and mean
square (MS) estimate to find the state value in the next time sample.

The KF structure can be seen in fig. 4.2, The error €(k) is obtained as
a difference between measured output of a stochastic system y(k) and the
estimated output g(k) from the KF. This is then multiplied by Kalman gain
L, which is different in each step depending on the error size, and used to get
the next state estimate (k) in the KF.

v(k)

e(k)
u(k) System £ (&
x(k) -

Kalman Gain ck) 1
L O

Le(k)
KF y(k)
x(k)

Figure 4.2: Kalman filter structure diagram
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4.3. Noise covariance matrices

Because of the added noise (and therefore also some uncertainty in the

system), we are using conditional probabilities - based on the measured
output data and the known, deterministic input value. For notation purposes,
p(y|DF~1) means a probability of the output y based on the data from time
(k—1).
With the intention of using the conditional probabilities, we need to know
the distribution of our data. The joint conditional probability of state x(t)
and output y(t) is from a normal distribution with a following mean value
and since it is a vector, its covariance [15]:

(k)| 1 2(klk —1)] [Puw Py
P (ly(k)] ‘Dk ) =N ([g(k!k - 1)] ’ [Pyz pny : (4.2)

where T and § are the state, resp. output estimates.

The covariance matrix represents a relation between the variables, with the
diagonal elements noting the variance of a particular variable, the off-diagonal
elements contain the cross-covariances of each pair of variables. The aim of
creating a covariance matrix is to show how large the changes are in data of
the dataset (variance tells us how much the data are scattered around the
mean value).

. 4.3 Noise covariance matrices

A correct initialisation of noise covariance matrices (), R, which are describing
the noise covariance in eq. 4.1] is the main tuning factor of the KF perfor-
mance. Wrong setup of these covariance matrices might result into a failure
and the performance of KF would be more harmful than beneficial. While
the specification of the measurement noise covariance matrix, R, can be di-
rectly derived from the accuracy of characteristics of the measurement device,
specification of the process noise covariance matrix @ is often attempted in a
trial and-error approach [34]. In this work, noise covariance matrices @, R are
initialised as a diagonal matrices, with @) having different values of "weights"
for each state.

Tuning the Kalman filter involves the selection of the process noise covari-
ance matrix, Q). "If this matrix is guessed low, the filter will believe the model
excessively and will not use the on-line measurements properly to correct the
states. This can lead to poor performance or even filter divergence. On the
other hand, if the matrix ) is guessed higher than the actual value, the state
estimates will be noisy and uncertain, as this would lead to increased values
of the state covariance matrix, P" [34].
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4. Kalman filtering

B 2.4 Kalman filter algorithm

The algorithm itself is divided into parts, which are visualised in fig. [4.4. It
uses the a prior: and a posteriori information with the relation to the time
sampling. These two terms are visualised on a time axis, in fig. |4.3. The
single iteration (or time window) is always divided into two parts. The first
one (on the left hand side of the window) being an a priori information, or
"before we process the data" of the sample with a same index. As an example
can be (g x—1) at time k. The second part of the window is an a posteriori
information, indicating the use of data for the particular time index. The
noted example (y;—1) is then working with "old" data acquired in the time
window k — 1.

To conclude this double indexing, the notation with the index on the left
always shows the time at which the data is being analysed and the index on
the right side of the bar indicates the data sample being used.

Time window k-1 k
Xe-11k-2) | Xg-11k-1) Xak-1) | Xk
P (k-11k-2) P (k-11k-1) P (k|k-1) P (klk)
k-1 k Data sample

Figure 4.3: A priori and a posteriori data visualisation

Firstly, the algorithm has to be initialised with a priori data of state mean
value estimate Zy and an initial state covariance Py. This needs to be done,
because we are using the data estimated for the next time window from a
previous time iteration. After the initialisation a data-update step starts the
estimation followed with the time-update step. Both steps are explained in
detail in parts [Data-update step|and [Time-update step.

The estimates are being performed using the LMS estimate. The advantage
of LMS is, that it only requires means, variances and covariances of the data,
whereas other estimators, like maximum likelihood need to know the joint
probability distribution functions which are not easy to get.
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4.4. Kalman filter algorithm

Linear MS error estimators are easy to use, calculate, and are very versatile,
since the resulting estimates are simply a linear function dependent on the
output:

Trms(y) =Ay+b (4.3)

where the matrix A and vector b is chosen with the aim to minimise the
following optimality criterion Jrasg:

Jims =€ {(3? —Zrms(y) ! (x — f?LMs(y))} : (4.4)
Zrms is an LMS state estimate. The equation |4.3| can be rewritten as:
Trms(y) = pa + PCEyPy_yl(y - My) . (4.5)

using the mean values of a state and output p,/, along with the conditional
state covariance matrix elements P, P, .

The equations described in the next part form the basis of the Kalman
filter, because [32]:

® The mean of the state is the KF estimate of the state

® The covariance of the state is the covariance of the KF state estimate

B 4.4.1 Data-update step

The KF has two different steps, which are being executed during a single
iteration. The aim of data-update step (sometimes also called a measurement
update [I]) is to use the newly acquired data (input u(k) and output y(k))
to find the error (k) between an estimated output value §(k|k) and real
measurement output y(k). Then it is used to find the Kalman gain L(k)
for a particular data-update step. Finding the gain requires state P and
measurement noise covariance matrix R , which are crucial for the KF
algorithm, because they set up the accuracy of KF, which "corrects" the
estimate done from a previous iteration. The Kalman gain is obtained as
follows:

L(k) = P(klk — 1)CT(CP(k|k —1)CT + R)™* . | (4.6)

where C' is the system output matrix. In the case of non-linear systems (and
the use of EKF), the matrix C is different every time iteration, because it
is a Jacobian of the set of output equations differentiated with respect to
the state vector = seen in eq.(4.14). This basic structure of this process is
described in fig. 4.2l
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4. Kalman filtering

After obtaining the Kalman gain, the estimate, which has been predicted in
a previous time step &(k|k — 1), has to be updated in order to get an estimate
for current time-sample iteration Z(k|k). The new estimate is updated with
the Kalman gain L(k) and using the error € we get it as:

#(klk) = 2(k|k — 1) + L(k)e(k) . (4.7)

The update of state covariance matrix takes into account the measurement
noise covariance matrix R, acting as a tuning parameter with the Kalman
gain L. The update for the state covariance matrix is produced in a following
way:

P(k|k) = P(k|k —1) — L(k)(CP(k|lk — 1)CT + R)LT . (4.8)

After these updates, we can perform the time-update step, which is described
in the following part.

Delay

@ d

@

New data _
(k) Data-update Time-update
U (k ) @ Step @ st:ep

Update LMS Model propagation

< — — — ]

R(klk) S+ 1K)
P(k|k) P(k+1]k)

Figure 4.4: Data and time-update step
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4.4. Kalman filter algorithm

B 4.42 Time-update step

The main purpose of time-update step is to follow the state equations to
get the value of the state in the next time iteration. It is done by using the
estimate obtained for a current time window in the data-update step, x(k|k),
in the output equation. That way we can get the estimated output.

2(k + 1|k) = Az(k|k) + Bu(k) . (4.9)

Eq. 4.9]is called the time update equation for the estimate &. From time k to
time k + 1, the state estimate propagates the same way that the mean of the
state propagates. This makes sense intuitively. We do not have any additional
measurements available to help us update our state estimate between time
k and time k + 1, so we should just update the state estimate based on our
knowledge of the system dynamics [32].

Obtaining the state estimate for the next time iteration solely is not enough
for the following data step. As noted before, the covariance matrices play an
important role in the performance of the KF. That is why the propagation of
a state covariance matrix, P(k + 1|k), is needed too.

In this case an important stability equation has to be introduced. If the state
matrix A is stable, the matrix P converges to the steady state covariance,
which satisfies the Lyapunov equation [13]

P(k+1)=A(k)P(E)AK)T + Q(k) (4.10)

where in the general definition matrices P, are symmetric and for any
(Q, which is positive definite, there exists a unique matrix P, which is also
positive definite. In the case of KF, we are using the state and noise covariance
matrices.

Equation 4.10 is a discrete Lyapunov equation. For the continuous time
application, the equation has a slightly different form:

P(t) = A)P(t) + P)AT(t) + Q(t) , P(to) = Py (4.11)

In our case, the used model has been continuous, we have to use equation
4.11] for the state covariance matrix propagation:

P(k+1|k) = P(k|k) + (AP(k) + PAT + Q)dt . (4.12)
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4. Kalman filtering

B 4.5 Extended Kalman filter

The EKF is a needed tool to use when working with non-linear systems.
Given the continuous nature of dynamical systems and the requirement of
microprocessors for discrete data, the continuous—discrete EKF is usually the
most useful formulation for modern control purposes [21]. The main idea
is a linearisation of a function in every step to provide estimates in small
steps, which allows us to deal with some non-linearities. Linearisation is a
very common engineering way of constructing approximations to non-linear
systems and thus it is very easy to understand and apply. The advantage
of the EKF over other non-linear filtering methods is its relative simplicity
compared to its performance. However, with its advantages there are some
disadvantages, too.

A disadvantage is that because it is based on a local linear approximation,
it will not work in problems with considerable non-linearities. The filtering
model is also restricted in the sense that only Gaussian noise processes are
allowed and thus the model cannot contain, for example, discrete valued
random variables [33].

The requirements for the EKF we are using in this work, on top of the
KF assumptions listed earlier are [33]:

® The measurement model and its dynamic model functions are differen-
tiable

® The process and measurement noise is assumed to be additive

In comparison with the KF, the EKF does not use the original system
matrices A — D. The EKF basic equations are:

Tr1 = f(x,u) + v(k)

yr = gz, u) + e(k) (4.13)

where f(x,u) is a non-linear state equation including the input relation,
g(z,u) is an output equation containing both states and inputs and v, e are
the state, resp. measurement noises.
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4.5. Extended Kalman filter

Due to the non-linearities, in order to get the state matrices, we need to
compute a Jacobian of the functions f, h in each time iteration. Also, after
the Jacobian is obtained, we substitute the best available state estimate we
have, Z, from the data in previous time step, for  and the deterministic input
value u for the state z and the input u. Following the basic KF algorithm,
the noises are assumed additive, thus are added to the resulting equations.
To determine a first-order approximation. Representing the Jacobian as The
resulting matrices are obtained as follows:

ox
=& (klk—1);u=u(k)
ou
=2 (klk—1);u=u(k) (414)
O Oh(x,u)
ox
=2 (klk—1);u=u(k)
_ Oh(z,u)
b= ou

=& (klk—1);u=u(k)

The matrices C, D are obtained during the data-update step and matrices
A, B are the Jacobians from the time-step. After getting the Jacobians, we
continue the algorithm as described in the chapter [Kalman filter algorithm.
Had the noises assumed not been additive, we would have to define the noise
matrices I, /. (k), through the linearisation process and modify (extend) the
eqs. 4.8/ and 4.12,
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4. Kalman filtering

B 4.6 Goals of the Kalman filtering

There are two main goals of the Kalman filtering we want to achieve:
B Estimate the side-slip angle of the vehicle
® Estimate the constant DF, in the Pacejka’s Magic formula

The estimation of the side-slip angle is to be done using only the measurements
of vehicle’s forward velocity v and the yaw rate i) and the known input of
wheel steering angle J, driving torque 7 and the braking torque 75. There is
an option to refine the measurement with the wheel’s rotational velocities p to
gain an additional information about the vehicle for more precise estimation,
but it is not necessary, since the knowledge of v and 9 from the state vector
is sufficient. In comparison with the latter goal, in this case we know the
wheel load F, and the Peak factor in the PMF, D.

The second task is more general, with the reference to the state vector.
The main goal is to estimate a part of the PMF, which describes the forces
acting on tyres both longitudinally and laterally. Considering the wheel load
F, is often set as a constant, it does not hold the same value on any surface,
which might result into incorrect estimations of tyres’ behaviour. That is why
a constant DF, was chosen, in order to be able to estimate a sudden change
in the tyre behaviour (as an example might be drifting from asphalt road to
sand/grass). Having the adaptive estimation is very beneficial, because the
wheel slip angle « describing the tyre dynamics is conditioned by a vehicle
side-slip angle 8 - with the § estimated correctly for the full duration of the
ride, we have an accurate information about the vehicle travelling on various
surfaces.

For this task we need more measurement data, that is why the wheel rotational
velocities p are added to the measured output.
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Chapter 5

Experiments

This chapter provides the insight into the application of previously mentioned
main points - system modelling and Kalman filtering. Some of the experiments
are designed to demonstrate the filtering/smoothing function of KF and the
comparison of the performance between the non-linear and the linearised
models. The main part focuses on the estimation of vehicle’s states under
different conditions and manoeuvres. It is divided into two main parts:

® Virtual experiments (Simulation results)

® Validation on real measured data

. 5.1 Simulation results

B 5.1.1 Design of the experiments

There have been two main parts in the simulation experiments. First part
was a comparison between a linearised and non-linear model. All simulations
were done in Matlab, where scripts for signal processing and KF algorithm
were implemented. The models from Ch.2: [System modelling have been used
in Simulink.

Secondly, we compared the KF and EKF used as a filtering element in a
very noisy environment (artificially added white noise with large SNR). As
an input we chose a doublet (A crucial aspect in KF-tuning is the choice
of manoeuvres/input signals. From a more practical point of view, a “wide
excitation spectrum” shall be used [§]) on the steering angle to show the
model reactions, the car configuration selected was of Skoda Fabia. The input
signals differed during the model comparisons, starting from the doublet,
followed by the same-amplitude sine wave, all the way up to an increasing
amplitude of the sine wave. Only one of the mentioned inputs is presented as
it is sufficient for the demonstration purposes.
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5. Experiments

B 5.1.2 Linear and non-linear model comparison

As noted in Ch.3: Data generation, we had a non-linear model and also its
linearised (simplified) version for comparison. The linearised model describing
the tyre behaviour consists of two parts, two saturations and a linear function
connecting them, whereas the non-linear is defined by the Pacejka’s magic
formula. The results of this small difference on the scale of tyres all the way
up to the full vehicle states is seen in this comparison, which also highlights
the need for a non-linear model use.

Front wheel steering angle
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(a) : Front wheel steering angle test input

Yaw rate comparison
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(b) : Vehicle yaw rate comparison

Figure 5.1: Non-linear and linearised model comparison
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5.1. Simulation results

As we can see from fig. [5.1, the linearised model reacts much slower,
than the non-linear one. Also, about a three-times larger yaw rate has been
modelled by the linearised model, the non-linear holds the steering angle in
the amplitude too. These experiments have been produced from the setup
of a steady straight ride with a vehicle velocity v = 20ms~!, the front wheel
steering angle was 7 = £20° =~ 0.35 rad over one second.

The linearised model does not match well, because during the linearisa-
tion we assumed low steering angles (up to 10°). The larger steering angle
was set on purpose, because the measured data, where we are using the
EKF, have the steering angles around 25°. The linearised model has been
set out of the linearisation area. This also highlights the constraints, that
are imposed on the model using simplifications in order to get rid of the
non-linear functions - for accurate estimation in our case it is not sufficient
using the linear KF.

B 5.1.3 Filtering and smoothing

When set correctly, the KF can work really well even with very noisy signals.
There are big differences between the measurement noise and the process
noise. Large values of process noise can change the system in a way, where
the initial modelling approach fails. Then no KF would work. In real world,
the noisy measurement is much more common. Therefore we have designed
an experiment with added white noise on measurements, where all we got
was data with high SNR (in this case the SNR of measurement white noise
was set to 30 dB), the initial conditions and the inputs. The goal was to
filter the noisy values and compare it to the original model output (without
added noise). Also, an estimate of the vehicle side-slip angle 8 was done in
order to show how the estimate was affected by high noise levels.

Figure 5.2 shows several observations. Firstly, the noise totally destroyed
the measured value, and if it were the only measurement, KF would not be
able to make good results solely out of this noise. Secondly, as we can see,
in this case the KF output relies heavily on the created model (we could
see from the earlier comparison that the linear model is not as precise as
the non-linear). This reliance is needed since the measurements are in this
case useless: measurement covariance noise matrix R is set to a high value,
denoting high measurement noise value, and the process noise covariance )
is set as very low in order to rely on the model. Lastly, even though the
EKF results look fine, they are still deformed in shape and offset from the
noise-free signal. This is also the result of the large noise values, causing the
filter results to be affected from the noise covariance matrices setup.
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5. Experiments

Sideslip angle noisy signal comparison
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Figure 5.2: Filter performance in a very noisy signal

. 5.2 Results validation on the real data

For the real data validation we used the data measured on the FEE eForce
formula. The trajectory was several turns forming a number eight in order
to get larger steering angles with the steering being done in the same way
both to the left and right side. The vehicle velocity differed throughout the
experiment, which was also useful, since we could just pick a part where the
steering angles are large and velocity is not too low.

The full data obtained from the on-board GPS, are measured up to the
time ¢t = 800s, but in our case, we are using the data in the middle of the
experiment (time roughly between ¢ = 400 — 500s, in green/yellow), because
the velocity of the vehicle was in compliance with our assumptions mentioned
earlier (v > 5ms~!), and the steering performed was fluent, periodic and in
full range of the measured data. All inputs from the driver are shown in
detail in the next section.
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5.2. Results validation on the real data
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Figure 5.3: The formula elapsed trajectory

B 5.2.1 System inputs

There were three sets of inputs from the driver. The front wheel steering
angle 6, which was in the range of —25° to +25°, and because of the model
contains also rear steering angle, which was not used, it was set to zero and
is not shown in the figures.

The driving torque for front and rear wheels 7x g, which are almost the same,
these values are a mean value of the two motors (one for each wheel) on the
front /rear side of the vehicle, because of the S-T model use.

The braking torque applied from brakes 7pr r was engaged at the beginning
of the chosen range mostly on the front brakes. The rear brakes were not
used in this part and the shown data contain mostly noise. Torque inputs
can be seen in fig. and wheel steering angle in fig/5.5
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Front wheel torque from motors
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Figure 5.4: Formula driving and braking torques comparison
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5.2. Results validation on the real data
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Figure 5.5: Formula front wheel steering angle

B 5.2.2 Model fitting

Model mismatch can create a total KF collapse and therefore it is imperative
to check if the created model produces similar outputs when fed the same
input signals. For comparison, we have picked the values in a measurement
vector, the vehicle velocity v, its yaw rate ¢ and the sum of front and rear
wheel rotational velocities >p;.

Even if the beginning of the comparison shows a difference, mainly in the
vehicle velocity and the wheel rotational velocities, the most of the modelled
shape fit quite well. The difference at the beginning is due to a specific chosen
time window, where previous development of data is not shown. The yaw
rate is matched very well.
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Figure 5.6: Yaw rate non-linear model comparison with formula measurements
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Vehicle velocity comparison
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Figure 5.7: Non-linear model comparison with formula measurements
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5.2. Results validation on the real data

B 5.2.3 Filtered states

This part is the comparison between the output values of the EKF and true
measured data on the formula. Using specific values of noise covariance
matrices @), R allows us to move the filter performance either towards the
smoother signal or more accurate (almost copying measured values). The
aim was to find a nice approximation of the noisy measured signal without
following the additional noise. Reducing the noise enables us to use the signal
for the purely approximated states and values, which are defined by them.
As we can see from figl5.8|, the noisier of the signals was the vehicle velocity.
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Figure 5.8: EKF measurable states comparison
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Apart from the states shown, we also had the wheel rotational velocity p as
an additional state. Its trend was almost the same as the CoG velocity (can
be seen in fig. [5.7), therefore only one of the plots is shown. Velocity was
chosen because the measured value was with more added noise, thus making
the smoothing more visible.

B 5.2.4 Estimated states

The estimated states from the EKF run were:
B Vehicle side-slip angle 3
® Front wheel peak factor and wheel load combined D, F ¢
® Rear wheel peak factor and wheel load combined DF,

The Kalman gain with covariance matrix setup plays an important role in
states estimation. It is not easy to correctly set up the noise covariance ma-
trices the more states are present. Some helpful observations from statistical
point of view are described in the next chapter, Ch.6: |Performance evaluation.

Sideslip angle estimate
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Figure 5.9: Estimate of vehicle side-slip angle

From fig. we can see, that the vehicle side-slip angle § follows the wheel
steering angle in shape, also, the measured vehicle yaw rate is in comparison
slightly shifted to the left - this is the delay, before the steering of the whole
vehicle happens. This is the first purely estimated state and we can say that
the estimation is pretty accurate, for the reasons mentioned earlier and in
comparison with the model internal value of 3. It is not possible to compare
this estimate plot directly with some measured data from the formula, because
the vehicle side-slip data was not measured.
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5.2. Results validation on the real data

Next estimation goal was to estimate the values of peak factor of the front,
D,, resp. rear wheel (D) combined with the vehicle wheel load F,. This is
used as a constant value in the Pacejka’s tyre model, eq2.13. Being able to
estimate this value we can react to changes on the road surface (the p differs
- there is a large difference between icy road and the dry asphalt). These
changes can make the modelling inaccurate if using constants measured during
specific conditions. Moreover, the tyre peak factor D is different on many
tyres and the true value might not be available - sometimes the Pacejka’s
constants, which characterise the tyre, are secret of the tyre manufacturer.
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Figure 5.10: Estimate of the peak factor and wheel load

From the initial conditions set by guess as DF, = 3000N we can see the
values of peak factors used D and the wheel load for each wheel, F,, which are
compared to the estimated value of this combined "constant". The estimate
converges over the time to a value, which is used in the tyre forces Pacejka
equations. The real wheel load is not that different in value, but what makes
the combination DF), distinct for each wheel is the value of peak factor D.
This is why the front wheel (first subplot) has a higher value to converge to
than the initial conditions, the peak factor D, was used in the model as 2.5.
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5. Experiments

The other estimating part are values, which are not directly estimated,
but computed from the estimate of tyre forces, namely the tyre slip angles .
The estimate shows very low tyre slip on the front tyre, this is because the
tyre is being steered itself by the input tyre steering angle. Where relatively
speaking larger slip occurs, is the rear tyre, because the formula has steering
on front wheels only. The slip angle is ideally zero, meaning the car holds the
set steer, this value would be interesting for control systems in the possible
work.

Tyre slip angles estimate
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Figure 5.11: Estimate of tyre slip angles

The problem with accuracy was encountered during the tyre slip ratio A. Due
to the use of S-T model, all wheel variables have been averaged from the two
tyres’ data. During the turning manoeuvre the front wheels behave in the
opposite way (one is accelerating and the other is decelerating). This results
into positive slip ratio on one wheel and negative on the other. Averaging both
wheels in that case does not achieve the simplification of real behaviour, but
creates some false information instead resulting into a small model mismatch.
The problem has been dealt with manually by fitting the model to behave
appropriately, the solution is suggested in the future work: the implementation
of twin track model.
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Chapter 6

Performance evaluation

Kalman filter performance can be seen directly in the resulting plots in a
comparison with original, measured values. Quantitatively, this comparison
of trends can be expressed via Goodness of fit, which is using the innovation
to express how much does the KF output differ from the measured value.
Sometimes, it might be useful to look at the performance from a different
point of view - testing that the assumptions made still stand and the basic,
necessary rules defining the estimate:

® Whiteness (stochastic properties are unaffected with a deterministic
input)

® Consistency (estimate improves with a sample size)

® Unbiasedness (the expected value is the same as the true value of param-
eters)

m Efficiency (best of all available estimates, Cramer-Rao bound)

There are several tests, which are using statistical information and can verify
these properties, which are very well described in [3] and [I8]. These tests
can use the data from various Monte Carlo simulation runs, but are also
applicable for a single-run (which we are using here). The tests can help
during the tuning of the KF noise covariance matrix coefficients too. The
decision making for the tuning (the information value of the test results) is
described later on for each test. Naturally, not every time have the initial
conditions been set up using all of these tests together, the tests serve more
as a feedback tool rather than a strict-tuning rule.

Unfortunately, in order to perform these tests, we need some measured
data to compare it with to get the innovation. This is not possible in the
case of estimated states (5, DF.), that is why the tests are performed on
measured states and in the event of success we can say, that the estimates
should be performing well.
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6. Performance evaluation

. 6.1 Data-driven and whiteness test

In this part the results of EKF estimates are compared to the measured values.
The metric we are using is normalized root-mean-square error (NRMSE),
which is defined as follows:

The data-driven test is a simple check of how well is the estimator able to
copy measured values. The fit is shown in percentages NRMSE. In a case of
high noise it might be better to have smoother fit through the noisy data,
therefore a value of 100% is not always needed for a good filter performance,

which can be evaluated more in-detail using the some of the tests described
later.

NRMSE =1 — (6.1)

Stochastic properties of the KF should be not affected by deterministic
inputs. If we assume the added noise to be white with a zero mean, we want
to check back after the KF run if this property has not been affected by
the inputs entering the system. To test this, a very common test exists for
the whiteness of the innovation v(t) check. It uses a sample autocovariance
function R..(t). The autocovariance is usually normalised by the largest value
R (1) . To pass the test we expect a peak around 7 = N/2, which will be
located in the middle of sample range, since the autocovariance is symmetric
around the axis y, and we shall see random distribution around zero. For
large sample size we assume that Re(t) € N(0,1/N). From that the 20
boundary can be said to be 20 = +£2/N, and we check again if at least 95%
of the autocovariance values fall within the region [I8]. The result of this test
can also be used as a part of consistency check.
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Figure 6.1: Sum of wheel velocities whiteness test
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6.2. Consistency testing
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Figure 6.2: Yaw rate goodness of fit

B 6.2 Consistency testing

Consistency of the estimate reflects how well the estimated probability dis-
tribution of the parameters agrees with its true distribution [19]. Since the
filter gain is based on the filter-calculated error covariances, it follows that
consistency is necessary for filter optimality: Wrong covariances yield wrong
gain [3].

This filter property can be tested using the innovation and normalised inno-
vation squared (NIS). The NIS uses the difference of measured output and
estimated output, the innovation v and the state covariance matrix element
P,,, which is also a covariance matrix of the innovation. Filter can be passed
as consistent, when the following criteria, which can be tested in applications
with real data, are applicable [3]:

® The innovations should be acceptable as zero mean and have magnitude
corresponding with the state covariance as yielded by the filter.

® The innovations should be acceptable as white.
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6. Performance evaluation

The whiteness test was shown earlier, and other test for consistency can
be the innovation magnitude bound (IMB) test. This test uses the basic
innovation and simply checks, how do its values differ from the mean. The
mean, as assumed, should be zero and we expect about 95% of the innovation
magnitude to fall within the +20 bounds. If it stays in, we can say the filter
estimate is consistent.

If the IMB test results are well within the defined 20 bounds, then the
noise matrices ), R are guessed high. Same applies for the opposite, too low
Q, R result into exceeding the bounds. As for the autocovariance test, this
can decide between @) and R, what needs to be tuned. Additionally, if the
autocovariance shows no time correlations (looking like Dirac in the middle
and the rest is distributed randomly around zero), the R is low or @ is high.
Fig. shows the IMB test performed on the velocity of the vehicle.

Innovation magnitude bound test v,95.37% in +2¢

T

Innovation y,
03 1 1
o boundary
+ 20 boundary
0.2 1
<S | L
| L TG i M T I’ U | U |
< 0 || M m | N‘ M '
Il
R L J
o 0
g
=
5 -0.11 .
=t 1 l
g ‘ !
=
0.2 | J
-0.3 1
0 1 2 3 4 5 6 7 8

Time t[ms] %104

Figure 6.3: Innovation magnitude bound test of the vehicle velocity
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6.3. Unbiasedness testing

B 6.3 Unbiasedness testing

The innovation magnitude bound test is checking the unbiasedness of the
innovations too. If approximately 95% of the values are within +2¢ range, we
can say the innovation is unbiased. This test is checking for filter consistency
too, however, it is better used with the Normalised innovations squared test
(x?) in combined as that test is more strict in terms of unbiasedness testing.

The chi-square (x?) NIS test uses the normalised form of innovation squared.
The test is concluded from hypothesis Hy that a mean innovation squared (q)
multiplied by the number of samples (N), Ng, has the distribution of x%,,
with a probability of: (1 — «). In our test we picked o = 5%. We also need
to find borders [rq,rq] fulfilling [18]:

P(NCYG [7“1,7“2”[’[0) =1—-«

(1, o] = [Xgm (g) B (1 _ g)} (6.2)

If the result of x? NIS test is outside the defined interval, then there is some
space for further KF tuning. If the total Nq is below the [rq,rs], that means
that the noise covariance matrices @, R are guessed too high. Similarly, if the
total Ngq is higher than [ri, 73], the matrices @, R are guessed too low. Then
we can focus on particular states’ IMB and whiteness tests to determine how
does the relevant noise matrix diagonal element stand.

B 64 Efficiency testing

Efficiency can be tested using methods in [3]. The main point is to prove the
estimate is Cramer-Rao bound using the Fischer information matrix values
for the test. For practical reasons, the tests described earlier, the consistency,
unbiasedness and whiteness tests proved to be useful also in the process of
tuning and not only evaluation of the KF. That is why they are explained
more in detail to show the connection between the noise covariance matrices
and the statistical properties of the innovation.
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Chapter 7

Conclusions

The thesis had two main parts, estimation of vehicle states (including the
side-slip angle, which was not originally measured) and tyre states. These
have been chosen as the tyre slip angles and the wheel load with peak factor
combined. All of the goals above have been successfully accomplished using
the Extended Kalman filter and the created non-linear vehicle Single-track
model. The estimate of DF, shows a very accurate estimate, if the initial
condition is not set far from the real value, which can be seen on the front
wheel results. The rear wheel had an initial condition more than twice larger
than the real value, the convergence can be seen, but is not fast enough
to reach the real value, desired convergence time can be thought as being
10x faster than the dominant pole of the vehicle. An accuracy issue was
encountered during the slip ratio estimation, because of the wheel averaging
needed for the used Single-track model. The solution to this issue is addressed
in the next section, the more complex Twin-track vehicle model is needed.

B 71 Summary

In Ch.2: |System modelling we have demonstrated the principles of Single-
track vehicle model, modelling both the vehicle centre of gravity behaviour
and also the tyres’ properties. Ch.3: |Data generation described the models
used for data generation, both non-linear and the linearised, which serves for
comparison and the introduction of electric formula, which was used for model
fit. Necessary conversions of the measured data have been made in order
to match the model coordinate systems and units. Ch.4: |[Kalman filtering
explained how the Kalman filter task works in its basic principles, its abilities
and introduced the Extended KF for non-linear systems approximation. Ch.5:
Ezxperiments presented the achieved results, both from simulation and also in
comparison with real, measured data. The main states, which have been set
up as goal (the vehicle side-slip angle, the tyre slip angle and the combination
of peak factor with the wheel load), have all been successfully estimated.
Finally, Ch.6: |Performance evaluation introduced several methods of the basic
estimate properties check and explained the process of the noise covariance
matrices initial setup, its effects on the KF results and provided a statistical
view on the achieved results.
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7. Conclusions

. 7.2 Future work

® Implementation of the Twin-track model: Using the Single-track
model can lead to simplifications, which would affect the accuracy of
modelling. Starting with the tyre steering angles, these are not the
same for both wheels. As an example are the slip ratios A\. Averaging of
wheels oversimplifies the tyre slips, resulting into less accurate estimation.
Another case can be seen during cornering: the "inner" wheel has larger
steering angle by about 15% compared to the "outer" wheel.

® Comparison of the performance with unscented KF: The EKF
takes only one point from the Gaussian distribution (mean) and approx-
imates the non-linear function via linearisation. The unscented KF is
based on several points, the sigma points, which are then approximated.
This could lead to more precise approximation and thus a comparison
of EKF performance with unscented KF comes forward as an extension
possibility of this thesis.

B Estimation of noise covariances: In linear stochastic state-space
representations, the true noise covariances are generally unknown in
practical applications. Using estimated covariances a Kalman filter can
be tuned in order to increase the accuracy of the state estimates [I]. So
far, the matrices has been "guessed" after a lengthy tuning and remained
constant.

® Computational demands analysis: The use of more accurate meth-
ods might be very demanding, as far as the computational time is
concerned. When used in embedded applications, faster algorithms
might be preferred to the ones, which are more accurate, but slower. The
comparison of these factors could be a part of feasibility study, deciding
which method will be used.

® Design of the vehicle control system during skidding: Using the
estimates of tyre slips can be useful to build on during the design of
vehicle safety control system, preventing drifts of the vehicle by using
the optimal control, based on measured and estimated data.
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Appendix B
CD contents

DIP.pdf Electronic version of the Master’s thesis
img Images used in the thesis
eForce_INS Data Measured data from the formula
Simulink Simulink models
| Nonlinear Single Track Non-linear simulation model
Matlab Matlab files

Formula Formula data processing

KF scripts Scripts for Kalman filtering

Model codes Modelling scripts
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