Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Science

Website builder - technical design and
prototype

Peter Toth

Supervisor: Bc. Petr Hurtak
May 2019

ii

cvuT ZADANI BAKALARSKE PRACE

CESKE VYSOKE
UCENI TECHNICKE
V PRAZE

I. OSOBNI A STUDIJNi UDAJE
e N
PFijmeni: Téth Jméno: Peter Osobni Cislo: 453223

Fakulta/ustav: Fakulta elektrotechnicka

Zadavajici katedra/ustav: Katedra pocitactl

L Studijni program: Softwarové inzenyrstvi a technologie
J

Il. UDAJE K BAKALARSKE PRACI

Nazev bakalarské prace:

Website builder — technicky navrh a prototyp

Nazev bakalarské prace anglicky:

Website builder — technical design and prototype

Pokyny pro vypracovani:

1. Describe a website builder and compare to different solutions. Study the use cases of browser-based website builders.
Define the scope of the project.

2. Provide a technical design consisting of:

1. Description of basic system components: client and server application

2. Domain object model

3. Specification of used frameworks and critical dependencies

4. Analysis of the persistence layer

5. Analysis of the proposed user interface for website edition such as adding, modifying and removing page content blocks
like text, images, buttons etc

3. Build a prototype of the system using modern Javascript technologies showcasing features specified in the project scope
4. Discuss suitable scaling approaches and performance bottlenecks such as website caching, load balancing, database
replication and static file management & hosting

Seznam doporucéené literatury:

[1] Learning Node - Shelley Powers - ISBN 1449323073

[2] Vue.js: Up and Running: Building Accessible and Performant Web Apps -
Callum Macrae - ISBN 1491997249

[3] Practical Object-Oriented Design in Ruby: An Agile Primer - Sandi Metz - ISBN
0321721330

Jméno a pracovisté vedouci(ho) bakalarské prace:

Bc. Petr Hurt'dak, katedra pocitaci FEL

Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) bakalafské prace:

Datum zadani bakalarské prace: 29.01.2019 Termin odevzdani bakalarské prace: 24.05.2019
Platnost zadani bakalarské prace: 20.09.2020

Bc. Petr Hurtak podpis vedouci(ho) ustavu/katedry prof. Ing. Pavel Ripka, CSc.
podpis vedouci(ho) prace podpis dékana(ky)

CVUT-CZ-ZBP-2015.1 Strana 1z 2 © CVUT v Praze, Design: CVUT v Praze, VIC

ll. PREVZETi ZADANI

Student bere na védomi, Ze je povinen vypracovat bakalarskou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci.
Seznam pouzité literatury, jinych pramenu a jmen konzultant(je tfeba uvést v bakalarské praci.

Datum prevzeti zadani Podpis studenta

CVUT-CZ-ZBP-2015.1 Strana2z 2 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I would like to thank my supervisor Mr.
Petr Hurtak for providing guidance and
sharing his valuable expertise throughout
writing the thesis.

I would also like to thank my friend Ste-
fan Stefanéik for sharing his opinions on
the user experience and aesthetic aspects
of the prototype.

Declaration

I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

Prague, May 24, 2019

Prohlasuji, ze jsem predlozenou praci
vypracoval samostatné, a ze jsem uvedl
veskerou pouzitou literaturu.

V Praze, 24. kvétna 2019

Abstract

Website builders are tools that enable peo-
ple create websites without the need to
code them manually. The goal of this the-
sis is to provide an introduction to the
problem of website builders and analyse,
design & implement a prototype of a web-
site builder using modern web technolo-
gies. Finally, provide reasoning for tech-
nology considerations and an overview of
the best practices.

Keywords: website builder, javascript,
vuejs, nuxt, server side rendering,
component, tree, user interface

Supervisor: Bc. Petr Hurtak

vi

Abstrakt

Tvirce webt jsou nastroje které umoznuji
lidem vytvorit webové stranky bez po-
tfeby psat kod manudalné. Cilem této prace
je uvést do problematiky tvirci webt a
analyzovat, navrhnout & implementovat
protoyp tvirce webil pouzitim modernich
webovych technologii. Nakonec, poskyt-
nout oduvodnéni vybranych technologii a
prehled osvédcéenych postupt.

Klicova slova: tvurce webi, javascript,
vuejs, nuxt, server side rendering,
komponenty, stromova struktura,
uzivatelské rozhrani

Preklad nazvu: Website builder -
technicky navrh a prototyp

Contents

1 Introduction 1]
1.1 Introduction
1.2 Motivation 2|
13Goals ...
2 Analysis 3
2.1 Technical design
2.1.1 Domain object model
2.1.2 Website structure - Tree
components |

2.1.3 List of basic tree components . [6]
2.1.4 Tree component implementation
2.1.5 Modules
2.1.6 Modifying the Component tree
2.1.7 Mapping component tree to
HTML ... 13
2.1.8 Persisting a Component tree.

3 Application specification 15
3.1 Application requirements
3.1.1 Functional requirements
3.1.2 Non-functional requirements .
32USe Casesvvveeiia 16/

3.2.1 Create website............. 6
3.2.2 Insert text into a page 1
3.2.3 Change background color of a
page section 19|
3.2.4 Change button text and link
3.2.5 Add navigation item........
3.2.6 View website
4 Implementation 23
4.1 Technology specification
411 Vuejs oo
412 Nuxtjs «.ovvvii i
41.3VUex ..oooveii 25
4.1.4 MongoDB
4.2 Client application.............
4.2.1 State management
4.2.2 Communication with the server
application
4.2.3 User interface 27
4.3 Server application
4.3.1 Persistence layer
4.3.2 API endpoints
4.4 Testingt
4.4.1 Unit tests 33

vii

5 Best practices

5.1 Functional components . . .

5.2 MongoDB transactions . ..

5.3 Scaling
5.3.1 Scaling MongoDB

5.3.2 Scaling application server ...

5.4 Security

5.4.1 Protection against 3rd party

code ...
5.4.2 TLS Protection

6 Conclusion
6.1 Final impression
Bibliography

A Building the application in
environment
A.1 Prerequisites............

local

A.1.1 Building the application

A.1.2 Testing the application

Figures
2.1 Example of a typical presentational

website
2.2 Website component tree diagram |9

3.1 Screenshots featuring application
interface - Website dashboard

3.2 Screenshots featuring application
interface - Inserting a text in website

17

editor i, 18|
3.3 Screenshots featuring application

interface - Changing section

background in website editor
3.4 Screenshots featuring application

interface - Adding a navigation item

in website editor 20/
3.5 Screenshots featuring application

interface - Adding a navigation item

in website editor
3.6 Screenshots featuring application

interface - Viewing a website

4.1 Vue.js component lifecycle [9] ..
4.2 Editable tree canvas contains the
rendered component tree which user
can interact with
4.3 Component insert canvas contains
the rendered insert tooltips that
appear when user hovers around
components
4.4 Section insert canvas contains the
rendered section insert tooltips that
appear when user hovers section
corners
4.5 Component settings canvas renders
the given component’s settings
window on the top of stacking context
when a user is editing a component
4.6 Document schema of application
database.......................

viii

Tables

3.1 Functional requirements
3.2 Non-functional requirements . ..
4.1 Create a website parameters ...
4.2 Create a Success 200 response . .
4.3 Read website parameters

4.4 Read website Success 200 response

4.5 Update a website parameters . . .
4.6 Update a Success 200 response .
4.7 View website parameters

4.8 View website Success 200 response

Chapter 1

Introduction

. 1.1 Introduction

Ever since first websites appeared in early 1990s, people were coming up
with tools to build them without needing to write HTML(Hypertext Markup
Language) code manually. Starting with Microsoft FrontPage in 1995, being
essentially a desktop HTML WYSIWYG(What you see is what you get) editor,
rivalled by Adobe Dreamweaver which later established itself as industry
leader in web development tools. The popularity of website builders peaked
in late 1990s when GeoCities was launched and enabled its users to create
fully hosted static websites from within their web browser.

Website builders typically fall into two categories:

® Offline

Offline website builders are desktop applications that run on user com-
puter, allowing users to edit the websites on their computer and then
export the websites as a piece of HTML, CSS(Cascading Style Sheet)
and Javascript code.

® Online

Online website builders are proprietary tools provided by web hosting
companies.[4] They run as web applications accessible through the web
browsers and allow users to create and edit websites through their web
user interface.

Many online website builders also let their users to export the code of
the built websites but key differentiation is that online website builders
can also host the websites created by them, removing the complexity of
hosting a website from the user.

In this thesis, we will explore the latter category by designing and imple-
menting a prototype of an online website builder.

1

1. Introduction

. 1.2 Motivation

Currently, there are many solutions that enable users to create websites
without the need to code them or have any prior web development skills.
They vary in implementation, features, platform, language and ultimately
the end user needs.

This thesis serves an experiment to develop a website builder which is easily
extensible by new features and uses modern web technologies. On of the goals
is to be able to host the websites built by the website builder, meaning we’ll
be able to render them on the server.

The key motivation factors for this thesis are following:

® Develop a highly versatile website builder with full WYSISYG interface
® Explore new modern web technologies

m Utilize the prototype as a software product in the future

. 1.3 Goals

This thesis is about implementing a prototype of a website builder based
on an analysis and a technical design. Its aim is also to provide a the-
oretical background on the topic and eventually discuss some technology
considerations.

The chosen workflow has been divided into three steps:

1. Introduce to the problem of website builders
First, we will define some technical terms and explain what the website
builders are.

2. Design and build a proof of concept of a website builder

In this step we’ll analyse the problem to be able to come up with
application specification followed by the analysis of the prototype imple-
mentation

3. Discuss the design decisions and technology considerations

Lastly, we’ll go through the rest of important topics such as best practices,
scaling or security.

Chapter 2

Analysis

This chapter describes the technical design behind the prototype of our
website builder. It provides an introduction to the domain object model and
reveals how the application is going to work under the hood.

B 2.1 Technical design

B 2.1.1 Domain object model

When we’re speaking about web pages, we typically speak of HTML documents
that make up the markup of a web page. These documents consist of HTML
DOM (Document object model) elements which are organised in a graph data
structure, more specifically the tree data structure. A tree has a single root
node that outer spans its children nodes. Every node that has at least one
child is a root of its sub-tree. Nodes with no children are called leaves and
they are found at the furthest depths of the tree.
Let’s imagine a simple HT'ML markup like this:

<header>
<div class="container">
<h1>Title</h1>

</div>
</header>

If we want to build a website builder, we ultimately need to store some
state of a markup in a persistent storage so it can be retrieved for later use.
The simplest approach would be to turn the HTML document into a string
value and store it as text field in the data stores.

This is good enough if we only want to read the state but to enable for
addition, deletion and modification of the markup, we need to eventually
change the state too.

Possibly, we can assume it’s feasible to retrieve the state as a HTML
markup in a form of a string, parse it to HTML DOM, perform modifications
and repeatedly store it as a string value.

3

2. Analysis

For our use case, the mentioned approach is not good for us due to these
main reasons:

® Markup is tied to implementation, not semantics
Let’s look at an example markup of a simple row element:

<div class="row">
<div class="column">
one
</div>
<div class="column">
two
</div>
<div class="clearfix"></div>
</div>

We can see the markup contains the <div class="clearfix"></div>
element. This is a common technique for fixing space around the elements
that float. However, when the implementation changes with an advent of
new technology or requirements, we would have to take special measures
to replace the old markup stored as a text with the new one.

B Validation and security issues

In case raw HTML is persisted, it needs to be validated against script
injection and malicious content which can be utilised in <iframe> or
<script> HTML elements.

® Coupling with HTML DOM API(Application programming in-
terface)

When our domain logic is tightly coupled with another domain logic we
might lose a portion of flexibility. Additionally, changes on the foreign
domain logic can result in breaking our application’s domain logic.

Instead storing the markup state as a text of HITML document, we could
store the markup in a structure like this:

element: Row
settings:

clear: true
children:

element: Column,

element: Column

and try to think how we can map it to HTML like in the example before
2.1.11

2.1. Technical design

B 2.1.2 Website structure - Tree components

In previous chapter we presented a certain way of storing the state of a HTML
markup. If we think of websites as domain components organised into a tree
structure, we need to think about what kind of components are those, their
possible state, their relation to the children and how they are stored.

Depending on what kind of websites we aspire to to build with our website
builder, we are going to abstract the set of components for our use. The aim
is to be able to build static, presentational websites that are made of one or
multiple pages.

Pages share a common markup in a form of a Layout into which the
actual markup of a Page is injected. A Layout is a template which contains
components such as Header, Footer and provides a slot where a given Page
is inserted.

Let’s look at an example of a typical presentational website nowadays:

H e\adee [About Us Know Your Farmer | Testimonials | Shop FAQ Blog Social Feed ContactUs =~ 'm0

Container

Heading \=of = o[=
;ASHVILLE

Breakfast Jars, Saléd Jars

Section
About.

Hil I'm Laura Axelson, owner of Dinner Belle. Sometimes it's hard to find the time to eat the way
we really want to eat. We value eating local and organic, but it takes a lot of time and planning to
make it happen. With two little boys and a part time job, it was hard for me in spite of the fact

Figure 2.1: Example of a typical presentational website

By how content is organised in this example, we can begin to abstract the
common markup starting with the most obvious patterns.

All of common presentational websites have a header, footer and page
content in between them. Page content is organised into sections. Sections
contain their content in a container, which has certain width and is positioned
in the center of the section thus in the center of the screen. Containers then
include the very vital parts of a website such as text, images, buttons and so
on.

Abstracting these high level blocks we can come up with a set of components

2. Analysis

organised into a tree that holds the relationship between the components.

B 2.1.3 List of basic tree components

In 2.1.2 we outlined the basic building blocks of a general website we aim
to be able to create with the website builder. This chapter provides a short
overview of each individual component and its role in a Component tree.

® Root

Root is the root component of the Component tree as it the root of
website Layout. A website has only one layout which can be customised
globally for all Pages.

Whitelisted children components:

Header
Page

Footer

® Header

Header mimics the HTML DOM <header> and is located on the top of
the page.

Whitelisted children components:

Navigation

Sitetitle(not implemented)

® Navigation

Navigation is located inside the Header component and contains naviga-
tion items which can link to website pages or external resources.

Whitelisted children:
Navigation Item

® Footer

Footer mimics the HTML DOM <footer> and is located on the bottom
of the page.

Whitelisted children components:

Text
Image
Navigation

Button

2.1. Technical design

® Page

Page component serves as an abstraction of a single page of a website
which is supposed to have its own unique path within the website.

Whitelisted children components:
Section

| Section

Section is a basic building block of a page. It generally has top and
bottom padding and a background color or image. Within its container,
it features content blocks such as images or texts.

Whitelisted children components:
Container

® Container

Container component has a certain width and is positioned in the center
of a section therefore in the center of a screen. Its width adapts to the
device screen size to achieve responsiveness.

White-listed children components:

Image
Button
Text

® Image

Image component mimics the HTML DOM by containing an
image resource users can upload.

White-listed children components: none

2 Button

Button component mimics the HTML DOM <a> which looks like a
button. It has a caption and can link to an external URL.

White-listed children components: none

B Text

Text component serves as an abstract wrapper for text content of a
website. Text includes headings and paragraphs.

White-listed children components:

Paragraph
Heading

2. Analysis

® Paragraph

Paragraph component mimics the HTML DOM <p> which contains text
in a form of text nodes.

White-listed children components:
Text node

® Heading

Heading component mimics the HTML DOM <h>. A heading has either
level one, two or three i.e <h1>, <h2>, <h3>.

White-listed children components:
Text node

B Text node

Text node mirrors the HTML DOM text node and is the basic building
block of text-based components such as Heading or Paragraph.

B 2.1.4 Tree component implementation

Javascript classes are going to be used to represent a component inside a
Component tree.

Javascript ES6 classes are syntactical sugar over JavaScript’s prototype
inheritance. Javascript objects in a form of instances of a class can be
serialized as JSON documents. JSON can store data as Numbers, Strings,
Booleans, Arrays, Objects, null value or as collections of those.

By storing only JSON’s data types as attributes of a component in a
Component tree, we can easily serialize the tree component implemented as
Javascript class to a JSON document and send it back and forth the web
server via HT'TP(Hypertext transfer protocol) requests.

Let’s look at Javascript class representation of an abstract tree component:

class Component {

constructor (options={}) {
this.name = options.name
this.wbdId = uuid()
this.settings = options.settings
this.resources = options.resources
this.modules = options.modules
this.children = options.children

props () {
return {}

}

2.1. Technical design

[y

Root
'y
Header Footer Page
Section
A
133 Container =5
Text Button Image
Paragraph Heading
Text Node
Figure 2.2: Website component tree diagram
styles() {
return {}

}
}

To implement an example button class, we can inherit from a base class
like this:

class Button extends Component {
constructor (options={}) {
options.name = ’wbc-button’
super (options)

2. Analysis

X
props() {
return {
content: this.settings.content,
url: this.settings.url
X
b

3

Javascript ES6 classes provide us an interface to implement object-oriented
concepts in Javascript environment like polymorphism or encapsulation[3].
A tree component has these attributes:

B name

Name of the component

® whbsld
Component unique ID evaluated after component’s initialization
wbsld is an unique identifier used to locate the component in a tree and
perform modifications upon

B settings
Component settings object. Properties which the component passes are
evaluated based on the settings.

B resources
Component resources provide an interface to link remote resource such
as image or file to a component

® modules

Component modules allow a component to extend its behavior

® children

Component’s children components

The very basic instance of a website Component tree represented as
Javascript objects has this structure:

{
name: ’wbc-root’,
wbcId: ’1°,
children: [
{
name: ’wbc-header’,
wbcId: ’2°
1,

10

2.1. Technical design

{
name: ’wbc-page’,
wbcId: ’3’

I

{
name: ’wbc-footer’,
wbcId: ’4°

}

B 2.1.5 Modules

The concept of modules is going to be used to share common behavior between
components.

A module is basically an embedded component within the parent component
that has no children and can be only accessed through the component it
belongs to.

Just like tree components, modules pass down properties and style to
extend the behaviour or appearance of the component they belong to.

Module properties. A module has these properties:

B name
B settings

B resources

A single component can have any number of modules.

An example of a module is a Paddingable module which contains padding
properties and can pass top and bottom padding values to its component. In
our prototype, Header, Section and Footer contain the Paddingable module.

Bl 2.1.6 Modifying the Component tree

At some point, it will be necessary to modify a Component tree to change
the structure or appearance of a website.

To locate any component in the Component tree, the tree will be traversed
depth-first to find a component with matching wbcld property.

B Updating a component

Certain components in a Component tree can be updated to alter their
behavior or appearance.
It is possible to update only these attributes of a tree component:

B settings

11

2. Analysis

® modules
B resources
An existing tree component is updated in these steps:
1. Get the wbcld of the existing component we want to update
2. Search the Component tree for the component which has matching wbcld

3. Update the attributes of the existing component at place

B Inserting a component

Certain components can be inserted into the Component tree as children of
components that have dynamic content i.e dynamic set of children.
A new tree component is inserted in these steps:

1. Get the wbecld of the component after or before which we want to insert
a new component

2. Search the Component tree for the parent component which has a child
with matching wbcld

3. Find the index 7 of the parent component’s child with matching wbcld

4. ® To insert the component after:

Insert the new component as the child of the parent component at
index ¢ + 1 at place

® To insert the component before:

Insert the new component as the child of the parent component at
index 7 at place

B Removing a component

Every component except the layout components in the Component tree can
be removed.
An existing tree component is removed in these steps:

1. Get the wbcld of the component we want to remove

2. Search the Component tree for the parent component which has a child
with matching wbcld

3. Find the index 7 of the parent component’s child we want to remove

4. Remove the parent component’s child at index ¢ at place

12

2.1. Technical design

B 2.1.7 Mapping component tree to HTML

After the component tree has been persisted, the last step of the flow is to
render it to HTML so it’s available as an HT'ML document to our users.

Each component in the component tree is assigned a template in form of a
Vue.js component.

Vue.js is a Javascript framework which utilizes its components as Javascript
instances that contain a HTML template and accept custom attributes in
form of props. Props alter the template or behavior of a Vue.js component.

For example, Button tree component passes content and href to its
corresponding Vue component. The template of Button looks like follows:

<template>

{{ content || ’Button text’ }}

</template>

Components that contain children, provide a slot in the template where
their children can be rendered.
For instance, take Container tree component view:

<template>
<div class="wbc-container">
<slot></slot>
</div>
</template>

If a Container contains Image, its instance:

{
name: ’wbc-container’,
children: [
{
name: ’wbc-image’,
settings: { publicId: ’img.png’ }
}

is going to map to:

<div class="wbc-container">
<div class="wbc-image">

</div>
</div>

Similarly, we can render every component in the tree like this with a
mapping function recursively. Starting with the Root component, we can
render the whole markup of our website and return it as HTML.

13

2. Analysis

B 2.1.8 Persisting a Component tree

After a Component tree is retrieved from a data store, its lifecycle is typically
as follows:

1. Deserialisation
2. Modification
3. Validation

4. Persistence

Let’s look at the last step of the component lifecycle and assume how a
Component tree can be stored in a persistent storage.

Much like HTML DOM object tree, our Component tree will form a tree of
Javascript objects. However, our objects are serializable as JSON data which
plays an important role in how the Component tree is going to be persisted.

There are two ways how JSON can be stored in a persistent storage as a
single value:

1. Casting JSON to string, store it as a text type and subsequently parse
it back to JSON after retrieval

2. Storing it as JSON type in a database system that support JSON-like
types

The first option is easy to implement but makes it difficult to search or
modify the tree from the data store directly.

The second option is the ideal solution although it restricts us to use a
database system that supports storing JSON values.

From the popular database systems there are two options which provide
this functionality:

B PostgreSQL’s jsonb data type
MongoDB’s documents which are stored in JSON format

In this prototype, we will go with the second option as our domain logic is
close to how MongoDB represents data in its documents i.e as documents
and sub-documents. Additionally, for operations on deeply nested object
structures, MongoDB generally provides better suited tooling.

14

Chapter 3

Application specification

The prototype of website builder application will be a universal web applica-
tion enabling users to create, edit and view websites on the client and persist
the websites in the persistent storage on the server.

Universal web applications describe JavaScript applications which run both
on the client and the server.[13]

Client side contains feature-rich user interface to create websites and edit
them in a WYSIWYG manner.

Server side provides API endpoints to perform CRUD(Create, read, update,
delete) operations on a website and an endpoint that renders created websites.

B 31 Application requirements

This section contains functional and non-functional requirements provided by
the thesis supervisor.

Functional requirements describe behavior features of the editor application.

Non-functional requirements describe qualitative features of the editor
application.

B 3.1.1 Functional requirements

The primary use case of our application is to create a website, edit it, persist
the changes and eventually view the website using the render endpoint.

A Website has a unique name and contains a Layout and Pages.

The client side application will allow users to create a website with basic
Layout and initial home Page.

Client side editor will view a website in a context of the current page and
enable users to edit the components through its user interface.

15

3. Application specification

Functional requirements
FR1 || A user is able to create a website.
FR2 || A user is able to insert a component into a layout or page.
FR3 || A user is able to remove a component from a layout or page.
FR4 || A user is able to change section’s background color.
FR6 || A user is able to align header children components horizontally.
FR7 || A user is able to change text content.
FR8 || A user is able to upload an tmage.
FR9 || A user is able to change button text.
FR10 || A user is able to add a navigation item.
FR11 || A user is able to change navigation’s item text.
FR12 || A user is able to change navigation’s item link.
FR13 || A user is able to remove navigation item.
FR14 || A user is able to save a website.
FR15 || A user is able to view a website.
FR16 || Application will show a list the created websites in a compre-
hensive dashboard.

Table 3.1: Functional requirements

B 3.1.2 Non-functional requirements

On top of functional requirements, the application must meet this quality

criteria:
Non-functional requirements

NFRI1 || Client application will support all ES5[14] compliant web
browsers

NFR2 || Part of the application will be covered by unit tests - testing
tree validation logic

NFR3 || Domain object model will be extensible by new tree compo-
nents

B 3.2

Within the scope of our application, any user can create, edit and view
websites. This section describes six use cases which feature scenarios realizing

Table 3.2: Non-functional requirements

Use cases

functional requirements from the application specification.

B 3.2.1 Create website

Users can create a website with basic Layout and a home Page from the

client application [3.2.1.

From a user standpoint, creating a website is a trivial process as it serves

as a prerequisite for editing and viewing the website.

16

3.2. Use cases

Website builder
Your websites Create website +
#1

Name: Dummy

il “

(a) : Website dashboard view

Your websites Create website +

#1

Name: Dummy

” Create a website

l My first website]

Create

(b) : Create website form

Website builder
Your websites Create website +
#1 #2

Name: Dummy Name: My first website

Fraven “ sl “

(c) : List of created websites

Figure 3.1: Screenshots featuring application interface - Website dashboard

B Create website scenario

This scenario realizes these functional requirements: FR1, FR16
Scenario:

1. Users opens the Website dashboard view which contains a list of created
websites and basic actions associated with them

2. User clicks the the Create website button

3. User interface shows the modal with website form which features a single
input field - website name

4. User enters the website name and clicks on Create button

17

3. Application specification

Home About Contact
N = - u Bﬂeixl
o
(a) : Website editor view (b) : Tooltip that indicates a compo-
nent can be inserted here
el | e
Home About Contact ° Home About Contact
utonten Bunion
9 a Type something here ...
Insert new component x
= =
e || e || oon
(c) : Popover menu with list of available (d) : Website editor view with text com-
components to insert ponent inserted

Figure 3.2: Screenshots featuring application interface - Inserting a text in
website editor

B 3.2.2 Insert text into a page

A user wants to insert a new text block into a page to add some text content
into a website [3.2.2l

B Insert text into a page scenario

This scenario realizes these functional requirements: FR2, FR7
Preconditions:

B A website exists and contains a section where text component can be
placed

Scenario:
1. User opens the Website editor view
2. User locates a section where he wants to insert new text

The section where user wants to insert a text has some content

4. User hovers the top or bottom center of a content block after or before
he wants to insert new text

18

3.2. Use cases

User clicks on + button that appears on top or bottom center of a content
block after or before he wants to insert new text to open a popover menu
with list of available components that can be inserted at place

User clicks on Text button from the popover menu

The section where user wants to insert a text has no content

User clicks on Insert a new component placeholder in the section
where he wants to insert new text to open a popover menu with list of
available components that can be inserted at place

User clicks on Text button from the popover menu

3.2.3 Change background color of a page section

A user wants to change the current background color of a page section to a
new color [3.2.3.

Change section background color scenario

This scenario realizes these functional requirements: FR4

Preconditions:

B A website exists and contains a section which users want to change the

background color of

Scenario:

User opens the Website editor view
User locates the section which background color he wants to change

User clicks on Edit icon on the left border of the section to open the
section’s settings window

User opens the Background tab from the settings window

User picks a color from a color picker inside the Background tab

3.2.4 Change button text and link

A user wants to change the existing button’s caption and an external URL
where it links to 13.2.4l

19

3. Application specification

Home About Contact

Button text

(a) : Website editor view with existing section component

° Section settings

Background

Color

Hello

srereee
fex

o

Section settings x

Background

Color

- =

#renses

<

(b) : Section settings window

(c) : Section with changed background
color

Figure 3.3: Screenshots featuring application interface - Changing section back-

ground in website editor

Home About Contact

Button Edit Remove

Button text

Home About Contact

Button settings x

Settings

Button text
Click here!

Button URL Click here!

www.example.com

(a) : Button with a tooltip

(b) : Button settings

Figure 3.4: Screenshots featuring application interface - Adding a navigation

item in website editor

20

3.2. Use cases

Change button text and link scenario

This scenario realizes these functional requirements: FR9

Preconditions:

B A website exists and contains a button which users want to change the

text and link of

Scenario:

User opens the Website editor view
User locates the button which he wants to edit
User clicks on button to show the buttons tooltips

User clicks on edit icon from the button tooltips to open button settings
window

To change button text, user edits the text in the Button text text field

To change button link, user edits the URL in the Button link text field

3.2.5 Add navigation item

A user wants to add an item to a navigation located in the website header
3.2.5 Typically user wants to add a new navigation item to link to another
page or an external URL

Add navigation item scenario

This scenario realizes these functional requirements: FR9

Preconditions:

® A website exists and contains a navigation which user want to add a new

item to

Scenario:

User opens the Website editor view
User locates the navigation he wants to edit
User clicks on the navigation to show the navigation tooltips

User clicks on edit icon from the navigation tooltips to open navigation
settings window

To add a new navigation item, user clicks the Add new item from the
navigation settings window. Optionally, user can change the navigation’s
item text at place.

21

3. Application specification

Navigation settings

x
Home About Contact Home About Contact Nav item
Navigation ftem

o
8
g

-

Click here! Navitem u .

(a) : Navigation with a tooltip (b) : Navigation settings

Figure 3.5: Screenshots featuring application interface - Adding a navigation
item in website editor

—— [e
Hello there
Er
#2
Name: My first website
(a) : List of available websites to preview (b) : Website preview

Figure 3.6: Screenshots featuring application interface - Viewing a website

B 3.2.6 View website

A user wants to view a website he created and edited with the website builder
3.2.6l

This use case demonstrates the key feature of our application which is the
ability to render the websites built by our website builder on the server and
return them as HTML document to the client.

Scenario:

1. User opens the Website dashboard view
2. User locates the website he wants to view

3. User clicks View link on the item from the list of websites

22

Chapter 4

Implementation

In this chapter we will describe the technology used to implement the website
builder application prototype, explain the client-server side distribution and
show how the website editor works under the hood.

B a1 Technology specification

B 4.1.1 Vuejs

Vue.js will be used to develop the user interface of the application.

Vue.js is a progressive Javascript framework designed to build modern
reactive user interfaces. The interfaces consists of a collection of Vue.js
components.

Components in Vue.js extend basic HI'ML to encapsulate reusable code.
In practice, this means that markup of a component can change dynamically,
depending on its state or properties.

Vue.js uses a concept of Virtual DOM. The virtual DOM (VDOM) is a
programming concept where an ideal, or “virtual”, representation of a Ul is
kept in memory and synced with the “real” DOM.[6] When the state of the
application changes, the Virtual DOM is re-created and updates the "real"
HTML DOM only in nodes that differ. The updates to the HTML DOM
are done automatically, removing the need to change view from our code
manually.

Each Vue.js component has a data object which represents component’s
state and can accept props which are immutable properties passed from its
parent component.

Vue’s reactivity works by modifying every object added to the data object
so that Vue is notified when it changes.[2]

When component state changes or props are modified, the component
re-renders.

Vue.js components have this lifecycle hooks:

® beforeCreate - fired before component is created

Initializes events & lifecycle

23

4. Implementation

beforeCreate created

Observe data &
initialize events

beforeUpdate . e mountee)} """ -" beforeMount
\

new Vue() Compile template

! Create vm.$Sel &

update DOM

Mounted

vm.$destroy()

CODINGEXPLAINED LOM Remove watchers etc. Destroyed Rl destroyed

Figure 4.1: Vue.js component lifecycle [9]

B created - fired when component is created

Initializes injections and reactivity
8 beforeMount - fired when component is before mounting
mounted - fired when component mounts onto HTML DOM

® beforeUpdate - fired when data changes and component is before
update

® updated - fired when data changes and component updates
® beforeDestroy - fired when component is before being destructed

B destroyed - fired when component is destroyed

Teardowns watchers, child components and event listeners

Compared to React.js, Vue.js was chosen as the application framework
because its code style is similar to traditional web applications in how it
separates HTML, Javascript and CSS. Vue.js component lifecycle hooks
are straightforward and arguably more intuitive than in React.js. Vue.js
is also more opinionated than React.js which in our case allows for quicker
prototyping.

B 4.1.2 Nuxtjs
Nuxt.js is a framework used to create universal Vue.js web applications.

24

4.1. Technology specification

Nuxt.js will be used as the application framework of our website builder
application implementing both server side and client side features.

On top of Vue.js, it provides code transpilation and bundling, automatic
code splitting, routing and ultimately server side rendering which is a key
feature of our website builder prototype.

Nuxt.js SSR(Server Side Rendering) lets Vue.js components to be rendered
on the server, abstracting away the client-server distribution[7].

This enables us to render the websites as Vue.js applications on the server,
thus define the server rendering endpoint which returns fully rendered websites
as HTML documents to the client.

Server side rendering solves a common issue among modern Javascript
frameworks. The initial request onto the server typically only downloads the
Javascript code that initializes the application which renders the markup and
mounts it on the HTML DOM.

This issue reveals a SEO(Search engine optimization) concern where HTML
content of the website is not present on the first request to the server, therefore
causing problems with indexing the website pages by search engines.

B 4.1.3 Vuex

Vuex is a state management pattern and library for Vue.js applications.
Inspired by Flux pattern, developed by the Facebook company. It serves
as a centralized store for Vue.js components which are running inside the
application.

Complex applications face these main issues when dealing with the state:

® Multiple components depend on the same state
® A single state is being mutated from different components

Vuex solves this by extracting the application’s state into a global singleton
object which any Vue.js component can access or mutate.
To implement straightforward state management within our application,
Vuex leverages these concepts in an instance of its store:
B state
Vuex uses single state tree which acts as single source of truth for our
application state
B getters
Computed properties based on the store state
A getter result is cached depending on the state of the store, re-evaluating
only the the state is mutated
® mutations
Mutations provide functionality to modify the state of the application

State can be modified only from within mutations and every mutation
must be a synchronous operation

25

4. Implementation

B actions

Actions are functions that receive the store context object and can
commit mutations

Actions are often used to fetch data from API endpoints via HTTP
requests and mutate the store with the received data

8]

In Nuxt.js, the instance of Vuex store is available in the Vue.js components
by injecting it the into the components’ this context as this.$store.

Vuex was chosen as the state management library for our application
because it’s a popular and well-documented choice among Vue.js applications.
Since website and its tree components can be modified from multiple Vue.js
components in a unpredictable fashion from the Editor application, Vuex will
solve issue this by keeping the application state in a single centralized store.
State mutations will be easily detected and it will bring more clarity to how
the state is handled within our application.

B 4.1.4 MongoDB

MongoDB is a cross-platform document-oriented database program.[10] It is
classified as a NoSQL database.

MongoDB stores data in schemaless JSON-like documents meaning their
fields and structure can change over time. In the application code, MongoDB
maps its documents to objects. In Node.js, these are Javascript objects.

Moreover, MongoDB is designed to be a scalable distributed database so it
provides features like high availability and horizontal scaling natively.

In our application, we are going to use MongoDB to store websites as Mon-
goDB documents. Because website Pages and Layout contain a Component
tree document as their root attribute, MongoDB documents are ideal solution
to represent and store the Component tree since it’s serializable as a JSON
object.

Section [5.3.1| describes how we can scale and optimise our MongoDB
database.

B 42 Client application

Client application of the website builder will be implemented as a single page
Vue.js application using Nuxt.js framework.

It lets users create a basic website, edit it and send it to the server applica-
tion to persist it.

The client application features two views, the Website dashboard view
which contains basic CRUD operations on a list of websites and the Website
editor view which is the actual website builder user interface.

26

4.2. Client application

B 4.2.1 State management

The application will manage its state with a Vuex store.
It has to fetch a website, manipulate it and update it with the server.
In our client application, we're going to use two store modules:

1. websites

This module stores websites loaded from the server side API and nor-
malizes their nested structure into websites, pages and layouts.

2. componentTree

This module contains a layout and a page in its state. From these two
entities the componentTree module computes the Component tree which
is going to be rendered and edited.

B 4.2.2 Communication with the server application

Client application will communicate with the application server via HTTP
REST API.

It does so asynchronously using AJAX(Asynchronous Javascript and XML)
requests. On the client side we will use a HTTP client library called Azios to
implement the API calls.

Most of the communication with the server will be initiated from the
application store by fetching and sending the websites from/to the server
application API endpoints.

B 4.2.3 User interface

Client application user interface consist of two views:

® Website dashboard view

The dashboard view is the home screen of the client application. It shows
the list of created websites and enables users to create a website through
its interface

® Website editor view

The editor view lets users to edit the appearance of a website by inserting
new tree components and editing or removing existing tree components.

B Website editor

The Website editor view is the core part of the application as it implements
the user interface of our website builder.

It displays the website in the context of the current page with a layout and
lets users to edit it.

This section describes how the website editor is implemented by explaining
how the website is rendered in an editable manner and how are website
components edited and inserted from the editor interface.

27

4. Implementation

The editor application is divided into four components with increasing
stacking context:

® Editable tree canvas

This component takes the Component tree object from the compo-
nentTree store and renders its components recursively. It does so by
wrapping every component with a wrapper.

Components’ wrappers implement the editor features like showing tooltips
and so on.

Home About Contact

Hello

Button text

Figure 4.2: Editable tree canvas contains the rendered component tree which
user can interact with

® Component insert canvas

Component insert canvas filters the tree components which can have a
new sibling tree component inserted before of after them. For every such
component it renders an insert button which is absolutely positioned
at the center bottom of a component in the editable tree canvas and
shows only when user hovers around it. By clicking the insert button,
a popover opens and shows available components that can be inserted
into place.

Button text

rs

Insert new component X
— o —
= [=
Text Image Button

Figure 4.3: Component insert canvas contains the rendered insert tooltips that
appear when user hovers around components

28

4.3. Server application

® Section insert canvas

Section insert canvas filters the section components from the tree and
renders an insert buttons which are absolutely positioned at the left
corners of a section in the tree canvas. A new section is inserted at the
place by clicking the section insert button.

+ L Insert section here

Figure 4.4: Section insert canvas contains the rendered section insert tooltips
that appear when user hovers section corners

Component settings canvas

This component watches for wbcld of currently editing component in
the store. When the wbcld of currently editing tree component is set, it
shows the component’s settings window that enable users to change its
appearance or behavior.

B 43 Server application

B 4.3.1 Persistence layer

All domain data will be stored in MongoDB database.

To model our application data, we’re going to use Javascript library Mon-
goose. Mongoose provides object data modeling solution that enables us to
put schema on top of MongoDB documents, define validation logic and query
the MongoDB collections with built-in queries.

In our application, we’re going to store documents such as Websites,
Layouts and Pages.

Let’s look at the document schema of our website builder application:

29

4. Implementation

Section settings x

Background

Color

#000000

HEX

Figure 4.5: Component settings canvas renders the given component’s settings
window on the top of stacking context when a user is editing a component

Website

+ name: String

1 1.n

L]

Layout Page
+ name: String = 'default’ + slug: String
root |1 root |1
WhbcRoot | | WhbcPage <<intarface>>

WbeComponent

| + name: String

+ settings: Object

+ modules: Object
+ resources: Object

+ styles: Object
1L(
hildren

Figure 4.6: Document schema of application database

It is worth to note that MongoDB itself is a schema-less database so it
might bring in some challenges when keeping the database in production
environment for some time, especially when it comes to attribute name or
type changes.

B 4.3.2 API endpoints

Editor server application provides API endpoints for website manipulation
and an endpoint for rendering a given website. This section specifies these

30

4.3. Server application

endpoints, their parameters and response.

These endpoints work with our Website document which has following
structure:

{
name: String
layout: {
name: String,
root: WbcComponent
X,
pages: [
{
slug: String,
root: WbcComponent

}

B \Website - create a new website

This endpoint creates a website with a given name.
POST

/api/websites

Parameters

Field | Type | Description
name | String | Website name

Table 4.1: Create a website parameters

Success 200
Field Type | Description
website | Object | Website document

Table 4.2: Create a Success 200 response

B Website - read website data

This endpoint returns a Website object
GET

/api/websites/:id

31

4. Implementation

Parameters
Field | Type | Description
id String | Website id

Table 4.3: Read website parameters

Success 200
Field Type | Description
website | Object | Website document

Table 4.4: Read website Success 200 response

B Website - update website data

This endpoint updates a Website object
PATCH

/api/websites/:id

Parameters
Field Type | Description
website | Object | Website document

Table 4.5: Update a website parameters

Success 200
Field Type | Description
website | Object | Website document

Table 4.6: Update a Success 200 response

B Website - view website

This endpoint returns rendered Website as HI'ML
Get

/api/websites/view/:id

Parameters
Field | Type | Description
id String | Website id

Table 4.7: View website parameters

32

4.4. Testing

Success 200
Field Type Description
website | document | Rendered website HTML document

Table 4.8: View website Success 200 response

B aa Testing

B 4.4.1 Unit tests

Part of the application will be covered by unit tests.

Within the scope of this project, unit tests will be provided to test the
validation of domain logic of the Component tree.

It is important to keep the domain logic in a consistent state so our websites
do not break or pose a security issue within our system.

Jest will be used to implement unit tests in the application. It is a Javascript
testing framework which provides unit testing functionality like matchers and
mocks. Additionally, Jest is widely used in Javascript ecosystem and has a
large support among both client and server side Javascript applications.

In the application we will test that our components have:

® Allowed(whitelisted) children components
8 Present children components
®8 Unique children components

B Valid custom settings attributes

33

34

Chapter 5

Best practices

B 5.1 Functional components

Vue.js enables users to define so called functional components. A func-
tional component is stateless and instance-less which means it has no reactive
data and no this context.

Functional components are represented as functions therefore they are
cheap to render from performance perspective.

In Vue.js, there are two ways to create a functional component:

1. Setting functional in the component declaration:

export default {
functional: true,
render (h) {

2. Setting functional in the component template attribute:

<template functional>

</template>

B 5.2 MongoDB transactions

Unlike relational databases, MongoDB doesn’t provide atomicity on multi-
document transactions. This means that unless the documents are embedded
in each other, writes on multiple documents are not atomic.

In case of sudden service unavailability, it might happen that some writes
within a single update will pass while the others fail. In relational databases,
where atomicity is one of its core features, the transaction would rollback
undoing all the writes, leaving the data set in the initial state. In MongoDB,
this is not a case and our domain logic may get corrupted.

35

5. Best practices

However, starting in version 4.0, MongoDB adds support for multi-document
transactions. This feature is only available if we configure the database to
use replica sets.

It’s also worth noting that generally MongoDB encourages to design a
proper database schema by using sub-documents which in many cases saves
users from doing multi-document transactions and only use those for special
cases.

N 53 Scaling

In a situation, when our website builder hosts numerous websites and needs
to render a high number of pages per second, we need to think about what
scaling approaches we can take to mitigate the risk of our application under-
performing.

B 5.3.1 Scaling MongoDB

Our MongoDB database poses as a single point of failure in our application.
In case it’s not available, websites cannot be rendered on the server which
results in a service disruption. If the render endpoint has to handle many
requests per second, database queries can slow down and increase the total
response time.

Luckily, our application is not write-heavy and MongoDB can practically
handle thousands of reads per second with a basic configuration.

To scale our MongoDB database, we can leverage the MongoDB'’s replica
set.

A replica set in MongoDB is a group of mongod processes that maintain
the same data set. Replication provides redundancy and high availability. [I1]
Copying the same data across multiple servers provides fault tolerance against
unavailability of a single database server. In our case, we can also optimise the
replica set to increase the read capacity by distributing the load to different
servers.

A replica set contains several mongod nodes of which one is always primary
node and the rest are secondary nodes. The primary node holds the write
concern and confirms all write operations. Secondary nodes replicate the
data in the primary by replicating primary node operation log, known as
oplog. When the primary node becomes unavailable, the secondary nodes
begin leader election as in distributed systems to choose a new primary node.

Given that our application is read-heavy, we can take these actions to scale
our MongoDB database:

B Increase the size of the replica set

Adds redundancy

® Distribute reads to secondary nodes with read preference mode

Adds extra capacity for reads

36

5.4. Security

B 5.3.2 Scaling application server

Our application server runs as a web server in Node.js environment.

This design decision was made intentionally since Node.js is a Javascript
runtime environment and code can be easily shared across the application
since both client and server side are written in Javascript.

JavaScript is single-threaded, and the way Node emulates an asynchronous
environment in a single-threaded environment is via an event loop.[I] This
means it never runs in multiple threads but handles concurrency by typically
running blocking operations asynchronously, executing them through the
event loop.

If we define our API endpoints as middleware functions of our HT'TP appli-
cation server, we can leverage the async nature of Node.js by implementing
those middleware functions as asynchronous using Node.js’s Promises. By
doing this, we can achieve concurrency by having a completely asynchronous
environment at very little cost.

B 54 Security

B 5.4.1 Protection against 3rd party code

It might be that at some point we want users to add custom code to the
website. There are many use cases as in how a user can embed his own code
into a website but let’s examine what security issues may come up if we allow
users to insert an <iframe> element into the website markup.

Iframes come along with several security risks:

® Cross-site scripting
® (lickjacking
® Information leak

To avoid some of these issues, we can add sandbox attribute to <iframe>
element to disable certain functionality of the iframe, only allowing users to
insert iframes which don’t need to have certain functionality.

The sandbox attribute disables all these functionalities which can be
enabled passed as value of the sandbox attribute:

® allow-forms - Re-enables form submission
® allow-pointer-lock - Re-enables APIs
® allow-popups - Re-enables popups

®8 allow-same-origin - Allows the iframe content to be treated as being
from the same origin

® allow-scripts - Re-enables scripts

37

5. Best practices

® allow-top-navigation Allows the iframe content to navigate its top-
level browsing context[12]

B 54.2 TLS Protection

In case we want to host the websites built by our website builder on the
application server, it is a good practice to access the websites through the
HTTPS protocol. In HTTPS, the communication protocol is encrypted using
Transport Layer Security (TLS)[5].

There are multiple ways how visitors could view the websites hosted with
the website builder. Let’s examine the three most common approaches used
in multi-tenant applications:

1. Through a route on the application server such as

www.websitebuilder.com/view/mywebsite

2. Through a subdomain of the domain website builder is hosted on such
as mywebsite.websitebuilder.com

3. Through a custom domain which uses a DNS CNAME record that maps
to endpoint on the application server such as www.myswebsite.com to
mywebsite.websitebuilder.com

For first and second approach we could acquire a TLS certificate from
certificate authority for www or * wildcard subdomain hostnames.

The third approach brings in complexity due to differing hostnames that
can be mapped to our application endpoint. For every such hostname, the
TLS certificate must be present on the server, requiring us to host and
manage the certificates on our infrastructure. This is possible by acquiring
the certificates dynamically from authority like Certbot and storing them in
persistent storage or on a file system. Mind that certificates expire and it
is needed to renew them periodically, bringing in more complexity to the
system operation.

It is understood that it’s feasible to protect the hosted websites with TLS.
By using a proper approach, we can completely remove this responsibility
from users to provide a layer of security without them worrying about the
technical details.

38

Chapter 6

Conclusion

The goal of this thesis was to design and build a working prototype of a
website builder which would work as a web application running in a browser.

Initially, we have pinpointed the main problems current solutions face and
tried to come up with a domain logic that would model the problem we are
trying to solve well.

We have set out to build a client application that would implement features
like creating and modifying websites in Vue.js.

As the nature of our solution required us to somehow store oir website data
that’s manipulated on the client, we needed to introduce the server side logic
and define how the communication with the client will look like.

The server application was implemented as a REST API powered by Node.js
and we have decided to persist the data in MongoDB. The persistence layer
choice was discussed in various chapters due to how important role it plays
in the system.

Later it was found out that is important to keep our domain logic in a
consistent state. For this purposes the unit tests were provided to ensure the
integrity of our data.

Apart from the obvious challenges like user interface design or persistence
layer, website builders face many other technical challenges. We have tried
to cover a few of those discussing best practices in Javascript and MongoDB,
scaling approaches and security concerns.

Finally, we have been able to come up with a working prototype which can
be easily extended by new domain logic thanks to modern web technologies
the design decisions made.

In the future, we could enrich our application by implementing features
such as forms or videos or letting users to export their website code.

B 6.1 Final impression

Creating a website builder is a complex problem since its features and user
interface directly depend on the needs of the end user and creating a website
is by nature not a streamlined process.

By designing and implementing a prototype of a website builder, I greatly
enriched my technical knowledge as it goes through the whole spectrum of

39

6. Conclusion

creating a web-based product including client side development, server side
development, databases, security or UX(user-experience) design.

During my bachelor studies I've deepened my engineering and web develop-
ment skills with courses like Introduction to web applications, Creating client
applications in JavaScript or Enterprise architectures.

This helped me tremendously throughout working on this thesis as I had
prior understanding of the technologies and concepts used in this thesis such
as client-server architecture, database systems or many more.

As website builders and web development in general are matters I want
to be involved with in the future, I am very glad this thesis has served as a
mean to learn and gain knowledge about these interesting and ever-evolving
topics.

40

Bibliography

[1] Learning Node - Shelley Powers - ISBN 1449323073, 2016

[2] Vue.js: Up and Running: Building Accessible and Performant Web Apps
- Callum Macrae - ISBN 1491997249

[3] Practical Object-Oriented Design in Ruby: An Agile Primer - Sandi Metz
- ISBN 0321721330, 2018

[4] Wikipedia, Website builder
https://en.wikipedia.org/wiki/Website_builder] 2019

[5] Wikipedia, HTTPS protocol
https://en.wikipedia.org/wiki/HTTPS|, 2019

[6] Chapter Virtual DOM and ints Internals
https://reactjs.org/docs/faq-internals.html, 2019

[7] Nuxt.js guide

https://nuxtjs.org/guide, 2019

[8] Vuex, State management library

https://vuex.vuejs.org/, 2019

[9] Vue.js instance lifecycle hooks

https://codingexplained.com/coding/front-end/vue-js/

fvue—-instance-lifecycle-hooks| 2019

[10] Wikipedia, MongoDB
https://en.wikipedia.org/wiki/MongoDB 2019

[11] Replication in MongoDB

https://docs.mongodb.com/manual/replication/| 2019

[12] Iframe sandbox attribute

https://www.w3schools.com/tags/att_iframe_sandbox.asp 2019

41

https://en.wikipedia.org/wiki/Website_builder
https://en.wikipedia.org/wiki/HTTPS
https://reactjs.org/docs/faq-internals.html
https://nuxtjs.org/guide
https://vuex.vuejs.org/
https://codingexplained.com/coding/front-end/vue-js/vue-instance-lifecycle-hooks
https://codingexplained.com/coding/front-end/vue-js/vue-instance-lifecycle-hooks
https://en.wikipedia.org/wiki/MongoDB
https://docs.mongodb.com/manual/replication/
https://www.w3schools.com/tags/att_iframe_sandbox.asp

Bibliography

[13] Wikipedia, Isomorphic JavaScript

https://en.wikipedia.org/wiki/Isomorphic_JavaScript| 2019

[14] W3Schools, ECMAScript 5
https://www.w3schools.com/js/js_esb.asp/ 2019

42

https://en.wikipedia.org/wiki/Isomorphic_JavaScript
https://www.w3schools.com/js/js_es5.asp

Appendix A

Building the application in local
environment

The steps to build this application locally are following:

B A1 Prerequisites

Install following dependencies:

8 Node.js >= v10.15.3

8 MongoDB >= v4.0.2

B A.1.1 Building the application

To build and run the application, run following commands from the project
root directory:

1. npm install -g lerna
2. lerna bootstrap
3. cd packages/wbc-admin && npm install

4. npm run dev

B A.1.2 Testing the application

To build and run the application, run following commands from the project
root directory:

1. cd packages/wbc-components && npm install

2. npm run test

43

	Introduction
	Introduction
	Motivation
	Goals

	Analysis
	Technical design
	Domain object model
	Website structure - Tree components
	List of basic tree components
	Tree component implementation
	Modules
	Modifying the Component tree
	Mapping component tree to HTML
	Persisting a Component tree

	Application specification
	Application requirements
	Functional requirements
	Non-functional requirements

	Use cases
	Create website
	Insert text into a page
	Change background color of a page section
	Change button text and link
	Add navigation item
	View website

	Implementation
	Technology specification
	Vue.js
	Nuxt.js
	Vuex
	MongoDB

	Client application
	State management
	Communication with the server application
	User interface

	Server application
	Persistence layer
	API endpoints

	Testing
	Unit tests

	Best practices
	Functional components
	MongoDB transactions
	Scaling
	Scaling MongoDB
	Scaling application server

	Security
	Protection against 3rd party code
	TLS Protection

	Conclusion
	Final impression

	Bibliography
	Building the application in local environment
	Prerequisites
	Building the application
	Testing the application

