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Abstract

This thesis deals with the optimization
problem of daily expedition scheduling in
an automated warehouse with a focus on
robustness and satisfaction of given re-
quirements. The problem consists of a
truck allocation to expedition ramps and
scheduling of unloading of predetermined
products. We introduce related schedul-
ing problems and the methods to solve
them. Our method for schedule evalua-
tion is then presented together with the
proposed heuristic construction method
in combination with local search tech-
niques. Finally, the proposed method is
implemented in the provided simulation
tool, and constructed schedule is evalu-
ated based on results from the simulation.
Results from the simulation show that
the proposed method generates a sched-
ule that satisfies given requirements and
is relatively robust to delays.

Keywords: scheduling, automated
warehouse, optimization, simulation

Supervisor: Ing. Martin Schaefer
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Abstrakt

Tato prace se zabyva optimalizaci pro-
blému rozvrhovani denni expedice v au-
tomatizovaném skladu s dirazem na ro-
bustnost a vyhovéni danym pozadavkim.
Problém zahrnuje prifazeni kamionti na
rampy a naplanovani vyskladnéni pre-
dem danych produkti. Predstavujeme re-
levatni problémy rozvrhovani a zptsoby
jejich feseni. Metoda pro evaluaci rozvrhu
je poté prezentovana spole¢né s heuristic
construction metodou v kombinaci s lo-
kalnim prohledédvanim. Kombinace téchto
metod je navrzena k tvorbé rozvrhu expe-
dici. Navrzend metoda je implementovana
v dodaném simuldtoru a vznikly rozvrh
je evaluovan na zakladé vysledki ze simu-
lace.

Klicova slova: rozvrhovani,
automatizovany sklad, optimaliza,
simulace

Pteklad nazvu: Rozvrhovani
vyskladniovani z automatizovaného skladu
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Chapter 1

Introduction

Scheduling is a well studied and practical topic. It is widely used in manu-
facturing facilities, warehouses, which are discussed in this thesis, and many
other industries where proper scheduling can play a great role in their success.
Despite its importance and years of research, scheduling is quite a challenging
problem, especially when it comes to real-world problems where finding an
optimal schedule is usually nearly impossible due to its high computational
complexity.

Since the beginning of research in scheduling, many methods and approaches
were developed for finding schedules close to optimal schedule in a reasonable
time, but what is a good or optimal schedule? Determining the objective
of a schedule is a problem on its own. The usual objective of scheduling
is to minimize the makespan, which is the duration of a schedule. This
objective alone is usually not sufficient because it does not consider the
stochastic nature of real-world, where random events can change the schedule
for the worse. In that case, the most suitable schedule might be the one
that is more robust to random events, and makespan is not optimal, but still
sufficient. Another reason why makespan or other simple objectives that are
often mentioned in literature might not be sufficient is that some facilities
may demand complex customized requirements tailored just for them. For
example, in case of an automated warehouse, it may be crucial to not only
finish expedition in required time but to also expedite items in the required
order.

In this thesis, general methods for solving scheduling problems relevant to
scheduling a daily expedition of the given automated warehouse configuration
are discussed. Then, method and an objective of a schedule for the given
automated warehouse and scenario is proposed. Finally, the proposed method
is implemented and evaluated in the simulation.

. 1.1 The automated warehouse

There are many different types of automated warehouses with very different
requirements, structures, and functionality. The problem of scheduling an
expedition may depend on the structure and the type of an automated
warehouse. The basic structure and functionality of an automated warehouse
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based on a real-world problem were provided for this thesis and can be
described as follows.
The automated warehouse is part of a factory. The factory stores products
to the automated warehouse from which they are at some point expedited.
Firstly, we describe production together with a layout of the automated
warehouse and secondly, we describe the expedition process.

B 1.1.1 Production

The factory is running 24 hours a day and produces up to thousands of
items throughout a whole day. The exact amount of produced items is
unknown since not all items pass quality control. The time of item arrival at
the warehouse is also unknown because items can be delayed for unknown
reasons.

Items come in hundreds of different types, which may differ in size, material,
or in other properties, which are not important for this thesis. Since the
warehouse is automated, items must have suitable weight and size to be
handled by a stacker crane and to be stored in high-bay racks, like the ones
shown in Figure (1.1 Examples of such items are tires or pallets of different
sodas. Produced items are directly put one-by-one on the conveyor leading
to the warehouse, where an item is pushed off the conveyor to the production
buffer of one of the aisles.

The automated warehouse has a given number of aisles. Each aisle has high-
bay racks on both sides and is connected to two conveyors at the beginning
of it. The first conveyor is moving items from an aisle to a conveyor junction
and then one of the expedition ramps, and the second one is bringing in items
from production. Each aisle has a single stacker crane operating on it.

Stacker cranes operate automatically and can either store an item from
production if it is available or execute scheduled unloadings.

If stacker crane is requested to unload an item, it moves to the position
of an item, grabs it and moves to the beginning of an aisle, where it puts
the item on the conveyor leading to an expedition ramp. In case of an item
arriving from production to an aisle’s production buffer, stacker crane should
retrieve this item from the production buffer and store in a free position in
the aisle. If any production buffer overflows, all the production would have
to be stopped, which can lead to serious financial losses. For that reason,
stacker cranes prioritize storing an item over unloading. It means that as
soon as a stacker crane finishes an operation in progress, it stores an item
from production (if it is available at the buffer) even if it means delaying
scheduled unloading.

B 1.1.2 Expedition

The expedition is spanned over a part of one day; we will further refer
to this part as working hours. We are given information about when the
working hours start and end. During the expedition, a truck can arrive at an
expedition ramp at a scheduled time. Only one truck can be loaded at a time
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at each expedition ramp. There is also reserved time after which the next
truck can arrive. Every truck requests a certain number of items of different
types and order of these types in which they should be loaded into the truck
for practical reasons. Which specific items will be expedited is known in
advance and is expected that these items are distributed uniformly across all
aisles.

Before each item reaches an expedition ramp, it arrives at a conveyor
junction and then proceeds to the expedition ramp’s scanner, where it needs
to be scanned. A scanner is located at the end of the conveyor before each
expedition ramp.

The order in which items are processed by a scanner corresponds to order
at which they are loaded into a truck. Scanners accept an item periodically.
Since the scanner is processing items in the given interval, there has to be
space between items on conveyor based on the speed of the conveyor and the
duration of the interval. If too many items arrive too soon after each other,
they pile up and may cause the conveyor to stop, which should never happen.
To prevent stopping of a conveyor, there is a small buffer. A scanner also
accepts an item as soon as possible. The number of items that pile up in the
buffer during a daily expedition is one of the measurements of robustness to
delays.

We also simplify our problem and assume that workers at the loading
ramp can always pick up an item coming from the scanner. That means that
scanners then create bottlenecks for each expedition ramp where throughput
is limited by the frequency at which scanner can process items.

On top of all these specifications, it is expected that the expedition should
not last longer than the working hours. Additionally, the duration of a truck
expedition should not take too much time; there is a constraint on how long
the truck expedition should be. Parameters specifying these requests and the
importance of these requests is something that a client should specify, and it
has to be considered during the construction of a schedule.

B Warehouse parameters

Several basic parameters were provided for the given automated warehouse.
These parameters include horizontal and vertical speeds and accelerations
of stacker cranes, dimensions of a warehouse, speed and length of conveyors,
duration of scanning an item, duration of grabbing an item from a conveyor,
duration of putting an item on a conveyor and exact location of each item
stored in the warehouse. For the expedition, we know count, types, and order
at which items should be loaded for each truck.

. 1.2 Goals and motivation

The goal of this thesis is to implement a scheduler that can produce a schedule
in a reasonable time by assigning trucks planned for a day to expedition
ramps, determining their order and the order at which items will be expedited

3
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Figure 1.1: Example of an automated warehouse with stacker cranes. Licensed

under (CC-BY-SA-4.0 [1]

and finally determine the specific time at which stacker cranes should start
unloading each item so that items arrive in the desired order to the expedition
ramps. Since there is no or uncertain information about item production, we
cannot incorporate production handling in our schedule, but knowing that
production handling can delay unloading of an item, we can try to minimize
the effect that production handling has on the schedule. To properly evaluate
the schedule, it is integrated into simulation so that the created schedule can
be observed in settings with production and evaluated based on it.

With a combination of the schedule and the simulation tool, we are also able
to get data about the capabilities of the warehouse itself, which is valuable
information when designing an automated warehouse [6]. Integration of the
scheduler to the simulation tool also enriches the simulation tool and can be
used in future projects.

B 1.3 Notation and terminology

Job A job is a term used in scheduling. Jobs are usually assigned execution
time and machine that executes it. In this thesis, a job represents an item to
be expedited or truck to be assigned to a ramp.

Machine A machine represents a stacker crane in this thesis.

Processing time (p;) A time that a machine needs to process a job. In
other words, a time needed to unload an item from its location to conveyor.
This action consists of a trip from a conveyor to the item 4, grabbing the
item, trip back to the conveyor and putting the item on it. Values of p;
are calculated from speeds, accelerations, and dimensions of the warehouse.
Processing time is never zero.

Scanning interval (s) The time needed for a scanner to process an item.
Traverse duration (¢;j) The time needed for an item i to get to a scanner

4
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from this aisle by a conveyor.

Completion time (¢;) The time at which a scanner finishes scanning an
item 1.

Idle time (0;) After processing an item i at a scanner, the next item is
allowed to be scheduled at that scanner after the idle time 6;.

Assigned expedition ramp (r;) A ramp to which an item i is scheduled
on.

Position in expedition (pos;) Position of an item i in the expedition order
for its assigned expedition ramp.

Set of ramp indices (R)

Completion time of a truck (c!) The time at which the last item demanded
by a truck arrives at its expedition ramp.

Start of working hours (start) The beginning of working hours. From this
time on, trucks can be scheduled to arrive.

End of working hours (end) The end of working hours. Ideally, every
truck should be expedited by this time.

Stacker crane completion time (scc;) The time at which stacker crane
unloaded an item 1.

Stacker crane start time (scs;) The time at which stacker crane starts
unloading an item from the warehouse.

Type identification of an item (Serial number) (type;)

Expected types (expedition; ;) An expected item type of an item leaving
the arriving ¢ — th to a expedition ramp j.

Number of items to be expedited at an expedition ramp (size;) Total
count of requested items at an expedition ramp 4.






Chapter 2

Problem statement

We split the problem of expedition scheduling in the automated warehouse
into two different problems, trucks allocation, and item dispatching. The first
problem of truck allocation is dealing only with the assignment of trucks to
ramps. There are no requirements or constraints regarding order at which
trucks should arrive at each ramp.

The second problem, item dispatching, occurs after the truck allocation,
and it deals with determining which items should meet which requests from
trucks and the assignment of completion times of item unloading. Since
machines are predetermined, there is no need to select a machine which
unloads an item. An item is already associated with a machine.

Both of these problems are described as machine models in the following
sections, which are used in scheduling literature (See [12] or [4] for an overview
of machine models). More formal formulations for both of these problems are
included in the following sections.

. 2.1 Trucks allocation

This problem can be formulated as a parallel machine model.

There are r ramps in parallel and ¢ trucks planned for a day. Ramps can
be interpreted as machines in parallel and jobs as the whole expedition of
each truck.

Since each ramp includes only one scanner, that acts as a bottleneck in the
warehouse, the objective of this problem is to distribute expedition among
ramps uniformly to utilize these ramps. In other words, workers at each
expedition ramp should ideally work the same hours and do the same amount
of work.

The problem can be formulated as assignment problem as follows:

minimize max(yo, ..., Yr) (2.1)
subject to
n
d wij=1 forj=0,...r (2.2)
i=0
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t
Zdi'xij:yj fOI‘j:O,...,T (2.3)
1=0

Where z;; is a binary decision variable, which indicates that the ith truck
is scheduled on jth expedition ramp. By satisfying Equation it is ensured
that every truck is assigned to only one ramp. Equation sets variable y;
to duration of expedition on the expedition ramp . By minimizing Function
2.1] we minimize the makespan, which leads to good utilization of machines

Stage 1 Stage 2 Stage S

Startl:,’}i l::]:nd

Figure 2.1: Flexible flow shop layout from article by Min Dai [5]. Licensed by

JC BY 3.0

B 22 item dispatching

The problem of assigning completion times to jobs in the automated warehouse
can be formulated as a special case of 2-stage flexible flow shop (FF2) with
blocking or flexible flow line (FFL) with two stages as follows:

There are two work stations connected in series. The first work stations
consist of m machines (stacker cranes) in parallel, and the second work station
consists of r machines (scanners) also in parallel. Every job job; needs to
be processed on its predetermined machine, and processing of job; takes p;
seconds. After job job; is processed, it travels t;j seconds to get to a scanner
4 where it needs to be processed too. Scanning time s is for every scanner
the same. Jobs cannot wait between work stations. That alone is referred to
as FFL. Figure illustrates the flow of the FFL model.

Additionally, we need to ensure that an item ¢ arrives at a truck in an order
at which this item’s type is requested and since this problem follows the truck
allocation problem, orders at which items should arrive at expedition ramp
are known. By assigning an order and a ramp to an item from a warehouse, we
assign an item to a request. This leads to the following problem formulation.

For convenience, we formulate this problem as a constraint satisfaction
problem as follows:

Variables:

V =A{co,c1,.-.,CnyT0y -+, Py DOSO, - - - , POSK } (2.4)


https://creativecommons.org/licenses/by/3.0/

Domains:

¢ € C; = {start, ...,86400}
r; € R
pos; € {1,...,n}

Constraints:

pos; < sizer,

POS; < Posj N1y =rj = ¢; < Cj

m; =mj = scc; < scsjV sce; < ses;
ri=rj; = Cz‘—l-eigsj'\/c]'—i-@j <c —s

expeditionyes, r, = type;

2.2. Item dispatching

fori=0,...,n 2.5)
fori=0,...,n 2.6)
2.7)

fori=0,....,n
fori=0,...,n (2.8)
fori,j=0,...,n (2.9)
fori,j=0,...,n (2.10)
fori=0,...,n (2.11)
(2.12)

Where Constraint [2.9 ensures that a variable pos; represent an order at
which an item i is loaded at expedition ramp r;. Constraints 2.10| and [2.11
secures that stacker cranes and scanners can process only one item at a time
respectively. Finally, Constraint 2.12] checks if type of an item i is expected

at expedition ramp r; in pos;-th order.

Main requirements of this problem are to make a schedule that fits into
working hours of the warehouse and make the schedule robust to random
events. For example, the arrival of an item from production can postpone
scheduled job at a machine for a whole duration of storing the item, and that
can lead to loading items in the wrong order and filling buffer at a scanner.



10



Chapter 3

Related work

Methods for solving various forms of scheduling problems were extensively
studied for decades now. Many of these methods are summarized in Scheduling
by M. Pinedo [12] and Scheduling Algorithm by P. Brucker[4]. We will mainly
discuss methods from these books that can be applied to the flexible flow line
or parallel machine model problems and some methods that are used in next
chapters.

B 3.1 Overview of methods and approaches for
finding optimal or nearly optimal schedule

Both problems we consider in this thesis are NP-hard [12]. To find the optimal
schedule of FFL or parallel machine model, seemingly two general methods are
used, Mixed Integer Programming (MIP) and Constraint Programming (CP)
with a combination of pruning methods, an approximation of initial bounds
and other general methods. MIP approach is often obsolete for real-world
problems, where there are hundreds or thousands of jobs to schedule. CP
is in many cases similar to MIP, but offers better flexibility for designing
constraints and can be optimized for specific problems and because of it often
outperforms MIP. CP is a very vast topic, and more about it can be found in
Principles of Constraint Programming by K. Apt [3].

There are also some special cases of machine models and scheduling ob-
jectives for which we can construct an optimal schedule using different job
dispatching rules or algorithms. Neither FFL scheduling nor parallel machine
model of truck allocation problem can be optimally solved using some dis-
patching rules as far as we know, but we will take a look on some special
cases that can give an idea what dispatching rules should perform well.

B 3.2 Minimizing makespan of parallel machine
model

Since minimization of makespan of parallel machine model is NP-hard, it is
often solved using CP or MIP approach. As we have shown in Section 2.1] if

11
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there are no special requirements, it can be easily formulated mathematically,
which is required when using CP or MIP approach.

There are few construction heuristics or in other words dispatching rules,
from which we can construct a schedule that guarantees an upper bound of
the makespan. One of these heuristics is The Longest Processing Time first
(LPT) dispatching rule. Using LPT rule, jobs are scheduled on any freed
machine in decreasing order of their processing. According to R. L. Graham
[11], LPT rule guarantees that:

<4 1 (3.1)
-3 3m '

Conaz(LPT)
Cnae(OPTIM AL)

Where m is a number of parallel machines.

But like we said, to find an optimal schedule, we need to use some general
methods like MIP or CP and LPT rule can be used for approximation of an
upper bound.

B 3.3 Flexible flow line scheduling

To find an optimal schedule for FFL with even some basic objectives like
makespan can be solved again by using some of the general methods like CP.
In practice, it is often necessary to use some heuristics for choosing a job to
dispatch. More about different heuristics for FFL and their application can
be found in the article Heuristic Methods for Flexible Flow Line Scheduling
from S. Kochnar [10].

A heuristic that is worth mentioning is Johnson’s rule (also known as
SPT(1)-LPT(2)) for minimizing the makespan of FFL with two stages and a
single machine at each of them. Johnson’s rule constructs an optimal schedule
by partitioning jobs into sets. The first set contains jobs that have processing
time in the first stage lower than processing time in the second stage and
the second stage vice-versa. Jobs from the first set are scheduled first in
increasing order of their processing time (SPT). After that, jobs from the
second set are scheduled in decreasing order of their processing time (LPT).
Jobs with equal processing time in both stages can be added to either of these
two sets. More about Johnson’s rule can be found again in Scheduling by M.
Pinedo [12].

In our problem of item expedition, the processing time at a scanner is
always the same and is lower than processing time at a machine. This gives
us an idea that SPT rule should utilize machines in FFL well. Guinet [7]
proposed a heuristic method based on Johnson’s rule for FFL and made a
comparison to SPT and LPT rules and surprisingly concluded that LPT
heuristics gives good result for makespan minimization (as stated by H. R.
Kia [8]).

12
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. 3.4 Local search techniques

In addition to mentioned dispatching rules like SPT, LPT or Johnson’s
rule, and general approaches like CP, another popular methods for solving
scheduling problems are various local search techniques.

Local search is another very wide topic. In this thesis, we will describe the
very basic idea behind local search algorithms. Again, detailed information
and examples can be found in Scheduling by M. Pinedo [12].

The local search algorithm takes an existing schedule an tries to improve
it by searching through his neighborhood. The neighborhood consists of
schedules that are generated from the original schedule using some specific
operation; we will be referring to it as move. The algorithm makes a step by
evaluating schedules from a neighborhood and selecting new schedule from
which it creates a new neighborhood and begins another step. There are
many types of local search algorithms that usually differ in the way they
select or reject the next move or how they create neighborhoods.

The specific algorithms that are often mentioned in the literature are
tabu-search, simulated annealing, and genetic local search.

Local search methods also do not guarantee to find an optimal schedule.

. 3.5 Robustness

In real-world, many unpredictable events might occur and disrupt our schedule.
How to reduce the effect that disruption has on a schedule typically depends
on the environment in which the schedule is used. It is often hard to say
what attributes of the schedule indicate that it is robust. M. Pinedo in book
Scheduling [12] proposes that insertion of idle times, avoiding job postponing
and schedule less flexible jobs first.

In some cases, it may be necessary to re-schedule jobs. For example, if any
machines break, jobs that were originally scheduled on that machines need to
be re-scheduled. This leads to a suggestion to make scheduler fast to be able
to properly react events such as machine breakdowns.

13
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Chapter 4

Proposed solution

The proposed algorithm is designed in a way so that it is relatively simple
and fast so that it can be easily applicable in practice and can be potentially
used for frequent rescheduling as a reaction to some random events.

It consists of four different phases.

1. Truck allocation
2. Job dispatching
3. Re-ordering

4. Idle time insertion

The proposed method does not try to utilize stacker cranes optimally.
Finding an optimal schedule requires lots of computational power. Several
MIP formulations have been proposed, and various branch and bound ap-
proaches have been developed for these problems, but still, only problems
with around 50 jobs can be solved in reasonable time [I2]. Furthermore,
because of production handling, the original schedule may be disrupted, and
the value of finding an optimal schedule will be lost.

That being said, in the first phase algorithm optimally distributes trucks
to ramps, so that load on these ramps is equal as possible and thus solves
the problem of truck allocation (Subsection 2.1). In the second phase, how-
ever, heuristic construction is used to get a good schedule by solving item
dispatching problem (Subsection [2.2)) in a relatively short time. The third
phase is used to further improve on assignments, which were made in the
second phase using local search algorithms. In the last phase, we insert idle
times in between completion times ¢; to achieve good robustness to delays
caused by prioritized production handling [12]. In Figure 4.1, we can see the
steps except re-ordering illustrated for better understanding.
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1. Truck allocation 2. Job dispatching 3. Idle time insertion

Figure 4.1: Illustration of all phases except the re-ordering phase of the algo-
rithm.

. 4.1 Score of the schedule

To be able to compare different feasible schedules (See Subsection [2.2), we
introduce a score of a schedule.

We formulate it as a sum of the weighted sub-objectives. The higher the
score is, the better the schedule is.

Score:

score = —aT + fR—~U —-46S «a,08,7,0 >0 (4.1)

Sub-objectives:

1. Maximum tardiness (7)

max (max((¢; — end),0) (4.2)
1=0,...,n

The maximum tardiness represents the time by which the last item that
arrived at the expedition ramp exceeded work hours. Ideally, the value
of maximum tardiness is zero, meaning that the whole expedition fits
into working hours.

2. Sum of idle times (L)

Maximizing the sum of idle times increases the robustness of a schedule
(See [12]). Because one of the requirements is that items of the same type
should be loaded in the given order, an expedited item that is followed
by an item of a different type may benefit more from idle time. That is
why we take weights of idle times into consideration.
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4.2. Truck allocation

3. Constraint duration of truck expedition (U)

B {1 if ¢; — c; > expedition duration of truck (4.4)

0 otherwise

This objective represents penalty for a truck expedition which takes too
much time.

4. Standard deviation of idle times ()

n

(4.5)

The goal of this objective is to keep idle times uniformly distributed.

The score helps us decide which schedule might be better. Having a score
of a schedule is also essential for local search algorithms, which we use in last
phase of the proposed metho (Section 4.5]).

. 4.2 Truck allocation

In this phase, we solve the problem from Subsection |2.1. The goal of this
phase is to distribute trucks among expedition ramps so that workers at
each ramp work almost the same time and do nearly the same amount of
work. This can be achieved by minimizing the makespan. By minimizing the
makespan, we achieve good utilization of machines or in our case expedition
ramps, which leads to a balanced load on expedition ramps [12].

In many factories as well as in the automated warehouse, there are not many
trucks scheduled for a single day (under 50). On top of that, the objective
of this problem, minimizing a makespan, is a very simple objective. This
makes this problem a good example where CP or MIP performs well. Even
for it being a real-world problem, finding the optimal solution for this case is
valuable since stochastic events like "need to reschedule a truck to different
ramp" or "truck needs more or fewer items than it originally demanded" do
not occur very often.

This problem was already formulated as an assignment problem in Subsec-
tion [2.1L This formulation can also be used for the CP problem.

To improve the performance of these methods, we need to select upper
bound of the objective and variables. Upper bound is calculated using LPT
heuristics mentioned in Chapter [3. Going back to the problem formulation in
Subsection 2.1 we can not specify that the domain of the decision variables y;
is {0, . mam(LPT)} The LPT heuristics can also be used as an alternative
to CP or MIP solution for big instances of the problem.

There are no requirements for order at which trucks arrive, but assuming
some trucks may be delayed. We propose ordering at which trucks arrive
at the expedition ramp is determined by priority of a truck. A truck with
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4. Proposed solution

higher priority is scheduled before a truck with lower priority on the same
expedition ramp. If a truck is delayed, it affects trucks scheduled after it,
and it creates a cascading effect, where all trucks behind the first delayed one
are delayed if reserve time between them is not big enough.

The priorities should be specified by a client or assuming that trucks with
more requested items have a higher chance of getting delayed. We order
trucks in increasing order by number of requested items.

B 4.3 Job dispatching

In this phase, we solve the job dispatching problem from Subsection [2.2] and
thus create a feasible schedule. To obtain a feasible schedule, a constructive
heuristic method is proposed. This method assigns values to variables in a way
that after assigning value to every variable, we get a feasible solution without
a need to backtrack. In this phase, we also need to take into consideration
some of the objectives. If machines are not utilized properly by the proposed
method, the duration of the schedule might be greater than the duration of
working hours or the breakdown of a machine could have worse consequences.
Also, items should arrive at different expedition ramps in similar rate to
ensure that truck expedition does not take significantly longer than expected.
We propose heuristic construction Algorithm [1] to solve this problem.

The algorithm starts by putting items from the warehouse and times from
domains C; to an ordered queue items (See Subsubsection 23). Then, the
algorithm selects a ramp and cycles through machines (stacker cranes) in
established order until any machine has an item with the same type as a
request next in order on a ramp. Then it selects the shortest completion
time from domain C; of an unload action of this item, that satisfy constraints
from Subsection [2.2]

B Machine and ramp selection heuristic

This first proposed heuristic deals with machine and ramp selection. The
aim of this heuristic is to get good utilization of machines at any time and
process an expedition in all active ramps at similar speeds. The rule that is
proposed to sort machines based on the time of the last processed unloading
in increasing order and prioritize the first one. Basically, the same rule is
proposed for the selection of an expedition ramp, but it is ordered based on
the time that ramp’s latest loaded item passed a conveyor junction (the time
an item left the warehouse). Ordering by a time an item is loaded is not
suitable, since travel time to different expedition ramps can be different, and
thus it may result in unbalanced loading rates. We will refer to this heuristic
as Latest job last (LJL) heuristic.
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4.4. Re-ordering

Algorithm 1: Job dispatching
Result: A feasible schedule S

1 items < sort items;

2 foreach i in items do

3 C; + sort in increasing order C;

4 end

5 for position < 0 to n do

6 machines < sort machines;

7 ramp < select a ramp;

8 foreach machine in machines do

9 foreach i in items do

10 if m; = machine then

11 foreach time in C; do

12 if S'U {4, time, ramp, position} is feasible then
13 pos; <— position;

14 Add {i, time, ramp} to solution S;
15 items < items \ {i};
16 goto mainLoopEnd,
17 end

18 end

19 end
20 end
21 end
22 [mainLoopEnd]
23 end

B Items ordering

After machine and ramp selection, we must select an item from the machine’s
aisle to be expedited. Then we filter out items with incorrect type and finally
select an item using LPT dispatching rule. The LPT dispatching rule is
used, because in comparison to SPT rule and to Johnson’s rule it minimizes
makespan the best in FFL according to A. Guinet [7] as is already said in
Subsection (3.3l

In Chapter |6| we also test SPT dispatching rule to confirm that LPT rule
is indeed superior.

We will refer to schedules created using the Job dispatching algorithm by
name combination of item ordering and machine/ramp selection heuristic —
for example, SPT-LJL or LPT-cyclic.

B aa Re-ordering

This phase is optional, and its goal is to improve the schedule by re-ordering
items that were ordered using LPT heuristics in the second phase (See
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4. Proposed solution

Subsubsection 23|). The heuristics used in the second phase should create a
good schedule, but it does not guarantee that the utilization of machines is
optimal. This phase tries to bring it closer to the optimum.

The method that is proposed here is a local search algorithm (specific
algorithms are compared in Chapter [6l A move of a local search algorithm
swaps order (See Subsubsection 23) of two items. After positions are swapped,
the job dispatching algorithm must be run again, but items should be now
sorted by their assigned position pos; and not by item ordering proposed in
Subsubsection 23

If we have a feasible schedule, the local search algorithm is a good alternative
to the CP approach, or variants of a branch and bound, which do not perform
well in problems of this scale. The local search ends after a certain amount
of time or has no neighbor to select and returns the best schedule that was
found so far. This implies that step of the algorithm is optional, and in the
worst case, we get the schedule from the second phase.

. 4.5 Idle time insertion

The goal of this phase is to take advantage of the remaining time of working
hours, assuming there is remaining time, spread the expedition throughout
the working hours and as a result create a schedule that is more robust to
delays.

Since order at which items are expedited is one of the requirements (sub-
section |1.1.2), inserting idle times in between loading (or completion times)
is crucial for minimizing number of errors in ordering due to delays caused
by prioritized production handling. It also reduces the chance of a scanner’s
buffer to overflow.

We associate each item with an idle time, which follows the arrival of the
item to an expedition ramp. Other items cannot be scheduled to arrive after
an item ¢ for its duration of idle time 6;.

The method that is proposed in this stage is hill climbing with a limit on
move evaluations (HCLM). HCLM is same as hill climbing local search, but
instead of finding the most valuable move across all moves, it first evaluates
several moves and selects the one that improves the overall score of a schedule
the most. The main benefit HCLM has over hill climbing algorithm or
other some other local search algorithm is that we can set how many moves
are evaluated (HCLM limit) in one step to regulate performance since job
dispatching can be computationally demanding.

To properly use HCLM, we have to specify what moves can this method
use. There are n moves, one for each item. Each move inserts some low
amount of idle time (seconds) after arrival to an expedition ramp of an item.
A move is part of a move list that is sorted in increasing order based on the
size of idle time of an item that is associated with a move. HCLM evaluates
several moves in this order and makes the next step; this continues until there
are no moves that improve the score of the schedule.

In scenarios when there is a lot of time remaining (several hours) until the
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4.5. Idle time insertion

work hours end, idle time distribution may not perform well, because HCLM
would have to make lots of steps to spread out the expedition throughout the
working hours. To combat this performance issue, a special move or moves
are added to the beginning of the move list. These moves insert idle times to
all items at once and thereby avoids unnecessary evaluations after every idle
time insertion.

On the other hand, if there is no remaining time until the end of the work
hours, we can only look at the score and the trade-off between tardiness, T'
and the sum of idle times L and set proper weights for these parameters. If
weights are set properly, we can insert more idle times using HCLM even if it
means that items will be arriving at an expedition ramp after working hours.

N

HCLM LIMIT

evaluation y evaluation evaluation

Y
insert idle time’ insert idle insert idle insert idle insert idle nsert idie
50 to all time 80 to all, ime 20 to al time 1 to tmelto ) = = = = = = = = = time 1 to
item 1 item 2 item n

Construct new » \/

schedule S .

=
3 .

G - .

Figure 4.2: Diagram showing a step of HCLM algorithm.
The basic idea behind HCLM can be seen in Figure 4.2, where the first

three moves are evaluated, and the best one is selected. HCLM then continues
to the next step.
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Chapter 5

Implementation

In this chapter, I will briefly describe the architecture of the simulation tool
to describe then, how is the scheduler implemented and how it is incorporated
into the simulator.

. 5.1 The automated warehouse simulator

The simulator is based on the AgentPolis [2], which is an agent-based platform
for modeling transportation systems with discrete-event simulation core. The
simulator was created for evaluation of different automated warehouse designs
and is currently still in development.

The simulator is driven by an event queue. Every simulation event is added
to the queue and scheduled to be fired at a specific time. A fired event is
then caught by event handlers.

The most relevant event handler for this thesis is the simulator’s dispatcher.
The dispatcher handles events like "an item is produced," "an item is requested
at some expedition ramp" and so on. The dispatcher also creates so-called
stacker crane unload (SCU) activities from entries in an expedition input file
and event and stacker crane store (SCS) activities from events signalizing that
an item is produced. These activities are then scheduled and executed by
stacker cranes. For better understanding, the following subsection describes
the most relevant parts of the simulator in more detail.
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5. Implementation

the automated warehouse simulator - an activity creation and execution flowchart

Item producer Item consumer Dispatcher Stacker crane

Create an unload
activity for every
requested item and add
it to the activity queue.

Parse production
entries

Parsing expedition

Select an activity from
the activity queue

Execute an activity

A 4

entries

A

Create and schedule
item production

An item production
is scheduled

Create a store activity
for an item from
production and add it
to the activity queue

Figure 5.1: Diagram showing the flow of the activity creation and execution

B 5.1.1 Activities

Stacker cranes can pick up or put down an item, and move horizontally or
vertically in an aisle. These actions are in the simulator wrapped into storing
and unloading action.

B Stacker crane store activity

Every SCS activity is associated with a stacker crane, an item to be stored
and storage space to which it is going to be stored.
By executing this activity, a stacker crane carries out these actions.

1. Move to the beginning of the aisle
2. Pick up the item
3. Move to the free position

4. Store the item

B Stacker crane unload activity

Every SCU activity is associated with a stacker crane and an item to be
unloaded.
By executing this activity, a stacker crane carries out these actions.

1. Move to the item to be unloaded
2. Pick up the item
3. Move to the beginning of the aisle

4. Put the item on the conveyor leading to expedition ramps
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5.1. The automated warehouse simulator

B The activity queues

The activity queue stores activities to be executed. There are two activity
queues. The first activity queue stores SCS activities and the second stores
SCU activities. Both SCU and SCS activities are placed into their queues on
creation. The way that activities are taken out and executed from the queue
is shown in Pseudocode (2.

Algorithm 2: Activity execution

1 foreach activity < activityQueueSCS do

2 if activity.stackerCrane is not idle then
3 activity.execute()

4 end

5 end

6 foreach activity + activityQueueSCU do
7 if activity.stackerCrane is not idle then
8 activity.execute()

9 end

10 end

The Activity execution is triggered after activities creation or an activity is
executed (Shown in Figure |5.1)).

B 5.1.2 Production and expedition handling in the simulator

First off, the input of the simulator is config file describing the layout of the
warehouse and stacker cranes parameters, CSV file with item descriptors and
time stamps representing the production schedule and CSV file with an item
type, quantities, and truck id representing an expedition to be scheduled. To
be clear what information is available, see Section [1.1.2]

Knowing what activities are and that we have files specifying production
schedule and expedition demand, we describe how are these activities created
and executed.

Starting with production, the schedule for the production is created at the
beginning of a day in the simulation. Entries from the production input file
are parsed, and PRODUCTION_GENFERATED events put in the event
queue. These events signalize that an item is produced and is on it’s way to
the automated warehouse. The dispatcher handles these events and decides
to what aisle will the produced item be delivered and schedules a new event,
ITEM _ARRIV AL, for the time it arrives at the assigned aisle. When the
dispatcher handles ITEM _ARRIV AL event, it creates SCS activity and
puts it into the activity queue. How are activities executed from the activity
queue is explained in Section [5.1.1L

The expedition handling works similarly, but it also has some major differ-
ences. The expedition input file is also parsed at the beginning of a day in
the simulation. Then one event, TRUCK ARRIV AL, per expedition ramp
is created (if there are more trucks planned for that day than expedition
ramps) and they are scheduled for the beginning of the work hours.

25



5. Implementation

The dispatcher creates SCU activities for each a truck expedition item
request upon catching TRUCK _ARRIV AL event. After every SCU activity
of a truck expedition is finished, another TRUCK_ ARRIV AL event is
triggered for some another planned truck for that day.

Order at which trucks are called or activities are processed is random.

The simulator generates a report at the end, which includes information
about truck expedition durations, time stamps of activities, reached buffer
sizes, average idle times of stacker crane, among others.

. 5.2 Scheduler module

In this section, we will describe integration into the simulator first and then
we describe the implementation of the algorithm itself.

B 5.2.1 The schedule integration

To integrate the scheduler, we need to change how the expedition handling
works; the way activities are executed from activity queues and introduce
new parameters in activities.

Starting with activities, we add a new parameter startTime indicating
what time should this activity be executed. Since activities of activity queues
are executed in random order, we need to change how they work so that we
can execute activities at currentSimulationTime > startTime. Instead of
two separated queues, we introduced a single new priority queue that contains
both SCU and SCS activities sorted in increasing order of their startTime.
SCS activities have their startTime set to zero. How are activities executed
from this queue is shown in Algorithm [3

Algorithm 3: Proposed activity execution

1 foreach activity < priorityQueue do

2 if currentSimulationTime > activity.startTime A
activity.stackerCrane is not idle then

3 activity.execute()

4 end

5 end

Now that we specified the new approach to activity execution, we describe
the new way to SCU activity creation.

The expedition input file is still parsed at the beginning of a day in the
simulation. Instead of scheduling TRUCK__ARRIV AL events, we schedule
the whole expedition using the proposed algorithm. The newly created
schedule is then converted to activities and inserted into the priority queue.
The new flowchart is shown in Figure [5.2]
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5.2. Scheduler module

the automated warehouse simulator - an activity creation and execution flowchart
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to the activity queue

An item production
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Figure 5.2: Diagram showing the flow of the activity creation and execution

The dispatcher creates SCU activities for each a truck expedition item
request upon catching TRUCK _ARRIV AL event. After every SCU activity
of a truck expedition is finished, another TRUCK_ ARRIV AL event is
trigger for some another planned truck for that day.

To be able to evaluate the schedule in the simulation, we create a new
schedule from the execution and completion time of activities at the end of
the simulation. We can then compare this schedule, where some activities
might have been delayed to the one created by the scheduler.

B 5.2.2 Algorithm implementation

The following described the details of the implementation of the algorithm
from Chapter 4l How the schedule is created is proposed in Chapter |4, but
to achieve good maintainability and performance open-source libraries are
used in the first, third and fourth phase of the algorithm. The first phase
was solved using open-source constraint programming library, Choco [13].
Both third and fourth phases were solved using open-source planning engine,
Optaplanner [9], which is used for the local search.

B Truck allocation

As proposed in Section 4.2 truck allocation is solved using Constraint pro-
gramming. Specifically, We use the Choco open-source java library dedicated
to constraint programming [I3]. The library can be used to model the problem
in a declarative way by stating the set of constraints. The library comes
up with many different constraints with state-of-the-art implementations,
offers different search algorithms and strategies, and also provides us with
multi-thread resolution. Because of this, the scheduler can achieve good
performance and allows a developer to tweak or modify the solving process
easily.
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B Re-ordering and Idle time insertion

To use local search in Optaplanner, we need to model the problem by specifying
domains, variables, and the calculation of the score. The score consists of
two long values, one for hard constraints and the other for soft constraints.
Domains, variables, and hard constraint score corresponds to the problem
formulation from Subsection [2.2, where for each violated constraint the hard
score is subtracted by one. The soft score calculation is the same as the score
calculation from Section 4.1 Another thing that is needed is to generate
moves of local searches, as stated in Sections 4.4 and [4.5. Order of moves,
search techniques and parameters for different local searches, like for example
temperature of simulated-annealing, can be all setup in the configuration file
of the Optaplanner’s solver.
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Chapter 6

Evaluation

In this chapter, I will introduce datasets for evaluation, and present compari-
son of different heuristics, local search techniques, and lastly show qualities
of a schedule generated using the proposed algorithm.

Different configurations and input data are used to show examples that
properly represent the results in this chapter. Layout and stacker crane con-
figurations are based on real-world automated warehouse design. Expedition
and production input data are also derived from anonymized real-world data
provided by a client for a project involving the simulator.

. 6.1 Datasets

Overview of some of the input data and configurations can be found in
following subsections. Details of used configurations and overviews of all
input data can be found in Appendix A. For each following section in this
chapter; there are more examples of results in other appendices. Those
appendices are mentioned in corresponding sections.

B 6.1.1 Input expedition files A1-A4

Expedition input files A1, A2, A3, and A4, will be used to compare the
performance of schedule creation. These expeditions files have a similar
number of trucks, requested item types and distribution of these types, but
they differ in number of items to be expedited. Attributes of these input files
are shown in Table 6.1.

attribute/name Al A2 A3 A4
number of requests | 1016 4157 8284 16568

number of trucks 10 10 10 10

number of types 84 101 101 101

Table 6.1: Overview of A1, A2, A3 and A4 input files.
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B 6.1.2 Layouts B1-B4

Layouts B1 to B4 are used for comparison of different heuristics. We compare
heuristics on these different layouts because some of the heuristics perform
differently if there is a single or several expedition ramps. Also if the through-
put of the warehouse is limited by stacker cranes and not scanner, we are
unable to properly approximate optimal makespan. More on that in Section
6.3. We briefly describe layouts B1 to B4 in Table [6.2l

Layout Description

B1 Has three expedition ramps and 48 stacker cranes.
B2 Has only one expedition ramps and 48 stacker cranes.
B3 Has three expedition ramps and 20 stacker cranes.
B4 Has only one expedition ramps and 62 stacker cranes.

Table 6.2: Description of layout configurations.

Detailed layout and stacker crane configurations can be found in Appendix
A.

To make referring to these combination of layouts and input expedition
files easier, we will name these combination inputFileName/layoutName —
for example, A1/B1.

. 6.2 Performance

In this section, we simply show how long does it take to create the schedule
from different expedition input files of different sizes, specifically A1/B1 -
A4/B1. We take a look at phases two, three, and four since the first phase
have an insignificant overall effect on execution time. For phases three and
four, we measure the number of evaluated moves in half a minute (excluding
runtime of phase two). The following Table |6.3| shows the results.

A1/B1 A2/B1  A3/Bl A4/B1
phase 2 371ms 1673ms  4623ms  16820ms

phase 3 moves evaluated | 417 steps 39 steps 12 steps 2 steps

phase 4 moves evaluated | 330 steps 39 steps 10 steps 2 steps

Table 6.3: Performance evaluation of schedule creation.

In Table [6.3, we can see the duration of phases two to four and how much
they change for datasets of different sizes. We can also see that we are not
able to evaluate much re-ordering moves of the phase three in a 30-second
window. We show how valuable applying re-ordering moves might be in
Subsection 4.4l The same is shown for idle time insertion in Section 4.5l
Although, in phase four, we can still distribute a lot of idle times using a
method proposed at the end of the Section [4.5| by move or several different
moves which uniformly distribute idle time to all items in a single move.
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6.3. Heuristics comparison

. 6.3 Heuristics comparison

Schedules are created using different rules and heuristics. For each schedule,
we take a look at their utilization of machines by comparing the makespan
of schedules created by phase two of the algorithm. We can see makespan
comparisons in Figure 0.1
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100 I I I

A3/B1 A3/B2 A3/B3 A3/B4

[=]

LPT-LIL SPT-LIL mrandom M LPT-cyclic W approximation of optimal makespan
Figure 6.1: Makespans of schedules generated using different heuristics.

To be able to tell how well the machines were utilized, we also show
the optimistic lower bound of optimal makespan in Figure To obtain
optimistic lower bound, we assume that throughput of the warehouse is
limited only by a scanner and calculates how long does a scanner need to
scan all items on the expedition ramp that expects the most items. The
calculation of this approximation can be seen in Equation [6.1

max(s - sizeq,...,s - sizer) (6.1)

From results depicted in Figure 6.1, we can tell that selection heuristic can
play a big role in utilization, especially if there are several ramps (Layout
B2). LPT-cyclic heuristic can match LPT-LJL and SPT-LJL if there is
a single ramp. LPT-LJL heuristic results in the best utilization in both
layouts, although in comparison to SPT-LJL, the difference is negligible in
this example.

We can see that for dataset A3/B3 the difference between the makespan
approximation and other heuristic is quite big. For this dataset the number
of available stacker crane is much lower than in other datasets. Because
of that a scanner is no longer the limiter of throughput of the warehouse
and Equation is not suitable for makespan approximation. In average,
the most utilizing heuristic, LPT-LJL, has makespan 17% bigger than the
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makespan approximation excluding datasets with layout B3. For comparison
makespan of SPT-LJL, random and LPT-cyclic heuristics are in average 21%,
108% and 85% higher than makespan approximation respectively.

More examples can be found in Appendix B.

B 6.3.1 Effects of re-ordering and idle time insertion

We will now take a look at the effect of phases three (Section and fourth
(Section of the proposed algorithm. We remind again that in the third
phase, we use local search algorithms to improve the utilization of stacker
cranes further. The fourth phase then inserts idle times between item arrivals
at expedition ramps. It is expected that doing that; we will prevent some
items from arriving at the expedition in the wrong order. Also, by inserting
these idle times, it will make the final schedule more robust to scanner buffer
overflows.

B Re-ordering

We will take a look at the third phase, re-ordering. On top of comparing
schedules created in the second phase to schedules from the third phase, we
will also compare makespan improvements for several different local search
algorithms.

The following Figure [6.2| shows makespans of LPT-LJL schedule, schedules
after re-ordering using tabu, simulated-annealing, and hill climbing search for
a minute.
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Figure 6.2: Comparison of schedule’s makespans before and after applying
re-ordering using different local search algorithms. The figure was generated
from data A1/B1

We can see that for proposed heuristic LPT-LJL re-ordering has no effect
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in this case, it also has minimal impact on SPT-LJL heuristics. The more
significant effect of reordering can be observed in a case, where no heuristics
are applied, and makespan is then significantly reduced. More examples can
be found in Appendix B and they have shown similar results.

Re-ordering is an optional phase of the algorithm and based on the results
it should be only used if there is no requirement on the overall speed of the
algorithm or we get new requirements from a client.

I Idle time insertions

By inserting idle times, we want our schedule to be more robust to unexpected
delays caused by production prioritization. Another than a score, robustness
will be measured by parameters from the simulation report. These parameters
are:

1. max. buffer size - Maximum number of concurrent items at any scanner
buffer at any time during the simulation.

2. buffer usage - Total number of items put in a scanner buffer throughout
simulation.

3. unexpected arrivals - Total number of items that arrived in an unexpected
order. During scheduling, we decide on the order at which items arrive
at an expedition ramp. If an item violates this order, it counts towards
unexpected arrivals.

4. violated type orders - Total number of items that arrived at an expedition
ramp in a wrong order. It is similar to unexpected arrivals, but the
difference is that we count only items that arrived in an unexpected
order and are of a different type than the expected item.

The first column of the following table 6.4 shows the score, makespan, and
other attributes of a schedule generated in the second phase using LPT-LJL
heuristics. The second column shows parameters of that schedule after the
simulation. The third and fourth columns are also showing attributes before
and after the simulation, but the schedule was created using all four phases
of the proposed algorithm.

LPT-LJL | result | final schedule | result

makespan [min] 89 126 720 720
T [s] 0 0 0 0
1. max. buffer size 0 6 0 0
2. buffer usage 0 1117 0 0

3. unexpected arrivals 0 3690 0 137
4. violated type orders 0 307 0 14

Table 6.4: Comparison of schedules before and after idle time insertions. Gener-
ated from A2/B1
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6. Evaluation

First, two columns of the table show that without insertion times the
expected duration of the schedule is several minutes longer than expected,
items arrived at wrong order and scanner buffers have been used quite a
lot too. Comparing this to the third and fourth column, we can see that
the schedule has much bigger makespan, but tardiness is still kept at zero.
Also, there is no difference between the real and the expected makespan in
this example. But parameters that tell us the most about the robustness
are buffer usage and unexpected orders. The exemplary result, Table [6.1],
shows that these parameters were greatly improved, but we also conducted
more experiments with different warehouse layouts, which can be found in
Appendix B. Results of those experiments shown that schedule with no idle
times have on average 215 times more items ending up in a scanner’s buffer
at some point than a schedule with idle times. We also got results that
number of unexpected arrivals are three times lower in schedules with idle
time insertions.

We also compared these results to the results got from schedules generated
using random heuristic and idle time insertion. By comparing these results,
we can tell that schedules using LPT-LJL heuristic have still perform better
and that by applying idle time insertion we do not diminish the effect of
phase two of the algorithm to the point it does not matter. On average
schedules with idle times generated using random heuristic have 52% more
items on unexpected positions and 15% more items ending up in a scanner’s
buffer at some point than a schedule with idle times generated from LPT-LJL
heuristic.
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Chapter 7

Conclusion

In this thesis, we implemented a scheduler suitable for the specific automated
warehouse and its environment. The original problem was split into a truck
allocation problem and the flexible flow line scheduling problem. The first
problem of assigning trucks to ramps was straightforward and was solved using
constraint programming. Constraint programming is seemingly the most
popular method for optimizing NP-hard scheduling problems, but it requires
an excessive amount of computational resources to solve real-world scheduling
problems, where number of jobs is often in thousands. For this reason, we
proposed a heuristic construction algorithm, which can create a feasible
schedule quickly. We improved its utilization of machines by incorporating
dispatching rules and heuristics based on the special cases of the FFL problem.
To further improve the utilization of machines, we introduced local search
methods to swap selected scheduled items and potentially correct heuristics
shortcomings. Lastly, we used local search methods again, to insert idle times
in between item arrivals to expedition ramps.

The proposed method with all of its steps was implemented and integrated
into the simulator, where the scheduler could be properly tested. We used
two open-source constraint programming libraries, Choco and Optaplanner,
to keep the scheduler easily modifiable and maintainable.

Results have shown that proposed heuristic LPT-LJL utilize machines to
117% of the optimal makespan approximation. At that point, improvements
in machine utilization by re-ordering was computationally heavy, and further
improvement was negligible. Other heuristics utilized machines to 121%,
208%, and 185% of the optimal makespan approximation, respectively. The
idle time insertion proved to be very useful in improving the schedule’s
robustness. Schedules with idle times had zero or on average three times
fewer items arrived in a wrong order compared to schedules without idle
times. Also, we have shown that schedules without idle times 43% of items
had to be stored in a scanner’s buffer on average. Only 0.2% of items had
to be stored in a scanner’s buffer on average during the execution of the
generated schedule with inserted idle times.

For future work, the scheduler could be further improved by analyzing the
different objectives of this problem and designing a proper genetic algorithm
that can further improve existing scheduler more efficiently. That can be
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7. Conclusion

further extended to the area of machine learning.
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Appendix A

Overview of used layouts, stacker crane
configuration and expedition input files

B a1 Layouts

attribute Bl | B2 | B3 | B4
expedition ramp count 3 1 3 1
aisle count 48 | 48 | 20 | 62

aisle length [m] 110 | 110 | 110 | 135
aisle height [m] 16 | 16 | 16 | 20
rows 35 | 35 | 35 | 50

columns 135 | 135 | 135 | 135
conveyor speed [m/s] 1 1 1 1

Table A.1: Overview of layouts

B A.2 Stacker crane configuration

Single stacker crane configuration is used in all examples.

attribute SC configuration
max driving speed [m/s] 4
driving acceleration [m?/s] 1.75
vertical speed [m/s] 1

vertical acceleration [m?/s]
loading speed [s]
unloading speed [s]
capacity

= Ot Ot =

Table A.2: Stacker crane configuration
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A. Overview of used layouts, stacker crane configuration and expedition input files

B A3 Expedition input files

attribute/name Al A2 A3 A4
number of requests | 1016 4157 8284 16568

number of trucks 10 10 10 10

number of types 84 101 101 101

Table A.3: Overview of expedition input files.
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Appendix B

Tables of comparisons schedules before
and after idle time insertions

LPT-LJL | result | final schedule | result

makespan [min] 89 126 720 720
T [s] 0 0 0 0

L [s] 0 0 104858 30511

S [s] 0 0 0.2 0.7
1. max. buffer size 0 6 0 0
2. buffer usage 0 1117 0 0

3. unexpected arrivals 0 3690 0 137
4. violated type orders 0 307 0 14

Table B.1: Before and after idle time insertion comparison. Generated from

A2/B1

random | result | final schedule | result
makespan [min] 235 241 720 720
T [s] 0 0 0 0
L [s] 0 0 88151 30153
S [s] 0 0 0.2 0.7
1. max. buffer size 0 4 0 1
2. buffer usage 0 466 0 1
3. unexpected arrivals 0 3209 0 298
4. violated type orders 0 10 0 10

Table B.2: Before and after idle time insertion comparison. Generated from

A2/B1
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B. Tables of comparisons schedules before and after idle time insertions

LPT-LJL | result | final schedule | result

makespan [min] 234 235 720 720
T [s] 0 0 0 0

L [s] 0 0 296590 29429

S [s] 0 0 0.2 0.2
1. max. buffer size 0 21 0 1
2. buffer usage 0 3044 0 11

3. unexpected arrivals 0 3177 0 988
4. violated type orders 0 241 0 49

Table B.3: Before and after idle time insertion comparison. Generated from
A2/B2

random | result | final schedule | result

makespan [min] 388 388 720 720
T [s] 0 0 0 0

L [s] 0 0 23956 28091

S [s] 0 0 0.2 6.7
1. max. buffer size 0 5 0 2
2. buffer usage 0 3044 0 18

3. unexpected arrivals 0 2685 0 1372
4. violated type orders 0 145 0 60

Table B.4: Before and after idle time insertion comparison. Generated from
A2/B2

LPT-LJL | result | final schedule | result

makespan [min] 212 564 720 830

T [s] 0 0 0 110

L [s] 0 0 296590 36651
S [s] 0 0 0.1 13
1. max. buffer size 0 2 0 2
2. buffer usage 0 98 0 22

3. unexpected arrivals 0 3194 0 1642
4. violated type orders 0 190 0 73

Table B.5: Before and after idle time insertion comparison. Generated from
A2/B3
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B. Tables of comparisons schedules before and after idle time insertions

random | result | final schedule | result

makespan [min] 543 889 720 979

T [s] 0 169 0 259

L [s] 0 0 50662 46361
S [s] 0 0.7 15
1. max. buffer size 0 1 0 1
2. buffer usage 0 54 0 15

3. unexpected arrivals 0 2840 0 1879
4. violated type orders 0 165 0 79

Table B.6: Before and after idle time insertion comparison. Generated from
A2/B3

LPT-LJL | result | final schedule | result

makespan [min] 220 220 720 720

T [s] 0 0 0 110

L [s] 0 0 29105 29105
S [s] 0 0 0.1 4
1. max. buffer size 0 10 0 1
2. buffer usage 0 3182 0 7

3. unexpected arrivals 0 2886 0 650
4. violated type orders 0 183 0 26

Table B.7: Before and after idle time insertion comparison. Generated from
A2/B4

random | result | final schedule | result

makespan [min] 336 336 720 720
T [s] 0 0 0 0

L [s] 0 0 27328 29512
S [s] 0 0 0.2 5
1. max. buffer size 0 7 0 1
2. buffer usage 0 1009 0 7

3. unexpected arrivals 0 2134 0 912
4. violated type orders 0 86 0 25

Table B.8: Before and after idle time insertion comparison. Generated from
A2/B4
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Appendix C
CD content

Root directories Content description

sources source codes of expedition scheduler module
data input files and configurations for the simulation tool

Table C.1: Content description of CD
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