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Abstract

The aim of this thesis is to design and

implement a modification of algorithm

PG-HSVI [1] (that was designed to solve

partially observable stochastic games [1]),

that might improve its ability to solve

larger problems. For this we applied an

incremental strategy generation method.

The ISG-PG-HSVI algorithm introduced

in this thesis starts with simplifying the

original game by removing some of the

available actions for one of the players.

Then it solves this simplified variant of

the game and saves the result. After that

it adds some of the actions back and solves

this game, while reusing the results from

the previous iteration. This repeats until

the original game is solved. Furthermore

we designed and implemented a heuristic

with the aim to show, whether it mat-

ters, which actions are added to the game

beforehand. In the end we present the

results of comparing these algorithms in

experiments.

Keywords: game theory, partially

observable stochastic games, strategy

generation, heuristic search value

iteration

Supervisor: Mrg. Branislav Bošanský,

Ph.D.

Abstrakt

Cílem této teze je navrhnout a naimple-

mentovat modifikaci algoritmu PG-HSVI

[1] (který byl navrhnut k řešení částečně

pozorovatelných stochastických her [1]),

která by mohla vylepšit jeho schopnost

řešit větší problémy. K tomu jsme vyu-

žili metody incrementálního generování

strategií. Algoritmus ISG-PG-HSVI před-

stavený v této tezi začíná zjednodušením

původní hry tak, že odstraní některé z do-

stupných akcí pro jednoho z hráčů. Poté

vyřeší tuto zjednodušenou variantu hry a

výsledek uloží. Následně přidá do hry zpět

některé z chybějících akcí a vyřeší tuto

novou hru s využitím uložených výsledků

z přechozí iterace. Toto se opakuje, dokud

není vyřešena celá původní hra. Dále jsme

navrhli a naimplementovali heuristiku s cí-

lem ukázat, zda záleží na tom, které akce

jsou přidány do hry přednostně. Na konci

předkládáme výsledky srovnání těchto al-

goritmů v experimentech.

Klíčová slova: teorie her, částečně

pozorovatelné stochastické hry,

generování strategií, heuristic search

value iteration

Překlad názvu: Generování strategií

pro řešení částečně pozorovatelných

stochastických her

iv



Contents

1 Introduction 1

2 Theory 3

2.1 Partially observable Markov

decision process (POMDP) [2] . . . . . 3

2.1.1 Definition [2] . . . . . . . . . . . . . . . 3

2.1.2 Example - The tiger problem . 4

2.2 Heuristic search value iteration

(HSVI) [2] . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Representation of value function 7

2.2.2 Initialization of the bounds . . . 7

2.2.3 Local updating of lower and

upper bound . . . . . . . . . . . . . . . . . . . 7

2.2.4 Pseudocode [2] . . . . . . . . . . . . . 8

2.2.5 Anytime usage [2] . . . . . . . . . . . 8

2.3 Two-player One-sided Partially

observable stochastic games (POSG)

[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Nash equilibrium in

non-cooperative games [3] . . . . . . . 9

2.3.2 Example of Two-player

One-sided POSG - Simple

pursuit-evasion game . . . . . . . . . . . 10

2.4 Heuristic Search Value Iteration for

One-Sided POSGs (PG-HSVI) [1] . 11

2.4.1 Value Backup Operator [1] . . 11

2.4.2 Value Backup Operator

Computation [1] . . . . . . . . . . . . . . . 12

2.4.3 The algorithm [1] . . . . . . . . . . 12

2.4.4 Pseudocode [1] . . . . . . . . . . . . 14

3 The Domain 15

3.1 Scotland Yard [4] . . . . . . . . . . . . . 15

3.1.1 The goal of the game . . . . . . . 15

3.1.2 Simplification . . . . . . . . . . . . . . 16

3.1.3 Graph . . . . . . . . . . . . . . . . . . . . 16

3.1.4 State . . . . . . . . . . . . . . . . . . . . . 16

3.1.5 Moving around the graph . . . 16

3.2 Generator . . . . . . . . . . . . . . . . . . . 17

3.2.1 The goal of this task . . . . . . . 17

3.2.2 Symmetry of states . . . . . . . . . 18

4 Incremental strategy generation

variant of PG-HSVI

(ISG-PG-HSVI) 19

4.1 The simplification of the game . . 19

4.2 The algorithm . . . . . . . . . . . . . . . . 21

4.3 Pseudocode . . . . . . . . . . . . . . . . . . 21

4.4 Heuristic variant of ISG-PG-HSVI 22

4.5 Pseudocode . . . . . . . . . . . . . . . . . . 23

5 Experiments 25

5.1 Tests details . . . . . . . . . . . . . . . . . 25

5.1.1 The games . . . . . . . . . . . . . . . . 25

5.1.2 The parameters for the

algorithms . . . . . . . . . . . . . . . . . . . . 26

5.2 The Results . . . . . . . . . . . . . . . . . . 26

5.2.1 The fastness of the algorithms 27

5.2.2 The divergence in values of the

games between different subsets of

actions . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.3 Conclusion . . . . . . . . . . . . . . . . 32

6 Conclusion and future work 35

Bibliography 37

A Source code 39

v



Figures

2.1 Value functions of 1-step strategies

[5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Locally updating at b [2] . . . . . . . 8

5.1 ISG-PG-HSVI - game #12 . . . . . 31

5.2 Heuristic ISG-PG-HSVI - game

#12 . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 ISG-PG-HSVI - game #18 . . . . . 33

5.4 Heuristic ISG-PG-HSVI - game

#18 . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.5 ISG-PG-HSVI - game #24 . . . . . 34

5.6 Heuristic ISG-PG-HSVI - game

#24 . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Tables

5.1 Parameters and their values . . . . 26

5.2 The original PG-HSVI on the game

#18 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 ISG-PG-HSVI on the game #18

starting with 30% of actions . . . . . . 28

5.4 HISG-PG-HSVI on the game #18

starting with 30% of actions . . . . . . 28

5.5 ISG-PG-HSVI on the game #18

starting with 60% of actions . . . . . . 28

5.6 HISG-PG-HSVI on the game #18

starting with 60% of actions . . . . . . 28

5.7 The original PG-HSVI on the game

#24 . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.8 ISG-PG-HSVI on the game #24

starting with 30% of actions . . . . . . 29

5.9 HISG-PG-HSVI on the game #24

starting with 30% of actions . . . . . . 29

5.10 ISG-PG-HSVI on the game #24

starting with 60% of actions . . . . . . 30

5.11 HISG-PG-HSVI on the game #24

starting with 60% of actions . . . . . . 30

vi



 



Chapter 1

Introduction

One-sided partially observable stochastic games (POSG) are dynamic

games with infinite horizon [1]. One-sided partial observability means that

only one player has not perfect information, the other one has perfect infor-

mation about the game. Games with infinite horizon are games, in which

players can not expect the game to end after n ∈ N steps, in other words

there is at least one way to play the game so that it never ends. This game

concept can be applied to a well known board game Scotland Yard. In this

game there is a group of police officers (player 1) chasing a thief (player 2)

while having just a little information about his transports.

These problems are studied and solved by game theory. Some people

might think, that game theory is impractical, purely theoretical, but we should

point out that game theory is broadly used in many practical areas. For

example in cyber security, game theory is used for detection and prevention

of intrusion, or to improve security of self-organised networks and cloud

computing [6]. Furthermore biologist found out, that many different animal

species learned benefits of cooperation, and these behaviors can be modeled

by game theory. And there are more fields that utilize findings of game theory

[7].

There is a recently introduced algorithm PG-HSVI [1], that can solve

two-player POSGs, but his scalability is not good enough for solving a game

such as Scotland Yard efficiently. The reason is that there are too many

available actions for players in these games, i.e. the number of possible next

states grows rapidly with each step of the game. For example in Scotland

Yard with a map being a grid 4x5 and with player 1 having 3 police officers,

the average amount of possible actions to play by a player 1 is about 70, and

about 4 playable by player 2. That means that if we are in a certain state of

the game, there are likely (depends on the state) over 3 septillion (3 · 1024)

possible states to be in after ten moves.

But nowadays strategy-generation methods are often used for solving

1



1. Introduction .....................................
games with exponentially large set of strategies, therefore it is interesting

to investigate the possibilities for using this method for one-sided POSGs.

That is the reason why we decided to design and implement a modification of

PG-HSVI based on a incremental strategy generation method. That means

the algorithm takes a game as a problem, solves its very simplified variant,

takes the results and reuses them while solving a bit less simplified variant.

This repeats until it solves the original full game. In our case the simplification

means, that the algorithm gives just a small part of all originally available

actions to the pursuers, and then it gradually increases the current set of

actions.

Also we decided to design and implement a heuristic variant of the

incremental strategy generation variant PG-HSVI. We conceived a heuristic,

that, before running incremental strategy generation PG-HSVI, it runs PG-

HSVI many times on very simplified variants of the game the same way

as described above, but each time generates a different set of actions and

then remembers the best set, which then uses as a start set of actions for

incremental strategy generation PG-HSVI.

In the beginning of this thesis we go through the theory behind these

algorithms, define the concepts. Then we define the Scotland Yard game

as a partially observable stochastic game. The next part is about necessary

implementation of generator of Scotland Yard instances. After this we present

our modification of PG-HSVI and added heuristic. After all designs and

implementations were done, we designed and performed experiments, in which

we compared these two new approaches together with the original PG-HSVI

on a feasible variant of the Scotland Yard game. In the last part of the thesis

we analyze the results.

2



Chapter 2

Theory

In the theoretical part we will look into how the Heuristic search value

iteration algorithm (HSVI) works. HSVI was designed to solve partially

observable Markov decision processes (POMDP), therefore we need to define

them first. Later we will define the partially observable stochastic games

before exploring the variant of HSVI designed to solve them (PG-HSVI). In the

last two parts of theoretical part we present incremental strategy generation

modification of the PG-HSVI and added heuristic to this modification.

2.1 Partially observable Markov decision process

(POMDP) [2]

In this section we define partially observable Markov decision process

and then demonstrate an example of such process. Partially observable

Markov decision process is a generalized Markov decision process (MDP).

The system dynamics are the same as in the MDP, nevertheless the agent

can not observe current state the game is in. Instead the agent must manage

a probability distribution over a set of potential states. The only available

information for the agent are the system dynamics, observations and their

probabilities.

2.1.1 Definition [2]

POMDP is a tuple (S,A, T,R,O,Ω, γ, b0), where S is a finite set of

states, A is a finite set of actions, T is a stochastic transition function

(T : S×A×S → [0, 1]), R is a reward function (R : S×A→ R), O is a finite

set of observations, Ω is a stochastic observation function, γ is a discount

factor (0 ≤ γ < 1) and b0 is an agent’s initial belief. The belief is a discrete

probability distribution over the states. It’s value for each state expresses the

3



2. Theory .......................................
agent’s belief, that the game is in the particular state.

Let st be state at time t, at action at time t, ot observation at time t.

Then

b0(s) = p(s0 = s)

T (s, a, s′) = p(st+1 = s′ | st = s, at = a)

Ω(s, a, o) = p(ot = o | st+1 = s, at = a)

At each time t the agent is in a state st ∈ S and takes an available

action at ∈ A. That causes getting at time t + 1 to a state st+1 ∈ S and

receiving an observation o ∈ O and reward based on T, Ω, R.

The goal of the agent is to maximize his expected future reward
∑

∞

t=0 γ
trt

At time t the agent doesn’t know the state he is in. The agent knows

just an initial belief b0, history of actions he made, and observations he got

during the process. Based on these information, agent can play optimally by

adjusting his strategy at each step of the game based on his current belief.

2.1.2 Example - The tiger problem

In this problem, an agent is in a room with two doors and faces a

decision. Agent must pick either opening left door or right door. Behind

one of this door is located tiger. Agent wants to get out as soon as possible,

but mainly wants to avoid opening the door with the tiger. He has also an

option to listen to tiger’s roaring, which takes time, but can indicate where

the tiger could be. The following assignments show that this problem can be

formulated as a POMDP according to definition.

S = {tiger left = sl, tiger right = sr, end= se}

A = {open left = aol, open right = aor, listen = al}

O = {hearing tiger on the left = ol, hearing tiger on the right = or,

end = oe}

R = {[sl, aor] : +10, [sr, aol] : +10, [sl, aol] : −100, [sr, aor] : −100, [∗, al] :

−1}

T = {[∗, aol/aor] : se, [sl/sr, al] : sl/sr}

Ω = {[sl, al, ol] : 0.85, [sl, al, or] : 0.15, [sr, al, or] : 0.85, [sr, al, ol] :

0.15, [∗, aol/aor, oe] : 1}

There is 85% chance to hear the tiger from the door, where he really

is.

4



.................2.1. Partially observable Markov decision process (POMDP) [2]

γ = 1

b0 = 0.5

The agent does not know, in which state he is. He only has a belief

about that. Belief b0 says, that there is 50% chance, that the tiger is on

the left, and 50% chance, that the tiger is on the right. In this case we can

imagine the belief as a number from interval [0; 1] (since there are n states,

the set of possible beliefs is an object in a dimension n− 1). Let belief b = 0

mean 100% certainty that tiger is on the left, belief b = 1 mean 100% certainty

that tiger is on the right.

It is obvious, that if the agent wants to play optimally, he must react

on the observations he obtains after each action, in other words he must

adjust his belief about in which state he is. At the start of the game his

belief is b = b0 = 0.5. For example he chooses to listen first and he hears

the roaring from the left. Than he his belief after this is b1 = 85%. He can

whenever choose to open any door. If he continues to listen, he is changing

his belief every time he does so based on probability.

Imagine a new game. In each iteration of the game t the agent has

some belief bt about the game. Since we know both stochastic transition and

observation functions, we can calculate the value of each possible action for

any belief bt. Let’s call v(bt, a) the value of action a in belief bt.

v(bt, a0) = 10(1− bt)− 100bt = 10− 110bt

v(bt, a1) = −100(1− bt) + 10bt = −100 + 110bt

v(bt, a2) = −1

From these equations it is clear, that for beliefs b ≤ 0.1 the best

decision is to open the right door and for beliefs b ≥ 0.9 the best decision is

to open the left door. In all the other cases the best choice is to listen. These

value functions of actions (1-step strategies) can be seen in figure 2.1. Now

is there a generally optimal finite sequence of actions including reacting on

observations, that ends the game (strategy)? Example of such strategy could

be: "Listen, then if heard tiger on the left, open the right door, if heard tiger

on the right, open the left door". This particular strategy is 2 step strategy.

To answer the question - no, there is no such strategy. To outline the proof -

for every n-step strategy we can simply find a game, for which the strategy

is not optimal. In that game if the agent got an observation ol, the next

observation he receives is or and vice versa.

5



2. Theory .......................................

Figure 2.1: Value functions of 1-step strategies [5]

2.2 Heuristic search value iteration (HSVI) [2]

Before going through the HSVI algorithm it is necessary to define a

value of a strategy and value of a game.

Definition: Value of a strategy π1 of player 1 is a function Vπ1
, that

assigns an expected reward Vπ1
(b0) of player 1 according to belief, assuming

that after P1 playing according to the strategy π1 and player 2 always playing

a best response.

Lemma: Value of a strategy is always linearly dependant on belief

[1].

Definition: Value of a game G is a function V ∗, that assigns a

maximum value V ∗(b0) of all possible strategies of player 1, i.e. it is a value

of the best strategy of player 1.

PODMPs are often intractable to solve exactly. That caused formation

of algorithms computing approximate solutions for POMDPs [8]. HSVI is one

of them. It combines representation of piece-wise linear convex value function

and heuristic search procedures. HSVI keeps lower and upper bounds (LB

and UB) of the value function V ∗. The essential action, that HSVI does, is

updating bounds of optimal value function at a certain belief. The belief

selection is based on heuristics. The strategy used for exploration is depth-first

search.

Let’s call the LB function V −, the UB function V +. Then V̂ is interval

function:

V̂ (b) = [V −(b), V +(b)]

6



........................2.2. Heuristic search value iteration (HSVI) [2]

2.2.1 Representation of value function

We represent the LB V − by a set of vectors. The value at a belief b

is a b’s maximal projection onto the LB V −. For the representation of UB

V + we use a set of points. The UB V + is a lower convex hull of these points.

So the value at a certain belief b is a projection of this point onto the lower

convex hull. This projection is computed with a linear programming (LP).

In bigger problems with higher dimensionality of the belief space, LP is able

to calculate the projection much more efficiently than computing the hull

explicitly [2].

2.2.2 Initialization of the bounds

HSVI needs some initial bounds. The initialization should take a

imperceptible time next to time of running HSVI.

As an example of initialization of LB, we choose a strategy that always

picks the first available action. We compute the expected rewards and get a

vector that is now the only vector in the set that represents V −.

To initialize the UB, we consider full observability and transform the

problem into a MDP variant, then we solve it. Then we get UB values in the

corners of the belief space. That is the initial set of points representing V +

[9].

2.2.3 Local updating of lower and upper bound

Local updates are based on Bellman equation [2]. The value of taking

action a in belief b is

QV (b, a) =
∑

s

R(s, a)b(s) + γ
∑

o

Pr(o | b, a)V (τ(b, a, o)).

As you can see in the figure 2.2, the lower bound updating is done by

adding a vector to the set V − representing LB. Similarly The upper bound

updating is done by adding a point to the set V + representing UB.

Also common procedure is to remove all the dominated vectors and

points once in a while. Dominated in this context means that the vector or

point has already no effect on the projecting of any belief onto the LB or UB

[3].

7



2. Theory .......................................

Figure 2.2: Locally updating at b [2]

2.2.4 Pseudocode [2]

Algorithm 1: π ←− HSVI(game, ǫ)

initialize lower bound V −

initialize upper bound V +

while V +(b0)− V −(b0) > ǫ do

explore(ǫ, b0, 0)

end

return policy π according to the lower bound

Algorithm 2: explore(ǫ, b, t)

if V +(b)− V −(b) < ǫγ−t then
return

end

select action a and observation o based on heuristics

explore(τ(b, a, o), ǫ, t+ 1)

update local lower and upper bound at belief b

2.2.5 Anytime usage [2]

Sometimes we do not know a reasonable ǫ for the terminating condition.

Sometimes we don’t even want to set the ǫ. But we want to get from the

algorithm the best strategy it can found in a given time. To achieve this we

8



........... 2.3. Two-player One-sided Partially observable stochastic games (POSG) [1]

can modify the HSVI algorithm as follows

Algorithm 3: π ←− AnytimeHSVI(game,maxTime)

initialize lower bound V −

initialize upper bound V +

while runningT ime < maxTime do

explore(η(V +(b0)− V −(b0)), b0, 0)

end

return policy π according to the lower bound

where 0 < η < 1.

Empirically, performance is not very sensitive to η. For example

η = 0.95 is giving good performances (Smith, Simmons 2004).

2.3 Two-player One-sided Partially observable

stochastic games (POSG) [1]

A two-player one-sided partially observable stochastic game G is a

tuple G = [S,A1, A2, O, T,R].

S . . . set of states

A1 . . . set of actions of player 1

A2 . . . set of actions of player 2

O . . . set of observations

The game can have an infinite time horizon. At each time t the game

is in a state s ∈ S. Players pick their actions a1 ∈ A1 (player 1 (P1)) and

a2 ∈ A2 (player 2 (P2)). They pick them concurrently. P1 gets an initial

belief b0, which is a probability distribution over the states S. Only P2 knows,

in which state the game is.

The outcomes of continuing to time t + 1 are based on the picked

actions - the game moves from state s ∈ S to state s′ ∈ S and P1 obtains an

observation o ∈ O with probability Ts,a1,a2
(s′, o). Also P1 receives a reward

r = R(s, a1, a2). Since we presume playing zero-sum game, P2 obtains a

reward −r. Also we presume that discount factor γ < 1 is applied on the

rewards. Players know the history of their played actions.

2.3.1 Nash equilibrium in non-cooperative games [3]

Nash equilibrium is a situation in a game where each player has a

strategy, all players are supposed to know strategies of other players and no

one can benefit by making any change in his own strategy.

9
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Example

Let’s consider a narrow street 1 mile long. There are Alice and Bob

and both of them want to sell hot dogs in the street. Let’s suppose that

people would always buy hot dogs at the stand, that is the closest to their

house. We can imagine the street as a horizontal line. The optimal solution,

with considering how long distances people have to walk to the stands, would

be that Alice would open her stand at 25% of the street (from the left) and

Bob at 75% of the street. In this solution, both of them would serve hot

dogs to half of the street. But Bob is smart and the only thing he cares

about is money, so he moves to the 65% of the street. Now he operates

35 + 65−25

2
% = 55% of the street, meanwhile Alice operates only 45%. Alice

observes this and and moves her stand closer to the center of the street. This

continues and this way they both end up in the middle of the street next

to each other each operating one half of the street and no one can move his

stand and benefit from it. This is situation called Nash equilibrium.

2.3.2 Example of Two-player One-sided POSG - Simple

pursuit-evasion game

In this game first player controls two agents - pursuers, the second

player controls one agent - evader. In each step the agents move around an

undirected graph, which is a grid having 3 rows and 6 columns. The goal

of the pursuers is to catch the evader. When evader is caught, the game

ends. The goal of the evader is to avoid the pursuers as long as possible.

Every fourth step of the game the first player receives an observation about in

which node of the graph the evader is located in the current step. Therefore

states are tuples describing positions of all the three agents. Actions of the

first player are combinations of possible moves of each individual pursuer

according to the graph. Actions of the second player are available moves

of the evader. There are 18 different observations - one for each node in

the graph. Transition function simply takes the current state, the actions of

both players and tells which state the player are going to get to with which

probability and which observation the player one receives, if any. And the

reward functions takes the same arguments and tells what reward the players

get after playing such actions.

10



............ 2.4. Heuristic Search Value Iteration for One-Sided POSGs (PG-HSVI) [1]

2.4 Heuristic Search Value Iteration for

One-Sided POSGs (PG-HSVI) [1]

In this section we explain the PG-HSVI algorithm, which we modified

within this thesis. This algorithm estimates a value of a one-sided partially

observable stochastic game with infinite horizon. The estimate is done by

restricting the horizon of the game and considering value functions of such

games. The algorithm increases the horizon step by step in each of its iteration

by gradual applying of a value backup operator H, which improves the value

of the game estimation. Utilizing the value backup operator means both

players to pick their strategies according to Nash equilibrium supposing that

the previous iteration value function stands for the value of the following

iteration.

2.4.1 Value Backup Operator [1]

To evaluate the value backup operator H in belief b (denoted [HV ](b))

means to solve a phase of a game, in which both players pick their Nash

equilibrium strategies. The rewards in [Hv](b) are dependant on the dis-

counted value of following iteration of the game and on the immediate reward.

The immediate rewards are dependant only on the belief function about the

current state of the game and actions played by both of the players:

Ri
π1,π2

=
∑

s∈S

∑

a1∈A1

∑

a2∈A2

b(s) · π1(a1) · π2(s, a2) ·R(s, a1, a2). (1)

The player 1 knows only the history of his actions and remembers

observations he got during the game. He can benefit from these information

by using them to calculate his belief for the next stage of the game:

ba1,o
π2

(s′) =
1

Pr(o|a1, π2)

∑

s∈S

∑

a2∈A2

Ts,a1,a2
(o, s′) · b(s) · π2(s, a2). (2)

Then value of the following iteration of the game is an expectation

computed over all pairs (a1, o) from the values of a game that starts in a

belief ba1,o
π2

:

Rf
π1,π2

(v) =
∑

a1∈A1

∑

o∈O

π1(a) · Pr(o|a1, π2) · V (ba1,o
π2

). (3)

Given that the value functions are convex, reward from playing a

strategy profile (π1, π2) is convex as well, if strategy π1 is fixed and can be

linear if strategy π2 is fixed. Then the minimax theorem (von Neumann

11



2. Theory .......................................
1928 (PG-HSVI)) is applied and the Nash equilibrium strategy is solved by

minimax/maximin:

[Hv](b) = min
π2

max
π1

(

Ri
π1,π2

+ γ ·Rf
π1,π2

(V )
)

. (4)

2.4.2 Value Backup Operator Computation [1]

Value of a game is piece-wise linear convex function, therefore a set Γ

of α-vectors can represent it. The α vector is an |S|-tuple describing affine

value function vπ1
by defining the values of strategy π1 in every pure belief

(pure belief is a function that assigns 1 to only one state and 0 to all of the

others). At first, the algorithm solves the problem from the context of the

player 2, which picks his strategy π2 with the intention of minimizing the

reward of playing the best response by the player 1.

The value of playing π2 against a1 ∈ A1 equals to immediate reward

plus discounted following reward, and based on that a set of best-response

constraints can be created:

V ≥
∑

s∈S

∑

a2∈A2

b(s) ·π2(s, a2) ·R(s, a1, a2) +γ
∑

o∈O

Pr(o|a1, π2) · v(ba1,o
π2

). (5)

Accepting that value of a game is described by a set Γ of α-vectors

so that value v(b) = maxα∈Γ 〈b, α〉, then it can be reformulated as a set of

inequalities:

V (ba,o
π2

) =
∑

s′∈S

α(s′) · ba,o
π2

(s′); ∀α ∈ Γ. (6)

The term Pr(o|a1, π2) in equations (2) and (5) cancels out, which

results in creating the resulting linear program. This dual linear program is

used to obtain the optimal strategy of the player 1. Equation (5) prescribes

the strategy to play in the first iteration, while the equation (6) corresponds to

the strategy to follow after observing (a, o) in the first iteration. Convergence

of the value backup operator is proved in "Heuristic Search Value Iteration

for One-Sided Partially Observable Stochastic Games (Horak, Bosansky,

Pechoucek 2017)".

2.4.3 The algorithm [1]

Estimation of the value function V is done by using a finite subset

of first player’s strategies. The approximation is done by keeping the lower

and the upper bound in the same form as in the HSVI. The lower bound is

represented by α-vectors so that the approximation is a maximal projection of

12
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belief b onto the set Γ of α-vectors. Each one of the strategies is represented

by one α-vector in Γ. The upper bound is a lower convex hull of points in a

set Υ.

First step of the algorithm is the initialization of the lower and upper

bounds. The lower bound is initialized by a simple strategy (usually a strategy,

that repeats just a single one action). For the upper bound the algorithm

solves an MDP version of the game. In other words it solves the same game,

but it gives a full observability to player 1. Solving the MDP is a quick and

easy way to get a reasonable upper bound of the game’s value function.

Then it calls recursive function explore with belief b, ǫ and step t as

arguments. The function uses the value backup operator to find the optimal

strategy π2 of player 2, that minimizes the maximal utility of player 1. Then

it selects an action a1 of player 1 and an observation o by searching for the

maximal gap in the value function with the aim to reduce it. Then it computes

a next belief ba1,o
π2

after playing those actions and obtaining the observation.

Then, if the gap in this next belief is bigger than ǫ, it calls recursively itself

with the next belief as an argument instead of the current one. It continues

until it gets into a certain belief so the value function’s gap in it is lower than ǫ

or it gets into such a distant step, that is discounted enough to be insignificant.

After getting from the recursion it adds an α-vector corresponding to the

strategy into the set Γ representing the lower bound, and a point into the set

Υ representing the upper bound.

Since the lower bound is a maximal projection of the α-vectors in Γ,

the updating by adding a vector can only result in either reducing a gap

in a particular belief or in making no change, because there is no belief

whose projection onto the α-vector would be maximal. The same logic can

be applied to the upper bound. The initial call of the explore function is

repeated, until the gap in the belief b0 is lower that the desirable ǫ.

13
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2.4.4 Pseudocode [1]

Algorithm 4: v∗ ←− PG-HSVI(〈S,A1, A2, O, T,R〉 , b0, γ, ǫ)

initialize v

while gap(v(b0)) > ǫ do

explore(b0, ǫ, 0)

end

return v

Algorithm 5: explore(b, ǫ, t)

π2 ← optimal strategy of player 2 in [Hv](b)

(a, o)← select according to forward exploration heuristic

if excess(v(ba1,o
π2

), t+ 1) > ǫ then

explore(ba1,o
π2

, ǫ, t+ 1)

end

Γ← Γ ∪ {LΓ(b)}

Υ← Υ ∪ {UΥ(b)}

14



Chapter 3

The Domain

In this part of the thesis we present the domain we chose for testing our

variants of PG-HSVI. As a representative of POSGs we chose the Scotland

Yard board game, because it is relatively famous, easy to understand and it

corresponds with real-world scenarios. Police chasing a thief is a very common

case. Also different instances of the game can be easily created. Furthermore

the agents in the Scotland Yard have many available actions (because there

are multiple units), which is great for testing, whether our contribution helps

with solving games with big branching factor.

3.1 Scotland Yard [4]

Scotland yard in our case is a two-player game. There is player 1 (P1)

having several agents (cops) and player 2 (P2) having just one agent (thief).

In each iteration of the game each player moves his agent(s) along the edges

of the graph. There are three types of transport - taxi, bus and underground.

Cops have a certain amount of tickets for each type of them. The transport

is not limited for the thief. P1 does not know, in which node the thief is,

but after each iteration of the game he obtains an observation, which type of

transport the thief used.

3.1.1 The goal of the game

P1 tries to catch thief by his agents as soon as possible. Catching

thief means that in particular iteration one cop stays in the same node of the

graph as the thief.

P2 tries thief to escape the cops.
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3.1.2 Simplification

However, Scotland Yard game with all of its characteristics and rules

induces a very large set of states and, consequently, large memory requirements.

In a game, where graph is a grid 3x4, P1 has just two agents and both of

them having total of 7 tickets for transport (that means the maximum length

of the game is 7 steps), there are roughly 600.000 states, 15 million transitions

and the file describing this game takes almost 1 GB of space. Therefore we

decided to remove tickets from the game. After this step this game is not

about whether cops can catch the thief, but for how long time is the thief

able to escape them. This way the games are much smaller and we can focus

on larger graphs.

3.1.3 Graph

Graph is a tuple <N, T, B, U>. N is a set of nodes. T, B, U are sets

of edges. T represents a set of taxi edges. B represents a set of bus edges. U

represents a set of underground edges.

3.1.4 State

Variant A of the game (with the tickets)

State is a tuple (A, t, B), where A is a vector of length n (number of

agent of P1) consisting of nodes from N representing positions of agents of

P1. t is a vector of length n consisting of vectors Xi of length 3. Xi represents

number of tickets for each vehicle for agent i. B is a node from N representing

position of the thief. Special states are s1 and s2. State s1 is representing

win of P1 (thief is caught). State s2 is representing win of P2 (cops used

already all of their tickets and can not move anymore).

Variant B of the game (without the tickets)

State is a tuple (A, B), where A is a vector of length n consisting of

nodes from N representing positions of agents of P1, B is a node from N.

Special state is S1 representing win of P1 (thief is caught). The set of all

states is denoted S.

3.1.5 Moving around the graph

Agent of P2 moves in each iteration along one particular edge. P1

receives an observation about which type of transport the thief used.
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Variant A

Move of agent of P1 is possible, if agent has a ticket for particular

vehicle according to the type of the edge. Agent loses this ticket. In each

iteration each agent must move along an edge in graph whenever it is possible.

Also action of P1 is not correct, if after this action there exists a node with

two cops in it.

Variant B

In each iteration each agent must move along an edge in graph whenever

it is possible. Also action of P1 is not correct, if after this action there exists

a node with two cops in it.

3.2 Generator

Before going through this section we need to mention partitions. In

each time t the player 1 can be sure about a subset p of states S, that the

game is definitely in one of the states from p and can not be in any other

state. It is because the player 1 knows the position of his agents, but the term

state includes the position of the thief. Practically in a partition are only the

states, that share positions of police officers, but differs in the position of the

thief. For instance a partition can be a set

p = {(cops : (2, 4), thief : 0), (cops : (2, 4), thief : 1), (cops : (2, 4), thief : 3)}

in a game with 5 nodes and 2 police officers.

3.2.1 The goal of this task

The goal was to design and implement a program (generator), that

satisfies these conditions:..1. Takes as an input text describing parameters of the variant of Scotland

Yard game as described above.

Example of such input:

# number o f nodes

5

# t a x i edges ( und i r ec ted graph )

0 1 , 0 2 , 1 3 , 1 4 , 2 3 , 3 4

# bus edges

17
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0 4

# underground edges

2 4

# number o f agents o f P1 ( cops )

2

# i n i t i a l l o c a t i o n s o f agents ( f i r s t cops )

2 4 1

# discount f a c t o r

0 .9500..2. The program relatively quickly generates input file for implemented

PG-HSVI described above.

The file consists of the following:

. all possible states including information about a partition they

belong to. all playable actions of P1 including information, which partitions

they are playable in. all playable actions of P2 including information, which states they

are playable in. enumeration of transitions

state×p1Action×p2Action→ nextState×observation×probability

. enumeration of rewards

state× p1Action× p2Action→ reward

3.2.2 Symmetry of states

When designing the generator, we removed symmetry from the set of

states. Symmetrical states are for example state(cops : (1, 3, 4), thief : 5),

state(cops : (3, 1, 4), thief : 5) and state(cops : (4, 1, 3), thief : 5) (numbers

represent nodes). In other words, in this game it is irrelevant, which agent

is in which node. Which nodes are at time t occupied by player 1 is the

thing that matters. We decided to keep just states with positions of cops

in ascending order. This way we reduced the sets of states to its
1

n!
(n is a

number of cops), because there are n! permutations for each set of n positions

and we keep only one of them. Therefore the amount of actions, transitions

and rewards was reduced to their
1

n!
, because the for each of the states there

would be different but symmetrical actions, transitions and rewards.
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Chapter 4

Incremental strategy generation variant of

PG-HSVI (ISG-PG-HSVI)

In this section we present the way we designed and implemented the

incremental strategy generation method for PG-HSVI. By default the PG-

HSVI takes a game as defined above, initializes the lower and the upper

bounds and then, by recursive applying of value backup operator, reduces

the gap between them until the gap is small enough. Because of the large

amount of states and actions, the solving of the game by the algorithm can

be relatively slow for bigger graphs. But the ISG-PG-HSVI takes a simplified

version of the game, solves it more quickly and saves reusable data during

computation. After that it takes a little less simplified version of the game and

solves the new game with the help of precomputed data saved from previous

iteration, which may help to solve the game more quickly or precisely. This

cycle repeats until the full game is solved.

4.1 The simplification of the game

The goal of running the PG-HSVI on a simplified game is to get some

results, that could be reusable in the next run on a less simplified game than

the previous one. In this case the lower bound is the reusable result. Let us

explain.

The algorithm takes a game description as an input. With this de-

scription it initializes a generator, which then generates the simplified games.

The simplification lies in giving less available actions to player 1. In terms of

the game, not all combinations of moves around the graph will be allowed for

the police officers.

In fact, from the implementational point of view, even for the simplified

games the generator generates all the possible actions. The giving less actions

to player 1 is done so that the generator chooses and adds actions to the
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subset of all actions of player 1, and then, while generating the input file for

the PG-HSVI algorithm, skips enumeration of all the transitions and rewards

that contain an action of player 1, that is not in the mentioned subset.

The user must specify, how many actions will be available in each

iteration, for instance 4 iterations with 30%, 50%, 70% and 100% of actions

(denoted as portions of actions). The simplified game is then significantly

smaller. For example, since in the input file there is significantly more

transitions and rewards than states (for example in a full game with 18 states

and 3 police officers there are 12.000 states, but over 400.000 transitions

and rewards), decreasing the amount of available actions for player 1 (thus

reducing the amount of transitions and rewards) by 70% reduces the size of

the input file by 69%. In the experiments we test, among others, how large

impact does it have on the performance of the algorithms.

The actions added to the subset are chosen randomly, but the used

set of actions must remain in the next iteration, the generator can only add

more actions into the set. The reason for it is that the lower bound of a game

with less actions of player 1 could exceed the lower bound of a game with

more, but different, actions of player 1. In other words, the less actions could

be by chance the "better" actions than the actions in the larger set, which

would result in a higher value of the smaller game. On the other hand, if the

actions from the previous iteration stay and another actions become available,

the lower bound can only rise. Therefore the next run of PG-HSVI on the

new game can use the set of α-vectors from the previous run as an initial

lower bound and does not have to start with the original initial lower bound,

which was an only one α-vector representing a simple strategy.

The upper bound can not be reused. The value of the simplified

game can be lower than the value of the full game and during the run of the

algorithm the upper bound can get arbitrarily close to the value function.

Reusing the upper bound in a next run of PG-HSVI could result in the value

of the lower bound in any belief being higher that the value of upper bound

in the same belief.

Similar logic can be applied for the reason why we can not make the

game even smaller by giving less actions available to player 2 at the same

time. Doing so could result in the value of the simplified game being higher

than the value of the full game. Then, after giving all the available actions to

player 2, the value of the game might drop and that could result again in the

value of the lower bound in any belief being higher that the value of upper

bound in the same belief.

For the purpose of implementing the incremental strategy generation

method we had to modify the original implementation of the PG-HSVI

algorithm. We added a possibility to save the lower bound to a file in the
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end of the run of the algorithm, and a possibility to load the lower bound

in the beginning of the next run and use it to solve the new game. This

modification is in the following pseudocode denoted PG-HSVI∗.

4.2 The algorithm

In the beginning the ISG-PG-HSVI takes as arguments a game de-

scription g, the portions of actions P , the initial belief b0, the discount factor

γ and the upper bound on the error ǫ. The game description g is a tuple

〈N,Et, Eb, Eu, ψ〉, where N are vertices, Et, Eb, Eu are taxi, bus and under-

ground edges and ψ are the initial position of the agents. The P is an n-tuple

of integers describing in percents how many action will be available for player

1.

Afterwards, the algorithm initializes the generator G with parameters

g and P . Within the initialization the generator prepares for generating the

games as an input files for the PG-HSVI∗. Then the generator generates the

first and the most simplified game. After that the PG-HSVI∗ is run, which

solves the game the same way as the original PG-HSVI, but in the end it

saves the lower bound into a file. Subsequently, a for cycle is run, which

always lets the generator to generate a new game with more actions for player

1 according to P , and then runs the PG-HSVI∗, which loads the saved lower

bound and then saves the one it computed. The cycle continues until the full

game is solved.

4.3 Pseudocode

Algorithm 6: v∗ ← ISG-PG-HSVI(g, P, b0, γ, ǫ)

initialize the generator G with parameters g, P

〈S,A1, A2, O, T,R〉 , b0 ← G.get_next_game()

v∗,Γ← PG-HSVI∗(〈S,A1, A2, O, T,R〉 , b0, γ, ǫ)

for i← 0 to |P | − 1 do

〈S,A1, A2, O, T,R〉 , b0 ← G.get_next_game()

v∗,Γ← PG-HSVI∗(〈S,A1, A2, O, T,R〉 , b0, γ, ǫ,Γ)

end

return v∗
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4.4 Heuristic variant of ISG-PG-HSVI

In this section we present the way we designed and implemented a

heuristic variant of ISG-PG-HSVI. We decided to design a domain independent

heuristic, so it can be applied to other problems as well. The goal of this

task was to show whether there exists a subset of actions of player 1 (small

enough to make the algorithm solve the game considerably faster), for which

the algorithm might give a solid approximation of the value of the game.

This variant of ISG-PG-HSVI has two parts. First, it lets the generator

to generate many different games with the same amount of randomly chosen

actions (the first portion of actions). It is clear that there are actions that

can be more useful than others, for instance, in a game with a graph being

a grid and the police officers standing about in the middle, an action in

which the officers go in the same direction is probably more valuable than an

action, where the officers go in different directions. It musts also remember

the seeds that were used to pick the actions. After generating the games, it

runs PG-HSVI∗ on each of them. Then it goes through the results and finds

the game, where the subset of actions had the best results (the highest value

of a game). Second, it runs ISG-PG-HSVI with exactly the same actions.

This variant takes the same parameters as the ISG-PG-HSVI, but

additionally the user must specify the number n of such generated games

and a time limit t for the running PG-HSVI∗ on them. The time limit is

important because solving the game almost precisely is time consuming and

the potential of the actions is mostly shown within the first iterations anyway.

The ith element of sequence of portions of actions P is denoted Pi.
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4.5 Pseudocode

Algorithm 7: v∗ ← heuristic ISG-PG-HSVI(g, P, b0, γ, ǫ, n, t)

initialize the generator G with parameters g, P

G.generate_games(n, P1)

for i← 1 to n do

v∗

i ← PG-HSVI∗(〈S,A1i
, A2, O, Ti, Ri〉 , b0, γ, ǫ, t)

end

i← argmaxi v
∗

i (b0)

G.set_the_initial_actions(i)

〈S,A1, A2, O, T,R〉 , b0 ← G.get_next_game()

v∗,Γ← PG-HSVI∗(〈S,A1, A2, O, T,R〉 , b0, γ, ǫ)

for i← 0 to |P | − 1 do

〈S,A1, A2, O, T,R〉 , b0 ← G.get_next_game()

v∗,Γ← PG-HSVI∗(〈S,A1, A2, O, T,R〉 , b0, γ, ǫ,Γ)

end

return v∗
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Chapter 5

Experiments

In the last chapter we describe the experimental results. There were

two goals. The first goal was to determine the potential of ISG-PG-HSVI

to solve problems faster that the original PG-HSVI. The second goal was

to determine, whether there are subsets of actions of player 1 that influence

the results significantly in a positive way for the player 1 compared to the

majority of other subsets of actions. The reason for this goal is to find out,

whether there is a potential for attempting to find a way to choose actions of

player 1, that should be added to the game beforehand. That might be an

opportunity for future work. Furthermore, in this section by the term actions

we mean only the actions of player 1.

5.1 Tests details

5.1.1 The games

We designed 3 different games. We aimed to create diverse games with

a goal to analyze the performance on different scenarios to fully understand

the characteristics of the method.

The first game (denoted #12) has a graph that is a grid 3x4, therefore

it has twelve nodes. All the grid edges are taxi edges, but there are three

longer bus edges and one long diagonal edge. Furthermore there are two

police officers.

The second game (denoted #18) is more complex. In the graph that

are three cycles, each formed by 6 nodes, thus the graph has 18 nodes. Two

of the cycles have only bus edges, while the third cycle has only taxi edges.

Those cycles are randomly connected by 5 underground edges. Moreover

there are three police officers.

The third game (denoted #24) has a graph consisting of 4 cycles
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formed by 6 nodes, therefore there are 24 nodes in the graph. Two of the

cycles have only taxi edges, while the other two cycles have only bus edges.

These cycles are connected overall by 8 underground edges. Furthermore

there are three police officers.

5.1.2 The parameters for the algorithms

All of the following parameters were common for both the ISG-PG-

HSVI and the heuristic variant, unless stated otherwise. The were two

different sequences of portions of actions P . The first one was (30, 44, 64, 100)

and the second one was (60, 80, 100). The discount factor γ was always set to

0.95. The time limit was set to 2 hours of pure time for running the HSVI

for all of the games. For the heuristic part the numbers n of the runs of the

PG-HSVI∗ on the smallest variant of the game were 100 and 30 for the first

game, 50 and 30 for the second game and 12 and 8 for the last game. The

first number is always for the run starting with 30% of actions and the second

numbers is always for the run starting with 60% of actions.

Both the ISG-PG-HSVI algorithm and the heuristic variant we run on

each of the games with each of the sequences of portions of actions. We run

the ISG-PG-HSVI several times with randomly chosen actions and present

the average result. Furthermore we run the original PG-HSVI on the same

game for comparison. All the tests were run on a single 2.20 GHz CPU. The

largest tested problems required up to 31 GB of RAM.

Parameter Value

Games #12, #18, #24

P P 1 = (30, 44, 64, 100), P 2 = (60, 80, 100)

γ 0.95

Time limit 2 hours

Processor 1 CPU 2.20 GHz

RAM 64 GB

Table 5.1: Parameters and their values

5.2 The Results

In this section we present the results of the experiments. First we

evaluate the results in terms of the speed of solving the problems. After that

we show and analyze the results from the perspective of differences between

the value functions of the same games with different actions available for

player 1.
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From the results we can say that the percentage of actions, for which

the average value of the game is getting close to the value of the full game,

differs very much between the games. In Figures 5.1 and 5.3 one can see that

in the first game the player 1 needs at least roughly 80% of actions so his

utility on average is less than 10 points lower than the value of the full game,

but in the second game he need only 30% of actions so his utility on average

is in the same distance from the value of the full game.

Further we denote the best found subset of actions by the heuristic

variant of ISG-PG-HSVI containing x% of all available actions by A∗

x.

5.2.1 The fastness of the algorithms

For the comparison of the speed of the algorithms we decided to focus

on how much time the algorithms need for the initialization and how much

time they need to lower the difference between lower and upper bound in

belief b0 below a certain ǫ. In this section we skip the game #12, because

time needed for solving the game is only a few seconds and the results would

not be relevant.

In the following each table represents one configuration of one algo-

rithm, for instance a running the ISG-PG-HSVI algorithm on a game #18

with P = (60, 80, 100). The heuristic variant of ISG-PG-HSVI is in the

following denoted HISG-PG-HSVI. Each column denoted "x%" in the tables

represents a single run of the PG-HSVI algorithm on a game with x% of

actions. The row denoted Start shows how much time does an algorithm

need for the initialization (reading the input file, initialization of all inner

structures, lower bound, upper bound, etc.). The following rows denoted

"Width < x" show how much time does an algorithm need for reducing the

gap between lower and upper bound in belief b0 below x. The unit of the

values is a second. A "-" is written instead of the time, if the algorithm is not

able to reduce the gap enough within the time limit.

The Game #18

The results of running the algorithms on this game can be seen in

tables from 5.2 to 5.6. In the tables we can clearly see that the sizes of

portions of actions have big influence of the time needed for initialization.

For example the time needed for initialization of the ISG-PG-HSVI with 30%

of actions is 178 seconds meanwhile with 100% of actions it is 436 seconds.

Furthermore we can see in the tables, that in this game the ISG-PG-HSVI

needs significantly more time for both the initialization and reducing the

gap below the limit than HISG-PG-HSVI. That means that in this game

the better actions have a positive impact on the time needed for computing.
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Also if we look at the columns denoted 100%, one can see that in three out

of four cases the getting some precomputed lower bound helps to initialize

the algorithms faster. But overall the ISG-PG-HSVI and its heuristic variant

are not faster the the original PG-HSVI, because of the time needed for the

initialization. For example the overall time of the ISG-PG-HSVI with P 1 and

ǫ = 1 is 182+251+320+450 = 1203, which is way more than 535. But in this

game the average value of the game with only 30% of actions is roughly 70.2,

while the value of the full game is 79.330 (Fig. 5.3). Then in this case if we

want only a solid approximation of the value, we can stop the algorithm after

solving the game with one of the smaller subsets of actions and the overall

time needed for this would be significantly reduced. For example solving the

game with 60% of action would take approximately 371 seconds, which is

way less than 535 seconds.

time (s) 100%

Start 519

Width < 1 535

Table 5.2: The original PG-HSVI on the game #18

time (s) 30% 44% 64% 100%

Start 178 229 301 436

Width < 1 182 251 320 450

Table 5.3: ISG-PG-HSVI on the game #18 starting with 30% of actions

time (s) 30% 44% 64% 100%

Start 140 178 268 397

Width < 1 145 182 275 405

Table 5.4: HISG-PG-HSVI on the game #18 starting with 30% of actions

time (s) 60% 80% 100%

Start 339 415 527

Width < 1 371 439 540

Table 5.5: ISG-PG-HSVI on the game #18 starting with 60% of actions

time (s) 60% 80% 100%

Start 252 324 363

Width < 1 261 327 370

Table 5.6: HISG-PG-HSVI on the game #18 starting with 60% of actions
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The Game #24

The results of running the algorithms on this game can be seen in

tables from 5.7 to 5.11. Results say that solving a bigger game causes a

significant increase of the time needed for the initialization. In this case the

algorithms need for a graph having 33% more nodes roughly 10 times more

time for the initialization. Moreover the average values of the games are not

very good approximations of the value of the full game. The value starts to

be relevant in games with 80% of actions, where the average lower bound

value is 60.9, whereas the lower bound value of the full game is 70.3 (Fig.

5.5). But the results from running the heuristic variant show that even value

of a game with 44% is a very good approximation of the lower bound value

of the full game (lower bound values differ by 7 points). That means once a

user has a subset A∗

x of actions, he can run the PG-HSVI on a game with this

subset, which would result in a very good approximation and a short time of

solving. Solving the game with 44% of actions would takes approximately 50

minutes, instead of 87 minutes for the full game.

time (s) 100%

Start 5154

Width < 10 5205

Width < 6 5239

Table 5.7: The original PG-HSVI on the game #24

time (s) 30% 44% 64% 100%

Start 2338 2953 3596 5241

Width < 10 2338 - - 5320

Width < 6 2338 - - -

Table 5.8: ISG-PG-HSVI on the game #24 starting with 30% of actions

time (s) 30% 44% 64% 100%

Start 1732 2533 3602 5636

Width < 10 - 2918 4190 5752

Width < 6 - - - -

Table 5.9: HISG-PG-HSVI on the game #24 starting with 30% of actions
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time (s) 60% 80% 100%

Start 3429 4143 4888

Width < 10 - 4331 4897

Width < 6 - - 4920

Table 5.10: ISG-PG-HSVI on the game #24 starting with 60% of actions

time (s) 60% 80% 100%

Start 3544 4572 5626

Width < 10 3713 4572 5626

Width < 6 3804 4653 5675

Table 5.11: HISG-PG-HSVI on the game #24 starting with 60% of actions

5.2.2 The divergence in values of the games between

different subsets of actions

In this section we analyze the results from the perspective of divergence

of the value functions of the same games with different actions available for

player 1. In the following figures (from 5.1 to 5.6) we demonstrate the lower

and upper bound values in b0 that the algorithms are able to find in a given

time. Each column denoted "s: x, p: y" represents one run of PG-HSVI

algorithm on a game with y% of actions. The columns that have common "x"

were all parts of one run of ISG-PG-HSVI, that started on a game with x%

of actions. The first four columns represent the sequence of actions P 1, the

next three columns represent the sequence of actions P 2 and the last column

represents the value function computed by the original PG-HSVI.

Game #12

In the game #12 the value of the full game is 67.24. In the figures 5.1

and 5.2 we can see, that for the sequence of actions P 1, the average lower

bound value for 64% of actions is roughly 40.8, but the the HISG-PG-HSVI

was able to find a set A∗ of actions, for which the value of the game was 62,

which is a very solid approximation. As one can see in the figures, for all the

portions of actions there are significant differences in the values for different

subsets.

Game #18

In the game #18, as one can see in the figures 5.3 and 5.4, the average

value of the game with only 30% of actions is 70.2, whereas the value of the

full game is 79.3, which is actually a very good approximation for such a
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small subset of actions. That is probably caused by that the graph by its size

and shape provides a big advantage for the police officers and then they are

able to catch the thief quickly even when the possibilities of their movements

are very limited. Because of that the differences between the ISG-PG-HSVI

and its heuristic variant are noticeable, but not significant.

Game #24

In the game #24 the value of the game is between 70.3 and 75.1. In

the figures 5.5 and 5.6 we can see that on average the smaller subsets of

actions are unable to approximate the value of the full game. Only with 80%

of actions the average values are within a 10 point range far from it. But also

the figures say that the value of the game with actions as a superset of A∗

30

containing 44% of all available actions is between 63.4 and 72.9, which is a

solid approximation for such a small subset. Furthermore the values of lower

and upper bounds in b0 of the game with actions A∗

60 are almost identical to

the values of lower and upper bounds of the full game.

Figure 5.1: ISG-PG-HSVI - game #12
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Figure 5.2: Heuristic ISG-PG-HSVI - game #12

5.2.3 Conclusion

Since the differences between the average values of the games and the

values of the games with A∗

x as actions were huge, it is clear that there is a

big potential for a future work, that might aim to find a way to efficiently

pick subsets of actions for which the values of the games would approximate

the values of the full games very precisely. From the perspective of time,

the ISG-PG-HSVI can be hardly faster than the original PG-HSVI, but we

show that there is a significant decrease in the time needed to solve the same

game with less actions. That means finding a way to pick a better subsets of

actions might cause a significant reduce of the time needed to approximate

the value of the game with a solid precision.
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Figure 5.3: ISG-PG-HSVI - game #18

Figure 5.4: Heuristic ISG-PG-HSVI - game #18
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Figure 5.5: ISG-PG-HSVI - game #24

Figure 5.6: Heuristic ISG-PG-HSVI - game #24
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Chapter 6

Conclusion and future work

In the thesis we focus on one-sided partially observable stochastic

games, which represent many real world scenarios. We decided to choose a

Scotland Yard board game as a representative of the POSGs.

There is a PG-HSVI algorithm, that can solve these games, but its

scalability is limited. Therefore we decided to apply a incremental strategy

generation method on the algorithm with the aim to improve the scalability,

so that the algorithm would be able to solve games with more states and

actions using less computation time. That means the new algorithm takes

a game, excludes many actions of player 1 and runs the PG-HSVI. Then it

gradually adds more actions into the game and lets the PG-HSVI to solve it

again. This is repeated until the full game is solved.

We also designed and implemented a heuristic variant of this algorithm.

The goal was to show, whether the chosen actions have a significant impact

on the results.

The heuristic variant of the ISG-PG-HSVI runs the PG-HSVI many

times on the game with a small subset of actions, then examines the results

and runs the ISG-PG-HSVI on a game starting with the best set of actions

found.

Finally, we performed experiments to compare the computation times

of the introduced algorithms with the original PG-HSVI and to test the

importance of the approach to choosing the actions. From the results we can

say, that overall the ISG-PG-HSVI is not faster than the original algorithm,

because the time needed for the initialization of the algorithm is considerable.

But also the results demonstrate, that a single run of PG-HSVI on the same

game with less action needs much less time for the whole process of computing.

Furthermore the results show, that the values of the games with

different subsets of actions of player 1 of the same size differ vastly, for

instance in one of the games there exists a subset containing only 30% of
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6. Conclusion and future work ..............................
all actions using which the heuristic variant of the ISG-PG-HSVI is able to

approximate the value of the game very accurately saving 73% of the time

compared to the original PG-HSVI. It means that there is a big potential for

future work, which might try to design a strategy for choosing the actions

added to the set of actions during the run of ISG-PG-HSVI. Together with

the fact, that smaller games can be solved considerably faster, it might result

in developing an algorithm, that would be able to approximate values of

bigger games (in terms of number of states and actions) very precisely.
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Appendix A

Source code

In this appendix we declare, which source code is created by us, which

is modified by us and which is borrowed. In the project on the CD there are

two folders - generator and onesided-posgs. Furthermore there are two more

files - a brief readme.txt file describing how to run the introduced algorithms,

and this thesis in a pdf format.

All the source code and documents in generator folder is created by us.

This folder contains implementation of the generator, but also the introduced

algorithms and scripts designed to run them and descriptions of several graphs

for the generator.

The source code in the onesided-posgs folder is borrowed, but there

are modifications done by us. In a file main.cpp we added some argument

options and did some other minor changes. The biggest changes we made in

files hsvi.cpp and hsvi.h as we implemented there several functions designed

to save and load lower or upper bound of the value function, print results,

etc. But all the necessary functions for running the original PG-HSVI were

already implemented.

39

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

