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Abstract

This thesis describes playing chess with
KUKA robot using linguistic instructions.
First, the individual technologies used for
this project are described including the
robotic arm, voice recognition software
and object detection framework. Sec-
ond, the whole setup assembled for this
purpose and the communication between
its components is explored. Third, an
overview of the integrated chess logic is
provided. Finally, the whole architecture
is tested and evaluated.

Keywords: chess-playing, KUKA,
robot, voice control, ArUco, object
detection, ROS

Supervisor: Mgr. Karla ät�pánová,
Ph.D., Mgr. Gabriela äejnová

Abstrakt

Tato práce popisuje hraní öach� s KUKA
robotem pomocí jazykov˝ch instrukcí.
Nejprve jsou popsány jednotlivé technolo-
gie pouûité pro tento projekt, v�etn� ro-
botické ruky, softwaru pro rozpoznávání
hlasu a systému pro detekci objekt�. Dále
je zkoumán systém vznikl˝ pro uskute�-
n�ní tohoto projektu a komunika�ní roz-
hraní jeho komponent. Poté je poskytnut
p�ehled integrované öachové logiky. Na-
konec je celá architektura otestována a
ohodnocena.

Klí�ová slova: hra öach�, KUKA,
robot, hlasové ovládání, ArUco, detekce
objekt�, ROS

P�eklad názvu: Hra öach� s KUKA
robotem pomocí jazykov˝ch instrukcí
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Chapter 1

Introduction

As the modern technology keeps advancing and robots’ range of capabilities
expands, the idea of a robotic companion cooperating with humans outside
of industrial environment seems more and more plausible. In contrast with
contemporary robots, the robotic butlers, teachers or companions for the
elderly of the future need to interact naturally with people - i.e. gesture,
posture or language control. Even untrained personnel have to be able to
operate the robot. The quality of this interaction is a major factor influencing
how well the robotic system will be accepted, because humans are very
sensitive to communication delays, low responsiveness and unpredictable
behaviour. The robot should therefore not only listen to commands, but
respond seamlessly with its understanding of the task at hand.

One of the ways robots could find a place in a common household is by
playing games with the humans. For those applications, robots have to
react to human behaviour, perceive its surroundings, mainly the objects
involved within the game and finally understand the game itself. This
requires integration of various technologies like camera image processing,
speech recognition and robot hardware capable of fine motoric movements.

Such consumer games currently available use mostly hard-coded object
locations and show only a minimal amount of flexibility. Voice control is not
nearly as common as it should be by now.

For this thesis, our game of choice is chess. It has clear rules, observable
game state and the moves can be executed by a robot. These features make
it a well-suited target application for this thesis.

Goal of this thesis

This thesis aims to create and describe a framework for communicating with
KUKA robot for the specific purpose of playing chess. Design of the game
and all the technologies used in the process are also in the scope of this thesis.
Despite a big portion of the code being task specific, some functions and
concepts can be reused for other similar applications. That is mainly pick
and place tasks with object detection. The same approach can be also applied
to a voice control of an industrial robot, i.e. teleoperation.

The main goal here is to integrate visual input with natural language
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1. Introduction .....................................

processing and use both of them to control a robotic arm. The visual
information helps to create abstract representation of the real world setup -
the position of chess pieces in this case - while high level linguistic commands
tell the robot which chess move to perform.

Aside from this, I aspire to create an interactive game to play with the
robot such that it can show o� robot’s accurate motion capability, a way to
perform object detection and speech recognition all while entertaining the
human player as well.

Contribution

The main contributions of this thesis are:

. assembling an experimental setup for chess-playing including the design
and manufacturing of chess pieces,

. creation of a framework for robot-human interaction - integration of
visual and linguistic input with robot control,

. creation of basic chess logic - move validity check, resolution of ambigui-
ties, etc,

. voice or textual communication interface,

. evaluation of the whole system.

2



Chapter 2

Related work

There have been many successful attempts to realize human - robot chess
playing. For example Raspberry Turk by J. Meyer [Mey17] is an open
source chess-playing robot. According to its website, it was named after
the Mechanical Turk, which was a machine constructed in the late 18th
century and had become famous for being able to play chess against a human
opponent and beat them most of the time. [Fou19] The main principle of this
machine turned out to be an advanced neural network: a skilled chess player
was hidden inside. On the other hand, Raspberry Turk is run on Raspberry
Pi, written mostly in Python. The robotic arm has two rotational and one
linear joints, while the end-e�ector is an electromagnet. Special 3D-printed
chess pieces are used for this application. Camera above the chessboard helps
to determine the position of the chess pieces, or more accurately the change
from the previous state. Assuming only one piece was moved, only a "simple"
algorithm needs to be implemented to determine, whether a particular chess
field has a piece on it and what color it is. The main hiccup here is dealing
with the situation of a promotion of a pawn to another chess piece and
recognizing what piece it is (queen is not always the best option). For this
task the author uses convolutional neural networks.

Another interesting approach to this task is project by Convens, et al
[BCW17], where the authors created a chess-playing robot using two linear
actuators underneath the chessboard providing two degrees of freedom. The
pieces were moved by an electromagnet attracted to neodymium permanent
magnets at the bottom of the pieces. An optical character recognition (OCR)
algorithm, Tesseract more specifically, was run on the camera input data to
detect position of individual pieces inside chessboard fields. An open source
chess playing software Stockfish provided artificial intelligence behind the
logic of the robot moves.

Al-Saedi and Mohammed [ASHM15] utilized Lab-Volt 5150 robotic arm
for playing chess. In the paper, the manipulator is described in great detail
including forward and inverse kinematics. Chess pieces are detected here
using a custom built smart chessboard consisting of 2D array of reed switches
that are normally open, but close upon applying magnetic field provided by
a ring magnet installed at the bottom of all pieces. With this setup, it is
possible to detect only whether there is a piece or not on a particular field.

3



2. Related work.....................................

Similarly to [Mey17], only changes from the last configuration are tracked
throughout the game.

B. Yeh, A. Trakowski, D. P. Martin and J. Flohr [BYF13] built a voice
controlled chess playing robot - a 3 DOF cartesian construction with servo
motors controlling the axes and built-in encoders in two of them. The z
position was determined by a sensor measuring distance from the chessboard.
The gripper was a mechanical claw. The pieces were moved by the robot
exclusively, so no object detection was needed given correct initial position.
The "chess_at_nite" engine performed all game logic including move val-
idation resolution, check/mate detection and even provided an automatic
chess playing algorithm. As for the voice control, EasyVR module was used.
The commands were provided in the "source field" - "target field" form to
avoid ambiguities. The VR system also needed to be trained on every user
for each utilized word. For better results, Navy phonetic alphabet replaced
the classical one - e.g. "Bravo 4 to Alpha 3".

N. U. Alka, A. A. Salihu, Y. S. Haruna and I. A. Dalyop [NUAD17] created
voice controlled vehicle with a robotic arm for pick and place applications.
For reception and processing of the language commands, AMR Voice and
Google Voice Search are used. The final commands are send over Bluetooth
to ATMEGA328P microcontroller, which is a part of the vehicle and drives
the motors.

In paper by G. Bohouta and V. Këpuska [BK17], di�erent software for
speech recognition is compared, Microsoft API, Google API and Sphinx-4,
more specifically. Google API is in the end considered to be the best option –
it had the lowest WER (word error rate).

4



Chapter 3

Materials and Methods

Experimental setup

Main components of this project are LBR KUKA iiwa 7 robotic arm, Intel
RealSense camera, a PC running Linux with microphone and a custom
built set for playing chess. The pieces are picked up by an electromagnet
mounted on the robot end-e�ector. The pivotal software used to integrate
all of the above into one project is Robot Operating System (ROS). ROS
real_sense2_camera[Dor19] package provides basic RealSense camera data
extraction, tuw_marker_detection[Bad18a] package detects ArUco markers
from the camera data, language_ctrl[äe18] is used for speech recognition
and finally capek_testbed [VP18] controls the robotic arm. Outside ROS
packages, OpenCV handles camera calibration and Eigen library performs
matrix operations for the purpose of spatial transformations. Lastly, RViz is
a convenient ROS-integrated simulator with many visualization options e.g.
markers and marker arrays included in this project. All of these components
will be described in a greater detail within this chapter.

Figure 3.1: Experimental setup
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3. Materials and Methods ................................

Chess pieces

The final iteration of chess pieces used for this game are wooden blocks with
dimensions 41x41x20 mm. A steel plate 30x30x0.75 mm was glued to one
of the bases. On top of it, an ArUco marker printed on self-adhesive paper
was sticked. On a side of each piece, its respective type was sticked as well.
A photo of a black pawn is in Figure 3.2, while the whole collection on the
chessboard is depicted in Figure 3.3.

Figure 3.2: A black pawn with and without ArUco marker on top.

Figure 3.3: The whole chess set.
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.......................................... ROS

ROS

ROS is an open source framework for developing robotic applications as it
contains many useful libraries and tools for integrating various technologies,
visualization and debugging. There is an abstraction layer added for the
purpose of communication between di�erent parts of the running program
on one machine or multiple machines via a network. Thanks to this, ROS
behaves like a distributed system even when run on a single PC.

The ROS environment comprises of ROS packages containing ROS nodes -
executable programs written mainly in C++ or Python (but Java, MATLAB
or Lisp are supported as well). A central node called ROS Master is needed
running at all times as it is used to initiate communication between any other
nodes, keeps track of node addresses and provides parameter server. The
initialization process of a topic subscriber and publisher is depicted in Figure
3.4. Once initialized, nodes communicate directly, i.e. point-to-point model
is used.

Figure 3.4: Initialization of communication via a ROS topic. 1.1.1. Registration with
the Master, 2.2.2. Master sends contact information for publisher to the subscriber,
3.3.3. subscriber contacts the publisher directly with its contact information, 4.4.4.
publisher sends data to subscriber, drawn using https://www.draw.io/.

ROS topics are asynchronous, uniquely named, communication channels
designed for connecting multiple nodes. Each topic supports only a partic-
ular type of ROS message. This type can be a concatenation of simpler
types. ROS std_msgs package contains some basic message types including
Bool, Char, Int8, Float32, etc. Some of the more advanced types needed
for this project include geometry_msgs/Pose, visualization_msgs/Marker
and marker_msgs/MarkerDetection. Their definitions are provided below.

7



3. Materials and Methods ................................

Listing 3.1: geometry_msgs/Pose [Foo18]
geometry_msgs/Point position
geometry_msgs/Quaternion orientation

Listing 3.2: visualization_msgs/Marker [Fau18]
uint8 ARROW=0
uint8 CUBE=1
uint8 SPHERE=2
uint8 CYLINDER=3
uint8 LINE_STRIP=4
uint8 LINE_LIST=5
uint8 CUBE_LIST=6
uint8 SPHERE_LIST=7
uint8 POINTS=8
uint8 TEXT_VIEW_FACING=9
uint8 MESH_RESOURCE=10
uint8 TRIANGLE_LIST=11
uint8 ADD=0
uint8 MODIFY=0
uint8 DELETE=2
uint8 DELETEALL=3
std_msgs/Header header
string ns
int32 id
int32 type
int32 action
geometry_msgs/Pose pose
geometry_msgs/Vector3 scale
std_msgs/ColorRGBA color
duration lifetime
bool frame_locked
geometry_msgs/Point[] points
std_msgs/ColorRGBA[] colors
string text
string mesh_resource
bool mesh_use_embedded_materials

Listing 3.3: marker_msgs/MarkerDetection [Bad18b]
std_msgs/Header header
float32 distance_min
float32 distance_max
float32 distance_max_id
geometry_msgs/Quaternion view_direction
float32 fov_horizontal
float32 fov_vertical
string type

8



.......................................Eigen library

marker_msgs/Marker[] markers

Another way to communicate within the ROS infrastructure is using ROS
services. In contrast with topics, they perform synchronous remote procedure
calls and are therefore based on the request - response (or client - server)
model. In this project, a service call turns the robot mounted electromagnet
on and o�. [äk17] [AB16]

Eigen library

Eigen library is an open source cross-platform high-level C++ library, that
contains functions useful for linear algebra like matrix and vector operations
and geometrical transformations. Numerical solvers are included as well. The
basis of its functionality are C++ expression templates. C++ templates are a
metaprogramming technique for creating generic data types and subsequently
functions, whose input arguments and return value can be di�erent data
types according to the particular function call. Generic types are specified
by the compiler. The following code creates a generic function for adding
numbers (the compiler substitutes int types in this case):

Listing 3.4: Templates usage example
using namespace std;

template <class T>

T add(T a, T b)
{

return a+b
}

int main()
{

int x = 1, y = 2, z;
z = add(x, y);

}

Furthermore, expression templates are used to create structures representing
computations built at compile time. The goal here is to make the evaluation
of an expression as e�cient as possible, for example loop fusion is achieved
by this method. When presented with a task such as summing vectors:

zzz = uuu + vvv + www + xxx, (3.1)

instead of summing tmp1tmp1tmp1 = uuu + vvv first, then tmp2tmp2tmp2 = tmp1tmp1tmp1 + www and finally
zzz = tmp2tmp2tmp2 + xxx, this approach allows for restructuring the source code by the
compiler such that this summation is performed in one loop instead of three
with no need to use extra memory (tmp1tmp1tmp1 and tmp2tmp2tmp2 in this case).

9



3. Materials and Methods ................................

The Eigen library supports every type of common matrix and vector
operation including block operations, broadcasting (replicating a vector in
one direction to represent a matrix), reshaping and slicing. Various matrix
decompositions are implemented here as well, e.g. LU, QR, SVD, eigende-
composition and much more. With these, systems of linear equations can be
solved or approximated by the least square method when the solution doesn’t
exist. Finally, spatial and planar transformations can be computed with Eigen
- 2D and 3D rotations, translations and scaling. Rotation matrix, quaternions,
angle-axis and Euler angles are supported rotation representations.

The Eigen library was used in the C++ part of this project primarily for
convenient creation (the << operator) and multiplication of rotation and
transformation matricies, as well as functions for conversion between rotation
matrix and quaternion rotation representation. [GJ+10][Vel94]

Camera calibration using OpenCV

For camera calibration, the OpenCV library was used. OpenCV is an open
source library with focus on computer vision and machine learning. According
to its website, OpenCV has more than 2500 optimized algorithms that can
be used to "detect and recognize faces, identify objects, classify human
actions in videos, track camera movements, track moving objects, extract
3D models of objects, produce 3D point clouds from stereo cameras, stitch
images together to produce a high resolution image of an entire scene, find
similar images from an image database, remove red eyes from images taken
using flash, follow eye movements, recognize scenery and establish markers to
overlay it with augmented reality, etc" (https://opencv.org/about/, April
2019)[Its14][Its15].

The extrinsic parameters (position and orientation in world coordinate
frame) of Intel Realsense camera capturing the scene for this project have
been calibrated using two di�erent methods that both operate on OpenCV
basis - robotic arm ArUco marker calibration and chessboard calibration.

During the first method, an ArUco marker was placed at the robot end-
e�ector and was detected by the camera in multiple poses of the robotic arm.
By this procedure, corresponding pairs of points were obtained - robot end-
e�ector poses on the one hand and ArUco marker poses in camera coordinate
system on the other hand.

The second method involved only a chessboard with known dimensions and
position in the world coordinate system. chessboard_camera_calibration
node in robot_chess_player package performs this calibration. This node
listens to "camera/color/image_raw" topic (Realsense camera publishes
image data here), then uses the cv_bridge ROS package to convert im-
ages from ROS to OpenCV format. On each frame (after grayscaling)
cv2.findChessboardCorners function is called. This function returns locations
of chessboard corners (who would have guessed) on that frame. For more
precise corner positions, cv2.cornerSubPix is called on the obtained corners.

Having enough 3D - 2D point correspondences (49 in our case), camera

10
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............................. Camera calibration using OpenCV

extrinsic parameters can be calculated by cv2.solvePnP function. OpenCV
implements this function (and many more for that matter) assuming pinhole
camera model. This model transforms points from the world coordinates to
camera image plane like so:

⁄xxx = ⁄
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WU
u
v
1

T

XV =

S
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fx 0 cx

0 fy cy

0 0 1
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where KKK is a matrix of intrinsic parameters, fx and fy are focal lengths
expressed in pixel units and (cx, cy) is a principal point usually at the center
of the image. This matrix can be further decomposed to

KKK =

S

WU
sx 0 cx

0 sy cy

0 0 1

T

XV

S

WU
f 0 0
0 f 0
0 0 1

T

XV , (3.3)

where f is the lense focal length (basically the distance from the lense at which
the image plane should be placed) and sx and sy are sizes of the individual
image elements in pixels/milimeter in that particular direction. This matrix
can be also determined by calibration, but in our case was provided by the
manufacturer of the camera.

The goal of this calibration was to obtain the matrix of extrinsic parameters
[RRR ttt], so by looking at 3.2, this can be achieved with at least 5 correspon-
dences of points in the world coordinates XwXwXw with their pixel coordinates
xxx, as there are 13 variables (all the [RRR ttt] matrix elements and ⁄) and 3
equations are provided with each correspondence. The Figure 3.5 taken from
the OpenCV Camera Calibration and 3D Reconstruction documentation
illustrates this model’s basic concept. Usage of the first camera calibration
method resulted in rather inaccurate outcome - the error between the position
of the detected and the real chess pieces was up to two chess fields. This was
the initial motivation for the second method. Here, pieces on the left down
corner of the chessboard (from the perspective of the human player) were
placed correctly, but the further right and up a piece was placed, the worse
the error got. To correct this last discrepancy, a chess piece (with an ArUco
marker) was placed to each chess field with known world coordinates and the
position it actually detected and calculated was saved to a file. This way, a
dataset of corresponding points was collected. The next task was to create a
function, that takes in the mostly incorrect calculated positions of the chess
pieces and returns correct ones. Because of the nature of the problem, the
functions were expected to be a�ne:

xcorr = f(xdet, ydet) = axdet + bydet + c

ycorr = g(xdet, ydet) = dxdet + eydet + f
, (3.4)

where (xdet, ydet) are the detected positions and (xcorr, ycorr) are the corrected
positions. The coe�cients a, b, c, d, e and f had to be found. Most likely, for
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Figure 3.5: Pinhole camera model, from [ope19].

all measured data points there will be no exact solution, but rather di�erence
between the function outcome and the correct points must be minimized,
therefore this is a linear regression problem. Formally, we are looking for:

min
xxx=(a,b,c)

||Axxx ≠ bbb|| = min
xxx=(a,b,c)

.........

S

WWWU

xdet1 ydet1 1
xdet2 ydet2 1
. . . . . . . . .

xdetn ydetn 1

T

XXXV

S

WU
a
b
c

T

XV ≠

S

WWWU

xcorr1
xcorr2

. . .
xcorrn

T

XXXV

.........

, (3.5)

where (xdeti, ydeti), i = 1, . . . , n are the measured data points and xcorri are
the correct values we are trying to approximate. For this least square problem,
a closed form solution exists:

xxx = (AT A)≠1ATbbb. (3.6)

Similar way, the d, e and f coe�cients were found.
After applying this correction, the accuracy of virtual chess piece placement

improved to a satisfactory level.

ArUco markers and tuw_marker_detection package

ArUco markers are square-shaped markers consisting of a black border and
black and white array of squares inside it representing a binary information.
An ID is assigned to each marker according to its index in the particular marker
dictionary (dictionary being a set of markers grouped together usually with
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.....................ArUco markers and tuw_marker_detection package

Figure 3.6: Examples of markers, from [mar15].

the same size). The tuw_aruco node inside tuw_marker_detection package
is a ROS wrapper around the augmented reality ArUco library developed by
Rafael Muñoz and Sergio Garrido [RRMSMC18] [GJMSMCMC15].

The detection of ArUco markers is internally a two steps process. First,
marker candidates are found on the image. This is achieved by adaptive thresh-
olding followed by contour extraction. Only the convex and approximately
square-like contours then advance further. Second, the internal structure of
these candidates is examined to confirm they, in fact, are ArUco markers.
After applying perspective transformation to get the markers into canonical
form, the Otsu’s method [Mor00] for thresholding is used to distinguish black
and white bits of the marker. This image is subsequently divided into an
array according to expected marker size. In each cell, the number of white
pixels is compared to the number of black pixel to determine, whether it is
a white or a black bit. Finally, the detection is considered successful, if the
inner bit pattern is contained in the dictionary used. [mar15]

Similarly to chessboard calibration in the previous section, by obtaining
correspondences between 3D points in the reference frame of a particular
marker and 2D points on camera plane, marker pose with respect to camera
can be estimated. Each marker has its own coordinate system attached to its
center with the z-axis pointing up.

For the purpose of this project, multiple markers must be tracked at once (32
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Figure 3.7: ArUco markers with drawn coordinate frames with respect to
camera.

to be specific, one for each chess piece). To achieve this,
demo_aruco_markermap.launch launch file of tuw_marker_pose_estimation
package is used and modified a little to perform the detection on Intel Re-
alSense camera data instead of the default camera (usually a webcam). This
new launch file has been added to tuw_marker_pose_estimation package.
[Bad18a] The steps necessary to turn the marker detection on are as follows:..1. Connect the RealSense camera via USB port, make sure the port is

enabled if working on a virtual machine...2. Turn the RealSense camera on through ROS:

$ roslaunch realsense2_camera rs_camera.launch

..3. In a seperate terminal run the new launch file:

$ roslaunch tuw_marker_pose_estimation
demo_aruco_markermap_realsense.launch

ArUco markers with ids 0-31 from the Original ArUco dictionary were used
with 3.8x3.8 cm dimensions. To be detected, they each need to have a white
padding - 0.15 cm on every side in this case.
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Language control

The software used for language in this project was Python SpeechRecognition
library. It supports a wide range of engines like CMUSphinx (o�ine), Google
Speech Recognition, Microsoft Bing Voice Recognition or IBM Speech to
Text. Example of usage for Google Speech Speech Recognition (utilized by
language_ctrl package) is given here:

Listing 3.5: Google Speech Recognition example
import speech_recognition as sr

rec = sr.Recognizer()

with sr.Microphone() as source:
print("Speak:")
rec.adjust_for_ambient_noise(source)
audio = rec.listen(source)

try:
recognized = rec.recognize_google(audio, language="en-UK")

except sr.UnknownValueError:
print("The audio was not understood.")

except sr.RequestError as e:
print("Results could not be requested
from service; {0}".format(e))

The components of a conventional automatic speech recognition (ASR)
system and their connection is depicted in Figure 3.8.

In a nutshell, physical sound wave is transformed to an electrical signal by
the microphone and then is discretized and quantized by the AD converter.
The Acoustic analysis block in Figure 3.8 slices the received digital signal
into 10 ms - 25 ms chunks known as speech frames. The idea behind this
is, that speech viewed on a short timescale like this can be approximated as
a stationary process, i.e. process whose statistical properties do not change
over time. The signal is then used to extract acoustic features - these are
vectors of real numbers that are meant to represent all the information in the
signal frame. These features are usually Mel-frequency cepstral coe�cients
(MFCCs) [Lyo12] of the signal derived commonly like this:..1. Get power spectrum of the signal:

P (Ê) = |F{f(t)}|2, (3.7)

where f(t) is the input discrete signal frame and Ê is the frequency...2. Map the power spectrum to mel scale - a sound pitch scale that is based
on a listener’s perception of which tones are equidistant from one another
rather than their actual frequency.

P Õ(Êmel) = M(P (Ê)), (3.8)
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Figure 3.8: ASR system diagram [Res17], Speech Waveform image from [speer],
drawn using https://www.draw.io/.

where M is conversion function...3. Take the discrete cosine transform of the logarithm of this spectrum:

MFCC(k) = C(log(P Õ(Êmel))), (3.9)

where C is the conversion function and MFCC(k) is the final feature
vector.

Now transitioning to the Acoustic model in Figure 3.8, it is used to give the
Decoder probabilities of each possible sequence of phonemes the examined
utterance could be consisting of. Phonemes are sound units, that distinguish
one word from another in a particular language. Most languages have between
20 and 60 di�erent phonemes. The input to the Acoustic model are the
Acoustic features. On the inside, it consists of a Hidden Markov Model
(HMM), Deep Neural Network (DNN) or a mixture of both. An HMM is
essentially a statistical model of phonemes, in this case, as the hidden states
that have some transition probabilities, i.e. probabilities to transition to
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some other hidden state, some emission probabilities, i.e. probabilities of
"emitting" particular output - feature vector in our case, and finally there
are initial state probabilities. These probabilities first have to be learned on
training data consisting of feature vectors from a speech signal labeled with
its phonemes. Figure 3.9 illustrates the HMM state diagram on an example
of just five phonemes.

Figure 3.9: An example of HMM state diagram for acoustic model with five
phonemes, drawn using https://www.draw.io/.

On the other hand, DNNs are based on multi-layer computational graphs,
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that try to improve their parameters, so called "weights", in order to turn
their input into a desirable output. They are trained on the same data HMM
would be and either output the recognized class - a particular phoneme, or
determine the probabilities for an HMM.

After receiving probability distributions for all possible phoneme sequences,
a way to transform a particular set of phonemes into words is needed. That is
where the Pronunciation model comes in handy. Unlike the Acoustic model,
it is quite straight-forward - dictionaries derived by linguistic experts with
word to phonemes correspondences are utilized. Unfortunately, this textbook
pronunciation can often vary from the real one in practice due to an accent
or fast-paced speech.

Finally, the Language model provides probabilities of appearance of a
particular word given a context, i.e. its N predecessors, so called Ngrams. To
obtain these probabilities, large database of text is needed and for each word
and Ngram pair, the probability is computed like so:

p("co�ee"|"I need") = fi("I need co�ee")
fi("I need") , (3.10)

where the fi() function is number of occurrences of the string in the argument
in the training set.

Although Recurrent Neural Networks (RNN) are used to solve this problem,
too, Ngrams are still the faster solution. [Res17] [pytch]

KUKA robot

The robot used for this project was KUKA LBR Iiwa 7 depicted in Figure
3.10.

LBR means Leichtbauroboter - light construction robot, Iiwa stands for
Intelligent industrial work assistant. The maximum mass of a load is 7 kg.
This robot has seven rotational joints, therefore seven degrees of freedom.
Basic specifications of each joint can be viewed in Table 3.1. [�8]

Joint Value range[¶] Max torque [Nm] Max velocity [¶/s]
1 ± 170 176 98
2 ± 120 176 98
3 ± 170 110 100
4 ± 120 110 130
5 ± 170 110 140
6 ± 120 40 180
7 ± 175 40 180

Table 3.1: Basic joint specifications
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Figure 3.10: KUKA LBR Iiwa 7, from [kuk19].

Joint Joint type ◊ [rad] d [m] a [m] – [rad]
1 Rotational Ï1 0.34 0 -fi/2
2 Rotational Ï2 0 0 fi/2
3 Rotational Ï3 0.4 0 fi/2
4 Rotational Ï4 0 0 -fi/2
5 Rotational Ï5 0.4 0 -fi/2
6 Rotational Ï6 0 0 fi/2
7 Rotational Ï7 0.126 0 0

Table 3.2: Denavit-Hartenberg parameters

This robot has open-loop kinematic chain, that can be described by Denavit-
Hartenberg notation provided by Table 3.2.[�8] The angles Ïi, i = 1, ..., 7
are the respective joint angles. Each row of this table provides information
on how a reference frame connected with the previous joint transformed into
its successor. To be more specific, the meaning of the last four columns is
rotation around z-axis, translation along z-axis, translation along x-axis and
rotation around x-axis respectively. The transformation matrix transforming
points from the reference frame of joint i to that of joint (i-1) can be derived
as follows:

T i≠1
i =

S

WWWU

cos(Ïi) ≠sin(Ïi) 0 0
sin(Ïi) cos(Ïi) 0 0

0 0 1 di

0 0 0 1

T

XXXV

S

WWWU

1 0 0 0
0 cos(–i) ≠sin(–i) 0
0 sin(–i) cos(–i) 0
0 0 0 1

T

XXXV = (3.11)
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S

WWWU

cos(Ïi) ≠sin(Ïi)cos(–i) sin(Ïi)sin(–i) 0
sin(Ïi) cos(Ïi)cos(–i) ≠cos(Ïi)sin(–i) 0

0 sin(–i) cos(–i) di

0 0 0 1

T

XXXV , (3.12)

where di and –i are DH parameters for joint i from Table 3.2. The final
transformation matrix from the final joint to robot frame coordinates is:

T 0
7 = T 0

1 T 1
2 T 2

3 T 3
4 T 4

5 T 5
6 T 6

7 . (3.13)

The working envelope of this robot is depicted in Figures 3.11 and 3.12.

Figure 3.11: KUKA LBR Iiwa 7 working envelope side view, from [kuk16].

For this application, horizontal cuts through this envelope were important.
These horizontal cuts form concentric circles. Their radii are dependent on
the height above the table. Using Pythagorean theorem:

r1(h) = r1 =
Ò

R2
1 ≠ (R1 ≠ h ≠ o)2, h œ È0, 740Ímm

r2(h) = r2 =
Ò

R2
2 ≠ (R2 ≠ h ≠ o)2, h œ È0, 1140Ímm,

(3.14)

where R1 and R2 are inner and outer sphere radii respectively, o is vertical
o�set of the spheres from the table (i.e. o = 60), h is the height above the
table and r1 and r2 are inner and outer circles radii at that height.

The heights we are interested in for this project are h1 = 256mm (20 + 110
+ 126 = piece height + length of gripper + last link length), i.e. in contact
with a piece and h2 = 376mm (256 + 100 + 20 = h1 + 100 + piece height)
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Figure 3.12: KUKA LBR Iiwa 7 working envelope top view, from [kuk16] .

above target piece position. Using 3.14:

r1(h1) = 391.08mm

r2(h1) = 795.58mm

r1(h2) = 398.38mm

r2(h2) = 799.19mm.

(3.15)

The space the robot can e�ectively move chess pieces in this way is therefore
restricted on the table by concentric circles with radii:

rin = max{r1(h1), r1(h2)} = 398.38mm (3.16)

and
rout = min{r2(h1), r2(h2)} = 795.58mm. (3.17)

The biggest square, that can be fitted between these two circles must have
these two properties:..1. one of its sides is tangent to the inner circle..2. it has two corners on the outer circle .
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The side of this square can be calculated using Pythagorean theorem on a
right triangle as illustrated on 3.13. More specifically:

r2
out = (rin + a)2 + (a/2)2, (3.18)

where a is the side of the square. Solving this quadratic equation for a yields:

a =
≠4rin + 2

Ò
5r2

out ≠ r2
in

5 . (3.19)

Figure 3.13: E�ective working space (blue), the biggest chessboard, that can fit
in (green) and a right triangle to compute its side (red), using MATLAB plot.

Substituting for rin and rout:

a = 374.8124mm. (3.20)

In reality, the robot does not need to reach all the outer corners of the
chessboard - the center of the outermost field is su�cient. Therefore, the
final chessboard is bigger:

afin = 390mm. (3.21)

The x coordinate of its center location is cx = 600mm. This is illustrated in
Figure 3.14.
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Figure 3.14: E�ective working space (blue), the actual chessboard (green),
using MATLAB plot.

Electromagnetic gripper

Steel plates on the upper side of the chess pieces (under markers) were picked
up by an electromagnetic gripper, that was custom made for this application.
The gripper in Figure 3.15 was 3D printed and is retractable for robot safety
reasons. A 24 V electromagnet with 30 mm diameter depicted in Figure 3.16
resides in this gripper.

The electromagnet is controlled via ROS service call by writing to the
particular robot end-e�ector output (’OutputX3Pin1’). To indicate the
magnet is on, a green LED on robot’s last link is lit up.

23



3. Materials and Methods ................................

Figure 3.15: Electromagnetic gripper. Figure 3.16: The electromagnet type
used, from [con19].
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Chapter 4

Results

Architecture description

The project main package is robot_chess_player. It takes inputs from
tuw_marker_detection package and language_ctrl package and outputs
control messages to robot using moveit_commander.

The language_ctrl package publishes on "/cmd" topic in the form of a
string of recognized linguistic input. The tuw_marker_detection package
on the other hand publishes on "/markersAruco" topic. The messages are of
type Pose of geometry_msgs package - cartesian x,y and z coordinates in the
camera coordinate system are provided as well as 3D rotation represented as
a quaternion. This is common for any 3D configuration information in ROS.

This basic communication layout is presented in the block diagram in
Figure 4.1.

The robot_chess_player package (available on the CD included with this
thesis or on https://gitlab.ciirc.cvut.cz/jaluvmar/robot_chess_player)
comprises of 7 nodes:

. language_interface.py

. chess_commander.py

. markers_spawner.cpp

. grabbed_piece_pose_publisher.py

. robot_grab.py

. robot_grab_moveit.py

. chess_gui.py .

The language_interface.py node subscribes to the "/cmd" topic, then
parses the received string. If the incoming string is not one of the expected
words (i.e. chessboard piece or target field), it notifies player with a voice
error message. Upon reception of both valid piece type and target field
in classic chessboard coordinates (e.g. ’A4’), language_interface.py pub-
lishes this information on "/chess_command" topic. It also subscribes to
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Figure 4.1: Block diagram of basic communication, drawn using
https://www.draw.io/.

"/speech_output_request" topic and plays di�erent voice messages based
on received string.

The chess_commander.py node deals with chess game logic, which will be
described later on, its communication interface however, is a part of this sec-
tion. It receives chess piece move requests from the language_interface.py
node via "/chess_command" topic, checks their validity in terms of game
rules and reports any invalid moves back to language_interface.py node
via "/speech_output_request". Ambiguities and special situations are dis-
cussed with the player this way, too. When a move is valid, it is published
on "/requested_move" topic as piece id and its desired position in numerical
chessboard coordinates (e.g. m = 5, n = 1 ).

The markers_spawner.cpp is a central node, which provides essential func-
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tionality and is a backbone of the communication in this project. Firstly,
it subscribes to "/markersAruco" topic, then uses accurate camera position
and orientation parameters to transform ArUco markers’ poses from camera
coordinate frame to world. Knowing their poses in world coordinates and
with known chessboard dimensions and placement, it is possible to determine
chessboard configuration of individual chess pieces, i.e. integer chessboard
coordinates. That information is published on "/pieces_board_coords"
topic for chess_commander.py to keep track of the game configuration. The
markers_spawner.cpp node also receives messages from
chess_commander.py via "/requested_move" topic and being well aware
of each piece’s whereabouts along with the chessboard position and orienta-
tion, it translates piece id and target field chessboard coordinates into piece’s
and target’s world coordinates. These are in the form of two geometry_msgs
Poses published on requested_move_pose topic. Except when a particular
ArUco marker is detected, the piece’s coordinates in world frame can be
altered when grabbed by the robotic arm - in this case, the piece is connected
to the end-e�ector’s frame and moves with it. For this purpose this node
subscribes to "/grabbed_piece_pose" and "/attach_piece" topics. Finally,
this node is responsible for advertising to "/visualization_marker" and
"/visualization_marker_array" topics. These are used to place the chess
pieces and the chessboard into simulation in RVIZ.

The grabbed_piece_pose_publisher.py is a simple node, that publishes
pose of a piece when grabbed by the robotic arm. This pose is only the robot
end-e�ector pose shifted in negative z direction by the length of gripper and
half the piece height.

The robot_grab.py and robot_grab_moveit.py are essentially the same
program. The only di�erence is that the first one uses the capek_pycommander
package while the second one import from moveit_commander directly. These
nodes subscribe to requested_move_pose topic and according to this received
information command robot to move the particular piece from its pose to the
target pose. Along with turning the electromagnet on using a service call,
they let the other nodes know the piece has been attached by publishing on
"/attach_piece" topic.

Finally, the chess_gui.py node displays current chessboard configuration
graphically. [che] [CFVI19]

For more clarity on how the communication between nodes in this project
works, rqt_graph in Figure 4.2 is provided as well.
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Figure 4.2: Project communication overview as rqt_graph, drawn using
https://www.draw.io/.

Transformations between coordinate systems

The world coordinate system is placed exactly halfway between the two robots,
while camera is recording the scene from above and its exact position in the
world frame had to be computed by calibration. The Figure 4.3 shows RViz
visualization of all essential coordinate frames used throughout this project.
Except the two already mentioned, robot end-e�ector and chessboard center
coordinate frames are included.

Positions and orientations of detected ArUco markers are provided by
tuw_marker_detection package in camera coordinate frame, hence the need
to transform to the world frame. Function coords_transform
in markers_spawner node performs this transformation of all ArUco marker
poses. As described in the OpenCv chapter, two di�erent camera calibra-
tion methods were used, namely robot calibration witth ArUco marker and
chessboard calibration. The output of the first method is camera position
and quaternion orientation in the world frame, while chessboard calibration
returns rotation vector and translation vector – rrr and ttt from now on – which
transform points from world to camera coordinate frame. In each instance,
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Figure 4.3: The essential coordinate frames used, text added using
https://addtext.com.

di�erent computation had to be carried out in order to obtain transformation
matrix from camera to world frame. In the first case, transformation matrix
is created as follows:

T =

S

WWWU

1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

T

XXXV

S

WWWU

1 ≠ 2(q2
y + q2

z) 2(qxqy ≠ qzqw) 2(qxqz + qyqw) 0
2(qxqy + qzqw) 1 ≠ 2(q2

x + q2
z) 2(qyqz ≠ qxqw) 0

2(qxqz ≠ qyqw) 2(qyqz + qxqw) 1 ≠ 2(q2
x + q2

y) 0
0 0 0 1

T

XXXV ,

(4.1)
where x, y and z are coordinates of camera position vector in world frame
and qx, qy, qz and qw are its orientation as normalized quaternions [Sho]. In
the code, the toRotationMatrix() method from the Eigen library is used for
the quaternions to rotation matrix conversion:

Listing 4.1: Transformation matrix creation
Eigen::Matrix3f R;
Eigen::Quaternionf q_in;
q_in.x() = CAMERA_Q_X;
q_in.y() = CAMERA_Q_Y;
q_in.z() = CAMERA_Q_Z;
q_in.w() = CAMERA_Q_W;
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// normalization and conversion of quaternions
R = q_in.normalized().toRotationMatrix();

// converting rotation matrix to homogenous coordinates
Eigen::Matrix4f R_hom;
Eigen::MatrixXf v(1,3);
v << 0,0,0;
Eigen::MatrixXf w(4,1);
w << 0,0,0,1;
R_hom.block(0,0,3,3) = R;
R_hom.block(3,0,1,3) = v;
R_hom.block(0,3,4,1) = w;

Eigen::Matrix4f transl;
transl << 1,0,0,CAMERA_X,

0,1,0,CAMERA_Y,
0,0,1,CAMERA_Z,
0,0,0,1;

Eigen::Matrix4f T;
T = transl*R_hom;

The rrr vector in the second case is an angle-axis rotation representation. The
vector itself is a direction vector of the axis while its norm is the desired angle
around this axis. This representation can be converted to rotation matrix.
Let

uuu = rrr

||rrr|| = (x, y, z) (4.2)

is rrr normalized. Also,
Ï = ||rrr|| (4.3)

is its norm. Furthermore,

s = sin(Ï)
c = cos(Ï)
C = 1 ≠ c.

(4.4)

The rotation matrix is then

R =

S

WU
x2C + c xyC ≠ zs xzC + ys

yxC + zs y2C + c yzC ≠ xs
zxC ≠ ys zyC + xs z2C + c

T

XV [Bak17]. (4.5)

Using this rotation matrix and ttt to create transformation matrix in the same
fashion as in 4.1 would have resulted in an incorrect outcome as rrr and ttt
transform coordinates in the opposite way than needed. To get a correct
transformation matrix, we need to use the opposite rotation (represented by
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RT ) and opposite translation (-ttt) in the switched order:

T =
C

RT 000
000 1

D
S

WWWU

1 0 0 ≠tttx

0 1 0 ≠ttty

0 0 1 ≠tttz

0 0 0 1

T

XXXV , (4.6)

where tttx, ttty and tttz are x, y and z components of the translation vector.
After obtaining T either way, the position in the world frame of every

detected piece is computed like this:

ph,w = Tph,c, (4.7)

where ph,w is position vector of particular ArUco marker in homogenous world
coordinates and ph,c is the same vector in homogenous camera coordinates.

The orientation in the world frame is obtained by similar computation:

Rw = RRc, (4.8)

where Rw and Rc are rotation matricies of particular ArUco marker with
respect to world and camera, respectively, and R is camera rotation matrix
(before converting to homogenous coordinates). Rc is obtained from marker
quaternion again by toRotationMatrix() method. Rw is then converted back
to quaternion representation and along with position used to update global
pieces_config array.

For most of the time, chess pieces are assumed to stand on the z = 0 plane
in an upright position. Using this assumption, all markers must have fixed z
position (the piece center - half the piece height for RViz markers) and only
rotation around the z axis is allowed. The quaternion corresponding to this
rotation has the following form:

qx = 0
qy = 0
qz = sin(Ï/2)
qw = cos(Ï/2),

(4.9)

where Ï is the angle around z axis. To figure out the quaternion in this
form closest to the input quaternion, simple one-dimensional minimalization
problem has been solved:

min(||[0 0 sin(Ï/2) cos(Ï/2)] ≠ [qarx qary qarz qarw]||)

= min(
Ò

qar2
x + qar2

y + (sin(Ï/2) ≠ qarz)2 + (cos(Ï/2) ≠ qarw)2)

= min(f(Ï)),

(4.10)

where qar is a given quaternion in the world coordinates not in the 4.9 form.
A stationary point of this function was discovered:

df

dÏ
= (sin(Ï/2) ≠ qarz)cos(Ï/2) ≠ (cos(Ï/2) ≠ qarw)sin(Ï/2)

2
Ò

qar2
x + qar2

y + (sin(Ï/2) ≠ qarz)2 + (cos(Ï/2) ≠ qarw)2
= 0

≈∆ qarwsin(Ï/2) ≠ qarzcos(Ï/2) = 0.

(4.11)
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Then from the last equation:

tan(Ï/2) = qarz

qarw

Ï = 2atan2(qarz, qarw),
(4.12)

where atan2 was used to get the correct angle. By substituting this stationary
point to the second order derivative of this function, it has been confirmed,
that it indeed has a local (and global) minimum in this point (the second
derivative is in the stationary point positive for all possible qar coordinates
except the qarz = 0, qarw = 0 situation where atan2 is not defined).

Having the position of each ArUco marker and by that each chess piece
represented in the world frame is su�cient for the pick and place task as
the desired robot end-e�ector coordinate frame pose described in world
coordinates is an input to the robot controller. However, for determining each
piece’s position with respect to the chessboard, the chessboard connected
frame is needed. Chessboard position with respect to the world is given by its
x and y coordinate angle Ï between its and world coordinate frame’s x-axis.
Horizontal orientation and z = 0 is assumed. The transformation matricies
between world and chessboard frames are these:

T w
b =

S

WWWU

1 0 0 cx

0 1 0 cy

0 0 1 0
0 0 0 1

T

XXXV

S

WWWU

cos(Ï) ≠sin(Ï) 0 0
sin(Ï) cos(Ï) 0 0

0 0 1 0
0 0 0 1

T

XXXV (4.13)

T b
w =

S

WWWU

cos(≠Ï) ≠sin(≠Ï) 0 0
sin(≠Ï) cos(≠Ï) 0 0

0 0 1 0
0 0 0 1

T

XXXV

S

WWWU

1 0 0 ≠cx

0 1 0 ≠cy

0 0 1 0
0 0 0 1

T

XXXV , (4.14)

where T w
b transforms points from chessboard coordinate frame to the world

and T b
w the other way. cx and cy are chessboard center coordinates in world

frame and Ï is the angle already mentioned above.
The rest of the transformations described in this section are two-dimensional

and only take place within the chessboard (or close to it, i.e. taken pieces
fields) on z = 0 plane. These include a coordinate system connected with the
upper left corner of the chessboard (from the human player’s perspective),
discrete chess field coordinate system with an origin in the same corner, m-n-
coordinates for now on, and finally classical alphanumeric discrete coordinates.
These are depicted in Figure 4.4.

Function chessboard_ids_from_config in markers_spawner assigns each
piece a chess field it is standing on (i.e. the discrete coordinates written in
white on 4.4). It cycles through all pieces and for each one it transforms its x
and y in world to chessboard center coordinates (using 4.14 transformation
matrix) and then goes through all the rows and columns of the chessboard
to contain the piece in one of the fields. In fact, the algorithm looks three
pieces beyond the chessboard on every side as some taken pieces might be
there. For more clarity, the source code of this operation is provided:
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.........................Transformations between coordinate systems

Figure 4.4: The chessboard coordinate systems, text added using
https://addtext.com.

Listing 4.2: 3D position to discrete chessboard coordinates
for (int i =0; i<32; i++)

{
// piece pose in world frame
config = pieces_config[i];
p_hom << config.pose_x, config.pose_y, 0, 1;

// transforming to chessboard center frame
r_hom = T*p_hom;
x = r_hom(0,0);
y = r_hom(1,0);
// starting at upper left corner
//as if the chessboard was 11x11
lower_bound = -CHESSBOARD_SIZE/2-3*CHESSBOARD_SIZE/8;
for(int j =-2 ; j<12; j++)
{

upper_bound = lower_bound + CHESSBOARD_SIZE/8;
if(x >= lower_bound && x < upper_bound)
{

board_coords[i].x = j;
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}
if(y >=lower_bound && y < upper_bound)
{

board_coords[i].y = j;
}
lower_bound = upper_bound;

}

// check if piece is out of the chessboard
//in an unexpected position

if(board_coords[i].x < 1 || board_coords[i].x > 8)
{

board_coords[i].x = 0;
board_coords[i].y = 0;

}

// check if piece is in taken pieces place and if so,
// then convert to taken piece numbering

else if(board_coords[i].y < 1 || board_coords[i].y > 8)
{

board_coords[i] =
mn_to_taken_pieces_numbering(board_coords[i].x,
board_coords[i].y);

}

// add to array for publishing

chess_pose.id = i;
chess_pose.m = board_coords[i].x;
chess_pose.n = board_coords[i].y;
msg.poses.push_back(chess_pose);

}

The taken pieces are put on special fields dedicated to them on the sides of
the chessboard. The black pieces (the ones closer to the robot) are put away
to the left of the chessboard from human player’s perspective and the white
pieces to the right. They are organized to two columns of 6 and one column
of 4, this is depicted in Figure 4.5 in simulation and a photo in Figure 4.6.

For easier manipulation with locations of these fields in the
chess_commander.py node, separate numbering system is used for them.
Black taken pieces locations are labeled (≠1, ≠1) to (≠16, ≠16) while the
locations reserved for their white counterparts are labeled (≠17, ≠17) to
(≠32, ≠32) as depicted in Figure 4.5.

While the code above finds chessboard coordinates for pieces given their
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Figure 4.5: The taken pieces placement in the simulation, text added using
https://addtext.com.

Figure 4.6: The taken pieces placement in the real setup.

world coordinates, the opposite transformation is also needed, i.e. when
chess_commander.py demands a piece to move to a certain chess field,
markers_spawner.cpp is required to provide robot_grab.py with the world
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coordinates of the center of that field. Given some numeric chessboard co-
ordinates m, n, the xcrn and ycrn coordinates of the center of this field with
respect to the chessboard corner frame is computed as:

xcrn = (2m ≠ 1)board_size/16
ycrn = (2n ≠ 1)board_size/16.

(4.15)

From there to the chessboard center frame, mere translation is performed:

xctr = xcrn ≠ board_size/2
yctr = ycrn ≠ board_size/2.

(4.16)

Lastly, translation and rotation obtained by 4.13 matrix is used to get to
world coordinates. The function that computes this is
chessboard_coords_to_world:

Listing 4.3: Chessboard to world coordinates conversion function
spatial_configuration chessboard_coords_to_world(
chessboard_coords config)
{

int m, n;
float x3,y3,x2,y2,x,y;
spatial_configuration ret;
chessboard_coords tmp;

// first convert back from taken pieces numbering
// if needed

if(config.x < 0)
{

tmp = taken_pieces_numbering_to_mn(config.x);
m = tmp.x;
n = tmp.y;

}
else
{

m = config.x;
n = config.y;

}

// discrete to corner chessboard coordinates
x3 = (2*m-1)*CHESSBOARD_SIZE/16;
y3 = (2*n-1)*CHESSBOARD_SIZE/16;
// corner to center
x2 = x3-CHESSBOARD_SIZE/2;
y2 = y3-CHESSBOARD_SIZE/2;
// center to world
x = x2*cos(CHESSBOARD_PHI)-y2*sin(CHESSBOARD_PHI)+
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CHESSBOARD_X_POS;
y = x2*sin(CHESSBOARD_PHI)+y2*cos(CHESSBOARD_PHI)+
CHESSBOARD_Y_POS;

ret.pose_x = x;
ret.pose_y = y;
ret.pose_z = 0;
ret.quat_x = 0;
ret.quat_y = 0;
ret.quat_z = sin(CHESSBOARD_PHI/2);
ret.quat_w = cos(CHESSBOARD_PHI/2);

return ret;
}

Chess logic

Once the position of pieces on the chessboard is resolved by
markers_spawner.cpp node, it is up to chess_commander.py to deal with
the game logic, more specifically, it has the following features:

.move validity check

. piece on chessboard

. target on chessboard

. target di�erent from current position

. trying to take your own pieces

. clear path between source and target (for some types)

.moving in accordance with piece type

.moving into or staying in check

. special moves - en passant, castling

. validity check for human player

.move extraction from two consecutive chess configurations

. detection of performing multiple moves

. detection of moving your opponent’s pieces

. taking pieces

. searching for empty spots next to chessboard

. 2-stage taking piece process

. returning pieces to the game

37



4. Results .......................................

. type available for returning

. 2-stage returning piece process

. type - target field to piece id - target field

. finding id of the piece based on target field reachability

. ambiguity resolution

Starting with move validity check, the essential function here is
is_move_valid. Given current chessboard configuration and requested move,
i.e. id of a piece and target field m-n-coordinates, it returns whether that
move is valid with respect to chess rules and if not, provides a reason why.
First, a few general validity checks are performed, such as the piece and the
target m-n-coordinates being on the chessboard or "friendly fire" (trying to
take your own pieces):

Listing 4.4: General invalid move detection
def is_move_valid(chess_poses, piece_id, target_m, target_n,
check_check_on, output_on, language_input):

# getting position of the piece from current chess
configuration

piece_m = chess_poses[piece_id].m
piece_n = chess_poses[piece_id].n

# getting id of piece currently on the target field,
-1 if field is empty

on_target_piece_id = piece_on_field(chess_poses, target_m,
target_n)

if(piece_m < 1 ):
if output_on:

output("MOVE INVALID: Piece has been taken!",
language_input)

return False

if target_m == piece_m and target_n == piece_n:
if output_on:

output("MOVE INVALID: Piece is on that field
already!", language_input)

return False

if target_m < 1 or target_m > 8 or target_n < 1 or
target_n > 8:
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if output_on:
output("MOVE INVALID: Moving out of chessboard!",
language_input)

return False

if on_target_piece_id != -1 and ((is_white(piece_id)
and is_white(on_target_piece_id)) or (is_black(piece_id)
and is_black(on_target_piece_id))):

if output_on:
output("MOVE INVALID: You cannot take your own
pieces!", language_input)

return False

After this, the function branches - the move must be valid for that specific
piece type. Where needed, the path from source field to target field is checked
for other pieces in the way by the following function:

Listing 4.5: Detection of a clear path between source and target
def path_is_clear(chess_poses, piece_m, piece_n, target_m,
target_n):

incr_m = sign(target_m - piece_m)
incr_n = sign(target_n - piece_n)
checked_field_m = piece_m
checked_field_n = piece_n
dist = max(abs(target_m-piece_m), abs(target_n-piece_n))
for i in range(1,dist):

checked_field_m += incr_m
checked_field_n += incr_n

if piece_on_field(chess_poses, checked_field_m,
checked_field_n) != -1:

print("MOVE INVALID: There is a piece in the way!")
return False

return True

def sign(x):
if x >0:

return 1
elif x == 0:

return 0
else:

return -1

For all piece types, it is then also determined whether the requested move
would get the friendly king to check. This is achieved by is_field_safe
function, which calls is_move_valid to determined if any of the opponent’s
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pieces would be able to reach king’s position after playing the requested move.
For this to make sense (and avoid infinite recursion), is_move_valid called
from within is_field_safe must not check for king in check:

Listing 4.6: Detecting whether friendly king is in check after a move
def is_field_safe(chess_poses, piece_id ,target_m, target_n):

piece_is_black = is_black(piece_id)
target_chess_poses = copy.deepcopy(chess_poses)
on_field_id = piece_on_field(target_chess_poses, target_m,
target_n)

# create target chess configuration

# if there is an opponent’s piece on the target field now,
it is placed out of chessboard

# id 3 - black king, id 27 - white king

if(on_field_id!=-1):
target_chess_poses[on_field_id].m = 0
target_chess_poses[on_field_id].n = 0

target_chess_poses[piece_id].m = target_m
target_chess_poses[piece_id].n = target_n

# determine whether an opponent’s piece could reach king
after this move

if(piece_is_black):
for i in range(16, 32):

if(is_move_valid(target_chess_poses, i,
target_chess_poses[3].m, target_chess_poses[3].n,
False, False, False)):

return False
return True

else:
for i in range(0, 16):

if(is_move_valid(target_chess_poses, i,
target_chess_poses[27].m, target_chess_poses[27].n,
False, False, False)):

return False
return True

Building on this, the play_move function provides basic chess playing
features - given id of a piece and target field m-n-coordinates and after move
validity check, it sends the requested move to markers_spawner.cpp, which
in turn mobilizes the robot_grab.py to move the robot. If an opponent’s
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piece needs to be taken out of the chessboard in order to realize this move,
it is put on the first empty field reserved for taken pieces of this color and
only after this is the original move performed. Returning pieces back to game
upon reaching the other side of the chessboard with a pawn is resolved here
as well.

Finally, to make the user interface more natural, the play_move_type_field
function wrapped around play_move enables the requested moves to be in
the form piece type - target field. When more pieces of the same type can
reach the same field, this is ambiguous. For this reason, a list of possible
piece ids is first created and if it has more than one member, the player is
asked to clarify by providing the piece’s source coordinates.

To keep everything fair, the move of the human player needs to be checked
for validity as well. This is commanded move validity check extended by
certain features needed when using detection as depicted in Figure 4.7 .
This presents a little challenge, because the move needs to be first extracted

Figure 4.7: Succession diagram of validity check components, drawn using
https://www.draw.io/.
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from the di�erence between chess configuration before and after the move.
For most cases, checking if just one friendly piece was moved and then
using is_move_valid would su�ce, but this approach breaks down when
playing moves involving taking opponent’s pieces or returning pieces to the
game. The following finite state machine in Figure 4.8 implemented in
compare_chess_poses function solved this issue for returning pieces.

Figure 4.8: The finite state machine for friendly chess piece i, which moved
recently, drawn using https://www.draw.io/.

User interface

A two-player chess game was developed. The first player (usually playing
as black) is meant to control the robot by voice to play for him, while the
second player (usually playing as white) moves pieces the old fashion way.
This game’s main loop flowchart is in Figure 4.9.

Optionally, the game can be played using keyboard commands and text re-
sponses instead of language output and input. This is set through
chess_commander.py’s boolean variable language_input. Similarly, the
chess pieces belonging to the "human player" can be moved physically and the
change detected or moved virtually based on user input. This can be switched
o� and on in chess_commander.py as well using detecting_pieces boolean
variable. Lastly, switching sides is also possible via playing_as_black vari-
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Figure 4.9: Chess game main loop, drawn using https://www.draw.io/.

able, in this case, the robot will move with the white pieces and the human
with the black ones.

An example of this user/program interaction can be seen on the console
output in Figure 4.10 (language_input and detecting_pieces variables are
both set to False for this example). The corresponding chess configurations
can be viewed in Figures 4.11, 4.12 and 4.13.

Error rate evaluation

To evaluate the computational expensiveness of each part of the architecture,
time necessary for each key operation was measured (1.6 GHz Intel Core
i5 used) as shown by Table 4.1. Rather than the absolute values measured,
their ratio is more descriptive. The move validity check for pawns takes
noticeably longer, because all 8 pawns need to be checked. Move component
here refers to a part of the pick and place movement (e.g. getting above the
pick position). The robot pick and place action includes planning, waiting
and executing the whole action.

43



4. Results .......................................

Figure 4.10: Console output example.

Figure 4.11: Initial configuration.

ComponentComponentComponent Time took[ms]Time took[ms]Time took[ms]
ArUco markers detection 180
Validity check - pawns 30

Validity check - other pieces 1
Speech recognition from recording 1000
Robot move component planning 300
Robot move component execution 1000 - 2000

Robot pick and place action planning 2000
Robot pick and place action 30 000

Table 4.1: Execution time of architecture components.

44



................................... Error rate evaluation

Figure 4.12: Configuration after instruction "pawn to b6".

Figure 4.13: Configuration after instruction "knight to c3".

Di�erent parts of this project were first tested separately, starting with
robot accuracy. During this test, a piece was moved by the robot to a field
surrounded by other pieces. To eliminate the inaccuracies of detection, the
piece was picked up from the center of the field it was detected on, instead of
its precise detected position. This approach proved so e�ective, it has stayed
beyond the testing.

For the first round of testing, a configuration depicted in Figure 4.2 was
constructed and the knight was moved by the robot from its initial position
between the pawns and back. This was repeated in 5 cycles (i.e. 10 robot
moves in total). This test was performed on 4 di�erent locations on the
chessboard and the results are summarized by Table 4.2.
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Figure 4.14: Experimental setup for robot accuracy test - moving knight piece
between g6 and f4.

test number initial/target location cycles successful/performed
1 g6/f4 5/5
2 d3/b4 5/5
3 f2/h1 5/5
4 b7/d8 5/5

Table 4.2: A summary for robot accuracy tests – moving knight piece between
two locations.

To make it more di�cult for the robot and to make sure a significant error
wouldn’t accumulate over larger number of moves with one piece, a second
test was devised. The configuration of this test is in Figure 4.15.

The knight was moved from g6 to f4, then to d3, c5, d7, f8 and back to
g6. Three uninterrupted cycles, that is 18 moves, were performed with the
robot. They all were successful as no collision between the knight and the
other pieces occurred.

Next, piece detection accuracy was evaluated. The main problem with
this is oscillation of a detected piece, that sometimes places the piece on a
neighbouring field. To study this the chess_gui.py node was edited to not
only create graphical output according to current chessboard configuration,
but to count correct and incorrect configurations received based on a correct
reference configuration.
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Figure 4.15: Experimental setup for robot accuracy test – moving knight piece
around chessboard, knight initial position in red, way points in green.

The first configuration was initial chess configuration, five measurements
were performed, each with 200 configuration updates. The time between
consecutive updates was approximately 1s. The results are summarized in
Table 4.3.

measurement number correct configurations incorrect configurations
1 173 27
2 179 21
3 154 46
4 158 42
5 143 57

Table 4.3: Detection accuracy test 1.

The next configuration for this detection test was devised from the previous
by applying four chess moves. These chess moves along with detection results
are depicted in the Tables 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9.

round number white black
1 pawn g4 pawn b5
2 bishop g2 pawn c6

Table 4.4: Transition from configuration 1 to configuration 2.
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measurement number correct configurations incorrect configurations
1 176 24
2 170 30
3 184 16
4 184 16
5 183 17

Table 4.5: Detection accuracy test 2.

round number white black
1 pawn f4 pawn g6
2 queen f2 pawn f5

Table 4.6: Transition from configuration 2 to configuration 3.

measurement number correct configurations incorrect configurations
1 200 0
2 200 0
3 200 0

Table 4.7: Detection accuracy test 3.

round number white black
1 pawn d4 knight f6
2 queen e3 rook g8

Table 4.8: Transition from configuration 3 to configuration 4.

measurement number correct configurations incorrect configurations
1 100 0
2 100 0
3 100 0

Table 4.9: Detection accuracy test 4.

During detection test 1 and 2, the erroneous configurations were detected
less frequently than the correct ones, but more importantly were not in batches,
but rather well distributed. This opens up the possibility to filter them out
entirely by saving some small number of consecutive configuration updates
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(for example 10) and out of those declare the most frequent configuration
within these updates to be the correct one. This is of course a trade-o� -
robustness for update time.

However, upon viewing the results of detection test 3 and 4, any incorrect
configurations seem to disappear. At first this was attributed to the chess
pieces being more spaced out and therefore better detectable, but then the
initial configuration was measured again to test this hypothesis and it got
similar results to tests on configurations 3 and 4. The only logical explanation
here is that the scene illumination throughout the measurements improved
due to the later experiments being carried out after 5 p.m. with the sun low
enough to shine through the windows from the west. The chessboard itself
was not directly illuminated by the sun, but overall light intensity must have
improved.

The language was tested separately on three subjects. The tested subjects
were asked to utter each piece type 10 times and eight target positions - A1 -
A8 - were each pronounced 5 times. The A fields were chosen, because they
are often mistaken for E fields. The results of this testing is in Tables 4.10,
4.11 and 4.12.

This score can be improved with a little practice - Table 4.13 depicts
the author of this thesis attempting the same task. When performed by
untrained subjects, of all words uttered 65% were correctly recognized, while
the reference testing had 87% success rate.

word # correct # incorrect # not heard
pawn 8 0 2
knight 2 7 1
bishop 10 0 0
rook 5 4 1

queen 7 2 1
king 1 9 0
A1 4 0 1
A2 4 0 1
A3 2 2 1
A4 2 2 1
A5 4 1 0
A6 3 1 1
A7 3 1 1
A8 2 3 0

Table 4.10: Language test, subject 1.
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word # correct # incorrect # not heard
pawn 2 8 0
knight 10 0 0
bishop 8 0 2
rook 9 0 1

queen 10 0 0
king 8 2 0
A1 5 0 0
A2 4 1 0
A3 2 3 0
A4 4 1 0
A5 4 1 0
A6 4 1 0
A7 4 1 0
A8 2 3 0

Table 4.11: Language test, subject 2.

word # correct # incorrect # not heard
pawn 4 5 1
knight 6 3 1
bishop 9 0 1
rook 6 3 1

queen 7 3 0
king 2 8 0
A1 4 0 1
A2 4 1 0
A3 4 1 0
A4 4 1 0
A5 4 0 1
A6 3 2 0
A7 4 1 0
A8 1 4 0

Table 4.12: Language test, subject 3.

To conclude, a final test was conducted with setup depicted in Figure 3.1.
Both players performed 20 chess moves, 10 each. As oscillation were dealt
with by the method described above, the only problem was, that some markers
were occasionally not detected at all. This leaves the program with their last
location. This manifested as erroneous classification of the human player’s
move as invalid. In 4 cases out of these 20 moves, the chess_commander.py
had to be restarted to allow taking sample of the correct chess configuration.

An example of markers not being detected is in Figure 4.16 . Despite the
fact, that in this screenshot 11 markers were not recognized, most of them
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word # correct # incorrect # not heard
pawn 9 1 0
knight 10 0 0
bishop 10 0 0
rook 9 1 0

queen 10 0 0
king 5 5 0
A1 4 0 1
A2 4 1 0
A3 4 1 0
A4 4 1 0
A5 5 0 0
A6 4 1 0
A7 5 0 0
A8 4 1 0

Table 4.13: Reference testing.

were detected sporadically - at least once every few seconds. This is enough
for this application to keep track of them. Up to two pieces were usually not
detected stably - the piece on f3 in Figure 4.16 for example.

Figure 4.16: Detection of markers on the chessboard.
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Chapter 5

Conclusion and Discussion

A framework for playing chess with KUKA robotic arm has been created. All
technologies used have been described in the Chapter 3 including visual and
voice input, robotic arm and custom built chess set. Chapter 4 described how
exactly the technologies cooperated and communicated and it also provided
little insight into the chess logic programmed specifically for this purpose. In
the end, the whole system was evaluated.

Although the detection of chess pieces still has some issues and the human’s
move is in some cases falsely considered to be invalid as a result, overall the
goal of this thesis has been achieved.

The detection problem may be solved by better choice of ratio between
size and padding of the markers. For further improvement in accuracy, depth
point cloud could be used as well. The other parts of this project work pretty
well - the chess logic correctly responds to incoming chess configurations,
the robot moves pieces precisely as demanded and the words from the small
vocabulary used for this game are recognized well – 65% success rate of the
untrained users can be easily improved by a little practice, proven by the
87% success rate of the reference testing.

Next steps from here could be for example usage of an open source automatic
chess playing algorithm to either advise the player how to move next, or
let the robot play on its own. In this case, the voice commands could be
used to let the robot know when its turn began. Also, the chess pieces could
be created to resemble the classical ones. Without any markers and relying
only on recognizing their di�erent shapes, a neural network would have to
be trained. Ultimately, another similar board games like checkers could be
added to robot’s repertoire.
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