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Abstract

An efficient method for evaluating the sen-
sitivity of an electric circuit to topological
changes is proposed. Nodal voltages are
used as degrees of freedom. Impedance
matrix of a circuit after an elementary per-
turbation is derived through the inversion-
free formulas. This leads to a compu-
tationally efficient gradient optimization
procedure.

The goal of this bachelor’s thesis is
to demonstrate the feasibility of the pro-
posed optimization procedure. The va-
lidity is verified using two examples. It
is shown that implemented optimization
algorithm can be used as a local step in
global optimizers. Developed procedures
serve as a proof of concept and form the
basis for future work in circuit optimiza-
tion.

Keywords: Circuit optimization,
Sherman-Morrison-Woodbury formulas,
topology sensitivity.

Supervisor: doc. Ing. Lukáš Jelínek,
Ph.D.

Abstrakt

Práce představuje efektivní metodu pro
vyhodnocení citlivosti elektrického ob-
vodu vůči zvolenému parametru při změně
jeho topologie. Napětí v uzlu reprezentuje
jeden stupeň volnosti obvodu. Impedanční
matice modifikovaného obvodu je odvo-
zena pomocí blokové inverze matice. To
umožňuje implementaci výpočetně efek-
tivního optimalizačního algoritmu.

Cílem bakalářské práce je ukázat pro-
veditelnost navrhovaného optimalizačního
postupu. Správnost implementace je ově-
řena na dvou příkladech. Vyvinutý opti-
malizační algoritmus lze použít jako lo-
kální krok v globálních optimalizátorech.
Vyvinuté metody slouží jako ověření kon-
cepce a jsou podkladem pro budoucí práci
v optimalizaci obvodů.

Klíčová slova: Optimalizace obvodů,
Sherman-Morrison-Woodbury identita,
topologická citlivost.

Překlad názvu: Lokální perturbace v
metodě momentů
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Chapter 1

Introduction and motivation

Throughout the history of electrical engineering, essential laws of circuit
analysis have been developed. Circuit analysis is the process of finding
electrical quantities for a given topology. The problem of the circuit analysis
has already been mastered, and many advanced automated circuit simulators
do exist. On the other hand, circuit synthesis is the process of finding
a circuit shape with the predetermined electrical quantities. Although, there
is a noticeable development of topology optimization, e.g., of optical circuits [1]
or conductors in circuit [2], the process of shape synthesis is far from being
mastered, since we encounter serious obstacles. An objective function defined
by the user cannot be set without restrictions. Furthermore, a solution is
non-unique. Generally, shape synthesis algorithms have high computational
cost and suffer from the curse of dimensionality [3].

In the past few years, a procedure is sought for making shape synthesis
more efficient. This thesis is highly motivated by a few papers [4], [5], [6],
in which efficient way of antenna synthesis is described. The goal of this
thesis is to develop a topology optimization scheme for lumped element
circuits with the same algorithmic properties. The thesis proposes efficient
incorporation of the topology sensitivity evaluation into an optimization
scheme. The key step is the utilization of inversion-free formulas, which have
shown their strengths in the other applications [7], [8] as well.

The gradient-based algorithm is implemented and used to optimize a topol-
ogy of an arbitrarily sized grid containing lumped elements with regards
to predetermined behaviour.
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Chapter 2

Method of moments

Method of moments (MoM) is a technique frequently used in engineering
to solve electromagnetic problems, e.g., radiation and scattering problems.
The scheme of computation within the MoM paradigm can be found in [9]
or with examples in [10]. The MoM generally recasts an integro-differential
equation into a system of linear equations

ZI = V, (2.1)

where Z is an impedance matrix [11], V is a known voltage feeding vec-
tor, and I is an unknown current vector (expressed in terms of expansion
coefficients [9]). In order to evaluate current I, an inversion of impedance
matrix

I = Z−1V = YV, (2.2)
is needed, where Y is called admittance matrix. Hence, the impedance
matrix Z presents the electromagnetic behaviour of an actual shape.

A system of linear equations (2.1) can also describe an electrical cir-
cuit. The behaviour of an actual shape/topology of a circuit is reflected
in the impedance matrix.

2.1 Shape synthesis within MoM paradigm

Shape synthesis attempts to extract a particular shape with respect to the de-
sired behaviour. An important part of the synthesis problem is the understand-

3



2. Method of moments..................................

Ω

Ω+

Ω−

Figure 2.1: Comparison of possible modification of the initial structure Ω. Either
subtracting or adding small part is considered.

ing of how the observed metric changes after small structural modifications are
performed. Figure 2.1 presents possible topology modification of the original
shape Ω. Employing the conventional MoM for this task is time-consuming
since the set of complex computations, e.g., construction of the impedance
matrix Z, must be repeated each time the structure is modified. Furthermore,
equation (2.2) is usually solved by LU-decomposition algorithm [12], which
has O(N3) computational complexity, where N is the number of basis func-
tion of the initial structure. Computational complexity is further increased to
O(N4) if each basis function is assumed to be removed or added. This evalu-
ation has to be repeated iteratively while removing or adding basis functions,
i.e., degrees of freedom (DOFs). Consequently, the optimization procedure is
proportional to O(N5) which is a considerable computational burden.

The elementary topology modification can be also defined within circuit syn-
thesis with primary quantity being the voltage at each node. This application
is described in chapter 3.

Since the inversion of a matrix is a time-consuming operation, an inversion-
free formula is sought for. The key step is the employment of the block
matrix inversion and Sherman-Morisson-Woodbury formula [13]. According
to the block matrix inversion formula, the solutions for all possible structures
can be derived by reusing the inverse of the impedance matrix of the initial
shape Ω. These inversion-free formulas are presented in the next section.

2.2 Block matrix inversion

Prior to the introduction of block matrix inversion (also called partitioned-
inverse formula), the submatrix and block matrix are defined as follows:

4



................................ 2.2. Block matrix inversion

Definition 2.1. A submatrix A[α, β] of matrix A is a matrix with indices
α and β being mappings on rows and columns of matrix A. The set of row
indices {1, . . . ,m} of matrix A is partitioned into the subsets α1, . . . , αr, so
that αi ∩ αj = ∅, for all i 6= j, 1 ≤ i, j ≤ r, and α1 ∪ · · · ∪ αr = {1, . . . ,m}.
Similarly, column indices {1, . . . , n} are partitioned into the subsets β1, . . . , βs.

Definition 2.2. A block matrix is a matrix that is partitioned into the sub-
matrices A[αi, βj ] with the row and column indices partitioned into subsets,
i.e., α1 = {1, . . . , i1}, α2 = {i1 + 1, . . . , i2}, etc. For simplicity, we will write
Aij = A[αi, βj ].

Matrix operations can be performed block-wise. Some basic properties
of block matrices and operations among them can be found in [14] and [15].
Matrix inversion is an essential operation for this thesis, hence it can be
useful to know the inversion of a partitioned matrix. For simplicity, let matrix
A ∈ Fn×n be partitioned as

A =
(

A11 A12
A21 A22

)
, (2.3)

where Aii ∈ Fni×ni , i = 1, 2 and n1 + n2 = n, are submatrices. A useful
formula for the corresponding blocks of the partitioned matrix representation
of A−1 [16] is

(
A11 A12
A21 A22

)−1

=
(

A−1
11 + A−1

11 A12S−1A21A−1
11 −A−1

11 A12S−1

−S−1A21A−1
11 S−1

)
, (2.4)

where S = A22−A21A−1
11 A12 is so-called Schur complement [16]. If and only

if both the matrix A11 and the Schur complement S are nonsingular, then A
is nonsingular [17].

Equation (2.4) provides a recursive algorithm involving two inverses of n1×n1
and n2×n2 matrices (A11 and S) and four multiplications. It is proven, that
matrix inversion is equivalent to matrix multiplication [18], i.e., if t(n) denotes
the time of multiplication of two n × n matrices, then the time to invert
an n × n matrix is O(t(n)). The computational complexity of mentioned
algorithm is O(n2.807), [19]. Table 2.1 summarizes matrix multiplication
algorithms and their computational complexities.

If matrix A−1
11 is known and the three other blocks are small in size, (2.4)

constitutes efficient formula for matrix inversion as compared to full inversion
of matrix A.

5



2. Method of moments..................................
Matrix multiplication algorithm Year Computational complexity

Naive algorithm 1950 O(n3)
Strassen’s algorithm 1969 O(n2.807)

Coppersmith-Winograd algorithm 1990 O(n2.376)
Gall’s algorithm 2014 O(n2.373)

Table 2.1: Computational complexity of matrix multiplication algorithms
throughout the past decades.

2.2.1 Sherman-Morrison-Woodbury formula

The Sherman-Morrison-Woodbury formula (SWM) [13], also known as Wood-
bury matrix identity, expresses the inversion of a matrix after a small rank
modification in terms of the inversion of the original matrix. This modifica-
tion formula comes from studies of block matrices and can be derived from
the block matrix inversion [16], which is presented in the previous section 2.2.
Theorem 2.3. Assume that a nonsingular matrix A ∈ Fn×n has a known
inverse A−1 and consider matrix C = A + EBF, in which E is n × r, F is
r×n, and B is r×r and nonsingular. If C and B−1 +FA−1E are nonsingular,
then

C−1 = A−1 −A−1E(B−1 + FA−1E)−1FA−1. (2.5)

If r � n, then B and B−1 + FA−1E are much faster to invert than C.
As an example, let us, consider a modification of a n× n matrix, in which
a r × r block is modified. Final matrix is then multiplied by a correctly sized
column vector. Figure 2.2 shows performance of the formula (2.5) compared
to the built-in MATLAB functions inv() and mldivide [20]. It is apparent,
that SMW formula is efficient for low rank correction of the original matrix.

As a special case of major importance for this thesis, if u,v ∈ Fn are column
vectors, E = u,F = vT and B = b is a scalar, then (2.5) becomes a formula
for the inversion of a matrix after it is modified by a rank 1 correction:

(A + ubvT)−1 = A−1 − bA−1uvTA−1

1 + bvTA−1u . (2.6)

Equation (2.6) is called Sherman-Morrison (SM) formula [13]. Various ap-
plications of the SMW formulas to statistics, networks, asymptotic analysis,
optimization and partial differential equations are summarized in [13].

Let us consider a specific rank 1 modification of a matrix A, where b→∞.
In this case the inversion formula reads

lim
b→∞

(A + ubvT)−1 = A−1 − A−1uvTA−1

vTA−1u . (2.7)

6



................................ 2.2. Block matrix inversion

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
·10−2

b/n [-]

C
om

pu
ta

ti
on

ti
m

e
[s

]

inv()
inv() with Sherman-Morrison
mldivide

Figure 2.2: Performance comparison of the SMW formula and the MATLAB
built-in functions in dependence on the size of a modification. The size of a per-
turbation is denoted as b, while the size of a matrix is n.

If vectors u = v are simple indexing vectors, the matrix multiplications in (2.7)
are reduced to computational inexpensive indexing. The corresponding
column and row given by the indexing vector is zeroed in a final matrix,
which allows to dynamically change the size of a matrix (zeroed columns and
rows are discarded).
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Figure 2.3: Performance comparison of SM formula and MATLAB built-in
functions. Modified matrix is further multiplied by a dense vector.

Figure 2.3 shows the performance of the SM formula and the MATLAB
built-in functions inv() and mldivide, where the resulting matrix is further
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Figure 2.4: Performance comparison of SM formula and MATLAB built-in
functions. Modified matrix is further multiplied by a vector with only one
non-zero entry.

multiplied by a dense vector. The employment of the SM formula reduces
computational complexity from O(N3) (inv()) to O(N2). Since mldivide
is able to take advantage of symmetries in the problem by dispatching
to an appropriate solver [20], the computation time is reduced.

Furthermore, A resulting matrix is multiplied by a vector with only one
non-zero entry. Employing the SM formula further reduces the computational
complexity to O(N). The performance is shown in figure 2.4.

As will be shown in the next chapter, an elementary modification in a circuit
topology with the same algorithmic properties can be found.
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Chapter 3

Circuit analysis

Let us consider an electromagnetic problem, e.g., antenna design. The initial
shape Ω is discretized into triangles Ω → ΩT, see figure 3.1. Hence, the system
is reduced to a system having a finite number of degrees-of-freedom (DOFs)
and all calculations are performed over the discretized domain, i.e., we deal
solely with the impedance matrix and corresponding current and voltage
column vectors. A removal or an addition of a set of DOFs naturally modifies
the impedance and admittance matrix, i.e., the behaviour of the antenna
changes. Using inversion-free formulas, see section 2.2, the impedance matrix
of perturbed system Z is acquired [4], [5].

Ω

(a) : Original structure

ΩT

(b) : Discretized structure

Figure 3.1: Illustration of discretization of a continuous shape (3.1a). Electro-
magnetic behaviour of a structure is approximated using its discretized model
(3.1b).

The scheme mentioned above can readily be applied on a trivial structure,
e.g., an electrical circuit. Consequently, the shape synthesis of circuits becomes
analogue problem to the antenna design [4], [5], [6]. The question is: What
shall be used to represent one DOF in a circuit?

9



3. Circuit analysis ....................................

I

(a) : Rectangle cell.

I

(b) : Single impedance.

V

(c) : Voltage node.

Figure 3.2: Possible representations of a degree of freedom for a lumped element
circuit.

When studying shape optimization it is often desirable to know how the ob-
jective function p alters, when the structure is modified, e.g., removal or
addition of DOF is performed. In electrical engineering, this function can be
a properly defined metric such as the input impedance of a circuit. The ob-
jective function p will be a function of the prime quantity, e.g., in the node-
oriented system it is explicitly dependent on the voltage in the each node.

In this chapter, a descriptive matrix for a circuit is chosen together with
a suitable modification among the chosen description of a circuit. It is shown
that the selected modification allows the employment of the inversion-free
formulas presented in section 2.2 if just one DOF is to be removed or added.
The following section presents topology sensitivity τ (p,ΩT ) of the objective
function p for the circuit topology Ω and define its evaluation as a simple
matrix product.

3.1 Impedance or admittance matrix?

For purposes of circuit analysis, a descriptive matrix for a circuit needs to
be defined together with an elementary DOF. Also, we have to keep in mind
that suitable elementary modification needs to be defined afterwards. We
consider three possible choices:..1. rectangle cell in figure 3.2a,..2. single impedance in figure 3.2b,..3. voltage node in figure 3.2c.

First, let us consider a rectangular cell consisting of four lumped elements
with a mesh current I. Applying mesh current law and Kirchhoff’s voltage

10



......................... 3.2. Construction of the admittance matrix

law (KVL) [21] on a circuit composed of multiple rectangle cells, leads to
the impedance matrix Z. Mesh current method leads to a small amount of
equation, i.e., the small size of the impedance matrix Z. But the method
cannot evaluate circuits with current sources.

Second, consider a single lumped element with a current I. Application
of the Kirchhoff’s laws clearly leads to the impedance matrix Z. With this
approach the analysis of any circuit is possible. This approach is similar
to the conventional MoM applied in the antenna design. But the method
leads to a big amount of equations.

The last consideration belongs to a voltage node with a voltage V . As-
sume that nodes are connected with an arbitrary admittance Y . Applying
branch current method with Kirchhoff’s current law (KCL) [21] on a circuit
with N nodes leads to the N × N admittance matrix Y. The assembly
algorithm is relatively straightforward to implement, but the method cannot
analyze circuits with a voltage source. A modified version of this method is
used in many circuits simulators [21]. For purposes of this thesis, the node
oriented system has been chosen since the construction of the admittance
matrix is straightforward.

3.2 Construction of the admittance matrix

Consider a circuit with N nodes. In general, node-voltage equations can be
written in matrix form. For any node m, KCL states∑

n 6=m

Ynm(Vm − Vn) = 0, (3.1)

where Ynm is the sum of the admittances between nodes m and n, and Vm is
the voltage at m-th node. The equation (3.1) further implies

0 =
∑

n6=m

YnmVm −
∑

n6=m

YnmVn = YmmVm −
∑

n6=m

YnmVn, (3.2)

where Ymm is the sum of all admittances connected to node m. The first
term contributes linearly to the node voltage via Ymm, while the second term
contributes to each node n connected to the m node. Assuming a current
source Im is connected to the m-th node, (3.2) is generalized to

Im = YmmVm −
∑

n6=m

YnmVn, (3.3)

11



3. Circuit analysis ....................................
which is a matrix equation in the form YV = I. The matrix Y is singular.
The reference (ground) node is considered to be the last node, i.e., VN = 0.
The admittance matrix Y becomes non-singular after discarding the corre-
sponding column and the row. The rest of the admittance matrix Y remains
the same.

K

J

(a) : A graph composed
of N = KJ voltage nodes
(red) and one ground node
(black).

(b) : Sparsity pattern of the adjacency
matrix A of a grid graph.

Figure 3.3: A grid circuit represented as a graph (left) and sparsity pattern
of the adjacency matrix A of a 4× 4 grid graph (right).

Furthermore, let us assume a grid circuit of an arbitrary size. Any circuit
can be considered as an graph G = (V,E) [22]. Figure 3.3a presents a grid
graph G with N = JK + 1 vertices and J(K − 1) + (J − 1)K edges. The ad-
mittance between two nodes is considered to be a weight of the corresponding
edge, i.e., wij = Yij . The adjacency matrix A of the undirected weighted
graph G is defined as

Aij =
{
wij if there is some edge {vi, vj} ∈ E,
0 otherwise.

(3.4)

For every node vi ∈ V , the degree d(vi) of the node vi is the sum of weights
of the edges connected to node vi

d(vi) =
N∑

j=1
wij . (3.5)

The degree matrix D is defined as

D = diag(d(v1), · · · , d(vN )). (3.6)

Since the uniform grid is considered as an initial topology, the maximum
number of connections to one node is limited to four. Then, the adjacency
matrix A of the graph is sparse and has a specific form, see figure 3.3b. Notice
that the matrix entries above diagonal and further from diagonal present
the horizontal and vertical connections in the graph, respectively.
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.....................3.3. The elementary perturbation in a circuit topology

Consequently, the admittance matrix of an arbitrarily sized grid circuit
can be constructed as follows

Y = D−A. (3.7)

Diagonal entries of the admittance matrix Y are equal to the total sum of all
admittances connected to the corresponding node. Non-diagonal entries show
an interaction between two nodes, i.e., the value of admittance between two
nodes. Furthermore, the connection of an impedance between a node and
ground node modifies only corresponding diagonal entry of the admittance
matrix Y.

This reduction to the graph representation allows the effective construction
of an admittance matrix for an arbitrarily sized grid network. Furthermore, it
is possible to distinguish horizontally and vertically placed lumped elements.

Impedance matrix Z fully describes a circuit and with appropriately de-
fined feeding current vector I, voltage vector V is computed. As compared
to the antenna design [4], [5], [6], where admittance matrix Y and appropri-
ately defined feeding voltage vector V are used to evaluate current vector I.
Consequently, algorithmic properties are the same.

3.3 The elementary perturbation in a circuit
topology

In this section, the possible elementary modifications in a node-oriented grid
network are considered.

3.3.1 Change of the admittance between two nodes

The first relevant elementary modification is a replacement of the admit-
tance Ymn by the admittance Y mn between the m-th and the n-th node [13],
see figure 3.4. Let us suppose that the admittance matrix Y of the system

Ymnm n
Y mnm n

Figure 3.4: Modification is performed by changing the admittance between nodes.
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3. Circuit analysis ....................................
was constructed and node-voltages vector V computed, i.e., V = Y−1I = ZI.
Afterwards, the network is perturbed appropriately. The admittance ma-
trix Ynew of the altered network is expressed as

Ynew = Y−UDUT, (3.8)

where U is a projection matrix, which consists of the columns of the identity
matrix comparable to the modified nodes, and D is

D = d

(
1 −1
−1 1

)
, d = Y mn − Ymn. (3.9)

Consider the modification between the first and second node. The admit-
tance Y12 is to be removed. This removal corresponds to the definition of a
lumped element

Y0 = 1
Z∞

, (3.10)

where Z∞ is the impedance with infinite value, and Y0 is the admittance
with zero value. Then, the form UDUT is given by

UDUT =


1 0
0 1
0 0
...

...


(
−Y12 Y12
Y12 −Y12

)(
1 0 0 · · ·
0 1 0 · · ·

)
. (3.11)

The example above is called node-oriented modification [23]. Note that
the original admittance matrix of the network is modified at four positions
and the corresponding impedance matrix Znew of the modified structure
is a N × N matrix (N is the number of nodes). Consequently, this type
of modification will not dynamically change the size of the impedance matrix
Z.

3.3.2 Connection of a node to the ground node

The second possible elementary modification is the connection of m-th node
to the reference (ground) node. We claim that the connection to the ground
node corresponds to the introduction of a lumped element

Y∞ = 1
Z0
, (3.12)

where Y∞ is the admittance with infinity value and Z0 is the impedance
approaching zero value. Assume that the set Σ of the nodes is connected
to the ground node. Then, the correction term YC is given by

YC = CΣY∞CT
Σ , (3.13)

14



.....................3.3. The elementary perturbation in a circuit topology

where the matrix CΣ is defined as

Cnn,Σ =
{

1 n ∈ Σ ,
0 otherwise,

(3.14)

and where the columns containing only zeros are discarded. Consequently,
the admittance matrix Y becomes

Y = Y + CΣY∞CT
Σ . (3.15)

This “removal” procedure for n ∈ Σ = {m} is illustrated in figure 3.5.
The number of DOF of the system is reduced by one, since the connection
to the ground node zeros the voltage Vm, which leads to the impedance
matrix Z = Y−1 in which the m-th row and column have been zeroed, see
figure 3.5. All other entries are modified according to the formula further
described. This is a very favourable feature to accelerate all the underlying
matrix algebra since it is basically dependent on N . The inversion of Y can

m

Z11 Z12 · · · 0 · · · Z1N

Z21 Z22 · · · 0 · · · Z2N

...
... . . . ... . . . ...

0 0 · · · 0 · · · 0
...

... . . . ... . . . ...
ZN1 ZN2 · · · 0 · · · ZNN





Figure 3.5: Illustration of connection the m-th node to the ground with corre-
sponding modification of impedance matrix Z.

be evaluated by the SMW formula, described in section 2.2.1. Its application
to (3.15) gives

Z = Y−1 = Y−1 −Y−1C
( 1
Y∞

1D + CTY−1C
)−1

CTY−1, (3.16)

where 1D is an D×D identity matrix. Using the limit Y∞ →∞ and Z = Y−1,
(3.16) is simplified to

Z = Z− ZC
(
CTZC

)−1
CTZ. (3.17)

Although a matrix inversion is still required, the impedance matrix Z is
calculated only once at the beginning and an inversion of a D ×D matrix
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3. Circuit analysis ....................................
is performed individually. The outer matrix multiplication might be imple-
mented as computationally cheap indexing, e.g., in MATLAB [20], (matrix C
contains only a single non-zero entry). Let us consider a single node (D = 1)
to be removed. The formula (3.17) can be simplified to

Z = Z− znzT
n

Znn
, (3.18)

where Znn is the n-th diagonal element of the impedance matrix Z, zn is
the n-th column of impedance matrix Z. The formula (3.18) modifies elements
in the impedance matrix Z so that the voltage in the n-th node is zeroed and
all interaction with this node is eliminated, i.e., the n-th row and the n-th
column of impedance matrix Z is zeroed.

Finally, let us consider an initial grid circuit (with N nodes) fed by a single
current source at f -th node

If = [0 · · · I0 · · · 0]T , (3.19)

where I0 is the feeding current. This current source generates a corresponding
voltage vector

Vf = ZIf . (3.20)

Assume that n-th node is connected to ground. The perturbed voltage
vector V fn is computed using equation (3.18) and (3.20)

Vfn = ZIf =
(

Z− znzT
n

Znn

)
If = zfI0 −

Zfn

Znn
znI0 = Vf + ξfnVn, (3.21)

where
ξij = −Zij

Zjj
, (3.22)

and where subscript denotes the position in the impedance matrix. Equa-
tion (3.21) shows that node removal, i.e., connecting to the ground node, is
equivalent to a two-node feeding via

If = [0 · · · I0 · · · ξfn · · · 0]T , (3.23)

which forces zero voltage on the n-th node.

Equation (3.21) allows the alignment of removals of all nodes into a matrix

VfΓ− = [Vf + ξf1V1 · · · Vf + ξfN VN ], (3.24)

where Γ− = {1, · · · , f − 1, f + 1, · · · , N} denotes a set of nodes to be re-
moved one by one. Since Vff is identically zero, it is not a part of the set.
For compact notation, we will only use VfΓ− ≡ VfΓ− .
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.....................3.3. The elementary perturbation in a circuit topology

3.3.3 Disconnection of a node from the ground node

The disconnection of a node from the ground node, i.e., node addition, is
introduced by further applying the block-wise matrix inversion. Consider
a set of already removed nodes denoted as Σ−. Then, the information about
these nodes is included in the admittance matrix Yinit for the initial circuit
topology, which has been preserved. Assume that ya is a column vector,
which corresponds to the a-th node, which is to be added. Hence, the new
admittance matrix is

YNEW =
(

YOLD ya

yT
a Yaa

)
, (3.25)

where YOLD is admittance matrix for actual topology and Yaa is a-th di-
agonal term in initial admittance matrix. The goal is to deal only with
the impedance matrix Z. Hence, the inversion-free formula is employed.
According to the block-wise matrix inversion, see section 2.2, the updated
impedance matrix of the circuit is defined as

ZNEW =
(
YNEW

)−1
= 1
ya

(
yaZOLD + ZOLDyaxa −ZOLDya

−xa 1

)
, (3.26)

where

xa = yT
a ZOLD,

ya = Yaa − xaya.
(3.27)

The block-wise matrix formula demands that the node added must be the last
one. Consequently, sorted impedance matrix is

ZNEW
sort = CT

a ZNEWCa, (3.28)

where Ca is a permutation matrix defined as

Ca,mn =
{

1 n = Σ−(m),
0 otherwise,

(3.29)

and where Σ− is a set of target indices. Permutation matrix Ca provides
a correct ordering and is easy to implement. Furthermore, entries in voltage
vector V are also modified as

VNEW = ZNEW
(

IOLD

INEW

)
. (3.30)

Since the number of current sources is fixed and the node, which is fed
by one source, cannot be removed, the vector INEW is identically zero and
formula (3.30) is further reduced to

VNEW = 1
ya

CT
a

(
yaVOLD + ZOLDyaxaIOLD

−xaIOLD

)
, (3.31)
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3. Circuit analysis ....................................
with the auxiliary variables defined in (3.27).

This formulation also allows for the accumulation of all possible nodes
addition into a matrix VΓ+ , where Γ+ denotes a set of all possible node
addition.

3.4 Topology optimization

Topology optimization is a method which addresses a fundamental engineering
problem stated as follows: How to place material within a design domain
in order to obtain the best performance? Originally, this concept was invented
for mechanical problems but has spread to other physical disciplines, e.g.,
acoustics or electromagnetics.

For purposes of this thesis, the node-oriented circuit system was chosen.
Hence, an objective function p [24] will be explicitly dependent on the voltage
vector V, i.e., p = p (V). In general, a topology optimization problem can be
written as: For a given admittance matrix Y ∈ CN×N , objective function p,
constrains Gi, Gj and a given current vector I, find a vector g such that

minimize p(g)
subject to Gi(g) = pi

Gj(g) ≤ pj

YV = I
g ∈ {0, 1}N ,

(3.32)

where the vector g denotes a set of enabled (gn = 1) and disabled (gn = 0)
nodes, respectively. Since the observables are power-base quantities, some
metrics, say p, are quadratic-dependent on voltage and can be expressed
via quotients of the quadratic form [9] as

p(V) = VHAV
VHBV , (3.33)

where H denotes Hermitian transpose and matrices A, B are general matrix
operators. A question of how much a metric p changes after performing
a small perturbation is investigated. The formula (3.24) readily provides
an answer. The effect of all individual removals or additions is computed as

p(VfΓ±) = diag
(
VH

fΓ±AVfΓ±

)
� diag

(
VH

fΓ±BVfΓ±

)
, (3.34)

where symbol � denotes the Hadamard division [25]. The topology sensi-
tivity τ (p,Ω) then measures the sensitivity of studied metric with respect
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................................ 3.4. Topology optimization

to small topological changes. The topology sensitivity [4] is defined as

τ (p,Ω) = p(VfΓ±)− p(Vf ) ≈ ∇p(Vf ). (3.35)

Note that, the topology sensitivity is defined generally, hence, it works
in the same way both for the removal and the addition of a node. The removals
or additions are performed as long as a node with negative topology sensitivity
τ (p,Ω) occurs, i.e., as long as an improvement of the structure exists.

The computation scheme for adjusting a shape in order to get a minimum
of the objective function p can be understood as a discrete version of a gradient
algorithm. Although this definition does not ensure convergence to the global
minimum, its computational cost is reasonably low [26]. The gradient-based
algorithm described above is further implemented in the next chapter. Since
many problems have multiple optima, it would be more convincing to imple-
ment global optimizer and let it cooperate with the gradient one, which is
considered as a local step, but this approach is out of the scope of this thesis.

19



20



Chapter 4

Implementation

In this chapter, the implemented algorithm based on methods developed
earlier is presented. A subsequent section employs the implemented algorithm
in two examples.

The optimization algorithm is implemented in MATLAB [20]. MATLAB
provides an efficient implementation of matrix manipulations, thus, developed
procedures can be fully vectorized, i.e., scripted loops can be eliminated.
This provides a considerable speed-up as compared to the loop-based code.

The flowchart of the implemented algorithm is depicted in figure 4.1.
Firstly, the properties of a circuit, e.g., size, load, feeding current vector I,
are specified. System matrix of a circuit, i.e., admittance matrix Y, is
constructed. Subsequently, the computation of impedance matrix Z and
node voltage vector V is performed. Furthermore, the effect of all node
removals and addition (one by one) on the node voltage vector is accumulated
to matrices VfΓ− and VfΓ+ . Topology sensitivity is evaluated afterwards
with respect to desired objective function p, which is to be minimized. Each
removal or addition is then represented by one entry in vectors τΓ− and τΓ+ . If
both vectors contain only non-negative entries, a local minimum of an objective
function was found and optimization is terminated. If the termination criterion
is not fulfilled, the vectors are compared and it is decided what action is to
be performed i.e., the node removal or addition. Consequently, impedance
matrix Z is updated by inversion-free formulas. Corresponding node voltage
vector V is included in matrices VfΓ− and VfΓ+ , thus, re-computation is
not necessary. Afterwards, the algorithm is looped and all preceding steps
are evaluated until the minimum is reached.
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Circuit specification

Construction of Y
→ Computation of Z = Y−1, V topoRemove and topoAdd

Topology sensitivity

min{τΓ− , τΓ+} ≥ 0

τΓ− < τΓ+

Optimization completed

updateRemove updateAdd

Z,V

New shape

Initial
shape

VfΓ− , VfΓ+

τΓ− , τΓ+

False

True False

True

Figure 4.1: Flowchart of implemented algorithm.

4.1 Current divider

Consider an initial resistive circuit in a form of a mesh of R = 1 Ω resistors
and let us construct a current divider from it with current ratio

k = Iout/I0, (4.1)

where Iout and I0 is current flowing through the load and source, respectively.
The objective function p is defined as

p =
∣∣∣∣Iout
I0
− k

∣∣∣∣ , (4.2)

which is to be minimized. The initial setup of the grid circuit with load
RL = 1 Ω and optimized circuit by the algorithm described in the previous

22



................................. 4.2. Impedance matching

Iout

I0

I0/1000

I0

Figure 4.2: Initial topology of a 4 × 4 circuit (left) with edges representing
conductance G = 1 S. Circuit is optimized (right) to obtain current divider
with current ratio k = 1/1000. Black dots depict grounded nodes, red dots depict
active nodes and blue dots depict once removed nodes, which were added back
to the mesh.

section are depicted in figure 4.2 reduced to theirs graph representation. If
the denominator of the current ratio (4.1) is rising, the number of iteration,
i.e., modification, is most likely to be higher, since the unnecessary current
has to be drained.

The optimized circuit was simulated in a commercial circuit simulator
Micro-Cap [27] to test the validity of the proposed implementation. Fig-
ure 4.3 shows that the initial topology was optimized so as to realized current
ratio k = 1/1000.

4.2 Impedance matching

The topic of impedance matching is often part of the larger design process
for a microwave system. Figure 4.4 illustrates the basic idea of impedance
matching, which is a placing matching circuit between a transmission line (or
another network) and a load impedance. The matching circuit is to be lossless
in order to avoid loss of power and is designed so that input impedance is
Z0. Consequently, reflection coefficient [28] is zero. If a load impedance is
matched to the transmission line, maximum power is delivered to the load.

The matching circuit can in many cases be realized as a mesh of reactances,
which is well adapted to the optimization procedure proposed in this thesis.
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Figure 4.3: Simulation of the optimized current divider in Micro-Cap.

Matching circuit

Z0

Z0 ZL

Figure 4.4: A lossless circuit matching a load impedance to the transmission line.

The objective function p is defined as

p =
∣∣∣∣1− |Zin|

|Z0|

∣∣∣∣ , (4.3)

where input impedance Zin seen by a current source connected to f -th node
is expressed as

Zin = VHYV
|If |2

, (4.4)

where If is a feeding current at the f -th node.

Consider a reactive network that matches load impedance ZL = 100 Ω
to the transmission line with impedance Z0 = 50 Ω. Figure 4.5 presents
the grid circuit, which consists of ideal lumped elements, i.e., lossless inductors
and conductors, and which has been optimized to match load impedance.
Note that the second node was removed and further added back to the set.
Addition of the second node move the input impedance of the circuit closer
to the matched one, see red line in figure 4.6. The algorithm ends with input
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Z0 = 50 Ω ZL = 100 Ω
Zin

Figure 4.5: The optimized matching circuit connecting the ZL = 100 Ω load
to the Z0 = 50 Ω. The reactances of underlying inductors and capacitors are
XL = 31.4j Ω and XC = −159j Ω, respectively. Black dots depict grounded nodes
and blue dots depict removed noded, which were added back to the network.

impedance Zin in the middle of normalized smith-chart, see figure 4.6, which
corresponds to Zin = 50 Ω. Concretely, The input impedance was optimized
to the value Zin = 50− 0.10j Ω.

Assume now, that capacitive reactances XC = −159j Ω are not available
and instead, capacitive reactances XC = −79.5j Ω are at hand. Is it possi-
ble to provide matching with these new reactances? Figure 4.7 shows the
answer. If the value of capacitive reactance varies the algorithm traverse
a different path in the solution space which typically contains many local
minima of the objective function. Since the implemented algorithm is a local
optimization algorithm, once it finds a local minimum, it terminates, ignoring
that better minima might be available. Employment of a global optimiza-
tion algorithm and alteration of admittances in the network would be more
convenient, but this approach is out of the scope of this thesis.
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Figure 4.6: Input impedance Zin of the circuit in each iteration of the algorithm
plotted in normalized smith-chart. Removal and addition of a node is depicted
by the blue and red line, respectively.
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Figure 4.7: Resulting input impedance Zin after optimization procedure found
a local minimum. The horizontal axis shows a capacitive susceptance used.
Green dashed lines depicts an acceptable solution.
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Chapter 5

Conclusion

An optimization scheme was proposed to optimize an arbitrarily sized grid
circuit with regards to determined criteria and constraints. The node removal
and the node addition in the node-oriented circuit were derived and used
for the fast computation of the topology sensitivity. Due to the employment
of the inversion-free formulas and the favourable properties of the smallest
modification of circuit topology, the computational complexity of the opti-
mization routine was tremendously reduced. The implementation also heavily
employs vectorization for which the presented formulations are well-suited. A
gradient-based algorithm was employed to synthesize locally optimal circuit
topology. This approach was demonstrated in two examples, which can be
found in the attachment of this thesis.

In circuit synthesis, the defined elementary modification, i.e., connec-
tion/disconnection of a node from the reference node, is a strange operation
with questionable practical impact. The proposed procedure is more likely
to be called proof of concept since a rough prototype of a new idea was
constructed in order to demonstrate its feasibility.

Future work will aim at the complete redefinition of the system and the
elementary modification. A single impedance will be probably used as a basis
function and a current flowing through the impedance as a primary quantity.
This approach will hopefully have a bigger practical impact since its concept is
brought nearer to the classical 2D method of moment paradigm. Incorporation
of a gradient-based algorithm into global optimization routines, e.g., genetic
algorithms, shall be done. Since the global methods overcome local extremes
to find the global optimum.
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