
_lil
1U1••

ZADÁNí BAKALÁŘSKÉ PRÁCE

I. OSOBNí A STUDIJNí ÚDAJE

Jméno: Ondřej Osobní číslo: 466267Příjmení:

Fakulta/ústav:

Kratochvíl

Fakulta elektrotechnická

Zadávající katedra/ústav: Katedra počítačů

Studijní program: Otevřená informatika

Studijní obor: Software

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:-- -
Continuous Delivery on the Salesforce Platform

Název bakalářské práce ~nglicky:

Pokyny pro vypracování:
Salesforce system and its platforms are widely used by many corporate and non-profit
organizations. Applications on these platforms can get large and with standard Application
Lifecycle Management it is time consuming to develop, test, deploy and maintain these
applications. It is common that Salesforce apps are not integrated into any version control
system, because the source of truth is designed to be production org [3]. Another frightening
fact is that all of the migrations are done manually by developers, who need to track
somehow all the changes. [1,2]
Aims of the thesis:
Study the metadata source on the Salesforce Platform.
Analyse methods of metadata migration between Salesforce instances.
Analyse requirements of application lifecycle management on this platform.
Research existing solutions for Continuous Delivery on this platform.
I Study the new technology Salesforce DX.
Implement application lifecycle management on the Salesforce Platform, including
version control integration and automatize testing.
Evaluate the usability of the process and suggest improvements.

Seznam doporučené literatury:
1. David Farley, Jez Humble: Continuous Delivery: Reliable Software Releases through
Build, Test, and DeploymentAutomation, Addison-Wesley, 2010, ISBN 978-0321601919
I 2. Michael J. Kavis, Architecting the Cloud: Design Decisions for Cloud Computing Service
Models (SaaS, PaaS, and laaS), 1st Edition, John Wiley & Sons, Inc., 2014, ISBN-13: 978-
1118617618
3. Apex Developer Guide. Salesforce, 2019, [cit. 2019-01-08]. Available at:
https:/ldeveloper.salesforce.com/docs/atlas.en-
us.apexcode. meta/apexcode/apex_ devJIuide.htm

CVUT-CZ-ZBP-2015.1 © ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2

Bachelor’s thesis

Continuous Delivery on the Salesforce
Platform

Ondřej Kratochvíl

Department of Computer Science
Supervisor: Ing. Jiří Šebek

May 23, 2019

Acknowledgements

I would like to express my gratitude and appreciation to my advisor Ing. Jiří
Šebek especially for his patience and motivation.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended,
in particular that the Czech Technical University in Prague has the right to
conclude a license agreement on the utilization of this thesis as school work
under the provisions of Article 60(1) of the Act.

In Prague on May 23, 2019 .

Czech Technical University in Prague
Faculty of Electrical Engineering
c© 2019 Ondřej Kratochvíl. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Electrical Engineering. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Kratochvíl, Ondřej. Continuous Delivery on the Salesforce Platform. Bach-
elor’s thesis. Czech Technical University in Prague, Faculty of Electrical
Engineering, 2019.

Abstrakt

Tato práce analyzuje současné procesy vývoje na cloudové platformě Sales-
force, popisuje co to jsou metadata a jaké jsou možné způsoby jejich migrace.
V další části se tato práce zabývá novou technologií Salesforce DX a jak těchto
změn využít v rámci návrhu aplikačního životního cycklu. Významnou součástí
práce je implementace skriptů a Java archivu, které umožňují automatizaci
vývoje. Na závěr hodnotí navrhnutý řešení a předkládá možná rozšíření.

Klíčová slova Salesforce, SFDX, PaaS, SaaS, vývoj, CI, CD

Abstract

This thesis analyses the current development processes on the Salesforce cloud
platform, describes what metadata are and what are the options for their
migration. Further, this thesis deals with the new technology Salesforce DX
and how to use these changes in the application lifecycle design. A significant
part of this work is an implementation of scripts and Java archive, which
allows development automation. Lastly, it comments the proposed solution
and provides possible future extensions.

Keywords Salesforce, SFDX, PaaS, SaaS, development, CI, CD

vii

Contents

Introduction 1
Aims of this thesis . 1
Structure . 2

1 Development on the Salesforce Platform 3
1.1 The Salesforce Platform . 3
1.2 Sandbox types and their roles 3
1.3 Metadata . 5
1.4 Project structure . 8
1.5 Current application lifecycle . 10

2 Analysis 13
2.1 Salesforce DX . 13
2.2 Continuous integration and delivery 14
2.3 Application lifecycle . 16
2.4 Automation server user roles 18
2.5 Solution deployment . 19

3 Realisation 21
3.1 Salesforce CI project . 21
3.2 Salesforce CI jar extension project 24

4 Configuration 29
4.1 Launch an AWS EC2 instance 29
4.2 Configure Salesforce CI . 31
4.3 Configure jobs . 33

5 Testing 37
5.1 Unit testing . 37
5.2 User testing . 37

ix

x CONTENTS

5.3 Test conclusion . 40

Conclusion 41
Implementation review . 41
Goals for the future . 42

Bibliography 43

A List of Abbreviations 47

B Contents of the attached CD 49

List of Figures

1.1 Salesforce platform overview . 4
1.2 Project structure of the current process 8
1.3 Current application cycle . 11

2.1 Continuous integration . 15
2.2 Application lifecycle . 16
2.3 Automation server user roles . 18
2.4 Deployment diagram . 20

4.1 EC2 instance type overview . 30
4.2 Create an EC2 instance overview 31

5.1 Converters code coverage . 37

xi

Introduction

Salesforce platform is a cloud computing platform as a service developed by
Salesforce, a company that specialises in customer relationship management. Its
growth and success lead us to many questions about development improvements
and simplifications on this platform. A platform as a service, in general, brings
many advantages; a developer does not need to deal with servers, infrastructure
and its security, and therefore can focus directly on his assignment [1, 2].

Salesforce made a significant step forward with the Salesforce platform
providing stable development tools and apps built on the top of it; however, the
development operations are far behind other modern technologies. Convenient
integration with any version control system is missing, and also to achieve a
mechanism of deploying changed and newly created metadata is impossible with
standard tools provided by Salesforce. Usually, all developers must remember
the metadata they created or modified during development so they can later
deploy them, and this fact causes severe problems and significantly prolongs
deployment phases.

Aims of this thesis

This thesis aims to analyse development, testing and deployment processes
on the Salesforce platform, including analysis of instance types, metadata and
their migration. The goal is to integrate the testing, deployment and release
activities into the development process. There must be little to no risk when
deploying to production, and therefore, not only the software must be tested
automatically and adequately but also the deployment itself must be tested,
before releasing it to production [3]. A significant part of this thesis should
be a solution which provides a practical solution that will simplify the whole
development process.

1

Introduction

Structure
Firstly, I would like to summarise the current development approach and

deduce difficulties it brings. This part will also contain a general description of
a project structure, metadata, instance types and deployment options. Then
follows an analysis of the solution. In this part, I would like to describe a
new technology called Salesforce DX and what it brings to us, put together
requirements for the solution and provide its design. In another part, I will
focus on the solution’s implementation and its configuration. Lastly, I will
review the solution’s advantages and disadvantages and list other problems to
solve to achieve a fully automatised development environment.

2

Chapter 1
Development on the Salesforce

Platform

There are several disadvantages to the current approach for the development
process, and the most severe is there is no integration with any version control
because the source of truth lives in production. Omitted version control is
very painful for both, admins and developers, and leads to inconvenience.
Every declarative change made directly in the production is not traceable
anymore. Moreover, if there is some serious bug deployed, there is no easy
and fast solution to revert. And many other advantages as pull requests and
automatised testing that version control brings are missing.

1.1 The Salesforce Platform
The Salesforce platform is the core of Salesforce services. The platform

is powered my metadata and other services and APIs such as data services,
artificial intelligence, and robust APIs for development. Salesforce provides
applications, such as Sales Cloud, Service Cloud and Marketing Cloud, that sit
on top of the platform. These apps are consistent with apps you build on the
platform. See visualization of the Salesforce platform and applications built
on it in figure 1.1.

1.2 Sandbox types and their roles
Sandbox is a Salesforce instance isolated from production org. Salesforce

provides several sandbox types with each for different purposes. Some of them
are lightweight to be fast and some of them contain a specified amount and
type of data for a different kind of testing. Every sandbox can be refreshed,
that means that the sandbox’s metadata are updated from its source org. Use
cases for each type can be seen in table 1.1.

3

1. Development on the Salesforce Platform

Figure 1.1: Salesforce platform overview [4]

• Developer Sandbox
The main purpose of this sandbox is isolated development and testing.
This sandbox contains a copy of all metadata from production.

• Developer Pro
This sandbox has a similar purpose as a basic Developer sandbox. De-
veloper Pro sandbox has a higher limit on data sets, so it can also be
used for integration and user testing.

• Partial Copy
Used mainly as a testing environment. Similar to Developer Pro sandbox,
but with a sample of production org’s data defined by a sandbox template.

• Full Copy
This sandbox is used as a testing environment because it is a full copy of
a sandbox containing all the metadata and all the data, so it is suitable
for performance testing, load testing, and staging [5].

Table 1.1: Sandbox Use Cases [5]

Use Case Developer Developer
Pro

Partial
Copy

Full
Copy

Develop yes yes yes
QA yes yes yes
Integration Test yes yes

4

1.3. Metadata

Table 1.1: Sandbox Uses
Use Case Developer Developer

Pro
Partial
Copy

Full
Copy

Batch Data Test yes yes
Training yes yes
UAT yes yes
Performance and Load Testing yes
Staging yes

1.3 Metadata
Metadata on the Salesforce system represents every customisation, every

metadata is of some type, and there are precisely 242 metadata types (Spring
’19 release) [6]. For example, there are metadata types such as CustomObject
and CustomField representing database objects, ApexClass and ApexTrigger
used for programmatical backend logic, Flow and Workflow which are produced
by declarative tools. For more examples see table 1.2.

Table 1.2: Metadata Types examples
Metadata Type Description
ApexClass Represents an Apex class, compiled after

deployment.
ApexPage Represents a Visualforce page.
ApexTrigger Represents an Apex trigger. Apex code

executed after specific DML event, e.g. be-
fore/after, insert/update/delete/undelete
events.

ApprovalProcess An approval process automates how
records are approved in Salesforce, contains
all approval steps.

AuraDefinitionBundle A bundle containing Aura definition and
its related resources.

CustomField Represents the metadata associated with
a field.

CustomLabel Represents label used for translations.
CustomObject Represents object entity definition
Dashboard Represents visualization of reports.
FlexiPage Represents the metadata associated with a

Lightning page, customizable screen made
up Lightning components.

5

1. Development on the Salesforce Platform

Table 1.2: Metadata Types examples
Metadata Type Description
Flow Definition of a flow, which can navigate

users through series of screens with capa-
bility to query and update records.

Profile A user profile to manage permissions.
Report Represents a custom report with specified

objects, report type, filter logic, grouping.
ValidationRule Represents rules to validate records before

they are saved.
Workflow Actions executed immediately or on a spe-

cific day when a record meets specified
criteria.

1.3.1 Metedata migration

Creation of metadata of specific metadata types directly in production is
forbidden for good reasons. There are few exceptions, for example, you can
create reports directly in production. Most of the metadata has to be created
either in a sandbox or a Developer Edition org. Then these metadata are
migrated to the production.

Before completing a metadata deploy, package install, or package upgrade
each Apex code is automatically recompiled.

You have many options how to migrate your metadata, each has its advan-
tages and disadvantages listed below. For each metadata migration approach,
you can see which metadata types are supported in the metadata coverage
report [6].

Change Set

The most straightforward approach to send customisations from one org
to another is Change Set. A Change Set is created using a declarative tool
accessible through the setup without a need for a local file system. The main
advantage of Change Sets is no knowledge is needed, using point and click
method selects all the desired metadata, another benefit is you can upload the
same Change Set into multiple orgs [5].

After the publishing org creates an outbound Change Set and uploads the
Change Set to subscriber org, this Change Set can be validated and deployed
using inbound Change Set again through the setup.

6

1.3. Metadata

Metadata API

Every Salesforce org provides Metadata API, which can be used for retriev-
ing, deploying, creating, updating and deleting metadata. This API is intended
for implementation of migration tools such as Ant Migration tool [7]. Almost
every customisation in Salesforce can be migrated through the Metadata API.
For customisations not available in Metadata API one must write down all
changes and recreate them in a target org manually.

Ant Migration Tool

Ant Migration tool provides file-based deployment of metadata changes
that is scriptable. When deploying a more massive amount of metadata
then the Change Sets can take a long time. A typical development process
requires iterative building, testing, and staging before releasing to a production
environment. Scripted retrieval and deployment of components can make this
process much more efficient [7, 8].

All you have to do is modified file build.properties with sf.user and
sf.password so the migration tool can connect to a target org. Once you
setup build.properties you can implement targets. Example of a target that
deploys metadata from a package called codepkg and runs only one test called
SampleDeployClass is in the listing 1.1.

If you need to repeat this process, it’s as simple as calling the same
deployment target again [9].

Code 1.1: Ant target example
<target name="deployCode">

<sf:deploy
username="${sf.username}"
password="${sf.password}"
serverurl="${sf.serverurl}"
deployroot="codepkg"

>
<runTest>SampleDeployClass</runTest>

</sf:deploy>
</target>

Unmanaged Package

An unmanaged package is simply a container of metadata that can be
deployed to any org instance. In comparison with the managed package, the
unmanaged package is not upgradable and is usually used to distribute open-
source projects or base functionality. The unmanaged package should not be

7

1. Development on the Salesforce Platform

used to migrate metadata from sandbox to production [10]. Once the package
is installed, all the metadata are part of the org, so all the metadata are visible
and can be updated, however, can’t be upgraded to a newer version.

Managed Package

As a Salesforce partner or an independent software vendor, you can create a
package called Manage Package, which can be distributed and sold to customers.
In comparison with the unmanaged package, the managed package can be
versioned and upgraded in a subscriber org [10]. Another benefit is that the
source code is hidden for subscribers. The code from the managed package
visible and available to call directly for subscribers are classes, methods and
attributes with the global access modifier [7].

1.3.2 Unsupported Metadata Types

Not all customisations you make in a Salesforce org is available through the
Metadata API. Components such as Console Layouts or Outlook Configurations
can’t be retrieved or deployed with the Metadata API, and changes to them
must be made manually in each of your organisations [11].

1.4 Project structure

The project structure is rather simple. Every project contains at least
some metadata files, package.xml and offline symbol table. See figure 1.2 for
directory tree visualization.

Figure 1.2: Project structure of the current process

offlineSymbolTable.........................dir with stub apex classes
src..dir with metadata source

[metadata type name]......................for each metadata type
[metadata name]..................................metadata file
[metadata name]-meta.xml...................metadata metafile

package.xml

1.4.1 Generated supportive classes for local development

The Offline symbol table are supportive Apex classes for programmatical de-
velopment in IDE, mainly for code completion, navigation and cross-referencing,
and integrated API documentation features. These stub classes are system
classes, entities called SObjects and all global classes with their declarations
of global methods and attributes from installed managed packages [12]. The

8

1.4. Project structure

offline symbol table is in general generated using some plugin, e.g. Illuminat-
edCloud. For a successful generation, a developer must have active connection
to some Salesforce org from which the classes are retrieved.

1.4.2 Metadata files

All the metadata files usually live in a directory conventionally named src,
and every metadata lives in a subdirectory named by its metadata type. This
directory structure is inconvenient because that means all metadata of one
type, for example, every file representing metadata type ApexClass lives in
one directory, i.e. every test class, service class, UI controller class are placed
in the same directory [13, 8]. This is caused by the fact that the project is not
versioned. At the beginning of every development, the metadata are retrieved
from the Salesforce org instance, and the org itself does not structure the
project metadata the way we do it on a local machine. So even if you create
a project structure at the beginning of a new project, new developers who
retrieve the metadata do not have this information.

What can be a little confusing is that some of the metadata files have
associated its metafile, for example, a metadata file of the type ApexClass
named ProductService.cls exists with a metafile ProductService.cls-meta.xml.
From the listing 1.2 we can see that metadata of type ApexClass has an
XML element apiVersion, specifying the Salesforce API version, and status
whether the class is active or not. Another example a static resource metafile
shown in the listing 1.3 has contentType specifying type of the content, e.g.
application/javascript, text/plain, image/png, application/zip.

File package.xml belongs to the metadata source so in our project structure
is located in the src directory. This file is a project manifest specifying what to
retrieve or deploy. Sample package.xml can be seen in the listing 1.4. In this
example, we can see that metadata are grouped by metadata types in elements
<types> specified with an element <name>. To list concrete metadata add
another <member> element into specific type with its name as an inner text.
Some metadata types such as CustomObject allows wildcard * (asterisk) for
all metadata instead of listing each one.

Code 1.2: Example of an apex class meta file
<?xml version="1.0" encoding="UTF-8"?>
<ApexClass xmlns="http://soap.sforce.com/2006/04/metadata">

<apiVersion>45.0</apiVersion>
<status>Active</status>

<ApexClass>

9

1. Development on the Salesforce Platform

Code 1.3: Example of a static resource meta file
<?xml version="1.0" encoding="UTF-8"?>
<StaticResource xmlns="http://soap.sforce.com/2006/04/metadata">

<cacheControl>Public</cacheControl>
<contentType>application/javascript</contentType>

</StaticResource>

Code 1.4: Sample package.xml manifest
<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>*</members>
<name>CustomObject</name>

</types>
<types>

<members>MyCustomObject__c.MyCustomField__c</members>
<name>CustomField</name>

</types>
<types>

<members>Case.samplerule</members>
<members>Lead.newrule</members>
<name>AssignmentRule</name>

</types>
<version>45.0</version>

</Package>

1.5 Current application lifecycle

Applications on Salesforce platforms can get large, and with standard
Application Lifecycle Management, it is time-consuming to develop, test,
deploy and maintain these applications. It is common that Salesforce apps are
not integrated into any version control system or are integrated, but the content
of the system differs from production org, because it is hard to maintain them
to be equal. The production org was designed to be the source of truth and that
is the key problem. Another frightening fact is that all of the migrations are
done manually by developers, who need to track somehow all the changes. This
process significantly prolongs the deployment and furthermore, it is impossible
to test the deployment itself.

Current development cycle has usually four phases. The first phase be-
gins with the creation of isolated Developer sandbox for each developer for
implementation and unit testing. This sandbox has no production data. The
second phase is a build release phase. Every customisation is migrated to a

10

1.5. Current application lifecycle

shared Developer Pro sandbox for integration. This sandbox also does not have
any production data, but testing data can be imported if necessary. Another
phase is user acceptance testing in a Full Copy sandbox with production data.
After successful testing, all metadata from the previous phase are migrated
to production. The figure 1.3 illustrates all the phases [5, 14]. Note that this
cycle is simplified for demonstrative purpose only and can differ from project
to project, because every project has different need for testing.

Figure 1.3: Current application cycle [15]

11

Chapter 2
Analysis

This chapter examines a recent technology Salesforce DX, what are the
changes it brings and what it means for our continuous delivery process. Later,
I will move on to explain what are our goals, how a possible solution to achieve
them could look like, analyse the solution and provide its design.

The solution is generally useful for every developer and administrator on the
Salesforce platform, who is responsible for source quality, its maintenance and
deployments. The main goals are to achieve a reliable process of development,
testing, deployment and maintenance.

2.1 Salesforce DX

Salesforce DX is a relatively new technology. It is a released product;
however, a lot of its features are still under development. This technology
by Salesforce is changing the game of continuous delivery on the Salesforce
platform. Many benefits come with Salesforce DX, especially changing the
source of truth from production org to a version control system, Scratch Orgs
and CLI.

2.1.1 Version control system

The main distinction between standard development and development with
Salesforce DX is changing the source of truth. Salesforce developers usually
pull metadata from a Salesforce org, and that is the project and metadata
with which they work. It is not common to use a version control system for
collaboration and maintaining a project, because, with time, the content of a
version control system sooner or later differs from real metadata in production.

With Salesforce DX, the source of truth is in a version control system, and
this fact opens new options. One of the favourable possibilities is to enhance
the project directory structure. From section 1.4.2, we know that metadata

13

2. Analysis

files are grouped by their type; this can now be changed because the metadata
are versioned with their structure.

Also, many metadata types are now parsed into separate files. Take a
look, for example, on the SObject metadata file, in the standard format, this
file contains all the SObject’s information, including fields, list views, record
types and many others. Now, all these children metadata types are parsed
into separate files that makes it much simpler to automatise builds of these
types, because they are easily visible in the git diff-tree result.

The more important benefit is that the whole project can be reverted to
some point in its history in case of an application failure. This rollback is not
possible in standard development, because the Salesforce org does not make
any versions. We can configure continuous delivery with some automatisation
server and webhooks to go even further. The automatisation server can provide
many benefits such as automated build, test and deploy.

2.1.2 Scratch Org

A Scratch Org is a new type of Salesforce Org. Till now, we did not
have any fully isolated and lightweight environment. A scratch org is entirely
configurable, from choosing Salesforce edition to allowing different features
and preferences. Every scratch org is defined by its configuration file, which
can be shared even through a version control system [16].

A user needs a connected DevHub and a scratch definition file to create a
scratch org. A DevHub is an ordinary Salesforce Org with activated DevHub
mode and limits for active scratch orgs and daily scratch org creation.

A scratch org is useful for many purposes. In our process, we will use
scratch orgs for two use cases, as an isolated development environment and for
automatised testing.

2.1.3 Command line interface

Salesforce comes up with the command line interface to add some scripting
options for automatisation. This interface has many features, from creating
scratch org, authorise an org for use with the Salesforce CLI, manipulate records
in an org, retrieve and deploy metadata using Metadata API, synchronise a
project with scratch org and perform user-related admin tasks.

2.2 Continuous integration and delivery

Continuous integration and delivery are modern development practices.
Together, these approaches provide a better system that find bugs quicker,
improve quality, automatise testing and reduce the time taken to deliver the
software.

14

2.2. Continuous integration and delivery

2.2.1 Continuous integration

Continuous integration is useful for many reasons. Without continuous
integration, the developers implement new features in an isolated environment
for some time which leads to complicated and time-consuming merging and
also bugs are usually detected late. To solve this problem, developers merge
their work into a central repository more often, and integration service is being
configured to built and run unit tests automatically [17]. This service is usually
triggered by a version control service, for example by the BitBucket through a
webhook, which execute jobs to built and run tests. The continuous integration
is visualised in figure 2.1.

Figure 2.1: Continuous integration [18]

2.2.2 Continuous delivery

Continuous delivery is built on the top of continuous integration. To
configure continuous delivery, we already need to be sure that continuous
integration works as expected. When properly configured, every code change
is built, tested and pushed to a staging environment. The code is deployed to
production after a human approves it.

If continuous delivery works excellently and human interaction is, in most
cases, not needed at all, we can go even further and implement continuous
deployment. The only difference between continuous delivery and deployment

15

2. Analysis

is need of human interaction; the former requires someone to approve the
deploy, the latter deploys code to production automatically [19].

2.3 Application lifecycle

In this section, I will focus on how possible application lifecycle and
branching strategy could look like when developing on the Salesforce platform
with Salesforce DX. As always, I will try to propose the best possible solution,
that can be used for the majority of projects.

Scratch orgs are great, but we do not forget traditional sandboxes. Both
of these orgs have their purpose. Scratch orgs are great for development, unit
testing, automatised testing and for quality assurance, as explained in section
2.1.2. On the other hand, traditional sandboxes such as Developer Pro, Partial
Copy or Full Copy sandboxes are great for staging testing, user acceptance
testing and training. In figure 2.2, we can see each purpose associated with
some org type. This designation is not final for sandboxes, because of the
projects differences. For example, think about a project that needs performance
testing, the Full Copy sandbox is eligible for this purpose so we would see
another testing before production.

If we compare this flow with the cycle from section 1.5, we will see that the
most significant distinction is mainly in development and QA. That is because
we have used the new scratch orgs for this purpose, which is fully isolated,
disposable and created from source.

Figure 2.2: Application lifecycle

2.3.1 Branching strategy

Salesforce and Salesforce developers came with a lot of branching strategies,
and every single one of the has some positives and negatives. The branching

16

2.3. Application lifecycle

strategy can differ from project to project. Different projects also require
different types of testing, such as QA, UAT, SIT, staging. So there is not a
universal solution to every project.

One of the conventional approaches is to have a master branch, which
reflects production, a develop branch, which reflects a persistent integrated test
sandbox and feature branches, which are then merged into the develop branch
before releasing [14]. This approach could be convenient for many developers,
but it has a significant disadvantage; every feature merged into the develop
goes into the master, so you cannot choose a feature, and everything in develop
goes to master. That is almost in every project unacceptable.

To avoid this problem, I came up with a strategy that every sandbox
would also be reflected as a separate branch in VCS. This method has another
benefit; a developer can clone a branch associated with the desired sandbox
and instantly see what the org contains. The only thing developers need to
bear in mind is, that when the sandbox is refreshed, he also need to update
the branch with content from the production branch.

2.3.2 Development flow

In this section, I will go step by step how the developer should proceed.
This guideline contains instructions from the creation of a feature branch to
its merging to QA branch.

1. The developer creates a new temporary branch out of the master branch.
This branch servers only for one purpose only; it can be feature, bugfix,
hotfix, and should exist only for a few hours.

2. The developer creates a scratch org for development and works with
metadata from that branch.

3. The developer runs unit tests in the scratch org.

4. The developer commits the change and publishes his branch in the central
repository.

5. The developer raises a pull request to a new branch prefixed QA.

6. The project responsible person does a code review.

7. If the review is in order, the pull request is merged into the new QA
branch.

2.3.3 Automatised flow

After a pull request is approved and merged to a branch prefixed with
QA, the hosting service for version control fires a preconfigured webhook. The
webhook is simple event containing information about the triggered repository,

17

2. Analysis

branch and commit. This webhook is configured to send an HTTP request that
triggers a job on the automation server, which pulls the source, creates a new
scratch org and pushes the source into the scratch org for quality assurance
testing. This step is identical for every project, and the following steps can
differ depending on testing processes. Also, we need to be aware of the fact that
the QA environment is a disposable scratch org and other testing environments
are shared sandboxes. The same applies to their branches, QA branches are
disposable and for one-time use only, on the other hand, the sandbox branch
lives as long as the sandbox is not refreshed.

To deploy changes to a sandbox, we merge the feature branch to the sandbox
associated branch. This merge also triggers a job on the automation server.
Now, because the sandbox already contains metadata, the jobs functionality
differs from the job for QA org. The automation server remembers the
last commit of a source that was successfully deployed to the desired org
and retrieves difference between this commit and head commit. From this
difference prepares a deployment package. The job can also automatically and
immediately deploy these changes, but for the beginning, it would not be ideal.
A person that is responsible for this deployment looks at the job’s result and if
everything is all right, manually clicks on the deployment job for this sandbox.

2.4 Automation server user roles

For our automation server, we need three user roles with different permis-
sions and access. The roles are hierarchical, i.e. a user with role higher in the
hierarchy has at least the same permissions as a user with role beneath him.
The three categories are developer, deployment responsible person and admin,
see figure 2.3.

Figure 2.3: Automation server user roles

18

2.5. Solution deployment

2.4.1 Developer

The developer is a role with fewest rights. This role allows access to the
automation server and does not have any create or edit rights. The purpose
of this role is mainly for viewing the job results and their log to see what
happened if something went wrong during build or deployment.

2.4.2 Deployment responsible person

The deployment responsible person role is an extension to the developer
role. It gives a user additional create and edit rights. This role is designated
for a user, that has more experience with Salesforce platform and metadata.
He is a supervisor of given builds and deployments and is the one who can add
new jobs for new projects, modify the current jobs and run deployment jobs.

2.4.3 Admin

Admin has full access to the automation server. He can modify other users
permissions and add new users.

2.5 Solution deployment

We need an automation server to automatise jobs such as a package build
of metadata for deployment, deployment itself and automatised testing. There
are many choices for this server, and I chose Jenkins, the explanation behind
this choice is in chapter 4. This automation server must be active every time
any action is needed. To achieve its availability, the Jenkins runs in a cloud.
Again, there are many options for choosing a cloud server. For demonstration
purposes, I decided to use AWS EC2, which is well documented and easy to
use, but there are no limitations to use any other cloud server.

The solution itself is divided into two parts; bash scripts and the Java
archive. Bash scripts serve as an interface for the automation jobs and depend
on the Salesforce DX CLI and the Java archive. The archive provides more
complex functionality, that would be impossible to implement in bash. Another
important fact is that Jenkins requires JRE version 8 and because the Java
archive should be implemented using modern Java, it requires JRE version 11.

The whole deployment is visualised in diagram 2.4. From the diagram, we
can see that the scripts are dependent on many Salesforce orgs. The scripts
need access to a DevHub so that the automation server can create scratch orgs.
Then they need access to the created scratch orgs to deploy metadata and
data for testing, and also they need access to the deployment target orgs. The
target org is nothing else than a standard Salesforce org, e.g. production or
sandbox. The access to the DevHub can be established manually once through
the Salesforce DX CLI because the CLI itself remembers the refresh token.

19

2. Analysis

To grant access to any new target org, we need to deploy the connected app,
which will generate a new client id. How to use this id and the JWT key file is
explained in chapter 4.3.1.

Figure 2.4: Deployment diagram

20

Chapter 3
Realisation

I decided to divide the solution into two projects. One project wraps the
functionality, and the other provides complex utilities. The former is written
in bash, so it offers easy to use scripts for CI/CD jobs. The latter is Java
project, whose result is java archive used by the bash scripts.

3.1 Salesforce CI project
Salesforce CI project is a core application for dynamic package creation,

Scratch Org creation, deployment and test automatisation. This project is
mainly written in bash and for more complicated tasks uses java archive
analysed in another section.

To use Salesforce CI, run a script called sfci that wraps the entire application.
This script supplies usage and recalls subscripts placed in the libs directory.
Each subscript is named with prefix sfci so all the scripts are independent
on other executable files. As mentioned all the scripts are called through sfci.
Usage is as simple as running sfci <command> [<args>].

3.1.1 Dynamic package build

The most essential script is sfci-package-build. This script is responsible
for dynamic package creation using git diff tree. It runs git diff-tree and filters
metadata files, so it will be possible for us to deploy only changed and new
metadata and destruct deleted metadata from any org. The result of this
operation is a directory with files to deploy, and their corresponding deployment
manifests.

21

3. Realisation

Parameters to run this script are listed below:

• API version
Optionally specify Salesforce API version for package manifest. By
default, API version is parsed from the DX configuration file sfdx-
project.json.

• Output directory
Build specific name, same build name is used for deployment. All package
metadata are saved in a directory "SFCI_HOME/builds/buildname"

• Two commit hashes
These two hashes are used for the difference in the project.

In the beginning, it converts all the DX source to Metadata API format
usgin sfci source-convert command in a temporary directory sfci-all-metadata.

Then is called git diff-tree which output is pipelined into our java archive
execution. The diff-tree runs recursively with parameters –no-commit-id and
–name-status so on each line is only a diff type and a path to a file [20]. We call
the jar with the package-build positional argument to specify that we want to
create a package. Also, we have to specify a metadata directory with our all
metadata, which is the temporary directory, an build name used as a directory
where the metadata and their manifests to be deployed will be saved.

To provide more flexibility we have to call the jar with parameters specifying
two git diff filters [20], one for deployment and one for destructive changes.

In the end, the temporary sfci-all-metadata directory is deleted.
Note that you must be in a valid DX project, have installed JRE 11 and

have Salesforce CI java archive to run this script.
Run sfci package-build –help for help.

3.1.2 Deployment

Deployment functionality is located in the script called sfci-deploy. To
successfully run deployment you must provide few parameters:

• Target username
The Salesforce org username or alias specifies against which org and
under which user the deployment is run.

• Build name
A path "SFCI_HOME/builds/buildname" is a directory with metadata
files and their manifests to be deployed.

• Client Id
Client Id string that is configured for the target org.

22

3.1. Salesforce CI project

• JWT key file path
Path to a JWT key file paired with the Client Id.

• Destructive changes strategy
Specify whether the script should deploy the destructive changes pre or
post.
By default, the script will omit destructive changes.

Firstly, it tries to authorise the target user with the Client Id and the
JWT key file. If it fails, no further changes are made. Otherwise, the script
prepares destructive changes by specified pre or post strategy or defaults to no
destructive changes. Then metadata are deployed using Salesforce DX CLI,
and every while pulls report status and parses results. When the deployment
is done, the report is printed to standard output in a human-readable format.

Run sfci deploy –help for help.

3.1.3 Last Commit hash manipulation

The sfci-last-commit script is responsible for manipulating last successful
build git commit hashes. It stores or get these commits located in a directory
"SFCI_HOME/builds/buildname".

• Commit to save
When saving a commit, you must implicitly specify which one.

• Build name
A unique identifier of the build. Usually a combination of a project name
and target org type, e.g. "My project UAT".

Run sfci last-commit –help for help.

3.1.4 Convert source

A script called sfci-source-convert encapsulates functionality to convert
a project from DX format to Metadata API format. Is searches the DX
configuration file sfdx-project.json, parses all package directories paths and
each directory converts. Note that you must be in a valid DX project to run
this script.

Provide these parameters to run this script:

• Output directory
A path to a directory where the converted files will be saved.

Run sfci source-convert –help for help.

23

3. Realisation

3.2 Salesforce CI jar extension project
The main bash scripts use the resulting jar from this project as a plugin. I

chose to avoid scripting languages and use Java programming language instead
because it is strongly typed and well-known for many programmers, so to add
support for other metadata is simple.

The primary purpose of this application is to provide more complex utilities.
One of the tasks is to consume git diff-tree result and prepare metadata and
its manifest for automatised deployment, which is vital for Continuous delivery
on Salesforce.

I focused on implementing a solution, that would be easily maintainable
and adding support for other metadata as straightforward as possible.

To ensure flexibility the main programme parses first positional argument
specifying which task to run. Every task is mapped to a class which implements
a Job interface, so the main thread has still control over execution. I am using
JCommander framework by Cédric Beust to parse parameters, "because life
is too short to parse command line parameters" [21]. See JCommander in a
PackageBuilderJob class in listing 3.1.

3.2.1 Resources

This project contains two necessary resources, one is a JSON configuration
file, and the other is a mapping of metadata file path to its type. The
configuration file describes all the metadata supported by this app, specifying
metadata type, directory name, file’s suffix, child types and optionally an
element name if it is a child of another metadata. To create this file, you need
to consume your org’s Metadata WSDL. The mapping file contains on each
line a mapping rule. Each mapping rule is a pair of a Java Regex pattern and
a metadata type joined with the equal sign character.

3.2.2 Package builder job

This job is responsible for git diff-tree consumption, filtering metadata
for deployment and creating deployment manifests, package.xml and destruc-
tiveChanges.xml. The app reads git diff-tree result from standard input and
iterates over it for both, deployment and destructive changes. For every
changed file the method converts the file into the package members and decides
whether the metadata file assigns to deployment or destructive changes.

This operation can result in these exceptions:

• MetadataNotSupportedException
This exception is thrown when the metadata is not supported by this
app.

• NoSuchMetadataConverterException

24

3.2. Salesforce CI jar extension project

Code 3.1: JCommander example in PackageBuilderJob class
@Parameters(separators = "=")
public class PackageBuilderJob implements Job {

@Parameter(names = {"--version"}, converter =
VersionConverter.class, required = true)

private Version version;

// directory containing all metadata
@Parameter(names = {"--metadata-dir"}, converter =

FileConverter.class, validateWith =
ExistingDirectoryValidator.class, required = true)

private File metadataDirectory;

// directory in which all the metadata
// with its manifests will be placed
@Parameter(names = {"--output-dir"}, converter =

FileConverter.class, required = true)
private File outputDirectory;

// A for Added, M for Modified (see git diff-filter)
@Parameter(names = {"--package-filter"}, listConverter =

FilterTypeConverter.class, required = true)
private List<FilterType> packageFilter;

@Parameter(names = {"--destructive-filter"}, listConverter =
FilterTypeConverter.class, required = true)

private List<FilterType> destructiveChangesFilter;

@Parameter
private List<String> args;

...
}

25

3. Realisation

Every metadata type requires its converter, and if the metadata type is
recognised and no converter for it exists, this exception is thrown.

• MetadataFilesCopierException
If deployment changes are being processed, the app must copy its corre-
sponding file to the deployment directory. This exception handles this
operation failure.

• MetadataConversionException
This exception handles unexpected failures, that can be the wrong im-
plementation of a converter.

Furthermore, if currently deployment changes are being processed, corre-
sponding metadata files are copied from the directory with all metadata to
the one designated for deployment. Finally, both manifests are saved to the
deployment directory and printed to standard output so they can be read in
console output on the automation server.

3.2.3 Metadata Converters

The package builder job currently supports many essentials metadata for
development. New metadata will be released sooner or later, so the app was
developed in a way that supporting new metadata is as simple as possible.
That’s where metadata converters take place.

All these converters extend an abstract class called MetadataConverter.
All the attributes of this class are listed bellow:

• protected @NotNull String dxFileName
Dx file name is the file name with its project relative path as returned
from git diff-tree.

• protected @NotNull String baseNameWithoutExtension
This is the base name of the file without its extension. This base name
can be parsed from the dxFileName; however, it is a separate attribute
to reduce code repetition because it is used by almost any converter.

• protected @NotNull Metadata metadata
This attribute is just a reference to the immutable metadata instance of
the file that is being converted.

• protected @NotNull File metadataDirectory
A path to a directory with all metadata of the project. This is for
example used by a WorkflowConverter, so that the converter can parse
all its children, e.g. WorkflowAlert, WorkflowFieldUpdate, WorkflowRule
from the metadata file.

26

3.2. Salesforce CI jar extension project

To package members method

To answer a question why the converters are vital. That is because they
contain two similar methods; one that converts a metadata file to a package
member for deployment and the other that converts it to a destructive changes
member. To fulfil these requirements, every converter must implement two
methods:

• toPackageMembers

• toDestructiveChangesMembers

Metadata support

To add support of another metadata is simple. Just create a new class
named as metadata type suffixed with Converter in the converters package
that will inherit from the MetadataConverter class and implement its abstract
methods, and you are ready to go.

That is because all the converters are instantiated dynamically via Metadat-
aConverterFactory. The newInstance factory method concatenates metadata
type with Converter and instantiates the converter as "(MetadataConverter)
constructor.newInstance(dxFileName, metadata, metadataDirectory)"

Another feature of this factory is that the constructors are cached for each
metadata type. So if for the same metadata type were a constructor once
created, the method gets the constructor from the cache and does not have to
call Class.forName and getDeclaredConstructor. If the converter is not found,
an exception NoSuchMetadataConverterException is thrown.

All the converters are placed in a metadata.converters package.

Default metadata converter

A lot of metadata are represented just by a single file, additionally another
associated metafile. These metadata are for example ApexClass, ApexTrigger,
ApexPage, Layout, FlexiPage and many others. To reduce the code repetition
and need to implement the same code over and over, this solution provides
an abstract default metadata converter called DefaultMetadataConverter that
solves this problem.

To use this feature, you need to extend the DefaultMetadataConverter class
and override its abstract method getMetadataFileNames which returns a list
of strings. This collection contains file names of the metadata files.

An implementation of an ApexClass converter that extend the Default-
MetadataConverter is available in the listing 3.2.

27

3. Realisation

Code 3.2: Apex class converter
public class ApexClassConverter extends DefaultMetadataConverter {

public ApexClassConverter(@NotNull String dxFileName, @NotNull
Metadata metadata, @NotNull File metadataDirectory) {
super(dxFileName, metadata, metadataDirectory);

}

@Override
protected List<String> getMetadataFileNames() {

String name = "classes/" + baseNameWithoutExtension + ".cls";
return List.of(name, name + "-meta.xml");

}
}

Custom object child converter

If you look on a dx object directory structure, you can see that every object
now is parsed into multiple files. That is a great feature compared to the
standard model because now we can track using git every addition and deletion
of an object’s child types, e.g. fields, list views, record types.

We can see that all these types differ only in their path, so to implement
these converters, you have to create a class that will extend the CustomOb-
jectChildConverter and provide two regex patterns that will parse the object
name and the metadata name. The main feature of the CustomObjectChild-
Converter is a method called toPackageMembersFromPattern that accepts the
two regex patterns and returns the collection of package members.

3.2.4 Logger

Logging is another significant component of the implementation. Not only
it is beneficial during development and testing, but it is also crucial for further
development. The whole process is logged, and the most significant part is
that logs all the converted metadata, so the user can see what is going on and
what will be built and deployed. For this purpose, I chose the log4j by Apache.
Logger customisation is simple through a modification of a file log4j.properties
in the resources folder.

3.2.5 Building java archive

To build jar, modify your configuration file toolchains.xml, so it reflects
a path to your Java 11. Then run mvn clean compile assembly:single which
builds a jar with its dependencies.

28

Chapter 4
Configuration

There are many options to choose an automation server, such as Jenkins,
Bamboo or TeamCity. The list would get much longer, but there is no need to
list all of them. All of them has some differences; some of them are open-source,
others are paid, they also differ in the way they are installed and configured.
For our purpose, there are not many differences, so I chose Jenkins, because
it is well documented, can be easily set up and configured and has a large
community, but again, many other automation servers would be sufficient.

As an extensible automation server, Jenkins has many advantages including
easy configuration via its web interface, on-the-fly error checks, built-in help
and supports hundreds of plugins, that integrates with it [22]. Jenkins is a
client-server tool that can be deployed on the cloud. That is a great advantage
for our purpose and brings another dilemma to solve; which cloud should we
use? There is again no straightforward answer to this question. Before we vote
for a specific cloud, we should weight up a price, security and its reliability.
Amazon claims that theirs Amazon EC2 is a highly reliable environment, the
service runs within a proven network infrastructure and data centres. On their
website they also state that cloud security is at AWS the highest priority [23].
These statements are something I can hardly test, but what eventually decided
to give the Amazon EC2 a try is that you pay for the compute capacity you
consume. Note that all steps in these sections are demonstrated using bash.

4.1 Launch an AWS EC2 instance
Amazon provides many ways how to begin with their products. I find the

most easier the AWS Management Console. A user must go through a few
steps and he is all set up. In this section I will go through each of the steps
and explain them.

First of all, we log into the AWS Management Console at
https://aws.amazon.com/console/ and create an account if we already do not
have one. Next, we will need to launch an Amazon EC2 instance. Go to the

29

4. Configuration

Amazon EC2 Dashboard and choose "Launch instance". This will guide us
through a configuration wizard [24].

In the wizard, we will need to choose an Amazon Machine Image (AMI).
The Amazon recommends the Amazon Linux AMI, but I selected an Ubuntu
Server LTS. For this decision, there is no specific reason but personal. You
can also choose for example Windows, but that is not possible for our purpose,
because the significant part of the implementation is written using bash scripts.

Next, we have to choose an instance type. This step is dependent on how
many projects we will be building on this server. The instance types differ in
the number of CPUs, memory size, instance storage and network performance.
We can see a list view of instance types in figure 4.1.

Figure 4.1: EC2 instance type overview

In another step, we can create or select a security group which defines our
virtual firewall. This step is optional but is always a good idea to go through it.
For a demonstrative purpose only I set up a simple security group. We have to
make up a self-descriptive name for this group, I chose Salesforce CI. Then we
define inbound and outbound rules. Every rule contains type, protocol, port
range and source. Types are for examples HTTP, HTTPS, SSH or custom
TCP. Source filters IP ranges. We can see the configured inbound rules in
figure 4.2. I did allow all IP addresses which is not best practice and you
should allow only the IP addresses your users have, but for our purpose it is
sufficient. Also, we can see that I add a rule with custom TCP on port 8080,
this rule is for our Jenkins server, and SSH on port 22, so we can connect
through terminal to our instance.

We can see complete configuration in figure 4.2. If everything is all right,

30

4.2. Configure Salesforce CI

we select "launch" and proceed.

Figure 4.2: Create an EC2 instance overview

In the last step, we select "Create a new key pair" and assign its name,
again, Salesforce CI will do it. This will automatically generate and download
an RSA private key associated with your instance. The key will be used to
connect to our instance.

4.2 Configure Salesforce CI
After we successfully launched an EC2 instance, we can connect to it

through ssh and configure our CI/CD jobs. To achieve this, we need the RSA
decryption key generated in the previous section. If we try to use the key
directly, it will fail, because default permissions are too open and it is required
that the private key files are not accessible by others. So before we use the
key, we set its permissions to 400 using chmod.

Now we can connect to our instance using ssh as "ssh -i path/to/Sales-
forceCI.pem ubuntu@your-domain-name.com", where the SalesforceCI.pem is
you private key and your-domain-name.com is an instace domain name visible
in the instance description. Note that after every reboot of your instance the
domain name changes and also if you have selected different instance AMI,
your user name can differ.

With an opened connection to our instance, we install all necessary, that is
JRE and Jenkins. We need JRE because both, Jenkins and my solution run
on Java Virtual Machine. Need to specify that Jenkins requires Java 8 and my

31

4. Configuration

solution is built on a newer version, so we need to install JRE 8 and JRE 11.
After we install Java, we also install Jenkins that includes the automatic start
of the Jenkins service. We can ensure the service is running using command
systemctl status jenkins. Also install jq that is used by the custom scripts.

To use the implementation, we need to copy the source code to the instance.
That is also possible through our secure connection and remote file copy
program scp (secure copy). For this purpose we create a directory called "sfci"
in /var/lib/jenkins/workspace/ and make it executable using chmod. The last
thing we need before closing the connection is to cat the initial admin password
using "sudo cat /var/lib/jenkins/secrets/initialAdminPassword". After this
point, we do no longer need the ssh connection, and we can close it.

Jenkins configuration is simple; we only need a web browser, our domain
name and the initial admin password. Open a web browser and enter your
domain name with port 8080. This will get you to a Jenkins wizard, where you
need to enter the initial password. Now that the Jenkins is unlocked, we can
customise it. We do not install suggested plugins and select them manually.
In this step, the wizard will preselect some recommended plugins and a lot of
them we do not need, e.g. Ant, Gradle, Subversion. Be sure to install these
plugins: Folders, Credentials Binding, Git and some plugin that will manage
webhooks, if you are using BitBucket, I recommend Bitbucket Push And Pull
Request Plugin [25]. Once the plugins are installed, we will be prompted to
set up the first amind user, so we fill a user name, password, full name and
e-mail address. After this, the Jenkins is configured and ready to use and the
wizard will open the Jenkins console.

Next, we will configure global properties. To do that, we will go to Manage
Jenkins in the Jenkins console and click on the Configure System button. In
section Global properties add the environment variables list below.

• SFCI_HOME

This variable is used by the implementation. It is, for example, a directory
where last successful build commits are stored and where the scripts are
placed. Set this variable to "/var/lib/jenkins/workspace/sfci"

• PATH

We add our scripts to the PATH so we can execute our scripts with just
their name. Set this variable to "$PATH:/var/lib/jenkins/workspace/sfci"
We cannot use the SFCI_HOME variable, because the evaluation order
of the variables is undefined.

Also set shell executable to point to "/bin/bash".

32

4.3. Configure jobs

4.3 Configure jobs

In this section, I will focus on the jobs configuration, especially on package
build and deploy jobs to sandbox and production orgs. The scripts are written
in a way, that you can combine the flow as you wish, but I will demonstrate
the flow shown in the analytical section.

4.3.1 Grant access to org

The automatisation scripts need access to our orgs without human interac-
tion. There are many ways to achieve this and one of them is to use JWT [26],
which is also a method recommended by Salesforce [27].

To implement a JWT flow on the Salesforce platform, we need two things;
self-signed certificate and Connected App with this certificate.

"A connected app integrates an application with Salesforce using APIs.
Connected apps use standard SAML and OAuth protocols to authenticate,
provide single sign-on, and provide tokens for use with Salesforce APIs. In
addition to standard OAuth capabilities, connected apps allow Salesforce admins
to set various security policies and have explicit control over who can use the
corresponding apps." [28]

Firstly, we need to sign our certificate. For this purpose, we need some
tool, e.g. OpenSSL, and generate a private key and its associated self-signed
digital certificate. The certificate will be uploaded to our org to which we want
to grant access, and the private key will be used by our jobs to connect to this
org.

Now any org that we need in the automatisation process needs to contain a
specific Connected App. To do that, we once create the connected app through
setup, retrieve its metadata and this metadata push to any other org. To
create the connected app, we select App Manager in one of the org’s setup and
click New Connected App.

We choose our connected app’s name to be self-describing, that could be
Salesforce CI, fill contact email and check "Enable OAuth Settings". Then, we
need to set a callback URL to "http://localhost:1717/OauthRedirect", upload
our digital certificate generated earlier and select few OAuth scopes. Then we
select these scopes: Access and manage your data (api), Perform requests on
your behalf at any time (refresh_token, offline_access) and Provide access to
your data via the Web (web). Note that the changes to take effect can last a
few minutes. The last steps to configure the connected app is to edit policies
and pre-authorise admin approved users, and lastly manage profiles, so at least
the Admin profile is associated with the connected app.

The created connected app will generate consumer key and consumer secret.
For our JWT flow, we will later need the consumer key, which serves as client
id.

33

4. Configuration

Also, we need to create Global credentials in our Jenkins instance of type
Secret file and upload the private key associated with the self-signed certificate
generated earlier. This credential file will be used together with the consumer
key from the connected app to grant access to the org.

4.3.2 Build job

Firstly, we configure webhook that will trigger our job in BitBucket settings
of the desired project. We set the webhook URL to "<aws domain>:8080/bitbucket-
hook/" and choose the Repository push trigger.

Now, we can get back to Jenkins and configure the job. We create a new
Freestyle project and name it, so it reflects the project name and instance
name, e.g. "Project 1 - Build UAT".

We pair the job with our project using source code management and specify
a particular branch that matches one of the orgs, in our example UAT.

Because we want to trigger this job on push, we select "Build with BitBucket
Push and Pull Request Plugin" build trigger and set it to push action. Lastly,
we populate execute shell field as in the example 4.1. In the example, we
build a package using a specific build name, last successful commit and head
commit.

Code 4.1: Example of execute shell in build job
build_name="Project 1 - UAT"
last_commit=$(sfci last-commit --get -n "$build_name")
head_commit=$(git rev-parse HEAD)

sfci package-build \
--buildname "$build_name" \
$last_commit $head_commit

4.3.3 Deploy job

In this job, we will use our connection to Salesforce org using the client
id and the secret file. We configure source code management as in the build
job and the execute shell as in the example 4.2. We can see that we need to
specify a user name for the target org, the client id, and a build name as in the
build job, so the deployment will know which build to deploy. Then we deploy
the changes, and if the deployment is successful, we update the last commit.

34

4.3. Configure jobs

Code 4.2: Example of execute shell in deploy job
target_username= % username to target org
client_id= % consumer key from the connected app
build_name="Project 1 - UAT" % same as in the build

head_commit=$(git rev-parse HEAD)

sfci deploy \
--targetusername $target_username \
--buildname "$build_name" \
--jwtkeyfile "$JWT_KEY" \
--clientid $client_id \

if [$? -eq 0]; then
sfci last-commit \

--save $head_commit \
--buildname "$build_name"

fi

35

Chapter 5
Testing

In this chapter, I will focus on testing. Because the implementation contains
Java code, part of it are also unit tests because the proper testing is essential
for a functional product. Another part of testing is user testing on which I will
move on later.

5.1 Unit testing
I mixed two approaches for unit testing. During the development, I usu-

ally was implementing the code using test-driven development, and after the
development, the rest of the classes was tested using black-box testing. For
this purpose, I used jupiter JUnit 5 and wrote tests for almost every single
class in the project. In figure 5.1, we can see the code coverage overview for
metadata converters.

Figure 5.1: Converters code coverage

5.2 User testing
User testing was performed on a real person to test the overall functionality

and usability of the scripts. I chose two crucial use cases to be tested; package

37

5. Testing

build and deployment.

5.2.1 Test scenarios

In this section are listed test scenarios.

Building deployment package

• Task:
Create a simple SObject and one its field and push these changes into
the remote repository. Verify that the build job finished as expected.
Delete the field, push changes and again verify the build job.

• Requirements:
Test scenario presumes that an empty DX project exists in VCS and the
project has configured build job in Jenkins.

• Test cases:

1. Pull a DX project from the remote repositoy.
2. Create a Scratch Org.
3. Create an SObject and one field through the org’s setup.
4. Pull changes from the org.
5. Commit the whole project, including pulled metadata.
6. Push changes into the remote repository.
7. Verify the build job in Jenkins, check its log.
8. Delete the field through the org’s setup.
9. Pull changes from the org.

10. Commit and push changes into the remote repository.
11. Verify the build job in Jenkins, check its log.

• Expected result:
The jobs finish successfully and the user sees his changes in both logs.

Deploying package

• Task: Create a simple SObject and one field, push these changes into the
remote repository. Verify that the build job finished as expected. Find a
deployment build associated with the build job, run the job and verify
the deployment; check the jobs log and the target org.

38

5.2. User testing

• Requirements:
Test scenario presumes that an empty DX project exists in VCS, the
project has configured build and deploy jobs in Jenkins and that the
deploy job is associated with an existing Salesforce org.

• Test cases:

1. Pull a DX project from the remote repository.
2. Create a Scratch Org.
3. Create an SObject and one field through the org’s setup.
4. Pull changes from the org.
5. Commit the whole project, including pulled metadata.
6. Push changes into the remote repository.
7. Verify the build in Jenkins, check its log.
8. Find the deployment job.
9. Run the deployment job.
10. Verify the deployment job in Jenkins, check its log.
11. Verify the deployment in the target org.

• Expected result:
The jobs finish successfully, the user sees his changes in both logs and
can find the deployed metadata in the target org.

5.2.2 Test evaluation

A user performed the test scenarios, and the whole test process was mon-
itored. The results of the monitoring were compared against the expected
results.

User characteristics

• 25 years old

• Salesforce developer

• familiar with Salesforce technologies and metadata deployment

First scenario

The user completed his task as expected. He did not have any significant
difficulties, even though he is not familiar with Jenkins. The user recommends
a few changes in logs to improve readability.

39

5. Testing

Second scenario

The test was completed as expected. The user was already more confident
about Jenkins and again mentions how he would improve the logs to enhance
readability.

5.3 Test conclusion
At first, I was sceptical to the test-driven development approach but wanted

to try it, because sometimes I was decided what the classes should do, but was
not sure about their implementation. To summarise if it was helpful or not, it
depends on the situation; when I knew what the class interface should look
like, the test-driven development was beneficial, on the other hand, if I was
not sure, it was counterproductive, because I had to rewrite the test class.

Both user testing scenarios finished as expected. The user did not face
any significant difficulties. Furthermore, the user recommended a few stylistic
changes in the logs to improve readability.

40

Conclusion

The goals of this thesis were to examine possibilities for continuous integra-
tion and delivery on the Salesforce platform and implement a universal solution.
In the first theoretical part of this thesis, I focused on current development on
the Salesforce platform, its structure and pointed out its flaws. Later in this
part, I am analysing new technology Salesforce DX, its benefits and options it
brings for continuous delivery. Readers also find there how continuous delivery
could be implemented on the Salesforce platform and analysis of a possible
solution. In another part, I move on to the implementation based on the
analysis from previous chapters. I am describing there how the solution is
implemented, how it works and how to use it.

Implementation review

Salesforce has its imperfections and lacks a lot of functionality that should
be part of the official product. The Salesforce platform was not designed
for package development and version control system integration is almost
impossible in any reasonable way. Salesforce provides many options for package
development. However, it rather complicates the whole process.

I believe I successfully managed to provide a solution that significantly
improves and simplifies development on the Salesforce platform and fully inte-
grates a version control system into the development process, which rejects the
whole view on the Salesforce org as a source of the truth. The implementation
is generic, so anyone can change their process to fit their needs and still use
the application. Even though the analysis counts on automatised testing in an
isolated environment, the implementation is missing this functionality. Another
benefit of the solution is that whenever Salesforce introduces a new metadata
type, it is simple to add its support to the app by implementing just a single
class and the application will dynamically instantiate it by its predefined name
and use it for recognised metadata files.

41

Conclusion

The most crucial about the whole idea of using a version control system as
a source of truth for Salesforce is that the developers must be able to read the
metadata files and merge them.

Goals for the future
As mentioned in the implementation review, the solution is missing au-

tomatised testing in isolated environments before any deployment is allowed
to execute. This desired functionality is analysed in the solution and would be
appreciated in further implementation.

One of the biggest goals is to implement continuous deployment. Continuous
deployment is built on the top of continuous delivery and goes a little bit
further with the whole automatisation. These two differs in the way the
deployment to production is executed. In continuous deployment, there is
no manual approval needed for this and the code is automatically deployed
to production [19]. Before this can become a reality, the metadata must be
supported entirely.

42

Bibliography

[1] What is Software as a Service (SaaS). Salesfroce, 2018, [cit. 2019-01-08].
Available at: https://www.salesforce.com/saas/

[2] PaaS: Platform as a Service Definition. Salesfroce, 2018, [cit. 2019-01-08].
Available at: https://www.salesforce.com/paas/overview/

[3] Farley, D.; Humble, J.: Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Addison-Wesley, ISBN
978-0321601919.

[4] Understand the Salesforce Architecture. Salesforce, [cit. 2019-01-08].
Available at: https://trailhead.salesforce.com/en/content/learn/
modules/starting_force_com/starting_understanding_arch

[5] Deploy Enhancements from Sandboxes. Salesforce, 2019, [cit. 2019-01-10].
Available at: https://help.salesforce.com/apex/HTViewHelpDoc?id=
deploy_sandboxes_parent.htm&language=en_us

[6] Metadata Coverage. Salesforce, 2019, [cit. 2019-01-10]. Available at: https:
//developer.salesforce.com/docs/metadata-coverage/44

[7] Apex Developer Guide. Salesforce, 2019, [cit. 2019-01-08]. Avail-
able at: https://developer.salesforce.com/docs/atlas.en-
us.apexcode.meta/apexcode/apex_dev_guide.htm

[8] Ant Migration Tool Guide. Salesforce, 2019, [cit. 2019-01-08].
Available at: https://developer.salesforce.com/docs/atlas.en-
us.daas.meta/daas/meta_development.htm

[9] Apache AntTM 1.10.5 Manual. Apache, 2018, [cit. 2019-01-11]. Available
at: https://ant.apache.org/manual/index.html

43

https://www.salesforce.com/saas/
https://www.salesforce.com/paas/overview/
https://trailhead.salesforce.com/en/content/learn/modules/starting_force_com/starting_understanding_arch
https://trailhead.salesforce.com/en/content/learn/modules/starting_force_com/starting_understanding_arch
https://help.salesforce.com/apex/HTViewHelpDoc?id=deploy_sandboxes_parent.htm&language=en_us
https://help.salesforce.com/apex/HTViewHelpDoc?id=deploy_sandboxes_parent.htm&language=en_us
https://developer.salesforce.com/docs/metadata-coverage/44
https://developer.salesforce.com/docs/metadata-coverage/44
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_dev_guide.htm
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_dev_guide.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/meta_development.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/meta_development.htm
https://ant.apache.org/manual/index.html

Bibliography

[10] Package and Distribute Your Apps. Salesforce, 2019, [cit. 2019-
01-15]. Available at: https://help.salesforce.com/articleView?id=
package_distribute_apps_overview.htm&type=5

[11] Unsupported Metadata Types. Salesforce, 2019, [cit. 2019-05-05]. Avail-
able at: https://developer.salesforce.com/docs/atlas.en-us.api_
meta.meta/api_meta/meta_unsupported_types.htm

[12] An SDK for Salesforce development. 2015, [cit. 2019-01-11]. Available at:
http://www.illuminatedcloud.com/home/offlinesymboltable

[13] Metadata API Developer Guide. Salesforce, 2019, [cit. 2019-01-08]. Avail-
able at: https://developer.salesforce.com/docs/atlas.en-us.api_
meta.meta/api_meta/meta_intro.htm

[14] Next Generation Agility with Salesforce DX. David Dawson, Sep. 2018,
[cit. 2019-01-10]. Available at: https://www.rea-group.com/blog/next-
generation-agility-with-salesforce-dx/

[15] Plan for Changes to Your Org Unit. Salesforce, 2019, [cit. 2019-01-10].
Available at: https://trailhead.salesforce.com/en/content/learn/
modules/declarative-change-set-development/plan-for-changes-
to-your-org

[16] Scratch Orgs. Salesforce DX Developer Guide, [cit 2019-02-10]. Avail-
able at: https://developer.salesforce.com/docs/atlas.en-us.sfdx_
dev.meta/sfdx_dev/sfdx_dev_scratch_orgs.htm

[17] What is Continuous Integration? Amazon Web Services, [cit. 2019-
05-05]. Available at: https://aws.amazon.com/devops/continuous-
integration/

[18] Kabir, A.: Continuous Integration: A “Typical” Process. Red
Hat Developers, Sep. 2017, [cit. 2019-05-05]. Available at:
https://developers.redhat.com/blog/2017/09/06/continuous-
integration-a-typical-process/

[19] What is Continuous Delivery? Amazon Web Services, [cit. 2019-05-05].
Available at: https://aws.amazon.com/devops/continuous-delivery/

[20] Git - git-diff-tree Documentation. Git SCM, 2019, [cit. 2019-05-15]. Avail-
able at: https://git-scm.com/docs/git-diff-tree

[21] Grow faster with Salesforce. Salesforce, 2019, [cit. 2018-05-05]. Available
at: http://jcommander.org/

[22] Jenkins. Jenkins, [cit. 2019-04-22]. Available at: https://jenkins.io/

44

https://help.salesforce.com/articleView?id=package_distribute_apps_overview.htm&type=5
https://help.salesforce.com/articleView?id=package_distribute_apps_overview.htm&type=5
https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/meta_unsupported_types.htm
https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/meta_unsupported_types.htm
http://www.illuminatedcloud.com/home/offlinesymboltable
https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/meta_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/meta_intro.htm
https://www.rea-group.com/blog/next-generation-agility-with-salesforce-dx/
https://www.rea-group.com/blog/next-generation-agility-with-salesforce-dx/
https://trailhead.salesforce.com/en/content/learn/modules/declarative-change-set-development/plan-for-changes-to-your-org
https://trailhead.salesforce.com/en/content/learn/modules/declarative-change-set-development/plan-for-changes-to-your-org
https://trailhead.salesforce.com/en/content/learn/modules/declarative-change-set-development/plan-for-changes-to-your-org
https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs.htm
https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs.htm
https://aws.amazon.com/devops/continuous-integration/
https://aws.amazon.com/devops/continuous-integration/
https://developers.redhat.com/blog/2017/09/06/continuous-integration-a-typical-process/
https://developers.redhat.com/blog/2017/09/06/continuous-integration-a-typical-process/
https://aws.amazon.com/devops/continuous-delivery/
https://git-scm.com/docs/git-diff-tree
http://jcommander.org/
https://jenkins.io/

Bibliography

[23] Amazon EC2. Amazon Web Services, [cit. 2019-04-22]. Available at: https:
//aws.amazon.com/ec2/

[24] Getting Started with Amazon EC2. Amazon, [cit. 2019-05-10]. Available
at: https://aws.amazon.com/ec2/getting-started/

[25] Bitbucket Push And Pull Request Plugin. Jenkins, [cit. 2019-05-13].
Available at: https://wiki.jenkins.io/display/JENKINS/Bitbucket+
Push+And+Pull+Request+Plugin

[26] Michael B. Jones, N. S., John Bradley: JSON Web Token (JWT). [cit
2019-05-12]. Available at: https://tools.ietf.org/html/rfc7519

[27] Authorize an Org Using the JWT-Based Flow. Salesforce, [cit 2019-05-
12]. Available at: https://developer.salesforce.com/docs/atlas.en-
us.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_jwt_flow.htm

[28] Connected Apps. Salesforce, [cit 2019-05-12]. Available at: https://
help.salesforce.com/articleView?id=connected_app_about.htm

45

https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/getting-started/
https://wiki.jenkins.io/display/JENKINS/Bitbucket+Push+And+Pull+Request+Plugin
https://wiki.jenkins.io/display/JENKINS/Bitbucket+Push+And+Pull+Request+Plugin
https://tools.ietf.org/html/rfc7519
https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_jwt_flow.htm
https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_jwt_flow.htm
https://help.salesforce.com/articleView?id=connected_app_about.htm
https://help.salesforce.com/articleView?id=connected_app_about.htm

Appendix A
List of Abbreviations

AMI Amazon Machine Image

CI/CD Continuous Integration/Delivery

CLI Command-line interface

CRM Customer relationship management

DML Data manipulation language

EC2 Elastic Compute Cloud

IDE Integrated development environment

JRE Java runtime environment

JSON JavaScript Object Notation

JWT JSON Web Token

QA Quality Assurance

RSA Rivest–Shamir–Adleman

SFDX Salesforce Developer Experience

SIT System Integration Testing

SSH Secure Shell

TCP Transmission Control Protocol

UAT User Acceptance Testing

URL Uniform Resource Locator

XML Extensible Markup Language

47

Appendix B
Contents of the attached CD

readme.txt CD content description
src

impl...source code
thesis ... thesis in LATEX

text
thesis.pdf ... thesis in pdf

49

