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Abstrakt / Abstract

S příchodem kvantové teore kla-
sická logika přestala být dostatečnou
pro popis fyzikálních událostí, pro-
tože distributivní zákon výrokové
logiky vede ke sporům v kvantové
teorii. To vedlo k vytvoření kvanto-
vých logik. Ortomodulární svazy jsou
algebraické struktury, které splňují
vlastnosti kvantové logiky.

V této práci studujeme ortomodu-
lární svazy, a také obecnější kvantové
struktury bez netriviálních měr z li-
bovolné komutativní aditivní grupy.
Ukážeme, jak kvantové struktury
souvisí s hypergrafy, a použijeme
grafově teoretické metody pro vytvo-
ření omezení velikostí studovaných
kvantových struktur.

Prezentujeme nové výsledky jak z
teorie grafů, kde jsme nalezli horní
odhad počtu hran při daném počtu
vrcholů pro určitý typ hypergrafů,
tak z teorie kvantových struktur, kde
jsme značně zjednodušili příklady
a argumenty pro existenci kvanto-
vých struktur bez měr z libobolné
komutativní aditivní grupy.

Klíčová slova: kvantové struktury,
ortomodulární svaz, ortomodulární
poset, ortoalgebra, hypergraf.

Překlad titulu: Teorie grafů a
kvantové struktury

With arise of the quantum the-
ory, the classical logic was no longer
sufficient for describing physical
events because the distributive law
of propositional logic leads to contra-
dictions in quantum mechanics. This
led to the introduction of quantum
logics. An algebraic structure cap-
turing properties of quantum logic
operations is called orthomodular
lattice.

In the thesis, we study orthomod-
ular lattices and also more general
quantum structures without non-
trivial measures from any additive
commutative group. We show how
quantum structures are related to
hypergraphs and we use graph the-
ory for deriving constraints on the
size of such quantum structures.

We present our new results in
both, the graph-theory, and the the-
ory of quantum structures. In graph
theory we derived a new upper
bound on the number of edges for a
given number of vertices for a certain
type of hypergraphs. In the theory
of quantum structures, we signifi-
cantly simplified the arguments for
the existence of quantum structures
with no non-trivial group-valued
measures. We also constructed small
such quantum structures.

Keywords: quantum structure;
orthomodular lattice; orthomodular
poset; orthoalgebra; hypergraph.
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Chapter 1
Introduction

1.1 Motivation

In 1932 John von Neumann in [1] noted that projections on a Hilbert space
describe well propositions about observables in quantum physics. Later, in 1936,
Garrett Birkhoff and John von Neumann in [2] expressed the flaws of classical
logic when applied to quantum mechanics, and proposed properties of quantum
logic. Those flaws were mainly caused by the Heisenberg’s Uncertainty Principle,
i.e., the more accurately is known the position of a particle, the less known is
its momentum, and by the Principle of Non-commutativity of Observations, i.e.,
most pairs of observations cannot be measured simultaneously.

1.1.1 Heisenberg’s Uncertainty Principle

Heisenberg’s Uncertainty Principle states the relation between uncertainty in
the momentum and the position of a particle. Loosely speaking, it can be formu-
lated as follows:

∆x∆p ≥ ~/2,

where ∆x and ∆p are uncertainty in position and momentum respectively, and
~ is the reduced Planck constant. The precise formulation involves the standard
deviation of momentum and position.

We present a simple example of why this principle violates the distributive law
of propositional logic. The example is not exact, but we hope it gives the right in-
tuition behind the principle. As additional background mathematics and physics
is needed for the correct understanding of the phenomenon, we refer the reader
to [2–3]. The latter source is a review paper.

Example 1.1. For simplicity, we use a system of units where the reduced Planck
constant is 6. Let us introduce logical variables for the following propositions in
some units:

. A = the particle’s position is in the interval [0, 1].. B = the particle’s momentum is in the interval [−2, 0].. C = the particle’s momentum is in the interval [0, 2].

Let the uncertainty of position or momentum be the length of the interval from
which we know the respective property takes value. For example, the uncertainty
of the momentum in proposition B and C is 2. The uncertainty of the position
in proposition A is 1.

Let us also define logical operations between such propositions.

. B ∨ C = the particle’s momentum is in the interval [−2, 2].

1



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. A∧B = the particle’s position and momentum were measured, and they are in

the intervals [0, 1] and [−2, 0] respectively, A ∧ C and A ∧ (B ∨ C) are defined
analogically.

Let us now recall the distributive property of propositional logic. Let A, B,
and C be formulas and ∨,∧ be logical or and logical and respectively, then:

A ∧ (B ∨ C) = (A ∧B) ∨ (A ∧ C).

Now we insert our logical variables to the equality and it leads to a contradic-
tion.

The formula on the right-hand side is not true, as neither (A∧B) nor (A∧C)
can be measured, since they violate the Heisenberg Uncertainty Principle because
∆x∆p = 2 · 1 � 6/2 = ~/2.

On the other hand, the formula on the left-hand side may be true, as the Heisen-
berg Uncertainty Principle is satisfied here. Hence the logic describing quantum
mechanics is not distributive.

1.1.2 Principle of Non-commutativity of Observations and
Observer E�ect

The observer effect is that the observation of a phenomenon necessarily changes
that phenomenon. A particle is detected after an interaction with a photon. But
that interaction changes the state of the particle. Therefore, we do not know
the current state of the particle, but its former state.

The principle of non-commutativity of observations, according to [2], consid-
ers that there are pairs of observations which cannot be measured simultaneously.
In classical physics, we can. And even if in practice we cannot make two measure-
ments at the exactly same time, the outcome may be, and generally is the same as
if we made those measurements at the same time. In quantum mechanics it causes
problems. For example, we cannot measure the position and the momentum of
a particle at the same time. And if we measure the momentum and position of
a particle consecutively, the momentum and position together would not describe
the particle in any period of time.

As a consequence, a Boolean algebra, which is sufficient for describing outcomes
of experiments in classical logic, is not sufficient for quantum mechanics.

1.1.3 Quantum Logic

The proposed properties of quantum logic are satisfied by a modular ortholattice.
It was later discovered that the modularity condition of a lattice is not necessary,
and a weaker condition, orthomodularity, is sufficient, see [4–5].

There are also more general algebras used for describing the logic of quantum
mechanics. We will also address orthomodular posets (abbr. OMPs) and orthoal-
gebras (abbr. OAs). We refer the reader to [6] and [7–8] for further details. These
two algebraic structures, together with orthomodular lattices (abbr. OMLs), are
together called quantum structures. There are also other algebraic structures
used for the description of quantum logic. For example, effect algebras, see [9].

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Related Work

1.2 Related Work
With the arise of the theory of quantum structures, there developed constructions
of such structures admitting few or no states. The first example of an orthomod-
ular lattice without states was made by R. Greechie in 1971 in [10].

This example of a stateless orthomodular lattice directly led to a proof that
the state space of an orthomodular lattice can be an arbitrary compact convex
set in [11].

R. Mayet simplified this example of a stateless-orthomodular lattice, which
can be found in [12]. In [13], there are arguments why this construction could
be the smallest possible (smallest in the sense of the number of atoms). So far,
the example is still the smallest known.

For the next 20 years, there was an open question of whether there is an ortho-
modular lattice without non-trivial group-valued measures. This was positively
answered independently by M. Navara in [14] and H. Weber in [15]. Since then,
there is no result directly addressing constructions of quantum structures with
no non-trivial group-valued measures.

1.3 Goals of Thesis
Here we shall describe our goals of the thesis.

. Do a survey in extremal graph theory. Find bounds on the number of edges,
given a number of vertices for hypergraphs representing quantum structures.. Modify these bounds to create lower bound on the number of atoms of quantum
structures which do not admit any non-trivial group-valued measure.. Construct small quantum structures admitting no non-trivial group-valued
measure. This serves as an upper bound on the minimal number of atoms
of such quantum structures.. Construct a quantum structure with no non-trivial group-valued measures such
that the argument for the non-existence of the measures is simple.

3



Chapter 2
Hypergraphs

Hypergraphs are a generalization of graphs, but unlike in graphs, here an edge
may contain an arbitrary number of vertices, and not just 2. Hypergraphs are
commonly used for visualizing quantum structures, as hypergraphs capture their
structure well.

Here we define all the needed terms and state needed lemmas, so that in the
following chapters, we can directly prove theorems.

2.1 Definitions
Definition 2.1. A hypergraph is a pair (V,E), where V is a finite set of vertices
and E is a set of edges. Every edge e ∈ E is a subset of V . The reader is referred
to [16–17] for more details.

This definition was widely used by Erdös and Hungarian mathematicians
in general. There are also different formal definitions of hypergraphs, as in [16,
18], a hypergraph H is a subset of the powerset of some finite set. The members
of H are called edges. The union of all edges is called the set of vertices. This
definition is perhaps used more often.

These definitions are not equivalent, as the latter does not admit isolated ver-
tices, i.e., vertices which do not belong to any edge of the hypergraphs. Although
we are not interested in isolated vertices. We stick to the former definition, as
with the latter, the existence of some hypergraphs has to be assumed.

Definition 2.2.. A hypergraph (V,E) is r-uniform, or also an r-graph, if every edge e ∈ E
contains exactly r vertices.. A graph is a 2-uniform hypergraph.. Hypergraph (V,E) is simple if there are no two distinct edges e1, e2 ∈ E such
that e1 ⊆ e2.. Let (V,E) be a hypergraph and v ∈ V be its vertex. The number of edges
e ∈ E containing v is the degree of v, written d(v).. Let (V,E) be a hypergraph. Vertices u, v ∈ V are called neighbors if there is
an edge e ∈ E such that u, v ∈ e.
Hypergraphs are used for the representation of quantum structures. Such

hypergraphs have to fulfill some conditions in order to represent a certain quan-
tum structure. An important property of a hypergraph for these purposes is the
length of its shortest cycle.

Definition 2.3. Let (V,E) be a hypergraph. An alternating sequence of vertices
and edges: v1, e1, v2, e2, . . . , vn, en is called a cycle, if the following conditions are
fulfilled:

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Definitions

. n ≥ 2.. Vertices v1, v2, . . . , vn ∈ V are pairwise distinct.. Edges e1, e2, . . . , en ∈ E are pairwise distinct.. vi, vi+1 ∈ ei for every i ∈ {1, 2, . . . , n− 1} and vn, v1 ∈ en.

The length of a cycle is the number of vertices it contains.

There are also other definitions of cycles. For more details see [19].
Definition 2.4. The girth of a hypergraph is the length of its shortest cycle.

We will draw hypergraphs as dots connected by smooth curves. Dots represent
vertices and maximal smooth curves are edges. See Figure 2.1 for illustration. Ev-
ery edge of this hypergraph contains three vertices, the hypergraph is 3-uniform.
Its girth is 5.

Figure 2.1. A hypergraph
({a, b, . . . , j}, {{a, b, c}, {c, d, e}, {e, f, g}, {g, h, i}, {i, j, a}}).

As we study measures on quantum structures, we will mainly focus on those,
for which a specific hypergraph representation exists. We will define it in a later
chapter. It turns out that the measures on quantum structures are in some
sense equivalent to measures on hypergraphs. For now, we define measures on
hypergraphs and show all the connections later. As we are interested in group-
valued measures, we define it using groups.

Definition 2.5. Let H = (V,E) be a hypergraph and 1 /∈ V be a special element.
A group-valued measure (abbr. measure) on H is a mapping m : (V ∪ {1})→ X,
where (X,+) is a commutative, additive group, see Definition 3.1, such that every
edge e ∈ E satisfies the following condition:

. ∑
v∈e

m(v) = m(1).

We now introduce notation, which we will use later.

. If (X,+) = (R,+), i.e., X is the set of real numbers and + is the standard
addition, we call that measure a real-valued measure.. If m is a real-valued measure, m(1) = 1, and for every vertex
v ∈ V : m(v) ≥ 0, we call such a measure a probability measure.. m is called a constant measure if for all vertices u, v ∈ V , m(u) = m(v).. m is called a trivial measure if for all vertices v ∈ V , m(v) = 0.

Example 2.1. Two examples of measures on a hypergraph from Figure 2.1. Both
of them are real-valued. m1(1) = 2 and m2(1) = 1.

5



2. Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
vertex m1 m2

a 0 1/3
b 2 1/3
c 0 1/3
d 2 1/3
e 0 1/3
f 2 1/3
g 0 1/3
h 2 1/3
i 0 1/3
j 2 1/3

Table 2.1. Two examples of measures. An element of the table is the measure of
the corresponding vertex. I.e., the element in the bottom-right corner is m2(j).

The second measure is a probability measure.

2.2 Lemmas

Now we can formulate auxiliary results, which we will use later. Their proofs are
easy and therefore omitted.

Lemma 2.1. Let (V,E) be a hypergraph, then:∑
e∈E

∑
v∈e

d(v) =
∑
v∈V

d(v)2,

∑
v∈V

d(v) =
∑
e∈E

|e|.

If the hypergraph is an r-graph, then:∑
v∈V

d(v) = rm.

If (V,E) is a graph, then:

|E| ≤ V (V − 1)
2 .

Theorem 2.2. (Root-Mean Square-Arithmetic Mean inequality)
Let x1, x2, . . . , xn be real numbers, Then√

x2
1 + x2

2 + . . .+ x2
n

n
≥ x1 + x2 + . . .+ xn

n
.

The inequality is analyzed in detail in Appendix A.

6



Chapter 3
Groups

The motivation for the introduction of groups is that we are interested in quantum
structures with no non-trivial group-valued measures. With this in mind, for our
purpose, it is sufficient to state basic definitions and theorems about solving
systems of linear equations over a group.

3.1 Definitions
Definition 3.1. A group is a pair (G, ◦), where G is a non-empty set and a group
operation ◦ : G2 → G satisfying the following for all elements a, b, c ∈ G:

. a ◦ (b ◦ c) = (a ◦ b) ◦ c (associativity). There is an element e ∈ G such that for every element a ∈ G: a ◦ e = e ◦ a = a.
This element is called an identity element.. For every element a ∈ G there is an element b ∈ G such that a ◦ b = b ◦ a = e.
b is called an inverse element of a.

Furthermore, if the operation ◦ is commutative, we call such group a commutative
group or also an Abelian group.

. For all a, b ∈ G: a ◦ b = b ◦ a. (commutativity)

It is an easy consequence that in every group there is a unique identity element
and every element of a group has the unique inverse.

If the group operation should be considered as an addition in some sense,
the group is called an additive group. The group operation is often denoted as +,
the identity element is 0 and the inverse of an element x is −x. A summation
of an element with itself will be abbreviated to multiplying by an integer. For
example, we write 3a instead of a+ a+ a and −2a instead of −a− a.

Let (G, ◦) be a group, we call underlying set a group. I.e., we call G a group.
This is a common practice for algebraic structures built upon a set. We will use
it for all later defined algebraic structures.

Example 3.1. Here we bring some examples of groups.

. A pair ({0}, ◦), where 0◦0 = 0, is a group. As all group properties are trivially
satisfied, the group is called trivial.. A pair (R,+), where R is the set of real numbers and + is the standard addition.
Associativity is fulfilled, as addition is associative. The identity element is 0
and the inverse element of an element x ∈ R is −x, so this is also a group.. A pair (R+, ·), where R+ is the set of positive real numbers and · is the standard
multiplication, which is associative. The identity element is 1 and the inverse
element of an element x ∈ R+ is 1/x, hence it is a group.

7



3. Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. A pair (R2×2, ·), where R2×2 is the set of all real regular matrices with 2 rows

and 2 columns. The group operation · is the standard matrix multiplication.
This is a group. Matrix multiplication is associative. The identity element is
the 2× 2 identity matrix. The inverse element of a matrix M ∈ R2×2 is M−1,
which exists, as M is regular. As matrix multiplication is not commutative,
this is an example of a group which is not Abelian.. A pair (Zp, ◦), where p is a prime, Zp is the set of non-negative integers which
are less than p. For a, b ∈ Zp, a ◦ b = a+ b (mod p). The identity element is 0
and the inverse element of e ∈ Zp is p−e. The operation ◦ is often written as +.

Note that if we exchange the group operations of the second and the third
example, they will no longer be groups. In (R, ·) there is no inverse element of 0.
Unlike for (R+,+), where is no identity element, hence it does not even make
sense to consider an inverse.

As we are interested only in commutative additive groups, we will call such
groups just groups.

3.2 Systems of Linear Equations
In this section, we look at measures on hypergraph as solutions of systems of
linear equations over a group. We develop an easy method of testing whether
a given hypergraph admits non-trivial group-valued measures or not.
Definition 3.2. Let H = (V,E) be a hypergraph. enumerate vertices v1, v2, . . . , vn

and edges e1, e2, . . . , em ∈ E and construct an m × (n + 1) matrix M , called
the matrix of H, as follows:

. For i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}, Mi,j = 1, if vj is contained in ei.
Otherwise Mi,j = 0.. For i ∈ {1, 2, . . . ,m}, Mi,n+1 = −1.

Example 3.2. The matrix of hypergraph from Figure 2.1 is:

1 1 1 0 0 0 0 0 0 0 -1
0 0 1 1 1 0 0 0 0 0 -1
0 0 0 0 1 1 1 0 0 0 -1
0 0 0 0 0 0 1 1 1 0 -1
1 0 0 0 0 0 0 0 1 1 -1

Table 3.1. Example of a matrix of a hypergraph

Proposition 3.1. Let H = (V,E) be a hypergraph and M its matrix. Then for
every vector x consisting of elements of a group such1 that Mx = 0 there is
a measure on H in a way that for i ∈ {1, 2, . . . , n} : m(vi) = xi and m(1) = xn+1.
Similarly, for every measure m on H there is such vector x.

The proof of the preceding proposition is easy, but it shows us the connection
between measures on hypergraphs and linear algebra, which enables to use the
following propositions.
Proposition 3.2. Let H = (V,E) be a hypergraph. If |V | ≥ |E|, then there exists
a non-trivial group-valued measure.
1 The addition in matrix multiplication is from the group.
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Proof. Let M be the matrix of H. It has more columns than rows, hence its null
space is non-trivial. Therefore there exists a non-trivial solution to the system of
linear equations Mx = 0, where x is real-valued. �

Theorem 3.3. Let M be the matrix of a hypergraph. If the system of linear
equations Mx = 0 has a non-trivial solution in a group,1 then it has a non-trivial
solution in Zp for some prime p.
Proof. Can be found in [14–15]. �

Corollary 3.4. Let M be the matrix of a hypergraph H. If M can be transformed
using a division-less Gauss-elimination to the identity matrix, then H does not
admit any non-trivial group-valued measure.
Theorem 3.5. Let M be the matrix of a hypergraph H, assuming that M is
a square matrix. Then H does not admit any non-trivial group-valued measures,
iff det(M)= ±1.
Proof. If det(M) = ±1, then M has the inverse. Elements of M−1 are quotients
of minors of M , which are integers, and det(M), which is ±1. Hence M−1 is
a matrix with integer entries. Multiplying a matrix by its inverse can be seen
as applying the steps of Gaussian elimination needed to get an identity matrix.
Since M−1 consists only of integers, the elimination was division-less.

Let the determinant be 0. Then the matrix has non-trivial null space and the
system has a non-trivial real-valued solution.

Let the determinant be different from 0,±1. Then it is divisible by a prime p
and the matrix of the system has not the full rank when considered as a mapping
of a vector space over the group Zp. Hence there is a non-trivial solution to the
system of equations.

�

1 Which means that x is a vector consisting of elements of a group and not all of them are 0.
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Chapter 4
Orthoalgebras

Orthoalgebras are the first quantum structures we will address.
Firstly, in Section 4.1 we define OAs, measures on them and prove some of their

important properties so that we can represent OAs as hypergraphs. Definitions
here are based on those in [7–8]. In Section 4.2 we review the results of ex-
tremal graph theory related to orthoalgebras and finally we adapt those results
to constructions of OAs with no probability, or group-valued, measures.

4.1 Definitions
Definition 4.1. An orthoalgebra is a quadruple (L,⊕, 0, 1), where L is a set, 0 and
1 are its distinct elements, and a partial1 operation ⊕ : L2 → L, which satisfies
the following properties for all a, b, c ∈ L:

. If a⊕ b is defined, then so is b⊕ a and a⊕ b = b⊕ a. (commutativity law). If b⊕ c and a⊕ (b⊕ c) are defined, then so are a⊕ b
and (a⊕ b)⊕ c and a⊕ (b⊕ c) = (a⊕ b)⊕ c. (associativity law). For every element a ∈ L, there exists a unique element b ∈ L such that a⊕ b is
defined and a⊕ b = 1. (orthocomplementation law). If a⊕ a is defined, then a = 0.

Let us assume L is finite, as we deal only with finite structures.
If a ⊕ b = 1, then b is the orthocomplement of a, denoted by a′ = b, clearly

b′ = a.
The associativity law allows us not to write brackets in expressions, as every

valid bracketing is equivalent. We use them only when it clarifies the expression.
Let us note some properties of OAs.

4.1.1 Basic Properties

Lemma 4.1. Let L be an OA, then for all elements a, b ∈ L the following holds.

(i) a′′ = a.
(ii) If a⊕ 1 is defined, then a = 0.
(iii) 1′ = 0.
(iv) a⊕ 0 is defined and a⊕ 0 = a.
(v) If a⊕ b = 0, then a = b = 0.
(vi) If a⊕ b = a, then b = 0.

1 Partial operation means that it is not necessarily defined for the whole domain.

10
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Proof.

(i) The unique orthocomplement of a′ is both, a and a′′, thus a′′ = a.
(ii) Let a⊕ 1 be defined, then

1 = (a⊕ 1)⊕ (a⊕ 1)′,

1 = a⊕ (a⊕ 1⊕ (a⊕ 1)′)⊕ (a⊕ 1)′,

hence a⊕ a is defined and a = 0.
(iii) An easy corollary of (ii).
(iv) 1 = 1⊕ 1′ = (a⊕ a′)⊕ 0 = a⊕ (a′ ⊕ 0), hence a′ = a′ ⊕ 0.
(v) Let a⊕ b = 0, then a⊕ b⊕1 is defined. According to (ii), 0⊕1 is defined.

Hence a⊕ 1 and b⊕ 1 are defined, then a = b = 0.
(vi) 1 = a′ ⊕ a = a′ ⊕ a⊕ b = 1⊕ b, hence b = 0.

�

4.1.2 Measures on Orthoalgebras
Let us recall that a group is an abbreviation for an additive commutative group.

Definition 4.2. Let L be an OA. A group-valued measure (abbr. measure) on L
is a mapping m : L→ X, where (X,+) is a group, if the following holds:

. For all elements a, b ∈ L: If a⊕ b is defined, then m(a⊕ b) = m(a) +m(b).

If (X,+) is (R,+), for every element e ∈ L: m(e) ≥ 0, and m(1) = 1, then m
is a probability measure and is called a state on OA. If there is no measure which
is a probability measure, then the OA is called stateless.

If for all elements e ∈ L: m(e) equals the identity element of X, the measure
is called trivial.
Corollary 4.2. Let L be an OA and m be a measure on it. Then m(0) = 0.

4.1.3 Atoms and Blocks
Definition 4.3. Let L be an OA. An element e ∈ L, e 6= 0, is called an atom if
there are no two elements a, b ∈ L, a, b 6= 0 such that e = a⊕ b.
Theorem 4.3. Let L be a finite OA and m be a measure on L. Then m is
determined by its values on atoms.
Proof. If L = {0, 1}, then the only atom is 1 and the theorem holds.

Otherwise, we proceed by contradiction. Assume to the contrary that there
is an element e1 ∈ L such that m(e1) is undetermined, given values of measure
on atoms. We call such elements as undetermined elements. An undetermined
element is not an atom. Hence, according to the definition of an atom, it can
be written as e1 = e2 ⊕ f2 for some e2, f2 ∈ L, e2, f2 6= 0. At least one of these
elements, WLoG e2, is undetermined, otherwise, m(e1) = m(e2) + m(f2) would
be known. By repeated application of this idea, we can expand these elements in
the following way:

e1 = e2 ⊕ f2,

e2 = e3 ⊕ f3,

11
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e3 = e4 ⊕ f4,

e4 = e5 ⊕ f5,

. . .

The elements f1, f2, . . . are arbitrary non-zeros.
Since L is finite, there are indices n, k such that n > k and en = ek. Then

ek = en = ek ⊕ fk+1 ⊕ fk+2 ⊕ . . .⊕ fn.

According to claims (v), (vi) of Lemma 4.1, fk+1 = fk+2 = . . . = fk+n = 0.
A contradiction.

�

Definition 4.4. Let L be an OA. A block is a set of atoms of L such that the fol-
lowing holds:

. a1 ⊕ a2 ⊕ . . .⊕ an = 1.

Corollary 4.4. Here we list some properties of blocks.

. Let L be an OA, {a1, a2, . . . , an} be its block, and e ∈ L be an element of L. If

a1 ⊕ a2 ⊕ . . .⊕ an ⊕ e

exists, then e = 0.. If a block contains precisely 2 atoms, then it contains an atom and its ortho-
complement.. Let L be an OA, {a1, a2, . . . , an} be its block, and m be a measure on L, then:

m(a1) +m(a2) + . . .+m(an) = m(1).

The introduction of atoms and blocks is necessary for the representation of
OAs by hypergraphs.
Proposition 4.5. Vertices of such hypergraph correspond to atoms of the repre-
sented OA and its edges correspond to blocks of the OA.
Corollary 4.6. Every OA is uniquely represented by a hypergraph in the just
mentioned way.

A measure on some hypergraphs is in a way equivalent to the measure on
an OA.
Corollary 4.7. Let L be an OA and H = (V,E) be the hypergraph representing
L, then the following holds:

. Let m be a measure on L, then there is a unique measure m′ on H such that for
an arbitrary atom a ∈ L and the corresponding vertex v ∈ V , m(a) = m′(v).. Let m be a measure on H, then there is a unique measure m′ on L such that for
an arbitrary atom a ∈ L and the corresponding vertex v ∈ V , m(v) = m′(a).
This is a corollary of Theorem 4.3.

This enables us to deal only with hypergraphs, as there is no non-trivial group-
valued (resp. probabilistic) measure on H iff there is no such measure on L.

We shall now characterize hypergraphs, which represent an OA.

12
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If a hypergraph H = (V,E) represents an OA, then H is simple. There are
also no two edges e1, e2 ∈ E such that |e1| = 1 + |e1 ∩ e2|. For more details see
the following theorem.
Theorem 4.8. Let L be an OA and b1, b2 be its blocks. Then |b1| 6= 1 + |b1 ∩ b2|.
Proof. We will demonstrate this on an example.

We proceed by contradiction. Assume to the contrary that there is an OA with
blocks {a, b, e} and {a, b, c, d}. See the hypergraph in Figure 4.1 for illustration.
Then e = (a⊕ b)′ = (c⊕ d), hence e is not an atom of L. A contradiction.

There is also a simpler case where the blocks have the same cardinality. The
argument here is different. In short, for the contrary assume different blocks
{a, b, c} and {a, b, d}, then c = (a⊕ b)′ = d, hence the blocks are not different.

The same arguments apply when the cardinalities of blocks are larger.
�

Figure 4.1. A hypergraph ({a, b, c, d, e}, {{a, b, c, d}, {a, b, e}}), which does not rep-
resent any OA.

See Figure 4.2 for an example of a hypergraph representing an OA.

Figure 4.2. A hypergraph ({a, b, c, d, e, f}, {{a, b, c}, {c, d, e}, {e, f, a}}), which rep-
resents an OA. The OA is called the Wright triangle.

These conditions are necessary but not sufficient. As far as we know, the set of
conditions, which is both, necessary and sufficient, is not known yet. In the next
section, we introduce conditions on hypergraphs, which are sufficient for the ex-
istence of an OA represented by such hypergraphs.

We show a hypergraph which does not violate our conditions, but does not
represent any OA.
Example 4.1. There is no OA represented by a hypergraph in Figure 4.3.
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Figure 4.3. A hypergraph ({a, b, c, d, e, f}, {{a, b, c, d}, {c, d, e, f}, {e, f, a, b}}) does not
represent any OA.

Proof. We proceed by contradiction. Assume to the contrary that there is an OA
with blocks {{a, b, c, d}, {c, d, e, f}, {e, f, a, b}}. Then:

. a⊕ b = (c⊕ d)′ = e⊕ f,. a⊕ b = (e⊕ f)′.

Hence (e ⊕ f)′ = e ⊕ f , so (e ⊕ f) ⊕ (e ⊕ f) is defined and e ⊕ f = 0, Hence
they are not atoms. �

4.2 Hypergraphs of Girth 3
For the constructions of small quantum structures with restricted state space
it is important to find quantum structures with a lot of edges, given a number
of vertices, as every edge constrains the state space. We shall give an overview
of the results of extremal graph theory related to hypergraphs of girth at least 3,
with the maximal number of edges given the number of vertices.

4.2.1 Greechie Diagrams
In 1971, R. Greechie in [10] introduced a method of representing quantum struc-
tures by hypergraphs. He also described a class of hypergraphs which represent
certain quantum structures.
Definition 4.5. Let H = (V,E) be a hypergraph, and the following conditions
hold for all edges e, f ∈ E:

. |e| ≥ 3 (every edge contains at least 3 vertices).. |e ∩ f | ≤ 1 (no 2 edges share more than one vertex).

Then H represents an OA L, in the sense that V represents the set of atoms
of L and E represents the set of blocks of L.

Such hypergraph is called a Greechie diagram for L. See Figure 4.2 for illus-
tration. We will restrict ourselves to those OAs for which a Greechie diagram
exists.

Ther are also OA, for which no Greechie diagram exists, but it seems that those
which do not have Greechie diagrams (do not satisfy the Greechie conditions)
seem not to contain smaller examples of structures which we want.

4.2.2 Results of Extremal Graph Theory
We are interested in OAs with no non-trivial group-valued measures. For this
purpose, we need an OA with more blocks than atoms.

14
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Theorem 4.9. Let H = (V,E) be a Greechie diagram. Let n = |V | and m = |E|,
then

m ≤ n(n− 1)
6 .

Proof. Let E2 be a set of neighbor pairs from H, i.e., {u, v} ∈ E2 iff u and v are
neighbors in H. Let G = (V,E2). Every edge e ∈ E adds at least 3 edges into G.
As G has at most n(n−1)

2 edges, H has at most n(n−1)
2·3 = n(n−1)

6 edges. �
We will use such hypergraphs for which the inequality turns into equality later.
See Figures 4.6 and 4.7 for illustration.
Corollary 4.10. If equality holds, then every two distinct vertices are neighbors
and H is a 3-graph.

If equality is attained, the hypergraph becomes equivalent to a Steiner triple
system. Steiner triple systems were extensively studied in [20–22]. A Steiner
triple system on n vertices is abbreviated to STS(n). An STS(n) does not need
to be unique up to isomorphism.
Theorem 4.11. The equality in 4.9 can be attained iff n ≡ 1 (mod 6) or n ≡ 3
(mod 6) and H is a 3-graph.
Proof. We show that the equality cannot hold when n 6≡ 1 (mod 6) and n 6≡ 3
(mod 6). Then we show construction of such a hypergraph for one of the remaining
cases. The construction is similar to that in [22].

Let us assume that H has n(n−1)
6 edges.

. If n ≡ 2 (mod 6) or n ≡ 5 (mod 6), then the assumed number of edges is not
an integer, hence n 6≡ 2 (mod 6) and n 6≡ 5 (mod 6).. Take an arbitrary vertex v ∈ V . As every edge containing v contains two
neighbors of v, there is an even number of neighbors of v. Since v is a neighbor
of all vertices, there is an odd number of vertices, hence n 6≡ 0 (mod 6) and
n 6≡ 4 (mod 6).

Hence if n 6≡ 1 (mod 6) and n 6≡ 3 (mod 6), the equality cannot hold. Let us
show a construction where n = 6k + 3, for an integer k.

. Let a0, a1, . . . , a6k+2 ∈ V be vertices of H. Then we can arrange them in a table
as follows:

a0 a1 . . . a2k

a2k+1 a2k+2 . . . a4k+1
a4k+2 a4k+3 . . . a6k+2

Table 4.1. Arrangement of vertices of STS(6k + 3)

For every column, there is an edge containing all its vertices. For example,
{a0, a2k+1, a4k+2} ∈ E. There is also an edge containing two vertices from one
row and one vertex from the following one. The following row for the last one
is the first row. Let ax, ay be vertices from one row and az from the following
one, then {ax, ay, az} is an edge iff

x+ y ≡ 2z (mod 2k + 1).

This edge cannot contain two vertices from one column. Assume on the con-
trary that two vertices, WLoG x and z, are in the same column, i.e., x = z
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(mod 2k + 1). Then x + y = 2x (mod 2k + 1), but that holds only for x = y,
as they are from the same row. A contradiction.

With this construction, it is clear that the constructed graph is a Greechie
diagram. Let us count the number of edges. There are 2k + 1 edges formed
from vertices in one column, and one edge for every pair of distinct vertices
in one row.

2k + 1 + 3(2k + 1)2k
2

= 6k2 + 5k + 1

= 36k2 + 30k + 6
6

= (6k + 3)(6k + 2)
6

= n(n− 1)
6 .

. The construction for the remaining case, where n ≡ 3 mod(6), is similar to the
previous and therefore is omitted. It can be found in [22].

�

As a measure on a hypergraph H, which represents an OA L, is equivalent to
a measure on L, L needs to have more blocks than atoms to forbid group-valued
measures. This is the motivation for the following propositions.
Theorem 4.12. Let Greechie diagram H = (V,E) be a 3-graph, n = |V |, m = |E|,
and m > n. Then n ≥ 8.
Proof.

m ≤ n(n− 1)
6 .

Hence
n+ 1 ≤ m ≤ n(n− 1)

6 ,

n ≥ 8.

�

If a hypergraph is a 3-graph, then it will always have non-trivial group-valued
measures. It will even have a probability measure. For example, a measure m
such that for every vertex v ∈ V : m(v) = 1/3 is a probability measure. It is
necessary to add an edge consisting of 4 or more vertices to forbid all non-trivial
group valued measures.
Theorem 4.13. Let Greechie diagram H = (V,E) be a hypergraph with an edge
e ⊆ V such that |e| = 4. Let the other edges of E have cardinality 3. Let n = |V |,
m = |E|, and m > n. Then n ≥ 9.
Proof. In the proof of Theorem 4.9, we used the fact that a 3-element set has
three 2-element subsets and obtained the following inequality:

m ≤ n(n− 1)
6 .
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It is an easy adjustment of the proof if we consider an edge with 4 vertices, which
will have six 2-element subsets. It leads to the following:

m ≤ n(n− 1)
6 − 1.

Then
n+ 1 ≤ m ≤ n(n− 1)

6 − 1,

n ≥ 9.

Clearly, if |e| ≥ 5, then the bound on n is higher. �

Theorem 4.14. Let H = (V,E) be a Greechie diagram, then there is a probability
measure on H if |V | ≤ 9.
Proof. It is sufficient to show that there is no such hypergraph with no probability
measure and 9 vertices, so we restrict ourselves to this case. We will do so by
constructing a probability measure for all hypergraphs satisfying assumptions.

A necessary condition for H to have no probability measure is to have at least
one edge with 4 or more vertices. We assume this restriction and break the proof
into numerous cases. In the proof, we use figures capturing the probability mea-
sures. Vertices of the same color have the same measure in a figure.

. There are three edges e, f, g ∈ E with 4 or more vertices. Then there is the
following probability measure:

If there are other edges in the hypergraph, then they contain three red ver-
tices, 1/3 + 1/3 + 1/3 = 1.. There are precisely two edges e, f ∈ E with 4 or more vertices.

If e∩ f = ∅, then there is at most one vertex v not contained in these edges.
Hence if there is any edge in E distinct from e and f , it contains precisely
one vertex from e, one vertex from f , and v. A measure which assigns 1/|e|
and 1/|f | to all vertices in e and f respectively and possibly 1−1/|e|−1/|f |
to v, if v exists, is a probability measure.
Otherwise, e ∩ f = {v}, v ∈ V .

. If |e| + |f | ≥ 9, then there is at most one vertex u ∈ V not contained
in e and f , hence there is no edge beside e, f containing v. Therefore if
there is another edge in E, then it consists of u, an element of e\{v}, and
an element of f \ {v}. Then there is an analogous probability measure to
the previous case, which assigns 0 to v.

. Otherwise, |e| = |f | = 4. There are two vertices u,w ∈ V not contained in
e and f . If there is no edge containing v, we can say the measure of v is 0
and the measure of all other elements is 1/3. Otherwise, there is an edge
{u, v, w} ∈ E. Then there is the following probability measure:
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If there are other edges in the hypergraph, then they contain two red
vertices and one green, 2/7 + 2/7 + 3/7 = 1.

. Let us assume that there is a unique edge e ∈ E with 4 or more vertices.
If there is no edge f ∈ E such that e ∩ f = ∅, then there is a probability
measure which assigns 1/|e| to all vertices contained in e and (1 − 1/|e|)/2
to the others.
Otherwise, there is an edge f ∈ E such that e ∩ f = ∅. If there is precisely
one such edge, then there are two more cases:

If there are other edges in the hypergraph, then they contain a blue, a red
and a green vertex, 1/4 + 1/3 + 5/12 = 1.

Or

If there are other edges in the hypergraph, then they contain a blue, a red
and a green vertex, 1/3 + 2/5 + 4/15 = 1.
If there are two edges with empty intersection with e, then there exists the
following probability measure.

If there are other edges in the hypergraph, then they contain two red
vertices and a blue one, 3/8 + 3/8 + 1/4 = 1.

�
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4.2.3 Stateless Orthoalgebras
There exists a Greechie diagram with 10 vertices for a stateless OA. The first
example of a stateless OA with 10 atoms is in [7]. The Greechie diagram for their
example is in Figure 4.4.

Figure 4.4. Greechie diagram for a stateless OA.

Proposition 4.15. The orthoalgebra represented in Figure 4.4 admits no proba-
bility measure.
Proof. We proceed by contradiction. Assume to the contrary that there is a prob-
ability measure m.

Let S =
∑

v∈V m(v).

. There are the following families of blocks:

(i) {a,b, c}, {d, e, f, g}, {h, i, j}, hence S = 3.
(ii) {a, g, j}, {h,d,b}, {i, f, c}, hence S −m(e) = 3 and m(e) = 0.
(iii) {a,d, i}, {b, f, j}, {h, e, c}, hence S −m(g) = 3 and m(g) = 0.

. Now take the following blocks:

(i) {b, e, i}, {h, e, c}, {a, g, j}, hence S + m(e) −m(f) −m(d) = 3 and m(f) =
m(d) = 0.

Therefore m(d) +m(e) +m(f) +m(g) = 0, but it should equal 1.

�

Proposition 4.16. The orthoalgebra represented in Figure 4.4 admits a non-trivial
group-valued measure.
Proof. There is a Z2-valued measure m. The sum of measures of vertices over an
edge is 0.

m(a) = m(c) = m(d) = m(f) = m(h) = m(j) = 1,

and
m(b) = m(e) = m(i) = m(g) = 0.

�

4.2.4 Orthoalgebras With No Group-Valued Measures
If the orthoalgebra has no group-valued measures and is representable by a
Greechie diagram, it cannot be arbitrarily small. In the previous sections, we
showed that it has at least 10 atoms. We found an example with 10 atoms, see
Figure 4.5 and already published it in [23].
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Figure 4.5. Greechie diagram for an OA admitting no group valued measures.

Proposition 4.17. The orthoalgebra represented in Figure 4.5 does not admit any
non-trivial group-valued measures.

Proof. The OA is represented by a hypergraphH. The matrixM ofH is captured
in Table 4.2.

a b c d e f g h i j U
1 1 1 1 0 0 0 0 0 0 -1
1 0 0 0 1 1 0 0 0 0 -1
1 0 0 0 0 0 1 0 1 0 -1
0 1 0 0 1 0 1 0 0 0 -1
0 1 0 0 0 1 0 0 0 1 -1
0 0 1 0 1 0 0 1 0 0 -1
0 0 1 0 0 1 1 0 0 0 -1
0 0 1 0 0 0 0 0 1 1 -1
0 0 0 1 1 0 0 0 1 0 -1
0 0 0 1 0 1 0 1 0 0 -1
0 0 0 0 0 0 1 1 0 1 -1

Table 4.2. Matrix of a hypergraph representing OA with no group-valued measures.

The determinant of M is 1, and according to Theorem 3.5, the only group-
valued measure is trivial. �

We shall also provide an example of an OA with no group-valued measures
such that the argument is simple and does not require advanced results from the
group theory.
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Figure 4.6. Greechie diagram for an OA. The hypergraph is an STS(9).

Lemma 4.18. If the OA captured in Figure 4.6 admits a non-constant group-
valued measure m, then the domain of m is Z3.

Proof. Take arbitrary two vertices, e.g., b, i, and sum up measures over all vertices
incident with them.

Let S =
∑

v∈V m(v).

. [m(a) +m(b) +m(c)] + [m(b) +m(e) +m(h)] + [m(b) +m(d) +m(i)] + [m(b) +
m(f) +m(g)] = S + 3m(b). [m(c) +m(f) +m(i)] + [m(g) +m(h) +m(i)] + [m(a) +m(e) +m(i)] + [m(b) +
m(d) +m(i)] = S + 3m(i)

Hence S + 3m(b) = S + 3m(i) and 3(m(b) − m(i)) = 0, so either 3 = 0 or
m(b) = m(i). The other cases are solved similarly. �

Figure 4.7. Greechie diagram for an OA. The hypergraph is an STS(7)
and is known as a Fano plane.

Lemma 4.19. If the OA captured in Figure 4.7 admits a non-constant group-
valued measure m, then the domain of m is Z2.
The proof is analogical to the previous one and is therefore omitted.
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Figure 4.8. A simplified diagram for an OA.

Let us describe the diagram for OA in Figure 4.8. It is a simplified Greechie
diagram. The vertices of a column form an STS(7), see Figure 4.7 and the
vertices of a row form an STS(9), see Figure 4.6. Edges of these hypergraphs
are truncated to vertical and horizontal lines respectively. The diagonal edges
are edges in the normal sense. For clarity, we draw all the edges as straight
lines. If an edge could not be drawn as a straight line, we drew it as multiple
disconnected straight lines using the same and unique style.
Theorem 4.20. The OA L from Figure 4.8 does not admit any non-trivial
group-valued measures.
Proof. Let there be a group-valued measure m on L. If m is constant, then m
is trivial, as there are edges with both, 3 and 4 vertices, hence 3m(v) = 4m(v)
and m(v) = 0 for any vertex v ∈ V .

Assumem is not constant, thenm is either Z2- or Z3-valued, due to preceding
lemmas.

Let m be Z2-valued, the case when m is Z3-valued is analogical and therefore
omitted. Then the measures of vertices are constant in every row. The measure
of vertices in the first row is r1, in the second row, it is r2, and so on.

There is a diagonal edge with vertices from 1., 2., 3., and 4. row and another
with vertices from 2., 3., 4., and 5. row, hence

r1 + r2 + r3 + r4 = r2 + r3 + r4 + r5,

r1 = r5.

Similarly, we get r1 = r5 = r2 = r6 = r3 = r7 = r4. Hence m is a constant
measure and L does not admit any non-trivial group-valued measure. �
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Chapter 5
Orthomodular Posets

Now we move to the more concrete algebra capturing quantum logic. Here the
definition is more involved. We show orthomodular posets as a special family
of OAs. Hence we will not need to define everything again. For more details
about OMPs see [6]. Small OMPs were also studied in [24–25].

5.1 Definitions
As the definition of an OMP is quite complicated, we split it into several
parts. Firstly we define what a partially ordered set (abbr. poset) is, then we
move to the definition of an orthocomplemented poset, and finally, we define
an orthomodular poset.
Definition 5.1. A partially ordered set is a pair (P,≤), where P is a set and
≤ is a binary relation over P, which is reflexive, antisymmetric, and transitive.
That is, for all elements a, b, c ∈ P the following holds:

. a ≤ a. (reflexivity). If a ≤ b and b ≤ a, then a = b. (antisymmetry). If a ≤ b and b ≤ c, then a ≤ c. (transitivity)

Let a ∨ b be the supremum, i.e., the least element which is greater than
or equal to both, a and b. Similarly, let a ∧ b be the infimum, the greatest
element among the elements which are less than or equal to both, a and b. The
supremum and infimum do not need to exist, and if they do, they are unique.
Example 5.1. Here we bring some examples of posets.

. A pair (R,≤), where R is the set of real numbers and ≤ is the standard
less-than-or-equal relation, is a poset.. A pair (P,≤), where P is an arbitrary subset of positive integers and a ≤ b
iff a divides b, is a poset. See an example in Figure 5.1.

Figure 5.1. Hasse diagram of a poset. There is a non-decreasing path from an
element a to an element b iff a ≤ b. A trivial path is also a non-decreasing one.

Definition 5.2. An orthocomplemented poset is a poset (P,≤) with the greatest
element 1 and least element 0, together with a unary operation ′ : P → P ,
called orthocomplementation, if it satisfies the following for all a, b ∈ L.
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. a ∨ a′ = 1. (complementation law). (a′)′ = a. (involution law). If a ≤ b, then b′ ≤ a′. (order-reversing)

If a ≤ b′, then a and b are called orthogonal. It is a symmetric relation.
Definition 5.3. An orthomodular poset is an orthocomplemented poset P ,
where the following holds for all a, b ∈ P .

. If a is orthogonal to b, then a ∨ b exists in P .. If a ≤ b, then b = a ∨ (a′ ∧ b). (orthomodular law)

The operations in the orthomodular law are defined for the following reasons:
If a ≤ b, then b′ ≤ a′, i.e., b′ is orthogonal to a. Hence, a ∨ b′ and a′ ∧ b =

(a∨b′)′ exist. Obviously, a′∧b ≤ a′, thus a′∧b is orthogonal to a and a∨(a′∧b)
exists.

There are also other definitions of OMPs. The orthomodular law can be
replaced, as stated in [6, 26], equivalently by any of these, for all a, b ∈ P :

. If b′ ≤ a and a ∧ b = 0, then a = b′.. If a ≤ b′ and a ∨ b = 1, then a = b′.. If a ≤ b′, then (a ∨ b) ∧ b′ = a.

Now we can show the connection between OMPs and OAs.

5.2 Orthomodular Posets as Orthoalgebras
Proposition 5.1. Let (P,≤) be an OMP. We create an associated OA (P,⊕).
Define a⊕ b = a ∨ b iff a is orthogonal to b. The reader is referred to [7–8] for
more details.

Let (L,⊕) be an OA, which is associated to an OMP. We can infer the partial
ordering from ⊕ operation as follows. Let a, b ∈ L be elements of OA, then
a ≤ b, iff there is an element c ∈ L such that a⊕ c = b.

Hence we can consider OMPs to be special case of OAs.
Proposition 5.2. Not every OA is associated with an OMP. For example,
Wright triangle, see Figure 4.2, is not the associated OA of any OMP.

We proceed by contradiction. Assume to the contrary that there is such
OMP P .

Then there are elements a, b, c ∈ P such that a ≤ b′, b ≤ c′ and c ≤ a′, and
not a ∨ b ≤ c′. As a ≤ b′, a ∨ b is defined. As both, a and b, are less than or
equal to c, c is less than or equal to a ∨ b. A contradiction. �

5.3 Measures on Orthomodular Posets
Definition 5.4. Let P be an OMP. A group-valued measure (abbr. measure) on
P is a mapping m : P → X, where (X,+) is a group, if the following holds:

. For all elements a, b ∈ P : If a is orthogonal to b, then m(a∨b) = m(a)+m(b).

Corollary 5.3. A measure on an OMP P is also a measure on its associated OA
P and vice versa.
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Definition 5.5. Let H = (V,E) be a hypergraph, and the following conditions
hold:

. For all edges e ∈ E, |e| ≥ 3 (every edge contains at least 3 vertices).. The girth of H is at least 4.

Then H is called a Greechie diagram for OMP. In this section we write just
a Greechie diagram. It represents an OMP P in the sense that V represents
the set of atoms of P , and E represents the set of blocks of P .

Again, we will use Greechie diagrams for representing OMPs when possible.
For an example of a Greechie diagram of an OMP, see Figure 5.2.

Figure 5.2. Greechie diagram for a stateless OMP.

Proposition 5.4. The OMP represented in Figure 5.2 does not admit any
probability measure. The example was given in [10].
Proof. We proceed by contradiction. Assume to the contrary that there
is a probability measure. Then if we sum up measures of atoms over the
horizontal edges, we get that sum of measures of all vertices is 3. On the other
hand, if we do the summation over the vertical edges, we get that the sum of
all vertices is 4. A contradiction. �

Proposition 5.5. The OMP represented in Figure 5.2 admits a non-trivial
group-valued measure.
Proof. There is a Z3-valued measure m. The sum of measures of vertices over
an edge is 0.

m(a) = m(f) = 1.

m(b) = m(e) = −1.

m(c) = m(d) = m(g) = m(h) = m(i) = m(j) = m(k) = m(l) = 0.

�

5.4 Hypergraphs of Girth 4
Here we are interested in Greechie diagrams of OMPs. Firstly we show that
just mentioned example of a stateless OMP is, in fact, the smallest possible.
Then, as we are searching for small OMPs with no group-valued measures, we
construct a bound on the maximal number of edges for a Greechie diagram for
OMPs, given the number of vertices. To our best knowledge, no such bound has
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been published so far. There are also OMPs for which no Greechie diagram1

exists, but they are rather complicated and they seem not to lead to smaller
examples of stateless OMPs.
Proposition 5.6. Let H = (V,E) be a Greechie diagram of a stateless OMP,
then H has at least 12 vertices.
Proof. As the OMP is stateless, there is an edge e ∈ E, which has at least 4
vertices with degree at least 2. Otherwise, there would be a measure assigning
1/3 or 0 to all vertices. Hence there are 4 edges not sharing a vertex. Therefore
there are at least 12 vertices. �

Theorem 5.7. Let H = (V,E) be a 3-graph of girth at least 4 and |V | = n,
|E| = m. Then

m ≤ n2 + 3n
18 .

Proof. Let v ∈ V be a vertex of H. Let adj(v) be the set of neighbors of v.
Clearly, |adj(v)| = 2d(v).
Claim Let {v1, v2, v3} ∈ E be an edge of H. Then

|adj(v1)|+ |adj(v2)|+ |adj(v3)| ≤ n+ 3.

Proof. As H has girth at least 4, adj(v1) ∩ adj(v2) = {v3}. Otherwise, there
would be a cycle of length 3. Then the sets adj(v1), adj(v2), adj(v3) together
contain every vertex v ∈ V at most once, beside v1, v2, v3, which are contained
twice. �

Hence
2d(v1) + 2d(v2) + 2d(v3) ≤ n+ 3.

d(v1) + d(v2) + d(v3) ≤
n+ 3

2 .

If we sum these inequalities for every edge, we, according to Lemma 2.1, get
the following. ∑

v∈V

d(v)2 ≤ mn+ 3
2 .

Now we apply the RMS-AM inequality.

(
∑

v∈V d(v))2

n
≤ mn+ 3

2 .

And then we apply another equality from Lemma 2.1.

9m2

n
≤ mn+ 3

2 .

18m ≤ n2 + 3n.

m ≤ n2 + 3n
18 .

�

1 According to our definition of a Greechie diagram, there are also other definitions.
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The bound is not asymptotically tight. In [27], is shown that for any positive
constant c, there is a number of vertices n such that m ≤ cn2. On the other
hand, this is not evident if we consider only hypergraphs with not more vertices
than edges. See Figure 5.3, for more details. We computed the “best upper-
bound” by generating of all 3-uniform hypergraphs of girth at least 4.
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Figure 5.3. Relation between the graph-theoretical upper bound, and the real max-
imum of the number of edges, given a number of edges for a 3-uniform hypergraph

of girth at least 4.

Corollary 5.8. According to graph theory, a Greechie diagram representing
an OMP needs to have at least 17 vertices, to have more edges than vertices.
Corollary 5.9. According to computer-aided generating of hypergraphs,
a Greechie diagram needs to have at least 19 vertices, to have more edges than
vertices.

There has to be an edge with 4 or more edges in a hypergraph to forbid
probability measures, then, according to computer-aided search, the Greechie
diagram of an OMP with no non-trivial group-valued measures has at least 20
vertices. We found such an example with 21 vertices. There is hope that it is
the smallest possible, as no matrix of a hypergraph with 20 vertices, which we
found, has full rank.
Theorem 5.10. A hypergraph represented by its matrix in Table 5.1 has no
non-trivial group-valued measure.
Proof. The determinant of the matrix is 1, and according to Theorem 3.5, the
only group-valued measure is trivial. �
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a b c d e f g h i j k l m n o p q r s t u 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 -1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 -1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 -1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 -1
0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 -1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 -1
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 -1
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 -1
0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 -1
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 -1
0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 -1
0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1
1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 -1
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 -1
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 -1
1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 -1
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1

Table 5.1. Matrix of a hypergraph representing OMP with no group-valued mea-
sures.
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Chapter 6
Orthomodular Lattices

Orthomodular lattices are the most specific algebras for capturing properties
of quantum logic, among those on which we focused. OMLs are special cases
of OMPs, so we use definitions from previous chapters. OMLs were studied
in [26, 28–29].

6.1 Definitions

Definition 6.1. A lattice is a poset for which every two elements have the
supremum and infimum.
Definition 6.2. An orthomodular lattice is an orthomodular poset which is
a lattice.

A measure on an OML L is also a measure on the OMP L.
Example 6.1. The OMP from Figure 5.2 is not an OML.
Proof. There are three common upper-bounds for a and f , namely b′, e′, and
1. Elements b′ and e′ are less than or equal to 1 and they are not comparable.
There is no supremum for a and f . Hence the OMP is not a lattice.

�

OMLs are special cases of OMPs. Hence we shall define Greechie diagrams
for OMLs, as we showed that not every OMP representable by a Greechie
diagram is an OML.
Proposition 6.1. Let H = (V,E) be a hypergraph, and the following conditions
hold:

. For every edge e ∈ E, |e| ≥ 3 (every edge contains at least 3 vertices).. The girth of H is at least 5.

Then H represents an OML L, in the sense that V represents the set of
atoms of L, and E represents the set of blocks of L.

Not for all OMLs a Greechie diagram exists. In [30, 29], it is shown how
a hypergraph representing OML can even have cycles of length 2.

6.2 Hypergraphs of Girth 5

Again, we look for hypergraphs of girth at least 5 with more edges than vertices.
But at first, we show an OML with no probability measure.
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Figure 6.1. Greechie diagram for the Mayet’s example of a stateless OML.

Example 6.2. OML in Figure 6.1 does not admit any probability measure.
Proof. We proceed by contradiction. Assume to the contrary that there is
a probability measure. The nine diagonal edges, together with the right-most
vertical one cover disjointly all vertices of the Greechie diagram. Hence the
sum of measures of all the vertices is 10. But the 9 remaining vertices also
cover disjointly all vertices of the hypergraph. Therefore the sum of measures
over all vertices should be 9. A contradiction.

�

This is the smallest known example. There are arguments why this example
should be the smallest possible, see [13] for more details.

For Greechie diagrams of OMLs, there is the following tight bound from [18]
on the number of edges, given a number of vertices.
Theorem 6.2. Let H = (V,E) be a Greechie diagram for OML. Let m = |E|
and n = |V |, then

m ≤
2n ·
√
n− 3

4 + n

12 .

In [31] there was described a method for exhaustive generating for all 3-
uniform Greechie diagrams, so we can use their results and show how tight the
bound is for small numbers of vertices. See Figure 6.2 for illustration.
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Figure 6.2. Relation between the graph-theoretical upper bound, and the real max-
imum of the number of edges, given a number of edges for a 3-uniform hypergraph

of girth at least 5.

Corollary 6.3. According to graph-theory, a Greechie diagram needs to have at
least 34 vertices to have more edges than vertices.
Corollary 6.4. According to the generation of hypergraphs representing OMLs
in [31], there is no Greechie diagram for OML with at most 36 vertices having
more edges than vertices.

We shall construct an OML with no group-valued measures.
Theorem 6.5. A Greechie diagram for OML with vertices {1, 2, . . . , 67}, and
edges:

{(1, 5, 65), (1, 9, 21), (1, 45, 56), (2, 3, 18), (2, 23, 64), (2, 28, 40),
(3, 7, 17), (3, 38, 63), (4, 5, 6), (4, 8, 24), (4, 46, 62), (5, 13, 37),

(5, 51, 52), (6, 7, 60), (6, 15, 31), (6, 20, 35), (7, 11, 32), (7, 44, 67),
(8, 11, 12), (8, 27, 29), (9, 12, 18), (9, 14, 20), (10, 20, 28), (10, 26, 32),

(10, 46, 63), (11, 19, 25), (12, 42, 49), (13, 17, 22), (13, 42, 58), (14, 19, 58),
(14, 23, 36), (15, 26, 29), (15, 39, 43), (16, 19, 65), (16, 27, 35), (16, 38, 39),
(17, 21, 29), (19, 31, 59), (21, 46, 53), (22, 24, 28), (22, 45, 48), (23, 49, 52),
(24, 36, 38), (25, 28, 50), (25, 30, 47), (27, 40, 57), (30, 43, 61), (31, 34, 48),
(32, 41, 52), (33, 50, 54), (33, 57, 63), (33, 58, 60), (34, 37, 44), (34, 49, 50),
(35, 42, 47), (39, 41, 54), (40, 41, 59), (40, 44, 56), (42, 56, 62), (43, 49, 55),
(45, 55, 60), (46, 55, 59), (47, 63, 66), (48, 51, 53), (51, 57, 61), (53, 54, 67),

(61, 62, 64), (64, 65, 66, 67)}
does not admit any non-trivial group-valued measures.
Proof. Construct the matrix of the hypergraph. Its determinant is 1, according
to Theorem 3.5 it does not admit any non-trivial group-valued measure. �
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Chapter 7
Contribution

We reviewed results of extremal graph theory, related to hypergraphs of girth
3, 4, 5. In the case of girth 3 and 5, we adjusted the bound on the maximal
number of edges, given the number of vertices, as we added to consideration
that there is at least one edge with 4 or more vertices. For the hypergraphs of
girth 4, there was no bound, so we created our own.

We showed that all these three bounds are quite tight for a small number
of vertices. Such hypergraphs with a small number of vertices are interesting
for the theory of quantum structures. This corresponds to the lower bounds
on the number of atoms of quantum structures, for which a Greechie diagram
exists.

From the other side, we constructed quantum structures with a small number
of atoms admitting no non-trivial group-valued measures; this is an upper
bound on the minimal size of such quantum structures.

To our best knowledge, there is no work addressing the minimal number of
atoms of quantum structures with no non-trivial group-valued measures.

The upper bound was 73 atoms for all quantum structures. Here we signifi-
cantly optimized the constructions.. Orthoalgebras

Lower bound - 10 atoms.
Upper bound - 10 atoms.. Orthomodular posets
Lower bound - 20 atoms.
Upper bound - 21 atoms.. Orthomodular lattices
Lower bound - 36 atoms.
Upper bound - 67 atoms.

We showed that the smallest known examples of stateless orthoalgebra and
orthomodular poset are the smallest possible.

We also developed new methods of generating quantum structures, which are
much more general than the current known. We moved this to Appendix B.

We present a sufficient condition for a hypergraph to not have a non-trivial
group-valued measure. We check if the determinant of a matrix is ±1 or not.
The previous works needed much more complicated arguments for this.

We also showed the construction of an orthoalgebra with no non-trivial
group-valued measures such that the arguments for the nonexistence of those
measures are simple. It does not require advanced theorems from group the-
ory. In contrast to all current known examples of quantum structures with no
non-trivial group-valued measures, it does not require a computer to check if
there are group-valued measures or not.
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Appendix A
The Root-Mean Square-Arithmetic Mean
Inequality

The inequality between root-mean square, which is sometimes called quadratic
mean, and arithmetic mean (abbr. RMS-AM inequality) can be widely used
in extremal graph theory. We show it as a special case of Cauchy-Schwarz
inequality. It is also a special case of Jensen inequality, as Cauchy-Schwarz
inequality is itself a special case of Jensen inequality.
Theorem A.1. (Root-Mean Square-Arithmetic Mean inequality)
Let x1, x2, . . . , xn be real numbers. Then√

x2
1 + x2

2 + . . .+ x2
n

n
≥ x1 + x2 + . . .+ xn

n
.

Proof. If the right hand side of the inequality is negative we are done. Assume
it is not, then we equivalently rewrite the inequality using summation notation.

n(x2
1 + x2

2 + . . .+ x2
n) ≥ (x1 + x2 + . . .+ xn)2

n

n∑
i=1

x2
i ≥

(
n∑

i=1
xi

)2

As both of these inequalities are equivalent to the stated one, it is sufficient to
prove the latter. Now consider the inequality (a − b)2 ≥ 0, so a2 + b2 ≥ 2ab,
which clearly holds. If we sum up these inequalities for a, b ∈ {x1, x2, . . . , xn},
the resulting inequality will also hold.

n∑
i=1

n∑
j=1

(x2
i + x2

j ) ≥
n∑

i=1

n∑
j=1

2xixj

n∑
i=1

n∑
j=1

(x2
i + x2

j ) =
n∑

i=1

n∑
j=1

x2
i +

n∑
i=1

n∑
j=1

x2
j =

n∑
i=1

nx2
i + n

n∑
j=1

x2
j = 2n

n∑
i=1

x2
i ≥

≥
n∑

i=1

n∑
j=1

2xixj = 2
n∑

i=1
xi

n∑
j=1

xj = 2
(

n∑
i=1

xi

)2

n
n∑

i=1
x2

i ≥

(
n∑

i=1
xi

)2

�

Corollary A.2. RMS-AM Inequality becomes an equality iff

x1 = x2 = . . . = xn ≥ 0.
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A.1 RMS-AM Inequality as a Special Case of
Cauchy-Schwarz Inequality.

Let u1, u2, . . . , un, v1, v2, . . . , vn be real numbers, Then Cauchy-Schwarz in-
equality can be stated as follows:

(u2
1 + u2

2 + . . .+ u2
n)(v2

1 + v2
2 + . . .+ v2

n) ≥ (|u1v1|+ |u2v2|+ . . .+ |unvn|)2.

Let u1 = u2 = . . . = un = 1 and v1 = x1, v2 = x2, . . . , vn = xn, then:

n(x2
1 + x2

2 + . . .+ x2
n) ≥ (x1 + x2 + . . .+ xn)2,

which is equivalent to RMS-AM inequality.

A.2 RMS-AM Inequality as a Special Case of
Jensen Inequality

The finite form of Jensen inequality generalizes the statement that a secant
line of a convex function is above the graph.
Let f be a convex function, x1, x2, . . . , xn be in its domain and

λ1, λ2, . . . , λn ≥ 0,
n∑

i=0
λi = 1.

Then the following inequality is known as Jensen inequality.

n∑
i=1

λif(xi) ≥ f
(

n∑
i=1

λixi

)

Now let f(x) = x2, which is a convex function, and λ1 = λ2 = . . . = λn = 1
n ,

then we rewrite the Jensen inequality as follows.∑n
i=1 x

2
i

n
≥
(∑n

i=1 xi

n

)2

n
n∑

i=1
x2

i ≥

(
n∑

i=1
xi

)2

The latter is again equivalent to RMS-AM inequality.
As Jensen inequality is closely related to probability theory, we will also add

a probability-theoretical explanation of RMS-AM inequality.
Let x1, x2, . . . , xn be real numbers. Let X be a random variable attaining

values x1, x2, . . . , xn, each with probability 1
n . The expected value of such

random variable is:
EX = (

∑n
i=1 xi)
n

.
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The second moment of the random variable X is:

EX2 =
(∑n

i=1 x
2
i

)
n

.

As the variance of a random variable is non-negative, we can write:

var(X) = EX2 − (EX)2 ≥ 0,∑n
i=1 x

2
i

n
−
(∑n

i=1 xi

n

)2
≥ 0,

n
n∑

i=1
x2

i ≥

(
n∑

i=1
xi

)2

,

which is again a form of RMS-AM inequality.
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Appendix B
Implementation

Here we briefly describe our programs used for generating quantum structures.
They are on the enclosed CD, together with a README.txt file.

B.1 orthoalgebra.cpp
The program generates all Greechie diagrams of orthoalgebras with the given
number of vertices. As the number of different hypergraphs is relatively small,
it is possible to enumerate all of them in a reasonable time.

There are 744 624 Greechie diagrams of orthoalgebras with 10 vertices,
an edge with at least 4 vertices, and at least 11 edges such that no edge could
be added to the hypergraph. This takes about 2 seconds1. To generate them
and about 2 minutes to save them2.

The speed of implementation is caused by choosing appropriate data struc-
tures. We use an unsigned integer for the representation of an edge. The
binary code of an integer is for our purpose an indicator function. For exam-
ple, an edge represented by the binary integer 1010 contains vertices 1 and 3.
This allows us to store them efficiently in an array. Hence the algorithm is
cache-friendly.

For two edges (unsigned integers), we can calculate the number of common
vertices as follows:

// count the number of bits
unsigned weight(unsigned x){

unsigned count;
for(count=0; x; count++)

x &= x-1;
return count;

}

unsigned a = ...;
unsigned b = ...;
unsigned common_vertices = weight(a&b);

This is efficient as the number of common vertices is generally small.
The algorithm itself is a simple recursive DFS. In a function call either no

edge can be added and the hypergraph is processed, or an edge is added to the
hypergraph, the domain of edges is restricted and a recursive call follows.

B.2 gen.cpp
In the previous case, there was a small number of hypergraphs to generate.
Hence it was sufficient not to address graph isomorphism. Here, in the case of

1 On an Intel Core i5 − 8250U 1.6GHz
2 It is 180 MB of plain text
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OMLs and OMPs, there are significantly more hypergraphs representing them,
even if they have a small number of vertices, for example, 30. Hence ignoration
of isomorphisms in an exhaustive generation is not possible here. The problem
of graph isomorphism is hard. There is no algorithm running in polynomial
time, which tests general graph-isomorphism. Isomorphism-free generation of
hypergraphs of OMLs was done in [31]. However, they did not generate any
hypergraph with more edges than vertices.

According to the preceding arguments, there is no hope for a systematic
exploration of hypergraphs representing OMLs, which are large enough to have
no non-trivial group-valued measure.

We decided to do a random search with no back-tracking, as we want to
explore as diverse parts of space of hypergraphs as possible.

Our algorithm works as follows, although our implementation slightly differs:

1. Create a hypergraph H with n vertices and one edge, with 4 vertices. Declare
the minimal length of a cycle.

2. Declare d = 0, where d is the maximal allowed degree of a vertex in H.
3. new_edge := true.
4. If new_edge = false, terminate and process the constructed hypergraph.
5. d:= d+1.
6. new_edge = false.
7. Create a set of all possible edges with 3 vertices.
8. If S is empty, go to step 4.
9. Remove a random edge e ∈ S from S. If the degree of all vertices of e is less

than d, and the addition of e does not create a cycle of a smaller length than
the minimal length of cycle, add it to H. added_edge := true

10. Go to step 8.
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Appendix C
Contents of CD

. Thesis.pdf. gen.cpp. orthoalgebra.cpp. README.txt
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