
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Interactive Nearest Neighbor Search in
High Dimensional Data

Prokop Černý

Supervisor: Lasse Blaauwbroek, MSc.
Field of study: Open Informatics
Subfield: Software
May 2019

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

466375Osobní číslo:ProkopJméno:ČernýPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

SoftwareStudijní obor:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Interaktivní hledání nejbližších sousedů ve vysocedimenzionálních datech

Název bakalářské práce anglicky:

Interactive nearest neighbor search in high dimensional data

Pokyny pro vypracování:
The goal of this thesis is to create a fast approximate neareast neighbor search algorithm in an interactive environment,
with the corpus of known data changing dynamically, for the purposes of being used for Coq Theorem Prover. Such
algorithms need to strike a balance between speed and prediction accuracy, so evaluation of different algorithms will be
an important part of the thesis.
Main objectives of the thesis are to
• Create algorithms and associated datastructures to enable this kind of search.
• Implement such algorithms in OCaml programming language
• Evaluate algorithms with respect to their speed and accuracy

Seznam doporučené literatury:
[1] J .Leskovec, A. Rajaraman, a J.D. Ullman – Mining of Massive Datasets – New York, NY, USA, Cambridge University
Press, 2014
[2] Indyk, Piotr, a Rajeev Motwani - Approximate nearest neighbors: towards removing the curse of dimensionality – ACM
1998
[3] Andoni, Alexandr a Piotr Indyk. - Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions
– IEEE 2006
[4] Berchtold, Stefan - Fast nearest neighbor search in high-dimensional space - IEEE 1998.

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Lasse Blaauwbroek, Český institut informatiky, robotiky a kybernetiky

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 24.05.2019Datum zadání bakalářské práce: 23.01.2019

Platnost zadání bakalářské práce: 20.09.2020

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryLasse Blaauwbroek

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgements

I would like to thank my family for their
unwavering support they have given me
during my studies, my supervisor for all
the help and advice he has given me, and
last but not least, I would like to thank
CTU for being a great alma mater.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

In Prague, 24. May 2019

v

Abstract

Nearest Neighbor search is an important
problem in many fields of study. In this
thesis we concern ourselves with this prob-
lem for a high dimensional dataset in an
interactive setting, with frequent inser-
tions and deletions from corpus of known
data in which we search for nearest neigh-
bors, specifically for use in automated the-
orem solvers such as Coq, HOL4 and oth-
ers.

We explore different similarity mea-
sures, to decide which is a best fit for
our use case and data, and use techniques
such as Minhashing, Locality Sensitive
Hashing and LSH Forest to accelerate the
search for nearest neighbors, while keep-
ing a reasonable accuracy. We implement
our algorithms in OCaml to interface with
the Coq theorem prover.

Keywords: nearest neighbor, kNN,
search, minhashing, LSH

Supervisor: Lasse Blaauwbroek, MSc.
Czech Institute of Informatics, Robotics,
and Cybernetics,
Jugoslávských partyzánů 1580/3,
Praha 6

Abstrakt

Vyhledávání nejbližších sousedů je důle-
žitý problém v mnoha oblastech. V této
práci se zaobíráme tímto problémem pro
vysocedimenzionální data v interaktivním
prostředí, s častým přidáváním a odebírá-
ním z korpusu známých dat ve kterém hle-
dáme nejbliží sousedy, specificky určeno
pro použití v automatickém dokazování
teorémů v nástrojích jako Coq, HOL4 a
podobně

Zkoumáme různé metriky podobností,
abysme rozhodli která se nejlépe hodí pro
naše účely a datům, a použijeme různé
techniky jako Minhashing, Locality Sensi-
tive Hashing (hashování citlivé na rozmís-
tění) a LSH Forest pro zrychlení vyhle-
dávání se současným zachováním dosta-
tečné přesnosti. Naše algoritmy implemen-
tujeme v OCamlu aby byly použitelné v
Coq theorem proveru.

Klíčová slova: nejbliží sousedé, kNN,
vyhledávání, minhashing, LSH

Překlad názvu: Interaktivní
vyhledávání nejbližších sousedů ve
vysocedimenzionálních datech

vi

Contents

1 Introduction 1

1.1 Overview of Nearest Neighbor
search techniques 1

1.1.1 Exact methods 2

1.1.2 Approximate methods 2

1.2 Problem statement 4

1.3 Implementation and experiment
notes . 5

2 Dataset analysis 7

2.1 Technical details 7

2.2 Statistics . 8

3 Similarity 11

3.1 Similarity measures 11

3.2 Experiments 14

4 Dimensionality reduction 19

4.1 Minhashing 19

4.1.1 Description 19

4.1.2 Computing minhashes 21

4.1.3 Working with multisets 22

4.2 Experiments 22

5 Approximate k-nearest neighbor
search 25

5.1 Locality Sensitive Hashing 25

5.1.1 Locality Sensitive Hash
families . 25

5.1.2 Implementation 27

5.2 LSH Forest 29

5.2.1 LSH tries 30

5.3 Experiments 33

5.3.1 LSH parameter optimization 34

5.3.2 LSH Forest parameter
optimization 37

5.3.3 Comparisons of LSH, LSHF and
Jaccard . 40

6 Conclusion 43

A Bibliography 45

B List of attachments 49

vii

Figures

3.1 Cumulative accuracies of different
measures on original dataset 15

3.2 Cumulative accuracies of different
measures on flush dataset 16

4.1 Difference scores of minhash
signature lengths to Jaccard 24

5.1 An example trie using binary
prefixes. 30

5.2 LSH parameter experiments 35

5.3 LSH parameter experiments detail 36

5.4 Scores of different LSH forest
parameters . 38

5.5 Scores of different LSHF neighbor
counts K . 39

5.6 Comparison of LSH and LSH
Forest to generalized Jaccard 40

Tables

2.1 Dataset statistics 8

3.1 Overview of accuracies at first
position and timings of different
measures . 17

5.1 Technique comparison 41

viii

Chapter 1

Introduction

k-Nearest neighbors (k-NN) search is a classic computer science problem with
applications in many areas, such as computer vision, pattern recognition,
clustering and so on. We will be exploring k-NN search techniques to use for
datasets in the field of machine assisted theorem proving, meaning searching
in datasets with high dimensionality, with a focus on query speed. The use
case of k-NN search in theorem proving also needs the ability to dynamically
add and remove to the corpus of known data the search works on, as because
the proving process is interactive. We will achieve that by requiring that
the data structure holding the database used by the k-NN search algorithm
will provide these operations. The goal of this thesis is to explore possible
techniques to solve this problem in OCaml, so it can easily integrate with the
Coq theorem prover.

1.1 Overview of Nearest Neighbor search
techniques

The need to search for similar items emerged quickly in computer science.
k-Nearest neighbor search has a very wide applicability in many fields, and
therefore has a lot of variants, with two main overarching categories emerging.
First the exact nearest neighbor search, which always return the true nearest
neighbors in a given metric space, and secondly approximate nearest neighbor
search, which trades accuracy for speed, memory consumption or both. We
shall discuss some of the techniques in the following paragraphs.

1

1. Introduction
1.1.1 Exact methods

Naive search

This is the simplest form of k-NN search, which computes similarities between
a query and all points in a database and returns them in descending order
according to their similarity. This kind of search is simple to implement,
but its query time is quadratic to the size of the database as we compare
everything in the database to previous entries and can be practically used only
for small datasets. We will use naive search to compare different similarity
metrics to select the most appropriate one for our use case.

Partitioning search

These search methods split and partition the search space into smaller chunks
to speed up the search and find k nearest neighbors for a given query.

One of the basic algorithms in this category is a k-d tree, originally proposed
by Bentley [1]. This algorithm works on k-dimensional data (hence k-d tree)
and is a binary tree which on each level splits the search space in two partitions
based on a points position in the dimension corresponding to the level in the
tree. This algorithm works very well for data with lower dimensional spaces,
but its performance degrades in higher dimensions.

Other algorithms for partitioning search include quadtrees and octrees [2],
for two and three dimensional spaces respectively, mainly used in computer
graphics. Next are R-tree [3] and R*-trees [4], which work by grouping nearby
objects together, creating their minimum bounding rectangle. For general
metric spaces, an algorithm such as Vantage-point (vp) tree [5] can be used,
which on each level of a tree chooses a so-called vantage point and groups
points into two groups, those within a specified distance to the vantage point
and those which are not.

1.1.2 Approximate methods

Performance of exact methods degrades in high dimensional spaces, because
of the curse of dimensionality, as the distance from a query point to its nearest
neighbor starts to approach the distance to its farthest neighbor. Therefore
techniques were created which relax the criteria to find only approximate
nearest neighbors, while gaining speed compared to exact methods.

2

..................... 1.1. Overview of Nearest Neighbor search techniques

Approximate partitioning search

Techniques emerged from tree based partitioning search, with the relaxation
of allowing approximate neighbors instead of exact ones. Muja and Lowe [6]
present an algorithm based on kd-trees, by creating a forest of randomized
kd-trees and searching across them in parallel. Another tree-based technique
is Rank Cover Tree [7], introduced by Houle and Nett, which distinguishes
itself by pruning the search space solely based on the comparison of similarity
values to a given query.

Graph based techniques

There are various techniques based on constructing and traversing a graph.
Arya and Mount introduce the Randomized Neighborhood Graph [8], which
is designed to work on Euclidean spaces. It has the set of stored points in its
database as vertices of a graph and then creates cones which have a point
from the database as an apex and connects the point to a number of other
random points which fall into a given cone.

Another technique by Malkov and Ponomarenko [9], Navigable Small World
graph, works by creating a graph in which each object in the algorithm’s
database corresponds to a vertex. During insertion each point is connected to
some number of its nearest neighbors. Querying works by greedily traversing
the graph and selecting points based on their distance to the query point.
Malkov and Yashunin improve upon this technique, proposing Hierarchi-
cal Navigable Small World [10], suggesting a graph structure with shorter
traversals compared to his original paper.

Locality Sensitive Hashing

Another direction of research in mitigating the curse of dimensionality for
nearest neighbor problems uses hashing. Hashing is typically used to create
fast approximate "fingerprints" of data, with as few collisions as possible and
with small changes in the input causing large changes in the output. But we
can also use hashing the other way, where we want data with distance below
a certain threshold (in some metric space) to collide with high probability,
while simultaneously data with distance above some threshold to collide with
low probability. Groups of hashing functions with this property are called
Locality Sensitive Hash families (see section 5.1.1).

Indyk and Motwani propose Locality Sensitive Hashing (LSH) [11] as one
possible solution to the nearest neighbor problem using families of locality

3

1. Introduction
sensitive hashing functions. They use these functions to map similar items
into buckets, and when searching for nearest neighbors they only consider
points from buckets into which a query would hash into.

Bawa, Condie and Ganesan also use LSH families to create a self-tuning
similarity search index called LSH Forest [12]. They propose storing the
search points in prefix trees (tries), with the path to a point in a trie specified
by outputs of functions from a LSH family.

In this thesis we have decided to explore the LSH approach for our solution,
as we need to be able to work in an interactive manner and a hashing approach
offers speed.

1.2 Problem statement

Our goal is to create a k-nearest neighbor search used as a tool in machine
assisted theorem proving. Given the current state of the prover, find most
similar states we have recorded in our database and return the actions which
were taken in those states, sorted by the similarity of the states to the given
query state.

Formal description

To create a k-NN search algorithm, we do not need to have knowledge of the
inner working of used theorem prover and its representation of state. As such,
the datasets for our search algorithm consist of tuples pfl, aq, where fl is a
feature list containing features representing a given state, and a is the action
taken in the given state. With this knowledge we can now formally describe
our problem.

Definition 1.1 (feature list). Let F be the set of features. We define feature
list as a tuple pF, wq, where F � F is a set of features the list contains, and
w : F Ñ N� is a function returning the count of a feature in a feature list.
We shall refer to the set of all feature lists as L and introduce the following
notation for a feature list x P L, that Fx is the set of features for the given
feature list and wx is the weighing function for the feature list.

Definition 1.2 (database). Let A be the set of actions. Our problem can be
represented as operations on an abstract set D, which is an ordered collection
of elements from L�A. Each element of D is a tuple of a feature list which
represents a state and action taken in that state. Conceptually a database

4

..........................1.3. Implementation and experiment notes

is a function D : N Ñ pL � Aq, which takes a position i and returns the
i-th entry in the database. We shall refer to the type of the database as
D. Practically, a database is implemented as a more complex datastructure
which enables fast kNN queries.

Capability requirements

We will require an INSERT pD, fl, aq :
�
D � L � A

�
Ñ D operation, for a

database D, feature list fl and action a, which will return D1, which is D
with pfl, aq inserted at its end.

Then we will require a REWINDpD, nq :
�
D � N

�
Ñ D operation, which

will return D1, which is D with n elements removed from its end, undoing
the last n insertions.

And finally we need a SEARCHpD, qq :
�
D � L

�
Ñ PpR � Aq (the

powerset of R � A) operation, for a database D and a query feature list q.
We want to find a subset of neighbors N � D, such that for pfl, aq P N and
a given similarity function SIM , the value SIMpq, flq is as large as possible
(find the most similar neighbors), then create a set of possible actions to
take S � t

�
SIMpq, flq, a

�
| pfl, aq P Nu � R � A, and return S sorted in

descending order according to the computed similarity, as we care most about
the best scoring actions.

In addition to providing these operations we will also require that the
implementation will be fast, as the quadratic complexity of naive implemen-
tation, which has to compare against each entry in the database, is too high
for the use case in machine assisted theorem proving.

1.3 Implementation and experiment notes

Implementations as well as the dataset we used can be found on the attached
CD. We’ve implemented algorithms needed for experiments in OCaml, com-
piled with OCaml 4.07.1 on a 64-bit distribution of Ubuntu 18.04. A guide
how to run our experiments is present in a readme file on the attached CD.

All our experiments have been run on a 3.8GHz AMD Ryzen 5 2600 system
with 16GB of RAM.

5

6

Chapter 2

Dataset analysis

2.1 Technical details

Our dataset is generated from the Coq Standard library [13], which is a
collection of basic math theorems. Each selected file from the Standard
Library is encoded as an ordered list of tuples of feature list and action pfl, aq,
with features and actions encoded as integers. The feature lists are explicit
representations compared to how we have defined feature lists L in section 1.2.
Instead of the list containing tuples of feature and its count c, it contains the
feature repeated c times.

These ordered lists of tuples are then saved into text files, having the
tuples pfl, aq, represented as ’[comma separated list of integers] : integer’ on
separate lines.

Definition 2.1 (dependencies). Each file can depend on a number of different
files. The first line of each file contains a list of files it depends on. In the
context of the Coq Standard Library the dependencies represent previously
proven lemmas used in a given file. Each dependency can have its own
dependencies, but fortunately the dependency graph is a directed acyclic
graph and we cannot encounter circular dependencies.

Dependencies for each file are loaded and inserted into the database of the
nearest neighbor search prior to starting evaluation of a given file.

Evaluation of the dataset is done by going through each file sequentially,
and for each line of pfl, aq, we first try to predict a using fl, and save at which
index a was predicted in the list of predicted neighbors (if it was present), and
then add pfl, aq to the database. After finishing, we create accuracy graphs

7

2. Dataset analysis
based on the distribution of the indexes at which the actions to predict were
found.

Using this kind of evaluation, we have found that almost all our algorithms
have the same accuracy at the first predictions, starting at around 20%,
which was suspicious. After investigating, we have found that our dataset
is "previous"-sensitive, in the sense that around 20% of the time, the action
to predict is found on the previous line in the input file. This is caused by
the lemmas contained in the Coq standard library often having a repeating
sequence of the same action.

Because of this we have modified the dataset to include so called flushing,
and modified evaluation to not insert new lines into the database immediately
after they are encountered.

Definition 2.2 (flushing). The concept of flushing is introduced to separate
different lemmas in the source files. Lines containing ’#flush’ are present in
the files at appropriate places. During evaluation new lines should not be
added to the database until a flush is encountered, at which moment all lines
since the previous flush are added to the database. This is more natural for
the way the k-NN search would be used, as usually whole sequences of lines
constituting a lemma are inserted into the database at once.

2.2 Statistics

Total Mean Median StdDev Min Max
File count 409 — — — — —
File length 129027 315,47 81 597,99 0 5041
of dep files — 93,5 80 62,58 0 251
of dep lines 7909079 19337,6 14398 17611,14 0 86296
Distinct actions 27912 — — — — —
Action frequency — 4,62 1 82,11 1 7775
Imported act. fq — 278,82 22 5329,12 1 470415
Feat. list length — 89,32 49 103,31 1 874

Table 2.1: Dataset statistics

Table 2.1 aggregates interesting statistics about the dataset. Taking only
file lengths into consideration, it would seem that we need to create a k-
NN search tuned for small databases, but when we look at the number of
dependency lines each file imports we see that the mean database size jumps
by orders of magnitude.

From action frequencies it would seem that we usually would not be able
to predict an action as because median frequency is 1, then at least half of all

8

...................................... 2.2. Statistics

actions are unique. But when taking dependencies for each file into account
then we see that action frequency increases dramatically.

From the 129027 lines to be evaluated, for 98272 the action to predict for
them already exists in the database when not using flushing, which gives
us the theoretical best accuracy of 76, 164%. When using flushing, then
the action to predict is present only for 90367 lines, giving us maximum
theoretical accuracy of 70, 037%.

Statistics on feature list lengths give us a general idea on the cardinality of
feature lists and will be useful for roughly choosing dimensionality reduction
parameters in later chapters.

9

10

Chapter 3

Similarity

To be able to search for nearest neighbors we need a way to measure how
similar two objects are. This is usually done using similarity measures
(functions), which are functions S : X � X Ñ U , where X is the space
of the objects on which we want to measure similarity and U being the
output space of the similarity function, with typically U � R. Similarity
functions can usually be thought of as an inverse of distance functions, and
many similarity functions reflect that by using the output of their related
distance function when calculating similarity. We will explore several different
similarity measures which could be applicable to our search space.

3.1 Similarity measures

We want to explore similarity measures for our high dimensional space. For a
vector in this space each dimension corresponds to one possible feature, and
the value in a given dimension represents the count of that feature.

Feature lists are sparse representations of these vectors. As we have defined
in definition 1.1, each feature list is a tuple of pF, wq, where F P F is the set
of features it contains, and w being the function returning counts of a feature
in the feature list. When working with feature lists, we can choose to only
use the set of features F it contains and discard their weights. We shall refer
to doing this as unweighted feature lists. When making use of a feature lists
weighing function w we will be referring to this as using weighted feature
lists.

Treating all feature lists as unweighted allows us to treat them as sets,
which can simplify the calculation of similarity.

11

3. Similarity
For a weighted feature list x, we shall use the notation introduced in

definition 1.1, with Fx referring to the set of features of the given feature list,
and wx referring to its weighing function.

Euclid-distance based similarity

One of the most commonly used distance measures is Euclidean distance, with
very similar objects having distance approaching zero and becoming more
dissimilar as the distance increases. For n-dimensional space it is defined as

dvector
Euclidpx, yq �

gffe ņ

i� 1
pxi � yiq2 (3.1)

Calculating the Euclidean distance of unweighted feature lists (sets) a, b be
expressed as the size of their symmetric difference.

dset
Euclidpa, bq �

a
|a4b| �

a
|aY b| � |aX b| (3.2)

The distance of weighted feature lists is calculated in the following way.

dmultiset
Euclid pa, bq �

d ¸

fPFaYFb

�
wapfq � wbpfq

�2 (3.3)

Note that when this formula is used on unweighted feature lists, the result of
dmultiset

Euclid equals the result of dset
Euclid

Now when we know how to calculate the distance, we need to calculate
their similarity. As similarity and distance are in a way an inverse of each
other, a rudimentary way to create a distance-based similarity is to use the
following formula

SIMEuclidpa, bq �
1

1� dpa, bq
(3.4)

and just substitute the appropriate distance function for d.

Cosine similarity

The cosine similarity is another widely used similarity measure. Given two
vectors it measures the cosine of the angle between them. In n dimensional
space it is defined in the following way.

SIMvector
Cosinepx, yq �

x � y

}x}}y}
�

ņ

i� 1
xiyid

ņ

i� 1
x2

i

d
ņ

i� 1
y2

i

(3.5)

12

.................................. 3.1. Similarity measures

For unweighted feature lists, the similarity can be simplified. The dot product
of two vectors in the original vector space, but having only one or zero in
each dimension corresponds to the count of positions in which both vectors
are one. In set operations this corresponds to taking the size of intersection
of two unweighted feature lists. The magnitude of a vector in the original
vector space corresponds to the square root of the count of ones in the vector.
Given this, the cosine similarity for sets is expressed as follows.

SIM set
Cosinepa, bq �

|aX b|a
|a||b|

(3.6)

For weighted feature lists (multisets) the formula 3.5 is just slightly modified
to work with weights of features instead of iterating over dimensions.

SIMmultiset
Cosine pa, bq �

¸
fPFaYFb

wapfqwbpfq

d ¸
fPFaYFb

wapfq2
d ¸

fPFaYFb

wbpfq2
(3.7)

Jaccard similarity

A very popular similarity measure in data mining is the Jaccard index [14]
originally used to study similarity of two regions by the distribution of their
plant species.

SIM set
Jaccardpa, bq �

|aX b|

|aY b|
(3.8)

Defined like this it presents itself as a natural way to compare similarity
of sets in general, and can be used unchanged when determining similarity
of unweighted feature lists. To not lose the additional information held by
weighted feature lists we can use the Růžička similarity [15] (also known as
generalized Jaccard similarity). It is defined as follows for non-zero vectors
x, y P Rn.

SIMvector
Jaccardpx, yq �

ņ

i� 1
minpxi, yiq

ņ

i� 1
maxpxi, yiq

(3.9)

Reinterpreting this formula for multisets gives us the similarity

SIMmultiset
Jaccard pa, bq �

¸
fPFaYFb

minpwapfq, wbpfqq

¸
fPFaYFb

maxpwapfq, wbpfqq
. (3.10)

13

3. Similarity
TF-IDF based similarity

In addition to just weighing features by the count of their appearances one
can also weigh the feature in relation to a corpus of known data. One way to
do it is by using Inverse Document Frequency [16], or IDF for short. We use
the IDF scheme as proposed by Kaliszyk and Urban [17], where they define
IDF for a feature f in a corpus of feature lists D as

IDF pf, Dq � log

�
|D|

|tl P D | f P lu|

. (3.11)

This formula assumes that feature f is present in some feature list from L.
This gives us a measure of importance of a feature in relation to the whole
database of known data. This is typically combined with a feature weight
for the feature list it originates from, in the form of Term Frequency (TF),
defined as follows for a feature f from feature list a

TF pf, aq �
wapfq¸

lPFa

waplq
(3.12)

Note that for unweighted feature lists the TF term is constant for all features
it contains. We combine these two terms into a TFIDF weigh for a feature f
in a feature list a in a document corpus L.

TFIDF pf, a, Lq � TF pf, aq � IDF pf, Lq (3.13)

Now we can create a similarity using TFIDF weighing over a corpus of
known feature lists L. We will use the generalized Jaccard similarity (eq.
3.10) as the base, but we will weigh the features by their TFIDF scores instead
of using raw appearance counts.

SIML
T F IDF pa, b, Lq �

¸
fPFaYFb

min
�
TFIDF pf, a, Lq, TFIDF pf, b, Lq

�
¸

fPFaYFb

max
�
TFIDF pf, a, Lq, TFIDF pf, b, Lq

�
(3.14)

3.2 Experiments

We will compare the above mentioned similarity measures using a naive
exhaustive search on the dataset, to get the clearest picture of which metric
is suitable for our data.

14

..................................... 3.2. Experiments

We have to decide whether to use weighted feature lists or if to simplify
and reduce weighted feature lists to unweighted ones to treat them as sets,
as weighing does bring additional computational costs.

100 101 1020.2

0.3

0.4

0.5

0.6

0.7
Jaccard
TFIDF
Cosine
Euclid

Previous
Max

(a) : Weighted feature lists

100 101 1020.2

0.3

0.4

0.5

0.6

0.7
Jaccard
TFIDF
Cosine
Euclid

Previous
Max

(b) : Unweighted feature lists

Figure 3.1: Cumulative accuracies of different measures on original dataset

In fig. 3.1 we can see the cumulative accuracies of tested similarity measures,
as well as the maximum theoretical accuracy of 76,2% (see section 2.2). The
values on the x-axis are the position in the returned list of neighbors, and
values on the y-axis showing the percentage of cases when the sought for
action was returned at or before that position.

From both fig. 3.1a and fig. 3.1b we see that Jaccard similarity performs
best, with TFIDF in a very close second place when working with weighted
feature lists, and Jaccard, TFIDF and Cosine performing basically identically
for unweighted feature lists. Euclid performs the worst out of these techniques,
which was expected as Euclidean distance stops being a meaningful measure
in high dimensional spaces as explored by Aggarwal [18].

Of important note is the fifth included line, dubbed Previous in fig. 3.1,
which shows the prediction accuracy when we returned the whole database
in reverse insertion order as the list of nearest neighbors, e.g. the front of the
returned list was the last inserted entry and so on.

As we have mentioned is section 2.2, this is caused by the lemmas often
containing a sequence of the same action repeated, and is also the reason
why almost the metrics perform almost identically at the first positions. This
discovery has led us to the conclusion that we need a better dataset. To
achieve this, we have introduced flushing (definition 2.2), to meaningfully
separate the different lemmas in the input data. We shall refer to this dataset
as the flush dataset.

15

3. Similarity

100 101 1020

0.1

0.2

0.3

0.4

0.5
0.55

Jaccard
TFIDF
Cosine
Euclid

Previous

(a) : Weighted feature lists

100 101 1020

0.1

0.2

0.3

0.4

0.5
0.55

Jaccard
TFIDF
Cosine
Euclid

Previous

(b) : Unweighted feature lists

Figure 3.2: Cumulative accuracies of different measures on flush dataset

In fig. 3.2 we can see the results of different measures on the flush dataset.
The maximum theoretical accuracy for this dataset is 70%. Although the
overall accuracy drops, we can see that we now have a more interesting dataset
as the Previous predictor’s accuracy has dropped to around 4%, compared to
22% when not using flushing.

The different measures also separated a bit more, especially at first positions
as we can see in table 3.1. The separation is greatest for weighted feature lists,
although their accuracy order has remained the same. A surprising discovery
is that TFIDF does not improve the accuracy, as would be expected, since it
brings additional information when comparing two feature lists, in the form
of the IDF term which takes the whole database so far into account.

We can also see that using weighted feature lists does bring a slight im-
provement in prediction power and will be taken into account in the following
chapters when speeding up our k-NN search algorithm.

Jaccard similarity, and especially generalized Jaccard appears to be the
best choice of similarity measure for our data, and for this reason we have
decided to focus on creating algorithms which quickly approximate these
similarities in the following chapters.

16

..................................... 3.2. Experiments

Dataset
Non Flushing Flushing

acc(1) Runtime acc(1) Runtime
Jaccard 22,36% 4h07m58s 16,41% 4h06m34s
TFIDF 22,59% 20h36m59s 16,13% 20h22m25s
Cosine 22,31% 4h12m02s 16,27% 4h14m32s
Euclid 22,06% 4h14m54s 15,54% 4h10m10s
Weighted Jaccard 24,56% 10h36m23s 18,44% 10h37m16s
Weighted TFIDF 24,69% 20h43m50s 17,77% 20h27m28s
Weighted Cosine 23,85% 10h21m55s 16,69% 10h39m44s
Weighted Euclid 23,92% 9h56m11s 16,20% 10h19m00s
acc(1) is the accuracy at position 1

Table 3.1: Overview of accuracies at first position and timings of different
measures

17

18

Chapter 4

Dimensionality reduction

The first step to speed up the k-NN search is to reduce the dimensionality of
our data, as its dimension is |F |, where F is the universal set of features (see
section 1.2). One such technique is Minhashing proposed by Broder [19].

4.1 Minhashing

As we have decided in section 3.2, Jaccard similarity is the best similarity
measure for our dataset, and we want to compute it faster. Minhashing is
a technique which enables both dimensionality reduction as well as efficient
computation of approximate Jaccard similarity, as computing set operations
can get expensive on large sets.

4.1.1 Description

The basic idea of minhashing is to probabilistically approximate the similarity
of two sets. Suppose we have a universal set of features U , a function h
mapping elements of set U to distinct integers and a random permutation
p of U . For two sets A, B � U , if we permute each set by permutation p,
and find the minimum value of h for the permutation of each set, then the
probability that the sets produced the same minimum after this process is
the same as their Jaccard similarity.

Definition 4.1 (minhash function). Suppose we have a set U , a hashing
function h : U Ñ Z and a random permutating function p : U Ñ U . Given

19

4. Dimensionality reduction................................
this, a minhash function hp

min : PpUq Ñ Z for a subset S � U is defined as

hp
minpSq � minthpppsqq | s P Su

If we can map all elements of our set U to distinct integers, then the
probability of a collision of two subsets of U under a minhashing function is
exactly equal to Jaccard similarity of the subsets.
Theorem 4.2. Assuming h is injective then

@A, B � U : Prhp
minpAq � hp

minpBqs � SIM set
JaccardpA, Bq

Proof. Given a set U with cardinality n, each subset S � U can be represented
as a vector s P t0, 1un, with each dimension corresponding to an element from
U , and having 1 if the subset contains the given element and 0 if it does not.

Without loss of generality we can assume that h for each u P U gives us the
index of the dimension that represents element u in this vector representation.
Now for S � U , let sp be the vector representation of ppSq. Then hp

minpSq is
the smallest index i of sp such that sp

i � 1.

Given A, B � U and vector representations of their permutations ap, bp,
the tuples pap

i , bp
i q can have either both elements 0, only one element 1 or

both being 1. Let x be the number of tuples p1, 1q, and y be the number
of tuples with 1 in only one element. We can see that x � |A X B| and
px� yq � |AYB|. Given this we can see that SIM set

JaccardpA, Bq � x
x�y .

To determine the probability that hp
minpAq � hp

minpBq, we need to go
through the tuples pap

i , bp
i q sequentially. If we first encounter one of tuples

p1, 0q or p0, 1q at position i, then the set with value 1 gets minhash value i.
For the other set we have so far only encountered 0 in its vector up to and
including position i. This means that it has a 1 at a greater position than i,
and therefore the minhash value will be greater than i. Therefore if this kind
of tuple is encountered first, then hp

minpAq � hp
minpBq.

The probability of encountering a tuple p1, 1q before either tuple p1, 0q or
p0, 1q is x

x�y . But if the first tuple encountered during sequential walk except
for p0, 0q is p1, 1q, then hp

minpAq � hp
minpBq. From this we can see that

P rhp
minpAq � hp

minpBqs �
x

x� y
� SIM set

JaccardpA, Bq.

The random variable J which is one when hp
minpAq � hp

minpBq and zero
otherwise is an estimator of Jaccard similarity of A and B, although not a
terribly useful one, as it only takes on one of two values. To approximate the

20

..................................... 4.1. Minhashing

similarity with greater accuracy we construct more random variables in the
same way, using different permutations and average them.

Definition 4.3 (minhash signature). Given a family of k permutating functions
p1, p2, ..., pk : U Ñ U , and a hashing function h : U Ñ Z, a minhash signature
sig of a set S � U is sigpSq �

�
hp1

minpSq, ..., hpk
minpSq

�
.

For minhash signatures of two sets, let c be the count of positions in which
the signatures have the same value. The value c

k is then an estimate of
Jaccard similarity using minhashing.

Definition 4.4 (minhash similarity). Let sig be a function assigning subsets
S � U their minhash signature of length k. Then the minhash similarity is
defined as

SIMminhashpA, Bq �
1
k

ķ

i� 1

�#
1, if sigpAqi � sigpBqi

0, otherwise

�

The minhash similarity estimates the Jaccard similarity with more accuracy
the more k increases.

4.1.2 Computing minhashes

To actually compute minhash signatures on a computer, we need to make
a few simplifications. We have so far described minhashing to work on
arbitrary sets, which we permute and then pick the minimum value after
applying a hashing function mapping the set elements to integers. Computing
explicit permutations of sets is an expensive operation, but if we first map
our elements using a hashing function 9h : U Ñ Z to integers, we can then
simulate permutations by using special hashing functions, as suggested by
Leskovec, Rajaraman and Ullman [20].

One kind of hashing functions h̃ : Zm Ñ Zc which could serve the purpose
of simulating permutations is suggested by Carter [21], in the form of

h̃pxq � pax� bq mod c (4.1)

Where a, b P Zm, a � 0 and c being a prime satisfying c ¥ m.

Let S � U be the set we want to create a minhash signature of. First, we
create a new set Ŝ � t 9hpsq | s P Su, which is S mapped to integers. Minhash
of such a set is computed in almost the same way as our original minhash,
except that h̃ itself is responsible for simulating a permutation, and as the

21

4. Dimensionality reduction................................
output of this function is already an integer we do not need to map it again
to pick a minimum (as is done in definition 4.1).

hh̃
minpSq � minth̃psq | s P Ŝu (4.2)

Minhash signature is then created using a family of k distinct hashing
functions h̃1, ..., h̃k simulating permutations instead of explicit permutations.
We can then use minhash similarity on these signatures. (definition 4.4).

4.1.3 Working with multisets

Minhashing as we have described so far only estimates the Jaccard similarity
(eq. 3.8). Haveliwala, Gionis and Indyk [22] describe a way to extend it to
estimate the generalized Jaccard similarity (eq. 3.10).

Definition 4.5 (augmented set). Let M � pS, wq be a multiset, where S � U
is the set of elements it contains and w : U Ñ N� is a function returning the
count of an element from U in the multiset M . An augmented set is then
S1 � tps, iq | i � 1, ..., wpsq ^ s P Su.

In this new augmented set, each original element s P S is quantized into
wpsq distinct tuples. We can now use minhashing as defined on sets, but using
it on the augmented set S1 � U �N. When calculating the minhash similarity
(definition 4.4), the collision probability for an element s P S with weight
wpsq is appropriately increased by it being quantized into wpsq distinct tuples
in S1, and therefore the minhash similarity on augmented sets approximates
the generalized Jaccard similarity on multisets.

4.2 Experiments

We need to select the minhash signature length k to use, e.g. choose the
dimension we reduce to. As mentioned in section 2.2, we will focus on signature
lengths around the mean and median feature list lengths in table 2.1. We
will focus on these as we should not lose much information on average during
the reduction.

The goal is to select a minhash signature length such that the order of
predicted actions is almost the same as the order of actions as predicted by
using Jaccard. As we are also most interested in the first predictions, with
the later ones becoming less important for us the later they appear, we want

22

..................................... 4.2. Experiments

to make the effect of the first action predicted by Jaccard being shuffled
when using minhashing to have a greater impact than when later actions get
shuffled.

The signature length experiments are set up as follows. During evaluation,
a search algorithm returns a list of tuples ps, aq, where s P R is the similarity
to query and a P A is the action. We shall cap the length of these lists at the
first 300 entries which had the highest similarity s to a query. We will sort
the list by the similarity and then we will discard the similarities from the
tuples, so we are left with a list of actions to take for a given line, ordered by
similarity to a query. We shall refer to one such a list as j, when produced
by an algorithm using generalized Jaccard similarity, and ml when produced
by an algorithm using minhash signatures of length l.

We want to give a score to a signature length by how different the order of
returned actions is compared to Jaccard. To create such a scoring function,
we first need to define a helping function pos : A Ñ N

posxpaq �

#
position of a in list x, if present
301, otherwise

(4.3)

Using this we will use the following formula for a Jaccard list j, and minhash
list ml to create a score when evaluating one line in an input file.

scorepj, mlq �
300̧

i�1

|i� posmlpjiq|

2i�1 (4.4)

The nominator is the absolute distance of positions of an action in the two
lists, while the denominator is a normalizing term. This is because we care
most about the head of the returned list, e.g. the first predictions, and we
care exponentially less about how shuffled the actions are at later positions.

23

4. Dimensionality reduction................................

24 48 56 72 80 90 96 108 120 144
0

2

4

6

8

10

(a) : Signature lengths

24 48 56 72 80 90 96 108 120 144
0

0.2

0.4

0.6

0.8

1
�104

se
co

nd
s

Evaluation Dependencies

(b) : Runtime

Figure 4.1: Difference scores of minhash signature lengths to Jaccard

In the boxplot in fig. 4.1a we can see the distribution of scores for a
given signature length and in fig. 4.1b we can see the running times for
each signature length in seconds, with a split for how long it took to insert
all dependencies for all files prior to starting evaluation, and how long the
evaluation itself took.

We see that about from signature length of 80, we are starting to see
diminishing returns on the accuracy scores, with linearly increasing runtime
to the signature length. From this we deem that minhashing signature length
above 80 is desirable to sufficiently approximate Jaccard. Higher signature
lengths result in a much longer runtime compared to the accuracy we gain,
although the runtime of using signature length 144 at 2h30m is still much
lower than runtime of generalized Jaccard at 10h36m.

24

Chapter 5

Approximate k-nearest neighbor search

With minhashing we can reduce the dimensionality of the search space, but
we are still left with having to compare all points in a database to find the
nearest neighbors. If we can accept approximate answers, we can significantly
improve query times by not even considering points with low similarity to
our query. We will explore two such techniques.

5.1 Locality Sensitive Hashing

In this section we present a technique proposed by Indyk and Motwani
[11], which works by using Locality Sensitive Hash families to group data
into buckets based on their similarity and improving query time by only
considering data from relevant buckets.

5.1.1 Locality Sensitive Hash families

Definition 5.1 (locality sensitive hash family). A hash family H � th : X Ñ Uu
is called pd1, d2, p1, p2q-sensitive for input space X and distance function D,
if for @x, y P X, @h P H the following holds true

Dpx, yq ¤ d1 ñ P rhpxq � hpyqs ¥ p1 (5.1)
Dpx, yq ¡ d2 ñ P rhpxq � hpyqs ¤ p2 (5.2)

This means that if we have two points which have smaller distance than
d1, we want the probability of them colliding while using a function from H
to be greater or equal to p1 and also if they have distance greater than d2,
we want their collision probability to be smaller or equal to p2.

25

5. Approximate k-nearest neighbor search..........................
We want to create a LSH schema to use with minhashing techniques as

introduced in the previous chapter. As explored by Andoni [23], this is
possible as minhash functions do form a LSH-family.
Lemma 5.2. A family of minhash functions (see definition 4.1) H is pd1, d2, 1�
d1, 1� d2q-sensitive for Jaccard distance DJpa, bq � 1� SIM set

Jaccardpa, bq

Proof. Suppose we have two points p, q with Jaccard distance DJpp, qq ¤ d1.
As per theorem 4.2, the probability

P rhppq � hpqqs � SIM set
Jaccardpp, qq ¥ 1� d1

for all h P H. This satisfies condition 5.1. The proof for condition 5.2 is
analogous.

Amplifying a LS-family

We may find that a given family doesn’t satisfy our needs because it is not
accurate enough. Leskovec [20] describes two ways how a given LSH-family
can be used to create a new family with different properties using functions
from the original family.

Definition 5.3 (AND-construction). Given a pd1, d2, p1, p2q-sensitive family
F we can create a pd1, d2, pp1qr, pp2qrq-sensitive family G using an AND-
construction for a fixed parameter r. Using a function t : G Ñ Fr we
associate each function in G with a tuple of r functions pf1, ..., frq, where
each fi is a distinct function from F . We say that

@g P G : pgppq � gpqq ðñ @f P tpgq : fppq � fpqqq

In other words, for items to collide under g P G, they must collide for all
functions fi from tpgq.

Definition 5.4 (OR-construction). Along the vein of the previous definition,
given a pd1, d2, p1, p2q-sensitive family F we can create a pd1, d2, 1 � p1 �
p1qb, 1 � p1 � p2qbq-sensitive family G using an OR-construction for a fixed
parameter b. Using a function t : G Ñ Fb we associate each function in G
with a tuple of b functions pf1, ..., fbq, where each fi is a distinct function
from F . We say that

@g P G : pgppq � gpqq ðñ Df P tpgq : fppq � fpqqq

For items to collide under g P G we only require that the items collide under
at least one function fi P tpgq instead of requiring they collide under all of
them as when using AND-construction.

These constructions can then be combined to create a LSH-family of
functions with the desired collision probabilities.

26

............................... 5.1. Locality Sensitive Hashing

Minhash signatures as LS-families

For a set S � U , its minhash signature s � pm1, ..., mkq of length k, where
each element mi is the result of applying the i-th minhashing function h P H
on set S. We want to create a LSH-family for finding similar signatures. This
can be represented by splitting the minhash signature s into b r-tuples, where
br � k as illustrated

pm1, ..., mkq Ñ
�
pm1, ..., mrq, pmr�1, ..., m2rq, ..., pmpb�1qr, ..., mbrq

�
(5.3)

When searching for similar signatures, we shall only consider signatures which
exactly match in at least one r-tuple.

This represents doing a b-OR construction on a r-AND construction on the
original pd1, d2, p1, p2q-sensitive hash family H. After this construction we
have a pd1, d2, 1�p1�pp1qrqb, 1�p1�pp2qrqbq-sensitive family H1, consisting of
a single hash function hLSH. When searching for nearest neighbors for a query
signature q, we shall only consider signatures p for which hLSHpqq � hLSHppq.

5.1.2 Implementation

In addition to keeping a database D of tuples pfl, aq in their insertion order
as described in section 1.2 we need to create a data structure to efficiently
store the tuples to enable locality sensitive searching on minhash signatures
of their feature lists as described above.

Given parameters b and r and a minhash signature s of length k, with
br � k, it is necessary to create a structure to hold database entries based on
the b r-tuples their signatures decompose into. We shall refer to the r-tuples
as bands. This can be achieved by having b hashtables ti, i � 1, ..., b, with
table ti mapping a band to a bucket of database entries which have the same
r-tuple as their i-th band in their signature.

Inserting the tuple pfl, aq into the i-th hashtable T , with the i-th band B
of fl’s minhash signature is done like this

Algorithm 1 Inserting into single hashtable
1: function InsertToSingleHashtable(T , B, fl, a)
2: bucketIdx Ð Hash(B) � Hash the band with a generic hash function
3: T rbucketIdxs Ð T rbucketIdxs Y tpfl, aqu

Insertion into all hashtables is done by generating a minhash signature of
the given feature list as described in section 4.1.2, and inserting the entry
into i-th hashtable using i-th band in the signature as follows.

27

5. Approximate k-nearest neighbor search..........................
Algorithm 2 Insertion into hashtables
1: function InsertToHashtables(tables, fl, a)
2: augmentedSet Ð create an augmented set from fl (see def. 4.5)
3: signature Ð generate the minhash signature of augmentedSet
4: bands Ð split signature into b bands (see eq. 5.3)
5: for i in 0, ..., pb� 1q do
6: InsertToSingleHashtable(tablesris, bandsris, fl, a)

When rewinding (see section 1.2) in addition to removing entries from
the tail of the database we also need to remove them from the hashtables.
Removal of a tuple pfl, aq from a single hashtable is straightforward.

Algorithm 3 Removal from a single hashtable
1: function RemoveFromSingleHashtable(T , B, fl, a)
2: bucketIdx Ð Hash(B)
3: T rbucketIdxs Ð T rbucketIdxsztpfl, aqu

Then when rewinding the database, we need to remove a given entry from
hashtables before removing it from the end of the database.

Algorithm 4 Removal from hashtables while rewinding a database D

1: function Rewind(D, tables, n)
2: repeat n times
3: pfl, aq Ð get the last entry in D
4: augmentedSet Ð create an augmented set from fl
5: signature Ð generate the minhash signature of augmentedSet
6: bands Ð split signature into b bands
7: for i in 0, ..., pb� 1q do
8: RemoveFromSingleHashtable(tablesris, bandsris, fl, a)
9: D Ð D with the last entry removed

Search for nearest neighbors is a two-step operation. First given a query
feature list we need to collect only candidate entries, to avoid having to
consider all known entries, and then collecting actions to take from collected
candidates based on the similarity of a candidate’s feature list to the query
feature list.

Given a band B of a minhash signature of the query and the respective
hashtable T , finding candidates in a table for a given band is done in the
following manner.

Algorithm 5 Collecting candidates from a single hashtable
1: function CollectFromHashtable(T , B)
2: bucketIdx Ð Hash(B) � Hash the band with a generic hash function
3: return T rbucketIdxs

28

..................................... 5.2. LSH Forest

Finding all candidates for a given query feature list q is then straightforward

Algorithm 6 Collecting all candidates
1: function CollectCandidates(tables, q)
2: augmentedSet Ð create an augmented set from q
3: signature Ð generate the minhash signature of augmentedSet
4: bands Ð split signature into b bands

5: return
b�1¤
i�0

CollectFromHashtable(tablesris, bandsris)

As per section 1.2, the final search algorithm will collect all candidate
neighbors N , rank their actions by a chosen similarity function SIM of their
feature list to a query feature list into S, and return them in descending
order.

Algorithm 7 Searching for nearest neighbors
1: function Search(tables, q)
2: N Ð CollectCandidates(tables, q)
3: S Ð t

�
SIMpq, flq, a

�
| pfl, aq P Nu

4: S Ð sort S by the computed similarities in descending order
5: return S

5.2 LSH Forest

LSH performance and especially accuracy is directly tied to the choice of
parameters b and r, for amount of bands and their width, respectively. The
best choice of parameters is dependent on a particular dataset and there is
still ongoing research on how to best choose these parameters. Even after
good parameters are found, if the size of the database changes dramatically
they need to be retuned. Ideally we want to collect a constant amount of
neighbors. But since parameters b and r fix the probabilities that an entry
will hash to a bucket. As the database grows, the buckets start to contain too
many entries, and the database should be rehashed with different parameters
b and r to maintain good performance, since the main goal of LSH is to
provide fast query times.

Bawa, Condie and Ganesan [12] present a LSH-based algorithm which
alleviates both of the mentioned issues. Firstly, it solves the difficulty of
finding good parameters, as it is self-tuning for parameter r. Secondly it is
designed to collect a constant amount of neighbors to alleviate the issue of
collecting too many neighbors, to maintain good performance.

29

5. Approximate k-nearest neighbor search..........................
5.2.1 LSH tries

Fundamentally, LSH algorithm works by having a set of buckets of entries
and grouping the entries into buckets to by their r-element labels (band). A
bucket contains entries with the same label, and the whole algorithm works
by constructing several of these bucket sets.

Having r fixed presents a problem, because it affects accuracy based on
how many entries are stored in a database. When a database is small, and
we do not have many entries, then buckets are generally almost empty. In
this case we would want to be less strict and collect even entries which are
possibly more dissimilar. On the other hand, when a database is large, then
the amount of entries in one bucket would usually be large, and we would
wish to collect fewer entries from a given bucket, to improve performance.

A solution to this problem is, instead of using fixed size labels, to introduce
a variable length label. It is possible that some entries would be very similar
and generate very long labels, which is why we impose a maximum length
kmax.

Definition 5.5 (Variable length label). Given a family of hashing functions sim-
ulating permutations H and maximum label length kmax, we pick a sequence
of kmax functions xhh̃1

min, hh̃2
min, ..., h

h̃kmax
min y, tildehi P H. A label of length

x, x ¤ kmax for a set S � U is then lpS, xq �
�
hh̃1

minpSq, hh̃2
minpSq, ..., hh̃x

minpSq
�
.

Definition 5.6 (LSH Trie). LSH trie is a prefix trie constructed over the set
of all labels, with its leaves storing database entries. A trie can either be
empty, an internal node, or a leaf. Only leaves hold entries.

0 1

0 1 1

0 1

00

110 111010 011

0 1

Figure 5.1: An example trie using binary prefixes.

In fig. 5.1 we can see a trie with five leaves. Assuming that the maximum
label length is higher than three, then each leaf contains a single entry. We
see that the prefixes describe the path to take from the root to the given leaf.

30

..................................... 5.2. LSH Forest

We then construct a LSH Forest by creating b such LSH tries, each with its
own associated sequence of minhashing functions used to generate variable
length labels for the given trie.

We will need a function to find a child trie c of a trie t for a feature list
fl at depth d. This will be achieved by selecting the child using the d-th
element in the variable length label lpfl, dq, where l is specific to the trie t.

Algorithm 8 Finding a child of a trie
1: function GetChild(t, fl, d)
2: if t is a node then
3: L Ð d-th element in label lpfl, dq � l is specific to each trie
4: C Ð child of t for prefix element L at depth d
5: return C
6: else � Is a leaf or empty trie
7: return empty trie � child of a leaf is undefined

Insertion into a forest is done on each tree independently. Insertion of an
entry of a feature list and an action pfl, aq into a trie works by descending the
trie according to the variable length label generated for fl by the given trie’s
label function l. If an entry pfl1, a1q with the same prefix is encountered at
depth less than kmax, then each entry’s prefix is lengthened until they occupy
distinct leaves, or a maximum label length kmax is reached, at which point
the entries get stored in a list.

Algorithm 9 Inserting into a trie
1: function InsertToTrie(t, fl, a, d) � Initial d � 1

� returns a new trie with pfl, aq inserted
2: if t is empty then
3: return leaf containing pfl, aq
4: else if t is node then
5: child Ð GetChild(t, fl, d)
6: newChild Ð InsertToTrie(child, fl, a, pd� 1q)
7: return t with newChild in place of child
8: else if t is leaf then
9: if d ¡ kmax then

10: t Ð append pfl, aq to elements in leaf t
11: return t
12: else
13: pfl1, a1q Ð the (only) entry stored in leaf t
14: temp Ð InsertToTrie((empty node), fl1, a1, d)
15: return InsertToTrie(temp, fl, a, d)

Deletion from a forest is also done independently on each trie. Deleting an
entry pfl, aq from a trie works by descending the trie to the leaf where the
entry pfl, aq is stored and removing it from the leaf.

31

5. Approximate k-nearest neighbor search..........................
When traversing back up to the root, we contract the internal nodes if

the removal caused other entries to have unnecessarily long prefixes (as we
only use prefixes as short as possible for the stored entries to occupy distinct
leaves, or a maximum depth is reached). An internal node n can be deleted if
it has only one child c that is a leaf containing a single entry. If this condition
is met, then n is "deleted" by replacing it with the child c. We repeat this
procedure until this condition is not true.

Algorithm 10 Deleting from a trie
1: function DeleteFromTrie(t, fl, a, d) � Initial d � 1

� returns a new trie with pfl, aq removed
2: if t is empty then
3: return t
4: else if t is node then
5: child Ð GetChild(t, fl, d)
6: newChild Ð DeleteFromTrie(child, fl, a, pd� 1q)
7: t Ð t with newChild in place of child
8: if t has an only child c which is a leaf with a single entry then
9: return c
10: else
11: return t
12: else if t is leaf then
13: t Ð remove pfl, aq from the leaf t
14: return t

Finding neighbors for a given query feature list q on a LSH Forest is done
by descending each trie to a leaf using the prefix that is generated for q for a
given trie. Once all tries have been descended, we start a synchronous ascend
across all tries at the same levels. Suppose the maximum depth at which a
prefix match was found is dm. We start a synchronous collection of entries
across all tries from level dm moving up to root.

We stop collecting neighbors N after |N | ¡ K, where K is a chosen constant.
If we did not stop after a certain number, we would collect up to the root of
all tries and we would have collected all entries in the database. Note that N
includes duplicate entries, because we are collecting across multiple tries.

32

..................................... 5.3. Experiments

Algorithm 11 Collecting neighbors from LSH Forest
1: function CollectFromForest(tries, q, d) � Initial d � 1
2: if all tries are leaves then
3: N Ð collect all entries stored in tries
4: return N
5: else
6: childTries Ð tGetChild(t, q, d) | t is not leaf, t P triesu
7: N Ð CollectFromForest(childTries, q, pd� 1q)
8: if |N | ¡ K then
9: return N

10: else
11: N Ð collect all entries from all trees in tries
12: return N

The complete search algorithm is almost the same as algorithm 7, except of
having tables as the input parameter it has tries which is the LSH Forest we
will search in, and on line 2 we create a set of neighbors N from the return
value of CollectFromForest(tries, q, 1).

5.3 Experiments

Both the algorithms in this section work in two phases, first by collecting a
set of neighbors N and then by ranking how similar are these found neighbors
to a query, with the constraint that the amount of found neighbors |N | ! |D|,
where D is the whole database.

Both phases employ minhash signatures, finding neighbors employs them
in both LSH techniques, and we will be using minhash similarity (definition
4.4) for ranking the found neighbors. It is possible to use the same signature
for both phases, but if we do that, then we introduce a new relation between
the parameters. Both LSH techniques have parameters b and r, LSH for the
amount of bands and width of one band respectively, and LSH forest for the
amount of tries and maximum depth of a trie respectively. With a minhash
signature length k, there is now a relation br � k (as per eq. 5.3), which
dictates the accuracy of the similarity ranking phase of the algorithm.

This is a problem when br results in a short signature length, as when br
results in longer signatures it only brings us greater accuracy using minhash
similarity. Calculating minhash similarity is an inexpensive operation when
minhash signatures are known beforehand. We will use signatures of length
br when they result in longer signatures for calculating similarity, as the
signatures would be calculated anyway for the finding neighbors phase of the
search. But when br drops below a certain threshold, we will use a longer
minhash signature for calculating similarity.

33

5. Approximate k-nearest neighbor search..........................
We set this threshold to 90, as per the signature length experiments

performed in section 4.2. When br drops below this number, we shall compute
minhash signatures of length 90. From this signature the first br elements
will be used for the finding neighbors phase, and the full signature will be
used for ranking similarity.

We introduce another change to minhash signatures for the phase of
finding neighbors in the LSH techniques. we will use a hashing function
ĥ : Z Ñ t0, 1u and use it to create a new signature from the original, by
mapping each element of the original signature to one bit. For LSH forest
this simplifies the implementation to use binary prefix tries (fig. 5.1), with
a maximum depth of r. We shall do the same for LSH, to be able to easily
compare it to LSH Forest. For LSH the reduction means that a signature will
have an r-bit bucket label for each of the b bands. This additionally enables
us to have finer control of how many buckets there are in each band. Using
this bit reduction there are 2r distinct buckets in one band.

Additionally for LSH forest, for each entry to be inserted, its variable length
minhash label for each of its b tries is calculated to the maximum trie depth
r straight away as the first step to simplify implementation. This means we
are computing minhash signatures of at least length br for each insertion and
query.

Definition 5.7 (accuracy score). To quickly judge quality of particular param-
eters we define the following scoring function which will give a single score to
a particular run based on the accuracy it achieves. Given an accuracy density
function accpiq : N Ñ r0, 1s giving the portion of correct predictions which
were at position i in the returned ordered lists of neighbors for a particular
run of an algorithm with some parameters. We define the accuracy score in
the following way

scorepaccq �
8̧

i�1

accpiq

2i�1

5.3.1 LSH parameter optimization

We will try to find the best values for parameters b and r for our use case, with
respect to their prediction accuracy and also the running time. we will do this
by doing a grid-like search. For each amount of bands b t1, 11, 21, 31, 41, 51u
we will try different widths of bands r t7, 12, 17, 22, 27u and score each of the
30 runs using the score from definition 5.7. Given this initial grid search we
will get the general shape of the relation of the parameters to overall accuracy,
and we will run more experiments to get finer results for particular areas.

The reason we are not starting at lower widths of band than 7 is because

34

..................................... 5.3. Experiments

11121314151

7
12

17
22

27

0.05

0.1

0.15

0.2

b
r

sc
or

e

0.05 0.1 0.15 0.2

(a) : Scores

11121314151

7
12

17
22

27

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

�104

b
r

se
co

nd
s

626 2,000 4,000 6,000 8,000 9,614

(b) : Runtimes

Figure 5.2: LSH parameter experiments

the choice of width directly affects the amount of buckets in one band, which
is 2r. Having narrower bands results in collecting more and more potential
neighbors, as the whole database of neighbors is not segmented enough, and
performance degrades. By choosing a minimum width of 7 we are choosing to
have at least 128 distinct buckets in one band, which we deem a reasonable
minimum.

In fig. 5.2 we can see all the accuracy scores for the parameters. Not all
possible combinations of parameters have been run. Those that were are
noted by black marks in the figure, other values are linearly interpolated.

As presumed, lower values of r (narrower bands) result in higher accuracy,
but result in increased runtime by collecting too many neighbors, as can
be seen in fig. 5.2b. We also see that having more bands does increase
the accuracy, though it starts to plateau as it approaches some maximum
accuracy.

Unfortunately, although the accuracy does seem to be convex for different
parameters b and r, a maximum is not present in our explored range of
parameters. It appears that a maximum will be reached by using a very large
number of narrow bands, but such parameters will have a very long runtime,
and therefore are irrelevant for us.

We would like to bring attention to fig. 5.2b and talk about the observed
runtimes. When looking at the band width r and time plane, we can see that
when r gets below 12, the runtime seems to increase quadratically, which can

35

5. Approximate k-nearest neighbor search..........................

159131721

7
9

11
13

15
17

0.05

0.1

0.15

0.2

b
r

sc
or

e

0.1 0.15 0.2

(a) : Scores

159131721

7
9

11
13

15
17

500

1,000

1,500

2,000

2,500

b
r

se
co

nd
s

1,000 1,500 2,000

(b) : Runtimes

Figure 5.3: LSH parameter experiments detail

is explained as we have discussed that we are collecting a lot of neighbors
and doing an almost exhaustive search on the dataset. Since exhaustive NN
search has quadratic complexity to the size of a database, the runtime grows
quadratically the more neighbors we collect even when using LSH.

On the time/width plane in fig. 5.2b with increasing r above 12, as well as on
the band count b/time plane, the runtime increases linearly with increasing
values for r and b on their respective axes. This is due to the fact that
computing minhash signatures is linear to the length of the signature, and
our signature lengths are br, except when the signature would be shorter than
90, we compute it to be that long. That is also the reason why the runtimes
are almost flat for low parameters b and r.

We will need to pick some parameters which will provide us with good
accuracy while maintaining a reasonable runtime. In fig. 5.3 we explore the
range of parameters for r between 7 and 17, and b between 1 and 21 in greater
detail.

In fig. 5.3b we can clearly see the effect of setting minimum minhashing
length for computing similarity to 90, as almost all runtimes for parameters b
and r where br ¤ 90 is almost the same. From this we deem that computing
minhash signatures is the most expensive operation, and the runtime starts
to grow as longer signatures are needed for parameters b and r which result
in greater product br.

Values of r from 9 to 12 with b below 7 result in the shortest runtimes,

36

..................................... 5.3. Experiments

but with lower accuracy scores than we would like. Judging from the graphs
it seems that the sweet spot for the tradeoff between accuracy would lie for
parameters r between 9 to 11 and b between 9 to 15.

5.3.2 LSH Forest parameter optimization

LSH Forest also employs parameters b and r for the amount of tries and
maximum trie depth respectively. It also has parameter K, which is the
minimum amount of neighbors it collects before it stops, unless the database
does not contain at least K entries. Unlike LSH, we make an argument that
parameters b and r are independent, and we do not need to do a grid search
similarly as we did for LSH to find good parameters.

As a trie will grow only as deep as it needs to be in order to make sure
that all entries are in unique leaves, or a maximum depth has been reached.
If the maximum depth r is set sufficiently deep, then an algorithm’s accuracy
score will almost solely depend on the amount of tries b. We explore this
in fig. 5.4a, where we try different amount of tries with a fixed maximum
depth r � 20. We chose 20, as a binary trie can have up to 2r leaves. As the
maximum amount of lines that will be inserted into the database is 91337 (the
sum of maximum file length and maximum amount of dependency lines from
table 2.1) is much smaller than 220, we deem it as a safe choice of maximum
depth r to not affect testing of different trie counts b.

Experiments for maximum trie depth r are in fig. 5.4b. As can be seen,
we correctly assumed that choosing different maximum depths will have a
negligible effect on the overall accuracy of the algorithm, except for low values
of r, where the same problem emerges as in LSH. Low maximum depths
cause the tries to be shallow, and unable to hold enough distinct leaves, so
the search space doesn’t get segmented enough and the algorithm collects
too many neighbors, potentially even all neighbors in the database. As the
depth grows larger it first suffers a slight drop in accuracy, as the database
gets segmented enough, but the shallow depth means that most leaves will
contain multiple entries. As the depth grows and reaching maximum depth
becomes infrequent the accuracy stabilizes, as unlike LSH, the Forest does
collect even inexact matches until it has met its desired amount of neighbors.

37

5. Approximate k-nearest neighbor search..........................

1 10 20 30 40 50 60 70 800.16

0.17

0.18

0.19

0.2

0.21

0.22

0

0.25

0.5

0.75

1

1.25

1.5

b

sc
or

e

�104

se
co

nd
s

Score
Time

(a) : Different trie counts for max depth 20

7 10 15 20 25 300.16

0.17

0.18

0.19

0.2

0.21

0.22

2

3

4

5

r

sc
or

e

�103

se
co

nd
s

Score
Time

(b) : Different max trie depths for trie count 20

Figure 5.4: Scores of different LSH forest parameters

The times we observe in fig. 5.4 suggest that the runtimes for different trie
counts and depths b and r will behave similarly as we have seen in fig. 5.2b,
with the runtimes being linear to trie count in fig. 5.4a, because as we are
computing full minhash signatures for each trie, even if not needed, we have
them of length br, and as we have already said, the cost of computing a
minhash signature is linear to its length. The time is constant for low trie
counts b, because we are always computed signatures of length at least 90.

The same relation applies in fig. 5.4b for higher maximum trie depths r.
Only when r becomes small we see a quadratic increase in runtime, which is
due to the same reasons as we have alluded to when discussing fig. 5.2b.

We need to choose the amount of tries b which has good accuracy with
a relatively fast runtime. In fig. 5.4a, at b � 14 we are already within a
hundredth of maximum observed accuracy score, with a decent running time.
As we have seen, the choice of maximum depth is almost inconsequential from
an accuracy perspective, and we can therefore choose based on minimum
running time, which is achieved for maximum depth r around 9 and 10.

With parameters b and r selected we are left with the choice of how many
neighbors we want to collect K. In fig. 5.5 we are experimentally trying
different Ks for fixed b � 14 and r � 9 or r � 10. As we see, the amount of
neighbors does not affect the accuracy much.

In fig. 5.5a, the choice of K for depth r � 9 has almost no effect on accuracy.
This is because for tries this shallow, a lot of entries reach maximum depth
before they are able to occupy distinct leaves and are therefore inserted into
the same leaf at maximum depth. When collecting from leaves containing a
high number of entries leads to high number of collected neighbors, and as
LSHF checks the amount of how much it has collected after it has done so for

38

..................................... 5.3. Experiments

100 200 300 400 500 600

20

20.2

20.4

1.05

1.1

1.15

1.2

1.25�10�2

K

sc
or

e
�103

se
co

nd
s

Score
Time

(a) : Maximum trie depth 9

100 200 300 400 500 600

20

20.2

20.4

1.05

1.1

1.15

1.2

1.25�10�2

K

sc
or

e

�103

se
co

nd
s

Score
Time

(b) : Maximum trie depth 10

Figure 5.5: Scores of different LSHF neighbor counts K

all tries at a given level, then the parameter K is exceeded almost every time.

But as we see in fig. 5.5b, at maximum depth r � 10, although the absolute
difference in scores is still quite small, we are already seeing a more pronounced
effect of different choices of K, as it doesn’t get exceeded as often in normal
operation. Thus, we conclude that for low settings of r, the choice of K does
not matter much, but as the tries get deeper, we should choose higher Ks to
collect an adequate amount of neighbors.

39

5. Approximate k-nearest neighbor search..........................
5.3.3 Comparisons of LSH, LSHF and Jaccard

We have selected two sets of parameters for LSH and LSH Forest with similar
running times with one focusing on speed and the other on accuracy.. Speed focus. LSHS - LSH with b � 11, r � 9. LSHFS - LSH Forest with b � 10, r � 9, K � 300. Accuracy focus. LSHA - LSH with b � 15, r � 9. LSHFA - LSH Forest with b � 14, r � 10, K � 600

100 101 102

0.2

0.3

0.4

0.5
Jaccard
LSHA

LSHFA

(a) : Accuracy focus

100 101 102

0.2

0.3

0.4

0.5
Jaccard
LSHS

LSHFS

(b) : Speed focus

Figure 5.6: Comparison of LSH and LSH Forest to generalized Jaccard

As we can see in fig. 5.6 and timing in table 5.1, a well-tuned LSH performs
almost identically to LSH Forest at similar running times, but with the
downside that we had to search quite extensively to find those parameters.
LSH Forest is much more robust in terms of parameter choice, as we have
shown that the choice of r does not have a large effect on the algorithm’s
accuracy, unlike LSH where higher values of r cause a decrease in accuracy.
We only need to choose the amount of tries b and collect a sufficient amount
of neighbors K to have an algorithm with high accuracy.

In table 5.1, column LSHS , we see that using LSH we have managed
to improve the total running time almost 50-fold compared to doing an
exhaustive search using generalized Jaccard similarity. Even more impressive
is the almost 300-fold reduction in evaluation time, which is the time it takes
to search for queries after all of dependencies of a given file have already

40

..................................... 5.3. Experiments

Jaccard LSHFA LSHA LSHFS LSHS

acc(1) 18,44% 16,53% 16,39% 15,89% 15,93%
Runtime 10h37m15s 20m5s 19m35s 13m21s 13m19s
Import 2m10s 17m10s 16m3s 11m5s 11m9s
Eval 10h35m5s 2m55s 3m32s 2m16s 2m10s
QpS 3,39 737,3 608,62 955,76 992,52
acc(1) is the accuracy at position 1
Import is time taken for inserting dependencies
Eval is time taken for evaluation itself
QpS is the average # of Queries per Second during evaluation

Table 5.1: Technique comparison

been inserted into the database. This has been achieved by moving the bulk
of time from the actual search phase into the creation of the datastructure
enabling us to have such fast query time, and being able to perform almost a
1000 queries per second, instead of slightly over 3 queries per second, which
we were able to achieve by exhaustive search.

As we can see in column LSHFA, if we do not mind dropping our speed to
over 700 queries per second we can achieve accuracy of our first prediction
within 2% of doing an exhaustive search using LSH Forest. This has the cost
of increasing the time required to create the datastructure, but we see this
as a good tradeoff, as the amount of dependency lines which are imported
usually greatly exceeds the amount of lines which are evaluated (table 2.1).

41

42

Chapter 6

Conclusion

We set out to find a way to efficiently find approximate nearest neighbors
for searching in a high dimensional dataset, specifically the Coq standard
library [13] of mathematical theorems. To achieve that we have explored
different similarity measures to find which is best for our dataset. We have
tried Jaccard and Cosine similarities and also incorporated TFIDF weighing
to see if it gives us more accuracy and have concluded that the generalized
Jaccard (Růžička) similarity [15] gives the best accuracy for our dataset. We
have also found that additional weighing by means of TFIDF did not give us
increased accuracy.

We have explored dimensionality reduction for our data in the form of
Minhashing[19], which enables fast computation of the approximate Jaccard
similarity by computing minhash signatures (definition 4.3) and experimented
with signature length to find a balance between accurately approximating
Jaccard and run times. We have found that signature length around 90 offers
good accuracy with respect to its runtime.

Finally, we have explored approximate nearest neighbor techniques which
enable us to search for approximate nearest neighbors without having to
investigate all known data. We have chosen hashing based techniques, Locality
Sensitive Hashing as proposed by Indyk and Motwani [11] as a base technique
and an improvement in the form of LSH Forest proposed by Bawa, Condie
and Ganesan [12].

LSH is a technique enabling creation of a fast datastructure providing fast
lookup of approximate neighbors by partitioning data into groups containing
other similar items. A fine-tuned LSH provides good accuracy with very
short running times compared to exhaustive search, but with the downside
that without carefully choosing its parameters, which we have had to find
experimentally by running over 200 different configurations, the algorithm’s

43

6. Conclusion......................................
accuracy and/or performance quickly deteriorates, which is made worse by
the parameters being highly dependent on a particular dataset.

LSH Forest is an improvement on LSH, by being self-tuning for accuracy
and eliminating the need to search for optimal parameters. It achieves this
by creating variable length labels for database entries and using these labels
to store entries in prefix trees. We have been able to quickly find LSH Forest
parameters to achieve the same accuracy and runtime characteristics as a
well-tuned LSH. In future work our LSH Forest implementation could be
improved. Currently it calculates the mentioned variable length labels to
their maximum potential length, even if it is not needed. Improvement would
be to compute them piecewise we could reduce the amount of unnecessary
computation and improve performance.

In the end, using LSH and LSH Forest we have been able to improve
query times almost 300-fold compared to exhaustive search, with minimally
decreasing the accuracy of predictions, and therefore consider that we have
successfully achieved our goal of finding a fast k-NN search algorithm for high
dimensional data.

44

Appendix A

Bibliography

[1] J. L. Bentley, “Multidimensional binary search trees in database applica-
tions,” IEEE Transactions on Software Engineering, no. 4, pp. 333–340,
1979.

[2] H. Samet, “An overview of quadtrees, octrees, and related hierarchical
data structures,” in Theoretical Foundations of Computer Graphics and
CAD, pp. 51–68, Springer, 1988.

[3] A. Guttman, R-trees: a dynamic index structure for spatial searching,
vol. 14. ACM, 1984.

[4] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-tree:
an efficient and robust access method for points and rectangles,” in Acm
Sigmod Record, vol. 19, pp. 322–331, Acm, 1990.

[5] P. N. Yianilos, “Data structures and algorithms for nearest neighbor
search in general metric spaces,” in SODA, vol. 93, pp. 311–21, 1993.

[6] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for high
dimensional data,” IEEE transactions on pattern analysis and machine
intelligence, vol. 36, no. 11, pp. 2227–2240, 2014.

[7] M. E. Houle and M. Nett, “Rank-based similarity search: Reducing the
dimensional dependence,” IEEE transactions on pattern analysis and
machine intelligence, vol. 37, no. 1, pp. 136–150, 2015.

[8] S. Arya and D. M. Mount, “Approximate nearest neighbor queries in
fixed dimensions.,” in SODA, vol. 93, pp. 271–280, 1993.

[9] Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov, “Approximate
nearest neighbor algorithm based on navigable small world graphs,”
Information Systems, vol. 45, pp. 61–68, 2014.

45

A. Bibliography.....................................
[10] Y. A. Malkov and D. A. Yashunin, “Efficient and robust approximate

nearest neighbor search using hierarchical navigable small world graphs,”
IEEE transactions on pattern analysis and machine intelligence, 2018.

[11] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in Proceedings of the thirtieth
annual ACM symposium on Theory of computing, pp. 604–613, ACM,
1998.

[12] M. Bawa, T. Condie, and P. Ganesan, “LSH forest: self-tuning indexes
for similarity search,” in Proceedings of the 14th international conference
on World Wide Web, pp. 651–660, ACM, 2005.

[13] “The Coq Standard Library — The Coq Proof Assistant.” Available at
https: // coq. inria. fr/ library/ , 2019. [Online; accessed 21-April-
2019].

[14] P. Jaccard, “Étude comparative de la distribution florale dans une portion
des alpes et des jura,” Bull Soc Vaudoise Sci Nat, vol. 37, pp. 547–579,
1901.

[15] M. Ružička, “Anwendung mathematisch-statistischer methoden in
der geobotanik (synthetische bearbeitung von aufnahmen),” Biologia,
Bratislava, vol. 13, pp. 647–661, 1958.

[16] K. Sparck Jones, “A statistical interpretation of term specificity and
its application in retrieval,” Journal of documentation, vol. 28, no. 1,
pp. 11–21, 1972.

[17] J. U. Cezary Kaliszyk, “Stronger automation for flyspeck by feature
weighting and strategy evolution,” PxTP@CADE, pp. 87–95, 2013.

[18] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the surprising
behavior of distance metrics in high dimensional space,” in International
conference on database theory, pp. 420–434, Springer, 2001.

[19] A. Z. Broder, “On the resemblance and containment of documents,” in
Compression and complexity of sequences 1997. proceedings, pp. 21–29,
IEEE, 1997.

[20] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of Massive
Datasets. New York, NY, USA: Cambridge University Press, 2nd ed.,
2014.

[21] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,”
Journal of computer and system sciences, vol. 18, no. 2, pp. 143–154,
1979.

[22] T. Haveliwala, A. Gionis, and P. Indyk, “Scalable techniques for cluster-
ing the web,” 2000.

46

https://coq.inria.fr/library/

..................................... A. Bibliography

[23] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approxi-
mate nearest neighbor in high dimensions,” in Foundations of Computer
Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, pp. 459–468,
IEEE, 2006.

47

48

Appendix B

List of attachments

. CD containing dataset and implementations as described in section 1.3

49

	Introduction
	Overview of Nearest Neighbor search techniques
	Exact methods
	Approximate methods

	Problem statement
	Implementation and experiment notes

	Dataset analysis
	Technical details
	Statistics

	Similarity
	Similarity measures
	Experiments

	Dimensionality reduction
	Minhashing
	Description
	Computing minhashes
	Working with multisets

	Experiments

	Approximate k-nearest neighbor search
	Locality Sensitive Hashing
	Locality Sensitive Hash families
	Implementation

	LSH Forest
	LSH tries

	Experiments
	LSH parameter optimization
	LSH Forest parameter optimization
	Comparisons of LSH, LSHF and Jaccard

	Conclusion
	Bibliography
	List of attachments

