
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague October 24, 2018

ASSIGNMENT OF MASTER’S THESIS
 Title: Speech development application

 Student: Bc. Vojtěch Pajer

 Supervisor: Ing. David Šenkýř

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2019/20

Instructions

The goal of this thesis is to design, implement, and test a new application to help develop speech of
hearing-impaired children using voice-controlled animations and simple games.

The application will be created in a collaboration with a special pedagogical center at SŠ, ZŠ a MŠ pro
sluchově postižené Holečkova.

1. Analyze Speech Viewer 3 application used in the mentioned center.
2. Due to the incompatibility of Speech Viewer 3 application and current operating systems, design a new
application for a platform based on your choice.
3. Analyze the existing voice-processing libraries for the selected platform and the selected technology.
4. Implement the application with at least 3 simple games recommended by the special pedagogical center.
5. Test the application in a co-operation with the users of the special pedagogical center.
6. Summarize and evaluate the results reached.

References

Will be provided by the supervisor.

Master’s thesis

Speech development application

Bc. Vojtěch Pajer

Department of Software Engineering
Supervisor: Ing. David Šenkýř

May 9, 2019

Acknowledgements

Firstly, I want to thank my supervisor Ing. David Šenkýř for all of his valuable
advice and the immediate help he provided me whenever I needed it.

Secondly, I’d like to thank Bc. Denisa Šleisová, Lucie Koháková and PhDr.
Jarmila Roučková for their cooperation during my work on this project. Also,
I am very grateful to my friends and colleagues for their words of support and
motivation.

Finally, I want to thank my parents and my family for the amazing support
they’ve provided me throughout my study years. Thank you.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 9, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2019 Vojtěch Pajer. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Pajer, Vojtěch. Speech development application. Master’s thesis. Czech Tech-
nical University in Prague, Faculty of Information Technology, 2019.

Abstrakt

Tato diplomová práce popisuje návrh a implementaci mobilńı aplikace pro
operačńı systém iOS. Úkolem aplikace je podpořit rozvoj řeči u dět́ı se slu-
chovým postižeńım za pomoci čtyř animovaných her. Při vývoji aplikace byla
použita architektura VIPER, framework na tvorbu her SpriteKit a framework
na zpracováńı zvuku AudioKit.

Kĺıčová slova rozvoj řeči, dětské hry, Swift, iOS, SpriteKit, VIPER, Au-
dioKit, reaktivńı programováńı, RxSwift.

Abstract

This diploma thesis describes the design and implementation of a mobile ap-
plication for operating system iOS. The goal of the application is to improve
the ability of hearing-impaired children to control their voice. The applica-
tion consists of four animated games. VIPER architecture, game framework
SpriteKit and a sound processing framework AudioKit were used during the
implementation of this application.

Keywords speech development, children’s games, Swift, iOS, SpriteKit,
VIPER, AudioKit, reactive programming, RxSwift.

vii

Contents

Introduction 1
Structure . 2

1 State-of-the-art 3
1.1 Speech Viewer . 3
1.2 Krtek . 4
1.3 Mentio Hlas . 4

2 Analysis and Design 7
2.1 Requirements Definition . 8
2.2 Use Cases . 9
2.3 Architecture . 10

3 Our Approach 17
3.1 Cloud Game . 17
3.2 Airplane Game . 19
3.3 Dog Game . 21
3.4 Balloon Game . 22

4 Implementation 25
4.1 Technologies . 25
4.2 Sound Processing . 32
4.3 Game Implementation . 34
4.4 Event Logging . 37
4.5 Other Libraries . 39
4.6 Overview . 40

5 Deployment and Distribution 43
5.1 Deployment of iOS Applications 43
5.2 Distribution . 44

ix

6 Testing 47
6.1 Testing Results . 47
6.2 Testing Conclusion . 49

Conclusion 51
Future work . 52

Bibliography 53

A Acronyms 57

B Contents of enclosed DVD 59

C Profiles of Tested Children 61

x

List of Figures

1.1 Examples of screens of Speech Viewer application 4
1.2 Layout of game Krtek . 5
1.3 Examples of screens of Mentio Hlas application 5

2.1 Usecase diagram . 11
2.2 Model-View-Controller architecture 12
2.3 Model-View-ViewModel architecture 13
2.4 VIPER architecture . 15

3.1 Images of Cloud Game . 18
3.2 Timeline of events happening in Cloud Game 19
3.3 Images of Airplane Game . 19
3.4 Timeline of events happening in Airplane Game 20
3.5 Images of Dog Game . 21
3.6 Timeline of events happening in Dog Game 22
3.7 Images of Balloon Game . 23
3.8 Timeline of events happening in Balloon Game 24

4.1 Viper architecture enhanced by reactive programming 29
4.2 Application without dependency injection 30
4.3 Application with dependency injection 32
4.4 Layout of SpriteKit Scene editor 35
4.5 Sequence of images simulating dog jumping movement 37
4.6 Composition of classes in Hlásek 41

xi

List of Tables

4.1 List of general events and games that evoke them 38
4.2 List of game events . 39

xiii

Introduction

Communication for people with hearing impairment can be challenging. Learn-
ing how to speak and pronounce words correctly without the voice feedback
is, without any external help, close to impossible. According to the statistics
of the Czech Union of the Deaf from 2017 [1], only 7,300 people in Czech
republic could use the sign language. For children, who want to play and
communicate with their peers, and are unable to express themselves, is the
situation even more alarming.

Kateřina Hádková classifies the hearing impairments in [2] based on the
period of life when it happened. The hearing impairments of children can
happen in the prenatal1, perinatal2 and postnatal3 period of their life. The
most common causes of hearing impairment from the prenatal and perina-
tal periods are infectious diseases, metabolic disorders, use of ototoxic drugs,
meningitis, complicated childbirth and cerebral hemorrhage. During the post-
natal period, the causes are, for instance, meningitis, parotitis, rubeola, and
injuries.

Mobile devices have become an inseparable part of the majority of Czech
households. According to the Czech Statistical Office, in 2015, 98% of Czech
families owned a mobile phone, and every fifth family owned a tablet device.
For families with young children, the number of tablet devices doubled [3].
As of the beginning of 2019, there were 2,100,000 applications on the Google
Play Store4, and 1,800,000 applications on the AppStore5 [4]. Neither of these
applications was designed to improve the hearing-impaired children’s ability
to speak.

1A period before the birth of the child (during the pregnancy).
2A period immediately before and after birth.
3A period shortly after the birth of a child.
4An online shop with applications for devices running operating system Android.
5An online shop with applications for devices running operating systems iOS and macOS.

1

Introduction

This diploma thesis focuses on the development of such an application. The
application will consist of animated games that will keep children engaged and
motivate them to improve. Each of these games will be designed to focus on
a different aspect of a children’s voice control.

The work on this thesis will be done in cooperation with a master student
from Charles University, who will help with a better understanding of hear-
ing impairment problems. Also, the Special Pedagogical Center at the High
School, Elementary School and Kindergarten for Hearing Impaired Children
in Holečkova (SPC) will help with the testing on children that are visiting
the center.

Structure

The work on this diploma thesis is separated into six segments, each of which
is described in a separate chapter. The list of chapters follows.

Chapter 1 analyses applications that focus on the improvement of children’s
ability to speak.

Chapter 2 shows the requirements and use cases of the application and dis-
cusses the architecture that was used during the implementation.

Chapter 3 presents the design of each game in the application.

The technologies that were used during the implementation and the way the
core parts of the application were implemented are described in Chapter 4.

Chapter 5 discusses the deployment and distribution of the application to
designated testing devices.

Chapter 6 presents the results of the testing and the changes that resulted
from it.

The final chapter summarises the results of this project and presents possible
future improvements.

2

Chapter 1
State-of-the-art

There are limited applications addressing speaking problems of children with
impaired hearing or speaking practice in general. The most notable ones are
mentioned in this chapter.

1.1 Speech Viewer

Speech Viewer is an application developed by IBM in the end of the last
century. It has changed the before-existing boring speech exercises into in-
teractive games that keep children motivated and entertained. Speech Viewer
offers numerous speech exercises, such as voice timing, pitch control, two-
phoneme contrast6 and spectra pattering7 [5]. Each exercise offers various
game themes. For example, the voice modulation exercises can be played
with a car that drives uphill, a chicken that jumps up to the henhouse, a
warrior ascending the stairs to the treasure, or a bucket of bricks that need to
be pulled up over a pulley.

However, it poses a number of serious problems:

• It is no longer updated. Therefore, it cannot run on operating systems
higher than Windows XP [6].

• It requires an external microphone.

• Some exercises need an extensive voice setup in order to calibrate the
application.

• It reacts to non-vocal sounds, such as hitting the table or clapping.

Despite the problems mentioned above, SpeechViewer was, according to
the SPC, a breakthrough application when it was published. Therefore, it is a
main source of inspiration for the application developed in this master thesis.

6Exercise that improves accuracy in contrasting phonemes.
7Exercise that uses spectral analysis to improve accuracy of phoneme production.

3

1. State-of-the-art

(a) Menu of Speech Viewer
application

(b) Example of exercise in Speech
Viewer

Figure 1.1: Examples of screens of Speech Viewer application

1.2 Krtek

Krtek is a simple chasing game developed by Josef Kufner as a semestral
project on the Faculty of Electrical Engineering at Czech Technical University
in the semester 2005/2006 [7]. In the game, the players control a gardener and
a mole. The gardener plants plants on his garden. He receives points for each
planted plant and bonus points when he catches the mole. The mole destroys
the plants, for which he receives points. The game loop is endless. Players
control their characters by a pair of tones for the left and right movement.
The mole is controlled by the lower frequencies and the gardener by the higher
frequencies. In the bottom of the screen, there is an indicator that shows which
frequencies are the players aiming for [8].

As shown in Figure 1.2, Krtek has a plain user interface written in C
programming language library ncurses [9]. Even though it is an application
controlled by a voice, it cannot be used for the development of speech of
children with hearing impairment. The range of sounds required to control
the application is limited. Also, it requires two players to participate in the
game. Moreover, it only works on desktop computers, therefore its usage
requires an external microphone.

1.3 Mentio Hlas

Mentio Hlas is a software for training of a phonation and a voice modulation.
It provides a visual feedback on voice creation and develops the ability to
change the intensity and the frequency of the voice. The exercises are focused
on, for instance, the indication of a presence of the voice, the length of the
expiratory flow, the timing of speech, and switching between the low and the
high frequencies [10]. Each exercise offers various game themes.

The user interface, the composition of game themes and the functionality

4

1.3. Mentio Hlas

Figure 1.2: Layout of game Krtek

of Mentio Hlas (shown in Figure 1.3) are very similar to the ones of the
Speech Viewer application. Its target audience are, among others, children
with a hearing impairment. Despite its advantages, Mentio Hlas has not been
found suitable for this master thesis. Its main problems are the fact that it
is only available on desktop computers and its cost. The Mentio Hlas license
is expensive [11]. Also, in order to use the application, users need to buy an
external microphone.

(a) Exercise for holding of voice
height in certain range

(b) Gradual voice height increase
exercise

Figure 1.3: Examples of screens of Mentio Hlas application

5

Chapter 2
Analysis and Design

Starting from now on, the chapters are devoted to the design and implemen-
tation of an application called Hlásek. Hlásek is a mobile game application
whose target audience is children with hearing impairment. Children’s games
are controlled by a sound coming from the microphone of the device and are
meant to improve children’s ability to control their voice.

Hlásek has been created as a solution that tries to solve the problems of the
applications from the previous chapter, and presents a new, entertaining and
intuitive prototype. The target age group of the application is mostly pread-
olescent children. Therefore, a great deal of effort had been put in designing
the application in a way that holds children’s attention for an extended time.
Another challenge was adjusting the difficulty level of each game so that it
was neither easy nor too difficult. From the nature of the application (games,
children’s design, demand on being attention-holding), it was decided that the
application would be created for tablet devices.

As stated in the assignment of this diploma thesis, the application was
meant to be developed in cooperation with the SPC. They provided the
grounds for the application testing. After establishing the initial contact with
the SPC, it was discovered that they only had one device available – iPad Air
2. Hence, it was decided that the Hlásek application would be developed for
the operating system iOS.

Along with the SPC, a master student from Charles University, Bc. Denisa
Šleisová, was significantly contributing to the designing process of the Hlásek
application. Denisa studies Special Pedagogics at the Pedagogical Faculty.
Currently writing her master thesis on The use of modern technological aids
for the development of spoken speech at children with severe hearing impair-
ment, she plans using the Hlásek application as the main testing tool for her
observations. For that reason, she cooperated with the author of this the-
sis and provided valuable insights on the problems of children with hearing
impairment.

7

2. Analysis and Design

2.1 Requirements Definition

An important step before the development of a new software is defining all
requirements on the software. The requirements were divided into functional
and non-functional requirements.

2.1.1 Functional Requirements

Functional requirements describe the behaviour of the application and its in-
teraction with its environment. The list of functional requirements follows.

• FR1: Account Creation
The application should allow users to create a new account.

• FR2: Login
The application should require the user to be logged in.

• FR3: Account Deletion
The application should allow the user to delete his/her account.

• FR4: Game Selection
The application should allow the user to select a game.

• FR5: Sound Processing
The application should process the sound from the microphone of the
device.

• FR6: Game Movement
The application should move the game entities according to the pro-
cessed sound from the microphone.

• FR7: Game Finish
The application should be able to finish the game when the user accom-
plishes the desired tasks.

• FR8: Game Exit
The application should allow the user to exit the game before it finishes.

2.1.2 Non-Functional Requirements

Non-functional requirements complement the functional requirements. They
describe the additional required features of the application. The list of non-
functional requirements follows.

• NFR1: Mobile Application
The application should be a native mobile application running on the
operating system iOS.

8

2.2. Use Cases

• NFR2: Programming Language
The application should be written in the programming language Swift.

• NFR3: System Version
The application requires the operating system version 12 or higher.

• NFR4: Orientation
The application should support a landscape orientation and forbid a
portrait orientation.

• NFR5: Internet Connection
The application should utilise an internet connection.

• NFR6: Database
The application should use an internal database for saving of the user
account information.

• NFR7: Language
The application should be in the Czech language.

• NFR8: Intuitiveness
The application should be easy to understand and use.

• NFR9: Updating
The application installed on testing devices should be easily updatable.

• NFR9: Deployment
The application should be deployable to desired devices.

• NFR10: Event Logging
The application should log important voice events.

• NFR11: Event Uploading
The application should upload logged events to online storage for further
analysis.

• NFR12: Crash Reporting
The application should report its crashes.

2.2 Use Cases

Use cases define the typical interaction of a user role and the system as a
list of steps. The diagram in 2.1 shows an overview of all possible use cases.
Even though children are likely to need assistance when using the Hlásek
application, separating Supervisor and Child into two different roles seemed
pointless. The use case diagram only distinguishes between two roles – the
Unsigned User and the Signed User.

9

2. Analysis and Design

• UC1: Account Creation

– The unsigned user selects the Create Account option on the landing
page.

– The unsigned user fills in the required information and confirms
the creation.

• UC2: Account Deletion

– The unsigned user selects the Login option on the landing page.
– The unsigned user chooses the account that should be deleted from

the account list.
– The unsigned user taps the cross button on the selected account

and confirms the deletion.

• UC3: Gameplay

– The unsigned user selects the Login option on the landing page.
– The unsigned user selects the account he wants to sign with.
– The signed user selects the game he/she wants to play.
– The signed user finishes or exits the game.

2.3 Architecture

The selection of a good architecture of the application is a crucial step that
should be made before the very beginning of the implementation. According
to the article at Medium [12] and a lecture by Krzysztof Zab locki [13], there are
several architectural patterns in the mobile application development society.
The most popular ones are Model-View-Controller, Model-View-ViewModel,
and VIPER.

2.3.1 Model-View-Controller

The Model-View-Controller pattern (MVC) for the iOS applications is slightly
different from the traditional MVC pattern known in, for example, web de-
velopment. Having all three entities tightly coupled dramatically reduces
reusability for each of them.

The composition of entities in MVC that is used in the iOS applications
is captured in Figure 2.2a. The Controller mediates between the View and
the Model. It separates the Model and the View. As a result, the Controller
becomes the least reusable part, which is not a problem.

In praxis, however, this composition is difficult to maintain. The Con-
troller is tightly bound to the View life cycle and separating them is hard.

10

2.3. Architecture

Figure 2.1: Usecase diagram

It results in a so-called Massive View Controllers (as shown in Figure 2.2b),
View-Controller entities that are responsible for the majority of tasks in the
application and are almost non-reusable. Therefore, the only reusable and
testable part is Model.

Despite all that was mentioned above, MVC is still a popular pattern.
From all of the patterns mentioned in this section, it is the easiest to learn,
maintain, and requires the least amount of code.

2.3.2 Model-View-ViewModel

The Model-View-ViewModel pattern (MVVM) takes into account the prob-
lems of the MVC pattern. It treats the View-Controller entity from MVC as
the View and introduces a new entity – ViewModel. ViewModel is a UIKit8

independent representation of the View and its state. It contains all of the
business logic, which makes the application excellently testable.

The View transfers most of its logic to the ViewModel, and it binds to it.
The binding is, in most cases, done by reactive programming. In short, the
View observes events on the ViewModel and changes its elements accordingly.

8Apple library containing all UI elements.

11

2. Analysis and Design

(a) Model-View-Controller (expectation)

(b) Massive-View-Controller
(reality)

Figure 2.2: Model-View-Controller architecture

The reactive programming is discussed in detail in Section 4.1.1 of the Imple-
mentation chapter. The structure of MVVM pattern can be seen in Figure
2.3.

The pattern falls short in two areas – screen routing and the separation of
concerns for more complex modules. In the latter, the ViewModel grows enor-
mously and takes responsibility for numerous unrelated tasks. The VIPER
pattern addresses these problems.

In comparison to MVC, the MVVM pattern is more challenging to learn
and understand. Also, the amount of the code is doubled. Nonetheless, the
excellent testability and easier maintenance and extensibility make the pattern
a better choice for every more complicated application.

2.3.3 VIPER

The VIPER pattern is the last pattern described in this section. Also, it is the
pattern that was used in the implementation of Hlásek. Therefore, it will be
discussed in more detail. VIPER focuses on separation of concerns even more
than the previous patterns and introduces five layers. These layers construct
the abbreviation VIPER – View-Interactor-Presenter-Entity-Router. It is also
the only pattern of the ones mentioned above that address screen routing. In
various implementations (including this one), it is extended by a Builder.

• The Router is the component responsible for the routing of the applica-
tion. It controls the flow of the screens and handles events before each
screen is displayed.

12

2.3. Architecture

Figure 2.3: Model-View-ViewModel architecture

• Entities are the plain data objects. The data access responsibility is
handled by the Interactor.

• The Interactor is responsible for the business logic related to the data
(represented by the Entities), networking, database operations, and oth-
ers. Also, it uses external services and managers that are not considered
as a part of the VIPER module. Interactor receives non-UI related tasks
from the Presenter.

• The Presenter is the component responsible for the UI related (but UIKit
independent) business logic. It receives events from the View and either
process them or passes them forward to the Interactor. It also holds an
instance of the Router and invokes routing methods on it.

• The View is similar to the one in the MVVM pattern. It displays the user
interface a sends user interactions to the Presenter. The only difference
is that it does not use binding.

• Builder is an optional component of the VIPER architecture. It cre-
ates instances of all screens, connects them to create a working VIPER
module and optionally injects dependencies.

2.3.3.1 Routing

The screen size of mobile devices allows less amount of content on each screen
than on the computer and web applications. Therefore, mobile applications
require more screens to display the same information. Moreover, the layout
on iPhones and iPads often differs. For instance, selecting a product from the

13

2. Analysis and Design

product list on an iPhone opens a new screen with the product detail, whereas
iPad, which provides more screen area, displays the product list on the left
side of the screen and the product detail on the right side. Handling this logic
in the View (from where the routing is handled in the previously mentioned
patterns) results in more complex, less reusable Views. Even though routing
between screens is very frequent and often handles some application logic,
VIPER architectural pattern is one of the few patterns that address routing
as a separate concern.

Navigation between screens in iOS applications is handled by the Navi-
gation Controller. Navigation Controller has a navigation stack to which it
pushes new screens and from which it pops them. VIPER approaches routing
as follows:

• Each screen has its Router class. This class is responsible for pushing
of the screen to the navigation stack.

• The Router is started with the Finish and the Cancel callbacks. These
callbacks define where the application should navigate when the work
of the screen is finished or canceled. They also abstract the flow of the
screens from the screen itself.

• Router for more complex screens, from where there are many navigation
paths, such as the application settings or the dashboard, also implements
methods for navigation along these paths.

• Above all screen routers, there is the Application Router which handles
the flow of the entire application.

14

2.3. Architecture

Figure 2.4: VIPER architecture

15

Chapter 3
Our Approach

This chapter elaborates on the games that compose Hlásek, and the purpose
that each of these games serves. The application introduces four games – Cloud
Game, Airplane Game, Dog Game and Balloon Game. Each game presents
a different vocal exercise. Composition of these exercises should improve the
children’s ability to control their voice.

One of the main challenges was to make the games not only useful but
also entertaining for the children, so that they enjoy coming back to playing
it again. It was achieved by a friendly animated design of each game and a
special visual reward when the game was finished.

The final design of each game displayed in their corresponding sections
was created by Lucie Koháková, a second year student of Industrial Design
on the Faculty of Architecture at Czech Technical University in Prague.

3.1 Cloud Game

The Cloud Game is the first game of the application. The main purpose of
this game is to introduce the application to the children by showing them that
they will control it with their voice.

The game presents an animated nature with a smiling sun and clouds on
the sky. The layout of two currently used versions is shown in Figure 3.1.
After a brief delay, the clouds start falling to the ground, where they stop.
The sun stops smiling and an arrow indicating that the clouds should be raised
back to the sky appears. At this point, user interaction begins. Whenever
the child makes a sound, one of the clouds starts raising. When all clouds are
back, the sun starts smiling again and the game ends.

17

3. Our Approach

(a) First version of Cloud Game (b) Second version of Cloud Game

Figure 3.1: Images of Cloud Game

3.1.1 Timeline of events

The example timeline that indicates events in Cloud Game is displayed in
Figure 3.2:

• t1 : The game is started. The sound is not processed yet because the
initial animation has to be played first.

• t2 : The initial animation finishes and the sound processing is initialised.

• t3 : The processed sound amplitude was in a voice range; however it did
not remain there for the required amount of time and was, therefore,
classified as an invalid sound. This approach filters out a small sample
of short vocal sounds. More importantly, it removes a majority of instant
non-vocal sounds, such as clapping and hitting the table.

• t4 : The processed sound amplitude was in a voice range for the required
amount of time. The first cloud starts raising back to the sky.

• t5 : The processed sound amplitude was in a voice range for the required
amount of time. The second cloud starts raising back to the sky.

• t6 : Even though the sound amplitude was in a voice range for an ex-
tended period of time, no more clouds started raising after the second
one. This way the game requires children to go back to being silent
before making another sound again.

• t7 : The sound was too loud. Nothing happens.

• t8 : Once all clouds are back on the sky (the process of rising each cloud
is not shown in the timeline), the game is finished.

18

3.2. Airplane Game

Figure 3.2: Timeline of events happening in Cloud Game

3.2 Airplane Game

The second game is already more specialised than the first one. It exercises
lengthening of the expiratory flow and the ability to hold a constant vocal
phonation.

The primary object in this game is an airplane flying through the landscape
to a house. At the beginning of the game, the airplane is hidden behind the
left side of the screen. An arrow indicates that something is hidden there.
Once the child makes the first sound, the airplane appears and starts flying
towards the house. The child then needs to speed the airplane up by long
vocal sounds. When he or she becomes silent or makes short vocal sounds,
the airplane starts slowing down, gradually descending to the ground. When
it hits the ground, it stops entirely. The goal of the game is to fly with the
airplane next to the house. Once it is there, it lands, and the game is finished.
The graphical design of the game can be seen in Figure 3.3

(a) Airplane flying due to children’s
long expiratory flow (b) Airplane landed next to house

Figure 3.3: Images of Airplane Game

19

3. Our Approach

3.2.1 Timeline of events

The example timeline that indicates events in Airplane Game is displayed in
Figure 3.4:

• t1 : The game is started and sound processing is initialised. Airplane is
not visible on the screen yet. It requires an initial sound to appear from
the left side of the screen.

• t2 : The processed sound amplitude was not in a voice range for the
required amount of time.

• t3 : The processed sound amplitude was in a voice range for the required
amount of time. The airplane accelerates and appears from the left side
of the screen.

• t4 : The initial animation finishes.

• t5, t6, t7 : The airplane accelerates.

• t8 : The airplane is at its maximum speed. It cannot accelerate more.

• t9 : The sound amplitude dropped below the voice range. The airplane
starts descending.

• t10 : The airplane hits the ground and stops.

• t11 : The airplane reaches its final destination and lands.

Figure 3.4: Timeline of events happening in Airplane Game

20

3.3. Dog Game

3.3 Dog Game

Within the third game, children practice an articulation of monosyllabic words.
The game starts with a view centred on a bone lying on a floor of a fur-

nished living room. The view starts moving through the living room until it
reaches a dog sitting on an armchair. The dog jumps down from the armchair
and the game begins. The basic idea of this game is very simple – every time
the child pronounces a monosyllabic word or makes a short sound, the dog
jumps in the direction of the bone. Multi-syllabic words or longer sounds have
no effect on the dog. When he gets close to the bone, he runs to it, picks it
up and wiggles his tail, after which the game ends.

(a) Initial screen layout
(b) Dog jumping after successful

pronunciation of monosyllabic word

Figure 3.5: Images of Dog Game

3.3.1 Timeline of events

The example timeline that indicates events in Dog Game is displayed in Figure
3.6:

• t1 : The game is started. The sound is not processed yet, because the
initial animation has to be played first.

• t2 : The initial animation finishes and the sound processing is initialised.

• t3, t6, t8, t10 : The flag indicating that the processed sound amplitude
is in the voice range is switched on.

• t4 : The sound is too long. Another flag indicating that is switched on.
The dog remains still.

• t5 : The too-long-sound-flag is switched off.

• t7, t9 : The processed sound is classified as a monosyllabic word. The
dog jumps towards the bone.

21

3. Our Approach

• t11 : The sound is too loud. Flag indicating that is switched on.

• t12 : The too-loud-sound-flag is switched off.

• t13 : After several jumps, the dog reaches the bone and the game is
finished.

Figure 3.6: Timeline of events happening in Dog Game

3.4 Balloon Game

The lack of hearing feedback on speaking makes it difficult for people with
a hearing impairment to control the volume of their spoken word. The last
game focuses on this problem.

The game consists of a small balloon on a cloudy sky background. The
balloon increases and decreases its size based on the volume of the child’s voice.
The goal of the game is to produce sounds in a target volume range for a certain
period of time. In the bottom of the screen, there is an empty progress bar.
When the child reaches the target volume range, the balloon starts moving
up and down and the progress bar starts showing progress. Changing the
volume to one that is outside of the target volume range resets the progress
bar. Keeping the voice volume in the target volume range until the progress
bar is full wins the game. The balloon turns and a smiley face appears on
it. Screaming or loud speaking causes the balloon to pop, indicating that the
sound was too loud.

The target volume range and the pop threshold are values that can be
adjusted inside the settings of the application to fit the specific needs of every
child.

3.4.1 Timeline of events

The example timeline that indicates events in Balloon Game is displayed in
Figure 3.8:

22

3.4. Balloon Game

(a) Initial screen layout (b) Balloon popping

Figure 3.7: Images of Balloon Game

• t1 : The game is started and the sound processing is initialised.

• t2 : The processed sound amplitude reached the target voice range. The
balloon starts slightly moving up and down to indicate that this is the
correct volume.

• t3 : The sound amplitude grew above the target voice range. The balloon
stops moving.

• t4 : The sound amplitude returned to the target voice range. The balloon
starts moving again.

• t5 : The sound amplitude dropped below the target voice range. The
balloon stops moving.

• t6 : The sound amplitude reached the pop threshold. The balloon pops
and disappears.

• t7 : After a short period of time, the balloon appears again and the game
continues.

• t8 : The sound amplitude remained in the target voice range for the
required amount of time. The balloon stops moving, turns and a smiley
face appears on it.

• t1-t8 : The size of the balloon scales according to the sound amplitude.

23

3. Our Approach

Figure 3.8: Timeline of events happening in Balloon Game

24

Chapter 4
Implementation

This chapter provides a comprehensive description of the implementation of
the Hlásek application. Firstly, the most significant technologies that were
used are described. Secondly, the implementation of the core parts of the
application, sound processing, game implementation, and event logging, are
discussed. Finally, the third party libraries that were used are mentioned.

4.1 Technologies

4.1.1 Reactive Programming

According to the article written by André Staltz, ”Reactive programming is
programming with asynchronous data streams” [14]. The data stream in this
respect can be anything, for instance, variables, events, caches and data struc-
tures. It is created asynchronously. This section will firstly explain the basics
of reactive programming, and then describe how it was used in the implemen-
tation of Hlásek.

One of the implementations of reactive programming is ReactiveX (Rx),
which exists for numerous programming languages. The following subsections
describes reactive programming using the Swift library RxSwift [15]. The
theoretical part is based on the articles from Sebastian Boldt [16] and André
Staltz [14], and the RxSwift documentation [17].

4.1.1.1 Basics

The Observable object is an object which creates the elements of the data
stream and emits events. It is, for example, the result of a database query
request. The emitted events are:

• next(value: T): Called when a value or a collection of values is added
to the Observable data stream. The value parameter contains the
actual value from the stream.

25

4. Implementation

• error(error: Error): Called when an error, such as download error,
is encountered. It terminates the data stream.

• completed: Called when the data stream ends normally.

The Observer object is an object that subscribes to the events emitted
by the Observable object. The Observable object does not create any ele-
ments of the data stream until the first Observer subscribes to it. Multiple
Observers can subscribe to single Observable and receive the same events
emitted by it. Each Observer receives events emitted by the Observable
until the subscription is disposed.

The DisposeBag object is a virtual bag of Observer objects. It disposes
inserted Observers when it is de-initialised. After every subscription, the
Observer should be added to the DisposeBag.

The Completable object is a special type of the Observable object, which
only emits the completed and the error events. It is used for asynchronous
operations that does not return any data, such as data uploading.

The Single object is a special type of the Observable object. The Single
object returns data only once. It is used for asynchronous operations, such as
API calls, where only a single batch of data is expected to be received.

The Subject is a special type of the Observable object, to which it is
possible to add elements dynamically.

4.1.1.2 Operators

The Operators transform, filter or combine the elements emitted by the
Observable data stream. The output of the Operator is another Observable
data stream, so multiple Operators can be chained together. Also, custom
operators can be created. The following list contains some useful Operators:

• map: transforms the elements emitted from the Observable,

• skip: skips a certain amount of elements emitted from the Observable,

• filter: filters the elements by a specific condition,

• merge: merges two Observables,

• concat: concatenates the output of multiple Observables so that the
elements of the second one are appended to the end of the first one.

The comprehensive list of all ReactiveX operators can be found in [18].

26

4.1. Technologies

4.1.1.3 Enhancing VIPER Architecture

The features of the reactive programming were used to enhance the VIPER
architectural pattern. The granularity of responsibilities is one of the most
significant advantages of VIPER. However, the coupling between some com-
ponents can still be improved.

The View owns the instance of the Presenter, and the Presenter holds
the instance of the View. The View sends user interactions to the Presenter,
and the Presenter notifies the View about updates. Similarly, the Presenter
owns the instance of the Interactor, and the Interactor holds the instance of
the Presenter. Presenter sends non-UI related logic to the Interactor, and
the Interactor returns the results (often asynchronously). The component
interaction is captured in the snippet below.

class Interactor {
func getNewUsers () {

...
// The users are fetched from the database and

filtered
presenter . showNewUsers (users: downloadedUsers)

}
}

class Presenter {
func getNewUsers () {

interactor . getNewUsers ()
}

func showNewUsers (users: [UserDBEntity]) {
// Convert UserDBEntity to the User model
view. presentUsers (users: users)

}
}

class View {
func viewDidLoad () {

presenter . getUsers ()
}

func presentUsers (users: [User]) {
// Presentation of the users

}
}

Listing 4.1: VIPER component interaction without reactive programming

27

4. Implementation

The code below captures the same interaction between modules once the
reactive programming is integrated into the application.

class Interactor {
func getUsers () -> Observable <[UserDBEntity]> {

...
// The users are fetched from the database
observable .on(. next(fetchedUsers))
...

}
}

class Presenter {
func getNewUsers () -> Observable <[User]> {

return interactor . downloadUsers ()
. filter { user in

user.isNew == true
}
.map { user in

// Convert UserDBEntity to the User model
}

}
}

class View {
func viewDidLoad () {

presenter . getUsers ()
. subscribe (onNext : { users in

// Presentation of the users
})
. disposed (by: disposeBag)

}
}

Listing 4.2: VIPER component interaction with reactive programming

The sample code above features some of the advantages provided by the
reactive programming. It removes the dependence of the Interactor on the
Presenter and the dependence of the Presenter on the View. This allows
the creation of more generic Presenters and Interactors. As a result, multi-
ple Presenters with the same logic can use the same Interactor, and multiple
Views can use the same Presenter. A comparison of approaches can be seen
in the examples above. In the first example, the Interactor has a function
getNewUsers which fetches the users from the database and filters them by
the isNew property. If a different Presenter wants to use this Interactor and

28

4.1. Technologies

get users filtered by, for example, their age, a new function has to be created.
Moreover, the Interactor needs to have the instance of the Presenter for re-
turning of the results. In the second example, the Interactor is responsible
only for fetching of users from the database. The Presenter does the filtering.
Different Presenters can subscribe to the same Interactor and filter the re-
sults according to their needs.

Additionally, it simplifies the control of the data flow and organises data
transformations. The enhanced VIPER architecture is shown in Figure 4.1

Figure 4.1: Viper architecture enhanced by reactive programming

4.1.1.4 Reactive Programming in Games

The reactive programming was also utilised in the games. Each game has
a Game Manager class responsible for the sound processing, the event han-
dling, and the analytics reporting, and a Game Scene class that renders the
game. Games with an initial animation do not process the sound from the
very beginning. In order to avoid hard-coding of the duration of the initial
animation in Game Manager, the initial animation function in Game Scene
returns Completable. Then, no matter the length of the initial animation,
sound processing does not start until the completed event is received.

It is used in the same way for the game-finished event. The most signifi-
cant application of the reactive programming is in the sound processing. It is
described thoroughly in Section 4.2.2.

29

4. Implementation

4.1.2 Dependency Injection

Dependency injection is a design pattern in which one object (dependency
injector) provides (injects) services (dependencies) for other objects. Instead
of initialising the object with each service, it is initialised with the depen-
dency injector and extracts the services from it. This way, the objects are
not responsible for the origin of the services. Furthermore, without depen-
dency injection, the services that are used by multiple classes need to exist
as Singleton classes. Dependency injection ensures that the services will be
initialised only once – when the dependency injector is being created. The
intent of dependency injection is to achieve a better separation of concerns.

Figure 4.2: Application without dependency injection

The Swift programming language improves dependency injection with a
feature called protocol composition. Protocol composition was added to Swift
in version 3.0. It allows creating of properties whose type is a composition of
multiple protocols (Swift alternative of interfaces). Only objects that conform
to all of these protocols can be assigned to these properties.

Dependency injection smoothly combines with the VIPER architecture.
The Interactor is the component responsible for interaction with external ser-
vices. Dependencies need to be injected only there. The implementation of
the dependency injection in the application follows these steps:

• A protocol is defined for every dependency in the application. The pro-
tocol has one property. The property type is equal to the dependency
type.

30

4.1. Technologies

protocol HasDatabaseInteractor {
var databaseInteractor : DatabaseInteractor

}

class DatabaseInteractor {}

• The AppDependencies object is created. This object conforms to all
dependency protocols and has a property for all dependencies.

struct AppDependencies : HasDatabaseInteractor ,
HasSoundProcessingInteractor ,
HasFirebaseAnalytics {
var databaseInteractor : DatabaseInteractor
var soundProcessingInteractor :
SoundProcessingInteractor
var firebaseAnalytics :
FirebaseAnalyticsInteractor

}

• Each dependency is instantiated in the prepare function of the AppDependencies
object.

• Interactors define a dependencies property. Its type is a composition
of protocols of services they need. Dependencies are passed to the init
function of the Interactor.

class Interactor {
typealias Dependencies =
HasSoundProcessingInteractor &
HasFirebaseAnalytics
var dependencies : Dependencies

init(dependencies : Dependencies) {
self. dependencies = dependencies

}
}

• The AppDependencies object conforms to all dependency protocols so
that it can be passed to the init function of every Interactor. With the
protocol composition, the Interactor extracts only the services that it
needs and makes the rest of the dependencies inaccessible.

The comparison of application with and without dependency injection can
be seen in Figures 4.2 and 4.3.

31

4. Implementation

Figure 4.3: Application with dependency injection

4.2 Sound Processing

Unlike the majority of mobile application games that are controlled by touch
gestures and device orientation, Hlásek application uses a sound as the primary
controlling input. After research on libraries and frameworks that could be
used for sound processing, two possible candidates were found – the AudioKit
framework [19] and the Speech framework [20].

4.2.1 Speech

Speech is an Apple framework created for the recognition of a spoken word.
It performs speech recognition on a live or a prerecorded audio and receives
valuable information about it, such as transcriptions, alternative interpreta-
tion and confidence levels of the result. Although the framework is robust,
it was not suitable for the Hlásek application. The main goal of Hlásek is to
recognise the amplitude and the frequency of processed sound. Speech is not
capable of doing that. Recognising the actual content of spoken word might
be useful in the future extensions of the application; however, for purposes of
this master thesis, it proved to be useless.

32

4.2. Sound Processing

4.2.2 AudioKit

AudioKit is a powerful framework for audio synthesis, processing, and anal-
ysis. Among numerous other functions, it enables working with oscillators,
sound envelops, and mixers, and allows additive sound synthesis, and sam-
pling. Hlásek utilises only a small subset of these functions.

It needs to capture sounds from the microphone of the device and derive
their frequency and amplitude. The process steps follow.

1. An instance of AKMicrophone is created which represents audio from
the standard input.

2. An instance of AKFrequencyTracker is initialised with the AKMicrophone
instance, making it track sounds from the standard input.

3. An instance of AKBooster is created. AKBooster receives a sound from
its input and amplifies/quietens it by a specified gain. AKFrequencyTracker
is passed as the input, and the gain is set to 0, turning sounds from the
input to a silence.

4. The instance of AKBooster is set as an output node of the AudioKit.
That way the framework does not produce any sounds.

5. AudioKit is started.

6. A new timer is created. Every tick of a timer the frequency and ampli-
tude values are read from the AKFrequencyTracker.

Every game uses sound processing. Therefore, an Interactor class that
manages sound processing was created and injected into every game. The class
initialises the AudioKit framework. Also, it exposes a function that starts the
timer with a designated tick frequency and three Observable properties. The
list of these properties follows.

• volume: The amplitude of the sound from the standard input that is
transformed to have values ranging from 0 to 200. Updated with every
tick of the timer.

• frequency: The frequency of the sound from the standard input. Up-
dated with every tick of the timer.

• soundMade: An enumeration of important sound events. Updated every
time an interesting sound event occurs. The possible values of this prop-
erty are in the following list (the voice range value mentioned in the
list has been adjusted after several testing sessions to meet the needs of
the children).

33

4. Implementation

– inVoiceRange: The volume of the sound has been in a designated
voice range for a required number of timer tics. The required num-
ber of timer tics is set in the function that starts the timer. It is a
game-dependent value.

– belowVoiceRange: The volume of the sound is below a designated
voice range.

– aboveVoiceRange: The volume of the sound is above a designated
voice range.

– inVoiceAllowedDuration: The number of timer tics, during which
the volume of the sound has been in a designated voice range, is
neither shorter nor longer than a required duration range. The
required duration range is set in the function that starts the timer.
It is a game-dependent value.

– aboveVoiceAllowedDuration: The number of timer tics, during
which the volume of the sound has been in a designated voice range,
is longer than a required duration range.

Each game initialises the timer according to its needs and subscribes to
the observable properties that are important in that particular game. After-
ward, it reacts to the changes of those properties without any knowledge of
the source of the changes.

4.3 Game Implementation

When deciding which framework to use on the implementation of the games,
an obvious choice was a SpriteKit framework [21]. SpriteKit is an Apple frame-
work for creating a high-performance and battery-efficient 2D games. Integra-
tion with SceneKit9 [22] is supported, and performing of physics effects (such
as adding of force fields and collision detection) and their animation is greatly
simplified. Also, SpriteKit is integrated into the XCode IDE and does not
require additional configuration.

The key aspects of a game creation will be explained in the following sec-
tions.

4.3.1 Setting Up

Each game consists, at least, of two files – a SpriteKit Scene and a Swift source
file associated with that particular scene. The SpriteKit Scene is used as a
drag-and-drop editor for the game layout as displayed in Figure 4.4. Each
node is positioned to its designed location. It receives a texture image, name,
size, and other optional properties.

9A high-performance rendering engine with an API for working with 2D and 3D assets.

34

4.3. Game Implementation

Figure 4.4: Layout of SpriteKit Scene editor

Afterward, nodes that are expected to be animated need to be connected
with the Swift source file. This can be achieved by the following command
(assuming the node is called sun in the SpriteKit Scene):

let sunNode = childNode (withName : "sun")

4.3.2 Animations

Nodes are animated by the SKAction class. SKAction is an object that, when
executed on a node, changes its structure or content. Each action has a
duration. Various operations can be performed with actions, for example,
grouping, sequencing or delaying. There is an extensive set of predefined
actions, some of which are:

• moveTo(x: y: duration:): moves the node to a specified location
over the duration,

• rotate(byAngle: duration:): rotates the node by a specified angle
over the duration,

• applyForce(force: atPoint: duration:): applies a force to a spec-
ified point of the node over the duration (this action requires the node
to have a PhysicsBody described in Section 4.3.3),

• sequence(actions:): connects multiple actions, so that the next one
starts executing when the previous one finishes.

Created action is run on a node in this way:

35

4. Implementation

let scaleUpAndDownAction =
SKAction . repeatForever (

SKAction . sequence ([
SKAction .scale(to: 1.1, duration : 0.75) ,
SKAction .scale(to: 1.0, duration : 0.75)

]))
sunNode .run(scaleUpAndDownAction)

Listing 4.3: Example of node animation

4.3.3 Physics Effects

Animating nodes is useful in various situations; however, when the games get
more complicated, it would be problematic to keep track of all the animations
that are happening at some point in time.

Within every SpriteKit Scene, there is a PhysicsWorld object. This ob-
ject simulates the physics of the real world. In order to make a node react to
the forces of the PhysicsWorld, it needs to have a PhysicsBody. Creating a
PhysicsBody for a node tells the scene that it should add physics simulations
to it.

A PhysicsBody provides various properties. Adjusting these properties
can achieve behaviour that corresponds to the behaviour of a real object the
node represents. These properties are, for instance, a mass, density, friction,
and restitution. Furthermore, it allows applying of forces, angular forces, and
torques to the node.

Once the node has a PhysicalBody it starts automatically interacting with
other nodes with a PhysicalBody. Collisions can be controlled by settings of
a categoryBitMask and a collisionBitMask. Following example demon-
strates how to make an airplane ignore clouds but collide with the ground and
trees.
let planeBitmask : UInt32 = 0x1 << 0
let cloudBitmask : UInt32 = 0x1 << 1
let groundBitmask : UInt32 = 0x1 << 2
let treeBitmask : UInt32 = 0x1 << 3

plane. physicsBody ?. categoryBitmask = planeBitmask
cloud. physicsBody ?. categoryBitmask = cloudBitmask
ground . physicsBody ?. categoryBitmask = groundBitmask
tree. physicsBody ?. categoryBitmask = treeBitmask

plane. physicsBody ?. collisionBitmask = groundBitmask |
treeBitmask

Listing 4.4: Example of collision control

36

4.4. Event Logging

4.3.4 Animating Textures

The texture animation is a process in which a sequence of successive images
is played in a short period of time. It is used for a simulation of a movement
of nodes. Animating, for instance, a sequence of images shown in Figure
4.5, simulates a dog jumping movement. Using texture animations in a game
considerably improves the smoothness and overall user-friendliness of that
particular game.

Figure 4.5: Sequence of images simulating dog jumping movement

4.3.5 Update Function

The update function is a function that is called every time a scene renders its
content, which happens 60 times in a second. Therefore, the update function
is a place where the game-over conditions are checked, the endless scrolling
backgrounds properly positioned and more.

4.4 Event Logging

The main goal of the Hlásek application is to improve children’s ability to
speak. In order to be able to check, whether the game level is properly set
and children are making progress, monitoring of children’s performance is
necessary. The supervisor can evaluate the reactions and understanding of
games during the children’s initial contact with the application. However,
tracking of long-time progress by a supervisor can be difficult. For that reason,
event logging was integrated into the application, so that long time progress
of children can be easily tracked.

37

4. Implementation

4.4.1 Firebase

Firebase is a mobile and web application development platform. It provides 18
products that are being used by hundreds of thousands of applications daily.
Among these products are, for example, Realtime Database, Authentication
Kit, Machine Learning Kit, Google Analytics and Predications. [23]

Hlásek utilises the Google Analytics product of Firebase. It allows appli-
cations to log custom events during the application run. Each event can have
a custom name and numerous parameters assigned to it. Once logged, the
event is sent to the Firebase console, where it is stored and can be used for
further processing.

Similarly to the sound processing, event logging is used in every game
of the application. Hence, a FirebaseAnalyticsInteractor was created and in-
jected into every game with dependency injection. It exposes two functions
for logging of general events and game events.

• General events are events happening in all games. They are evoked
either by sound or the game itself. The list of events is shown in Table
4.1.

Event Game
Cloud Airplane Dog Balloon

Game Started x x x x
Game Finished x x x x
Game Exited x x x x
Long Sound x
Short Sound x x
Quiet Sound x x x
Loud Sound x

Table 4.1: List of general events and games that evoke them

• Game events are events that only happen in some games. The list of
game events is shown in Table 4.2.

Each event has parameters specifying the time it happened, the game it
happened in, and the user who is currently logged in. Firebase is only capable
of event analysis. For analysis of event parameters, the data needed to be sent
to BigQuery.

4.4.2 BigQuery

BigQuery is a serverless cloud data warehouse [24]. When used to its full po-
tential, it provides powerful Business Intelligence Engine and built-in machine
learning. For the Hlásek application, it was used for the possibility to analyse

38

4.5. Other Libraries

Game Event
Cloud cloudLifted

Airplane

initialSoundMade
startedDescending
startedAscending

stopped
Dog dogJumped

Balloon

balloonPopped
soundBelowTargetRange

soundInTargetRange
soundAboveTargetRange

Table 4.2: List of game events

event parameters and for its simple integration to the Firebase console.
BigQuery has its query language, but it also supports SQL. Besides events

logged by the FirebaseAnalyticsInteractor, numerous other events, regarding
sessions, user interactions, screen opening, and more, are logged automatically.
Each event is accompanied by numerous parameters, such as the geolocation,
the device type and the application information. Queries that filter out the
unwanted information and only leave the essential events and parameters were
created. These queries are:

• allDataQuery: interactions of all users in all games in a specified period
of time,

• cloudGameQuery: interactions of all users in Cloud Game in a specified
period of time,

• airplaneGameQuery: interactions of all users in Airplane Game in a
specified period of time,

• dogGameQuery: interactions of all users in Dog Game in a specified pe-
riod of time,

• balloonGameQuery: interactions of all users in Balloon Game in a spec-
ified period of time,

• userQuery: interactions of specific user in all games in a specified period
of time.

4.5 Other Libraries

Besides AudioKit, SpriteKit, RxSwift, and Firebase, the application uses third-
party libraries in the following list.

39

4. Implementation

• Stevia Layout [25]: A library simplifying the usage of Autolayout10.

• R.swift [26]: A library changing the weak string-typed access to re-
sources like images and fonts to the strongly typed access with available
autocomplete. To demonstrate the usage of the R.swift library, let’s as-
sume there is an image in the project named exampleImage. Without
R.swift the image would be accessed like this:

let image = UIImage (named: " exampleImage ")

R.swift changes the image access into this:

let image = R.image. exampleImage ()

• Realm [27]: A mobile database that runs directly inside the mobile de-
vices.

• SYNBase [28]: A multifunctional library with various handy extensions,
such as Realm Database reactive extension and float extension for scaling
its value according to the screen size.

• RxDataSources [29]: A reactive extension for table views and collection
views.

• Swiftlint [30]: A tool that enforces Swift coding style and conventions.

• Fabric [31]: An online service for over-the-air application installation
and testing.

4.6 Overview

The composition of the Hlásek application with technologies and core parts
described in this chapter is shown in Figure 4.6.

10A system of constraints and rules that governs the layout of components for different
screen sizes

40

4.6. Overview

Figure 4.6: Composition of classes in Hlásek
41

Chapter 5
Deployment and Distribution

Once the MVP of the Hlásek application was finished, it had to be deployed
and then distributed to the mobile devices of the SPC, where it was supposed
to be tested. It was expected that everyday testing would provide rich feedback
with numerous change requests. To achieve meaningful testing results, quick
reaction to these change requests had to be assured. The key aspects of the
deployment process and the distribution to a limited number of devices will
be discussed in this chapter.

5.1 Deployment of iOS Applications

Deploying an application to physical devices requires it to be digitally signed
and linked with an adequate provisioning profile.

5.1.1 Code Signing

Code signing is a security technology that the developers use to certify, that
they created the application. Once the application has been signed, the sys-
tem can detect when it changes [32]. The code is signed with a code signing
identity, which consists of a private key and a digital certificate. The digital
certificate contains the public key that complements the private key. Besides,
it also has a usage extension that enables it to sign code [33] .

In order to generate a certificate for a signing identity, the developer needs
to create a Certificate Signing Request (CSR) from the Keychain Access ap-
plication on the Mac. When the CSR is created, public and private keys are
automatically generated. The private key is automatically stored in the Key-
chain on the Mac. The requested certificate is the public half of the key pair.
After the developer submits the request to the Apple Developer Portal, a new
certificate is generated.

There are two different types of certificates – Development certificates and
Production certificates. Development certificates are used for code signing of

43

5. Deployment and Distribution

the versions of the application that are run on the testing devices. Production
certificates can either be Ad Hoc or App Store certificates. Ad Hoc certificates
sign versions of the application that are distributed to a limited number of
registered devices. App Store certificates are used for the versions that are
sent to the AppStore [34].

5.1.2 Provisioning Profiles

Besides code signing, running the application on a real device also requires a
particular type of a system profile called Provisioning Profile. Provisioning
Profiles are used to launch applications on devices and allows them to use cer-
tain services [35]. With the provisioning profile, developers can choose which
devices will be able to run the application and which services can the appli-
cation access [36]. Specifically, these services are In-App Purchase11, Game
Center12, Push Notifications and others.

Apple distinguishes between two different provisioning profile types – De-
velopment and Distribution Provisioning Profiles. Development Provisioning
Profiles are used for installing on the test devices. Distribution Provisioning
Profiles are separated into four categories – In House, Ad Hoc, tvOS and App
Store [37].

• In House: A Provisioning Profile for any company device. It has no
limitation on the number of devices that can install the application.

• Ad Hoc: A Provisioning Profile for distribution outside of the company.
Each device to which the application is installed, has to be registered.
The limit of devices is 100. Unlike In House provisioning profile, Ad Hoc
provisioning profile allows developers to control the target devices.

• tvOS : A Provisioning Profile for devices with tvOS13.

• AppStore: A Provisioning Profile for upload to the AppStore.

5.2 Distribution

In the scope of this diploma thesis, the application was to be distributed only
to devices of the SPC. The devices were registered under the Apple developer
account of company Synetech s.r.o. The author of this thesis is employed in
this company and was allowed to use their developer account for the purposes
of this application. An appropriate certificate and provisioning profiles were
created.

XCode IDE archives the source code of the application and creates an
11A possibility to buy additional products inside the application.
12An online multiplayer social gaming network.
13An operating system that runs on the Apple televisions.

44

5.2. Distribution

.ipa file (iPhone Application Archive). The created archive is afterward either
uploaded to the AppStore for worldwide publication or to one of the online
services for over-the-air installation and testing. Examples of these services
are TestFlight service [38] and Fabric service [31]. Hlásek was distributed via
Fabric service.

5.2.1 Fabric

Fabric is a mobile platform with modular kits that can be combined and
matched to satisfy application needs [39]. A list of these kits follows.

• Answers enables real-time analytics with insights into core goals, such
as retention, growth, and engagement.

• Beta simplifies sending of the beta builds to the user devices.

• Crashlytics records all application crashes with a detailed description
regarding the device type, a software version, the line of the source
code, and so forth.

Crashlytics and Beta kits were integrated into the Hlásek application.

45

Chapter 6
Testing

Testing is an essential part of a software development process. Hlásek non-
game screens have basic user interface with a minimum responsibilities. There-
fore, the whole chapter is dedicated to the testing of each game.

Testing was performed in the SPC on an iPad Air 2 device. Children
visited the center for their usual therapist sessions and Hlásek was tested on
each of them. The sessions were held under supervision of PhDr. Jarmila
Roučková, who was the kid’s speech therapist, and Bc. Denisa Šleisová, who
was already mentioned in the Analysis and Design chapter. The application
was tested by 10 children. The profiles of tested children are listed in Apendix
C.

6.1 Testing Results

The short-term testing was divided in the following three iterations.

6.1.1 First Testing Iteration

The first testing iteration was performed on the very first released version of
the application. In the beginning, the children did not understand that they
need to control the application with their voice. They used their hands in
the way they were used to control other tablet applications. It was neces-
sary to show them that they had to use their voice. Firstly, they did not
manage to complete a single game. The proper way to control the game was
demonstrated. Then, the therapist helped the children by a tactile control of
the vocal cords. Afterward, they were able to start using their voice. Once
they saw that the game moved with sounds, they became very engaged in it.
After the first session, children were only able to finish the Cloud Game and
the Airplane Game. They appreciated the end game animation in the Cloud
Game.

The first testing iteration resulted in the following change requests:

47

6. Testing

• the distance that airplane travels in the Airplane Game should be longer,

• the visibility of the ”back” button on screens is bad,

• two more clouds should be added to the Cloud Game (it only had 4
clouds during the first iteration),

• the reaction time of the airplane (descending and ascending) is too slow,

• the jumping animation of the dog is too static and does not look good
(it was not done by texture animation in the first iteration),

• Airplane Game should have a reward in the end (the airplane was not
landing next to the house),

• the exit button in the Dog Game is not visible.

All of these change requests were resolved.

Overall, the first testing iteration was successful. It proved that the games
are entertaining and not too simple for children to complete. With some help
and longer practice, children should slowly improve and complete the games
without a therapist’s help.

6.1.2 Second Testing Iteration

The second testing iteration happened two weeks later. Some children still
needed help by a tactile control of the vocal cords and a demonstration by
the therapist. Others were able to complete the games by themselves. They
were able to complete every game except the Dog Game. Only one child was
able to complete the Dog Game. In the Balloon Game, majority of children
enjoyed popping of the balloon, rather than keeping the volume in the target
volume range.

The second testing iteration resulted in the following change requests:

• the distance that airplane travels should be slightly shorter,

• the settings of the balloon target volume range and the pop threshold
should be removed and the values should be hardcoded,

• the reaction speed of the dog should be increased,

• Dog Game should have a reward in the end (the dog was not jumping
to the bone),

• in the Balloon Game, the time for which the children need to hold the
volume in the target volume range should be decreased.

48

6.2. Testing Conclusion

It was decided that the settings in the Balloon Game would remain in the
game for future testing. The increase of the reaction time in the Dog Game
was not achieved. The way to distinguish the monosyllabic sounds from the
multisyllabic sounds is to check whether there is a silence for a few moments
after the monosyllabic sound was made. This extra check accounts for the
delay in reaction time. Besides these two problems, all other change requests
were resolved.

Overall, the second testing iteration was also successful. There was a
visible progress in the children’s ability to control the game.

6.1.3 Final Testing Iteration

The final testing iteration happened two weeks after the second testing itera-
tion – one month after the first contact with the game. Children were most
successful in the Cloud Game. They managed to lift the clouds easily. In the
Airplane Game, the duration for which they were able to keep the airplane in
the air has increased. The game was achieving the designated prolonging of
their expiratory flow. The most problematic game was the Dog Game, where,
due to the slow reaction time of the dog, children did not know how to con-
trol the game properly. Therapists have trained children to hold the correct
volume for the Balloon Game, instead of popping the balloon with too loud
voice, and children were succeeding in that.

The final testing iteration did not result in any change requests. It pro-
vided suggestions on possible future extensions of the game. These future
extensions are discussed in Section 6.2 in the Conclusion chapter.

6.2 Testing Conclusion

The testing results were very positive. The games proved to be entertaining
and their difficulty level set correctly. In the beginning, children struggled
with each game. After one month, they were able to finish all games, except
the Dog Game that would need to be modified. The testing also created
numerous change requests. Majority of the change requests was resolved and
the final form of the game seems to be valid.

The testing is an ongoing process. Denisa is regularly visiting the SPC
and continues testing of the application. Every change request reported by
her will be resolved even after submitting of this diploma thesis.

The application would need to be tested for at least six months in order
to provide long-term testing results based on the event logging described in
Section 4.4 of the Implementation chapter.

49

Conclusion

The primary goal of this diploma thesis was to create a mobile application
for operating system iOS that would help children with hearing impairment
improve their ability to use their voice. As a result of these requirements, the
Hlásek application was created. Hlásek introduces four animated games, each
of which is designed to improve a different aspect of children’s voice control.
Cloud Game shows them that they have to use their voice to control the ap-
plication. Airplane Game exercises lengthening of the expiratory flow and the
ability to hold a constant vocal phonation. Dog Game focuses on children’s
articulation of monosyllabic words. Balloon Game helps them to find the cor-
rect volume of their voice.

A part of this thesis was an analysis of existing applications that help chil-
dren with speech development. Applications Speech Viewer, Krtek and Mentio
Hlas were analysed. Application Speech Viewer inspired the composition of
games in Hlásek.

The application has been deployed to a limited number of testing devices
in the SPC. The application can be updated remotely.

The application was tested by ten children in three two-week-separate it-
erations. Testing resulted in several game change requests, out of which the
majority was resolved. During the one-month testing period, children’s abil-
ity to use their voice had improved. Also, they enjoyed the interaction with
the game more than with the usual speech development tools. The long-time
progress of each child can be analysed due to the event logging feature of the
application. Every voice interaction with the game is reported to the online
data storage. It allows an analysis of understanding and progress of each child.

During the implementation of Hlásek, we learned how to use the VIPER
architecture, the Apple framework SpriteKit, and the sound processing frame-
work AudioKit. I also tried working with reactive programming, dependency
injection, and Firebase Analytics.

51

Conclusion

Future work

Currently, the application focuses on the speech and breathing development.
In the future, exercises for the articulation of vowels and other vocal exercises
could be added. Also, the problem discovered during the infield testing with
the slow reaction of the dog in the Dog Game should be figured.

Moreover, current games could be extended by alternative versions based
on the same principle (the same way it was done in the Speech Viewer ap-
plication). Children would still complete the same vocal tasks but would be
more engaged because of the variety of the visual representation of the task.
Examples of such alternative versions are listed below.

• The principle of the Dog Game could be used to create a Cat game,
where a cat chases a ball, or a Horse game, where a horse jumps over
obstacles.

• The principle of the Airplane Game could be used to create a Boat game,
where a boat sails over the ocean, or a hot air balloon that flies over the
trees.

• The principle of the Balloon Game could be used to create a Fire game,
where a fire is increasing its power based on the volume of the voice.

• The principle of the Cloud Game could be used to create a Bird game,
where little birds fall from their nest and fly back to it with sounds.

It is expected that the application will be accessible for the public. At this
moment, it is only used by a limited number of devices in the SPC. In order
to make it available to the public, a few changes would need to be made in
the design of the application.

52

Bibliography

[1] Česká unie neslyš́ıćıch. Statistiky počtu osob se sluchovým
postǐzeńım. [online]. [accessed: May 7, 2019]. Available from:
https://www.cun.cz/blog/2017/05/17/statistiky-poctu-osob-
se-sluchovym-postizenim/

[2] HÁDKOVÁ Kateřina. Člověk se sluchovým postǐzeńım. Praha: Uni-
verzita Karlova, Pedagogická fakulta, 2016, ISBN 9788072906192.

[3] Český statistický úřad. Informačńı společnost v č́ıslech 2017.
[online]. [accessed: May 7, 2019]. Available from: https:
//www.czso.cz/documents/10180/46014808/061004-17_S.pdf/
b9a0a83e-7a6f-4613-b1df-33fe8b5d1a8e?version=1.1

[4] Statista. Number of apps available in leading app stores as of 1st
quarter 2019. [online]. [accessed: May 7, 2019]. Available from:
https://www.statista.com/statistics/276623/number-of-apps-
available-in-leading-app-stores/

[5] IBM. Speech Viewer. [software]. [accessed: Apr 26, 2019]. Available from:
http://www.spectronics.com.au/article/3073

[6] CNet. SpeechViewer III for Windows. [online]. [accessed: May 7, 2019].
Available from: https://www.cnet.com/products/speechviewer-iii-
for-windows-v-1-0-box-pack-1-user/

[7] KUFNER Josef. Krtek Documentation. [software]. [accessed: Apr 28,
2019]. Available from: https://josef.kufner.cz/programy/krtek/
documentation.html

[8] KUFNER Josef. Krtek. [software]. [accessed: Apr 26, 2019]. Available
from: https://josef.kufner.cz/programy/krtek/

53

https://www.cun.cz/blog/2017/05/17/statistiky-poctu-osob-se-sluchovym-postizenim/
https://www.cun.cz/blog/2017/05/17/statistiky-poctu-osob-se-sluchovym-postizenim/
https://www.czso.cz/documents/10180/46014808/061004-17_S.pdf/b9a0a83e-7a6f-4613-b1df-33fe8b5d1a8e?version=1.1
https://www.czso.cz/documents/10180/46014808/061004-17_S.pdf/b9a0a83e-7a6f-4613-b1df-33fe8b5d1a8e?version=1.1
https://www.czso.cz/documents/10180/46014808/061004-17_S.pdf/b9a0a83e-7a6f-4613-b1df-33fe8b5d1a8e?version=1.1
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://www.spectronics.com.au/article/3073
https://www.cnet.com/products/speechviewer-iii-for-windows-v-1-0-box-pack-1-user/
https://www.cnet.com/products/speechviewer-iii-for-windows-v-1-0-box-pack-1-user/
https://josef.kufner.cz/programy/krtek/documentation.html
https://josef.kufner.cz/programy/krtek/documentation.html
https://josef.kufner.cz/programy/krtek/

Bibliography

[9] Ncurses. [software]. [accessed: Apr 26, 2019]. Available from: https:
//www.sallyx.org/sally/c/linux/ncurses

[10] PETRŽÍLKA Jan. Mentio Hlas. [software]. [accessed: Apr 26, 2019].
Available from: https://www.mentio.cz/Hlas

[11] PETRŽÍLKA Jan. Ceńık produkt̊u Mentio Hlas. [software]. [accessed: Apr
28, 2019]. Available from: https://www.mentio.cz/Cenik

[12] ORLOV Bohdan. iOS Architecture Patterns. [online]. [accessed: May
1, 2019]. Available from: https://medium.com/ios-os-x-development/
ios-architecture-patterns-ecba4c38de52

[13] ZAB LOCKI Krzysztof. Good iOS Application Architecture: MVVM
vs. MVC vs. VIPER. [online]. [accessed: May 1, 2019]. Avail-
able from: https://academy.realm.io/posts/krzysztof-zablocki-
mDevCamp-ios-architecture-mvvm-mvc-viper/

[14] STALTZ André. The introduction to Reactive Programming you’ve been
missing. [online]. [accessed: May 6, 2019]. Available from: https://
gist.github.com/staltz/868e7e9bc2a7b8c1f754

[15] ReactiveX. RxSwift. [software]. [accessed: Apr 21, 2019]. Available from:
https://github.com/ReactiveX/RxSwift

[16] BOLDT Sebastian. Learn and Master the Basics of RxSwift in
10 Minutes. [online]. [accessed: May 6, 2019]. Available from:
https://medium.com/ios-os-x-development/learn-and-master-
%EF%B8%8F-the-basics-of-rxswift-in-10-minutes-818ea6e0a05b

[17] ReactiveX. ReactiveX for Swift. [online]. [accessed: May 6, 2019]. Avail-
able from: https://github.com/ReactiveX/RxSwift

[18] ReactiveX. The Operators of ReactiveX. [online]. [accessed: May 6, 2019].
Available from: http://reactivex.io/documentation/operators.html

[19] AudioKit. [software]. [accessed: Apr 21, 2019]. Available from: https:
//github.com/AudioKit/AudioKit

[20] Apple Inc. Speech. [online]. [accessed: Apr 21, 2019]. Available from:
https://developer.apple.com/documentation/speech

[21] Apple Inc. SpriteKit. [software]. [accessed: Apr 21, 2019]. Available from:
https://developer.apple.com/spritekit/

[22] Apple Inc. SceneKit. [software]. [accessed: Apr 21, 2019]. Available from:
https://developer.apple.com/documentation/scenekit

54

https://www.sallyx.org/sally/c/linux/ncurses
https://www.sallyx.org/sally/c/linux/ncurses
https://www.mentio.cz/Hlas
https://www.mentio.cz/Cenik
https://medium.com/ios-os-x-development/ios-architecture-patterns-ecba4c38de52
https://medium.com/ios-os-x-development/ios-architecture-patterns-ecba4c38de52
https://academy.realm.io/posts/krzysztof-zablocki-mDevCamp-ios-architecture-mvvm-mvc-viper/
https://academy.realm.io/posts/krzysztof-zablocki-mDevCamp-ios-architecture-mvvm-mvc-viper/
https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
https://github.com/ReactiveX/RxSwift
https://medium.com/ios-os-x-development/learn-and-master-%EF%B8%8F-the-basics-of-rxswift-in-10-minutes-818ea6e0a05b
https://medium.com/ios-os-x-development/learn-and-master-%EF%B8%8F-the-basics-of-rxswift-in-10-minutes-818ea6e0a05b
https://github.com/ReactiveX/RxSwift
http://reactivex.io/documentation/operators.html
https://github.com/AudioKit/AudioKit
https://github.com/AudioKit/AudioKit
https://developer.apple.com/documentation/speech
https://developer.apple.com/spritekit/
https://developer.apple.com/documentation/scenekit

Bibliography

[23] Google Inc. Firebase. [software]. [accessed: Apr 21, 2019]. Available from:
https://firebase.google.com

[24] Google Inc. BigQuery. [software]. [accessed: Apr 22, 2019]. Available
from: https://cloud.google.com/bigquery/

[25] FreshOS. Stevia Layout. [software]. [accessed: Apr 21, 2019]. Available
from: https://github.com/freshOS/Stevia

[26] KADIJK Mathijs. R.swift. [software]. [accessed: Apr 21, 2019]. Available
from: https://github.com/mac-cain13/R.swift

[27] Realm. Realm-Cocoa. [software]. [accessed: Apr 21, 2019]. Available from:
https://github.com/realm/realm-cocoa

[28] Synetech s.r.o. SYNBase. [software]. [accessed: Apr 21, 2019]. Avail-
able from: https://bitbucket.org/synetech/sycocoapods-specs/
src/master/SYNBase/

[29] RxSwiftCommunity. RxDataSources. [software]. [accessed: Apr 21,
2019]. Available from: https://github.com/RxSwiftCommunity/
RxDataSources

[30] Realm. Swiftlint. [software]. [accessed: Apr 21, 2019]. Available from:
https://github.com/realm/SwiftLint

[31] Fabric. [software]. [accessed: Apr 17, 2019]. Available from: https://
fabric.io

[32] Apple Inc. About Code Signing. [online]. [accessed: Apr 15,
2019]. Available from: https://developer.apple.com/library/
archive/documentation/Security/Conceptual/CodeSigningGuide/
Introduction/Introduction.html#//apple_ref/doc/uid/
TP40005929-CH1-SW1

[33] Apple Inc. Code Signing Tasks. [online]. [accessed: Apr 12,
2019]. Available from: https://developer.apple.com/library/
archive/documentation/Security/Conceptual/CodeSigningGuide/
Procedures/Procedures.html#//apple_ref/doc/uid/TP40005929-
CH4-SW1

[34] Apple Inc. About Creating a Certificate Signing Request. [online]. [ac-
cessed: Apr 15, 2019]. Available from: https://developer.apple.com/
account/ios/certificate/

[35] Apple Inc. Manage profiles on devices. [online]. [accessed: Apr 15,
2019]. Available from: https://help.apple.com/xcode/mac/current/
#/devaafd622d2

55

https://firebase.google.com
https://cloud.google.com/bigquery/
https://github.com/freshOS/Stevia
https://github.com/mac-cain13/R.swift
https://github.com/realm/realm-cocoa
https://bitbucket.org/synetech/sycocoapods-specs/src/master/SYNBase/
https://bitbucket.org/synetech/sycocoapods-specs/src/master/SYNBase/
https://github.com/RxSwiftCommunity/RxDataSources
https://github.com/RxSwiftCommunity/RxDataSources
https://github.com/realm/SwiftLint
https://fabric.io
https://fabric.io
https://developer.apple.com/library/archive/documentation/Security/Conceptual/CodeSigningGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40005929-CH1-SW1
https://developer.apple.com/library/archive/documentation/Security/Conceptual/CodeSigningGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40005929-CH1-SW1
https://developer.apple.com/library/archive/documentation/Security/Conceptual/CodeSigningGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40005929-CH1-SW1
https://developer.apple.com/library/archive/documentation/Security/Conceptual/CodeSigningGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40005929-CH1-SW1
https://developer.apple.com/library/archive/documentation/Security/Conceptual/CodeSigningGuide/Procedures/Procedures.html#//apple_ref/doc/uid/TP40005929-CH4-SW1
https://developer.apple.com/library/archive/documentation/Security/Conceptual/CodeSigningGuide/Procedures/Procedures.html#//apple_ref/doc/uid/TP40005929-CH4-SW1
https://developer.apple.com/library/archive/documentation/Security/Conceptual/CodeSigningGuide/Procedures/Procedures.html#//apple_ref/doc/uid/TP40005929-CH4-SW1
https://developer.apple.com/library/archive/documentation/Security/Conceptual/CodeSigningGuide/Procedures/Procedures.html#//apple_ref/doc/uid/TP40005929-CH4-SW1
https://developer.apple.com/account/ios/certificate/
https://developer.apple.com/account/ios/certificate/
https://help.apple.com/xcode/mac/current/#/devaafd622d2
https://help.apple.com/xcode/mac/current/#/devaafd622d2

Bibliography

[36] Medium. What is a provisioning profile and code signing
in iOS? [online]. [accessed: Apr 15, 2019]. Available from:
https://medium.com/@abhimuralidharan/what-is-a-provisioning-
profile-in-ios-77987a7c54c2

[37] Apple Inc. iOS Provisioning Profiles. [online]. [accessed: Apr 15, 2019].
Available from: https://developer.apple.com/account/ios/profile/
create

[38] SATTERFIELD Benjamin; KOSMYNKA Trystan. Testflight. [soft-
ware]. [accessed: Apr 17, 2019]. Available from: https://
developer.apple.com/testflight/

[39] Fabric. Many powerful tools, one easy platform. [online]. [accessed: Apr
17, 2019]. Available from: https://docs.fabric.io/apple/fabric/
overview.html

56

https://medium.com/@abhimuralidharan/what-is-a-provisioning-profile-in-ios-77987a7c54c2
https://medium.com/@abhimuralidharan/what-is-a-provisioning-profile-in-ios-77987a7c54c2
https://developer.apple.com/account/ios/profile/create
https://developer.apple.com/account/ios/profile/create
https://developer.apple.com/testflight/
https://developer.apple.com/testflight/
https://docs.fabric.io/apple/fabric/overview.html
https://docs.fabric.io/apple/fabric/overview.html

Appendix A
Acronyms

MVP Minimum Viable Product

XML Extensible markup language

SPC Special Pedagogical Center

IBM International Business Machines

SQL Structured Query Language

CSR Certificate Signing Request

57

Appendix B
Contents of enclosed DVD

readme.txt the file with CD contents description
src.......................................the directory of source codes

impl..implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

59

Appendix C
Profiles of Tested Children

• Child 1

– Date of Birth: 2013
– Occurrence of Hearing Impairment in Family: Deaf parents and

grandparents
– Type of Impairment: Congenital total deafness
– Additional Impairments: None
– Compensatory Tools: Hearing aid from six months, inadequate for

speech development
– Speech Treatment: Visits speech therapist
– Speech Development: None
– Overall: Reacts to the loud sounds, does not react to his/her name,

does not use his/her voice, makes inarticulate sounds

• Child 2

– Date of Birth: 2015
– Occurrence of Hearing Impairment in Family: Deaf parents
– Type of Impairment: Congenital total deafness
– Additional Impairments: None
– Compensatory Tools: Has hearing aid, does not use it
– Speech Treatment: Visits speech therapist
– Speech Development: None
– Overall: Reacts to the loud sounds, does not react to his/her name,

does not use his/her voice, makes inarticulate sounds

• Child 3

61

C. Profiles of Tested Children

– Date of Birth: 2014
– Occurrence of Hearing Impairment in Family: Deaf parents
– Type of Impairment: Congenital total deafness
– Additional Impairments: None
– Compensatory Tools: Has hearing aid, does not use it
– Speech Treatment: Visits speech therapist
– Speech Development: None
– Overall: Reacts to the loud sounds, does not react to his/her name,

does not use his/her voice, makes inarticulate sounds

• Child 4

– Date of Birth: 2013
– Occurrence of Hearing Impairment in Family: Deaf parents
– Type of Impairment: Congenital total deafness
– Additional Impairments: None
– Compensatory Tools: Has hearing aid, does not use it
– Speech Treatment: Visits speech therapist
– Speech Development: None
– Overall: Reacts to the loud sounds, does not react to his/her name,

does not use his/her voice, makes inarticulate sounds

• Child 5

– Date of Birth: 2011
– Occurrence of Hearing Impairment in Family: Mother without

hearing problems, father unknown
– Type of Impairment: Congenital total deafness
– Additional Impairments: Cleft palate surgery
– Compensatory Tools: One-sided cochlear implant on the right, after

5 years of having the implant is starting to react on sounds
– Speech Treatment: Visits speech therapist
– Speech Development: None
– Overall: Last year unable to hearing, since September starting to

understand words, able to pronounce some vowels and consonants
(only with a help of a speech therapist – does not speak by itself)

• Child 6

62

– Date of Birth: 2011
– Occurrence of Hearing Impairment in Family: Parents and grand-

parents without hearing problems
– Type of Impairment: Congenital total deafness
– Additional Impairments: Childhood autism
– Compensatory Tools: One-sided cochlear implant on the right
– Speech Treatment: Visits speech therapist
– Speech Development: None
– Overall: Good use of hearing, able to repeat sounds and syllables,

needs help from the speech therapist

• Child 7

– Date of Birth: 2012
– Occurrence of Hearing Impairment in Family: Parents and siblings

without hearing problems
– Type of Impairment: Congenital severe hearing defect
– Additional Impairments: None
– Compensatory Tools: Has hearing aid, can partially orient with

hearing
– Speech Treatment: Visits speech therapist
– Speech Development: None
– Overall: Prefers sign language to speaking, without hearing aid

does not control his/her voice, has unnatural voice

• Child 8

– Date of Birth: 2012
– Occurrence of Hearing Impairment in Family: Parents and siblings

without hearing problems
– Type of Impairment: Congenital severe hearing defect
– Additional Impairments: None
– Compensatory Tools: Cochlear implant on both sides
– Speech Treatment: Visits speech therapist
– Speech Development: None
– Overall: Does not react to sounds, does not speak, has unnatural

voice, makes inarticulate sounds, struggles with vowel pronuncia-
tion

63

C. Profiles of Tested Children

• Child 9

– Date of Birth: 2017
– Occurrence of Hearing Impairment in Family: Parents without

hearing problems
– Type of Impairment: Congenital total deafness
– Additional Impairments: None
– Compensatory Tools: Cochlear implant on both sides
– Speech Treatment: Visits speech therapist
– Speech Development: None
– Overall: Reacts to the loud sounds, does not react to his/her name,

does not use his/her voice, makes inarticulate sounds

• Child 10

– Date of Birth: 2016
– Occurrence of Hearing Impairment in Family: Parents without

hearing problems
– Type of Impairment: Moderate hearing defect
– Additional Impairments: None
– Compensatory Tools: Has hearing aid
– Speech Treatment: Visits speech therapist
– Speech Development: None
– Overall: Reacts to the loud sounds, does not react to his/her name,

does not use his/her voice, makes inarticulate sounds

64

