
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 30, 2018

ASSIGNMENT OF MASTER’S THESIS
 Title: Recommending related images to articles

 Student: Bc. Matouš Pištora

 Supervisor: doc. Ing. Pavel Kordík, Ph.D.

 Study Programme: Informatics

 Study Branch: Knowledge Engineering

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2018/19

Instructions

Survey state of the art algorithms in image processing and text mining. Focus on modern deep learning
methods and possibilities to obtain high quality neural embedding for both images and text. Design and
implement a system capable of recommending images related to article based on text of the article. Extend
the system to support multiple languages or domains (news, sport, hobby, etc.). Test the performance of
the recommender system on images and articles supplied by a publishing house.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Theoretical Computer Science

Master’s thesis

Recommending related images to articles

Bc. Matouš Pištora

Supervisor: doc. Ing. Pavel Kordík, Ph.D.

February 15, 2019

Acknowledgements

I would like to thank my supervisor doc. Ing. Pavel Kordík, Ph.D. for his
guidance in writing my thesis and my family and friends for their support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work for non-profit purposes only, in any way that does not detract from
its value. This authorization is not limited in terms of time, location and
quantity.

In Prague on February 15, 2019 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2019 Matouš Pištora. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Pištora, Matouš. Recommending related images to articles. Master’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2019.

Abstrakt

Tato diplomová práce se soustřeďuje na nejnovější algoritmy zpracování obrazu
a vytěžování textu včetně metod hlubokého učení a neuronových sítí. Je
navržen systém, který je schopen na základě textu novinového článku navrhnout
obrázky související s jeho obsahem. Součástí systému jsou moderní algoritmy
na vytěžování informací z textu a obrázků, které byly testovány společně s
regresními algoritmy. Tento systém je rozšířen na více jazyků.

Klíčová slova strojové učení, učení s učitelem, hluboké učení, zpracování
přirozeného jazyka, vnoření slov, počítačové vidění, zpracování obrazu

ix

Abstract

This diploma thesis focuses on the analysis of state-of-the-art algorithms in
image processing and text mining including modern deep learning and neural
networks. A system capable of recommending images related to an article
based on the text of the article has been designed and implemented with the
use of supervised learning. Multiple image and text feature algorithms have
been evaluated along with numerous regression algorithms. The system was
extended to multiple languages and domains.

Keywords machine learning, supervised learning, deep learning, natural
language processing, word embedding, computer vision, image processing

x

Contents

Introduction 1

1 Analysis 3
1.1 Recommendation . 3
1.2 Text embedding . 18
1.3 Image embedding . 34

2 Dataset and data analysis 49
2.1 Reuters dataset . 49
2.2 Aktualne dataset . 50
2.3 Text embedding extraction . 50
2.4 Image embedding extraction . 52
2.5 Visualization . 53

3 Experiments 59
3.1 Methodology . 59
3.2 Experiment 1 – Regression model tuning 61
3.3 Experiment 2 – Feature extraction models evaluation 79
3.4 Experiment 3 – Application on multiple domains 81
3.5 Experiment 4 – Dataset by a Czech publishing house 84
3.6 Results . 87

Conclusion 89

Bibliography 91

A Recommendations examples 99

B Glossary 103

xi

C Contents of USB 105

xii

List of Figures

1.1 P-norms illustration. 8
1.2 Bias-variance tradeoff. 9
1.3 Multilayer perceptron. 14
1.4 Neural network activation functions. 16
1.5 CBOW and Skip-gram architecture 21
1.6 GloVe and word2vec learning times. 24
1.7 ConceptNet node example. 27
1.8 Long range dependency in translation. 30
1.9 Short range dependency in translation. 30
1.10 Context in BERT and other models. 31
1.11 BERT input representation. 32
1.12 LeNet5 architecture. 34
1.13 Convolutional layer. 35
1.14 AlexNet architecture. 36
1.15 Overlapping pooling. 37
1.16 Inception module. 38
1.17 GoogLeNet architecture. 39
1.18 Factorization of convolutional layer. 40
1.19 Asymmetric factorization of convolutional layer. 41
1.20 Inception module A. 41
1.21 Inception module B. 42
1.22 Inception module C. 42
1.23 ResNet architecture. 44
1.24 Residual block. 45
1.25 Residual activations v2. 46
1.26 ResNeXt block. 47
1.27 Depthwise decomposition of a convolutional layer. 47
1.28 Comparison of CNNs. 48

2.1 PCA and t-SNE. 54

xiii

2.2 Clustering methods. 55
2.3 Word2vec clusters on text features. 57
2.4 Word2vec clusters on image features. 58

3.1 Recommender design. 62
3.2 KNN n neighbors. 63
3.3 KNN metric. 64
3.4 KNN accuracy metric. 64
3.5 KNN weights. 65
3.6 KNN scaling. 66
3.7 KNN PCA kernel. 67
3.8 KNN PCA number of components. 68
3.9 ElasticNet L1 ratio. 69
3.10 ElasticNet alpha. 70
3.11 ElasticNet maximum no. of iterations. 71
3.12 ElasticNet PCA. 71
3.13 MLP hidden layer count accuracy. 73
3.14 MLP hidden layer count time. 74
3.15 MLP activation function accuracy. 74
3.16 MLP activation function time. 75
3.17 MLP initial learning rate. 76
3.18 Random forest. 77
3.19 Prediction results. 78
3.20 k and top-k accuracy relation. 78
3.21 Prediction results on t-SNE projection. 79
3.22 Prediction results on t-SNE projection 2. 79
3.23 Document embedding extraction. 80
3.24 BERT document embedding extraction. 81
3.25 Features comparison with KNN model. 82
3.26 Features comparison with ElasticNet model. 83
3.27 Performance on different domains. 85
3.28 Czech text feature extraction models. 86
3.29 Aktualne domains. 87

A.1 Recommendation for an article about a bus fire. 100
A.2 Recommendation for an article about politics. 101
A.3 Recommendation for an article about sports. 102

xiv

List of Tables

1.1 Bag of words embedding. 18
1.2 Word co-occurrence probabilities 22
1.3 Comparison of deep-learning models. 33

2.1 Reuters article categories. 50
2.2 Aktualne article categories. 50
2.3 Feature models . 53

3.1 KNN hyperparameters. 63
3.2 KNN optimized parameters. 67
3.3 ElasticNet hyperparameters. 69
3.4 ElasticNet optimized parameters. 72
3.5 MLP hyperparameters. 72
3.6 ElasticNet optimized parameters. 76
3.7 Experiment 1 results. 77

xv

Introduction

Moore’s law states that the number of transistors in integrated circuits dou-
bles every year. It has been true for the past two decades, and as a result
the increase of hardware capabilities opened new doors for computationally
intensive algorithms. In the last few years, there has been a huge advance-
ment in the field of deep convolutional neural networks, designed for image
classification and image feature extraction. In the field of machine translations
and natural language processing, the progress has also been significant. The
advancement in both fields can be utilized in common tasks, such as helping
editors of publishing houses to choose an image for an article by recommending
related images.

The objective of this thesis is to study some of the newest algorithms
in both text mining and image feature embedding and combine the obtained
knowledge into one system capable of recommending images related to articles
based on their content, with the help of a regression model. The focus of the
text and image feature extraction should be on neural networks. The thesis
will test the system on multiple domains, such as news and sports, and extend
the system on another language.

The theoretical part of the thesis focuses on state-of-the-art algorithms
in image processing and text mining. It is divided into parts about word
vector embeddings extracted from text, image feature embeddings, and various
algorithms such as regression ones.

In the second chapter, we will concentrate on obtaining a dataset in order
to train the recommendation model with supervised learning. We will dis-
cuss the options of extracting image and text features studied in the previous
chapter.

The third chapter involves experiments that will be conducted on the rec-
ommending system. Multiple hyperparameters of the regression models will
be tuned in order to obtain the best performance. The model will be tested
on multiple domains and extended to multiple languages.

1

Chapter 1
Analysis

In this chapter, I will write about how to approach the task of recommending
images to articles and the background to the practical part of the thesis.

One part of the assignment of the thesis is to design and implement a
system capable of recommending images related to an article based on its
text. The system will consist of two stages. In the first one, the text will
be processed using a feature extraction model to infer a vector embedding.
In the second stage, the vector embedding will be the input of a trained
recommendation model and the output will be a set of images related to the
article from a given database of images. The model will be trained on a
training dataset of articles and pictures. The pictures will be processed with
a feature extraction model to obtain the information about its content. The
whole model design can be seen in Figure 3.1.

This approach introduces three main problems:

1. Recommendation model using text and image embeddings.
2. Extraction of the text embeddings.
3. Extraction of the image embeddings.

The following sections describe and analyze possible solutions to each of
the problems.

1.1 Recommendation
This section briefly describes the algorithms and techniques used in the prac-
tical part of the thesis and lays the theoretical foundations for the following
sections.

1.1.1 Data preprocessing
In data mining there are many different preprocessing techniques including
instance selection, normalization, transformation, feature extraction, selection

3

1. Analysis

or projection. Their goal is to make the data complete, consistent and more
reliable in order to increase the performance on the machine learning task.
The dataset obtained for the practical task is fortunately of high quality, so
only a few techniques will be used in the implementation.

1.1.1.1 Standardization

Standardization, which is also called the Z-score normalization [17], is the
process of unifying an attribute’s distribution by transforming the numeric
variables to have a mean equal to 0 and standard deviation of 1. For value v
of attribute A with mean Ā and standard deviation σA the normalized value
v̂ is equal to:

v̂ =
v − Ā

σA
(1.1)

If the mean Ā and standard deviation σA of the attribute are not known
or available, sample mean and standard deviation are used:

Ā =
1

n

n∑
i=1

vi (1.2)

σA = +

√√√√ 1

n

n∑
i=1

(
vi − Ā

)2 (1.3)

1.1.1.2 Normalization

Normalization, also called Min-Max normalization, is the process of unifying
an attribute’s range by transformation of attribute A to that specific range
in [min,max], which is usually [0, 1] or [−1, 1]. The equation for value v of
attribute A and its normalized value v̂ is:

v̂ =
v −min (A)

max (A)−min (A)
(max−min) +min (1.4)

1.1.1.3 Principal component analysis

Principal component analysis (PCA) is a popular dimensionality reduction
and feature extraction method, though it was originally a technique to trans-
form a set of possibly linearly correlated attributes into a set of linearly un-
correlated principal components. The term was coined in 1933 in [25], but
originates in the work of Person in 1901 [44]. The techniques transform n
observations with p variables to a set of min(n − 1, p) components with an
orthogonal transformation, where the new set of components has the largest
variance [7].

4

1.1. Recommendation

The definition of PCA from [67] is the following: For a dataset X = xi
where i = 1, 2, . . . , N and xi is a vector with dimension D, the PCA can
transform this set into M dimensional subspace where M < D. The projection
is denoted by y = Ax, where A =

[
uT
1 , . . . ,uT

M

]
and uT

k uk = 1 for k =
1, 2, . . . ,M . The goal is to maximize the variance of {yi} which is the trace
of covariance matrix of the same {yi}. This gives us the equations:

A∗ = arg max
A

tr (Sy) (1.5)

Sy =
1

N

N∑
i=1

(yi − y) (yi − y)T (1.6)

y =
1

N

N∑
i=1

xi (1.7)

Let Sx be the covariance matrix of {xi}. Since tr (Sy) = tr
(
ASxAT),

then by using the Lagrangian multiplier λ and taking the derivative, we get
the following:

Sxuk = λkuk (1.8)

It means that uk is the eigenvector of Sx. Now xi can be represented by
the equation:

xi =

D∑
k=1

(
xT
i uk

)
uk (1.9)

It can also be approximated by x̃i with a reduced dimension M :

x̃i =

M∑
k=1

(
xT
i uk

)
uk (1.10)

where uk is the eigenvector of Sx corresponding to the kth largest value,
thus maximizing the variance of the transformed x̃i.

The Kernel PCA variation can also be used with a non-linear projection
ϕ(x). Its main advantage is that it is able to find a projection in which the data
is linearly separable and as such allows the use of linear regression models on
nonlinear problems. Because using the plain Kernel PCA would be extremely
inefficient for large dimensions, the kernel method is used [7].

Some of the kernel functions used in Kernel PCA are:

• Linear (which produces the same as PCA) kernel with free parameter
c:

K(x,y) = xTy + c (1.11)

5

1. Analysis

• Polynomial kernel with degree d and free parameter c:

K(x,y) =
(
xTy + c

)d (1.12)

• Gaussian radial basis function kernel:

K(x,y) = exp
(
−∥x− y∥2

2σ2

)
(1.13)

• Cosine kernel with the degree θ between the two vectors:

K(x,y) = ∥x∥ ∥y∥ cos θ (1.14)

1.1.1.4 T-distributed Stochastic Neighbor Embedding

T-distributed Stochastic Neighbor Embedding (t-SNE) is a feature projection
technique designed for dimensionality reduction of high-dimensional datasets
for the purpose of visualization. The algorithm works by computing the prob-
ability distribution of data points in the original high-dimensional space so
that point close to each other i.e. neighbors are likely to be chosen by the
distribution and far away points have a low probability of being chosen. In
the next step a similar probability distribution in two (or how many is de-
sired) dimensions is estimated by optimizing the Kullback-Leibler divergence
D between these two distributions P and Q:

DKL(P∥Q) =

∫ ∞

−∞
p(x) log

(
p(x)

q(x)

)
dx (1.15)

Gradient descent is used for the optimization. Because the computation
speed of this algorithm is high for high-dimensional and large datasets, it is
recommended by the author to combine the two techniques and for example
reduce the original feature space to 30 dimensions using PCA first and then
use the t-SNE algorithm.

1.1.2 Distance measures
Various machine learning algorithms use some sort of distance or similarity
measures, for example the K Nearest Neighbors model. A selection of distances
is defined in this subsection with [14] as the source.

A distance (or dissimilarity) is a function d : X ×X → R on set X that
for all x, y ∈ X holds:

1. d(x, y) ≥ 0 (non-negativity)
2. d(x, y) = d(y, x) (symmetry)
3. d(x, x) = 0 (reflexivity)

6

1.1. Recommendation

A metric is a function d : X × X → R on set X that for all x, y, z ∈ X
holds:

1. d(x, y) ≥ 0 (non-negativity)
2. d(x, y) = d(y, x) (symmetry)
3. d(x, y) = 0if and only if x = y (identity of indiscernibles)
4. d(x, y) ≤ d(x, z) + d(z, y) ((triangle inequality)

Given these definitions, we can define the following metrics:

• lp metric for p, 1 ≤ p ≤ ∞ is a norm metric on Rn defined as:

∥x− y∥p =

(
n∑

i=1

|xi − yi|p
) 1

p

(1.16)

where for p = ∞ the ∥x − y∥∞ = max1≤i≤n |xi − yi|. If 0 < p < 1 the
function loses its triangle inequality property and becomes a distance.
It is also one of the so-called Minkowski metrics and in the experiment
section are be called simply as Minkowski. The lp metrics are illustrated
in Figure 1.1.

• Euclidean metric is a special case of lp metric where p = 2:

∥x− y∥2 =
√

(x1 − y1)
2 + · · ·+ (xn − yn)

2 (1.17)

• Squared Euclidean metric is a similar to euclidean, but is faster to
compute.:

∥x− y∥22 = (x1 − y1)
2 + · · ·+ (xn − yn)

2 (1.18)

• Manhattan metric is a special case of lp distance where p = 1:

∥x− y∥1 = |x1 − y1|+ |x2 − y2|+ · · ·+ |xn − yn| (1.19)

• Chebyshev metric is a special case of lp metric where p =∞:

∥x− y∥∞ = max {|x1 − y1| , |x2 − y2| , · · · , |xn − yn|} (1.20)

• Cosine distance which is 1 − cosine similarity is not a metric and is
defined by:

1− ⟨x, y⟩
∥x∥2 · ∥y∥2

= 1− cosϕ (1.21)

In the case x = y = 0, the cosine distance equals to correlation distance.

7

1. Analysis

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

632
1.5

p=1

∞

Figure 1.1: Illustration of the unit circles of selected p-norms in two dimen-
sions. Source: [48].

1.1.3 Regression

In machine learning the algorithms divide into several types. During super-
vised learning the algorithms build a model from a set of data containing both
the input and the desired output. This type of algorithms include classifica-
tion, which aims to predict the category the input observation belongs to, and
regression, which is the process of estimating the relationship among input
and output variables. Regression will be the method chosen for our task, and
some of its algorithms used in the practical part are described in the following
text.

Another type of algorithms is unsupervised learning which tries to find
a structure within the input data without a set of desired outputs. It will
be used in data analysis for clustering. Reinforcement learning is the area of
machine learning where the learning agents do not have a set of desired output
data but are trained to maximize a certain reward function, for example the
artificial intelligence in games.

There are many different criteria regarding the choice of the correct algo-
rithm, such as bias-variance tradeoff (seen in Figure 1.2). It is the balance
between the model successfully capturing the structures within the training
data while still being able to generalize to new input data. Bias means the dif-
ference between the model average prediction and the correct values. Models
with high bias simplify the data too much, which is called underfitting. On the
other hand, high variance models fit the data too well and fail to generalize
(perform well on new data). This is called overfitting.

Regression algorithms can also be categorized based on whether they are
parametric or nonparametric i.e. whether the model has a set of parameters
that has to be learned in the training phase to successfully predict the output
or not. They should not be confused with hyperparameters, which are pa-
rameters set before the training starts, such as the type of distance function,

8

1.1. Recommendation

x

y

Underfitting (high bias)
Model
True function
Samples

x

y

Balanced bias and variance
Model
True function
Samples

x

y

Overfitting (high variance)
Model
True function
Samples

Figure 1.2: Illustration of the bias-variance tradeoff and the effects of over-
and under-fitting.

optimization algorithm or number of hidden layers in a neural network.
Algorithms are also characterized by whether they are linear or nonlinear,

i.e. whether they are able to solve only a linear problem, where the output is a
linear combination of input variables, or also a nonlinear problem, where the
model predicts the input using nonlinear combination of its parameters. The
analogy in classification problems is whether the model can find a hyperplane
separating the two classes or whether the separation between the classes is a
general hypersurface. Nonlinear problems are generally harder to solve than
linear ones.

The regression problem in this thesis is probably a nonlinear problem.
Given the input is features extracted from a text and the output is features
describing an image, I expect there is no linear relationship between a text
and a picture that is to some degree related to it.

Our problem also presents the obstacle of a so-called multioutput regres-
sion. Majority of regression problems predict only one or a few variables, for
example the price of a house or the mileage of a car, but our task is to predict
hundreds of features characterizing an image.

1.1.3.1 K Nearest Neighbors

K Nearest Neighbors algorithm (KNN) is a basic nonparametric regression
method [2]. Given a set of samples (x1, y1) , . . . (xn, yn) ∈ Rd × R, a fixed
parameter k, set of indices Nk(x) of k nearest neighbors to x, we get the
regression estimation:

f̂(x) =
1

k

∑
i∈Nk(x)

yi ∗ wi (1.22)

9

1. Analysis

The pseudocode for this algorithm with a given distance function D (for
example the euclidean function), weights w (usually uniform ones or the in-
verse of distances) and a set of samples (x1, y1) , . . . , (xn, yn) can be seen in
Figure 1. The weights are usually uniform (i.e. 1s) or inverse of the distance
from x (1/d).

Algorithm 1: Pseudocode of naive KNN regression.
Input: Set of observations {xi, yi}, input observation x
Result: Prediction ŷ
for i← 1, n do

di ← D(x, xi)
end
I ← first k items of Argsort(d)
ŷ ← WeightedAverage(yi∈I , wi∈I)
return ŷ

1.1.3.2 Linear regression

Linear model is a type of parametric model which makes a prediction based
on the linear combination of the input, learned weights θ and a bias θ0 [18]:

ŷ = θ01 + θ1x1 + θ2x2 + · · ·+ θnxn + ϵ = xT
i θ + θ0 (1.23)

This model is trained on a training set to minimize the root mean square
error (RMSE) between prediction ŷ and the actual value y. Because mini-
mizing a function is the same as minimizing its square value, we can use the
mean square error (MSE) which is computationally less intensive:

MSE(Y, Ŷ) =
1

n

n∑
i=1

(Yi − Ŷi)
2

RMSE(Y, Ŷ) =

√√√√ 1

n

n∑
i=1

(Yi − Ŷi)2 =

√
MSE(Y, Ŷ)

1.1.3.3 Regularized regression

If a regression model is prone to overfitting, we can introduce regularization
to the optimization function. The ridge regression model introduces a l2 reg-
ularization term which is the sum of squares of the weights. The optimization
function is now:

J(θ) = MSE(θ) + α
1

2

n∑
i=1

θ2i (1.24)

10

1.1. Recommendation

On the other hand, the Least absolute shrinkage and selection operator
regression algorithm called simply Lasso introduces a l1 regularization:

J(θ) = MSE(θ) + α
n∑

i=1

|θi| (1.25)

A combination of these regularization techniques is called the Elastic Net
and introduces the parameter r, 0 ≤ r ≤ 1, which is the ratio between l1 and
l2 regularization:

J(θ) = MSE(θ) + rα

n∑
i=1

|θi|+
1− r

2
α

n∑
i=1

θ2i (1.26)

Both Lasso and Elastic nets are prone to reduce some of features’ weights
to zero, given a large l1 regularization penalty. Thus a Ridge regression or
Elastic net with low r are usually preferred. In 2014 [73], it was proven that
Elastic net can be reduced to a linear Support vector machine.

1.1.3.4 Support vector regression

Support vector regression (SVR) is similar to its classification counterpart
Support vector machine (SVM) and is easier to visualize. The task of a SVM
model for a linear problem is to construct a hyperplane in the feature space to
separate samples into two classes while maximizing the distance of the samples
from the separating hyperplane. The hyperplane solves for a set of samples x
and weights w the equation:

wTx + b = 0 (1.27)

Given an observation x and weights w the prediction of class y is ŷ:

ŷ =

{
0 if wTx + b < 0
1 if wTx + b ≥ 0

(1.28)

We can either not allow misclassification of a prediction by setting a hard
margin for the classifier or allow it with a soft margin. The hard margin
with given yi ∈ (−1, 1) denoting the two positive and negative classes and a
threshold parameter ϵ is the constraint:

yi
(
wTxi + b

)
≥ ϵ, i = {1 . . .m} (1.29)

while minimizing:

1

2
wTw (1.30)

11

1. Analysis

For non-linearly separable problems we introduce a soft margin with parameter
α(i) ≥ 0 and a hyperparameter C. The optimization function becomes:

1

2
wTw + C

m∑
i=1

αi (1.31)

under the constraint:

yi
(
wTxi + b

)
≥ ϵ− αi (1.32)

The way to make a regression SVR out of SVM is simply to minimize the
same function under a similar constraint for hard margin:

−ϵ ≤ yi −wTxi + b ≤ ϵ (1.33)

And again the same optimization function with similar constraint:

−ϵ− αi ≤ yi −wTxi + b ≤ ϵ+ αi (1.34)

There are numerous improvements of the algorithm, such as constructing
a dual problem solved by the efficient quadratic programming. The other
important trick is the use of a kernel function and the kernel trick using
kernels described in Subsection 1.1.1.3. This allows the model to solve even
non-linear problems.

The SVR and kernel SVR are unfortunately not very suitable for multi-
output classification, where there is more than one variable on the output and
as such will be skipped in the experiment section.

1.1.3.5 Decision trees and random forests

Decision trees is another non-parametric supervised method used for classi-
fication or regression. Its basic idea is to recursively break the dataset into
smaller subdivisions according to a set of learned decision rules. Among its
many advantages are non-linearity, simplicity, clear interpretation and good
scalability. Because they are prone to overfitting, an ensemble model of trees
can be constructed by training multiple decision trees each on a random sub-
sample of the training dataset. Such an ensemble could create a model where
trees are correlated to each other because they all choose decision rules based
on a few strong predictors. To overcome it a technique random forest is used,
where each tree uses only a random subset of the features. An extension
to random trees called extremely randomized trees or extratrees can also be
used. The difference from Random forests is that during learning, the indi-
vidual trees learn on the whole training dataset. Also during the training of a
tree, we do not compute an ideal cut-point to split the feature space. Instead,
a number of cut-points is generated randomly and one that yields the highest
score is selected.

12

1.1. Recommendation

1.1.3.6 Multilayer perceptrons and artificial neural networks

The popular deep neural networks used in this thesis to extract text and image
features all originated in perceptrons. Perceptron [53] is a simple mathematical
function inspired by the human neuron. It is a simple linear model where
each unit takes vector of values x and weights w on the input and using an
activation function f calculates the output:

y = f
(
wTx

)
(1.35)

The activation function f was originally the heaviside step function:

f(x) =

{
0 if x < 0
1 if x ≥ 0

(1.36)

This model can be learned by updating the weights during iterating over a
training set. Given a desired output y and an actual output ŷ, for each sample
j update the weight w to a new weight ŵ with learning rate r:

ŵi = wi + r (yj − ŷj)xi,j (1.37)

By stacking multiple perceptrons in multiple layers we obtain the multi-
layer perceptron (MLP) seen in Figure 1.3. It consist of an input layer, one or
more hidden layers and one output layer. By adding multiple hidden layers
the model can learn to solve problems that are not linearly separable such as
the XOR problem. In the classical multilayer perceptron all nodes are fully
connected, which means that each neuron has on its input the outputs of all
neurons from the previous layer. Such a layer is also called a dense layer.
Other typical types of layers include convolutional, recurrent and pooling lay-
ers.

The multilayer perceptron model usually learns by what is called the gra-
dient descent backpropagation. It was popularized by [54] in the 1980’s. The
idea is to initialize the weights randomly and learn the correct weights by
optimizing an error function while iterating over the training dataset. It is
done by using the iterative gradient descent method for finding the local min-
imum of a error function. Given a predicted output value ŷ and actual value
y from the training set, we can compute an error function E measuring how
different the prediction was from the truth. The activation function f has to
be differentiable. It is done by iteratively decreasing the error function in the
direction of the negative gradient, because theoretically the function reaches
its minimum the “fastest”. A weight wij of node oj with learning rate η is
changed to new weight ŵij :

ŵij = wij +∆wij = wij − η ∗ ∂Etotal

∂wij
(1.38)

13

1. Analysis

Input Layer Hidden Layer Output Layer

Figure 1.3: Illustration of a Multilayer perceptron model with one hidden
layer. Created with [33].

The partial derivative of E in respect to weight wij can be calculated using
the chain of derivatives with respect to the node input netoj and output outoj
(for example a logistic function) for an output node oj :

∂Etotal

∂wij
=

∂Etotal

∂outoj
∗
∂outoj
∂netoj

∗
∂netoj
∂wij

(1.39)

For a hidden node hj we need to take into account the error on all of its
outputs Etotal =

∑
k Eok :

∂Etotal

∂wij
=
∑
k

∂Eok

∂outoj
∗
∂outoj
∂netoj

∗
∂netoj
∂wij

(1.40)

Modern neural networks do not use the classical gradient descent method,
because computing the gradient across a large training dataset is computa-

14

1.1. Recommendation

tionally inefficient or even unfeasible. Instead, they use modern algorithms
such as stochastic gradient descent where the loss is not calculated across all
training data but across only a small subsample. This does not guarantee
that the descent will be in the “fastest” direction or even that it will be a
descent at all. Nevertheless, this method is working if random subsampling
is used. On large datasets with large models it performs much better than
normal gradient descent.

1.1.3.7 Activation functions

Neurons can have a variety of different activation functions. Some of the
popular ones are following (also pictured in Figure 1.4):

• Identity
f(x) = x (1.41)

• Heaviside also called binary step

f(x) =

{
0 for x < 0
1 for x ≥ 0

(1.42)

• Logistic also called sigmoid

f(x) =
1

1 + e−x
(1.43)

• Hyperbolic tangent also called TanH

f(x) = tanh(x) = (ex − e−x)

(ex + e−x)
(1.44)

• Rectified linear unit also called ReLU

f(x) =

{
0 for x < 0
x for x ≥ 0

(1.45)

• Softmax
fi(x⃗) =

exi∑J
j=1 e

xj
for i = 1, . . . , J (1.46)

The Softmax function is a special type of function on a whole layer, which
takes a vector of outputs and normalizes it into a probability distribution with
the range [0, 1] and

∑
i xi = 1. This is a very important function as it is used

as a final layer of classification networks.
Interestingly, the widely popular ReLU function is not differentiable at 0

and therefore it cannot be theoretically used as an activation function with
backpropagating gradient descent. Practically, it performs well because the
weights typically do not arrive at their local minima. Software implementa-
tions typically replace it by its one-sided derivative and because the calculation
is subject to numerical errors anyway, the gradient descent works.

15

1. Analysis

6 4 2 0 2 4 6

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 heaviside
sigmoid
TanH

Figure 1.4: Examples of nonlinear activation functions used in neural net-
works.

1.1.3.8 Losses

The error function for optimization in neural networks, also called loss, is
usually MSE. Among popular loss functions for predicted output ŷ and desired
output y belong the following ones:

• Root mean square error, also known as RMSE

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (1.47)

• Mean square error, also known as MSE, which is similar to RMSE
but computationally less intensive

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (1.48)

• Mean average error, also known as MAE

MAE =
1

n

n∑
i=1

|yi − ŷi| (1.49)

• Mean square logarithmic error, also known as MSLE

MSLE =
1

n

n∑
i=1

(log (yi + 1)− log (ŷi + 1))2 (1.50)

1.1.3.9 Clustering

Clustering is an example of unsupervised machine learning where the objective
is to split a set of observations into groups called clusters, where the instances
are more similar to each other than to observations in other clusters.

16

1.1. Recommendation

K-Means clustering [34] is an iterative method. In the initialization step
k, observations are selected as the foundation of new clusters. Then a number
of iterations is performed until the algorithm converges or the maximum num-
ber of iterations is reached. The iteration step consists of two parts. In the
first part, each observation is assigned to the cluster whose mean has the least
euclidean distance from the observation. The next step consists of computing
the new mean of the cluster (also called the centroid). The algorithm does not
guarantee to find the global optimum and when using a distance other than
the euclidean it does not guarantee to converge (in its original variation).

Agglomerative hierarchical clustering is a method that works by con-
structing a hierarchical clustering tree. It is initialized by assigning each data
point into its own cluster. In the next step, two clusters with the smallest
distance are found and combined into one. This step is repeated until only
one cluster remains. The tree is then cut horizontally to get a desired number
of clusters.

There is a number of different ways to compute the distance between two
clusters. One called single-linkage takes the minimum of distance between
all possible points between the two clusters, whereas in complete-linkage the
maximum of such distances is used. A variant called Ward-linkage is a method
where we find two clusters whose merging would minimize the increase in
within-cluster distance which is the weighted squared distance between cluster
centers.

Birch clustering [72] (Balanced iterative reducing and clustering using hi-
erarchies) is a hierarchical clustering algorithm designed to perform over large
datasets with the help of a clustering feature tree, which is a kind of tree
that tries to preserve the clustering nature of the data. It works by operat-
ing on lower levels with agglomerative micro-clustering and the constructed
CF tree and on higher level with macro-clustering integrating other clustering
methods.

Spectral clustering [41] is an efficient method for clustering based on the
k-means algorithm. A similarity graph of the objects is created using either
n nearest neighbors or neighbors within distance ϵ. Then we compute the
eigenvectors of its Laplacian matrix and the smallest ones will serve as the
object’s new features. A normal k-means algorithm is then used to compute
the clusters. This problem can also be reformulated as a weighted kernel
k-means algorithm and vice versa.

17

1. Analysis

Sentence 1 John likes to watch movies. Mary likes movies too.
Sentence 2 John also likes to watch football games.
Vocabulary [John, likes, to, watch, movies, Mary, too, also,

football, games]
BOW of “movies” [0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
BOW of sentence 1 [1, 2, 1, 1, 2, 1, 1, 0, 0, 0]
BOW of sentence 2 [1, 1, 1, 1, 0, 0, 0, 1, 1, 1]

Table 1.1: Example of a bag of words embeddings.

1.2 Text embedding
Text embedding is a very common task in NLP as it is used for document
classification, text summarization, machine translation, sentiment analysis,
question answering, etc. Usually the text is parsed into tokens, e.g. words
and the model is trained to infer the vector representation of the tokens. The
models can learn the word embedding for example from a matrix represen-
tation of the corpora or by iterating on a local context window, where the
vector representation of a word is learned while predicting other words within
the context window. Modern word embedding methods are explained in this
section.

1.2.1 Baseline models

One of the most basic text embedding is based on the frequency of words and
is called the Bag of Words (BOW) or also count vector or one-hot encoding.
For a given list of vocabulary V , the vector representing a certain is a vector
v with the length |V |, which has all 0s except on the index of the word in
the vocabulary. A vector embedding of a query, sentence or a document can
be a similar vector where each index can indicate the presence or frequency
of the word in the document such as in Table 1.1. The resulting vector has
dimensionality equal to the size of the vocabulary which is often very high.
Such a vector representation is also very sparse and impractical. Another
disadvantage of this approach is that it completely disregards the document
syntax.

One of the methods to enhance this approach is the Latent semantic anal-
ysis or LSA (explained in full in [11]). A document-term matrix X is con-
structed from the corpus, where the element Xt,d is the frequency of the term
t in document d. Next, the document-term matrix is factorized. Every rectan-
gular matrix X can be decomposed using singular value decomposition (SVD)
into the product of three matrices UΣV , where U and V are orthogonal ma-
trices and Σ is a diagonal matrix. Using only k largest singular values of Σ
gives us Xk which is the rank k approximation of X with the smallest error

18

1.2. Text embedding

and correspondingly matrices Uk and Vk. This gives us a lower dimensional
representation of term ti which is the i-th row of Uk.

In more advanced schemes, the frequency can be substituted for example
with TF-IDF (Term frequency – inverse document frequency). For a term t
and a document d in a corpus D, the TF-IDF weights are usually defined as:

tfidf(t, d,D) = f(t, d) ∗ log(|D|
f(t,D)

) (1.51)

where f(t, d) is the number of times term t appears in document d, |D| is
the size of the corpus D and f(t,D) is the number of times the term t appears
in the corpus D. The TD-IDF weights are also often used to weigh other text
embeddings that do not take word frequency into account.

This is only one of the variants of matrix factorization methods. Others
can use a term-term co-occurrence matrix, such as Hyperspace Analogue to
Language [36], where rows correspond to the words, and columns of the matrix
correspond to the frequency of the word in a context window of another given
word. The usual problem of these methods is that the most common words
such as “and” or “the” carrying little meaning contribute too much to the
model. A normalizing transformation of the matrix based on correlation or
entropy of the words can be used to overcome this effect.

1.2.2 word2vec
Word2vec is a model introduced in [39] by a research group led by Tomáš
Mikolov at Google. It is an unsupervised model used to produce a distributed
representation of a word in a continuous vector space with hundreds of di-
mensions. One of its main features is that the vector representations of se-
mantically similar words, i.e. words appearing in similar context, are in close
proximity to each other. Furthermore, the continuous vector space allows for
simple vector arithmetic such as summing two vectors, which can produce a
meaningful result.

czech + currency ≈ koruna
Vietnam + capital ≈ Hanoi

France− Paris ≈ Italy− Rome
copper− Cu ≈ zinc− Zn

king + man− woman ≈ queen

Another key feature is its small computational complexity and therefore
the ability to learn from a huge corpora of text containing billions of words
with millions of words in its vocabulary, whereas other previous architectures
could only use hundreds of millions of words for learning before becoming
computationally unfeasible.

19

1. Analysis

The algorithm is based on a Neural Probabilistic Language Model [6] and is
an extension to the Skip-gram model introduced by the same team previously
in [38] It treats words as atomic units which is on one hand simplistic and
robust, on the other hand it lacks the notion of similarity between words and
treats homonyms the same. Therefore both meanings of the word “bat”, an
animal and a wooden club, have the same vector representation in spite of
their vast difference. Still, this architecture can outperform other complex
models.

1.2.2.1 Architecture

The architecture comes in two flavours: Continuous Bag-of-Words model
(CBOW) and continuous Skip-gram model. The former one takes the context
of current word as the basis for prediction, whereas the latter uses the cur-
rent word to predict its context. With the increasing size of the context, the
models produce better vector embedding at the cost of decreasing the speed
of the algorithm. Although they seem like the same architecture mirrored as
seen in Figure 1.5, there are a several key differences.

The CBOW is a simple feed-forward neural network. It uses one hidden
layer to predict the current word using its context. First we build a vocabulary
V with all the words in the corpora. In the input layer with size |V |, each
of the N surrounding words (N/2 previous words and N/2 following words)
is encoded as a one-hot vector (similarly to a simple BOW model). The
input layer is then projected to a hidden layer with size D (this size is a
hyperparameter). It is finally projected to the output layer with size V with a
Softmax activation function (in Figure 1.53) and the training criterion is the
correct classification of the current word. The hidden layer has no activation
function, but most importantly, the weights are used as the embedding of the
target word after their training . Note that all the context words use the same
hidden layer weights and the order of the words does not influence the output.

The continuous Skip-gram model is also a feed-forward neural network
with input layer the size of |V |, a hidden layer and an output layer with size
|V |. It uses the current word to predict words in a certain window around
it. Since distant words are usually less related, they are given less weight by
sampling less of distant words in the training. For a set maximum distance
C, a random number R where 1 ≤ R ≤ C is chosen and R previous and R
following words are predicted.

log p (wc|wj) (1.52)

p (i|j) = exp (ŵiTwj)∑
w∈V exp (ŵTwj)

(1.53)

20

1.2. Text embedding

Figure 1.5: Continuous Bag-of-Words and Skip-gram architectures. Source:
[39].

1.2.2.2 Optimization

Both models are then further optimized for computational speed and accuracy.
The most computationally demanding part of the calculation is the Softmax
activation function in Figure 1.53. This architecture introduces a Hierarchical
Softmax, which instead of evaluating |V | output nodes uses a binary tree
representation to evaluate only about log2 |V | nodes. Another technique is
called Negative sampling. Instead of updating all the hidden neuron weights,
only a few of the “negative” word weights are updated apart from the expected
output word. A “negative” word means in this context a word that should
not be predicted, i.e. a false prediction. According to the paper [39], only 2
to 5 “negative” words can be used for large datasets increasing the training
speed by a few orders of magnitude.

The computational speed is also increased by subsampling frequent words.
Some words as “the”, “a” or “in” carry less information and thus the training
of each word is skipped with the inverse probability of its frequency when the
frequency is over a certain threshold. Accuracy is also increased by introduc-
ing phrases. Some groups of words are treated as a single token instead of
splitting them into multiple tokens in order to preserve their meaning. For
example “New York Times” or “Steve Jobs” are treated as a single phrase be-
cause together they carry a very different meaning than their individual parts.
According to the paper, the CBOW performs slightly better on syntactic tasks
and the Skip-gram performs significantly better on semantic tasks, as a result
the latter is usually the model of choice.

21

1. Analysis

Probability and Ratio k = solid k = gas k = water k = fashion
P(k|steam) 2.2× 10−5 7.8× 10−4 2.2× 10−3 1.8× 10−5
P(k|ice) 1.9× 10−4 6.6× 10−5 3.0× 10−3 1.7× 10−5
P(k|ice)/P(k|steam) 8.9 8.5× 10−2 1.36 0.96

Table 1.2: Word co-occurrence probabilities. Adapted from [46].

1.2.3 GloVe

Another popular method for learning vector space representations, which
builds also upon the Word2Vec method, emerged just a year later in 2015.
It is called GloVe for Global Vectors and it was introduced in [46]. It is an-
other unsupervised statistical model that combines the advantages of global
matrix factorization described in Subsection 1.2.1 and the local context win-
dow method popularized by the Word2Vec model in the previous Subsection
1.2.2.

Before Word2Vec, there was a trend of learning larger and larger neural
networks such as in [10] to learn the word representation from the full context
of the word. The Word2Vec algorithm used only a single-layer neural network
and had a great success showing that even relatively simple architecture can
cope with current NLP tasks. More algorithms improving this concept soon
emerged, such as the vLBL model in [40]. The authors of the GloVe algorithm
especially valued its capacity to learn linguistic pattern such as linear relation-
ships between the vector embeddings of the words, because it also meant that
the dimensions of the embedding also carried some meaning unlike in common
matrix factorization methods.

1.2.3.1 Architecture

Unlike the Word2Vec model, GloVe takes advantage of the statistical infor-
mation of the learning corpus and builds upon the word-word co-occurrence
matrix while also taking into account the word context. In other words, the
elements of the matrix represent how many times a certain word appeared in
the text next to another word within a certain window. However, the main
principle of GloVe is not to use the co-occurrences themselves but their ratios
because they carry more meaning. This is described in Table 1.2 on words
“steam” and “ice”. The table shows that the probability of them occurring in
the context of another word that is either common to both of them (“water”)
or unrelated to both of them (“fashion”) is relatively the same, so the ratio
is close to 1. But a word such as “gas” would appear only in the context
of “steam” and not “ice”. Such probabilities are easily computed from the
co-occurrence matrix.

Formally, let X be the word-word co-occurrence matrix with elements Xij

22

1.2. Text embedding

denoting how many times the word j appeared in the context of the word i.
Xi =

∑
k Xik is then the number of times the word i appeared in the proximity

of any word and Pij = P (j|i) = Xij/Xi is the probability the word i appears
in the context of word j. Now let w be the two word vectors and w̃ a separate
context word vector. From this we can finally derive the following equation:

F (wi, wj , w̃k) =
Pij

Pjk
(1.54)

At this point, by using a number of properties we want to achieve, we can
derive the final GloVe equation. All details will not be described, but they can
be seen in the original paper [46]. One of the properties is that the function
should be a simple arithmetic function (unlike using neural networks) in order
not to obfuscate its function. The authors therefore took the simple difference
between the two word vectors. Another property is a linear relation between
the words and their context word so a dot product between them was used.
This gives the equation:

F (dot (wi − wj , w̃k)) =
Pij

Pjk
(1.55)

Another property is homomorphism between the groups (R,+) and (R > 0,×):

F
(
(wi − wj)

T w̃k

)
=

F
(
wT
i w̃k

)
F
(
wT
j w̃k

) (1.56)

The solution to those equations is F = exp or:

wT
i w̃k = log (Pik) = log (Xik)− log (Xi) (1.57)

Next, we added two biases: one for w̃k and the second one for wi which
absorbs the term log (Xi) independent of k. The addition of bias accounts
for the varied occurrences of different words. Because the least frequent co-
occurrences can amount to noise and the most frequent co-occurrences with
little meaning would dominate the final function, a weight function is intro-
duced. The final equation with the weight function is as follows:

∑
ij

weight(Xij)(dot(wi, w̃j) + bi + b̃k − log(Xij))
2)

weight(x) = min(1, (x/xmax)
α)

where xmax is set to 100 and α is set to 3/4, both set empirically.

23

1. Analysis

Figure 1.6: Comparison of learning time of GloVe and word2vec.

1.2.3.2 Comparison to Word2vec

Although the GloVe model is based on different assumptions and uses different
methods for optimization, they surprisingly perform quite similarly and, as the
authors of the paper show, are mathematically closely related. The word2vec
model uses a softmax function to estimate the probability with which a word i
appears in the context of a word j. This actually means that it computes the
cross-entropy between the actual and predicted distributions of word i in con-
text of word j weighted by their co-occurrence. Hence, the optimization func-
tion differs only in the loss function, where word2vec uses the cross-entropy
and GloVe uses log mean squared error. The main difference is however the
training method where word2vec learning complexity scales with the size of
the corpus |C|, while Glove scales with the number of non-zero elements of
the matrix X, which is at most the same complexity as in word2vec. The
training times from the papers can be seen in Figure 1.6.

1.2.4 FastText

FastText is an open-source algorithm to extract text embeddings released by
the Facebook AI Research team in 2016. It is another model that improves the
word2vec models. The main feature of this model is that it does not ignore
the word morphology by assigning each word a distinct vector. Instead, it
learns on character n-grams and as such can even produce word representation
for words out of the vocabulary. Some methods implementing character n-
grams of even the sole characters have been used in the past. Most similar to
the FastText algorithm are [58] and [69], but this method learned only on a
paraphrase pair corpus, while FastText learns on any corpus.

24

1.2. Text embedding

1.2.4.1 Architecture

The main idea is to split the words into n-grams (with added boundary sym-
bols < and >). For n = 3 the word where will be represented as trigrams
<wh, whe, her, ere and re>. Note that the trigram <her> for the word her
is different than the trigram her for the word where. For the training of the
models, all possible n-grams for 3 ≤ n ≤ 6 are used, although different sets of
n can be used.

The original word2vec model uses a softmax function to define the proba-
bility of a context word and maximizes the average log probability over given
context, as seen in Equations 1.53 and 1.52. That is not a suitable solution
for this model, because it predicts only one word at a time. Instead the prob-
lem is reformulated to a set of independent binary classification tasks. For
the given word t and the context word c, their vector representations wt and
wc and a set of randomly sampled words N we can obtain so-called negative
log-likelihood:

log
(
1 + e−s(wt,wc)

)
+
∑

wn∈N
log
(
1 + e−s(wt,wn)

)
(1.58)

This function uses a custom scoring function s, which for a given set of
n-grams Gt appearing in the word t is a sum of dot products between two
vectors wg and wc:

s (wt, wc) =
∑
g∈Gt

wT
g wc (1.59)

In order to be memory efficient, the model uses a hashing function to map
n-grams to integers. The given word embedding is then produced by taking
its index in the word dictionary and the set of its hashed n-grams.

To optimize the loss function, the model uses the stochastic gradient de-
scent variation called the Hogwild [50] algorithm. By using this algorithm, the
model can learn in parallel. It is still approximately 1.5× slower than the base
word2vec model, but performs generally better than both word2vec Skip-gram
and CBOW on syntactic tasks and similarly to Skip-gram on semantic tasks.

1.2.5 Conceptnet Numberbatch
ConceptNet [60] is not a model with the sole purpose of obtaining word em-
beddings from a given corpus, although it is one of its uses. It is a semantic
network of knowledge about word meanings, i.e. a knowledge graph where
nodes are words or phrases and the edges are labelled with relationships of
the connecting nodes. The purpose of such network is to represent the gen-
eral human knowledge and allow NLP applications to better understand the
meaning behind words. It was built using many sources including other sister

25

1. Analysis

projects, Wikitionary, Open Multilingual WordNet, DBpedia, and others. It
should be noted that the graph is multilingual.

26

1.2.
Text

em
bedding

Figure 1.7: Example of a ConceptNet node available at conceptnet.io. [60]

27

http://www.conceptnet.io/c/en/machine_learning

1. Analysis

This network can also be used to create a model called Conceptnet Num-
berbatch (to distinguish between the knowledge network and the embedding
model itself). In the previous versions of the model, the embeddings were de-
rived from the knowledge graph by singular value decomposition (briefly ex-
plained in Subsection 1.2.3). Recent advancements in the field allowed for the
use of a combination of the ConceptNet and a distributional semantics model
(such as word2vec or GloVe) using a variation of a retrofitting technique intro-
duced in [15]. Such feature space model performs better on word-relatedness
tasks and analogy tasks, for example SAT-style analogy questions.

1.2.5.1 Word embedding retrieval

The word embeddings can be obtained from the knowledge graph in a num-
ber of ways. The most relevant to ConceptNet is the Holographic Embedding
method [42], which is a method to learn compositional vector space repre-
sentations of entire knowledge graphs using circular correlation of the graph.
However it has not yet been successfully implemented on ConceptNet.

Another method is to construct a term-term matrix, where elements of
the matrix represent the weighted sum of edges between the two term nodes.
Before constructing this matrix the graph is pruned by discarding all nodes
with fewer than 3 connections. This matrix is similar to the co-occurrence
matrix of word2vec and GloVe with the difference that context of the word is
not inferred by the proximity in a corpus but by relationships of the terms in
the knowledge graph. The word embeddings are calculated from the matrix
using positive pointwise mutual information:

PPMI(w, c) = max
(

log2
P (w, c)

P (w)P (c)
, 0

)
(1.60)

The matrix is then truncated to 300 dimensions using singular value de-
composition. The concept of using PPMI is similar to using ratios of word co-
occurrences in GloVe. Pruned nodes can be reconstructed using the weighed
average of its neighbors.

The method used to construct Conceptnet numberbatch from the knowl-
edge graph is another method called Retrofitting introduced in [15]. It uses
a knowledge graph to adjust a pre-existing matrix of word embeddings, such
as from word2vec or GloVe. The new vectors qi are retrofitted to q̂i with the
objective of staying close to their neighbors with edges E in the knowledge
graph. The objective function is:

Ψ(Q) =
n∑

i=1

αi |qi − q̂i|2 +
∑

(i,j)∈E

βij |qi − qj |2
 (1.61)

The α and β parameters are used to control the relative weights of the
associations, and they can be inferred from the edge weights of the knowledge

28

1.2. Text embedding

graph. This method benefits from the multilingual property of the graph as
it can learn more about the words from their translations to other languages.
One last step is that the authors subtracted the mean of vectors and nor-
malized them again to unit vectors in order to lower the influence of highly
connected nodes such as “person”, “work” or “say”.

This approach can also benefit from ensemble retrofitting of multiple ma-
trices. The authors applied the technique on both word2vec and GloVe matrix,
concatenated them by column and again reduced their dimensionality to 300
with the use of truncated singular value decomposition. Again, the words not
present in vocabularies of word2vec and GloVe were reconstructed using the
average of vectors of their neighboring nodes.

1.2.6 BERT
In recent years there has been a great advance in using deep learning to solve
NLP tasks. Many different models have been introduced and it remains to be
seen which one of them stands the test of time and turns out to be the most
influential of them all. One of the most promising seems to be the BERT [13]
which builds upon many influential state-of-the-art ideas.

1.2.6.1 Contextual language models

The previous shallow embeddings, such as word2vec, GloVe or FastText, suf-
fered from the fact that every word was described by a single vector embedding
which tried to capture its meaning in all contexts together. However, this ap-
proach is imperfect because words can have different meaning depending on
the circumstances. In the sentences “Bat is the only mammal capable of sus-
tained flight” and “I will hit the ball with my bat” the word “bat” carries
completely different meanings.

One of the papers that popularized modern contextual language models is
the ELMo model [47]. Contextual language models were previously employed
to learn special Residual Neural Networks (RNNs) called Long Short-term
Memory models (LTSM) [24] where the objective was to predict the next
word in a given sentence. Nevertheless, the drawback of RNNs is that they
remember only one state at the time and form the so-called long range depen-
dencies pictured in Figure 1.8. In the task of machine translation and sentence
generation, it becomes a big problem because at the end of the sentence, the
RNN has to remember every previous word and their semantic and syntactic
relationship in its memory, which turned out to be a major flaw. The ELMo
model solves this problem with two techniques.

The language model still tries to predict the next word in a sequence,
but the final vector is derived from all the successive hidden states of the
language model. In this case the language model does not have to carry all
the information about the beginning of the sentence to the end.

29

1. Analysis

I

RNN

like

RNN

cats

RNN

more

RNN

than

RNN

dogs

RNN RNN

Mám

RNN

rád

RNN

kočky

RNN

víc

RNN

než

RNN

psy

Figure 1.8: Example of long range dependency of words in RNN translators.

Mám rád kočky víc než psy

I like cats more than dogs

Encoder

Decoder

Figure 1.9: Example of short range dependency of words in translation with
Transformers.

The second technique is an improvement of the first. Even though humans
usually read text from left to right, doing so in a language model does not
necessarily contain all the information available about the sequence. The
ELMo model therefore utilizes the so-called bi-directional language models,
which not only try to guess the next word in a sequence, but also learn on
reversed sequences and try to predict all previous words. This improves its
ability to learn the meaning of words even at the beginning of the sentence.

1.2.6.2 Attention

The bi-directional language models used in ELMo have one drawback: they
do not use the previous and the following context at the same time, but in sep-
arate individual models. BERT takes the bi-directional language models one
step further and uses what could be called omni-directional language model,
where the model takes all the tokens in the sequence into account at the same
time (seen in Figure 1.10). This is not possible with LTSMs, because the
notion of a “next” word vanishes in this situation, and so the BERT model
uses multiple Transformer encoder blocks [66]. The Transformer does not use
a recurrent network to remember its previous states, but works directly with
all the inputs with what is called attention using multiple attention heads.

30

1.2. Text embedding

Figure 1.10: Illustration of differences in pre-training model architectures of
BERT, OpenAI GPT and ELMo. Source: [13].

The Transformer is a model developed for machine language translation;
it uses stacks of encoders and decoders. Its major advantage is its lack of long
range dependencies (pictured in Figure 1.9).A decoder was the intuitive part
of the transformer to use in language model learning as its task is to predict
a next token in sequence, which is exactly what directional context models
use. This approach was used in an OpenAI model [49]. Because the decoder
works only in one direction, BERT uses the encoder part of the transformer
which introduces a whole new omni-directional approach. The encoder looks
at the whole sequence. It also enables the fine-tuning of the model, which was
popularized in NLP by [27] and applied to Transformers in the OpenAI model
[49].

1.2.6.3 Learning

With the omni-directional all-context approach, the training task of predicting
the next word in a sequence breaks down, because in its multi-layered set of
encoders, the token embedding would be influenced by itself via other heads.
BERT solves this problem by masking the target tokens. During the training,
15% of tokens are chosen at random and replaced by the token [MASK] and the
task is to guess what the correct word in the position should be. This works
reasonably well, but the training is only happening on the token where the
mask is. To solve this problem, instead of iteratively replacing all the tokens,
10% of the chosen tokens are replaced not by a mask, but a completely different
token. 10% are left as the original words, forcing the model to learn whether
the token given makes sense in its context for all the tokens all the time.

A second part of the learning phase is introduced to aid the model in
various two-sentence NLP tasks including answering. The training consists
of feeding the model with two consecutive sentences differentiated by intro-
duction of additional segment embedding showing the classifier which tokens
belong to which sentence. The model is given two sentences A and B and the
model’s task is to learn whether the sentence B is the sentence that follows A
or not. The sentence B is the following sentence with a 50% chance and 50%
it is a random sentence. Apart from the sequence embedding supplied at the

31

1. Analysis

Figure 1.11: Representation of BERT model input with token, segmentation
and positional embeddings. Source: [13].

input, the model also uses position embeddings, which are just indices of all
tokens as seen in Figure 1.11.

1.2.6.4 Embedding

For classification tasks, the output has to ultimately be a single vector. There
are multiple ways to do it, such as the average of max of all individual tokens,
but the researchers used a different idea. At the beginning of each input
sequence of tokens is a special token [CLS]. At the end of the model the vector
representing this token is fed to a classifier (such as a single-layer softmax).
This results in a better performance than using the average or max pooling.

Although fine-tuning BERT to a specific task can improve performance, it
can be used only as a feature extractor and still performs at a very good level.

32

1.2.
Text

em
bedding

Base model Downstream tasks Downstream model Fine-tuning
ELMo [47] two-layer biLSTM feature-based task-specific none
ULMFiT [27] AWD-LSTM model-based task-agnostic all layers; with various training tricks
OpenAI GPT [49] Transformer decoder model-based task-agnostic pre-trained layers + top task layer(s)
BERT [13] Transformer encoder model-based task-agnostic pre-trained layers + top task layer(s)

Table 1.3: Comparison of deep-learning models and their architecture design. Adapted from [68].

33

1. Analysis

Figure 1.12: Architecture of the LeNet 5 neural network. Source: [32]

1.3 Image embedding
Feature extraction from images plays a big role in machine learning as it is used
for many modern applications as optical character recognition, face recognition
and many more applications in computer vision. Before the popularity of
deep convolutional neural networks (CNNs), the main technique was using
hand-picked features, such as SIFT [35] or SURF [5]. In the last decade,
large neural networks and their training became achievable thanks to the
increase of hardware capabilities. Before we delve into deep convolutional
neural networks, let us have a look at their history.

1.3.1 AlexNet

The pioneer of convolutional neural networks in image classification is LeNet5
[32] published in 1998 (pictured in Figure 1.12). Its purpose was to automat-
ically classify hand-written digits on bank cheques digitized to 32 × 32 pixel
images. From our point of view, it is a simple 7 layer neural network, but
at the time the hardware was the main constraint and significantly limited
the size of neural networks. Its key features were convolutional layers (shown
in Figure 1.13), where the input of a neuron is not from all neurons in the
previous layer as in a fully-connected dense layer, but only from a window of a
much smaller size, called filters. This enables the neural network to learn not
only local features, but also global features in the deeper layers. This archi-
tecture achieved just 0.7% error rate on classification of the MNIST dataset
of handwritten digits.

Another revolution came with the advance in hardware and training of
neural networks on GPUs. In 2012, a neural network called AlexNet in-
troduced in [31] won the annual ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [56]. The competition evaluates algorithms for object
detection, localization and classification of images and videos at large scale
using a subset of the ImageNet dataset consisting of 150 000 photos collected
from Flickr and other search engines and their hand-picked labels of 1000
categories (one instance can have one or multiple labels). The AlexNet won

34

1.3. Image embedding

Figure 1.13: Example of a convolutional layer in neural network. It takes only
a part of previous layer on the input in contrast to a dense layer. [3]

with 16.4% top-5 accuracy error in classification task by a large margin of
9.8% and similarly overwhelming result in the localization task. Its novel
ideas included non-saturating ReLU activation, local response normalization
and overlapping pooling. To reduce overfitting, the neural network also uses
a dropout function for neurons and a dataset augmentation.

The architecture of AlexNet consists of five convolutional layers with over-
lapping pooling on layers 1, 2 and 5 and local response normalization on layers
1 and 2, and three fully connected dense layers with a dropout function on the
first and the second dense layers with probability 0.5 during training, depicted
in Figure 1.14. The most important innovation was the non-saturating ReLU
activation function (Figure 1.4):

f(x) = max(0, x) (1.62)
where the standard activation at the time was a saturating tanh function

f(x) = tanh(x) (1.63)

or a similar one. A saturating activation function means the gradient closes
to zero with large absolute values [20]. Gradients close to zero will update the
weights by a very small amount and can eventually even stop learning, which
is called the vanishing gradient problem, described fully in [23]. The ReLU
activation function keeps the gradient large enough to avoid the problem and
even make the learning times faster by up to six times according to the paper
[31].

Even though the ReLU activation does not require a normalization to
avoid saturating, the AlexNet uses the Local Response Normalization to aid
generalization. In short, this technique implements a localized inhibition of
neurons based on activities in its neighbourhood in order to create a competi-
tion for big activities in neurons. One of the ways to avoid overfitting, which
is a problem of convolutional neural networks, is to use overlapping pooling
layers (pictured in Figure 1.15). Traditionally, the pooling layer consisted of

35

1. Analysis

Figure 1.14: Depiction of AlexNet neural network on two GPUs with connec-
tions only of some layers. [31]

a grid of pooling units with size s×s spaced s pixels apart. In the overlapping
pooling layers, the units are spaced t, t < s pixels apart resulting in the units
overlapping by s − t pixels. Apart from being less likely to overfit, it also
increases accuracy by a small amount. The main feature to reduce overfitting
was augmenting the dataset by training on subsamples with size 224 × 224
of the original 256 × 256 pixel images and their horizontal reflections. This
increased the training set 2048 times. In the testing phase, only the corner
and center images with their horizontal reflections was used, and their soft-
max layers were averaged to produce the final result leading to yet another
increase in accuracy. A significant boost to the speed of training was achieved
by using a dropout function in some layers, which sets the output of a neuron
to 0 with a set probability, in our case 0.5, and therefore does not contribute
to learning and can be omitted in that phase. In the test phase, all neurons
are scaled by a factor of 0.5 too to approximate the inputs during the learning
phase.

1.3.2 InceptionNet
1.3.2.1 Version 1 - GoogLeNet

The first version of InceptionNet [63], also called the GoogLeNet, came in
2014, two years after AlexNet, and won the annual ImageNet competition. Its
basic idea is to go even deeper with layers as stated by the authors and their
reference to the famous internet meme [30] from the movie Inception. The
network implemented a lot of new ideas from other state-of-the-art architec-
tures.

One of the biggest constraints of deep neural networks was their size and
computational demands. The AlexNet had over 60M parameters and used
multiple top-of-the-line GPUs to train for 3 weeks. That is why one of the
main ideas of InceptionNet was to reduce the size of the network and the
number of its parameters to allow for deepening of the architecture. The

36

1.3. Image embedding

7x7 Input volume 3x3 Output volume

Figure 1.15: Depiction of overlapping pooling layer with size 3 and stride 2.

architecture of InceptionNet therefore used 1×1 convolutional layers before its
other convolutional layers, because a 1×1 layer still reduces the dimensionality
of the variables. For example, for an input with 256 depth to apply 5 × 5
convolution to get output with also 256 depth, the number of parameters
is 256 × 5 × 5 × 256. If we apply a 1 × 1 convolution before the second
one to reduce the depth from 256 to 64, the number of parameters is now
256 × 1 × 1 × 64 + 64 × 5 × 5 × 256. The reduction of parameters is (256 ×
256 × 25)/(256 × 64 × 26) ≈ 3.85 times, which also means a 3.86 increase in
speed while retaining accuracy.

This reduction of parameters allowed the architecture not only to go
deeper, but also wider, which was the main purpose of the Inception mod-
ule. The idea is that the information in pictures is distributed both locally
and globally depending on the photo. Traditionally, the local features were
extracted first and iteratively the global features were extracted from the
previous local features by stacking layers upon layers. The computational
complexity rises exponentially with number of layers so the authors used the
approach to go wider and introduced the Inception module. The idea is to
stack the layers not vertically but horizontally and concatenate their outputs
(pictured in Figure 1.16). The next layer then has the option to choose either
the local or more global features by learning the weights. A max pooling layer
is also added because empirically it increased the performance. The naive
implementation was complemented with the addition of 1 × 1 convolutional
layers to reduce its parameter count.

The architecture stacked 9 Inception modules resulting in 22 layer deep
architecture (or 29 including pooling layers). To further reduce the number
of parameters, the final layer before softmax was replaced by a global average

37

1. Analysis

Figure 1.16: Depiction of two inception modules – naive version and improved
version with less parameters. Source: [30].

pooling layer, which is a normal pooling layer with the maximum size. Not
only does this reduce the number of parameters but also increases the accu-
racy. To prevent overfitting and speed up the learning, all the layers used the
ReLU activation function. Because deep neural networks are hard to learn as
the weights propagate to the start very slowly, the auxiliary classifiers were
introduced. The loss was computed from the average of the output classifier
and the loss of auxiliary classifiers reduced by 70%. The usual softmax func-
tion was used for classification and also a dropout was used on the layers. The
overall architecture can be seen in Figure 1.17.

1.3.2.2 Version 2

The next iteration of the InceptionNet came a year later and was the second
neural network to outperform human experts at the recognition task of the
ImageNet competition, setting a new record. There is some confusion about
the versions of the architecture, but in this section, we will refer to the one
described in [28]. It introduced one main innovation: the batch normalization.
Let us denote a batch of input samples B = {x1...m} and learned parameters
γ, β representing scale and shift. The equations for batch mean µB, variance
σ2
B, normalized input x̂i and output yi are:

µB =
1

m

m∑
i=1

xi (1.64)

σ2
B =

1

m

m∑
i=1

(xi − µB)
2 (1.65)

x̂i =
xi − µB√
σ2
B + ϵ

(1.66)

yi = γx̂i + β ≡ BNγ,β (xi) (1.67)

38

1.3. Image embedding

Figure 1.17: Architecture of GoogLeNet with multiple Inception modules and
two auxiliary classifiers. Source: [63].

39

1. Analysis

Figure 1.18: Factorization of 5 × 5 convolutional layer into two 3 × 3 convo-
lutional layers. This reduces number of parameters by 64%. Source: [64].

With the use of the popularized ReLU activation function came the need
for careful learning rate initialization and subsequent reduction. Because of
sensitivity of ReLU to the learning rate, it can be advantageous to have it
relatively the same over the course of training. This is done with batch nor-
malization and the result is that higher initial and overall learning rate can
be used, speeding up the training drastically while also increasing the accu-
racy. Likewise, the overfitting of the network is reduced with the result that
dropout can be limited or completely removed. Apart from batch normaliza-
tion, this paper also mentioned a convolutional unit factorization which will
be described in the following subsection.

1.3.2.3 Version 3

The third version from 2016 introduced in [64] did not win the annual ImageNet
competition, but came second after Microsoft’s ResNet, which will be de-
scribed in Subsection 1.3.4. The main gist of the paper is to optimize the
network and remove the so-called representational bottleneck. Such a bottle-
neck is present when a layer significantly reduces the dimensions, constricting
the information flow. The network was redesigned to gently decrease the rep-
resentational size and balance its width and depth. Both width and depth
are also increased to produce a higher quality network, while retaining its
computational complexity by introducing the following features.

Inspired by the VGGNet [59], the network’s computational intensity was
decreased by the use of convolution layer factorization or decomposition. The
idea is that a convolutional unit of size 5× 5 has the same extent as two 3× 3
units stacked on top of each other as shown in Figure 1.18 while reducing the
number of parameters by a quarter (3 × 3 + 3 × 3 < 5 × 5). This idea was
taken one step further by factorizing into asymmetric convolutions shown in
Figure 1.19. The 3 × 3 unit can be further factorized into two asymmetrical
3× 1 and 1× 3 units, reducing number of parameters by a third. With these
techniques, the Inception module split into three variants.

40

1.3. Image embedding

Figure 1.19: Factorization of 3 × 3 convolutional layer into 1 × 3 and 3 × 1
convolutional layers. This reduces number of parameters by 1/3. Source: [64].

Figure 1.20: Inception module A with a factorized 5 × 5 convolutional layer.
Source: [64].

• Module A, which is the standard module with the 5 × 5 unit replaced
by two 3× 3 units (depicted in Figure 1.20).

• Module B, which is a wide module with two 1 × 7 and two 7 × 1 units
and with only one 1 × 7 and one 7 × 1 units in parallel (depicted in
Figure 1.21).

• Module C, which is a module promoting high dimensional representa-
tions and has combinations of 3× 3, 1× 3 and 3× 1 units (depicted in
Figure 1.22).

The representational bottleneck from feature downscaling by a max pool-
ing layer followed by a convolutional layer cannot be solved by switching the
two layers as it would become computationally too expensive. The authors
solved it by another inception module which combined side-by-side pooling
and 3× 3 units with larger strides.

The number of auxiliary classifiers decreased from two to one as its purpose
of allowing deep networks to learn was no longer valid as they could learn

41

1. Analysis

Figure 1.21: Inception module B with two asymmetrically factorized 7 × 7
convolutional layers. Source: [64].

Figure 1.22: Inception module C promoting high dimensional representations.
Source: [64].

without it. Instead, it became a sort of a regularizer (with the help of dropout
and batch normalization introduced in previous section).

To help the training process a technique called label smoothing was intro-
duced, which was similar to the localized inhibition in AlexNet. This produces
new labels L̂ with the equation:

L̂ = (1− ϵ) ∗ L+ ϵ/|L| (1.68)

A new optimization technique called root mean square propagation (RM-
SProp) gradient descent was also used, which helped stabilize the learning
error with keeping record of its running mean.

42

1.3. Image embedding

1.3.2.4 Version 4

The paper that introduced the fourth version [62] also designed a version called
Inception-ResNet, which is, as the name suggests, a combination of Inception
and ResNet architectures. Both the ResNet and Inception-ResNet will be
described later.

The modifications to the plain Inception architecture introduced in this
paper were quite simple. The first one is the introduction of new beginning
layers called the stem, which is a simple stack of convolutional and pooling
layers designed to reduce the size of the input. This enabled the use larger
images, i.e. images containing more information. The second one is the unifi-
cation and simplification of the architecture as well as its optimization which
allowed for faster and better results.

1.3.3 VGGNet
The runner-up of the ImageNet competition in 2014 was VGGNet [59] (named
after Oxford’s Visual geometry group), whose paper studies the effect of the
network depth on its accuracy. The architecture is a straightforward stacking
of layers of 3× 3 convolutions and max pool on top of each other. It was the
first one to come up with the concept of convolutional unit’s factorization.
Depth of different versions of the architecture ranged from 11 to 19 layers and
had top-5 error rate from 10.4% to 8.8%, which was achieved surprisingly not
on the deepest version, but rather on the 16 layer version. This showed the
limit of increasing the accuracy with layer depth in the current architecture.
The other innovation this model used was its multi-scale training and multi-
scale testing. This technique tackled the issue of scale of the objects in the
picture by training on different versions of the same picture with different
scales. Better results were also achieved by using the ensemble of different
versions of the models. The architecture of the full model can be seen in
Figure 1.23.

1.3.4 ResNet
The idea of increasing depth of neural networks is simple, but with the addition
of new layers to an existing model, two possible scenarios come to mind.

1. The additional depth does not increase performance. The original layers
are working as in the original net and the new layers will act as identity
function.

2. The additional deep layers allow for better approximation of the input
and further reduce the error.

The authors of ResNet [21] actually ran experiments with the result that
some of the deeper nets had worse accuracy than their shallower counterparts.

43

1. Analysis

Figure 1.23: Architecture of ResNet network with residual connections in
comparison with a plain ResNet network and a VGGNet 19 networks. Source:
[59].

44

1.3. Image embedding

Figure 1.24: Residual block – building block of residual learning. Source: [59].

This is supposedly not because of overfitting or vanishing/exploding gradient,
but because the accuracy gets saturated and degrades. The authors of the
ResNet resolved the problem with the introduction of a residual block (seen
in Figure 1.24). The basis of this block is replacing the mapping of a few
layers H(x) = F (x) by a residual mapping H(x) = F (x) + x. This is called
deep residual learning framework and was extensively tested by the authors
and proved to be very effective. Neural networks with depth ranging from 18
to 152 layers were tested and still the neural net performance increased with
increasing depth. Networks with residual connections also converge faster
than their plain counterparts. Authors also tested a projection mapping in-
stead of a simple identity mapping by adding weights to the identity, which
was implemented by a 1 × 1 convolution layer. Projection units did increase
the performance, but generally the increase was attributed to the increase of
parameters of the model. The ResNet won the ImageNet competition in 2015
and paved the way for further deepening of CNNs.

1.3.4.1 ResNet – Version 2

The following year [22], the authors further improved upon the architecture
by optimizing the order of ReLU activation, weighing and batch normalization
in the residual unit (shown in Figure 1.25). The original ResNet module did
not have the identity connection on the output, but rather on the input of the
unit. As a result, ReLU activation function was applied before its addition to
the output. The authors experimented with various designs but settled on a
version where no additional function was applied on the identity connection.
This enabled the authors to train networks with depth up to 1001 layers
further pushing the limits and performance of CNNs.

1.3.4.2 Combinations with InceptionNet

Following the success of both ResNet and InceptionNet with vastly different
design features, the next logical step was their combination. The team of
InceptionNet introduced an Inception-ResNet architecture in the Inception-

45

1. Analysis

Figure 1.25: Permutations of functions of a new residual block. Source: [59].

v4 paper [62], where the Inception module evolved into the Inception-ResNet
module with the addition of identity. This resulted in two versions, Inception-
ResNet-v1, which is Inception-v3 with residual connections, and Inception-
ResNet-v2, which is Inception-v4 with residual connections. Both these de-
signs converged quicker than their original counterparts and had slightly better
accuracy. They did however apply ReLU after the residual connection as in
ResNet-v1, because the findings of the second version were not published at
the time.

A variation of ResNet called ResNeXt [71] improved upon the ResNet
architecture by making it wider (as in InceptionNet) with the addition of
multiple parallel ResNet units with one identity connection together (shown
in Figure 1.26). The difference from the Inception module is that all the
submodules share the same design. The authors experimented with adding
more layers and more units to the same module, while retaining the number of
parameters, effectively testing the question of depth vs width. The conclusion
was that wider networks perform better than ultra deep networks with the
same number of parameters.

1.3.5 MobileNet
The motivation behind MobileNet introduced in [26] was to reduce the compu-
tational intensity of CNNs, because the number of parameters and multiply-
add operations of CNNs could make it inefficient for practical use. The authors
introduced three main ideas. The first one was decomposition of convolutions
not width- and height-wise as in previous designs, but depth-wise followed
by a point-wise convolution. The decomposition is pictured in Figure 1.27.
This reduces the number of multiply-add operations and parameters around
8 times, while keeping the accuracy comparable.

46

1.3. Image embedding

Figure 1.26: Comparison of a basic and a ResNeXt wide residual blocks.
Source: [71].

Figure 1.27: Depthwise decomposition of a convolutional layer. Source: [26].

The following modifications are width and depth multipliers. The width
multiplier α is in range [0, 1] and scales the depth of the output of depth-wise
convolutions and input of point-wise convolutions. With smaller α, computa-
tional cost and number of parameters is reduced at greater scale than accu-
racy. The last improvement is a resolution multiplier ρ in range [0, 1], which
reduces the size of the image on the input of the network. Again, the accuracy
drops smoothly with smaller ρ, while computational complexity drops faster.
A newer version of this architecture [57] again introduced residual connections
to the architecture, along with a few other improvements pushing its accuracy
to be on par with ResNet-101 with less than 10% of its parameters. Compar-
ison of accuracy, learning speed and number of parameters of various neural
networks including MobileNet can be seen in Figure 1.28.

47

1. Analysis

Chapter 2
Dataset and data analysis

This chapter will deal with the method of obtaining the data and with the
visualization of the relations between articles and their pictures.

2.1 Reuters dataset
In order to teach a model to predict an image for an article, we need to obtain
a large dataset of articles with their corresponding images. Some datasets
which contain hundreds of thousands of articles with their headlines, categories
[65], social network feedback [16], etc., are publicly available. There are also
databases with images, such as the previously mentioned ImageNet database
[12] containing more than 14 million images in over 20 thousand categories
that is widely used for model training for image classification and localization.
But, to my knowledge, there is no publicly available dataset containing both
images and articles or text characterizing them 1.

In view of the lack of a suitable database, I created a database of articles
from six domains (world news, business news, sports, health, technology, and
entertainment), each with one image per article. All the articles are scraped
from the Reuters website [52], from the Archive2 subsection in January 2019.

The scraping was done by crawling the available pages of each category
using the Python Requests library and downloading the text (including the
headline) and the first image along with metadata about the date, author,
etc., which were ultimately not used in the experiments, but may prove useful
in a future work. The images were also scaled down to 480 pixels image
to further reduce their sizes. This reduction should not affect the feature
extraction because the models used in the paper reduce the image size less
than 300× 300 pixels anyway.

1Apart from image annotation datasets, but the annotations are too short and too
dissimilar to news articles.

2https://www.reuters.com/news/archive/

49

https://www.reuters.com/news/archive/

2. Dataset and data analysis

The number of articles from each domain was limited by the number of
articles available on the website, which is around 32 500 latest articles for the
largest categories. However some of them do not contain any images and
therefore cannot be used. When multiple images were present, only the first
one was downloaded. In the end, the database contains 102 493 unique articles,
with 0.5 GB of text data and 2.5 GB of image data. How many articles are in
each category can be seen in Table 2.1.

Category Count Published in
World news 21 263 2017–2019
Business news 19 976 2016–2019
Sports news 27 699 2015–2019
Health news 12 250 2011–2019
Technology news 24 373 2012–2019
Entertainment news 2 201 2008–2019

Table 2.1: Article categories, their count and period in which they were pub-
lished of the Reuters Archive dataset.

2.2 Aktualne dataset
Aktuálně.cz is a Czech news website of the Czech publishing house Economia.
I obtained a similar dataset as the previous Reuters Archive dataset of the text
of the articles and their pictures. The articles are split into two categories,
“Domácí” and “Zahraničí”, and are of course in the Czech language. It means
that a slightly different approach to extracting text embeddings will be used.
All images are in a uniform 640× 360 pixels format. The counts of articles of
each article are in Table 2.2.

Category Count Published in
Domácí 28 560 2014–2019
Zahraniční 28 417 2004–2019

Table 2.2: Article categories, their counts and period in which they were
published of the Aktualne dataset.

2.3 Text embedding extraction
The majority of the text feature extraction methods in the previous chapter
worked on separate words and created only word embeddings. Creating sen-
tence or document embeddings might seem like another difficult task but [4]

50

2.3. Text embedding extraction

showed that simply averaging all the individual word embeddings into one
provides a strong baseline for other algorithms and thus will be used. The
authors also show that using TF-IDF as weights improves the performance,
which will be also tested in our experiment, as well as using element-wise
maximum instead of average of the individual vectors.

2.3.1 word2vec
There are two approaches to using word2vec. One is to use the dataset avail-
able and train a new word embedding model and the other is to download and
use a pretrained model. Training a model specifically to your task is generally
the better idea but because Google released a model [19] pretrained on a pub-
licly unavailable corpus of Google News containing 100 billion words, training
your own model is not advised. Training models is time consuming even on
high-performance hardware not available to me, and most importantly, larger
models generally perform better than specialized smaller models. For the
Czech language, a similar albeit a much smaller model trained on Wikipedia
was used [61]. According to the authors, the CBOW version of word2vec per-
formed much better than Skip-gram and as a result and therefore that version
was used.

A python open-source vector space modelling toolkit Gensim [51] was used
for the extraction. It provides an interface for easy preprocessing of the text
(which is just simple removal of punctuation, lowercasing and splitting on
whitespaces) and vector embedding extraction using an api for pretrained
model downloading. Word embeddings were obtained and they were either
averaged, averaged with TF-IDF weighing or element-wise maximum of the
vectors was extracted.

2.3.2 GloVe
Extraction of GloVe features was very similar to word2vec features. A pub-
licly available model by the authors of the algorithm was used [46] for the
English language. It was trained on Wikipedia dump and the English Giga-
word dataset [43] together containing 6 billion words. For the Czech language,
the pretrained model by the same authors [61] as with word2vec. Again the
words embeddings were averaged to obtain document embeddings, because it
was the best performing in the experiments. This approach is used also for
FastText and Conceptnet numberbatch.

2.3.3 FastText
Obtaining FastText embedding is the same as in previous cases. A pretrained
model is publicly available from the authors [8] trained on 16 billion tokens
from Wikipedia, UMBC webbase corpus and statmt.org news dataset was

51

2. Dataset and data analysis

used. The authors also released pretrained models for other 157 languages
trained on their Wikipedia and common crawl including a model for the Czech
language used in this thesis.

2.3.4 Conceptnet numberbatch
Again, a pretrained model from the authors [60] trained on ConceptNet graph
and both word2vec and GloVe previously mentioned embeddings was used.
Unfortunately, only an English language version is available.

2.3.5 BERT
Feature extraction with BERT is different from the previous models. Because
it produces embeddings of a whole sentence, the problem of producing doc-
ument embeddings seemingly disappears. It does not because its width is
limited to 512 tokens, which fits at most some paragraphs but not the whole
article. Two different approaches were used to extract document embeddings.

In the first approach, the maximum number of tokens from the beginning
of the article was used. It contains the headline and the lead paragraph, both
trying to capture the meaning of the whole article. The information from
the rest of the article is however missing. The second approach is to split
the article by sentences, obtain embeddings for each sentence, and then again
average the obtained vectors. This approach is more similar to the one used
in previous models.

An open-source interface released on GitHub was used [70] with a pre-
trained model by Google [13]. A smaller model using uncased tokens was
used due to the computational intensity of the larger model. Finetuning was
not performed again because of computational intensity, but given the quality
of the pre-trained model, it should not be an issue. This model produces vec-
tors with length of 768, which is more than 2.5 times larger than all previous
models using vectors of length 300.

2.4 Image embedding extraction
Extracting image features is pretty straightforward. All the authors also re-
leased a pretrained version of the model. Finetuning was not performed be-
cause the high quality pretrained model is sufficient for our purposes. A
Python implementation of Tensorflow [1] with a wrapper [55] was used, which
conveniently includes all the pretrained models on its official GitHub reposi-
tory3. The versions of pretrained models are: Inception-v4, ResNet-v2 with
152 layers, MobileNet-v2 version 1.4 with 224 layers and VGGNet with 19
layers. The pictures are automatically rescaled and preprocessed and produce
vector embeddings with 1000 or 1001 size.

3https://github.com/tensorflow/models/tree/master/research/slim

52

https://github.com/tensorflow/models/tree/master/research/slim

2.5. Visualization

2.5 Visualization
To better understand and evaluate the data we obtained, some data visual-
ization techniques can be used. In this section, I would like to visualize the
relations between the text and image features and better understand the data.

2.5.1 Feature projection
Because data with hundreds of dimensions cannot be meaningfully visualized
in two dimensions, two methods for feature projection were used: PCA and
t-SNE. These methods project the data from a high-dimensional space to a
feature space with only a few dimensions, in our case only two in order to
produce easily readable graphs.

These methods were applied on the word2vec features and the result can
be seen in Figure 2.1. PCA failed to separate the articles into any clusters
and only produced a few outliers. On the other hand, the t-SNE method
successfully separated the dataset into meaningful clusters and thus is a far
superior method, which will be used in the following sections.

2.5.2 Application on datasets
In this section a smaller dataset is used with unique articles from the World
News category and one unique image per article. It contains only 4 000 articles
in order to speed up the computation time and to prevent graph overplotting
and preserve graph clarity. From this dataset, we extracted text and image
features listed in Table 2.3.

Type Model Feature dimensions

Text features

word2vec 300
word2vec weighted 300
GloVe 300
FastText 300
ConceptNet 300
BERT 768

Image features

InceptionNet v4 1001
ResNet v2 1001
VGGNet 1000
MobileNet 1001

Table 2.3: Feature models, their type and dimensionality.

Next we determine which clustering model works best on our data. The
ideal model should mark isolated groups as separate clusters and differentiate
the rest as best as it can. The clustering model choice is not critical as it is

53

2. Dataset and data analysis

0.2 0.0 0.2 0.4

0.2

0.1

0.0

0.1

0.2

0.3

0.4

(a) PCA

0.2 0.0 0.2 0.4
0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

(b) Kernel PCA with cosine kernel

0.03 0.02 0.01 0.00 0.01 0.02 0.03 0.04
0.02

0.01

0.00

0.01

0.02

0.03

(c) Kernel PCA with rbf kernel

40 20 0 20 40

40

20

0

20

40

(d) t-SNE

Figure 2.1: Comparison of Kernel PCA with different kernels and t-SNE as
feature projection methods

only a visualization technique. The methods were used on a t-SNE projection
of word2vec text features set to form 6 clusters. The result can be seen
in Figure 2.2 where each cluster is assigned a distinct color. The Spectral
clustering method described in subsection 1.1.3.9 works best on separating
isolated groups of vectors and so it will be the method of our choice. Note that
the borders between clusters are not clearly defined, because the clusters were
calculated in the original multidimensional space (where they are probably
clearly defined) and only then were projected to two dimensions making the
clusters to mix a little bit.

We can remember the color assigned to each article obtained in the pre-
vious step, apply t-SNE to other features and plot the results with the re-
membered colors. This can help us visualize if articles close to each other in
one feature space are also neighbors in another feature space. That would
indicate that there is some form of correlation between the feature spaces,
which would be highly useful for prediction. This approach is demonstrated
on Figure 2.3, where in the top left corner is a plot with colored clusters of

54

2.5. Visualization

40 20 0 20 40

40

20

0

20

40

(a) k-means clustering

40 20 0 20 40

40

20

0

20

40

(b) Agglomerative clustering

40 20 0 20 40

40

20

0

20

40

(c) Spectral clustering

40 20 0 20 40

40

20

0

20

40

(d) BiRCH clustering

Figure 2.2: Clustering methods applied on word2vec text features and pro-
jected with t-SNE, colored by their assigned cluster.

the t-SNE projection of word2vec text features and the same cluster colors
applied on a similar projection of other features. It can be clearly seen that
in all feature spaces, the articles can be clustered similarly.

Lastly we can use the same obtained colors on the t-SNE projections of
our image feature spaces. If the colors are to be ignored for a while, we
can observe that the image feature space is much less separable and the t-
SNE does not produce isolated groups of pictures. This can be explained in
two ways: either the feature extraction models are not capable of extracting
enough information from the data or the models are correct but the data
itself is either highly varied or too similar. Based on my observations, I think
the latter is true, as the images in the world news dataset often show one or
multiple persons, usually politicians, which means that for a model trained to
classify varied classes of objects, animals or plants, to differentiate is a difficult
task.

We can further analyze the colors of clusters obtained in the previous steps.
The clusters are mixed together indicating that there are no clear separated

55

2. Dataset and data analysis

clusters in both text and image features or that the dimensionality reduction
is not capable of preserving such structures. It means there are no groups of
articles and pictures in this dataset that are clearly different from the others.
However, the colors are not completely random indicating that there is some
correlation between the feature spaces. The goal of this section was therefore
achieved, even though the effect is to a lesser extent than anticipated.

56

2.5. Visualization

40 20 0 20 40

40

20

0

20

40

(a) word2vec clusters

40 20 0 20 40

40

20

0

20

40

(b) word2vec clusters on word2vec TF-
IDF weighted features

40 20 0 20 40

40

20

0

20

40

(c) word2vec clusters on GloVe features

40 20 0 20 40
40
30
20
10

0
10
20
30
40

(d) word2vec clusters on FastText features

40 20 0 20 40

40

20

0

20

40

(e) word2vec clusters on Conceptnet num-
berbatch features

40 20 0 20 40

40

20

0

20

40

(f) word2vec clusters on BERT features

Figure 2.3: Word2vec clusters applied on text feature t-SNE projections.

57

2. Dataset and data analysis

40 20 0 20 40
40

30

20

10

0

10

20

30

40

(a) word2vec clusters

30 20 10 0 10 20 30 40

40

20

0

20

40

(b) word2vec clusters on ResNet features

40 20 0 20 40
40

30

20

10

0

10

20

30

40

(c) word2vec clusters on VGGNet features

40 20 0 20 40
40

30

20

10

0

10

20

30

(d) word2vec clusters on MobileNet fea-
tures

Figure 2.4: Word2vec clusters applied on image feature t-SNE projections.

58

Chapter 3
Experiments

To show how an algorithms can predict an image likely to be related to a
given article, this chapter presents a series of experiments conducted in order
to design the best recommender system.

In the previous chapter, we described how the data for these experiments
was obtained. This one proposes a design of the recommender system, includ-
ing a metric for evaluating the algorithms. In the experiments, the feature
extraction models are evaluated along with the regression algorithms for trans-
formation between text and image feature space.

3.1 Methodology

In order to recommend relevant images to articles, we need to train a model
to recognize which images are relevant to the given article and which are not.
The recommendation of images is in some ways similar to item-based top-n
recommendation, for example queries on web search. Both tasks have the goal
of identifying a set of N items that will be of interest to the user. We can
therefore use a similar metric to measure its success.

3.1.1 Metric

The usual metrics used in the item recommendation field are called preci-
sion@k (precision at rank k) and recall@k (recall at rank k). According to
[37], we can define them as follows: Let the response to a query be a ranked
list of items Rq = (d1, d2, d3, . . . , dm) and a list of relevant items Dq; then an
item’s relevance ri to the query is defined as:

ri =

{
1 di ∈ Dq

0 otherwise (3.1)

59

3. Experiments

With a rank k representing number of items from the top of list Dq, we
define the metrics precision and recall at rank k for a given query as:

precision(k) = 1

k

k∑
i=1

ri (3.2)

recall(k) = 1

|Dq|

k∑
i=1

ri (3.3)

In plain words, precision@k means the fraction of relevant items of re-
trieved items, and recall@k is the fraction of relevant items of all relevant
items.

In order to use these metrics, we have to define what the “relevance” of
images to the original article is. As it is highly subjective to judge what picture
will be suitable for an article, we will define only one relevant image, i. e. the
article’s original image do, so Dq = {dp}. Given that only one item is relevant
and we always recommend k images, the precision@k and recall@k metrics
reduce to 0 in the case the original image was not among the recommended,
in other words 1/k and precision@k and 1 for recall@k. Thus we will use the
metric accuracy@k, also known as top-k accuracy defined as:

accuracy(k) =
{

1 do ∈ Dq

0 otherwise (3.4)

This will be the metric used to evaluate performance of the models.

3.1.2 Item recommendation

Nevertheless, we also have to define which images will be considered recom-
mended and which will not, i.e. we have to define the set Dq. In our case, a
regression model takes a text feature vector on the input and learns to pre-
dict the corresponding image feature vector by minimizing the loss function,
which is usually the mean squared error function in Equation 1.48. Given the
predicted image feature vector Ŷ , we will define the k recommended images
as nearest neighbors of the vector Ŷ using a distance metric D and a function
KNN returning k nearest neighbors as:

recommendeditems(Ŷ , k) = KNN(Ŷ , k,D) (3.5)

To provide the most rudimentary baseline with the size of test set used in
Experiment 1 of 3 761 samples, we can simply use random choice of images.
The top-1 accuracy would then be 1

3 761 ≈ 0.026% and top-20 accuracy 20
3 761 ≈

0.532%.

60

3.2. Experiment 1 – Regression model tuning

3.1.3 Linearity of the problem

One of the key information is whether the feature space of our problem can
be solved by linear regression. In practice it means whether linear regression
models, which are significantly faster, can be used without decreasing the ac-
curacy or nonlinear models have to be used. To my knowledge, the linearity
of the feature space cannot be determined either analytically nor numerically
in a reasonable computation time. However, since our feature space has high
dimensionality (from 300 to 1 000) only two orders below the number of sam-
ples (around 18 000), we can assume that linear regression models are going
to perform adequately on the dataset4. It will be also tested in Experiment
1 by transforming the feature spaces to linearly separable spaces using kernel
PCA and Multilayer Perceptron with multiple hidden layers.

3.1.4 Recommendation system design

The design of the recommender system is simple. A regression model is first
trained on a training dataset with supervised learning. It is then applied on
texts of new articles and recommends images from a given image bank. The
whole system design is pictured in Figure 3.1.

3.2 Experiment 1 – Regression model tuning

In this experiment, various regression algorithms are analyzed. First, data
normalization or scaling is investigated, then hyperparameters of the regres-
sion algorithms are tuned, and finally the optimized algorithms are compared
and the best are chosen for the following experiments.

In the following graphs top-1, top-5, top-10 and top-20, accuracy metrics
are depicted in blue, orange, green, and red color unless specified otherwise.

3.2.1 Dataset

This experiment was run on the world news category with non-unique images
removed. It resulted in a dataset of 18 803 articles and images. The text
feature extraction model used is the word2vec model, which produces 300
dimensional vectors, and the image feature model is the InceptionNet model
producing 1 001 dimensional vectors. The results of all experiments are the
mean of KFold cross-validation with K = 5. It means the size of the training
set is 80% of the sample set or 15 042 samples and the size of the test set is
20% of the sample set or 3 761 samples.

4A dataset with N observations is linearly separable in N − 1 dimensions.

61

3. Experiments

Articles
Text

Images

Text embedding
extraction

Image embedding
extraction

Pretrained
text extraction

model

Pretrained
image extraction

model

Text
embeddings

Image
embeddings

Supervised
learning

Trained
recommender

model

Text embedding
extraction

Pretrained
text extraction

model

Text
embeddings

Image bank
embeddings

Article
Trained

recommender
model

Image
recommendation

Figure 3.1: Training of the recommender and its application on new articles.

3.2.2 K Nearest Neighbors
Not only does KNN algorithm have a few parameters for optimization but also
the data preprocessing phase can be optimized. The feature preprocessing
techniques and the hyperparameters optimized are in Table 3.1.

Note that if the dataset has not been split between training and testing
sets, in the case of an KNN model the accuracy would be perfect because the
nearest image for any given article would be the article’s image itself.

3.2.2.1 Number of neighbors

In the first part of this experiment, number of neighbors n was set as n ∈
{1, 3, 5, 10} and in the view of the results in Figure 3.2, the best was n = 1 with
2.48% top-1 accuracy with the Cosine distance. The results were reproduced
with multiple distances to show that the result is independent on the choice
of distance measure. It is rather unsurprising, as with n = 1 the prediction is

62

3.2. Experiment 1 – Regression model tuning

Hyperparameter Explanation
preprocessing feature scaling and standardization
dimensionality reduction different PCA techniques and parameters
number of neighbors number of nearest neighbors
metric distance metric
weights weight function used in prediction

Table 3.1: Hyperparameters of KNN model optimized in Experiment 1.

1 3 5 10
n neighbors

0

1

2

3

4

5

6

7

8

ac
cu

ra
cy

2.
44

1.
90

1.
12

0.
67

3.
88

3.
54

2.
79

1.
78

5.
01

4.
91

3.
96

2.
78

6.
48 6.
54

5.
70

4.
39

metric = cosine

1 3 5 10
n neighbors

2.
42

1.
87

1.
08

0.
64

3.
81

3.
49

2.
70

1.
73

4.
89

4.
78

3.
88

2.
61

6.
34 6.
51

5.
66

4.
20

metric = sqeuclidean

top k
1
5
10
20

Figure 3.2: Bar graph of the effect of number of neighbors on KNN model
accuracy (in percent).

the output for the neighbor in the training set and it is not uncommon it is
the closest point to the correct prediction (in a high dimensional space). With
n > 1 the predicted results features are averaged from the neighbors resulting
in values further from the expected features.

3.2.2.2 Metrics

Our KNN implementation [45] supports lots of metrics but for the purpose of
our algorithm we will try only the Minkowski metrics and the Cosine distance
(often used in NLP tasks) because other metrics are either for boolean values
or highly specialized. The results of the experiment in Figure 3.3 show that
the Cosine distance is the best performing metric with 2.37% top-1 accuracy
followed closely by the Squared Euclidean metric with 2.29%. The Cosine
distance is more accurate and also faster and as such will be used in the
following experiments. Note that because our data is almost centered, the
Correlation distance is very similar to Cosine distance. Also the Euclidean
and Squared Euclidean distances have equal results (because squaring is a
monotonic function and preserves order), so the squared one will be used
throughout our experiments as the faster function out of the two.

According to our metric definition in Equation 3.5, the recommended
items are k neighbors from the predicted item. It means that we can also

63

3. Experiments

chebyshev cityblock cosine sqeuclidean
metric

0

1

2

3

4

5

6

7

8

ac
cu

ra
cy

1.
55

2.
27 2.
44

2.
352.
47

3.
63 3.

88

3.
70

3.
14

4.
56 5.

01

4.
70

4.
35

5.
95 6.

48

6.
10

top k
1
5
10
20

Figure 3.3: Bar graph of the effect of distance metric on KNN model accuracy
(in percent).

cosine sqeuclidean
knn metric

0

1

2

3

4

5

6

7

8

ac
cu

ra
cy

2.
44

2.
42

3.
88

3.
81

5.
01

4.
89

6.
48

6.
34

accuracy metric = cosine

cosine sqeuclidean
knn metric

2.
38

2.
35

3.
75

3.
70

4.
82

4.
70

6.
21

6.
10

accuracy metric = sqeuclidean

top k
1
5
10
20

Figure 3.4: Bar graph of the effect of distance metric of KNN model and of
accuracy neighbor function on accuracy.

optimize the nearest neighbor algorithm of the recommendation model.In the
view of the previous experiment, the measured metrics will be the Cosine and
Squared Euclidean distances. The graph in Figure 3.4 confirms the previous
result that the cosine distance is superior distance in both the recommendation
nearest neighbor model and the regression model itself, although by only a
small margin.

3.2.2.3 Weights

After measuring the effect of the weight function (results in Figure 3.5), it is
apparent that uniform weights are more accurate than distance weights. It
is also faster as no weight calculations actually take place. Note that when
n = 1, the results are the same because there is only one neighbor in both
cases.

64

3.2. Experiment 1 – Regression model tuning

1 3 5
n neighbors

0

1

2

3

4

5

6

7

8
ac

cu
ra

cy

2.
44

1.
90

1.
12

3.
88

3.
54

2.
79

5.
01

4.
91

3.
96

6.
48 6.
54

5.
70

weights = uniform

1 3 5
n neighbors

2.
44

1.
55

0.
98

3.
88

3.
29

2.
44

5.
01

4.
43

3.
48

6.
48

6.
08

5.
10

weights = distance

top k
1
5
10
20

Figure 3.5: Bar graph of the effect of weight function on KNN model accuracy
(in percent).

3.2.2.4 Scaling

Then the effect of feature scaling and standardization was examined. The
results in Figure 3.6 show that while rescaling the features to the range (0, 1)
has negative effect on the result, the standardization to zero mean and unit
variance provides a small but measurable advantage. Given that standard-
ization is required for Kernel Ridge Regression and recommended for MLP
Regression, it will be used with KNN as well.

3.2.2.5 PCA

In the following part of the experiment, the effect of PCA with multiple kernels
is examined. The results will hint at whether our problem is linear or non-
linear. Because of the complexity of kernel PCA, the training set was reduced
to only 8 000 samples with 2 000 test samples. The number of components is
the original dimensionality to not remove any variance from the feature space.
Results are graphed in Figure 3.7. We can see that both the linear PCA and
RBF kernel PCA are superior to not using PCA. Rather surprising is that
linear PCA performed better than the kernel PCA. It is an indication that
linear regression models are powerful enough for our problem. Also the time
complexity of the kernel PCA on large datasets makes it impractical and will
not be used in the following experiments.

The correct number of components the PCA can be optimized on both the
text features and image features. The results graphed in Figure 3.8 show that
it is more accurate not to reduce the text features dimensions at all and to
reduce the image features dimension from 1001 to between 250 and 500 which
would roughly equal in dimensions with text features. It provides a nearly

65

3. Experiments

none standardization minmaxscaling
scaling

0

1

2

3

4

5

6

7

8

ac
cu

ra
cy

2.
42 2.
50

2.
29

4.
00 4.
23

3.
75

5.
07 5.

36

4.
65

6.
54 6.

86

6.
02

top k
1
5
10
20

Figure 3.6: Bar graph of the effect of feature scaling on KNN model accuracy
(in percent).

60% boost in computation time of the KNN regression model which is now
around 4.5 seconds without a significant reduction in accuracy.

3.2.2.6 Results

The optimal model parameters and preprocessing techniques are shown in the
Table 3.2. We have achieved the accuracy of 2.5% top-1 accuracy and 6.88%
top-20 accuracy (in Figure 3.6), which is almost 100 times better than the
0.026% top-1 accuracy of random image selection.

The drawback of KNN is that it does not generalize well and thus may
not be the optimal regression model despite its accuracy. It is also a so-called
lazy learner, which means the majority of computation time is in the testing
phase. This means queries in real application could take a long time, well
over couple of seconds for large datasets and feature dimensions, making it
somewhat impractical.

66

3.2. Experiment 1 – Regression model tuning

none linear rbf
PCA

0

1

2

3

4

5

6

7

8

ac
cu

ra
cy

2.
42 2.
48

2.
36

4.
00

4.
03

3.
99

5.
07 5.
29

5.
13

6.
54 6.

83

6.
75

top k
1
5
10
20

Figure 3.7: Bar graph of the effect of PCA kernel on KNN model accuracy
(in percent).

Hyperparameter Optimized value
preprocessing standardization
dimensionality reduction linear PCA with 300 components
number of neighbors 1
metric Cosine distance
weights uniform

Table 3.2: Optimized hyperparameters of KNN model.

67

3. Experiments

0

1

2

3

4

5

6

7

8

ac
cu

ra
cy

1.
82 1.
88

1.
87

1.
84

1.
85

3.
33

3.
31

3.
32

3.
27 3.
36

4.
40

4.
39

4.
41

4.
35

4.
36

5.
81

5.
80 5.
84

5.
72

5.
66

x n components = 40

2.
15

2.
15

2.
14

2.
16

2.
10

3.
60

3.
57

3.
59

3.
62

3.
63

4.
61 4.
70

4.
69 4.
77

4.
65

6.
18 6.
24

6.
25

6.
27

5.
99

x n components = 75

0

1

2

3

4

5

6

7

8

ac
cu

ra
cy

2.
33

2.
36

2.
36

2.
37

2.
28

3.
82 3.
87

3.
82 3.
89

3.
86

4.
92 5.
11

5.
05 5.
12

4.
97

6.
55 6.
67

6.
63 6.
68

6.
38

x n components = 150

150 300 600 all no pca
y n components

2.
46

2.
48

2.
49

2.
49

2.
43

3.
99

4.
02

4.
04

4.
05 4.
10

5.
18 5.
31

5.
31

5.
31

5.
21

6.
79 6.
82

6.
83

6.
83

6.
65

x n components = all

150 300 600 all no pca
y n components

0

1

2

3

4

5

6

7

8

ac
cu

ra
cy

2.
43

2.
44

2.
45

2.
45

2.
42

3.
99

4.
02

4.
03

4.
03

4.
00

5.
04 5.
13

5.
16

5.
16

5.
07

6.
58 6.
68

6.
66

6.
66

6.
54

x n components = no pca

top k
1
5
10
20

Figure 3.8: Bar graph of the effect of number of components of linear PCA
on KNN model accuracy (in percent).

68

3.2. Experiment 1 – Regression model tuning

Hyperparameter Explanation
alpha penalty terms weight
L1 ratio ratio between L1 and L2 penalization
maximum no. of iterations maximum number of iterations of gradient descent
preprocessing use of standardization and/or PCA

Table 3.3: Hyperparameters of ElasticNet model optimized in Experiment 1.

0.0 0.1 0.5 0.7 0.9 0.95 0.99 1.0
l1 ratio

0

2

4

6

8

10

12

ac
cu

ra
cy

1.
31

1.
35

1.
29

1.
35

1.
31

1.
34

1.
33

1.
29

4.
55

4.
52

4.
52

4.
52

4.
55

4.
51

4.
47

4.
50

6.
88

6.
87

6.
93

6.
96

6.
93

6.
90

6.
96

6.
85

10
.2

7

10
.2

3

10
.3

0

10
.2

5

10
.3

0

10
.2

9

10
.3

4

10
.3

4

top k
1
5
10
20

Figure 3.9: Bar graph of the effect of l1 rat parameter on ElasticNet model
accuracy (in percent).

3.2.3 ElasticNet Regression

ElasticNet has two parameters we can optimize. The first one is the parameter
alpha, which sets the weights of the penalties. Note that if alpha = 0, then
the model reduces to the ordinary least squares model. The second parameter
is the ratio between the L1 and L2 penalization, called simply the L1 ratio.
Because of the model coefficient penalization, the data is standardized.

3.2.3.1 L1 ratio

First, the L1 ratio will be optimized with a fixed alpha = 0.001. The results
graphed in Figure 3.9 are inconclusive about the best L1 ratio, as it does not
show a clear trend in the results. As such L1 ratio of 0.5 will be used because
it is the default parameter in the implementation and should provide adequate
results.

69

3. Experiments

none PCA
pca

0

2

4

6

8

10

12
ac

cu
ra

cy

0.
61 1.

302.
22

4.
45

3.
81

6.
88

6.
33

10
.2

1

top k
1
5
10
20

Figure 3.10: Bar graph of the effect of alpha parameter on ElasticNet model
accuracy (in percent).

3.2.3.2 Alpha

Next, the alpha parameter is optimized with alpha values from 0 to 1. The
results can be seen in Figure 3.10; the best performing alpha is less than
0.001. We will set the argument to 0.0001 in the following experiments as
it was also the best value according to a Lasso model fit with least angle
regression algorithm with Akaike and Bayes intercept criterion (more about
the algorithm in [74]).

3.2.3.3 Iteration limit

Since the implementation of ElasticNet we use is optimized with an iterative
gradient descent algorithm, we can control the maximum number of iterations
it computes in order to prevent the algorithm from overfitting. As we can see
in Figure 3.11, the model tends to overfit a little bit after 100 iterations.

3.2.3.4 PCA

Although both standardization and PCA have been used so far, only standard-
ization is theoretically necessary (otherwise features with greater magnitude
would gain control over the whole model). In this experiment, we compare the
model with and without the use of PCA. The result can be seen in Figure 3.12
and shows that the model performs very poorly without PCA.

70

3.2. Experiment 1 – Regression model tuning

10 20 40 75 100
max iter

0

1

2

3

4

5

6

7

ac
cu

ra
cy

0.
72

0.
64

0.
58

0.
53 0.
64

1.
99

2.
02

2.
05

1.
94

1.
91

3.
46 3.
64 3.
70

3.
64

3.
62

6.
12

6.
12

6.
09 6.
20 6.
33

top k
1
5
10
20

Figure 3.11: Bar graph of the effect of maximum number of iterations on
ElasticNet model accuracy (in percent).

none PCA
pca

0

2

4

6

8

10

12

ac
cu

ra
cy

0.
61 1.

302.
22

4.
45

3.
81

6.
88

6.
33

10
.2

1

top k
1
5
10
20

.

Figure 3.12: Bar graph of the effect of PCA on ElasticNet model accuracy (in
percent).

71

3. Experiments

Hyperparameter Value
alpha 0.0001
L1 ratio 0.5
maximum of iterations 50
preprocessing standardization and PCA

Table 3.4: Optimized hyperparameters of ElasticNet model.

Hyperparameter Explanation
hidden layers size and number of the hidden layers
maximum no. of iterations maximum number of iterations during training
activation activation function on hidden layers

Table 3.5: Hyperparameters of Multilayer Perceptron model optimized in Ex-
periment 1.

3.2.3.5 Results

The optimal model parameters and preprocessing techniques are shown in
Table 3.4. We have achieved the accuracy of 1.54% top-1 accuracy and
10.28% top-20 accuracy (in Figure 3.11. Compared to the KNN model it
performed only about half as good in top-1 accuracy, but performed better
in top-20 accuracy. It shows that the ElasticNet model fits the problem less
than KNN, i.e. generalizes better but performs a little worse.

3.2.4 Multilayer Perceptron Regression
Multilayer Perceptrons can be optimized by choosing the right activation func-
tion, loss function, regularization, dropout, topology, and many other things.
Note that Multilayer Perceptron with multiple hidden layers can learn to sep-
arate data that is not linearly separable, which is why the topology will be one
of the parameters we will optimize. We will try the logistic sigmoid function,
the hyperbolic tan function, and the rectified linear unit one as activation
functions. All data is standardized and preprocessed with PCA with 300
components beforehand (training MLP without PCA performed very poorly).

3.2.4.1 Hidden layer sizes and overfitting

The first hyperparameter to optimize is the net’s topology. All layers are dense
layers with L2 regularization and 300 units. Because neural nets are prone to
overfitting even with regularization, the topologies were tested together along
with number of iterations. The important property of multiple hidden layers
is that MLP with more than one hidden layer can solve non-linear problems.

72

3.2. Experiment 1 – Regression model tuning

0

1

2

3

4

5

6

7

8

ac
cu

ra
cy

1.
25

1.
01

0.
93

3.
11

2.
87 3.

11

4.
68

4.
31 4.

71

6.
70

6.
27 6.

83

hidden layers = 1

0.
66

0.
61 0.
66

1.
97

1.
89

1.
65

2.
82 3.

32

2.
98

4.
20 4.

63

4.
36

hidden layers = 2

50 100 200
max iter

0

1

2

3

4

5

6

7

8

ac
cu

ra
cy

0.
58 0.
64

0.
35

1.
91

1.
70

1.
54

2.
95

2.
42

2.
39

4.
17

4.
15

3.
62

hidden layers = 3

50 100 200
max iter

0.
40

0.
29 0.
40

1.
70

1.
38 1.
52

2.
74

2.
47

2.
31

3.
99

3.
72

3.
56

hidden layers = 4

top k
1
5
10
20

.

Figure 3.13: Bar graphs of the effect of the hidden layer size on Multilayer
Perceptron model accuracy (in percent).

The results can be seen in Figure 3.13 with computation time in Figure 3.14.
They show that a simple MLP with one hidden layer and number of iterations
limited to 50 (which was the least number of iterations tested) is the best
performing one.

3.2.4.2 Activation function

The three activation functions tested were the hyperbolic tan function and the
the rectified linear unit function. Only one hidden layer with size of 300 nodes
was used with 50 iterations of learning in order to test them. The results are
in Figure 3.15 and in Figure 3.16. In terms of speed, the ReLU function is the
fastest one. However, in terms of accuracy, the model with this configuration
could not learn to predict the results and the accuracy is only slightly better
than random baseline. In the following experiments, the configuration will be
tuned to achieve hopefully better results.

73

3. Experiments

50 100 200
max iter

0

200

400

600

800

1000

1200

1400
tim

e

17
4.

91 34
8.

55 44
8.

78

26
3.

86

52
7.

39

95
8.

83

34
3.

96

73
2.

53

12
04

.9
9

47
9.

56

69
6.

16

10
22

.0
5

hidden layers
1
2
3
4

.

Figure 3.14: Bar graphs of the effect of the hidden layer size on Multilayer
Perceptron model speed (in seconds).

logistic tanh relu
activation

0

2

4

6

8

10

12

ac
cu

ra
cy

1.
26

1.
01 1.
18

4.
17

3.
16 3.
46

6.
41

4.
73 5.

31

9.
60

7.
15 7.

67

top k
1
5
10
20

.

Figure 3.15: Bar graph of the effect of the hidden layer activation function on
Multilayer Perceptron model accuracy (in percent).

74

3.2. Experiment 1 – Regression model tuning

logistic tanh relu
activation

0

20

40

60

80

100

120

140

160

tim
e

13
1.

19

13
6.

56

11
1.

01

.

Figure 3.16: Bar graph of the effect of the hidden layer activation function on
Multilayer Perceptron model speed (in seconds).

3.2.4.3 Learning rate

In this experiment, the solver of the optimization problem is the Adam solver
[29]. It is an extension to stochastic gradient descent, which maintains an
adaptive learning rate for each of the parameter (improving performance on
sparse gradients). They are calculated from their moving averages from the
gradient and from the square gradient. The weights also decay over time.
Even though the learning rate adapts throughout the training, correct initial
learning rate can have an impact on the performance. Results of this ex-
periment are in Figure 3.17 and show that all initial learning rates perform
very similarly, therefore the initial learning rate of 0.001 will be used as it
performed the best by a small margin.

3.2.4.4 Results

Surprisingly the Multilayer Perceptron could not achieve the results as good
as the previous models even after its optimization, although the results were
similar to an Elastic Net (which is not surprising considering they use almost
the same regularization and had same number of parameters, but different
function). The best top-1 accuracy it achieved was 1.26% and top-20 accuracy
was 9.60% with optimized parameters listed in Table 3.6.

75

3. Experiments

0.0001 0.001 0.01
learning rate init

0

2

4

6

8

ac
cu

ra
cy

1.
13

1.
17

1.
20

3.
27 3.
35

3.
22

5.
05

5.
08

4.
97

7.
90

7.
79

7.
39

top k
1
5
10
20

Figure 3.17: Bar graph of the effect of initial learning rate on Multilayer
Perceptron model accuracy (in percent).

Hyperparameter Value
activation logistic sigmoid
hidden layers 1
hidden layer units 300
maximum no. of iterations 50
preprocessing standardization and PCA

Table 3.6: Optimized hyperparameters of ElasticNet model.

3.2.5 Random forests

A rather popular technique in machine learning is ensemble learning. It is a
technique where multiple trained models are used for prediction in order to
overcome the flaws of each of the individual models. For example the majority
of winners of the ImageNet competitions used multiple trained CNNs and
averaged their predictions.

A popular variant of ensemble methods called Random forest is used in
this experiment along with its variant called Extremely randomized trees.
Because this family ensemble model relies on a large number of trained trees,
it is heavily memory dependant, especially with a large dataset. This causes
memory issues and forced us to use a model with only 100 trees with minimum
5 samples on an internal node (to prevent further splitting). The results can
be seen in 3.18 and show that they do not achieve results as good as the
previous models. Extratrees model was performing better with more than 10
times faster learning speed than Random Forest, showing that randomizing is

76

3.2. Experiment 1 – Regression model tuning

random forest extratrees
algorithm

0

1

2

3

4

5

6

7

8

ac
cu

ra
cy

1.
06 1.

60

2.
50

3.
243.

75

4.
71

5.
53

6.
46

top k
1
5
10
20

.

Figure 3.18: Bar graph with the results of a Random forest and an Extremely
randomized trees models.

Model Top-1 accuracy Top-20 accuracy
K Nearest neighbors 2.5% 6.88%
Elastic Net 1.54% 10.28%
Multilayer Perceptron 1.26% 9.60%
Random Forests 1.60% 9.46%

Table 3.7: Results of optimized .

sometimes better than exact optimization.

3.2.6 Result

Results of experiment 1 can be seen in Table 3.7 and Figure 3.19. The K
Nearest Neighbor regressor performed the best in top-1 accuracy with 2.5%
and the ElasticNet regressor was the best in top-20 accuracy with 10.28%.

The results can also be visualized on the t-SNE projection used in Chapter
Data 2. They are pictured in Figure 3.21 on InceptionNet features and in
Figure 3.22 on word2vec features. We can see that successful predictions of
the model are not grouped but are scattered throughout the whole dataset.
We can also plot models accuracy depending on the k in top-k. The plot can
be seen in Figure 3.20 and show that after a certain threshold of parameter
k, the ElasticNet regressor is the best model we obtained.

77

3. Experiments

KNN ElasticNet MLP Extratress
model

0

2

4

6

8

10

12
ac

cu
ra

cy

2.
50

1.
31

1.
26 1.
60

4.
23 4.
47

4.
17

3.
24

5.
36

6.
86

6.
41

4.
71

6.
86

10
.4

8

9.
60

6.
46

top k
1
5
10
20

Figure 3.19: Bar graph comparing the accuracy of optimized regression mod-
els.

0 50 100 150 200 250 300
top k

0

5

10

15

20

ac
cu

ra
cy model

KNN
EN
MLP

Figure 3.20: Dependency of top-k accuracy based on k for different regression
models.

78

3.3. Experiment 2 – Feature extraction models evaluation

40 20 0 20 40
x

40

20

0

20

40

y
prediction
False
True

Figure 3.21: Plot of t-SNE projection of InceptionNet features with observa-
tions colored by their prediction success.

40 20 0 20 40
x

40

20

0

20

40

y

prediction
False
True

Figure 3.22: Plot of t-SNE projection of word2vec features with observations
colored by their prediction success.

3.3 Experiment 2 – Feature extraction models
evaluation

In the previous experiment, we tuned the regression algorithms only on the
word2vec text features and InceptionNet image features. This experiment fo-
cuses on whether the word2vec feature extraction model performs the best out
of the text feature models and whether the InceptionNet excels among image
feature extraction models. The best performing models from the previous
experiments in 3.7 were the KNN model with 2.5% top-1 accuracy and Elas-
ticNet with 10.28% top-20 accuracy. In this experiment, these models were
trained on different text features and image features specified in Table 2.3.

79

3. Experiments

average maximum TF-IDF weighted avg
mode

0

2

4

6

8

10

12

ac
cu

ra
cy

3.
04

3.
05

2.
52

4.
87

4.
65

3.
91

6.
16

5.
91

4.
79

7.
76

7.
39

5.
97

model = KNN

average maximum TF-IDF weighted avg
mode

1.
36

1.
13

0.
47

4.
48

3.
85

1.
84

7.
03

6.
03

3.
13

10
.4

1

9.
37

5.
32

model = EN

top k
1
5
10
20

Figure 3.23: Bar graph comparing different ways of document embedding
extraction from word embeddings.

3.3.1 Sentence embedding
First, we will test the best way to get document embeddings from word em-
beddings. They can be obtained in the following ways:

1. Averaging word vectors.
2. Maximum of word vectors element-wise.
3. Averaging word vectors weighted by TF-IDF weights.

The results can be seen in Figure 3.23 and show that simply averaging
the word vectors brings the best results. This is rather surprising because
according to the research done beforehand, the TF-IDF weighted embeddings
should have been the most accurate but it is perhaps too strong and penalizes
infrequent words too much.

A similar test was done for BERT model where the embedding was ex-
tracted either by averaging sentence vectors or using as much as possible of
the beginning of the article. The results are presented in Figure 3.24

3.3.2 Results
The results comparing all feature extraction methods can be seen in Fig-
ure 3.25 and in Figure 3.26 and show that among the image feature extraction
methods MobileNet is the winner. It achieved consistently the highest both
top-1 and top-20 accuracy when used with different text feature extraction
methods. Among the text feature extraction models, GloVe is also consis-
tently the best performing model and thus will be used in the next experi-
ment. Compared to the 3.06% top-1 accuracy and 7.81% top-20 accuracy of

80

3.4. Experiment 3 – Application on multiple domains

sentence averaging article beginning
BERT mode

0

2

4

6

8

10

ac
cu

ra
cy

3.
05

3.
00

4.
83

4.
87

6.
00

5.
97

7.
50

7.
45

model = KNN

sentence averaging article beginning
BERT mode

1.
10

0.
95

3.
73

3.
46

6.
00

5.
71

9.
29

8.
99

model = EN

top k
1
5
10
20

Figure 3.24: Bar graph comparing different ways of document embedding
extraction from word embeddings using BERT model.

word2vec and InceptionNet features, we achieved 4.29% top-1 and 9.92% top-
20 accuracy with the GloVe and MobileNet embeddings with the KNN model
and 1.86% top-1 and 13.34% top-20 accuracy with the ElasticNet model.

On the whole, all the feature extraction algorithms have similar perfor-
mance. This result is not surprising considering all these algorithms were
designed to perform a similar task.

The state-of-the-art model BERT is unexpectedly the worst performing
model. It is the only embedding technique that takes into account the context
of the word, but this information is perhaps not utilized fully in our case and
could hinder the performance.

3.4 Experiment 3 – Application on multiple
domains

Based on the previous experiments, we use the best performing regression
algorithms and feature extraction models and apply them on other domains
in the whole dataset – business news, sports, health, technology. The enter-
tainment news category was excluded due to the low number of samples. We
hope to achieve similar or better results as in previous experiments and thus
to prove that the whole methodology is coherent.

In order for the data to be comparable, the number of samples in all
categories has to be equal. All categories had image duplicates removed and
randomly subsampled to 9000 samples, which is the number of samples in the
smallest category – health news. The models used are the KNN and ElasticNet
models with the GloVe text features and MobileNet image features according
to the results of previous experiments.

81

3. Experiments

0

2

4

6

8

10

12

ac
cu

ra
cy

3.
06

2.
94 3.
13 3.

63

4.
88

4.
78 4.
94

5.
876.

20

5.
75 6.

17 7.
007.

81

7.
12 7.

83 8.
58

txt feature = word2vec

3.
66

3.
71

3.
72 4.

29

5.
52 5.
64 5.
81

6.
816.
89

6.
66 6.
94

8.
148.

56

8.
13 8.

66

9.
92

txt feature = glove

0

2

4

6

8

10

12

ac
cu

ra
cy

3.
33

3.
21 3.
31 3.

83

5.
14

5.
10 5.
27

6.
286.
41

6.
17 6.

51

7.
458.

11

7.
45 8.

01

9.
01

txt feature = fasttext

InceptionNet ResNet VGGNet MobileNet
img feature

3.
27

3.
17 3.
33 3.

85

5.
04

4.
94 5.

30 6.
166.
26

5.
98 6.

46

7.
387.

87

7.
54 8.

07 8.
95

txt feature = conceptnet

InceptionNet ResNet VGGNet MobileNet
img feature

0

2

4

6

8

10

12

ac
cu

ra
cy

2.
95

2.
95 3.
09 3.

60

4.
67

4.
55 4.

88 5.
715.
78

5.
49 6.

17 6.
827.

23

6.
77

7.
70 8.

26

txt feature = BERT

top k
1
5
10
20

Figure 3.25: Bar graph with comparison of the image and text features with
KNN model.

82

3.4. Experiment 3 – Application on multiple domains

0

2

4

6

8

10

12

14

16

ac
cu

ra
cy

1.
36

1.
16 1.
38

1.
44

4.
56

4.
00 4.
38 4.
63

6.
95

6.
36 6.
51 7.

20

10
.2

3

9.
62 9.
96 11

.0
8

txt feature = word2vec

1.
67

1.
64

1.
53 1.
86

5.
23

5.
02 5.
21 5.

84

8.
03

7.
60 7.
93 9.

07

11
.8

7

11
.2

1

11
.6

9 13
.3

4

txt feature = glove

0

2

4

6

8

10

12

14

16

ac
cu

ra
cy

1.
36

1.
17 1.
28 1.
43

4.
34

3.
98 4.
28 4.
70

6.
65

6.
47 6.
62 7.

46

10
.4

4

9.
75 10

.0
2 11

.5
1

txt feature = fasttext

InceptionNet ResNet VGGNet MobileNet
img feature

1.
55

1.
31 1.
40 1.
49

4.
73

4.
24

4.
29 4.

99

7.
28

6.
49 6.
75 7.

84

10
.4

7

9.
85 10

.2
9 11

.6
4

txt feature = conceptnet

InceptionNet ResNet VGGNet MobileNet
img feature

0

2

4

6

8

10

12

14

16

ac
cu

ra
cy

1.
06

1.
10

1.
01 1.
20

3.
81

3.
60

3.
55 4.

24

5.
97

5.
76

5.
75 6.

86

9.
29

8.
78 9.
11 10

.2
5

txt feature = BERT

top k
1
5
10
20

Figure 3.26: Bar graph with comparison of the image and text features with
ElasticNet model.

83

3. Experiments

3.4.1 Results

The result of the experiments can be seen in Figure 3.27 and shows that
both the KNN and ElasticNet models perform the worst on the World news
category. It may be either a matter of chance or because, generally speaking,
the images in World News category are harder to predict. The KNN model
performed the best on the Technology, Health and Business news, achieving
up to 5.92% accuracy. Note that the higher accuracy is achieved also by the
size of the testing dataset, which is around twice as small as in the previous
experiments. The ElasticNet model achieved accuracy of nearly 25% top-20,
i.e. the original picture was in the top 20 suggested images in 437 out of 1800
queries.

3.5 Experiment 4 – Dataset by a Czech publishing
house

One of the assignments of the thesis is to test the performance of the rec-
ommender system on a dataset supplied by a publishing house, in our case
the Aktualne dataset. Because we have previously run the experiments only
on English language, we need to test the performance of the system with dif-
ferent text embeddings first. We have 4 models available: word2vec CBOW,
word2vec Skip-gram, GloVe and FastText.

The results can be seen in Figure 3.28 and show that the FastText model
is the most accurate. However, this is probably not because of the model
architecture itself, but because the FastText model was trained on the largest
corpus. The precise token count is not available, but FastText was trained on
both Wikipedia and common crawl, whereas the other models were trained
only on Wikipedia. Interestingly, our results confirm the results of the authors
of word2vec models that their CBOW variant is performing better than their
Skip-gram on Czech language.

The model was also tested on both categories of the Aktualne dataset.
Even though both categories have more than 15 000 samples (with duplicate
images removed) in both categories, they have been subsampled to 9 000 sam-
ples, so that the results are comparable to Experiment 3. The results in
Figure 3.29 are similar to results from Reuters dataset in the way that in
both of them, the “World news” or “Zahranici” categories are the hardest to
predict. Articles in Czech language are harder to predict, because they score
only 1.67% and 3.23% top-1 accuracy in the KNN model compared to the
average top-1 accuracy of around 5% of articles in English language. This
could however be not because of the complexity of the language itself, but the
quality of the text embedding model.

84

3.5. Experiment 4 – Dataset by a Czech publishing house

0

5

10

15

20

25

30

ac
cu

ra
cy

5.
92

5.
72

5.
42

3.
83

3.
93

9.
51 9.
87

9.
60

7.
57

6.
44

10
.9

2

11
.9

3

11
.7

3

10
.5

8

7.
93

12
.9

1

14
.3

9

14
.3

0

14
.1

2

9.
90

model = KNN

technologyNews

businessN
ews

healthNews

sportsN
ews

worldNews

category

0

5

10

15

20

25

30

ac
cu

ra
cy

4.
13 4.
68

4.
02

2.
31

2.
18

11
.1

9

12
.7

4

12
.3

8

8.
39

6.
48

15
.5

1 17
.8

0

17
.7

9

13
.4

3

9.
79

20
.6

6 24
.2

8

23
.6

9

20
.7

7

14
.2

3

model = EN top k
1
5
10
20

Figure 3.27: Bar graph with application of the algorithms on different do-
mains.

85

3. Experiments

0

2

4

6

8

10

12

14

16

ac
cu

ra
cy

1.
75 2.

87

2.
45 2.
87

4.
60

6.
02

5.
25 6.

006.
46

7.
99

6.
97 7.

918.
81

10
.5

0

9.
07

10
.4

8

model = KNN

word2vec skip word2vec cbow GloVe FastText
txt features

0

2

4

6

8

10

12

14

16

ac
cu

ra
cy

0.
76 1.

26

0.
79 1.

63

3.
19

4.
58

3.
17

5.
56

5.
44

7.
44

5.
33

8.
769.

48

11
.7

5

8.
51

13
.3

2
model = EN

top k
1
5
10
20

Figure 3.28: Bar graph of performance of text feature extraction models of
Czech language.

86

3.6. Results

domaci zahranici
category

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

ac
cu

ra
cy

3.
23

1.
67

6.
89

3.
77

8.
82

5.
20

11
.3

9

7.
37

model = KNN

domaci zahranici
category

1.
86

1.
27

6.
52

4.
54

10
.1

6

7.
18

15
.4

4

10
.7

8

model = EN

top k
1
5
10
20

Figure 3.29: Bar graph with application of the algorithms on different domains
from Aktualne dataset.

3.6 Results
In the chapter Experiments, we have tested numerous text and image feature
extraction techniques and optimized a model for recommending images related
to the text of an article. The best top-1 accuracy of more than 4% compared
to a random model with less then 0.06% accuracy means more than 70 times
increase. Using top-20 accuracy, which is a realistic number of images an
editor might look at when choosing an image, the best model scored nearly
25% compared to a random model with 1% accuracy. However, the most
important fact is that all the recommended images are related to the text
and are not only random images. We do not have available data about how
humans would cope with the non-trivial task of recommending images related
to articles but we assume they would not achieve a very high accuracy either.

The objective of the thesis, i.e. to design and implement a system for image
recommendation, has been fulfilled. The system is capable of recommending
images across multiple domains in multiple languages. Examples of recom-
mendations of images related to an article can be seen in Appendix A.

The system could be improved in several areas. The regression model is
working well but there is still room for amendment. In the articles where one
or multiple persons are depicted the model lacks the ability to recognize the
person. It means that among the recommended images for an article about a
certain personality, images of other people appear as well. This imperfection
could be amended with a face recognition algorithm.

87

Conclusion

The main objective of the thesis was to design a system capable of recom-
mending images related to the text of an article, implement it and extend it
to multiple domains or languages. Another aim was to survey state-of-the-art
algorithms in image processing and text embedding with the focus on high
quality neural embeddings.

In the first part, the theoretical background was introduced with the focus
on state-of-the-art deep neural networks for image processing and neural lan-
guage modeling for text feature embedding. Multiple additional algorithms
required for the recommendation model were also researched. In the practi-
cal part, we obtained a large dataset for supervised learning of the algorithm
and extracted image and text features. A system capable of recommending
images was designed, implemented and optimized. The model was evaluated
on multiple domains and extended to support an additional language.

All requirements of the assignment of this thesis have been fulfilled. The
theoretical part of the thesis achieved the aim of researching state-of-the-art
algorithms in the fields of image processing and text mining with the focus
on neural networks. The practical part of the thesis achieved the goal of
implementing the recommender system and was extensively optimized, tuned
and evaluated on several domains and languages.

The model can be successfully used to predict images related to an article.
With some adjustments, it can be used in real world application in a publishing
house. Personally, I enjoyed the learning process while writing the thesis and
intend to learn even more about machine learning, specifically about deep
learning with neural networks.

89

Bibliography

[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael
Isard, et al. “Tensorflow: a system for large-scale machine learning.” In:
OSDI. Vol. 16. 2016, pp. 265–283.

[2] Naomi S Altman. “An introduction to kernel and nearest-neighbor non-
parametric regression”. In: The American Statistician 46.3 (1992), pp. 175–
185.

[3] Aphex34. Convolutional layer. 2015. url: https://commons.wikimedia.
org/wiki/File:Conv_layer.png (visited on 02/07/2019).

[4] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. “A simple but tough-to-
beat baseline for sentence embeddings”. In: (2016).

[5] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “Surf: Speeded up
robust features”. In: European conference on computer vision. Springer.
2006, pp. 404–417.

[6] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jau-
vin. “A neural probabilistic language model”. In: Journal of machine
learning research 3.Feb (2003), pp. 1137–1155.

[7] Christopher M. Bishop. Pattern Recognition and Machine Learning (In-
formation Science and Statistics). Berlin, Heidelberg: Springer-Verlag,
2006. isbn: 0387310738.

[8] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.
“Enriching word vectors with subword information”. In: Transactions of
the Association for Computational Linguistics 5 (2017), pp. 135–146.

[9] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. “An analy-
sis of deep neural network models for practical applications”. In: arXiv
preprint arXiv:1605.07678 (2016).

91

https://commons.wikimedia.org/wiki/File:Conv_layer.png
https://commons.wikimedia.org/wiki/File:Conv_layer.png

Bibliography

[10] Ronan Collobert and Jason Weston. “A unified architecture for natural
language processing: Deep neural networks with multitask learning”. In:
Proceedings of the 25th international conference on Machine learning.
ACM. 2008, pp. 160–167.

[11] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Lan-
dauer, and Richard Harshman. “Indexing by latent semantic analysis”.
In: Journal of the American society for information science 41.6 (1990),
pp. 391–407.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. “Imagenet: A large-scale hierarchical image database”. In: Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on. Ieee. 2009, pp. 248–255.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
“Bert: Pre-training of deep bidirectional transformers for language un-
derstanding”. In: arXiv preprint arXiv:1810.04805 (2018).

[14] Michel Marie Deza and Elena Deza. “Encyclopedia of distances”. In:
Encyclopedia of Distances. Springer, 2009, pp. 1–583.

[15] Manaal Faruqui, Jesse Dodge, Sujay K Jauhar, Chris Dyer, Eduard
Hovy, and Noah A Smith. “Retrofitting word vectors to semantic lexi-
cons”. In: arXiv preprint arXiv:1411.4166 (2014).

[16] Kelwin Fernandes, Pedro Vinagre, and Paulo Cortez. “A proactive in-
telligent decision support system for predicting the popularity of online
news”. In: Portuguese Conference on Artificial Intelligence. Springer.
2015, pp. 535–546.

[17] Salvador Garcı́a, Julián Luengo, and Francisco Herrera. Data prepro-
cessing in data mining. Springer, 2015.

[18] Aurélien Géron. Hands-on machine learning with Scikit-Learn and Ten-
sorFlow: concepts, tools, and techniques to build intelligent systems. ”
O’Reilly Media, Inc.”, 2017.

[19] Google. word2vec, Tool for computing continuous distributed represen-
tations of words. 2019. url: https://code.google.com/archive/p/
word2vec/ (visited on 02/07/2019).

[20] Caglar Gulcehre, Marcin Moczulski, Misha Denil, and Yoshua Bengio.
“Noisy activation functions”. In: International Conference on Machine
Learning. 2016, pp. 3059–3068.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep resid-
ual learning for image recognition”. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. 2016, pp. 770–778.

92

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/

Bibliography

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Identity
mappings in deep residual networks”. In: European conference on com-
puter vision. Springer. 2016, pp. 630–645.

[23] Sepp Hochreiter. “The vanishing gradient problem during learning re-
current neural nets and problem solutions”. In: International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems 6.02 (1998),
pp. 107–116.

[24] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”.
In: Neural computation 9.8 (1997), pp. 1735–1780.

[25] Harold Hotelling. “Analysis of a complex of statistical variables into
principal components.” In: Journal of educational psychology 24.6 (1933),
p. 417.

[26] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
“Mobilenets: Efficient convolutional neural networks for mobile vision
applications”. In: arXiv preprint arXiv:1704.04861 (2017).

[27] Jeremy Howard and Sebastian Ruder. “Universal language model fine-
tuning for text classification”. In: Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long
Papers). Vol. 1. 2018, pp. 328–339.

[28] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating
deep network training by reducing internal covariate shift”. In: arXiv
preprint arXiv:1502.03167 (2015).

[29] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic
optimization”. In: arXiv preprint arXiv:1412.6980 (2014).

[30] Know your meme: We need to go deeper. 2013. url: https://knowyourmeme.
com/memes/we-need-to-go-deeper (visited on 02/07/2019).

[31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet clas-
sification with deep convolutional neural networks”. In: Advances in neu-
ral information processing systems. 2012, pp. 1097–1105.

[32] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-
based learning applied to document recognition”. In: Proceedings of the
IEEE 86.11 (1998), pp. 2278–2324.

[33] Alexander LeNail. “NN-SVG: Publication-Ready Neural Network Archi-
tecture Schematics”. In: Journal of Open Source Software 4.33 (2019),
p. 747. doi: 10.21105/joss.00747.

[34] Stuart Lloyd. “Least squares quantization in PCM”. In: IEEE transac-
tions on information theory 28.2 (1982), pp. 129–137.

93

https://knowyourmeme.com/memes/we-need-to-go-deeper
https://knowyourmeme.com/memes/we-need-to-go-deeper
https://doi.org/10.21105/joss.00747

Bibliography

[35] David G Lowe. “Distinctive image features from scale-invariant key-
points”. In: International journal of computer vision 60.2 (2004), pp. 91–
110.

[36] Kevin Lund and Curt Burgess. “Hyperspace analogue to language (HAL):
A general model semantic representation.” In: Brain and Cognition.
Vol. 30. 3. ACADEMIC PRESS INC JNL-COMP SUBSCRIPTIONS
525 B ST, STE 1900, SAN DIEGO, CA …. 1996, pp. 5–5.

[37] Z. Markov and D.T. Larose. Data Mining the Web: Uncovering Patterns
in Web Content, Structure, and Usage. Wiley series on methods and
applications in data mining. Wiley, 2007, p. 33. isbn: 9780471666554.

[38] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient
estimation of word representations in vector space”. In: arXiv preprint
arXiv:1301.3781 (2013).

[39] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. “Distributed representations of words and phrases and their com-
positionality”. In: Advances in neural information processing systems.
2013, pp. 3111–3119.

[40] Andriy Mnih and Koray Kavukcuoglu. “Learning word embeddings effi-
ciently with noise-contrastive estimation”. In: Advances in neural infor-
mation processing systems. 2013, pp. 2265–2273.

[41] Andrew Y Ng, Michael I Jordan, and Yair Weiss. “On spectral clus-
tering: Analysis and an algorithm”. In: Advances in neural information
processing systems. 2002, pp. 849–856.

[42] Maximilian Nickel, Lorenzo Rosasco, Tomaso A Poggio, et al. “Holo-
graphic Embeddings of Knowledge Graphs.” In: AAAI. Vol. 2. 1. 2016,
pp. 3–2.

[43] Robert Parker, David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda.
“English gigaword fifth edition, linguistic data consortium”. In: Google
Scholar (2011).

[44] Karl Pearson. “LIII. On lines and planes of closest fit to systems of
points in space”. In: The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science 2.11 (1901), pp. 559–572.

[45] F. Pedregosa, G. Varoquaux, A. Gramfort, et al. “Scikit-learn: Ma-
chine Learning in Python”. In: Journal of Machine Learning Research
12 (2011), pp. 2825–2830.

[46] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. “GloVe:
Global Vectors for Word Representation”. In: Empirical Methods in Nat-
ural Language Processing (EMNLP). 2014, pp. 1532–1543.

94

Bibliography

[47] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christo-
pher Clark, Kenton Lee, and Luke Zettlemoyer. “Deep contextualized
word representations”. In: arXiv preprint arXiv:1802.05365 (2018).

[48] Quartl. Vector p-Norms. 2011. url: https://commons.wikimedia.
org/wiki/File:Vector-p-Norms_qtl1.svg (visited on 02/07/2019).

[49] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever.
“Improving language understanding by generative pre-training”. In: URL
https://s3-us-west-2. amazonaws. com/openai-assets/research- covers/lan-
guageunsupervised/language understanding paper. pdf (2018).

[50] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. “Hog-
wild: A lock-free approach to parallelizing stochastic gradient descent”.
In: Advances in neural information processing systems. 2011, pp. 693–
701.

[51] Radim Řehůřek and Petr Sojka. “Software Framework for Topic Mod-
elling with Large Corpora”. In: Proceedings of the LREC 2010 Workshop
on New Challenges for NLP Frameworks. ELRA, May 2010, pp. 45–50.

[52] Reuters. url: https://www.reuters.com/ (visited on 01/20/2019).
[53] Frank Rosenblatt. “The perceptron: a probabilistic model for informa-

tion storage and organization in the brain.” In: Psychological review 65.6
(1958), p. 386.

[54] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learn-
ing representations by back-propagating errors”. In: nature 323.6088
(1986), p. 533.

[55] Tom Runia. TF–FeatureExtraction. 2018. url: https://github.com/
tomrunia/TF_FeatureExtraction.

[56] Olga Russakovsky, Jia Deng, Hao Su, et al. “ImageNet Large Scale Vi-
sual Recognition Challenge”. In: International Journal of Computer Vi-
sion (IJCV) 115.3 (2015), pp. 211–252. doi: 10.1007/s11263-015-
0816-y.

[57] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. “MobileNetV2: Inverted Residuals and Linear Bot-
tlenecks”. In: arXiv preprint arXiv:1801.04381 (2018).

[58] Hinrich Schütze. “Word space”. In: Advances in neural information pro-
cessing systems. 1993, pp. 895–902.

[59] Karen Simonyan and Andrew Zisserman. “Very deep convolutional net-
works for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556
(2014).

[60] Robert Speer, Joshua Chin, and Catherine Havasi. “ConceptNet 5.5:
An Open Multilingual Graph of General Knowledge.” In: AAAI. 2017,
pp. 4444–4451.

95

https://commons.wikimedia.org/wiki/File:Vector-p-Norms_qtl1.svg
https://commons.wikimedia.org/wiki/File:Vector-p-Norms_qtl1.svg
https://www.reuters.com/
https://github.com/tomrunia/TF_FeatureExtraction
https://github.com/tomrunia/TF_FeatureExtraction
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y

Bibliography

[61] Lukáš Svoboda and Tomáš Brychcín. “New word analogy corpus for
exploring embeddings of Czech words”. In: Computational Linguistics
and Intelligent Text Processing. Springer, Apr. 2016, pp. 103–114. doi:
10.1007/978-3-319-75477-2.

[62] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A
Alemi. “Inception-v4, inception-resnet and the impact of residual con-
nections on learning.” In: AAAI. Vol. 4. 2017, p. 12.

[63] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. “Going deeper with convolutions”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2015,
pp. 1–9.

[64] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. “Rethinking the inception architecture for computer
vision”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 2818–2826.

[65] Andrew Thompson. All the news Dataset. 2017. url: https://www.
kaggle.com/snapcrack/all-the-news/home (visited on 01/20/2019).

[66] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention
is all you need”. In: Advances in Neural Information Processing Systems.
2017, pp. 5998–6008.

[67] Quan Wang. “Kernel principal component analysis and its applications
in face recognition and active shape models”. In: arXiv preprint arXiv:1207.3538
(2012).

[68] Lilian Weng. Generalized Language Models. 2019. url: https://lilianweng.
github.io/lil-log/2019/01/31/generalized-language-models.
html (visited on 02/07/2019).

[69] John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. “Chara-
gram: Embedding words and sentences via character n-grams”. In: arXiv
preprint arXiv:1607.02789 (2016).

[70] Han Xiao. bert-as-service. 2018. url: https://github.com/hanxiao/
bert-as-service.

[71] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming
He. “Aggregated residual transformations for deep neural networks”. In:
Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Con-
ference on. IEEE. 2017, pp. 5987–5995.

[72] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. “BIRCH: an effi-
cient data clustering method for very large databases”. In: ACM Sigmod
Record. Vol. 25. 2. ACM. 1996, pp. 103–114.

96

https://doi.org/10.1007/978-3-319-75477-2
https://www.kaggle.com/snapcrack/all-the-news/home
https://www.kaggle.com/snapcrack/all-the-news/home
https://lilianweng.github.io/lil-log/2019/01/31/generalized-language-models.html
https://lilianweng.github.io/lil-log/2019/01/31/generalized-language-models.html
https://lilianweng.github.io/lil-log/2019/01/31/generalized-language-models.html
https://github.com/hanxiao/bert-as-service
https://github.com/hanxiao/bert-as-service

Bibliography

[73] Quan Zhou, Wenlin Chen, Shiji Song, Jacob R Gardner, Kilian Q Wein-
berger, and Yixin Chen. “A Reduction of the Elastic Net to Support
Vector Machines with an Application to GPU Computing.” In: AAAI.
2015, pp. 3210–3216.

[74] Hui Zou, Trevor Hastie, Robert Tibshirani, et al. “On the “degrees of
freedom” of the lasso”. In: The Annals of Statistics 35.5 (2007), pp. 2173–
2192.

97

Appendix A
Recommendations examples

99

A. Recommendations examples

Na Orlickoústecku začal hořet za jízdy autobus. Jelo v něm 23 dětí, nikdo se
nezranil Oheň vzplál v motorové části autobusu. Řidič se snažil požár uhasit sám,
ale nakonec plameny zlikvidovali až hasiči. Cotkytle (Orlickoústecko) - Hasiči v

úterý dopoledne likvidovali požár autobusu v Cotkytli na Orlickoústecku. Cestovalo
jím 23 dětí na školu v přírodě a hořet začal za jízdy. ”Při požáru nebyl nikdo

zraněn,” uvedla mluvčí krajských hasičů Vendula Horáková. ”Děti mířící na školu v
přírodě naštěstí neměly cestu do cíle dlouhou. Autobus začal hořet zhruba 300

metrů před cílem. Děti tak do hotelu dorazily pěšky a byly v pořádku,”
dodalaHoráková. Oheň vzplál v motorové části autobusu. Řidič se snažil požár

uhasit sám, ale nakonec plameny zlikvidovali až hasiči. Příčinou vzniku požáru byla
s největší pravděpodobností technická závada na elektroinstalaci. Škoda byla

předběžně vyčíslena na 500 tisíc korun.

Figure A.1: Recommendations for an article about a bus fire from the Aktu-
alne dataset, category domaci. From top to bottom is the article text, image
and recommended images.

100

Kremlin says still waiting for U.S. talks to set up Putin-Trump summit MOSCOW
(Reuters) - The Kremlin said on Friday it was still waiting for substantive talks
with the United States to set up a summit between Russian President Vladimir

Putin and U.S. President Donald Trump. Trump said in March that the two leaders
would meet soon, but since then already poor ties between Washington and Moscow

have deteriorated further over the conflict in Syria and the poisoning of a former
Russian spy in Britain. Kremlin spokesman Dmitry Peskov told reporters on a
conference call on Friday that there was still no clarity on a possible meeting

between the two leaders and that no further steps had been taken by Washington to
arrange it. “We are waiting,” Peskov said.

Figure A.2: Recommendations for an article about USA and Russian politics
from Reuters Archive dataset, category World News. From top to bottom is
the article text, image and recommended images.

101

A. Recommendations examples

Off day’ leaves Hamilton seeking his lost rhythm BAKU (Reuters) - Triple Formula
One world champion Lewis Hamilton blamed a rare ‘off day’ for an error-filled

qualifying performance on Saturday at the Baku street circuit that hosts
Azerbaijan’s first grand prix. The Briton, winner of the two previous races in

Monaco and Montreal, will start in 10th place after clipping a wall and breaking his
car’s suspension while Mercedes team mate and rival Nico Rosberg took pole

position. Hamilton also ran off the track twice. The champion is nine points adrift
of the German after seven races and hoped he might be able to regain the lead in
Baku but that looks a tall order now unless misfortune strikes Rosberg. “It just

wasn’t a good one,” Hamilton told reporters. …

Figure A.3: Recommendations for an article about Formula 1 racing from
Reuters Archive dataset, category Sports News. From top to bottom is the
article text, image and recommended images.

102

Appendix B
Glossary

BERT Bidirectional encoder representations from transformers

Birch Balanced iterative reducing and clustering using hierarchies

BOW Bag of words

CBOW Continuous bag of words

CNN Convolutional neural network

ELMo Embeddings from language models

Extratrees Extremely randomized forest

GPU Graphics processing unit

ILSVRC ImageNet Large Scale Visual Recognition Challenge

KNN k-nearest neighbors

Lasso Least absolute shrinkage and selection operator

LSA Latent semantic analysis

LTSM Long short-term memory model

MAE Mean absolute error

MLP Multilayer perceptron

MNIST Modified National Institute of Standards and Technology database

MSE Mean square error

MSLE Mean square logarithmic error

103

B. Glossary

PCA Principal component analysis

PPMI Ppositive pointwise mutual information

ReLU Rectified linear unit

ResNet Residual network

RMSE Root mean square error

RMSProp Root mean square propagation

RNN Residual neural network

SIFT Scale-invariant feature transform

SURF Speeded-up robust features

SVD Singular value decomposition

SVM Support vector machine

SVR Support vector regression

t-SNE t-distributed stochastic neighbor embedding

TanH Hyperbolic tangent

TF-IDF Term frequency – inverse document frequency

VGGNet Visual geometry group network

vLBL Vector log-bilinear model

104

Appendix C
Contents of USB

readme.md.........................the file with USB contents description
src...the directory of source codes

thesis...............the directory of LATEX source codes of the thesis
images.................................the thesis images directory
plots....................................the thesis plots directory
recommendations....................the thesis appendix directory
*.tex..................... the LATEX source code files of the thesis

impl.......................the directory of the implemented program
*.ipynb.......................the IPython Notebook source codes
*.py the Python source codes
datasets............................datasets used in source codes
models................................models used in source codes

text.. the thesis text directory
DP_Pištora_Matouš_2018.pdf the Diploma thesis in PDF format

105

	Introduction
	Analysis
	Recommendation
	Text embedding
	Image embedding

	Dataset and data analysis
	Reuters dataset
	Aktualne dataset
	Text embedding extraction
	Image embedding extraction
	Visualization

	Experiments
	Methodology
	Experiment 1 – Regression model tuning
	Experiment 2 – Feature extraction models evaluation
	Experiment 3 – Application on multiple domains
	Experiment 4 – Dataset by a Czech publishing house
	Results

	Conclusion
	Bibliography
	Recommendations examples
	Glossary
	Contents of USB

