
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 16, 2019

ASSIGNMENT OF MASTER’S THESIS
 Title: Evaluating performance of an image compression scheme based on non-negative matrix

factorization
 Student: Bc. Marek Pikna

 Supervisor: doc. Ing. Ivan Šimeček, Ph.D.

 Study Programme: Informatics

 Study Branch: System Programming

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2019/20

Instructions

The aim of this work is to design and implement an image compression scheme based on non-negative
matrix factorization (NMF) and to evaluate the performance of this compression scheme. In order to
achieve this, the goals are following:
 - Study the theory related to image compression [1].
 - Study NMF and its current applications [2] [3].
 - Analyze existing formats used for representing uncompressed images and decide how can they be used
for a compression scheme using NMF.
 - Design and implement a compression scheme using NMF [4].
 - Evaluate using both objective and subjectiv metrics the performance of this compression scheme with
respect to various parameters of NMF (amount of iterations, rank, variation of NMF algorithm).
 - Decide whether a certain representation of an uncompressed image is better suited for this compression
scheme than another one.
 - Compare the results with currently used image compression methods.

References

[1] RABBANI, Majid a Paul W. JONES. Digital image compression techniques. Bellingham, Wash., USA: Spie Optical
Engineering Press, 1991. ISBN 978-081-9406-484.
[2] Lee, Daniel & Sebastian Seung, H. (1999). Learning the Parts of Objects by Non-Negative Matrix Factorization.
Nature. 401. 788-91.
[3] Gillis, Nicolas. (2014). The Why and How of Nonnegative Matrix Factorization. Regularization, Optimization, Kernels,
and Support Vector Machines. 12.
[4] SAHU, Khushboo Kumar a K. J. SATAO. Image Compression Methods using Dimension Reduction and Classification
through PCA and LDA: A Review [online]. , 4 [cit. 2019-01-11].
Dostupné z:https://www.ijsr.net/archive/v5i5/NOV163957.pdf

Master’s thesis

Evaluating performance of an image
compression scheme based on non-negative
matrix factorization

Bc. Marek Pikna

Department of Theoretical Computer Science

Supervisor: doc. Ing. Ivan Šimeček, Ph.D.

May 9, 2019

Acknowledgements

I would like to thank my supervisor doc. Ing. Ivan Šimeček, Ph.D. for all the
valuable feedback provided during the course of writing this thesis. I would
also like to thank my family for all they have done for me and my friends for
being there for me whenever I was in need. Last but not least, I would like to
thank Brandon McCartney for his unlasting support and positivity.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46(6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 9, 2019 .

Czech Technical University in Prague

Faculty of Information Technology

c© 2019 Marek Pikna. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Pikna, Marek. Evaluating performance of an image compression scheme based
on non-negative matrix factorization. Master’s thesis. Czech Technical Uni-
versity in Prague, Faculty of Information Technology, 2019.

Abstrakt

Tato magisterská práce analyzuje potenciál komprese obrazu pomoćı faktor-
izace nezáporných matic, matematické metody, která faktorizuje matici ob-
sahuj́ıćı nezáporné elementy do dvou faktor̊u. Jelikož tato technika pouze
aproximuje matici a neńı přesnou faktorizaćı, docháźı ke ztrátě informaćı. Z
toho d̊uvodu lze chápat tuto metodu také jako ztrátovou kompresńı metodu.
V práci jsou navržena tři kompresńı schémata, založena na r̊uzných barevných
modelech a zároveň jsou tato schémata otestována. Nejlepš́ı kompresńı schéma
je také porovnáno s JPEG kompresńı metodou. Výsledky ukazuj́ı, že ačkoliv
tyto metody nedosahuj́ı lepš́ıch kompresńıch poměr̊u, ztráta informace dovede
být nižš́ı a kvalita obrazu tedy vyšš́ı, než v př́ıpadě JPEGu. Práce zároveň
navrhuje daľśı možná vylepšeńı, která by mohla vylepšit kompresńı poměry a
kompresńı časy.

Kĺıčová slova Faktorizace nezáporných matic, redukce dimenzionality, barevné
modely, barevné prostory, ztrátová komprese, komprese obrazu

vii

Abstract

This master’s thesis analyzes the potential of image compression utilizing non-
negative matrix factorization, a mathematical technique which factorizes a
matrix containing non-negative elements into two factors. As this technique is
only an approximation and not an exact factorization, information loss occurs,
rendering the technique a lossy compression technique. Three compression
schemes are proposed, based on different color models, and tested, with the
best performing one compared to JPEG. The results show that while non-
negative matrix factorization does not achieve better compression ratio, the
information loss can be lower and the image quality therefore higher. Further
improvements of the algorithm which could improve the compression ratio are
proposed.

Keywords Non-negative matrix factorization, dimensionality reduction, color
models, color spaces, lossy compression, image compression

viii

Contents

Introduction 1
Related work . 3

1 Non-negative matrix factorization 5
1.1 Problem definition . 5
1.2 Problem solution . 6

1.2.1 Multiplicative updates 6
1.2.2 Alternating least squares method 7

1.3 Common NMF applications . 8
1.3.1 Part-based analysis . 8
1.3.2 Image learning . 9
1.3.3 NMF properties . 10

1.4 NMF parameters . 12
1.4.1 Choice of rank r . 12
1.4.2 Initialization techniques 12

1.5 NMF and compression . 13

2 Digital image encoding 15
2.1 Digital images . 15

2.1.1 Color models and color spaces 15
2.1.2 RGB color model . 16
2.1.3 Y ′CBCR color space . 17
2.1.4 Grayscale . 20

3 Image compression 21
3.1 Data compression . 21

3.1.1 Lossless compression algorithms 21
3.1.2 Lossy compression algorithms 24
3.1.3 Modeling and coding . 24

3.2 Image compression . 26

ix

3.2.1 Redundancies in images 26
3.2.2 Compression metrics . 27
3.2.3 JPEG image compression 31

4 NMF compression scheme 35
4.1 Compression scheme design . 35

4.1.1 Naive compression scheme (RGB) 36
4.1.2 Separate RGB compression 36
4.1.3 Y ′CBCR compression scheme 37

4.2 Decompression . 38
4.3 Non-deterministic properties of NMF 38

5 Implementation 41
5.1 Technologies used . 41
5.2 Performing non-negative matrix factorization 42

5.2.1 Data types and NMF compression 43
5.3 Compressed image data structure 43
5.4 Decompressing data . 44
5.5 Possible improvements . 44

6 Experiments and results 47
6.1 Compression scheme variables 47
6.2 Choice of images . 48
6.3 Results using the naive RGB scheme 49

6.3.1 Image quality . 49
6.3.2 Compression time/ratio 50
6.3.3 Subjective analysis . 50

6.4 Results using the separate RGB scheme 52
6.4.1 Image quality . 53
6.4.2 Compression time/ratio 53
6.4.3 Subjective analysis . 54

6.5 Results using the Y ′CBCR scheme 55
6.5.1 Image quality . 55
6.5.2 Compression time/ratio 55
6.5.3 Comparison with JPEG 56
6.5.4 Image quality improvement with more NMF iterations . 57
6.5.5 Subjective analysis of results 60

6.6 Randomized seeding methods 62
6.6.1 Rank affecting image quality 62

Conclusions and future work 65
Future work . 65

Bibliography 67

x

A Acronyms 73

B Contents of enclosed CD 75

xi

List of Figures

1.1 Comparison between dimensionality reduction algorithms 10
1.2 Visual display of non-hierarchical properties of NMF. [34] 11
1.3 Visualization of NMF as a compression tool 14

2.1 Comparison between two different color spaces using an RGB model 16
2.2 Image decomposed in its RGB channels 17
2.3 Image decomposed into Y ′, CB and CR channels 19
2.4 The CBCR plane at constant luma Y ′ = 0.5. 19

3.1 Accuracy of JPEG . 24
3.2 JPEG artifacts in an image containing text 25
3.3 An image showing some of the redundancies which exist in images 27
3.4 Problems of MSE and PSNR as lossy compression quality metrics 31
3.5 Accuracy of JPEG with different quality settings 33

4.1 Visualization of the naive compression scheme 36
4.2 Visualization of the separate RGB compression scheme 37
4.3 Visualization of the Y ′CBCR compression scheme 39

6.1 Benchmark images . 49
6.2 SSIM and PSNR using naive RGB compression scheme 50
6.3 Compression time and ratio of naive RGB scheme, variable rank . 51
6.4 Naive RGB scheme images with different ranks 51
6.5 Artifacts occuring in naive RGB compression scheme 52
6.6 SSIM and PSNR using separate RGB compression scheme 53
6.7 Compression time and ratio of separate RGB scheme, variable rank 54
6.8 Separate RGB scheme images with different ranks 55
6.9 SSIM and PSNR using Y ′CBCR compression scheme 56
6.10 Compression time and ratio of Y ′CBCR compression scheme . . . 57
6.11 Image size comparison between original, JPEG and Y ′CBCR com-

pression schemes . 58

xiii

6.12 Effect of multiplicative update iterations on image quality (Y ′CBCR) 59
6.13 Compression time depending on maximum iterations (Y ′CBCR) . 60
6.14 Artifact comparison between JPEG and NMF Y ′CBCR compres-

sion scheme . 61
6.15 Zoomed in artifact comparison between JPEG and NMF Y ′CBCR

compression scheme . 61
6.16 Randomized seeding methods on a benchmark picture 63
6.17 Artifacts created by using a random seeding method 64

xiv

List of Tables

3.1 Example coding for a sample data sequence using delta encoding . 26

5.1 Format used for storing the compressed image data 43

6.1 Resolutions of downscaled benchmark images 48
6.2 Maximum achieved SSIM/PSNR values and comparison to JPEG 58

xv

Introduction

Data encoding and consequently data compression are both problems which
lie at the heart of many modern technologies - digital television, videogames,
mobile communications, security cameras and all other forms of multimedia.
As the amount of data only grows in the current world, the quality of com-
pression ends up becoming a very serious problem, since good compression can
significantly reduce the costs of data storage as well as the costs and speed of
data transfer.

To put the problem into perspective, in order to store images in the reso-
lutions currently considered as high resolutions (1920x1080 pixels, the second
most common resolution used on desktop devices [5]) using an uncompressed
standard encoding, the filesize would be almost 6 megabytes. Such a high size
impacts many areas, such as speed of transfer or storage costs. Fortunately,
modern image compression formats such as PNG or JPEG are able to reduce
this size remarkably.

Currently, images contribute to the amount of data on the internet signifi-
cantly - not only are images a common form of media for professional purposes
but some of the currently largest platforms on the internet are based on im-
age sharing and image hosting. One modern social media platform centered
around image sharing needs to be able to store and serve over 67 million new
posts each day [43]. Being able to obtain these images fast and in good quality
is therefore highly important for both users, as well as for the owners of these
services, in order to store data efficiently.

In the recent years with growth related to machine learning and related
areas, such as artifical intelligence, new applications of mathematical concepts
have been discovered. Some of these concepts which are enjoying high success
are algorithms related to dimensionality reduction. These algorithms aim to

1

Introduction

reduce the number of random variables under consideration [39].

While these algorithms have been enjoying success mostly in areas such
as data mining or machine learning, their nature of reducing the amount of
random variables under inspection means that the algorithms can also be
understood as compression algorithms. One of the algorithms used for dimen-
sionality reduction and the one which this thesis focuses on is non-negative
matrix factorization (abbreviated as NMF). The NMF algorithm is currently
used in areas such as facial recognition or astronomy. Heart of the algorithm is
the factorization of a matrix consisting of non-negative values into two factor
matrices.

The research in image compression methods using dimensionality reduc-
tion algorithms is currently being performed - another dimensionality reduc-
tion algorithm and its potential usage for image compression which has been
well researched is the singular value decomposition algorithm, for example in
[30]. This algorithm, just like the NMF, factorizes a matrix - however, without
restricting the values to be non-negative. While certain similar research to see
whether NMF can be used for image compression exists, the works are related
to very specific use-case scenarios.

Thus, this thesis aims to analyze the potential of the NMF algorithm as a
tool for image compression. In order to achieve this, the following points will
be explored in the thesis:

• NMF and its current applications will be studied (Chapter 1).

• The theory and practice related to digital image encoding and image
compression will be explored and described together with modern image
compression. (Chapters 2 and 3)

By analyzing these concepts, a proof of concept image compression algo-
rithm using NMF will be designed and implemented. By doing so, these issues
will be addressed:

• Whether a certain way of representing an uncompressed image is better
suited for non-negative matrix factorization.

• Utilizing both subjective as well as objective metrics commonly used for
evaluating quality of image compression, the performance of the proof
of concept compression scheme will be evaluated.

• How well suited NMF is for usage as an algorithm for image compression.

2

Related work

At the end of the thesis, the proof of concept algorithm will be compared to
a state of the art image compression algorithm and possible points related to
further analysis or further improvements of the algorithm or its implementa-
tion will be discussed.

The first three chapters are related to the theoretical part of the problem,
studying NMF, image encoding and image compression. The following chap-
ters are related to the practical part of this thesis - design and implementation
of the image compression algorithm and its evaluation.

Related work

Non-negative matrix factorization is a relatively new technique and majority
of the existing works related to non-negative matrix factorization are related to
its applications in machine learning and others. Some of the research existing
in the field of audio/video processing is related, but not limited, to:

• Separating voices in speech mixtures or voice from background sounds.
[49]

• Separating singing voice or musical instrument in polyphonic mixtures.
[10]

• Video action recognition. [25]

• Compression.

While the potential for the usage of non-negative matrix is high, its cur-
rent usage is quite limited. The existing works which are specifically related
to image compression using non-negative matrix factorization found are the
following:

• Image compression using Constrained Non-Negative Matrix Factoriza-
tion [20] is a work focusing mainly on non-negative matrix factoriza-
tion and the effect of using a slightly different method on image com-
pression. The work reports better time results when using constrained
non-negative matrix factorization when compared to using the general
approach, but with very low improvements in the image quality.

• An Image Compression Scheme in Wireless Multimedia Sensor Networks
Based on NMF [24] utilizes a compression scheme based on non-negative
matrix factorization but focuses more on the possibility of using this
compression scheme in a sensor network, rather than on the image com-
pression itself and its potential quality.

3

Introduction

Compressing images using non-negative matrix factorization has also been
found in other works, but usually as an illustrative example rather than the
target of research.

This work aims to analyze the potential usability of an image compression
scheme based on NMF strictly as a compression tool - the effect of NMF
parameters on the image quality and explore a number of possible schemes
related to the way the images would be represented.

4

Chapter 1
Non-negative matrix

factorization

This chapter discusses the non-negative matrix factorization - defines the prob-
lem, describes some of the existing solutions to the problem and offers some
observations. By doing so, the basics for the rest of the thesis are provided.

Non-negative matrix factorization as a problem was first formulated by
Paatero and Tapper in [36], but the works which have given this problem far
more popularity are the works of Lee and Seung [28], where NMF was applied
to areas of machine learning and artificial intelligence - more specifically to
facial recognition and discovering semantic features in encyclopedic articles.

1.1 Problem definition

Let V be a n · p non-negative matrix, (i.e. with xij ≥ 0, denoted X ≥ 0),
and r > 0 an integer. Non-negative matrix factorization consists of finding an
approximation

V ≈WH (1.1)

where W,H are n · r and r · p non-negative matrices, respectively - meaning
all the elements of the matrices are non-negative. In practice, the rank r is
often chosen such that r � min(n, p). This is due to the reason that in many
common applications of non-negative matrix factorization, the information
contained in the matrix V is summarized and split into r factors as the columns
of W [11].

It should be noted here that the name of the problem might be misleading,
as the term factorization is usually understood more as an exact decompo-

5

1. Non-negative matrix factorization

sition, whereas NMF is in reality an approximation. Thus, the problem is
called non-negative matrix approximation in certain other works, such as [46].

1.2 Problem solution

In this section, two of the commonly used algorithms for solving the non-
negative matrix factorization problem will be described. The first of these
two algorithms will be the algorithm based on multiplicative updates as used in
[28], where the attention to part-based analysis, simplicity of the multiplicative
updates and interpretability of the results helped to spread the influence into
many other research fields, such as image processing or text processing [15].
Due to these reasons, this will be one of the algorithms described. The second
algorithm which will be described is the alternating least squares algorithm,
which is the earliest algorithm proposed for solving the non-negative matrix
factorization problem (positive matrix factorization in the original work) [36].

The reason for choosing these two algorithms is that both of them are very
commonly used in practice. Other algorithms exist and are often researched,
example being the projected gradient method [21]. However, they will not be
explored within this thesis.

1.2.1 Multiplicative updates

The algorithm described here is described more thoroughly in [29], a work
by Lee and Seung where the algorithms are described in detail together with
proving correctness of the algorithms.

In order to find an approximate factorization V ≈WH, a way to quantify
the quality of the approximation needs to be defined. Such a metric (or a
cost function) can be constructed by measuring the distance between two
non-negative matrices A and B. One of the measures provided in [29] is the
square of the Euclidean distance between A and B.

||A−B||2 =
∑
ij

(Aij −Bij)2 (1.2)

This distance is lower bounded by zero and vanishes if and only if A = B.

By using this cost function, the non-negative matrix factorization can be
formulated as an optimization problem:

6

1.2. Problem solution

Problem 1 Minimize ||V −WH||2 with respect to W and H, subject to the
constraints W,H ≥ 0.

It is shown in [29] that an algorithm cannot realistically solve this problem
by finding a global minimum. However, it is possible using various techniques
from numerical optimization which make it possible to find local minimum.

Thus, the multiplicative update rules are a compromise between speed
and ease of implementation offered in [29] for solving this problem. The mul-
tiplicative updates can be described as an algorithm in the following way:

Input: Non-negative matrix V
Output: Non-negative factors W and H
• Initialize W and H as non-negative matrices

• Until ||V −WH||2 is minimized, update W and H by computing the
following, with n as an index of the iteration:

Hn+1
[i,j] = Hn

[i,j]
((Wn)TV)[i,j]

((Wn)TWnHn)[i,j]
(1.3)

and

Wn+1
[i,j] = Wn

[i,j]
(V (Hn+1)T

[i,j]

WnHn+1(Hn+1)T
[i,j]

(1.4)

Algorithm 1: Multiplicative update algorithm for NMF

It is shown in [29] that the Euclidean distance ||V −WH|| (and conse-
quently the cost function ||V − WH||2) is nonincreasing under these rules.
The work by Lee and Seung also considers another possible cost function and
proves the convergence of these rules.

1.2.2 Alternating least squares method

Alternating least squares method is the first algorithm proposed for solving
the non-negative matrix factorization problem, which was proposed in the
work by Paatero. [36] Fixing either of the factors W or H, the problem essen-
tially becomes a least squares problem, which is commonly used in regression
analysis.

The alternating least squares problem then solves NMF using the algo-
rithm shown in 2.

As the least squares algorithm does not enforce the constraint of non-
negativity, all the negative elements in matrices are set to 0 after each evalu-

7

1. Non-negative matrix factorization

Input: Non-negative matrix V
Output: Non-negative factors W and H
• Initialize W as a random dense matrix

• Until a stopping condition:
(LS) Solve minH≥0||V −WH||2
(NONNEG) Set all the negative elements of H to 0.
(LS) Solve minW≥0||V T −HTW T ||2
(NONNEG) Set all the negative elements of W to 0.

Algorithm 2: Basic Alternating least squares algorithm for NMF. [37]

ation of the least squares problem.

The name of the algorithm reflects its nature where it keeps alternating
between solving the least squares problem for one fixed matrix and then the
other.

1.3 Common NMF applications

In this section, a short example of a common application of non-negative
matrix factorizations will be provided, for the purpose of showing a specific
example so that the reader may become more adjusted to the problem as well
as showing certain observations about the properties of non-negative matrix
factorization.

1.3.1 Part-based analysis

What has inspired the work of Lee and Seung [28] was the human activity
of recognizing objects from basic parts - especially when using human vision
which is shown to detect the presence or absence of features (parts) of physical
objects in order to recognize them [7].

Thus, assuming that features of an object would be independent and it
would be possible to compile all the features together, an object could be
described formally as:

Objecti = Part1(bi1) with Part2(bi2) with..., (1.5)

where bij either has the value present if part i is present in object j or the
value absent if part i is absent in object j.

If the possible states present and absent in the model are replaced by non-
negative values, it is possible to signify not only the presence or absence of a

8

1.3. Common NMF applications

feature but also its quantity or significance (bij ≥ 0). Thus, mathematically,
a description of an object could look the following:

Objecti = bi1 · Part1 + bi2 · Part2 + ... (1.6)

[15]

When utilizing non-negative matrix factorization, the matrix W can be
considered the set of features present in the data and matrix H the set of
hidden variables. Non-negative matrix factorization can also be implemented
as:

vi ≈Whi (1.7)

Represented this way, the concept of non-negative matrix factorization
can be understood intuitively - each column in the original matrix V is a data
point. Each column in the matrix W is a basis element and columns of the
matrix H give the coordinates of a data point in the basis W . The product
matrix WH (the approximation of V) is a linear combination of the column
vectors - the features extracted from the data points and its significance in
the data point.

This way, features and parts can be extracted from the original data and
understood, as shown in the next subsection on the image learning example.

1.3.2 Image learning

Digital image processing is a field which is currently enjoying high popularity
when it comes to research. Image processing is the field thanks to which
it is possible to extract features from images or recognize various patterns.
Principal component analysis (PCA) is a dimensionality reduction technique
similar to NMF commonly used for recognizing faces in images [6] - however,
without the non-negativity constraint. It has been shown in [28] that NMF
can be used in a similar fashion while potentially classifying the data in a way
which is easier to be understood.

The Figure 1.1 has been taken from [28], where a database of 2,429 facial
images has been taken and used to create a matrix V . By applying both NMF
as well as PCA to the matrix, feature and coeffiecient matrices were created
and particular instance of a face was approximately represented by a linear
superposition of basis images. The coefficients used in the linear superposition
are shown in the montages, where black pixels indicate positive values and red

9

1. Non-negative matrix factorization

Figure 1.1: Comparison between dimensionality reduction algorithms - NMF
and PCA, as shown in [28].

pixels indicate negative values. It can be seen on these montages that while
NMF can be used for the same purposes as PCA, the main strength of the
algorithm is that certain parts can be recognized meaningfully - for example
parts of a nose and such, whereas in the case of PCA, discovering meaning in
the matrices is difficult.

It is for these reasons that non-negativity is a powerful and meaningful
constraint, as parts are never subtracted from the particular instance (as it
can happen in the case of PCA), but are only added together [15].

1.3.3 NMF properties

Previous sections in this chapter have described non-negative matrix factor-
ization, more specifically the definition of the problem, common solutions and
an example usage of NMF. In this section, certain properties of non-negative
matrix factorization will be pointed out. When the proof of concept image
compression scheme is designed, the usefulness of these properties for com-
pression will be discussed.

The first property which will be shown is that the solution to non-negative
matrix factorization is not unique. A matrix and its inverse can transform
the two factorization matrices, for example as:

V ≈WH = WBB−1H (1.8)

If the matrices W̄ = WB and H̄ = B−1H are non-negative then they form

10

1.3. Common NMF applications

another solution to the NMF problem.[52]

Another important property is that the non-negative matrix factorization
is not hierarchical, meaning that the factor matrices using rank r can be
completely different to those of rank r + 1, as shown in 1.2, where choice of
rank r = 1 provides only approximation of the target matrix V yet rank r = 2
makes it possible to calculate V = WH instead of the approximation. Due to
these reasons, the results provided by using NMF highly depend on choice of
the rank parameter.

Figure 1.2: Visual display of non-hierarchical properties of NMF. [34]

1 1 1 1 1

11

11

∼∼
0.8

0.5

0.5

0.7 1.5 0.7 1.5 0.7

= 0.8

0

0

0

0.5

0.5

1 1 1 1 1

110 0 0

0 0

0 0

0

0 r = 1

r = 21

However, one of the most important properties to note is that non-negative
matrix factorization is very difficult to solve and the existing general algo-
rithms solve NMF as an optimization problem. Not only that but it has even
been proven that non-negative matrix factorization is an NP-hard problem.[44]
With certain constraints, it is however possible to solve the NMF problem in
polynomial time - for example it is shown in [22] that in case the matrix V is
symmetric and contains a diagonal principal submatrix of rank r, it is possible
to solve the problem in polynomial time O(rm2).

The last property of non-negative matrix factorization to be noted has
been shown in the figures above. The factors extracted are often sparse -
it is precisely for this reason that interpreting results of non-negative matrix
factorization is easy in fields such as image processing or text mining (but
many others as well).[12]

11

1. Non-negative matrix factorization

1.4 NMF parameters

When utilizing non-negative matrix factorization, a number of variables can
be chosen - most importantly the rank r affecting the dimensions of the factor
matrices and the initialization technique for initializing the factor matrices.

1.4.1 Choice of rank r

The choice of rank r is one of the most important decisions when utilizing non-
negative matrix factorization - as when used for the examples above, choice of
rank r changes the amount of features to be extracted in order to approximate
the target matrix V .

There are several common methods used for choosing the rank r:

• Trial and error - try different values of r and choose the one performing
the best for application at hand.

• Estimate the rank r using various statistical approaches (such as by
using SVD).

• The use of expert insights.

[12]

1.4.2 Initialization techniques

As it has been previously shown, non-negative matrix factorization is an op-
timization problem. The results of NMF highly depend on the initial values
of NMF variables due to the existence of local minima. Some of the ways of
initializing the initial factor matrices are:

• Using random non-negative values.

• Searching good values via genetic algorithms.

• Initialize matrices based on feature extraction using PCA.

• Initialize matrices based on feature extraction using SVD.

[23]

It should be noted here that some of the initialization techniques involve
randomness (such as purely using random non-negative values) and some do
not - and are rather based on extracting data from the input matrix. The fol-
lowing initialization techniques are utilized and tested for image compression
usage in this thesis:

12

1.5. NMF and compression

• Nonnegative double singular value decomposition (NNDSVD)

• Random vcol

• Random seeding

Nonnegative double singular value decomposition is a method designed to
enhance the initialization stage of the non-negative matrix factorization. The
basic algorithm contains no randomization and is based on two SVD processes,
one approximating the data matrix and the other approximating positive sec-
tions of the resulting partial SVD factors. [8]

Random vcol is an initialization method which forms an initialization of
each column of the basis matrix (W) by averaging p random columns of target
matrix (V). Random vcol also forms an initialization of each row of the
mixture matrix (H) by averaging p random rows of target matrix. [27]

The random seeding method is the simplest non-negative matrix factor-
ization seeding method possible and generates matrices randomly.

1.5 NMF and compression

Most common use-case scenarios of non-negative matrix factorization are re-
lated to machine learning, as shown in the previous sections. However, NMF
can also be considered a lossy compression tool (more on lossy compression in
chapter 3), as an original matrix of size n · p is approximated by the product
of two smaller matrices. Assuming the target matrix V is represented in the
same way as the factor matrices W and H, if the amount of elements con-
tained in matrices W and H is lower than the amount of elements in matrix
V , then NMF was used to perform compression.

Whether the amount of elements in factor matrices W and H is lower than
the amount of elements in target matrix V depends on the choice of rank r.
More specifically, if the dimensions of matrix V are n · p, the dimensions of
matrix W n · r and the dimensions of matrix H r · p, then this requirement
can be formalized as:

n · r + r · p < n · p
r(n+ p) < n · p

r <
n · p
n+ p

13

1. Non-negative matrix factorization

Considering a square matrix (n = p), the following relationship can also
be deduced:

r <
n · n
n+ n

r <
n2

2n
r <

n

2

This relationship is also demonstrated in the figure 1.3.

r = 2

x

n = p = 6

≈

n = p = 6

≈

r = 3

x

V

W

H

V

W

H

Figure 1.3: Visualization of NMF as a compression tool. When using a rank
r lower than n/2, the total amount of elements in matrices W and H is less
than the amount of elements in matrix V . When the rank r reaches the value
n/2, the amount of elements is the same.

14

Chapter 2
Digital image encoding

The second chapter of this thesis is related to digital images, color models and
color spaces which are utilized to define digital images. The importance of
this chapter is related to creating the image compression scheme and its em-
pirical testing on various different digital image representations. The possible
ways of specifying colors in digital images which will be explored are RGB,
grayscale and Y ′CBCR. As this thesis is related to image compression and
non-negative matrix factorization and not image processing, only the most
important elements of image encoding and color models will be explored.

2.1 Digital images

A digital image I is stored as a matrix of pixels (abbreviation for a picture
element). These matrices described as 2D discrete space are derived from
analog images in 2D continuous space through the process called sampling.
The other important operation which is done when images are converted into
a 2D discrete space is quantization, which corresponds to a discretizaiton of
the intensity values.

The value assigned to a pixel I[m,n] determines its color. Various ways of
representing color information (color models and color spaces) exist - as well
as transformations between them. The following sections explore the com-
mon color encoding options, which will be utilized in the image compression
schemes.

2.1.1 Color models and color spaces

A color model is a mathematical model used for describing the way colors can
be represented, usually as tuples of numbers (although this is not necessary,

15

2. Digital image encoding

as in i.e. the grayscale model, where only one number value is necessary for
describing light intensity).

On the other hand, a color space is an organization of colors, which allows
for reproducible representations of colors. Color spaces can be defined in an
arbitrary way, with particular colors for example associated with numbers
(such as in the Pantone collection) or can also be defined mathematically -
such as is the case of, for example, sRGB (standard Red Green Blue) color
space.

The difference between a color model and a color space is that a color
model is an abstract mathematical model describing the way colors can be
represented using numbers (or tuples of numbers). A color space provides
the actual mapping which defines the colors represented, using the model. A
visualization of different color spaces (Adobe RGB and sRGB) can be seen
in the figure 2.1, which shows two color spaces which use the same model for
describing colors - but are able to display a different set of colors (also called
gamut).[19]

Figure 2.1: Comparison between two different color spaces which both use an
RGB color model. The RGB color model contains the visible color spectrum,
while both color spaces are able to represent only a subset of these colors.
Image source: [32]

The color representations which are going to be explored are the RGB
color model, the Y ′CBCR color space which is a transformation using a color
space based on the RGB model and the grayscale model.

2.1.2 RGB color model

The RGB color model is closely related to the way the human eye perceives
colors with the r (red), g (green) and b (blue) receptors in our retinas.[17] In

16

2.1. Digital images

order to represent a color, components of each color (red, green and blue) are
added together. Since these components are added together, the RGB model
is also called an additive model.

In order to store image data using the RGB color model, the color compo-
nents need to be quantified. Common way of storing the values of components
in a pixel is storing the color intensity value using 8 bits (range [0, 255], where
the value 0 indicates no inclusion of the color component and 255 indicates
maximum possible inclusion of the component). If all the values of compo-
nents are equal to 0, the resulting color is black, if all the values of components
are equal to the defined maximum value (255 in this case), the resulting color
is white. An uncompressed image format which represents images this way is,
for example, the Windows BMP.[1]

Thus, encoding an uncompressed image using the RGB color scheme with
the common 8-bit per component component representation results in each
pixel being represented by 24 bits. The size of an image in bytes would then
be width · height · 3 bytes (not counting the header and other data used by
the specific file format).

A colored image together with its decomposition into the R, G and B
channels can be seen in the figure 2.2

Figure 2.2: An image decomposed into the R, G and B channels as used in
the RGB color model.

2.1.3 Y ′CBCR color space

Y ′CBCR, also written as Y’CbCr, is an encoding system of colors commonly
used in digital image systems, which is defined by a mathematical coordinate
transformation from an associated RGB color space. The Y ′ represents the
luma value (brightness of an image). The CB and CR values are considered
the chroma components, and represent the color information.

17

2. Digital image encoding

2.1.3.1 Luma

The luma value is represented in the Y ′CBCR model by the symbol Y ′ and
represents the brightness of an image. Y itself is considered to be the relative
luminance. Relative luminance is a metric of light intensity as it appears to the
human eye. The prime symbol (Y ′) denotes that gamma correction has been
utilized. Gamma correction is an operation related to nonlinearity of light
perception - when twice the number of photons hit a camera sensor, twice
the signal is received, denoting a linear relationship. However, the human eye
does not perceive change of light in a linear way. Gamma correction thus aims
to translate the human eye’s light sensitivity and that of a camera. [33] As
gamma correction is not an important topic for the rest of this thesis, it will
not be explored further.

Luma is calculated as the weighted sum of gamma-compressed R′G′B′

components. The prime again represents gamma correction. Luma can be
calculated in the following way, as described in [2]:

Y ′ = 0.2126R′ + 0.7512G′ + 0.0722B′ (2.1)

2.1.3.2 Chrominance

Chrominance is the signal conveying the color information of a picture, sep-
arately from the accompanying luma. the CB and CR values represent the
blue-difference (and red-difference, respectively) when compared to the luma.
Multiple ways of calculating CB and CR exist, such as the one for HDTVs in
[2]. In digital images, other transformations exist, such as the one used in the
JPEG image format:

CB = 128− (0.168736R′)− (0.331264G′) + (0.5B′)
CR = 128 + (0.5R′)− (0.418688G′) + (0.081312B′)

(2.2)

[14]

An image decomposed into the Y ′, CB and CR components can be seen
in the figure 2.3. The way colors are represented in the Y ′CBCR color model
can be seen in the figure 2.4, which shows the CBCR plane at constant luma
(Y ′ = 0.5).

2.1.3.3 Use of Y ′CBCR

Common use of Y ′CBCR stems from the human eye being more sensitive to
the differences in luma than color differences. Therefore, reduced bandwidth
can be given for chrominance components, allowing compression artifacts (or

18

2.1. Digital images

Figure 2.3: An image decomposed into the Y ′, CB and CR components, as used
in the Y ′CBCR color space. The Y ′ component also represents the grayscale
image.

Figure 2.4: The CBCR plane at constant luma Y ′ = 0.5.

even transmission errors, i.e. when encoding image data for television signals)
to be more efficiently masked, as the human eye is not as sensitive to these
errors.

Another usage of Y ′CBCR is called chroma subsampling, Chroma subsam-
pling refers to allocating less resolution for chroma information than the luma

19

2. Digital image encoding

information. This process is commonly used in video encoding schemes as well
as in the JPEG image compression technique.[26]

2.1.4 Grayscale

Grayscale images are images composed exclusively of shades of gray. When
using the grayscale model, each pixel therefore carries only the intensity in-
formation. Commonly, grayscale images are stored using 8 bits per pixel.
The range of colors represented by these 8 bits goes from black (the value 0)
through possible shades of gray to white (255 or another maximum possible
value).

It is possible to transform colors from an RGB color space into the grayscale
model by calculating the luma using the formula 2.1, as luma is a representa-
tion of an image’s brightness.

Encoding an uncompressed grayscale image which uses the common 8 bit
per pixel representation would therefore create an image of a size of width ·
height, not counting the header and other data used by the specific file format.

20

Chapter 3
Image compression

As it has been shown in the introduction of this thesis, storing uncompressed
images requires a lot of space. The art of reducing the amount of space
required for storing data by encoding information with less bits than would
otherwise be necessary is called data compression.

This chapter will explore the basics of data compression in order to build a
framework for the rest of this thesis. Image compression basics with examples
of current algorithms used for image compression will be described. The end of
the chapter will explore compression metrics which can be used for determining
quality of data compression (as well as image compression).

3.1 Data compression

When the terms compression algorithm or compression technique are used,
they refer to two algorithms. One algorithm which takes an input X and
generates a representation Y , which requires fewer bits to store. The second
algorithm is the reconstruction algorithm, which operates on the represen-
tation Y and generates the reconstruction Z. Depending on whether the
reconstruction Z is completely identical to the original data source X, the
compression algorithms can be divided into two broad classes, being either
lossless compression algorithms or lossy compression algorithms. Lossy com-
pression algorithms generally provide much higher compression ratios than
lossless compression algorithms do, but at the cost of losing information.[42]

3.1.1 Lossless compression algorithms

Lossless compression techniques involve no loss of information - by using a loss-
less compression algorithm, the original data can be recovered perfectly from
the compressed data. The applications for lossless compression algorithms

21

3. Image compression

commonly include text data, where small differences could easily result in
wrong statements (errors in e.g. bank records are, for obvious reasons, very
undesirable).

Many different lossless compression techniques - and different approaches
altogether - exist and this thesis does not aim to describe them all. Therefore,
the only techniques which are going to be described are the ones which are
very commonly used - both as general data compression techniques as well as
specifically used in image compression schemes.

3.1.1.1 Huffman coding

Huffman codes are particular types of optimal prefix codes (a type of code
system where no whole code word in the system is a prefix of any other code
word in the system) which are commonly used for lossless data compression.
The technique was developed by David Huffman as part of a class assignment
in the first ever taught class in the area of information theory.[42]

Huffman coding produces a table from data input, which encodes a source
symbol using variable-length code. The algorithm used for deriving this table
does so from estimated probabilites (or frequencies) of occurences for each
possible value of source symbols. Symbols which occur more frequently are
then represented using fewer bits than less common symbols.[16]

It is possible to prove that Huffman coding produces optimal codes, except
for certain use-cases where Huffman coding is unable to do so - such as in the
case where the probability mass function would be unknown, for example due
to data changing over time or receiving new information during the coding
process.

3.1.1.2 LZ77

Huffman coding is a technique which produces optimal codes, but also as-
sumes a source which generates a sequence of independent symbols. However,
very often, most sources are correlated. Thus it is common that the coding
step is preceded by a decorrelation step. This step is often done using tech-
niques which incoroporate the structure in the data to increase the amount
of compression. These techniques are commonly called dictionary techniques,
as they build a list of commonly occuring patterns and encode these patterns
by transmitting their index in the list. These methods tend to be most useful
with sources which generate a small number of patterns quite frequently - such
as text sources or image sources.[42]

These dictionary methods are often distinguished by the way the dictio-

22

3.1. Data compression

naries are built, commonly into two groups - static dictionaries and adaptive
dictionaries. The static dictionary techniques are more appropriate when con-
siderable prior knowledge about the source is available - such as when records
are compressed and ahead of time, certain words are going to appear in almost
all records (for example the word Name).

Adaptive techniques build dictionaries adaptively, during the course of
compression. One popular technique, which has given rise to a number of
variations, is the technique named LZ77. This approach creates a dictionary
as a portion of the previously encoded sequence. The encoder examines the
input sequence through a sliding window, which consists of two parts - a
search buffer, which contains a portion of the recently encoded sequence, and
a look-ahead buffer, wihch contains the next portion of the sequence to be
encoded.

In order to encode a sequence in the look-ahead buffer, the encoder moves
a search pointer through the search buffer until it encounters a match to the
first symbol in the look-ahead buffer. The distance of the pointer from the
look-ahead buffer is called the offset. The encoder then examines the symbols
following the symbol at the pointer location to see if they match consecutive
symbols in the look-ahead buffer. Once the longest match has been found,
the encoder encodes it with a triple (o, l, c), where o is the offset, l is the
length of the match and c is the codeword corresponding to the symbol in the
look-ahead buffer that follows the match.[54]

3.1.1.3 Use in image compression

Both Huffman coding as well as LZ77 are both utilized in one of the most
used lossless image compression formats available - PNG. The PNG (Portable
Network Graphics) standard was developed due to patent issues, where com-
panies would charge royalties to authors of software that included support for
GIF. Due to these reasons, the internet community decided to implement a
patent-free replacement for GIF, which would become known as PNG.[38]

The compression algorithm used in PNG is based on the DEFLATE im-
plementation of LZ77, which combines both LZ77 and Huffman coding. While
the encoder encodes the source using LZ77, it also represents the index values
using a Huffman code. The algorithm producing DEFLATE files is widely
considered to be implementable in a manner not covered by patents, which
has led to a widespread use not only in image compression, but also in the
ZIP file format, for which it was originally designed.[9]

23

3. Image compression

3.1.2 Lossy compression algorithms

However, not all use cases require compression to be lossless. In these cases,
the requirement of retrieving absolutely identical data can be relaxed. By
relaxing this requirement, very often higher compression ratios (more on com-
pression ratio in section 3.2.2) can be obtained, at the cost of having distortions
in the reconstruction.

Very common scenarios where lossy compression algorithms become often
more desirable than lossless ones are when storing audio content. Modern
audio compression algorithms are almost all lossy - the often used MP3 format
used for storing audio stores audio using a lossy compression algorithm. As
long as audio is stored without audible artifacts (distortions which are not
present in the original data), the quality of sound does not have to be perfect
- especially when compressing speech. When compressing other forms of audio,
such as music, the compression needs to be more accurate, but still does not
have to be absolutely perfect - as long as the listener does not notice the
difference.

Other typical use case for a lossy compression algorithm is compressing
images or video content. Small distortions are acceptable in images and video
as long as they are not easily noticable by the human eye. However, this can
also depend on the use case - for example photos commonly taken can be
compressed in a lossy way, but medical images often have to be compressed
in a lossless way, as artifacts can be very undesirable for medical usage.

Figure 3.1: A sample image showing how accurate a lossy compression algo-
rithm can be. The left image has been compressed using a lossless technique,
the right image has been compressed using a lossy compression technique
(JPEG). In this case, essentially no artifact can be seen unless zoomed in (as
seen in the figure 3.2).

3.1.3 Modeling and coding

One of the important factors when designing a compression scheme which
needs to be accounted for are characteristics of data which is to be com-
pressed. An approach which works the best will depend to a large extent on

24

3.1. Data compression

Figure 3.2: A zoomed in image used in the figure 3.1. While almost impossible
to notice any artifact in the former example, the artifacts can be seen on the
borders between the text and the gray background easily once zoomed in.
Color levels were adjusted in order to emphasize the presence of artifacts.

the redundancies (more on redundancies in section 3.2.1) inherent to the data
compressed.

In the phase of modeling, information about any redundancy is extracted
in a form of a model, which can then be utilized in the compression algorithm.
The second phase important in a compression scheme is coding. A description
of model and how data differs from the model can be encoded (usually using
a binary alphabet).[42]

A very simple example of modeling and coding and its importance can
be seen on delta encoding (sometimes also called delta compression). Delta
encoding encodes a sequence of messages not by their values but by calculating
the difference between two elements.[45] Thus, a sequence such as

10000, 10002, 10001, 9999, 10000

can be modelled as a sequence where the numbers have very small differences.
When shown as a sequence of differences, with the original value, the sequence
then becomes:

10000,+2,−1,−2,+1

After a representation of this data sequence has been modeled, the coding
phase creates a way how to encode this sequence using this model. One
possible coding is shown in the table 3.1. Utilizing this coding, the differences
require only 2 bits in order to be stored.

However, delta encoding would not be efficient in a scenario when the data
has large differences - especially if the differences would be larger than storing
the data itself. Understanding the type of data when creating a model is
therefore highly important.

25

3. Image compression

+1 00
+2 01
-1 11
-2 11

Table 3.1: Example coding for a sample data sequence using delta encoding

3.2 Image compression

Commonly, data compression algorithms are discussed as universal techniques
which are able to compress essentially any data. While these algorithms
might still have preferred applications, literature commonly separates tech-
niques from the applications. However, image compression is a specific field
where separating techniques from the application is essentially impossible as
the techniques are meant specifically for compressing images.[42]

While compressing image data using standard compression techniques is
possible, none of them are satisfactory for color or grayscale images (which
were discussed in chapter 2). For example, statistical methods can be very
good for compressing data where each value has different probability (such as
in standard text, where certain letters appear far less than others). However,
in images, certain colors or shades of gray often have the same probabilities.[40]

3.2.1 Redundancies in images

In order to understand how image compression techniques work, certain as-
pects of images need to be characterized, as compression techniques try to
use these aspects for their advantage. A fundamental component of image
compression is reducing the amount of redundancies present in the original
image. The redundancies commonly present in images are the following:

• Coding redundancy

• Interpixel redundancy (also sometimes called spatial redundancy)

• Psychovisual redundancy

[47]

Coding redundancy occurs when length of the code words is larger than
required. A simple example of coding redundancy can be shown on a grayscale
image where only certain shades of gray are used. Instead of requiring 8 bits
per shade of gray, such an image might require far less bits to encode, as can
be seen in the figure 3.3.

26

3.2. Image compression

Interpixel redundancy refers to the fact that usually, neighbouring pixels
tend to have similar colors. Therefore, it can often be possible to predict the
color of neighbouring pixels. As a simple example, black-and-white images
might be encoded using run-length encoding, where instead of encoding the
specific colors per pixel, information about how many pixels in a row have
the same color is stored. This can be particularly efficient when considering
bi-level (black-and-white) images, as can be seen in the figure 3.3.

The last kind of redundancy which is commonly utilized in image compres-
sion algorithms is called psychovisual redundancy. The human eye is not able
to perceive certain visual information in an image - such information could be
discarded without any noticeable artifacts present in the compressed image.
A tool commonly used for reducing psychovisual redundancies in an image is
discrete cosine transform, which is also used in the JPEG image format.

Figure 3.3: A sample image showing some of the redundancies which can be
present in an image. As there are only 4 levels of gray color, storing them
using 8 bits per possible gray color would result in high coding redundancy.
Also, neighbouring pixels almost always have the same colors.

3.2.2 Compression metrics

When evaluating the quality of a compression technique, utilizing certain met-
rics is necessary - especially when attempting to compare compression algo-
rithms. The following sections discuss various possible ways of evaluating
compression techniques and consecutively compare their performance.

Both general compression metrics which can be utilized in any technique
will be introduced, as well as techniques which are specifically related to eval-
uating the performance of image compression schemes.

27

3. Image compression

3.2.2.1 Compression ratio

One of the most important metrics is the compression ratio. Compression ratio
is a very simple metric which quantifies the reduction in data representation
needed. It can be easily defined in the following way:

Compression Ratio = Uncompressed size

Compressed size
(3.1)

It is easy to see that compression ratio is an essential metric as it makes it
very easy to compare compression algorithms or even quantify their compres-
sion power in general. Certain metrics extend compression ratio and use it for
scoring purposes, such as the Weissman score which can be used for lossless
compression algorithms.

However, while compression ratio is a very valuable metric and highly
valuable for lossless compression algorithms, it potentially stops being the
most important metric when evaluating performance of lossy compression al-
gorithms. When evaluating lossy compressing algorithms, the important in-
formation is not only quantification of how well was the data compressed but
also evaluating how much information was actually lost in the compression
process. As an example, if a lossy compression algorithm has better compres-
sion ratio than another one, it might still not be the algorithm of choice, in
the case where it would introduce too many artifacts into the data.

3.2.2.2 Mean squared error

Therefore, when analyzing the quality of lossy compression, it is necessary to
introduce other compression metrics, which can be utilized for evaluating the
performance of lossy compression algorithms, related to information loss - or
in other words, the errors present in data after reconstruction. The two error
metrics which are commonly used for measuring the performance of a lossy
compression algorithm are the mean squared error (MSE) and peak signal-to-
noise ratio (PSNR).[41]

Mean squared error is a statistical metric measuring the average of the
squared of errors (the difference between original values and the values after
decompressing data and obtaining the reconstruction). When used for image
compression, the metric can be formalized in the following way:

MSE = 1
MN

M∑
y=1

N∑
x=1

(I(x, y)− I ′(x, y))2 (3.2)

where

28

3.2. Image compression

• M and N are the dimensions of an image

• I(x, y) is the value of a pixel on coordinates x, y in the original image.

• I ′(x, y) is the value of a pixel on coordinates x, y in the reconstructed
image.

A lower value of MSE is better, as it directly displays less errors present in
the decompressed image.

3.2.2.3 Peak signal-to-noise ratio

Peak signal-to-noise ratio is a metric derived from MSE describing the ratio
between the maximum possible power of a signal and the power of corrupting
noise which affects the representation. Due to signals possibly having a very
wide dynamic range, PSNR is usually expressed in the logarithmic scale.

With MSE defined as above, PSNR can be formalized as:

PSNR = 20 · log10
(
MAX2

I

MSE

)
(3.3)

where MAXI is the maximum possible value of a pixel in an image. In the
case of grayscale images stored with 8 bits per pixel, this value would be 255.
Unlike MSE, higher PSNR values are better, as they are a sign of less errors
in data - signal being the original colors and noise being errors.

When evaluating MSE (and consecutively PSNR) for color images, the
calculation becomes slightly more difficult, as a pixel value of I[x, y] holds
multiple values for multiple components, which are all perceived differently by
the human eye. Some of possible approaches can therefore be the following:

• Evaluate MSE and PSNR for all the color components together using
the RGB matrix.

• Due to brightness being the most important element for human eye,
rather than color components, evaluate MSE and PSNR values only
of luma (or simply the grayscale image). The definition of luma as a
weighted sum has been explored in chapter 2.

[31][3]

However, it needs to be noted that PSNR is not a perfect metric in the
sense that it would provide absolute definite conclusions. When utilizing
PSNR, it is still important to also consider data subjectively, as it is only con-
clusively valid in scenarios where the compared results come from the same

29

3. Image compression

codec (or codec type) and the same content. Not only that, but it is a metric
which is not performing strongly as a quality metric when it comes to human
perception of image data.[18] Still, it is a metric often utilized to evaluate
lossy compression of images.

3.2.2.4 Structural similiarity index

Because of these reasons, another metric has recently been used for measuring
the similarity between two images - the structural similarity index (abbrevi-
ated as SSIM). SSIM aims to improve on MSE and PSNR, which estimate
absolute errors which occur during compression. SSIM on the other hand is
a perception-based model, which considers image degradation as perceived
change in structural information. Structural information refers to the con-
cept that pixels have strong inter-dependencies when they are spatially close.
These dependencies are important as they carry important information about
the structure of objects in the visual scene.

The SSIM index is calculated on various windows (sub-samples), rather
than on an entire image, like MSE is. SSIM between two windows x and y of
common size N ·N is calculated using the following formula:

SSIM(x, y) = (2µxµy + c1)(2σxy + c2)
(µ2

x + µ2
y + c1)(σ2

x + σ2
y + c2) (3.4)

where:

• µx is the average of x,

• µy is the average of y,

• σ2
x is the variance of x,

• σ2
y is the variance of y.

• σxy is the covariance of x and y,

• c1 = (k1L)2, c2 = (k2L)2 are two variables to stabilize the division with
weak denominator,

• L is the dynamic range of the pixel-values (in case of 8 bits per color
the value is 255),

• k1 = 0.01 and k2 = 0.03 by default.

[50]

Usually, this formula is applied only on luma, as the most important aspect
of the image in relation to eye perception. However, SSIM may also be applied

30

3.2. Image compression

on color or chromatic values. The possible values of SSIM are in the range
(−1; 1], where SSIM of 1 can only be reached in the case of two images being
identical.

The figure 3.4 shows the possible strength of SSIM when compared to MSE
or PSNR. While the second image has a lot of noise in it, its MSE compared
to the original image is actually lower than the MSE of the last image, even
though the only difference when compared to the original is added contrast.
By utilizing only MSE (or PSNR), it would appear the second image is more
similar to the original, even though that is not the case for the human eye.

Figure 3.4: Figure visualizing the problems of MSE and PSNR when compared
to SSIM as an image quality metric. Original photography source: [4]

3.2.2.5 Compression time

The last metric to note is not related to quality of the resulting data specif-
ically, but is nonetheless very important - compression (or decompression)
time. Techniques with lower compression time are generally more preferrable.

3.2.3 JPEG image compression

As noted in chapter 1, non-negative matrix factorization can be understood as
a lossy compression algorithm - approximating the data in an original matrix
by two smaller matrices which have less elements in total than the original
matrix. As this process necessarily involves data loss (as non-negative matrix
factorization solves the problem of approximating the original matrix, not find-
ing an exact representation), a compression algorithm based on non-negative
matrix factorization has to be a lossy one. Thus, the image compression algo-
rithms which are going to be discussed in this thesis are lossy ones. Also, as
this thesis is related to creating a proof of concept image compression scheme
based on non-negative matrix factorization and not describing all the existing
lossy image compression schemes, only the JPEG compression scheme will be
explored, as the results of the NMF compression scheme will be compared to
JPEG.

31

3. Image compression

The JPEG compression method is commonly used for compressing digi-
tal photographies and makes it possible to adjust the degree of compression
- making it possible to decide the tradeoff between image quality and com-
pression. Commonly, JPEG is able to achieve 10:1 compression ratio without
significant perceptible loss in image quality.[13]

The JPEG compression algorithm can use various modes of operation, but
the most popular one works in the following way:

• An image is converted from an RGB color space to an Y ′CBCR color
space.

• The resolution of chroma is reduced - this is done as the human eye is
less sensitive to color details than brightness (chroma subsampling).

• The image is split into 8 ·8 pixel blocks. For each component of Y ′CBCR

the 8x8 block is transformed using the discrete cosine transform. By
doing so, the image data is represented in the frequency domain.

• The amplitudes of the frequencies are quantized, meaning that compo-
nents with high frequencies are stored with less accuracy than the ones
with lower frequencies.

• The resulting data of 8 · 8 blocks is further compressed using lossless
encoding.

These steps are all able to reduce all three redundancies presented in the
previous sections - psychovisual redundancies are removed by storing higher
frequencies with lower accuracy and interpixel redundancy by working on 8 ·
8 pixel blocks. Coding redundancy is reduced using a lossless compression
algorithm at the end.

One of the possible parameters of JPEG compression is the quality setting.
The quality setting can be chosen in the range [1; 100] and affects quantization,
with the value 100 meaning no quantization. The effect which the quality
setting can have on an image is shown in the figure 3.5, where the original
image is compressed multiple times with different quality settings.

32

3.2. Image compression

Figure 3.5: Effect of JPEG compression on an image with varying quality
settings. First image is the original and the following images improve on the
quality settings of a previous image. Original photography source: [4]

33

Chapter 4
NMF compression scheme

The previous three chapters all explored the essentials required to construct an
image compression scheme based on non-negative matrix factorization. Uti-
lizing these concepts, proof of concept compression schemes will be designed
in this chapter. The implementation of these schemes is described in the
following chapter 5.

4.1 Compression scheme design

As it has been shown in chapter 1, non-negative matrix factorization can be
understood as a lossy compression scheme for matrices, as the original matrix
can be approximated by factor matrices which possibly require less space to
store. However, as there are multiple ways of representing and encoding an im-
age with different tradeoffs, multiple compression schemes will be constructed
and compared with each other - ones based on factorizing RGB images and a
scheme based on compressing chroma values.

It should be emphasized that these compression schemes are proof of con-
cept only and their main goal is to empirically evaluate the effect non-negative
matrix factorization has on images. Therefore, storage size reduction is in this
case only the secondary goal.

All the compression schemes compress data using non-negative matrix fac-
torization. As it is necessary to reconstruct the matrices from one-dimensional
data, a header containing the data related to the width and height of the orig-
inal image and the NMF rank used is put at the start of the compressed
data.

35

4. NMF compression scheme

4.1.1 Naive compression scheme (RGB)

As an image with colors encoded using the RGB values is already a 2D matrix,
a naive approach would be to simply use non-negative matrix factorization
with the image as the input matrix. Afterwards, the two matrices will be
compressed using a lossless data compression tool in order to save storage
space.

As non-negative matrix factorization results in creating two factor ma-
trices, these factor matrices are flattened and afterwards concatenated into
a byte string, resulting in one long string of bytes which is afterwards com-
pressed using a lossless compression algorithm of choice (more on the specifics
of implementation in the following chapter).

This scheme is visualized in the figure 4.1.

RGB

Lossless compression algorithm

NMF(RGB)

Compressed
data

Figure 4.1: Visualization of the naive compression scheme. Note that
NMF(RGB) actually represents two matrices which are stored next to each
other in one data structure.

4.1.2 Separate RGB compression

Another scheme which will be explored will be one where the RGB components
are extracted into their own matrices and non-negative matrix factorization is
performed on each of these matrices individually. One aspect of this approach
compared to the previous one is that the matrices which are going to be fac-
torized are going to be smaller (contain less columns, as two color components
will be missing in each matrix).

36

4.1. Compression scheme design

Like in the previous scheme, the factor matrices will be flattened and
concatenated, followed by using a lossless compression technique to store the
data.

This scheme is visualized in the figure 4.2.

RGB

R G B

NMF(R) NMF(G) NMF(B)

Lossless compression algorithm

Compressed image

NMF(R) NMF(G) NMF(B)

Compressed
data

Figure 4.2: Visualization of the compression scheme which performs NMF on
each of the RGB components.

4.1.3 Y ′CBCR compression scheme

The compression scheme based on Y ′CBCR aims to utilize the concept of
human eye not noticing loss of information as strongly when it is related to
colors, rather than brightness. This is achieved by working on each component
separately:

37

4. NMF compression scheme

• The luma (Y ′) component is not compressed by a lossy compression
algorithm but a lossless one.

• The chroma components are separately compressed both using non-
negative matrix factorization.

By not factorizing the luma component or using any lossy compression,
the original luma information is not lost - only the chroma information. By
doing so, less artifacts should be introduced into the images, however at the
possible cost of worse compression ratios.

After factorizing the matrices containing the chroma components, all 5
matrices are flattened and concatenated into one long byte string, which is
compressed using a lossless compression technique of choice.

This scheme is visualized in the figure 4.3.

4.2 Decompression

Decompressing images using these compression schemes is a reversed opera-
tion. As it is essentially the same for each scheme, only decompression of the
Y ′CBCR scheme will be described.

The data compressed using a lossless data compression algorithm of choice
is decompressed with the associated decompression algorithm. Afterwards, the
header and the data related to the Y ′ component and the factor matrices are
extracted from the compressed data. The header includes the width and height
of the original matrices and the NMF rank used. By using this information, all
the matrices are reconstructed from the flattened data. The factor matrices
are multiplied together to reconstruct the CB and CR components. All three
components are put together to construct an image in the Y ′CBCR color space,
followed by converting the image into an RGB color space.

4.3 Non-deterministic properties of NMF

One of the properties which has been noted in chapter 1 was that the solution
to non-negative matrix factorization is not unique. Not only that, but due to
the problem being an optimization problem, there is no guarantee that various
runs of any of these compression schemes will create the same images, unless
the initial matrices have been initialized in the same way.

As a result, unless the initial matrices have been initialized in the same
way, two aspects of these compression schemes should be noted:

38

4.3. Non-deterministic properties of NMF

RGB

Y
′
CBCR

Y
′ CB CR

NMF()CB

Lossless compression algorithm

Compressed image

Y
′ NMF()CB NMF()CR

Compressed
data

NMF()CR

Figure 4.3: Visualization of the compression scheme based on compressing
only the chroma values.

• As the approximation will be different for each run, the information loss
will also be different, meaning that the visual quality of compression can
differ - depending on the seeding technique used.

• When using a lossless compression algorithm to store the data, the stor-
age size required to store the matrices will be different, as the source
data compressed will also be different.

39

Chapter 5
Implementation

This chapter is related to the specific implementation of the schemes presented
in the previous chapter. An outline of technologies used will be provided as
well as the actual specifics of the compressed data.

5.1 Technologies used

The proof of concept compression schemes, as well as the analysis scripts,
were implemented using the Python programming language, which has been
chosen for its high readability as well as its good support for general working
with data. The libraries which were used for implementing the compression
schemes were the following:

• NumPy - a Python library useful for matrix calculations and other sci-
entific work. NumPy also provides support for vectorizing array oper-
ations, thus often significantly speeding up matrix calculations. The
library also works as an efficient container of generic data with specifi-
able datatypes. NumPy was used for the majority of matrix operations,
together with flattening compressed matrices and reshaping them. This
library was chosen for its high efficiency when it comes to working with
matrices, ease of use and good readability.[35]

• Nimfa - a library implementing non-negative matrix factorization with
implementations of multiple factorization methods, initialization ap-
proaches and other capabilities. This library uses the capabilities of
NumPy for matrix calculations. It was chosen for its established use
in academic environment and having rich capabilities, such as different
seeding methods.[53]

• Pillow - a fork of the Python Imaging Library (PIL). Pillow implements
many functionalities related to image processing. The functionalities

41

5. Implementation

used are related to parsing existing image data and converting between
different pixel representations (RGB, grayscale (luma) and Y ′CBCR).
Pillow was chosen as the library for working with images as it is currently
considered the de facto standard Python library for these purposes and
is internally used by many other libraries which work with images.[51]

• zlib - a compression library which is a higher-level abstraction for the DE-
FLATE lossless compression algorithm. Zlib was chosen as the lossless
compression technique after performing non-negative matrix factoriza-
tion as DEFLATE is a technique commonly used for compression - as
well as image compression (as noted in chapter 3.1. The other reason for
choosing zlib was also that it is a part of the Python standard library,
meaning that using zlib requires little dependencies.

• scikit-image - an image processing library for Python. Used for calcu-
lating PSNR and SSIM.[48]

The source codes together with the experiments used can be found either
in the enclosed CD or online in a GitHub repository using the url https:
//github.com/prki/mastersthesis.

5.2 Performing non-negative matrix factorization

Non-negative matrix factorization was implemented using the Nimfa library,
which allows choosing various parameters, most notably the rank, number of
iterations and the seeding technique for initializing factor matrices.

The method chosen for solving NMF was the standard NMF approach
of multiplicative updates with the Euclidean distance update equations. The
method for seeding the factor matrices which was chosen was the non-negative
double singular value decomposition (NNDSVD)[8], which is a method con-
taining no randomization and is based on SVD processes. This method has
been chosen for two reasons:

• It is a method which does not use randomization. Due to that, the
compression schemes always create the same factor matrices, meaning
that the results can be repeated.

• As the SVD processes initialize the factor matrices based on the input
data, the algorithm often performs better than random initialization
does and rapidly reduces the approximation error.[8]

The rank and number of iterations of the NMF algorithm are parameters
of the compression scheme and their effect on quality of image compression is
explored in the following chapter.

42

https://github.com/prki/mastersthesis
https://github.com/prki/mastersthesis

5.3. Compressed image data structure

5.2.1 Data types and NMF compression

Compression using NMF has been briefly discussed in chapter 1. One of the
aspects noted was the possible upper bound of rank to attain a compression
ratio greater than 1. However, it has also been noted that it is necessary for
the elements in factor matrices to require the same amount of storage that
the elements of the original matrix do.

However, that is not the case here, as the original data consists of 8 bit
values, therefore natural numbers only. Factor matrices however consist of real
number values. Thus, the data in factor matrices is represented using float-
ing point numbers. In order to save space, the single-precision floating-point
format was chosen - doing so however potentially results in more information
loss than using double-precision would.

5.3 Compressed image data structure

Each of the compression schemes utilizes non-negative matrix factorization to
compress color data - be it either factorizing RGB matrix, matrices contain-
ing each RGB component or factorizing the chroma components of Y ′CBCR

values. All of the compression schemes compress this data using a lossless
compression algorithm in order to save space.

This data structure which contains the data to be compressed is the same
for all of the compression schemes - with the only difference being how much
data does it contain, as the separate RGB compression scheme creates 6 factor
matrices which need to be stored, whereas the naive RGB compression scheme
creates only 2 factor matrices. Since the data structure differs only in this
aspect, the general explanation of the structure will be provided.

Data area Data content Data size Data type

Header
height 4B uint32
width 4B uint32
rank 4B uint32

Compressed image
data

flat matrix matrix size · 4B float32
flat matrix matrix size · 4B float32

other flat matrices matrix size · 4B float32

Table 5.1: Table showing how the compressed image data is stored. Flat
matrices represent the matrices after they have been flattened into a 1-D
array. Matrix size depends on what kind of matrix is stored, as explained in
the section 5.3

A visualization of the data structure which is compressed can be seen in the

43

5. Implementation

table 5.1. The first 12 bytes of this data structure are used for the header. This
header stores height, width and the rank parameter of non-negative matrix
factorization - this information is required for restoring the image data, as
the dimensions of matrices which were stored were either height ·width (luma
matrix in the Y ′CBCR scheme), width · rank or rank · height (in the case of
factor matrices). As the data size thus depends on the specific matrix stored,
the table only describes the data size as matrix size · 4B.

This data structure is compressed using the zlib module with the highest
possible compression setting.

5.4 Decompressing data

An important note about decompressing the image data is related to matrix
multiplication. The factor matrices consist of real numbers, but the image
data consists of natural numbers. Due to that, the elements of the multiplied
matrix have to be rounded to the nearest number. This results in further
possible information loss.

5.5 Possible improvements

Certain aspects of image compression using non-negative matrix factorization
were noticed during the time this thesis was being written, however, as they
were out of scope, they were not implemented or analyzed. These aspects
which were noted would allow for a more efficient implementation or would
possibly improve the image quality. Some of the aspects noted are the follow-
ing:

• Performing independent non-negative matrix factorization in parallel
(such as in the case of the Y ′CBCR scheme, where factorizing the CB

and the CR matrices could run in parallel as these two operations are
completely independent). This would result in faster compression times.

• Storing factor matrices as sparse matrices - as non-negative matrix
factorization creates sparse factor matrices (and the seeding technique
which was used should also create sparse factor matrices), representing
and storing the factor matrices utilizing a technique for storing sparse
matrices could save more space.

• Using a different lossless compression technique - while DEFLATE was
chosen for its proven efficiency, it was not chosen for any specific property
of the data - another lossless compression technique could prove to save
more space.

44

5.5. Possible improvements

• Utilizing a different method for solving the non-negative matrix fac-
torization problem or changing the variation of the non-negative ma-
trix factorization problem. For example, the research paper [20] used
constrained non-negative matrix factorization for compressing grayscale
images and reports significantly faster compression time together with
slightly better compression ratio with no significant image quality differ-
ences - however, many specifics were not presented in the experiments
and results (such as image dimensions, number of iterations or rank).
The standard non-negative matrix factorization method was chosen for
its general purpose approach.

• Representing the factor matrices using a different datatype, possibly
using fixed point representation. It is unclear whether this would be an
improvement or if doing so would have a significant impact on the image
quality, as deciding that requires further analysis.

• Splitting up the image into multiple blocks and performing the compres-
sion scheme on these blocks. This approach was not performed because
early experiments showed that doing so would be very time consuming
- however, the results might also significantly improve the compression
quality.

45

Chapter 6
Experiments and results

This chapter describes experiments performed using the compression schemes
presented in the previous two chapters and analyzes their performance. Per-
formance of compression schemes will be measured using the following metrics:

• Peak signal-to-noise ratio, which will be calculated on the luma compo-
nent (on the grayscale image).

• Structural similarity index

• Compression ratio.

• Compression time.

The effect of compression on image quality will also be analyzed subjectively.
The compression scheme performing the best will also be compared with JPEG
image compression.

The results can also be found and used for further analysis in a comma-
separated value format online in a GitHub repository using the url https:
//github.com/prki/mastersthesis or in the enclosed CD.

6.1 Compression scheme variables

As noted in the previous chapters, non-negative matrix factorization can per-
form very differently depending on the parameters of NMF, such as the matrix
rank, number of iterations of NMF, the chosen algorithm used for solving NMF
as well as matrix initialization.

In order for the experiments to be replicable, the algorithm used and the
method used for matrix initialization is the same for each run of each com-

47

https://github.com/prki/mastersthesis
https://github.com/prki/mastersthesis

6. Experiments and results

pression scheme (NNDSVD, as noted in the previous chapter). On the other
hand, the effect of rank on the quality of compression will be explored - thus,
rank will not be constant. In the case of the compression scheme performing
the best, the effect of maximum number of iterations on PSNR and SSIM
will also be explored. The best performing compression scheme will also be
compared with JPEG.

The quality setting of JPEG compression is set to be constant for all the
runs, with the value of 75. In the runs where rank was the variable, maximum
number of iterations was set to 300. In the runs where maximum number of
iterations was the variable, the rank was set to 150.

6.2 Choice of images

A set of 6 images has been chosen from the Image Compression Benchmark
[4]. The benchmark contains a set of multiple high-resolution high-precision
images from which 6 pictures were chosen. The pictures chosen include a
computer-generated image as well as photographies in order to experiment
using images from various sources. All the images were scaled down to lower
resolution than the original ones (while retaining the original aspect ratio)
due to the high time complexity of solving non-negative matrix factorization.
While these images can be obtained in higher precision than 8 bits per com-
ponent, the experiments were performed using the 8 bit precision, as it is
currently still very commonly used.

The images chosen from the set are shown, together with their names, on
the figure 6.1. The information about their resolution changes can be found
in the table 6.1.

Image name Original resolution New resolution
artificial 3072x2048 950x633
bridge 2749x4049 679x1000
deer 4043x2641 980x640
hdr 3072x2048 1000x667
nightshot iso 1600 3136x2352 960x720
spider web 4256x2848 960x642

Table 6.1: Resolutions of benchmark images after scaling them down. Scaling
was done due to high time requirements of non-negative matrix factorization.

48

6.3. Results using the naive RGB scheme

Figure 6.1: Images used in the experiments together with their names as found
in the image benchmark dataset.

6.3 Results using the naive RGB scheme

The naive RGB scheme, which performs non-negative matrix factorization
on the entire RGB matrix, has proven to be very lossy. Not only that, but
as will be shown in the following subsections, the naive RGB compression
scheme is able to introduce artifacts into images which make certain structures
impossible to notice well.

6.3.1 Image quality

While the image compression can be very lossy, the structural similarity of
images can still be fairly high - achieving values over 0.75 in majority of images
already with rank 5. The choice of rank has strong effect on the image quality
- in some test cases, having a noticable effect on the structural similarity, but
more noticably, the effect of rank can be seen on PSNR, which measures entire
error and where rank changes the PSNR value significantly (i.e. from PSNR
of ca. 22dB to over 27.5dB). The measured SSIM and PSNR values can be
seen in the figure 6.2.

However, the peak signal-to-noise ratio values are still quite low and are
usually not considered to result in images which would have good quality.

49

6. Experiments and results

0 20 40 60 80 100 120 140
Rank

17.5

20.0

22.5

25.0

27.5

PS
NR

 [d
B]

artificial
bridge
deer
hdr
nightshot_iso_1600
spider_web

0 20 40 60 80 100 120 140
Rank

0.5

0.6

0.7

0.8
SS

IM
SSIM and PSNR, variable number of ranks, naive RGB scheme.

artificial
bridge
deer
hdr
nightshot_iso_1600
spider_web

Figure 6.2: Results of measuring SSIM and PSNR on benchmark images using
a variable rank and the naive RGB compression scheme. In all cases, higher
rank results in better image quality - with noticable improvements of both
metrics.

However, since structure of images can be kept relatively well, the images
could still be used for computer image processing, rather than for the human
eye. The effect of image compression using the naive RGB scheme and the
artifacts which the human eyes see are explored in the subsection 6.3.3.

6.3.2 Compression time/ratio

The naive RGB compression scheme achieved the best compression ratios
out of all three schemes. However, time-wise, it falls short when compared to
the Y ′CBCR scheme - even though the Y ′CBCR compression scheme performs
NMF on two different matrices (although containing slightly less data). While
the compression ratio can be fairly high at lower ranks, unfortunately the
image information loss is very easy to notice at low ranks. A graph showing
the results can be seen in the figure 6.3.

6.3.3 Subjective analysis

The effect of rank is very easy to see when compressing images using the
naive RGB scheme. At lower ranks, essentially only the general structure of
an image can be seen. At higher ranks, the image becomes clearer and the

50

6.3. Results using the naive RGB scheme

0 20 40 60 80 100 120 140
Rank

15

20

25

30
Ti

m
e

[s
]

Compr. time and ratio of benchmark images, variable rank, naive RGB
artificial
bridge
deer
hdr
nightshot_iso_1600
spider_web

0 20 40 60 80 100 120 140
Rank

0

10

20

30

40

Co
m

pr
es

sio
n

ra
tio

artificial
bridge
deer
hdr
nightshot_iso_1600
spider_web

Figure 6.3: Figure showing the effect of rank on compression time and com-
pression ratio when using the naive RGB scheme. Compression ratio can be
very good for lower ranks, but as shown in the experiments, the image quality
is very low when using these ranks.

details of an image become easy to see. However, the images still contain a lot
of noise in colors - regions with the same color seem to contain a lot of grain.
This can be seen in the figure 6.4, which shows the same image compressed
using different rank side-by-side.

Figure 6.4: Compressing the bridge image using the naive RGB scheme. Ranks
used (from left to right): 5, 20, 75, 150. Even though higher ranks result in
significant improvement of image quality, the images are very lossy and contain
a lot of noise.

51

6. Experiments and results

One of the problems of the naive RGB scheme which however make it
difficult to use is that the scheme introduces artifacts which are very easy to
notice and which corrupt the original image severely. Likely, this is not only a
problem of the naive RGB scheme but possibly a problem of the multiplicative
updates method or of the NNDSVD seeding method, as it seems these artifacts
are a result of stopping in a local optimum. These artifacts do not disappear
with higher ranks, but only change their shape very slightly. These artifacts
can be seen in the image 6.5.

Figure 6.5: Image compressed using the naive RGB compression scheme where
some of the artifacts are very easy to notice - especially on the right side, where
almost all original data was lost. These artifacts hardly disappear with higher
rank.

6.4 Results using the separate RGB scheme

The separate RGB scheme is an improvement over the naive RGB scheme. By
performing non-negative matrix factorization on separate RGB channels (and
thus factorizing smaller matrices), the approximations are slightly more accu-
rate. However, even though this is the case, the improvements are very small,
as seen in the following subsections. Not only that but the exact same arti-
facts which occur in naive RGB compression scheme occur when the separate
RGB scheme is used..

52

6.4. Results using the separate RGB scheme

6.4.1 Image quality

The image quality of images compressed using the separate RGB scheme is
very similar to the one of images compressed using the naive RGB scheme -
and changing rank has very similar effect as well. Even then, the metrics still
score this compression scheme noticably better, with better SSIM/PSNR gain
with higher ranks and higher achieved SSIM/PSNR values altogether. The
measured results can be seen visualized in the figure 6.6.

0 20 40 60 80 100 120 140
Rank

20.0

22.5

25.0

27.5

30.0

PS
NR

 [d
B]

artificial
bridge
deer
hdr
nightshot_iso_1600
spider_web

0 20 40 60 80 100 120 140
Rank

0.5

0.6

0.7

0.8

SS
IM

SSIM and PSNR, variable number of ranks, separate RGB scheme.

artificial
bridge
deer
hdr
nightshot_iso_1600
spider_web

Figure 6.6: Results of measuring SSIM and PSNR on benchmark images us-
ing variable rank and the separate RGB compression scheme. In all cases,
higher rank, just like in the naive RGB scheme, results in better image qual-
ity. Compared to the naive RGB scheme, the graphs have very similar shapes,
but score slightly better.

Even though the SSIM and PSNR values are an improvement over the
naive RGB compression scheme, the improvement is still very low - while the
image structure is generally kept, many errors are introduced into the images,
resulting in fairly low PSNR values.

6.4.2 Compression time/ratio

The separate RGB compression scheme achieves essentially the same compres-
sion times as its naive counterpart.(about 15 seconds for lower ranks and 30
seconds when used with higher ranks). The main difference between separate
and naive RGB schemes in this case can be seen in the compression ratios.

53

6. Experiments and results

While the relationship between rank and compression ratio is essentially the
same, the naive RGB scheme outperforms the separate RGB scheme slightly,
achieving higher compression ratios.

0 20 40 60 80 100 120 140
Rank

15

20

25

30

Ti
m

e
[s

]

Compr. time and ratio of benchmark images, variable rank, separate RGB
artificial
bridge
deer
hdr
nightshot_iso_1600
spider_web

0 20 40 60 80 100 120 140
Rank

0

10

20

Co
m

pr
es

sio
n

ra
tio

artificial
bridge
deer
hdr
nightshot_iso_1600
spider_web

Figure 6.7: Figure showing the effect of rank on compression time and com-
pression ratio when using the separate RGB scheme. As in the previous case
with image quality, the graphs look very similar to the ones of the naive RGB
scheme. While compression time is essentially the same as in the case of the
naive RGB scheme, compression ratios do not achieve values as high as in the
previous case for lower ranks.

However, even though this is the case, the lower ranks still achieve very
low PSNR values in both cases, meaning the better compression ratio for the
naive RGB scheme when lower ranks are used is not as much of an advantage,
as such high information loss is not desirable.

6.4.3 Subjective analysis

The effect on rank and the image compression quality looks very similar as
in the case of the naive RGB scheme. The effect can be seen in the figure
6.8. Therefore, even though the loss of information is slightly lower than
in the previous case, the compression scheme still has many problems which
make it hard for use. As noted before, it is not clear whether these artifacts
occur specifically because of non-negative matrix factorization or if a different
seeding method would possibly lead to better results.

54

6.5. Results using the Y ′CBCR scheme

Figure 6.8: Compressing the hdr image using the separate RGB scheme.
Ranks used (from left to right): 5, 25 and 75.. Even though higher ranks
result in significant improvement of image quality, the images are very lossy
and contain a lot of noise, making it almost impossible to read certain texts
in the images. Also, some artifacts can be noticed, which do not disappear at
higher ranks, such as the green artifacts on the left side.

6.5 Results using the Y ′CBCR scheme

Altogether, the performance of the scheme based on compressing only the
chroma information using non-negative matrix factorization showed itself to
be much better than in the previous two cases, mostly achieving very high
SSIM values and high PSNR values. At the same time, thanks to converging
slightly faster, the compression times were also not as high.

6.5.1 Image quality

The effect of rank on the compression quality seems to be tied together closely
- higher the rank, less information would be lost, generally. Only one image
showed itself to be problematic and required higher rank to achieve good
quality (the image called artificial). In all the other cases, it would have
been possible to set the rank to a very low value and still achieve very high
compression quality. The results have shown themselves to be very similar
both when using PSNR and SSIM as the metrics. The visualized results can
be seen in the figure 6.9.

The maximum obtained SSIM/PSNR values were essentially the same for
all images, reaching SSIM over 0.99 in most cases and reaching PSNR values
of ca. 48 dB. In most experiments with other rank settings, these values were
essentially not improved on using this configuration.

6.5.2 Compression time/ratio

As in all the cases before, rank affects both the compression time as well as
the compression ratio. Compared to both previous schemes, the compression
times improve significantly - starting at 10 seconds for lower ranks and taking

55

6. Experiments and results

0 20 40 60 80 100 120 140
Rank

0.96

0.98

1.00
SS

IM
SSIM and PSNR of benchmark images, variable rank, YCbCr scheme.

artificial
bridge
deer
hdr
nightshot_iso_1600
spider_web

0 20 40 60 80 100 120 140
Rank

45

46

47

48

PS
NR

 [d
B]

artificial
bridge
deer
hdr
nightshot_iso_1600
spider_web

Figure 6.9: Results of measuring SSIM and PSNR on benchmark images using
a variable rank and the Y ′CBCR compression scheme. Note that except for
one image, the SSIM changes only extremely slightly with higher rank, thus
making it possible to use very low rank and still achieve good compression
quality.

about 20 seconds in most cases at rank 150 (unlike previous compression
schemes, which took 15 to 30 seconds).

While the compression time is a significant improvement in this case, the
compression ratio is not - mostly due to the fact that the luma values are not
compressed using a lossy compression technique at all, thus requiring more
space. However, unlike the previous cases, lower ranks can be used while
still achieving very good image compression quality, as only one image has
proven to be problematic (and the only one, which wasn’t a photography) for
image compression - in the rest of the cases, rank did not affect SSIM/PSNR
significantly. As a result, for practical use, the Y ′CBCR compression scheme
could achieve better compression ratios as lower ranks would still lead to
desirable image qualities.

6.5.3 Comparison with JPEG

The scheme based on compressing chroma information has shown itself to
possibly perform even better than JPEG with optimal rank choice for each

56

6.5. Results using the Y ′CBCR scheme

0 20 40 60 80 100 120 140
Rank

10

15

20

Ti
m

e
[s

]
Compr. time and ratio of benchmark images, variable rank, YCbCr scheme

artificial
bridge
deer
hdr
nightshot_iso_1600
spider_web

0 20 40 60 80 100 120 140
Rank

2

4

6

8

Co
m

pr
es

sio
n

ra
tio

artificial
bridge
deer
hdr
nightshot_iso_1600
spider_web

Figure 6.10: Visualization of the effect of rank on compression time and ratio
on the Y ′CBCR compression scheme.

image. In the case of all six images, the values of SSIM and PSNR achieved
higher values in their maximum than the SSIM and PSNR values of the same
images compressed using JPEG. The comparison can be seen in the table
6.2. Visually, image compression using NMF can produce better images and
certain artifacts which are common in JPEG images are not present in images
compressed in this way (as shown in the next section).

However, even though the compression scheme is able to lose less informa-
tion content, it is significantly beaten by JPEG when it comes to size of the
images. This can be seen visually in the graph 6.11, which shows images com-
pressed using rank 20 and their respective filesizes, compared to the filesizes
of images compressed with JPEG.

6.5.4 Image quality improvement with more NMF iterations

As the Y ′CBCR compression scheme has proven to be the one performing
the best out of the three, additional experiments were performed related to
the effect of number of maximum possible iterations on the image quality. In

57

6. Experiments and results

Image name SSIM PSNR SSIM (JPEG) PSNR (JPEG)
artificial 0.993 48.30 0.974 38.25
bridge 0.999 48.00 0.950 35.40
deer 0.999 48.02 0.957 40.29
hdr 0.999 48.14 0.975 41.88
nightshot iso 1600 0.998 48.07 0.935 38.86
spider web 0.999 47.99 0.980 42.61

Table 6.2: A table showing the maximum achieved values of chosen metrics
when using the Y ′CBCR compression scheme and comparing them with the
results using JPEG.

artificial bridge deer hdr
nightshot_iso_1600

spider_web

Image name

0

250000

500000

750000

1000000

1250000

1500000

1750000

2000000

Si
ze

 [B
]

Image size comparison
Orig. size
NMF size (rank 20)
JPEG size

Figure 6.11: Comparison between original image sizes and image sizes of im-
ages compressed using NMF (Y ′CBCR scheme) at a specific rank and JPEG
image sizes. Even though NMF image compression can produce high quality
images with far lower sizes, JPEG still significantly outperforms the NMF
compression scheme.

58

6.5. Results using the Y ′CBCR scheme

150 200 250 300 350 400 450
Maximum number iterations

0.9900

0.9925

0.9950

0.9975

1.0000

SS
IM

SSIM and PSNR, variable max iterations, YCbCr scheme.

artificial
bridge
deer
hdr
nightshot_iso_1600
spider_web

150 200 250 300 350 400 450
Maximum number of iterations

48.0

48.2

48.4

PS
NR

 [d
B]

artificial
bridge
deer
hdr
nightshot_iso_1600
spider_web

Figure 6.12: A figure displaying the effect of maximum number of multiplica-
tive updates iterations on the image quality (Y ′CBCR scheme). While both
SSIM as well as PSNR can be improved upon, the difference is very small, in
most cases not resulting in very significant PSNR gain.

these experiments, the value of rank was set to 150 and the maximum number
of iterations was in the range [150; 450]. Visualization of these experiments’
results can be seen in the figure 6.12.

While maximum number of iterations results in images closer to the orig-
inal (as the approximation improves), the improvement has been shown to be
relatively small. The effect on SSIM is essentially unnoticable in all images
but one, where the SSIM gain is still quite low. However, in the case of PSNR,
the improvements are easier to see - however, these improvements are still very
low.

By lowering the maximum number of iterations, the compression time
can be significantly lowered as well, while not having a high impact on the
compression quality, as shown in the figure 6.13. While the effect of number
of iterations on image quality has not shown to be very significant, it does

59

6. Experiments and results

150 200 250 300 350 400 450
Maximum number of iterations

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

Ti
m

e
[s

]
Compr. time of benchmark images, variable max iters, YCbCr scheme

artificial
bridge
deer
hdr
nightshot_iso_1600
spider_web

Figure 6.13: A figure displaying compression time depending on the maximum
number of iterations (Y ′CBCR scheme).

have a linear effect on compression time requirements.

6.5.5 Subjective analysis of results

While the results show that images compressed using this method can be very
accurate, there is still information lost in the process related to chroma values.
This can be easily seen on the image named artificial where compressing
certain regions of an image creates many artifacts, especially if these regions
mainly consist of certain colors (red, purple and dark blue). It hasn’t been
found out if certain colors are more prone to these artifacts by default or if
these artifacts are rather related to certain image properties. A comparison
between a region of an image showing the difference between using JPEG and
the Y ′CBCR compression scheme can be seen in the figures 6.14 and 6.15.

SImilar problems however occur when compressing the same image using
JPEG. The exact same image region has problems with the same colors and
also produces artifacts in the neighbouring areas to the cubes, as JPEG com-
presses small 8 · 8 pixel regions. This is one of the main advantages of the

60

6.5. Results using the Y ′CBCR scheme

Figure 6.14: Region of the image named artificial showcasing the difference
between our compression scheme using NMF and between JPEG. First image
shows the uncompressed vesion, second image using the Y ′CBCR compression
scheme and the last image is compressed using JPEG. While small differences
are noticable, second image loses less information on certain colors (mostly on
the right cubes).

Figure 6.15: Zoomed in region from the figure 6.14. First image was com-
pressed using the Y ′CBCR scheme, second one has been compressed using
JPEG. The JPEG artifacts surrounding the cubes are easier to notice and the
NMF compression scheme is able to keep the structure of an image better.
However, the NMF compression scheme also produces artifacts in the area
behind the cubes in the form of slightly blue tones in the background.

61

6. Experiments and results

Y ′CBCR compression scheme when compared to JPEG - structure of an image
is, for the most part, very unaffected, as only the color values change.

In most cases where the compression loses information, the human eye
does not perceive the information loss as artifacts per se but rather simply
loss of color information - resulting in colors being slightly inaccurate (less
bright or a bit darker). This can be seen on the image named hdr. While the
structure of an image is kept, some of the colors are slightly inaccurate - such
as the small region of an image showed in the figure ??, where small regions
with slightly brighter colors can be seen. These changes are, however, difficult
to notice without focusing on them.

6.6 Randomized seeding methods

In the course of implementing the compression schemes and their testing, cer-
tain interesting aspects of the compression schemes were found. During the
course of development and testing, multiple seeding methods were tested - in
the previous sections, the NNDSVD seeding method was used in all cases.
Early on, randomized seeding methods were also used - until it was decided
the NNDSVD method would be better suited, not only due to the fact that the
results would be absolutely replicable, but also due to the fact that the ran-
domized seeding methods did not perform well in certain cases. This section
shows some of these aspects in order to show how much can different configu-
ration change the results of image compression schemes based on non-negative
matrix factorization.

6.6.1 Rank affecting image quality

The nightshot iso 1600 image from the benchmark set was compressed using
randomized seeding methods using the naive RGB scheme. The results were
essentially the same in case of both randomized seeding methods used (fully
random and random vcol). However, when working on a photography, the
SSIM and PSNR values were clearly better when compared to the results
with NNDSVD used. In the case of PSNR, the gain was not that high - but
in SSIM the difference was as much as entire 0.1 points. This improvement is
shown in the figure 6.16.

However, even though the randomized methods improve on the naive RGB
scheme when used on this image, the artifacts still occur and do not disappear
with higher ranks, which would make it seem that these artifacts occur not
because of the seeding method but rather because of the way non-negative
matrix factorization is solved itself.

These results would make it seem that randomized methods are an im-

62

6.6. Randomized seeding methods

0 20 40 60 80 100 120 140
Rank

0.70

0.75

0.80

0.85
SS

IM
SSIM and PSNR of nightshot_iso_1600, different seeding methods

random_vcol
random
nndsvd

0 20 40 60 80 100 120 140
Rank

21

22

23

24

PS
NR

 [d
B]

random_vcol
random
nndsvd

Figure 6.16: Randomized seeding methods improve the image quality of the
naive RGB compression scheme on the nightshot iso 1600 image. While the
PSNR gain is not that significant, the SSIM values are noticably higher.

provement over the NNDSVD method and perform far better. During the
course of development of the compression schemes, other images were artifi-
cially created for testing purposes. Some of the results on these images were
very surprising and would appear to have contradictory results compared to
the rest of the findings - more specifically, using higher rank could significantly
corrupt the image and lead to very noticable information loss.

This can be seen in particular in the figure 6.17, where an artifically created
image was compressed using the RGB schemes. When random seeding was
used, higher ranks corrupted the image extremely. In the case of NNDSVD,
this was not the case and higher rank had absolutely no effect on the image
quality. These errors also did not occur when the random vcol seeding method
was used.

As randomized seeding method could corrupt an image in such significant
way, other seeding methods were preferred - in this case, NNDSVD, which did
not have this problem in any of the test cases and would also lead to replicable
test results due to lack of randomization.

63

6. Experiments and results

Figure 6.17: A sample image where random seeding method produces incon-
sistent results when increasing rank.

64

Conclusions and future work

In this thesis, non-negative matrix factorization was explored and its potential
use for image compression was analyzed. Together with that, the essential in-
formation related to encoding digital images was also analyzed and explored,
as well as image compression basics. By analyzing these topics, it was pos-
sible to create three compression schemes - a naive one factorizing an image
as an entire RGB matrix, one which factorizes separate RGB channels and
one which factorizes matrices containing the values related to colors by trans-
forming the image into the Y ′CBCR color space. These compression schemes
were implemented using the Python programming language and tested on var-
ious benchmark images coming from different sources (both artificially created
images as well as digital photographies).

These compression schemes were evaluated using the peak signal-to-noise
ratio and structural similarity index metrics and the effect of choosing different
rank values on the image quality was explored. The other metrics which were
explored were the compression times and compression ratios.

Out of these compression schemes, the ones based on compressing RGB
color information proved to be quite inaccurate - even introducing very not-
icable artifacts. On the other hand, the compression scheme factorizing CB

and CR matrices has proven to be very accurate - even more accurate than
current state of the art lossy compression technique (JPEG), however at the
cost of image size and compression times.

Future work

As noted in the first chapter, the area of image compression using non-negative
matrix factorization is currently very underdeveloped. While this thesis offers
framework for exploring the potential of using non-negative matrix factoriza-

65

Conclusions and future work

tion for image compression, there are still many areas which can be explored.

The Y ′CBCR compression scheme has proven to be the fastest one (out of
the explored compression schemes utilizing non-negative matrix factorization)
by a large margin. The accuracy of the Y ′CBCR when it comes to retaining
the image quality is even higher than in the case of JPEG, being one of
the currently most used lossy compression techniques for image compression.
However, the compression scheme still falls short of JPEG when it comes to
compression time and compression ratio.

Potential improvements which could lead to better compression ratious
have been proposed in chapter 5, such as representing the matrices in a way
which would take less space (for example by using a sparse matrix repre-
sentation, if possible), performing non-negative matrix factorization on small
image regions, performing further quantization in order to compress a range of
values into a single quantum value or utilizing chroma subsampling. Compres-
sion times could be significantly improved by evaluating non-negative matrix
factorization of the CB and CR information in parallel.

66

Bibliography

[1] Microsoft Windows Bitmap File Format Summary.
URL http://www.fileformat.info/format/bmp/egff.htm

[2] Recommendation ITU-R BT.709-6, 06/2015 ed.

[3] Netpbm documentation, 2014.
URL http://netpbm.sourceforge.net/doc/

[4] Image Compression Benchmark, 2015.
URL http://imagecompression.info/

[5] Desktop Screen Resolution Stats Worldwide. http://
gs.statcounter.com/screen-resolution-stats/desktop/worldwide,
2019. Accessed: 2019-02-20.

[6] Agarwal, M., Agrawal, H., Jain, N., and Kumar, M. Face Recogni-
tion Using Principle Component Analysis, Eigenface and Neural Network.
In 2010 International Conference on Signal Acquisition and Processing,
pp. 310–314. 2010. doi:10.1109/ICSAP.2010.51.

[7] Biederman, Irving. Recognition-by-components: A theory of human im-
age understanding. Psychological Review, 94:115–147, 1987.

[8] Boutsidis, C. and Gallopoulos, E. SVD Based Initialization: A Head
Start for Nonnegative Matrix Factorization. Pattern Recogn., 41(4):1350–
1362, 2008. ISSN 0031-3203. doi:10.1016/j.patcog.2007.09.010.
URL http://dx.doi.org/10.1016/j.patcog.2007.09.010

[9] Deutsch, P. DEFLATE Compressed Data Format Specification Version
1.3, 1996.

67

http://www.fileformat.info/format/bmp/egff.htm
http://netpbm.sourceforge.net/doc/
http://imagecompression.info/
http://gs.statcounter.com/screen-resolution-stats/desktop/worldwide
http://gs.statcounter.com/screen-resolution-stats/desktop/worldwide
http://dx.doi.org/10.1016/j.patcog.2007.09.010

Bibliography

[10] Févotte, Cédric, Bertin, Nancy, and Durrieu, Jean-Louis. Non-
negative Matrix Factorization with the Itakura-Saito Divergence: With
Application to Music Analysis. Neural Computation, 21(3):793–830,
2009.
URL http://dblp.uni-trier.de/db/journals/neco/
neco21.html#FevotteBD09

[11] Gaujoux, Renaud. An introduction to NMF package. https://cran.r-
project.org/web/packages/NMF/vignettes/NMF-vignette.pdf, 2018.
Accessed: 2019-02-21.

[12] Gillis, Nicolas. The Why and How of Nonnegative Matrix Factorization.
arXiv e-prints, arXiv:1401.5226, 2014.

[13] Haines, Richard F. and Chuang, Sherry L. The effects of video compres-
sion on acceptability of images for monitoring life sciences experiments.
Tech. rep., NASA, 1992.
URL https://ntrs.nasa.gov/search.jsp?R=19920024689

[14] Hamilton, Eric. JPEG File Interchange Format. Tech. rep., C-Cube
Microsystems, Milpitas, CA, USA, 1992.
URL http://www.w3.org/Graphics/JPEG/jfif3.pdf

[15] Ho, Ngoc-Diep. Nonnegative matrix factorization algorithms and appli-
cations. Ph.D. thesis, 2008.

[16] Huffman, David A. A Method for the Construction of Minimum-
Redundancy Codes. Proceedings of the Institute of Radio Engineers,
40(9):1098–1101, 1952.

[17] Hunt, R. W. G. The reproduction of colour. Hoboken, NJ: John Wiley,
c2004, 6th ed ed. ISBN 04-700-2425-9.

[18] Huynh-Thu, Q. and Ghanbari, M. Scope of validity of PSNR in im-
age/video quality assessment. Electronics letters, 44(13):800–801, 2008.

[19] Ibraheem, Noor, Hasan, Mokhtar, Khan, Rafiqul Zaman, and
K Mishra, Pramod. Understanding Color Models: A Review. ARPN
Journal of Science and Technology, 2, 2012.

[20] Inuganti, Srilakshmi and Gampala, Veerraju. Image compression using
Constrained Non-Negative Matrix Factorization. In International Journal
of Advanced Research in Computer Science and Software Engineering, pp.
498–503. 2013. ISSN 2277 128X.

[21] jen Lin, Chih. Projected gradient methods for non-negative matrix fac-
torization. Tech. rep., Neural Computation, 2007.

68

http://dblp.uni-trier.de/db/journals/neco/neco21.html#FevotteBD09
http://dblp.uni-trier.de/db/journals/neco/neco21.html#FevotteBD09
https://cran.r-project.org/web/packages/NMF/vignettes/NMF-vignette.pdf
https://cran.r-project.org/web/packages/NMF/vignettes/NMF-vignette.pdf
https://ntrs.nasa.gov/search.jsp?R=19920024689
http://www.w3.org/Graphics/JPEG/jfif3.pdf

Bibliography

[22] Kalofolias, V. and Gallopoulos, E. Computing symmet-
ric nonnegative rank factorizations. Linear Algebra and its
Applications, 436(2):421 – 435, 2012. ISSN 0024-3795. doi:
https://doi.org/10.1016/j.laa.2011.03.016. Special Issue devoted to
the Applied Linear Algebra Conference (Novi Sad 2010).
URL http://www.sciencedirect.com/science/article/pii/
S0024379511002199

[23] Kitamura, D. and Ono, N. Efficient initialization for nonnegative ma-
trix factorization based on nonnegative independent component analysis.
In 2016 IEEE International Workshop on Acoustic Signal Enhancement
(IWAENC), pp. 1–5. 2016. doi:10.1109/IWAENC.2016.7602947.

[24] Kong, Shikang, Sun, Lijuan, Han, Chong, and Guo, Jian. An Image
Compression Scheme in Wireless Multimedia Sensor Networks Based on
NMF. Information, 8:26, 2017. doi:10.3390/info8010026.

[25] Krausz, Barbara and Bauckhage, Christian. Action Recognition in
Videos Using Nonnegative Tensor Factorization. pp. 1763–1766. 2010.
doi:10.1109/ICPR.2010.435.

[26] Lambrecht, Christian J. Van den Branden. Vision Models and Ap-
plications to Image and Video Processing. Norwell, MA, USA: Kluwer
Academic Publishers, 2001. ISBN 0792374223.

[27] Langville, Amy Nicole, Meyer, Carl Dean, Albright, Russell, Cox,
James, and Duling, David. Algorithms, Initializations, and Convergence
for the Nonnegative Matrix Factorization. CoRR, abs/1407.7299, 2014.
URL http://arxiv.org/abs/1407.7299

[28] Lee, Daniel D. and Seung, H. Sebastian. Learning the parts of objects
by nonnegative matrix factorization. Nature, 401:788–791, 1999.

[29] Lee, Daniel D. and Seung, H. Sebastian. Algorithms for Non-negative
Matrix Factorization. In T. K. Leen, T. G. Dietterich, and V. Tresp,
editors, Advances in Neural Information Processing Systems 13, pp.
556–562. MIT Press, 2001.
URL http://papers.nips.cc/paper/1861-algorithms-for-non-
negative-matrix-factorization.pdf

[30] Mathews, Brady. Image Compression using Singular Value De-
composition (SVD). http://www.math.utah.edu/˜goller/F15_M2270/
BradyMathews_SVDImage.pdf, 2014. Accessed: 2019-02-21.

[31] MATLAB. version R2018b. Natick, Massachusetts: The MathWorks
Inc., 2018.

69

http://www.sciencedirect.com/science/article/pii/S0024379511002199
http://www.sciencedirect.com/science/article/pii/S0024379511002199
http://arxiv.org/abs/1407.7299
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
http://www.math.utah.edu/~goller/F15_M2270/BradyMathews_SVDImage.pdf
http://www.math.utah.edu/~goller/F15_M2270/BradyMathews_SVDImage.pdf

Bibliography

[32] Mbearnstein37. CIExy1931 AdobeRGB vs sRGB, 2013. [Online;
accessed May 1, 2019].
URL https://en.wikipedia.org/wiki/File:Atomic_force_
microscope_block_diagram.svg

[33] McHugh, Sean. Gamma correction.
URL https://www.cambridgeincolour.com/tutorials/gamma-
correction.htm

[34] Miettinen, Pauli. Lecture notes in Data Mining and Matrices, 2017.
URL https://www.mpi-inf.mpg.de/fileadmin/inf/d5/teaching/
ss17_dmm/lectures/2017-05-29-intro-to-nmf.pdf

[35] Oliphant, Travis E. A guide to NumPy. USA: Trelgol Publishing, 2006–
. [Online; accessed ¡today¿].
URL http://www.numpy.org/

[36] Paatero, Pentti and Tapper, Unto. Positive Matrix Factorization:
A Non-Negative Factor Model with Optimal Utilization of Error Esti-
mates of Data Values. Environmetrics, 5:111–126, 1994. doi:10.1002/
env.3170050203.

[37] Rezghi, M and Yousefi, Masoud. A projected alternating least square
approach for computation of nonnegative matrix factorization. Journal of
Sciences, Islamic Republic of Iran, 26:273–279, 2015.

[38] Roelofs, Greg. Portable Network Graphics.
URL http://www.libpng.org/pub/png/

[39] Roweis, S. T. and Saul, L. K. Nonlinear Dimensionality Reduction by
Locally Linear Embedding. In Science, vol. 290, pp. 2323–2326. ISSN
00368075. doi:10.1126/science.290.5500.2323.
URL http://www.sciencemag.org/cgi/doi/10.1126/
science.290.5500.2323

[40] Salomon, David. Data Compression: The Complete Reference. Berlin,
Heidelberg: Springer-Verlag, 2006. ISBN 1846286026.

[41] Sampath, Satish. An Introduction to Image Compression.
URL http://www.debugmode.com/imagecmp/index.htm

[42] Sayood, Khalid. Introduction to Data Compression, Third Edition
(Morgan Kaufmann Series in Multimedia Information and Systems). San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2005. ISBN
012620862X.

70

https://en.wikipedia.org/wiki/File:Atomic_force_microscope_block_diagram.svg
https://en.wikipedia.org/wiki/File:Atomic_force_microscope_block_diagram.svg
https://www.cambridgeincolour.com/tutorials/gamma-correction.htm
https://www.cambridgeincolour.com/tutorials/gamma-correction.htm
https://www.mpi-inf.mpg.de/fileadmin/inf/d5/teaching/ss17_dmm/lectures/2017-05-29-intro-to-nmf.pdf
https://www.mpi-inf.mpg.de/fileadmin/inf/d5/teaching/ss17_dmm/lectures/2017-05-29-intro-to-nmf.pdf
http://www.numpy.org/
http://www.libpng.org/pub/png/
http://www.sciencemag.org/cgi/doi/10.1126/science.290.5500.2323
http://www.sciencemag.org/cgi/doi/10.1126/science.290.5500.2323
http://www.debugmode.com/imagecmp/index.htm

Bibliography

[43] Schultz, Jeff. How Much Data is Created on the Internet Each
Day? https://blog.microfocus.com/how-much-data-is-created-
on-the-internet-each-day/, 2017. Accessed: 2019-02-18.

[44] Shitov, Yaroslav. A short proof that NMF is NP-hard. 2016.
URL https://www.researchgate.net/publication/303217568_A_
short_proof_that_NMF_is_NP-hard

[45] Smith, Steven W. The Scientist and Engineer’s Guide to Digital Signal
Processing. San Diego, CA, USA: California Technical Publishing, 1997.
ISBN 0-9660176-3-3.

[46] Sra, Suvrit and Dhillon, Inderjit S. Generalized Nonnegative Matrix
Approximations with Bregman Divergences. In Y. Weiss, B. Schölkopf,
and J. C. Platt, editors, Advances in Neural Information Processing
Systems 18, pp. 283–290. MIT Press, 2006.
URL http://papers.nips.cc/paper/2757-generalized-
nonnegative-matrix-approximations-with-bregman-
divergences.pdf

[47] T, Prabhakar, Naveen, Dr Jagan, Annam, Lakshmi Prasanthi, and
Santhi, G.Vijaya. Image Compression Using DCT and Wavelet Trans-
formations. International Journal of Signal Processing, Image Processing
and Pattern Recognition (IJSIP) Korea, Vol.4:pages.61–74„ 2011.

[48] van der Walt, Stéfan, Schönberger, Johannes L., Nunez-Iglesias,
Juan, Boulogne, François, Warner, Joshua D., Yager, Neil, Gouil-
lart, Emmanuelle, Yu, Tony, and the scikit-image contributors.
scikit-image: image processing in Python. PeerJ, 2:e453, 2014. ISSN
2167-8359. doi:10.7717/peerj.453.
URL https://doi.org/10.7717/peerj.453

[49] Virtanen, T. Monaural Sound Source Separation by Nonnegative Matrix
Factorization With Temporal Continuity and Sparseness Criteria. IEEE
Transactions on Audio, Speech, and Language Processing, 15(3):1066–
1074, 2007. ISSN 1558-7916. doi:10.1109/TASL.2006.885253.

[50] Wang, Zhou and Bovik, Alan. Bovik, A.C.: Mean squared error: love it
or leave it? - A new look at signal fidelity measures. IEEE Sig. Process.
Mag. 26, 98-117. Signal Processing Magazine, IEEE, 26:98 – 117, 2009.
doi:10.1109/MSP.2008.930649.

[51] Wiredfool, Clark, Alex, , Hugo, Murray, Andrew, Karpinsky,
Alexander, Gohlke, Christoph, Crowell, Brian, Schmidt, David,
Houghton, Alastair, Johnson, Steve, Mani, Sandro, Ware, Josh,
Caro, David, Kossouho, Steve, Brown, Eric W., Lee, Antony,
Korobov, Mikhail, Micha l Górny, Santana, Esteban Santana,

71

https://blog.microfocus.com/how-much-data-is-created-on-the-internet-each-day/
https://blog.microfocus.com/how-much-data-is-created-on-the-internet-each-day/
https://www.researchgate.net/publication/303217568_A_short_proof_that_NMF_is_NP-hard
https://www.researchgate.net/publication/303217568_A_short_proof_that_NMF_is_NP-hard
http://papers.nips.cc/paper/2757-generalized-nonnegative-matrix-approximations-with-bregman-divergences.pdf
http://papers.nips.cc/paper/2757-generalized-nonnegative-matrix-approximations-with-bregman-divergences.pdf
http://papers.nips.cc/paper/2757-generalized-nonnegative-matrix-approximations-with-bregman-divergences.pdf
https://doi.org/10.7717/peerj.453

Bibliography

Pieuchot, Nicolas, Tonnhofer, Oliver, Brown, Michael, Benoit
Pierre, Abela, Joaqúın Cuenca, Solberg, Lars Jørgen, Reyes, Fe-
lipe, Buzanov, Alexey, Yifu Yu, Eliempje, and Tolf, Fredrik. Pillow:
3.1.0, 2016. doi:10.5281/zenodo.44297.
URL https://zenodo.org/record/44297

[52] Xu, Wei, Liu, Xin, and Gong, Yihong. Document Clustering Based
on Non-negative Matrix Factorization. In Proceedings of the 26th An-
nual International ACM SIGIR Conference on Research and Development
in Informaion Retrieval, SIGIR ’03, pp. 267–273. New York, NY, USA:
ACM, 2003. ISBN 1-58113-646-3. doi:10.1145/860435.860485.
URL http://doi.acm.org/10.1145/860435.860485

[53] Zitnik, Marinka and Zupan, Blaz. Nimfa: A Python Library for Non-
negative Matrix Factorization. Journal of Machine Learning Research,
13:849–853, 2012.

[54] Ziv, J. and Lempel, A. A Universal Algorithm for Sequential Data
Compression. IEEE Trans. Inf. Theor., 23(3):337–343, 2006. ISSN 0018-
9448. doi:10.1109/TIT.1977.1055714.
URL http://dx.doi.org/10.1109/TIT.1977.1055714

72

https://zenodo.org/record/44297
http://doi.acm.org/10.1145/860435.860485
http://dx.doi.org/10.1109/TIT.1977.1055714

Appendix A
Acronyms

JPEG Joint Photographic Experts Group

MSE Mean squared error

NMF Non-negative matrix factorization

NNDSVD Nonnegative double singular value decomposition

PCA Principal component analysis

PNG Portable Network Graphics

PSNR Peak signal-to-noise ratio

SSIM Structural similarity index

SVD Singular value decomposition

73

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
src the directory with source codes

nmf compressor the directory containing Python source files
thesis the directory containing LATEX source files and images

text.....................the directory containing the thesis in PDF file

75

	Introduction
	Related work

	Non-negative matrix factorization
	Problem definition
	Problem solution
	Multiplicative updates
	Alternating least squares method

	Common NMF applications
	Part-based analysis
	Image learning
	NMF properties

	NMF parameters
	Choice of rank r
	Initialization techniques

	NMF and compression

	Digital image encoding
	Digital images
	Color models and color spaces
	RGB color model
	Y'CBCR color space
	Grayscale

	Image compression
	Data compression
	Lossless compression algorithms
	Lossy compression algorithms
	Modeling and coding

	Image compression
	Redundancies in images
	Compression metrics
	JPEG image compression

	NMF compression scheme
	Compression scheme design
	Naive compression scheme (RGB)
	Separate RGB compression
	Y'CBCR compression scheme

	Decompression
	Non-deterministic properties of NMF

	Implementation
	Technologies used
	Performing non-negative matrix factorization
	Data types and NMF compression

	Compressed image data structure
	Decompressing data
	Possible improvements

	Experiments and results
	Compression scheme variables
	Choice of images
	Results using the naive RGB scheme
	Image quality
	Compression time/ratio
	Subjective analysis

	Results using the separate RGB scheme
	Image quality
	Compression time/ratio
	Subjective analysis

	Results using the Y'CBCR scheme
	Image quality
	Compression time/ratio
	Comparison with JPEG
	Image quality improvement with more NMF iterations
	Subjective analysis of results

	Randomized seeding methods
	Rank affecting image quality

	Conclusions and future work
	Future work

	Bibliography
	Acronyms
	Contents of enclosed CD

