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Abstract

The thesis presents to the reader the Dubins Traveling Problem (DTSP) and
its extension to the Dubins Traveling Salesman Problem with Neighborhoods
(DTSPN). The thesis focuses on solving the DTSPN and studies two existing
algorithms for this problem. One algorithm is the Unsupervised learning algo-
rithm based on Self-Organizing maps (SOM). The second studied algorithm is
a Memetic algorithm presenting crossover and mutation operators to solve the
DTSPN. The advantages and disadvantages of these two approaches can be con-
sidered complementary. Based on that, a novel Hybrid algorithm for solving the
DTSPN is proposed, combining the two studied algorithms into one. Adopting
the advantages of both.

Keywords: dubins traveling salesman problem; dubins traveling salesman
problem with neighborhoods; memetic algorithm; self-organizing map; hybrid
algorithm; unsupervised learning

Abstrakt

Tato práce pojednává o problematice Problému obchodńıho cestuj́ıćıho s Du-
binsovým Vozidlem (DTSP) a jeho rozš́ı̌reńı na Problém obchodńıho cestuj́ıćıho
s Dubinsovým vozidlem s okoĺımi (DTSPN). Práce se zaměřuje na řešeńı DT-
SPN a studuje dva existuj́ıćı algoritmy pro řešeńı tohoto problému. Algorit-
mus využ́ıvaj́ıćıho strojového učeńı postavený na Samo-Organizačńıch mapách
(SOM) a druhý Memetický algoritmus, který k řešeńı daného problému využ́ıvá
proces kř́ıžeńı a mutaćı. Výhody a nevýhody těchto algoritmů se navzájem
doplňuj́ı, čehož je v práci využito pro navrhnut́ı hybridńıho algoritmu pro řešeńı
DTSPN. Tento algoritmus kombinuje výhody obou studovaných.

Kĺıčová slova: problém obchodńıho cestuj́ıćıho s Dubinsovým vozidlem; problém
obchodńıho cestuj́ıćıho s Dubinsovým vozidlem s okoĺımi ; memetický algorit-
mus; samo-organizačńı mapy; hybridńı algoritmus; strojové učeńı
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CHAPTER 1
Introduction

The problem addressed in this thesis is motivated by surveillance missions performed by
the Unmanned Aerial Vehicles (UAVs). In surveillance missions, the goal is to visit a set of
locations to gather information on the objects of interest. An example can be data collection of
households energy consumption, where data can be collected remotely from measuring devices.
Another instance of a surveillance mission is taking snapshots of the given target locations.
In that case, it is not necessary to visit the location of the object exactly, but it is sufficient
to reach a location from which the object can be photographed with the requested level of
details. There can be several optimization criteria used in surveillance mission planning. The
most straightforward way is to shorten the time UAV spends on the mission because keeping
the UAV airborne is the most expensive part of the mission. Therefore the mission needs to be
planned such that the UAV visits all the required target locations with minimal possible time.
If the UAV is moving with constant speed, the problem can be considered as minimization of
the total travel cost to visit all the target locations. A common type of the UAV used for the
surveillance missions is a fixed-wing aircraft, which is constrained by its turning radius. An
example of such fixed-wing aircraft is shown in Figure 1.1.

The problem of finding minimal tour length visiting all the given locations is the Traveling
Salesman Problem (TSP), which is known to be NP-hard (in its decision variant) [5], several

Figure 1.1: Carbonix Volanti: fixed wing carbon composite industrial drone, source: [1]
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Chapter 1. Introduction

approaches have been proposed [6], [7]. However, the motivational scenario of the problem
studied in this thesis is to find a smooth multi-goal trajectory that is suitable for UAVs such
as fixed-wing aircraft, which is constrained by its minimal turning radius. Therefore, we focus
on a solution of the TSP-like problems with curvature-constrained trajectories for which we
consider the vehicle motion constraints modeled as Dubins vehicle [8].

Dubins vehicle models a vehicle that moves only forward with a constant speed and is
limited by minimum turning radius ρ. Then, the TSP becomes the Dubins Traveling Salesman
Problem (DTSP) [9]. The task is to find the shortest path between given set of points with
a curvature constraint, such that the path visits all the given locations. In case, when it is
not required to visit the exact locations, we can save additional resources by only visiting
their vicinity. That leads to a generalization of the DTSP, where particular waypoints can
be chosen from an area surrounding the object of interest. This generalization is called the
Dubins Traveling Salesman Problem with Neighborhoods (DTSPN) [10].

A novel hybrid algorighm for the DTSPN is introduced in this thesis. It leverages on to
the existing methods: Memetic algorithm [3] and Unsupervised Learning algorighm [4]. The
Unsupervised Learning algorithm is based on Self-Organizing Maps (SOM). The algorithm
has evolved and the authors have introduced an updated version, called GSOA: Growing Self-
Organizing Array - Unsupervised learning for the Close-Enough Traveling Salesman Problem
and other routing problems. But we use the original abbrevation (SOM) for the rest of the
thesis.

Both of these algorithms have their pros and cons. But these pros and cons can be
considered complementary to each other. While the SOM algorithm can be considered a quick
constructive heuristic, it does not improve the provided solution with more computational time
at its disposal. The memetic algorithm is relatively slow in providing the first competitive
solution, but with enough computational time, it can converge to high-quality solutions,
eventually to the optimum. These algorithms are presented to the reader in detail, as they
are essential for the rest of the thesis.

Chapter 6 presents the proposed hybrid algorithm, combining the benefits of selected
approaches. The proposed algorithm is a combination of the SOM and the Memetic algorithm.
The solution provided by the SOM is used as initialization of the Memetic algorithm. That
way, the first competitive solution can be provided relatively quickly, while it can be improved
with more computational time.

In chapter 7, results of proposed solutions are reported and discussed. The proposed
hybrid algorithm is compared to the two algorithms from which it was developed. In the last
part, the thesis is concluded.

2



CHAPTER 2
Problem Statement

The problem studied in this thesis is motivated by surveillance missions performed by the
UAVs. Where set of locations to visit is given. The problem of connecting all the points in a
plane and determining the order of their visits is known as the Traveling Salesman Problem.
The target location does not always have to be visited directly. When it is enough to approach
the object of interest from a certain distance, then the particular waypoint has to be chosen
from an area surrounding the target. With this generalization, the problem becomes the
Traveling Salesman Problem with Neighborhoods (TSPN). The shape of this area can vary
in real situations, but for the computation, it has to be determined first. For simplicity, this
thesis always considers the area around each target to be a disk centered around the target
location with a given radius δ. In our case, each location has to be visited by the UAV, the
curvature constrained non-holonomic vehicle.

To model the behavior of the UAV, a mathematical model is needed for computations.
This model has been proposed in [8]. The model is called the Dubins vehicle, which is a
vehicle moving always forward with constant velocity v and is limited by its minimal turning
radius ρ. At each point in time, the state of the vehicle is described by its position in the
plane and its heading. The represantation of the state is q = (p, θ), where p ∈ R2 is the
position p = (x, y) and θ ∈ S1 is the heading of the vehicle, i.e., q ∈ SE (2). The following
mathematical representation is brought from [2].ẋẏ

θ̇

 = v

 cosθ
sinθ
u · ρ−1

 , |u| ≤ 1, (2.1)

where u is the control input.

Dubins has shown in [8], that the optimal path connecting two states q1 ∈ SE(2) and
q2 ∈ SE(2) is constructed only of the circular segments (C) with maximal possible turning
radius and straight line segments (L). Where the circular segments are either turn to the left
(L) or to the right (R). Path constructed from these segments connecting two states of the
Dubins vehicle is called the Dubins maneuver. The Dubins maneuver can be of two kinds. One
composed of only circular segments (CCC) and the other composed of two circular segments
connected by a straight line (CSC). The options for the Dubins maneuver are LRL, RLR
for the CCC option and LSL, LSR, RSL, RSR for the CSC option. For demonstration, an

3



Chapter 2. Problem Statement

example of the Dubins maneuver is shown in Figure 2.1.

RSR maneuver

Figure 2.1: An example of the Dubins manuever connecting points pi and pj using the departure
angle θi and arrival angle θj .

The problem becomes to find the optimal sequence of the targets to visit as in TSP.
Then determine the optimal headings at each target, to be able to connect all the points by a
Dubins path, which corresponds to the DTSP. And finally, the Dubins Traveling Problem with
Neighborhoods (DTSPN) is the problem of finding the shortest possible curvature-constrained
path connecting all the target regions.

Formal introduction of the DTSPN is adopted from [10]. Mathematical representation is:

Problem 1 (DTSPN)

minimizeΣ,q L (qσn , qσ1) +
n−1∑
i=1

(
qσi , qσi+1

)
subject to |pi ∈ Ri, qi| < δ,

where R = (R1, . . . , Rn) is the set of n regions Ri ⊂ R2 to be visited by the Dubins vehicle.
Σ = (σ1, . . . , σn) is the ordered permutation of {1, . . . , n}. pi is the visiting point of the region
Ri and qi ∈ SE (2) is the state of the Dubins vehicle. And δ is sensing radius. The DTSPN
is optimization problem over all possible Σ and all configurations q, where L (qi, qj) is the
Dubins distance between qi and qj .

4



CHAPTER 3
Related Work

In this chapter, existing approaches for the DTSP and the DTSPN are discused. As Dubins
shown in [8] the shortest path for Dubins vehicle connecting two points in a plane is one of the
six Dubins maneuvers consisting only of straight line segments and arc curves with minimal
turning radius. However, the path expects that headings of the vehicle are known for both
points connected by the Dubins maneuver. In case of planning the path for the DTSP, the
headings at waypoints are unknown. Thus, the solutions for the Euclidean TSP cannot be
applied directly, and the problem of finding the optimal headings for each waypoint needs to
be solved. For the sequence of n waypoint locations p1 . . . pn, the problem to find optimal
headings θ1 . . . θn at each waypoint, in order to minimize the total length of the Dubins path
connecting all waypoints is a continuous optimization problem, known as the Dubins Touring
Problem (DTP).

One of the first solutions to the DTP is Alternating Algorithm (AA) described in [11].
Next approach to the DTP is used in [12], where the headings are determined using uniform
sampling by straight line segments. First for even edges and then optimal Dubins maneuvers
are determined for odd edges. Another solution was proposed in [2], which brings a refinement
procedure to create informed sampling method for solving the DTP. The comparison between
the informed sampling and uniform sampling is shown in Figure 3.1. Using informed sampling
method the authors claim to be able to find a solution as close to optimum as 0.1 %.

Approaches to solving the DTSP and the DTSPN found in literature can be divided into
four main groups of algorithms. The first group is decoupled approaches, which solve the
problem of determining the headings and the problem of finding the sequence separately. The
second group is formed by transformation approach algorithms where the idea is to determine
the headings first and then transform the problem to Asymmetric TSP (ATSP). The third
group is evolutionary algorithms with high computational requirements but with a chance of
providing solutions of high quality. The fourth group is the approaches that use unsupervised
learning and self-organizing maps.

Decoupled approach to the DTSP is presented in [11], where the authors first obtain the
upper bound on the point to point problem. And then consider the corresponding TSP. The
effectiveness of decoupling methods mainly relies on the similarities between the DTSP and
the ETSP. This makes them unsuitable for situations, where the Euclidean distance between
waypoints is not long enough compared to the minimal turning radius.

5



Chapter 3. Related Work
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(a) Uniform sampling
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6 5

(b) Informed sampling

Figure 3.1: A solution for the DTSP for a given sequence of the targets, using the uniformed sampling
and the informed sampling. Source of the picture: [2]

An example of the transformation approach to the DTSP can be a graph-based algorithm
presented in [13]. Here, the authors use a sampling method to cast the DTSPN to the
Generalised Traveling Salesman Problem (GTSP) with intersecting node sets which can be
described by a directed graph. And then, using the Noon-Bean transformation to transform
the GTSP into ATSP, they recover the optimal solution for the GTSPN from the solution of
the ATSP. Transformation methods are highly dependant on the sampling density of headings.
To acquire better results, they usually require tremendous computational resources.

The third group represents genetic algorithms, which improve solutions by mutating ex-
isting solutions and creating crossbreeds of these solutions in generations. The fourth group
is algorithms based on neural networks. We chose two algorithms from these last two groups
to create the hybrid algorithm. As these algorithms are essential for this work, they are
described in detail in the following chapter.

6



CHAPTER 4
Source Algorithms

From the known algorithms for solving the DTSPN, two are chosen in this thesis. One is
a Memetic algortihm. This algorithm is a representant of the third group of algorithms for
the DTSPN. It has been chosen for its ability to improve the provided solution in time. The
second chosen algorithm, representant of the fourth group of algorithms, is the Unsupervised
learning algorithm. It was chosen for its ability to quickly provide a competitive solution.
The proposed Hybrid algortihm combines these two algorithms into one, adopting advantages
of both. That is why the thesis focuses on these algorithms in detail, in this chapter.

Memetic Algorithm

The chosen Memetic algortihm has been presented in [3]. This approach to solving the DTSPN
first generates a population of random valid solutions to the DTSPN. Then the individuals in
the population can be mutated and crosbred, creating new individuals for the next population.
The higher quality solutions are kept for the next generations, thus improving the found
solution. This process can be repeated for the time provided to the algorithm, eventually
converging to high quality solutions. The main specifics of the chosen Memetic algorithm [3]
are presented in this section.

The authors introduce several optimization difficulty reductions as the main contributions
of the article. The first introduced optimization is terminal heading relaxation. The article
shows that reaching the target from an initial state with a fixed position and initial heading
always reduces to circular arcs and straight line segments. Also, these paths to the target are
symmetric to both sides from the initial position. This is a special situation of the paths with
terminal headings studied by Dubins [8]. This improvement allows determining the terminal
heading from its relative position to the initial heading, once that is fixed. Therefore only
initial heading needs to be found, reducing the overall difficulty of the DTSPN. The article
presents and uses boundary based encoding scheme. Using the fact that the UAV has to
always pass through the boundary of the target region, this point on the boundary can be
used as the visiting point of each region. Using the position of the target as center of the
disk area of the neighborhood, every point on the boundary can be described using the polar
angle. According to the authors of [3], the fact, that only the sequence of visits of each
target and initial heading at the entry point needs to be determined, the overall complexity

7



Chapter 4. Source Algorithms

Polar axisOi

θi

pi = (xOi +Ricosθi, yOi +Risinθi)

Figure 4.1: Representation of the encoding scheme for the visiting point of the target region.
Source [3]

of the DTSPN reduces from 4n to 2n, where n is the number of targets to be visited. The
authors also mention the fact that in real situations, the data collection is not instant but
can take some time. When the visiting point of each region is on the border, the UAV is not
guaranteed to spend enough time in the target region. This problem is solved by calculating
with neighborhoods where the diameter of the disk area is reduced by a constant. Scheme for
the polar angle represenation of the visiting point is shown in Figure 4.1. Using this encoding
scheme, the waypoints P = (p1, p2, . . . , pn) , where pi = (xi, yi) are described. Their sequence
is S = (s1, s2, . . . , sn) and θi represents the initial heading at the waypoint. Thus the solution
to the DTSPN can be described as

(
s1
θs1

)
−
(
s2
θs2

)
− · · · −

(
sn
θsn

)
, where θsi corresponds to the

visiting point of the sith target region.
Another reduction to the computational difficulty of the DTSPN presented in [3] is an

approximate gradient-based search. The authors present that if the visiting sequence of two
solutions is the same, then the difference is only in visiting points of each region. While
changing the visiting point of one target region affects all the other target regions, the further
from the changed point, the effect weakens. Thus to reduce the computational cost, only part
of the solution is adapted, when one visiting point is changed.

The evolutionary algorithm has two mutation operators and a crossover. Swapping mu-
tation operator changes the sequence of the visited targets. Randomly choosing two indices
i, j ∈ 1, 2, . . . , n, i 6= j. It swaps the genes in the chromosome. Creating a new solution. For
example, in chromosome(

2

θi2

)
−
(

6

θi6

)
−
(

1

θi1

)
−
(

5

θi5

)
−
(

3

θi3

)
−
(

4

θi4

)
,

indices i = 2 and j = 5 are chosen. The operator swaps corresponding genes in the chromo-
some, creating new chromosome(

5

θi5

)
−
(

6

θi6

)
−
(

1

θi1

)
−
(

2

θi2

)
−
(

3

θi3

)
−
(

4

θi4

)
.

The other mutation operator is shifting the visiting point of the region. Index i is again
randomly chosen and the polar angle of the gene is reset within the interval (0, 2π]. The i-th
gene in the chromosome is changed by changing the visiting point of the region.

The crossover operator is very well demonstrated by the example in [3], which is also
shown here. Assuming the ith individual in the population to be(

2

θi2

)
−
(

6

θi6

)
−
(

1

θi1

)
−
(

5

θi5

)
−
(

3

θi3

)
−
(

4

θi4

)
8



Chapter 4. Source Algorithms

where the superscript i indicates the index of the individual in the population. The parent
individuals are constituted by the ith individual and another randomly selected individual
from the population. (

4

θi4

)
−
(

6

θi6

)
−
(

2

θi2

)
−
(

5

θi5

)
−
(

3

θi3

)
−
(

1

θi1

)
Auxiliary vector of the same dimensions as parent individuals is randomly generated with its
elements being 1 or 2. In example the vector v = [1, 2, 2, 1, 1, 2]. The elements of this vector
determine from which parent individual the values will be inherited in the offspring. In this
example the first component of the auxiliary is 1, which means that the first gene in parent
1 will be selected to construct the offspring. The offspring:(

2

θi2

)
. . .

Then, the selected gene is removed from both parents. Removing the component numbered
two leaves the parent individuals as
Parent 1: (

6

θi6

)
−
(

1

θi1

)
−
(

5

θi5

)
−
(

3

θi3

)
−
(

4

θi4

)
Parent 2: (

4

θi4

)
−
(

6

θi6

)
−
(

5

θi5

)
−
(

3

θi3

)
−
(

1

θi1

)
The second component of the auxiliary vector is 2, which means the next gene in construction
of the offspring will be inherited from parent 2. After this step the generated offspring is:(

2

θi2

)
−
(

4

θi4

)
. . .

At the end of this cycle, the fully generated offspring will be:(
2

θi2

)
−
(

4

θi4

)
−
(

6

θi6

)
−
(

1

θi1

)
−
(

5

θi5

)
−
(

3

θi3

)
This memetic algorithm has been chosen in this thesis mainly for its ability to converge to

high-quality solutions when given enough computational time. Its main disadvantage is that
first competitive solution cannot be provided quickly. We can change that, by initialising the
starting generation with a feasible solution generated by a faster method rather than using
random values.

Unsupervised learning algorithm

The second chosen algorithm is the Unsupervised learning algorithm based on Self-Organizing
Maps (SOM) [4]. This approach to the DTSPN uses an artificial neural network to solve the
DTSPN. The neurons in the network, which is called a neuron ring, represent the state of the
Dubins vehicle. The ring is then adapted towards the target locations and once each target is
covered by the path connecting the neurons, the final path can be determined. Thus solving
the DTSPN. The Unsupervised learning algorithm is able to provide a competitive solution
in a short amount of time, which is why it was chosen in the thesis.
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In this section, the thesis presents the specifics of the chosen Unsupervised learning algo-
rithm. The approach to solve the DTSP [14] is presented and its extension to the DTSPN.
This algorithm implements a method to find the waypoint in the disk area around the target
during the selection of the winner neuron. This approach has been first proposed in [15] and
then used in [16] and further improved in [17]. The article, in which this algorithm has been
proposed [4], also brings a way to solve the DTSPN for multiple vehicles. Using a separate
neuron ring for each vehicle and in case any target could be covered by more than one vehicle,it
chooses the one with the shortest path in order to minimize the longest path. The approach
has been proposed in [18]. The thesis does not focus on this part, as it is not in its scope. The
main specifics of the Unsupervised learning algortihm [4] are presented in following sections.

Self Organizing Maps for the TSP and the DTSP

SOM is a type of an artificial neural network using Unsupervised learning to adapt its neurons.
It can be used for mapping high-dimensional data into an ordinary low dimensional grid [19].
Therefore it is a very good tool for the visualization of data, that could not be displayed
otherwise. It is also used for clustering data and other classification problems. SOM for
such types of problems is typically 2D maps. However, SOM for the TSP maps the input
space and the targets into the neural network. The output is a one-dimensional array of the
output units [20]. The neuron weights and the input signals share the same space. Thus the
connected neuron ring represents the path between the target locations. [21].

When using SOM for solving the ETSP, neural network N = (v1, . . . , vm) is created.
Where vi is a neuron represeting the location of the vehicle in the input space R2. And m
is the number of neurons in the ring. When solving the ETSP, the final solution is found by
connecting the neurons by straight lines [21]. For the SOM-based solution of the DTSP, the
neuron also has to contain the information about the Dubins vehicles heading. Therefore each
neuron vi represents the state of the Dubins vehicle vi ∈ SE(2). The final Dubins path has
to be constructed by connecting the neurons by Dubins maneuvers. While the final solutions
of the ETSP and the DTSP differ in constructing the final path and in what the neurons
represent, the same framework is utilized to find the final state of the neural network. To
complete the information, the framework is sourced directly from [4].

1. Initialization: For n target locations O, create a ring of neurons with randomly initial-
ized weights, e.g., with 2n neurons [16]. Initialize the learning parameters as follows:
the learning gain σ = 10, the learning rate µ = 0.6, the gain decreasing rate α = 0.1,
and set the learning epoch counter i = 1.

2. Randomizing : Create a random permutation of locations Π (O) to avoid local minima.

3. Learning epoch: For each o ∈ Π (O)

(a) Select winner neuron v∗ for o as the best matching neuron i.e., the closest neuron
to o.

(b) Adapt v∗ and its neighbors to o using the neighbouring function (4.1), i.e., set the
neuron weights to the new locations v determined as:

v
′

= v + µf (σ, d) (o− v)

4. Ring regeneration: to improve headings associated with the neurons to optimize the
length of the Dubins path represented by the ring. (For solving DTSP and DTSPN)

10
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(a) Epoch 12 (b) Epoch 28 (c) Epoch 35

(a) Epoch 42 (b) Final Path
(c) Final Dubins Path

Figure 4.3: Example of the ring evolution towards the targets. After the adaptation process is
finished the headings are determined, and the final Dubins path is constructed, source [4]

5. Update learning parameters: σ = σ (1− iα) , i = i+ 1

6. Termination condition: If solution is not improving or i ≥ imax Stop the adaptation.
Otherwise go to step 2.

7. Construct the final (Dubins) tour using the last winners

The used neighbouring function follows the existing SOM for the TSP [21] and it has the
following form.

f (σ, d) =

{
e
−d2
σ2 for d < 0.2mr

0 otherwise
, (4.1)

which decreases the power of adaptation of the neighbouring nodes to the winner neuron v∗

with increasing distance d of the neuron to v∗ counted in the number of neurons of the ring.
The adaptation can be viewed as a movement of the neurons to new position v

′
which replaces

the neuron weights v. The Figure 4.3 shows the evolution of the ring of neurons towards the
target locations.

SOM for the DTSPN

In solving the DTSPN, the neurons in the ring represent the waypoints on the Dubins path.
Unlike in the SOM-based solution of the TSP, to connect the neurons with Dubins maneuvers
into the resulting path, each neuron needs to keep the expected headings [14]. The headings
have major effect on the resulting path after connecting the neurons. Thus each neuron vi ∈ N

11
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holds a set of headings Θi = {θ−ki , θ−k+1
i , . . . , θ2

i , θ
k
i }. To find the optimal solution, the heading

that matches to the shortest possible path needs to be determined. To acquire this heading
the neuron ring can be treated as search graph, where the headings of the neighboring neurons
are connected. The heading can be determined from this graph by a feedforward search bound
by O

(
ms3

)
, where m is the current number of neurons in the ring and s is the number of

headings that each neuron keeps in its structure. The search graph representation is shown
in Figure 4.4.

ν1

θ1
1

θ1
2

...

θ1
s

ν2

θ2
1

θ2
2

...

θ2
s

ν3

θ3
1

θ3
2

...

θ3
s

νm

θm1

θm2

...

θms

. . .

for all combinations

Figure 4.4: A search graph showing how the headings are connected in the neuron ring, source: [4]

The path aquired after this procedure is then used when searching for the winner neuron
v∗. The procedure of adapting the network towards a target o used in the algorithm starts by
finding the closest point of the current path po to the target o. If there is no neuron in this
point, new neuron is created and its state is set to this exact location. The vehicle heading θp
from the point po is set as the main heading for the new neuron and the other headings are
set around θp as Θv∗ = {θp, θ1

p, . . . , θ
i
p, θ

−1
p , . . . , θ−ip }, where θip = θp + iπ/l, 1 ≤ i ≤ l and l is

set to l = 12. Next the point op is found on the bound of the region of target o as the point on
the line connecting point po and target o. The point op is in the distance equal to the radius δ
from o. Then the network adapts towards this point op rather than o to save travel distance.
In case that the winner neuron already is within the sensing radius δ from o, the network is
not adapted at all, as the target can already be covered from po. After the adaptation of the
winner neuron, the neighboring neurons are adapted as well. The neighborhood is defined by
two neurons vprev and vnext. These neurons are determined to minimize the expected Dubins
path towards o. According to the following equation:

Lg = l (vprev, (o, θ)) + l ((o, θ) , vnext) , (4.2)

The neurons vprev and vnext are determined from equation 4.1. Where θ is one of the
headings of the winner neuron v∗. vprev and vnext are from the activation bubble around
v∗. For the neuron to belong into the activation bubble, its neighbouring function needs to
be above the activation limit, which is set to 10−5. As the neighbouring function depends
on the learning gain σ, which decreases in the process, the neurons vprev and vnext may not
be found. In that case, only the winner neuron v∗ is adapted towards op. Otherwise all
neurons between vprev and vnext are adapted towards op including the winner neuron. The
adaptation is made so that the winner neuron v∗ is moved to the location of op and then
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νprev

νnext

θp o
p

*ν θpp
o

δ

o

p
o=(   ,    )

Figure 4.5: Graphic showing the winner selection procedure and the point op towards which the
network is adapted, source: [4]

Dubins maneuvers are determined between vprev, v
∗ and vnext. If there is such neuron, one

neuron is removed between vprev and vnext as during the winner selection one neuron could
have been added, this procedure ensures that the number of neurons will not exceed 2n and
limits the computational burden. The process of the winner selection and adaptation of the
neuron ring is shown in Figure 4.5.

The Unsupervised learning algorithm has been chosen for its ability to provide a competi-
tive solution quickly. However, its main disadvantage is that it converges to one solution and
cannot improve this solution with more computational time at its disposal.
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CHAPTER 5
Propsed Hybrid Algorithm

In this chapter, the novel hybrid algorithm for solving the DTSPN is presented. The hybrid
algorithm is a combination of the Memetic algorithm proposed in [3] and the Unsupervised
learning algorithm proposed in [4]. Details of both algorithms are studied in the previous
chapter of the thesis. The proposed hybrid algorithm combines advantages of both its base
algorithms to cover for the disadvantages that they have. While the quality of the solution
provided by the Memetic algorithm improves with more computational time provided, it can
take a long time, before it provides the first competitive solution. This is caused by the
Memetic algorithm being initialized by random valid solutions. These random solutions are
very ineffective, and it takes time before the evolutionary algorithm improves them. The
described disadvantage of the memetic approach is eliminated in the hybrid algorithm by
initializing the starting population by solutions provided by the SOM. Using this method,
the Hybrid algorithm can provide a competitive solution in a short amount of time as even
its initial population contains quality solutions. The comparison of the initial best solutions
from the Memetic and the Hybrid algorithms can be seen in Figure 5.1.

The main disadvantage of the Unsupervised learning algorithm is that once the solution is
provided, it is final, and this approach alone is not able to improve it any further. While the
solutions provided by this algorithm are relatively good, they are not optimal, and we might

(a) Initial solution by Memetic (b) Initial solution by Hybrid

Figure 5.1: Ilustration of the best solutions provided by the Memetic algorithm and the Hybrid
algorithm in their initial population

15
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want to improve them with more computational resources available. The Hybrid algorithm
provides a way to improve the final solutions of Unsupervised learning as it can take several
final solutions generated by SOM and use them in the initial population of the evolutionary
approach. Using the crossover operator and mutation operators presented in [3], the Hybrid
can find further improvements to the solutions found by SOM.

To create the hybrid, the implementations for the two source algorithms has been provided
by the supervisor of the thesis. The encoding used in both algorithms is different. The hybrid
algorithm presents a function converting the best solution found by SOM into the encoding
used my the Memetic algorithm. At first, the initial population needs to be created. To
balance the diversity of the initial population and the computational complexity of finding
the solutions needed, the Unsupervised learning algorithm is run five times. Setting the best
solution found by the Hybrid algorithm to be the best of the five solutions provided by SOM.
Then the initial population is initialized. As all the solutions provided by SOM are similar,
the Memetic algorithm could get stuck in the local optima and would not be able to provide
better solutions. To keep the diversity in the initial population, SOM provided solutions take
turns in populating the initial generation, and each time such a solution is added to this
generation, it is shadowed by a random solution. After the initialization, the evolutionary
algorithm is run for the rest of the computational time provided to improve the best-found
solution.

The pseudocode of the Hybrid algorithms is shown here for demonstration:

Algorithm 1: Pseudocode for the Hybrid algorithm

Result: Solution of the DTSPN
1 for i;
2 where i is the desired number of SOM solutions do
3 som = generate SOM solution;
4 transform into used encoding;
5 if som < best then
6 best = som;
7 end
8 save som for initialization;

9 end
10 while initial population < size do
11 insert SOM generated solution;
12 insert random solution;

13 end
14 while has computational time do
15 run evolutionary algorithm;
16 if better solution found then
17 save best solution;
18 end

19 end
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CHAPTER 6
Results

This chapter consults the results of the proposed Hybrid algorithm in solving the DTSPN. It
is compared to the two algorithms from which it was created. This comparison best shows
the differences that this approach brings to solving the DTSPN. In each graph, the median
provided by the solver is shown, with the 80% confidence interval displayed around the median.
The density of targets in each tested instance is 0.03 Every instance used for testing has 30
objectives. All the instances were randomly generated. The first test performed with these
three algorithms is on a single instance, and both Memetic and Hybrid algorithms were run
ten times on this instance and were given 1 hour to solve the problem. The graph showing the
results can be seen in Figure 6.1. This graph shows that the Memetic algorithm takes time to
converge to a competitive solution, but once it does converge, the length of the solution is close
to the solution provided by the hybrid and is better than the solution generated by SOM. For
the detailed view of the changing part of the graph, see Figure 6.2. After 30 seconds, both the
Memetic algorithm and the Hybrid algorithm found the solution that remained the best for
the rest of the hour. Also, all ten instances of both the Memetic and the Hybrid algorithms
gave the same results. Only the results given by SOM vary. As SOM does not improve once
provided solution. The median of these solutions is copied to all times for comparison.

To show how the algorithms match in different instances, the second test is shown. In this
test, there are used ten randomly generated instances of the DTSPN. Each algorithm was
run once and given twenty seconds on each instance. The overall view of the test can be seen
in Figure 6.3. This view shows that the Memetic algorithm takes about twenty seconds to
provide a solution of similar length to the one provided by SOM. In the detailed view shown
in Figure 6.4, the results displayed suggest, that after twenty seconds, the Memetic algorithm
provides solution of comparable quality to the SOM. The Hybrid algorithm already has a
better solution, that is not further improved in this interval.
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Figure 6.1: The overall result of the three algorithms given one hour to solve a random instance of
the DTSPN. On the x axis time is shown in seconds in logaritmic scale. The Unsupervised learning
algorithm has been run 10 times on the same problem. While it does not improve the provided solution
over time, the solution provided was copied to all times for comparison with the other two algorithms.

Figure 6.2: Detailed view of the length of the final solutions provided by the compared algorithms.
Time displayed in seconds.

Figure 6.3: Overall view of the compared algorithms on the test with ten instances. The time is
displayed in seconds.
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Figure 6.4: Detailed view of the second test. The time is displayed in seconds. This detail shows
that after twenty seconds the Memetic algorithm can provide a solution that surpases the solution
provided by SOM. However the Hybrid algorithm provides better solution in this particular test.
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CHAPTER 7
Conclusion

The thesis focuses on solutions of the Dubins Traveling Salesman Problem with Neighbor-
hoods (DTSPN). The motivation for solving the DTSPN are surveillance missions performed
by the Unmanned Aerial Vehicles (UAV). First, the Traveling Salesman Problem (TSP) and
the Traveling Salesman Problem with Neighborhoods (TSPN) are presented. These are prob-
lems of connecting locations of interest by a path visiting all of the locations minimizing the
traveled distance. The model for vehicle constrained by its turning radius, the Dubins vehi-
cle [8] is presented. When searching for a curvature constrained path connecting all locations
of interest, the problem is known as the Dubins Touring Problem (DTP) arises. This prob-
lem of connecting two points in a plane by a curvature constrained path is presented, and
some existing methods are mentioned [2] [11]. After presenting these prerequisites, the thesis
presents the Dubins Traveling Salesman Problem (DTSP) and Dubins Traveling Salesman
with Neighborhoods (DTSPN) to the reader.

The main contribution of this thesis is a novel Hybrid algorithm for solving the DTSPN.
This algorithm is a combination of the Unsupervised learning algorithm based on Self Orga-
nizing Maps (SOM) [4] and Memetic algorithm [3]. Both these algorithms are presented to
the reader as they are essential for the Hybrid algorithm. The SOM algorithm can provide a
competitive solution quickly but is not able to improve this solution with more computational
time. While the Memetic algorithm takes longer time to provide a first competitive solution,
it can converge to high-quality solutions with more time. The Hybrid algorithm combines
the advantages of both mentioned algorithms by initializing the first generation by quality
solutions provided by SOM, while also being able to improve these solutions over time.

The results of the proposed Hybrid algorithm are compared to the algorithms used for its
creation. It is shown that the algorithm can provide a competitive solution quickly while also
being able to further improve this solution.

For future work, The Hybrid algorithm could be improved by further combining the two
used approaches. During the run of the evolutionary part of the algorithm, more solutions
provided by SOM could be injected into next generations to enhance the diversity and quality
of the population, thus improving its ability to generate higher quality offsprings.
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[20] B. Angéniol, G. de La Croix Vaubois, and J.-Y. L. Texier, “Self-organizing feature maps
and the travelling salesman problem,” Neural Networks, vol. 1, no. 4, pp. 289 – 293, 1988.

[21] E. Cochrane and J. Beasley, “The co-adaptive neural network approach to the euclidean
travelling salesman problem,” Neural Networks, vol. 16, no. 10, pp. 1499 – 1525, 2003.

24


	Introduction
	Problem Statement
	Related Work
	Source Algorithms
	Memetic Algorithm
	Unsupervised learning algorithm
	Self Organizing Maps for the TSP and the DTSP
	SOM for the DTSPN


	Propsed Hybrid Algorithm
	Results
	Conclusion
	Bibliography

