
Czech Technical University
Faculty of Electrical Engineering
Department of Computer Science

A Modern Wiki Web
application based on User
Centered Design method

Bachelor’s Thesis

Marek Dlugoš

Prague, May 2019

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

453023Osobní číslo:MarekJméno:DlugošPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologieStudijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Moderní wiki web aplikace za využití metody User Centered Design

Název bakalářské práce anglicky:

A Modern Wiki Web application based on User Centered Design method

Pokyny pro vypracování:
Wiki software je v dnešní době hojně využíván pro sdílení informací napříč organizacemi a je téměř nevyhnutnou součástí
každé větší organizace, která potřebuje poskytnout určité informace určité skupině lidí.
Na trhu s wiki softwarem, ale dosud není vidět dostatečná odezva aktuálních trendů v oblasti webových aplikací. Dokonce
ani v oblasti open source softwarů, kde se již k ostatním zastaralým řešením objevily nové alternativy.
Cíle této práce jsou:
1. Provést uživatelský výzkum a kompetitivní analýzu. Identifikovat aktuální problémy náhodně vybraných reprezentantů
z organizací různých velikostí s wiki softwarem.
2. Na základě identifikovaných problémů navrhnout low fidelity wireframy.
3. Navrhnout a implementovat webovou aplikaci, která se pokusí řešit identifikovanép problémy participantů.
4. Provedení uživatelského výzkumu na výsledné aplikaci a sepsání dalších možných vylepšení, které mohou představovat
příležitosti pro další rozvoj v budoucnosti.
5. Prokázání funkčnosti aplikace otestováním několika vybraných scénářů vycházejících z případů užití.

Seznam doporučené literatury:
[1] B. Leuf, W. Cunningham - The Wiki way, Addison-Wesley, 2001
[2] J. West, M. West - Using Wikis for Online Collaboration, Jossey-Bass, 2009
[3] T. Lowdermilk - User-Centered Design, O'Reilly Media, 2013
[4] J. Gothelf - Lean UX, O'Reilly Media, 2013
[5] O. Fernandez - The Rails 5 Way, Addison-Wesley Professional, 2017
[6] M. Hartl - Ruby on Rails Tutorial, Addison-Wesley Professional, 2016
[7] B. Frost - Atomic Design, Brad Frost, 2016

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Pavel Šedek, katedra ekonomiky, manažerství a humanitních věd FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 24.05.2019Datum zadání bakalářské práce: 10.05.2019

Platnost zadání bakalářské práce: 19.02.2021

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Pavel Šedek

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZBP-2015.1

Declaration

I hereby declare that this thesis is my original authorial work, which I have
worked out on my own. All sources, references, and literature used or ex-
cerpted during elaboration of this work are properly cited and listed in com-
plete reference to the due source.

Marek Dlugoš

Advisor: Ing. Pavel Šedek

i

Acknowledgements

I would like to thank my supervisors: Ing. Pavel Šedek from Czech Techni-
cal University as well as Ing. Carlos Fontela from University of Buenos Aires.
I would like to thank Mgr. Tomáš Vestenický for mentoring me and show-
ing me the best practices in the beginning of my journey with application
framework Ruby on Rails. Lastly, let me thank Karla Losoya, BA, BSN, RN
who helped with proofreading this thesis.

iii

Abstract

The wiki software has been on the market for quite a while. Schools, star-
tups, nonprofits, and even enterprises quickly adopted it to share informa-
tion across their organizations and collaboratively improve them. However,
throughout the years, web standards have progressed very aggressively, bring-
ing lots of new user requirements, architecture patterns and features that
most of the current Wiki solutions simply cannot keep up with. This the-
sis presents a new wiki web application that aims to address these issues
following User-Centered Design methods along with its implementation.

iv

Keywords

wiki, wiki software, content management system, knowledge base, knowl-
edge management, collaboration, web application, user-centered design, de-
sign thinking, user research

v

Contents

Introduction and Motivation 1

1 A Wiki Software 3
1.1 History of Wiki Software . 3
1.2 Wiki Software Nowadays . 4

2 User-Centered Design 5
2.1 Design Thinking . 5
2.2 User Research . 7

3 Product Discovery 9
3.1 Competitive Analysis . 9
3.2 Personas . 12
3.3 Initial User Interviews . 14
3.4 User Research Results . 14
3.5 Scope Definition . 16

3.5.1 Must Have . 17
3.5.2 Should have . 18
3.5.3 Could have . 20
3.5.4 Won’t have this time 22

4 Low-Fidelity Wireframes 25

5 Technology Stack Decisions 29
5.1 Ruby and Ruby on Rails . 29
5.2 PostgreSQL . 31
5.3 ElasticSearch . 32
5.4 Sass . 33
5.5 CSS Framework . 33

5.5.1 Bootstrap and Bulma Comparison 34

6 Implementation Decisions 37
6.1 MVC Architecture . 37
6.2 Multitenancy Architecture . 38
6.3 Database Design and Seed Data 38
6.4 Polymorphic Associations . 40
6.5 Tree Structures . 42
6.6 Security . 43

vii

6.6.1 Authentication Solution 43
6.6.2 User Roles Management 44
6.6.3 Password Strength Estimation 46
6.6.4 Passwords from Data Breaches 47

6.7 Search and Search Analytics . 47
6.8 Testing Framework . 48

7 Evaluation 49
7.1 User Interviews . 49
7.2 Software Testing . 50

7.2.1 Feature Tests . 51

8 Deployment 55

9 Future Development 57

Summary 59

A Initial User Interviews 61
A.1 Supporting Questions . 61

A.1.1 About Participant . 61
A.1.2 Product Related Questions 61
A.1.3 After showing 2 Wireframes 62

A.2 Interviews Transcript . 62
A.2.1 Participant no. 1 . 62
A.2.2 Participant no. 2 . 64
A.2.3 Participant no. 3 . 66
A.2.4 Participant no. 4 . 67
A.2.5 Participant no. 5 . 68
A.2.6 Participant no. 6 . 70

B Evaluation User Interviews 73
B.1 Supporting Questions . 73

B.1.1 Product Related Questions 73
B.2 Interviews Transcript . 73

B.2.1 Participant no. 1 . 73
B.2.2 Participant no. 2 . 74
B.2.3 Participant no. 3 . 75
B.2.4 Participant no. 4 . 76
B.2.5 Participant no. 5 . 76

viii

C Wireframes 79
C.1 Landing Page . 79
C.2 Onboarding . 80
C.3 Wiki . 84
C.4 Administration Interface . 92

D Source Code 97

Bibliography 99

ix

Introduction and Motivation

Sharing the information within an organization efficiently used to be dif-
ficult. However, many organizations around the globe realized that Wiki
Software can help them achieve this goal and, have already been using it for
decades; schools, startups, nonprofits, and even enterprises. A piece of soft-
ware that enables them to create and collaboratively edit "pages" or entities
via a web browser[1].

The main benefits of this were basically making information that is ad-
dressed to a bigger group of people within an organization transparent, ac-
cessible and always up-to-date. Organizations would use Wiki software to
create their knowledge bases (single source of truth), help centers, checklists,
documentation et cetera.

However, throughout the years, web standards have progressed very ag-
gressively, bringing lots of new user requirements (like accessibility from
mobile devices), architecture patterns (e.g. reactive UIs) and features that
most of the current Wiki solutions simply cannot keep up with.

Remember good old discussion forums based on phpBB1 or blogs build
in Wordpress2? Well, to phpBB there comes a new alternative called Dis-
course3 and to Wordpress there is Ghost platform4. Both are brand new sys-
tems meeting all the modern web application user requirements. But what
about the wiki software? Is there any newcomer to the game? None I would
know of. And this is why I have decided to tackle this problem.

I gave myself a task to apply methods of User-Centered Design to de-
velop a brand new Wiki software written in modern technologies, attract-
ing the modern user. That meant to conduct a user research; recruit and in-
terview people who use Wiki software within their organizations, find prob-
lematic points and identify issues with current solutions. Provide a compet-
itive analysis and create low-fidelity wireframes. Write an application that
represents a working prototype, iterate on identified problems and validate
the solutions with the group of participants.

1. https://www.phpbb.com/
2. https://wordpress.com/
3. https://www.discourse.org/
4. https://github.com/tryghost/ghost

1

https://www.phpbb.com/
https://wordpress.com/
https://www.discourse.org/
https://github.com/tryghost/ghost

1 A Wiki Software

A wiki is "web-based software that allows all viewers of a page to change the content
by editing the page online in a browser. This makes the wiki a simple and easy-to-use
platform for cooperative work on texts and hypertexts."[1]

Wikis were designed for groups to create, share, and collaborate on the
content at any time and from whatever place. Wikis should be more effi-
cient than forwarding e-mails, versioning its attachments and eliminating
conflicting versions of the same document thanks to the group writing and
group editing. Documents that are placed in the wiki are available for edit-
ing and commenting to all members at all times. No one has to wait and
it is easy to see who contributed with what content. The only thing that a
member of the wiki needs is a web browser. Then, based on the access and
permission settings, he or she can create pages and/or edit existing pages,
comment, etc..[2]

1.1 History of Wiki Software

The first ever wiki software is considered to be the WikiWikiWeb. Ward Cun-
ningham started developing the WikiWikiWeb1 in 1994 as an automated
supplement to the Portland Pattern Repository2, a documentation about De-
sign Patterns. The project aimed to become a collaborative database, to allow
programmers to exchange their ideas easier. WikiWikiWeb was developed
by Cunningham in Perl programming language. The site became popular
within the pattern community immediately.[3]

The WikiWikiWeb was evolving, getting more and more features while
others, similar projects have started popping up.

Since this idea started, and it is primary focus was around the program-
ming community, the concept was not popular with the public. This has
changed after the success of the Wikipedia3, and organizations began to
make increasing use of wikis.

We can consider wikis as publicly accepted with the word "wiki" enter-
ing the Oxford English Dictionary4 in March 2007.

1. http://wiki.c2.com/
2. http://wiki.c2.com/?PortlandPatternRepository
3. https://www.wikipedia.org/
4. https://www.theregister.co.uk/2007/03/16/wiki_oed/

3

http://wiki.c2.com/
http://wiki.c2.com/?PortlandPatternRepository
https://www.wikipedia.org/
https://www.theregister.co.uk/2007/03/16/wiki_oed/

1. A Wiki Software

1.2 Wiki Software Nowadays

Probably the most popular Wiki nowadays is Wikipedia3. Wikipedia is "free
online encyclopedia with completely open content: nearly every article can be edited
by anyone. Since its introduction in 2001, Wikipedia has grown to be the most pop-
ular general reference work on the Web."[2]

Wikipedia is public; opened to everyone on the internet. However, I, my-
self, have never come across an organization with five and more people that
would not use some kind of centralized place to store and share the knowl-
edge. It is nearly impossible to count the number of organizations using wiki
software but, when considering one of the largest open source wiki projects
MediaWiki (which is also a backbone for Wikipedia) and their Usage Re-
port5 from 2015, there have been over 102,000 downloads of MediaWiki
in about a month. These downloads came mostly from China, the United
States, and Germany. Indeed, not every single download represents a run-
ning instance of the MediaWiki in some particular organization but it can
give the reader a clear picture of the popularity of the wiki software.

These days, the solutions that are available still do not fully focus on
user experience and (in some cases) does not take advantage of the avail-
able modern web technologies. Further documentation can be found in the
Competitive Analysis section on page 9.

With an increasing number of formats in which we store the information,
other solutions have popped up and are now used as wikis, too. To better il-
lustrate it, it is worth mentioning G Suite (Google Documents), Dropbox, Mi-
crosoft OneDrive,. . .Even though these products come with many features
and are developed by many experienced engineers, when used as a wiki
software it is harder to implement community and social features.

After considering all of this information, I have realized that there might
still be space for a wiki solution that would fill the gap on the market and
improve this area.

5. https://www.mediawiki.org/wiki/MediaWiki_Usage_Report_2015#Downloads_and_
Hostings

4

https://www.mediawiki.org/wiki/MediaWiki_Usage_Report_2015#Downloads_and_Hostings
https://www.mediawiki.org/wiki/MediaWiki_Usage_Report_2015#Downloads_and_Hostings

2 User-Centered Design

Many people have resources and access to develop their own applications
today. New products would appear on the market every single day. Not so
many of them though would start with the problem statement. Many cre-
ators would envision the solution themselves and they try to find a group
of people who would use their product. This fact causes a lot of newly pub-
lished software to be rarely used as it was intended to. Usually, people would
either not find the value to use this software or worst-case scenario the soft-
ware would be even hard to use.

In my work, I have decided to take a reverse approach to this false process
many makers begin with and start with the actual users who would utilize
the software. This process is usually referred to as User-Centered Design
and Travis Lowdermilk defines it as: "a methodology used by developers and
designers to ensure they’re creating products that meet users’ needs.“[4]

An important part of User-Centered Design is working with people who
are intended to use the software. User-Centered Design is "a mindset that
overlays design thinking to ensure that the products are actually relevant and ben-
eficial."[5] Both, User-Centered Design as well as Design Thinking have an
empathize/research phase and test phase in which methods used in user
research come in handy.

2.1 Design Thinking

Design thinking, according to Tim Brown, CEO and president of world
renowned design company IDEO is: "innovation powered by. . . direct observa-
tion of what people want and need in their lives and what they like or dislike about the
way particular products are made, packaged, marketed, sold, and supported. . . [It’s]
a discipline that uses the designer’s sensibility and methods to match people’s needs
with what is technologically feasible and what a viable business strategy can convert
into customer value and market opportunity.“[6]

Hence, I have started with the empathize phase (see all the phases in
the Figure 2.1 on the next page) and conducted the research consisting of
competitive analysis and initial interviews to better understand the needs
of people using the wiki software.

The results of the initial interviews are covered in the User Research Re-
sults section summarizing the people’s problems (define phase). Moving on
to ideate phase, I have defined the scope of my work and prototyped the se-
lected features in code (prototype phase).

5

2. User-Centered Design

Figure 2.1: Design Thinking process, from [7].

6

2. User-Centered Design

Lastly, I have put the built and fully working prototype in front of the
small group of carefully selected participants (test phase).

2.2 User Research

User research is about understanding user behaviors, needs, and motiva-
tions through observation techniques, task analysis, and other feedback
methodologies.[8]

The user research techniques I have used in my work are:

∙ Competitive Analysis.

∙ Recruiting and Interviewing.

∙ Personas (in certain sense).

∙ Wireframing.

∙ Prototyping.

∙ Heuristic Evaluation.

7

3 Product Discovery

3.1 Competitive Analysis

Since the idea for this application appeared in my head, I continuously gath-
ered other software that tired to solve either the same or a similar problem.
Some were reviewed earlier and motivated me to work harder while some
that were reviewed later were very similar to what I worked on.

It is important to point out that there are many wiki solutions out there
if not hundreds and everyone can rate their strengths and weaknesses in
their own ways. It is hard to cover all the wiki solutions and all the pros and
cons. I used my subjective optic and vision that I have incorporated in the
new solution to compare the various solutions that I came across. Another
noticable point to mention is that most of the software projects are constantly
changing and evolving. Hence, the pros and cons are relevant to a point of
time in which I worked on this project but might not necessarily represent
the future.

First, let me briefly mention characteristics that I want to achieve with
my solution:

∙ Modern, clean, and responsive design.

∙ Modern technologies used.

∙ Data analytics, actionable dashboards, and statistics.

∙ Simple WYSIWYG editor that supports consistency of the content.

∙ Outperforming search.

∙ Easy deployment.

9

3. Product Discovery

The following table lists the wiki software solutions I have been tracking
down since December 2017, its pros and cons as described earlier.

Product Pros Cons
Confluence Clean design.

Popular among enter-
prises.

Does not work on hand
held devices.

XWiki Open source.
Responsive.

Robust WYSIWYG ed-
itor allowing way too
many styles.
Need to know the spe-
cific syntax to write con-
tent.

MediaWiki Open source. Obsolete design.
Harder to discover con-
tent.

DokuWiki Open source. Basic skin design is ob-
solete.
Need to know the spe-
cific syntax to write con-
tent.

ZohoWiki Modern design.
Integration with other
systems.

Robust WYSIWYG ed-
itor allowing way too
many styles.

MindTouch Basic dashboards. Obsolete design.
Sabio Basic suggestions based

on data.
Basic analytics.

Slightly obsolete de-
sign.
Robust WYSIWYG
editor allowing way too
many styles.

BrainKeeper Obsolete design.
Obsolete technology.

Wikisystems Obsolete design.
Obsolete technology.

10

3. Product Discovery

TWiki Open source. Obsolete design.
Obsolete technology.
Robust WYSIWYG ed-
itor allowing way too
many styles.
Need to know the spe-
cific syntax to write con-
tent.
Non-actionable stats.

WikkaWiki Open source. Obsolete design.
Obsolete technology.
Weak usability.

PmWiki Open source. Obsolete design.
Obsolete technology.
Very specific design.

Wikispaces In-context comments. Non actionable stats.
Wikidot Gamificaiton. Obsolete design.
PB Works Wiki Obsolete design.

Obsolete technology.
Obsolete editor.

Inmagic Presto Responsive Cluttered design.
Poor usability.

Table 3.1: Subjective pros and cons of various wiki softwares.

11

3. Product Discovery

Some other solutions that do not necessarily call themselves wiki solu-
tions but might represent a strong competition in this field are:

∙ Google Drive - Provides powerful abilities to create documents, share
and search through them. However, lacks the whole wiki (commu-
nity) environment.

∙ Dropbox Paper - Provides intuitive editor for content creation and
sharing. Same as Google Drive misses the sense for wiki community.

∙ Notion - Powerful features for content creation and collaboration.
Does not provide any dashboards.

∙ Gitbook - Comes with a powerful editor. No actionable statistics.

∙ Slite - Very similar tool to my target solution.

∙ HelpSite - A bit obsolete design. No actionable statistics.

∙ You need a wiki - Interesting extension to Google Drive that basically
adds some basic wiki functionality to already existing Google docu-
ments.

3.2 Personas

Personas usually describe the main group of people that uses or will use the
application.

An example of the persona using an IDE could look like: "John is a 30
years old single man, holding MSc. from Computer Science, working at a
software company as a Software Engineer using mainly C programming lan-
guage. He is very tech savvy and loves to write clean and easy to understand
the code. One day he wants to lead a small team of developers."

One of the pillars of the whole user-centered design and design thinking
is empathy. Personas help to create empathy. However, they can fail in the
real world, because "people who are categorized based on personas can have dif-
ferent jobs to be done, regardless of their age, occupation, location, status, education
background and etc.."[9]

12

3. Product Discovery

Figure 3.1: Why personas fail in real world, from [10].

Despite this fact, I have decided to at least briefly sketch who uses Wiki
Software within organizations so it helps me not to define what they need
but only create deeper empathy.

Organizations using Wiki Software usually have:

∙ Regular members of the organization - most of the time consuming
the content.

∙ Experienced members of the organization - able to judge what is
important and what is not. Able to contribute their knowledge.

∙ Technical staff of the organization - cares about onboarding new
members, deals with technical issues.

∙ Organization management - makes the decision about purchasing
and using certain software.

This sketch later led to the definition of certain user roles with certain
user permissions in the application.

13

3. Product Discovery

3.3 Initial User Interviews

Following User-Centered Design, I conducted research on the type of people
who would use this application upon completion and also provided feed-
back along the way during every phase with their feedback and insights
from the industry they are in.

Therefore, I have carefully picked a small group of people across various
organizations with a focus on diversity in the organization size as I believe
that organizations that vary in size have different needs.

While small organization want to have something up and running for
small costs, other big enterprises might require extra security, permission
management, etc.. My group consists of people that vary from entry-level
positions through C-level managers. I collected opinions across small star-
tups with 1-30 people and one office to huge corporations having employed
thousands of people across the globe, with offices in almost every major city.

First, I sat down and thought about what kind of information I wanted
to get from people, what would help me build better software?

As a result, I ended up with a list of (as I call it) supportive questions
which the reader might find in the Appendix A. Since interviews were un-
structured; aimed to be as open as possible and every participant experience
was different, sometimes the interview headed towards a more technical di-
rection, other times, it went towards a totally business direction. At times,
some interviewees proposed a totally different approach to sharing the in-
formation within their company. Most of the interviews were done in person
but those that were not possible to get done in person were done through
a video call. The interviews lasted typically anywhere from 30 minutes to 1
hour.

3.4 User Research Results

Based on the competitive analysis I have done; I definitely see a big opportu-
nity in innovating the user interface of the wiki software. The design looks ob-
solete and with the high growth of people using smartphones to consume in-
formation nowadays, current solutions hardly respond to their needs. Their
user interfaces are broken or not even working on smaller devices. Other
solutions are usually stuck with old fashioned, very complex WYSIWYG ed-
itors that enable people to write every page in a totally different format. I
see this as a good thing for a person who is willing to dedicate two hours
to formatting but I also see this as a great opportunity to bring a new writ-
ing experience to the wiki field. Where people would have a distraction-free

14

3. Product Discovery

editor with basic formatting capabilities which would benefit to the consis-
tency of the content across the whole wiki. All those problems have their
roots also in the obsolete technology that might be modern back in the days
but not now.

Also, during the user interviews, I have conducted, there were answers
that repeated. The user interviews have shown that the most important ele-
ments in Wiki Software for the research participants are:

∙ Discoverability.

∙ Search.

∙ Rights management.

The biggest problems that the research participants are facing using Wiki
Software are:

∙ Information become obsolete fast.

∙ Poor search.

∙ Weak information architecture and usability.

Some other requirements worth mentioning that the research partici-
pants need from a Wiki Software are:

∙ On-premise solution.

∙ Single sign-on (SSO).

∙ Easy deployment.

Hence, the biggest opportunities I have identified based on user research
are:

∙ Working with data to motivate people to write new content.

∙ Suggest to people what to write next.

∙ Suggest people review potentially obsolete content to keep the wiki
updated and compact.

∙ Tailor the recent activity feed so it’s not spam.

∙ Try to overcome duplicates.

∙ Providing the pre-made document templates.

∙ . . . and many other previously mentioned.

15

3. Product Discovery

3.5 Scope Definition

When I started working on the product development, I quickly realized how
easily the scope of the project could grow.

Based on the results of the conducted user research, I created a detailed
plan of what the final product should include and what is fine to implement
in near future based on MoSCoW Prioritization 1 and methodology called
Jobs To be Done 2 popularized by company called Intercom 3.

MosCoW Prioritization is "a prioritisation technique for helping to under-
stand and manage priorities."[11]

The letters in the name stands for:

∙ Must Have

∙ Should Have

∙ Could Have

∙ Won’t Have this time

While Jobs To be Done methodology describes use cases in the following
format:

Figure 3.2: Jobs to be done formula, from [10].

Focusing on the triggering event or situation, the motivation and goal,
and the expected outcome.

Example: When my thoughts are not polished, I want to save a page as a
draft, so I can get back to it later while also keeping it concealed from other
users.

The following sections list all the features I have either implemented or
thought about implementing in the future.

1. https://www.agilebusiness.org/content/moscow-prioritisation
2. https://www.intercom.com/books/jobs-to-be-done
3. https://www.intercom.com/

16

https://www.agilebusiness.org/content/moscow-prioritisation
https://www.intercom.com/books/jobs-to-be-done
https://www.intercom.com/

3. Product Discovery

3.5.1 Must Have

MH001 - Create wiki (XImplemented and tested)

When there is the information that repeats and need to be shared with ev-
eryone, I want to create wiki, so I can store the information.

MH002 - Edit wiki (XImplemented and tested)

When a name of the organization changes, I want to edit wiki, so I can better
reflect on changes in the organization.

MH003 - Delete wiki (XImplemented and tested)

When the organization comes to its end, I want to delete the wiki, so I can
make sure that all the information was deleted.

MH004 - Create page (XImplemented and tested)

When some questions across the organization repeat, I want to create a page,
so I can share it with other members.

MH005 - Edit page (XImplemented and tested)

When I spot a chance for improvement, I want to edit a page, so I can keep
the wiki up to date.

MH006 - Delete page (XImplemented and tested)

When the information on the page is obsolete or the page is not important
anymore, I want to delete the page, so I can keep the wiki compact.

MH007 - Create pages structure (XImplemented and tested)

When one page closely relates to another one, I want to create some sort of
structure between pages, so I can keep the wiki easy to navigate and dis-
cover.

MH008 - Sign up (XImplemented and tested)

When accessing the landing page, I want to sign up, so I can create any type
of content.

17

3. Product Discovery

MH009 - Sign in (XImplemented and tested)

When accessing the landing page, I want to sign in, so I can access my infor-
mation.

MH010 - Invite new member (XImplemented and tested)

When there is a new member to organization, I want to invite him to the
wiki, so I can share the information with him.

MH011 - Edit user (XImplemented and tested)

When there the information in my profile is obsolete, I want to edit my pro-
file, so I can keep my profile up to date.

MH012 - Delete user (XImplemented and tested)

When a member of the organization leaves, I want to be able to delete his
account, so I can keep only the members of the organization as members of
the wiki.

MH013 - Fulltext search (XImplemented and tested)

When I look for some information, I want to be able to search, so I can re-
trieve the information faster.

MH014 - WYSIWYG editor (XImplemented and tested)

When I write a new page, I want to be able to format it easily, so I can create
a better visual structure of the page.

3.5.2 Should have

SH001 - Multitenancy (XImplemented and tested)

When I create a new wiki, I want to separate the information in the database,
so I can ensure better security, scalability, and own subdomain.

SH002 - Save page as a draft (XImplemented and tested)

When my thoughts are not polished, I want to save a page as a draft, so I can
get back to it later while also keeping it concealed from other people.

18

3. Product Discovery

SH003 - Publish page (XImplemented and tested)

When my thoughts are complete, I want to publish a page, so I can share it
with my colleagues.

SH004 - Archive page (XImplemented and tested)

When the page is obsolete, I want to archive it (make it invisible to other
members), so I can keep the wiki compact but still have a chance to get back
to the archived page.

SH005 - Browse previous versions (XImplemented and tested)

When the page contained useful information previously, I want to be able to
get back to the previous version, so I can read this information.

SH006 - Show diff of the version (XImplemented and tested)

When there were changes made to the page, I want to see what has been
added or removed, so I can quickly get an idea of what changes were made.

SH007 - Rollback previous version (XImplemented and tested)

When the page contained useful information in previous version, I want to
rollback that version, so I can retrieve the useful information.

SH008 - Comment on page (XImplemented and tested)

When there is something unclear on a page, I want to comment on a page,
so I can notify an author or spark a discussion.

SH009 - Reply on comment (XImplemented and tested)

When the comment contains a question, I want to be able to reply on com-
ment, so I can answer that question.

SH010 - Delete comment (XImplemented and tested)

When the comment contains false information, I want to be able to delete it,
so I can stop other members from reading it.

SH011 - Recent Activity (XImplemented and tested)

When someone posts or edits something, I want to know about it, so I can
stay up to date with what is going on.

19

3. Product Discovery

SH013 - User Roles and Permissions (XImplemented and tested)

When there is a new member to wiki, I want to set him a role, so I can assign
him different permissions within the wiki.

3.5.3 Could have

CH001 - React on page (XImplemented and tested)

When the content of the page is engaging, I want to be able to react to the
page, so I can express my opinion or emotions.

CH002 - See who reacted (XImplemented and tested)

When the page is engaging, I want to see who reacted and how, so I can
better understand people’s emotions or opinions about the content of the
page.

CH003 - Cancel the reaction (XImplemented and tested)

When I used undesired reaction, I want to be able to take back my reaction,
so I do not confuse other members of the wiki.

CH004 - Pin page (XImplemented and tested)

When I use some page often, I want to be able pin it, so I can leverage the
knowledge faster.

CH005 - Unpin page (XImplemented and tested)

When I stop visiting a page often, I want to be able to unpin it, so I can keep
my dashboard clean.

CH006 - Password strength estimation (XImplemented and tested)

When signing up, I want to see how strong is the password I typed, so I am
sure I use strong password.

CH007 - Check password against PwnedPassword (XImplemented and tested)

When signing up, I want to check the password against the PwnedPassword
dataset, so I am sure that password is safe to use.

20

3. Product Discovery

CH008 - Own profile picture (XImplemented and tested)

When I am familiar with software, I want to upload a profile picture, so I
can allow other people to quickly recognize me.

CH009 - Gravatar profile picture (XImplemented and tested)

When there is no profile picture uploaded, I want to use Gravatar picture,
so I can give a new member more "personality".

CH010 - Search terms with no results (XImplemented and tested)

When there is term searched often with no results, I want to write a new
page on this topic, so I can help other members.

CH011 - Most searched terms (XImplemented and tested)

When looking for the information, I want to see the most searched terms, so I
can see if this information was not already been searched by other members
of the wiki.

CH012 - Least viewed pages (XImplemented and tested)

When thinking of obsolete content that could be archived, I want to be able
to display the least viewed pages, so I can judge if they should remain the
part of the wiki.

CH013 - Poorly rated pages (XImplemented and tested)

When some page has been ranked as not helpful, I want to be able to see it,
so I can review the page.

CH014 - Tests (XImplemented and tested)

When any functionality in the application is broken, I want to be notified, so
I can fix it.

CH015 - Seed data (XImplemented and tested)

When I newly install the application, I want to have some data in my database,
so I can test the application right away.

21

3. Product Discovery

3.5.4 Won’t have this time

WH001 - Autocomplete

When searching for something, I want the application to suggest me the
complete query, so I can speed up my process of searching.

WH002 - Suggestions

When searched for something that is not absolutely correct, I want the ap-
plication to suggest me a correction, so I can always find what I am looking
for (of course, if it is available).

WH003 - Single Sign-On

When using a company account, I want to be able to use single sign-on, so I
can avoid duplicate accounts.

WH004 - 2FA Authentication

When signing in, I want to verify my identity through some other device, so
I can ensure my account is always secure.

WH005 - Edit comment

When commented something that can be revised, I want to edit my com-
ment, so I can avoid spamming the comment thread.

WH006 - React on comment

When agreeing or disagreeing with a comment, I want to react on comment,
so I can express my emotion or opinion.

WH007 - Watch page

When page contains important and often changing information, I want to
be notified on changes, so I can always get up to date information.

WH008 - Watch discussion

When there is a important discussion, I want to be notified on new com-
ments, so I can stay up to date with what is going on.

22

3. Product Discovery

WH009 - Email digests

When there are news to the wiki, I want to send out an email to the members,
so I can notify them about new content.

WH010 - Rate helpfulness of page

When I finish reading a page, I want to rate whether it was useful for me or
not (and why), so I can give the author of a page feedback.

WH011 - Show messages based on updated_at

When displaying page that has not been updated for a long time, I want to
display a warning about this fact, so I can be aware that the information in
the page might not be up to date.

WH012 - Real time collaboration

When editing or creating a page, I want to write or edit the content real time
with other people, so I can better collaborate.

WH013 - Create page based on template

When creating a new page, I want to used a pre-saved template, so I can keep
the format of pages consistent or follow best practices of my organization.

WH014 - Manage page templates

When creating best practices for pages (or format), I want to manage page
templates, so I can set best practices for creating pages for other members.

WH015 - Review changes by other members

When another person with lower permissions makes changes, I want to re-
view these changes, so I can avoid publishing information that I do not ap-
prove of.

WH016 - In-context comments

When I spot a mistake or see room for improvement, I want to comment on
that page, so I can easily refer to that specific section of the page.

23

3. Product Discovery

WH017 - Avoid duplicate pages

When creating a new page, I want to see if similar pages already exist, so I
can avoid the duplicate pages.

WH018 - Breadcrumbs

When I scan through page, looking for an information, I want to see hyper-
links to other pages in the tree, so I can navigate through pages with ease.

WH019 - Feature flags

When my organization does not need a certain feature, I want to disable this
feature, so I can enjoy cleaner user interface.

WH020 - Localizations

When my organization uses languages other than English, I want to change
the language, so I can make it easier for others to use the application.

WH021 - On-premise solution

When policies of my organization requires it, I want to use the application
on my own server, so I can ensure that my data is in my control.

WH022 - Onboarding emails

When a new member signs up, I want to send him couple of automated
emails, so I can show him how to get the most out of the application.

In total, more than 42 features have been implemented and tested while
22 more features are in the backlog.

24

4 Low-Fidelity Wireframes

Since I have seen the big opportunity to innovate in design, I tried to fol-
low the best practices design process and user-centered design methods. To
iterate in the design process one has to start small. From pen and paper
sketches, through low-fidelity wireframes made digitally, through interac-
tive prototypes, through high fidelity designs, to coding the solution.

Testing of the output should occur at the end of each phase. That is, of
course, the ideal scenario. In real life, many forward-thinking companies
experiment with features on the a small percentage of people [12] using their
software. I have decided to conduct user interviews at the beginning and
then discuss the solution I have been working on at the end.

When picking a tool that would serve these needs, I focused on having
one software which would cover all of the design phases rather than having
multiple software with file formats for each phase.

I ended up picking Sketch1. The most used design software for designing
user interfaces these days2, leveraged by biggest organizations in the world.
It also integrates well with other modern design tools out there that I will
use in future design phases for prototyping.

Despite Adobe Photoshop or other software that was used in the past,
the Sketch software is perfectly aligned with designer needs and provides
big efficiency and speed.

It also evolves very fast, and at the time when I was working on the im-
plementation of the application, Sketch had already implemented some pro-
totyping and sharing features. On top of that, Sketch allows for the creation
of symbols. These are features that one can imagine as components - which
is also one of the very modern architecture patterns on the front end. De-
signers would be able to create a very modular system (almost like it was
coded). In the past, when for example top navigation had changed, a de-
signer would have to go to the screen over a screen to apply those changes.
With Sketch, I only change the symbol and all of the symbol instances gets
updated immediately on all application screens.

1. https://www.sketch.com/
2. https://avocode.com/design-report-2018

25

https://www.sketch.com/
https://avocode.com/design-report-2018

4. Low-Fidelity Wireframes

Figure 4.1: An example of symbol overrides.

So I took advantage of this feature and created a small, tailored to my
need wireframing library. It’s modular and easy to pick up.

Following the user-centered approach, it also enables me to prototype
to be able to present the outputs in an effective way and move quickly to
ensure I can get the application public as soon as possible.

26

4. Low-Fidelity Wireframes

Knowledge Base

In the last 30 days 231 people viewed your articles 1 234 times.

People were unable to find any results for following topics.

Dashboard

What to write next?

Dashboard

Users

Notifications

Files

Appearance

Settings

Searched term with no results

deployment on Bluemix 235

102

75

Count

connecting to private network

org chart

Articles that were not shown for a long time might be obsolete or not important for
your company. Good knowledge base is compact and updated.

Do you really need this?

Article name

How to: Setup a WiFi 0 Archive

Archive

Archive

1

75

Shown (last 3 months)

[Obsolete] How to fire people?

How to: Setup the alarm

Review your content

Article

How to: Setup a WiFi 20 Review

Review

Review

15

10

👎
Written by

Marek

Emily

Jenn

Updated

1 year ago

6 months ago

9 months ago

[Obsolete] How to fire people?

How to: Setup the alarm

New article

Figure 4.2: Example of an wiki dashboard.

See Appendix C for other low-fidelity wireframes I have produced.

27

5 Technology Stack Decisions

As with every new software, there are decisions to make first. It is up to the
maker of the product to decide which way he or she wants to go. Because
the title of my work contains the word "modern", I have decided to focus on
the latest versions of technologies that I found interesting and suitable for
implementation.

5.1 Ruby and Ruby on Rails

Because Wikis are supposed to be available to every member with only in-
ternet browser it was obvious that the application would have to run on
the web. To speed up the workflow and "not reinvent the wheel" I have de-
cided to support my implementation with a web framework. There are only
a couple of dominant web frameworks these days, I consider worth men-
tioning. Some of them are Express (written in JavaScript), Django (written
in Python), Ruby on Rails (written in Ruby), Laravel (written in PHP) and
Spring (written in Java).

Another goal I have decided to accomplish was to learn a new program-
ming language and at the same time take into consideration the time frame
that was given to me to finish this project.

While all the frameworks are very similar each of them features some-
thing slightly different. For instance, Express benefits from the powerful per-
formance of the asynchronous Node.js, however, there’s no defined way of
doing things, at least for beginners. Laravel, Django, and Spring are all popu-
lar frameworks with big communities around them. But, because I have had
the pleasure to write some PHP, Python, and Java before, for this project, I
decided to explore, to me, unknown waters of Ruby and it is a most popular
web framework Ruby on Rails.

Another factor that played a role in this decision is that Ruby on Rails has
been known for a long time as a web framework for rapid development.[13]
What made it famous for rapid development was the introduction video first
published by the creator of Ruby on Rails where he was able to get a basic
web blog working from scratch in less than twenty minutes. So given the
time frame to finish this work, Ruby on Rails represented the best option to
go for.

Ruby on Rails is used by companies like Airbnb, Disney, Github, Kick-
starter, Shopify, and Twitter[14]. The framework is 100% open-source, avail-
able under the MIT license which allows not only download and use the

29

5. Technology Stack Decisions

framework but also improve it and contribute to it. And who contributes to
this framework? Well, another fact for which Ruby on Rails is known is "un-
usually enthusiastic and supportive community."[15] This community which
spans more than 5,300 contributors1 (to Apr 10, 2019) results in plenty of
tutorials that have been created, conferences that are organized on a regular
basis and last but not least in a huge number of gems (“self-contained solu-
tions to specific problems such as pagination and image upload”[15]) which is an
advantage that I will use in my work as well.

When we talk about Ruby on Rails we talk about model-view-controller
or in other words MVC framework, which separates an application into three
interconnected parts. This design pattern allows (except other advantages)
for efficient code reuse and parallel development. I describe this architecture
pattern more in the MVC Architecture section.

Ruby on Rails framework allows me to work flexibly and iterate fast as I
would pivot with business changes mainly due to the following features of
the framework:

∙ Do not Repeat Yourself - DRY — "DRY is a principle of software devel-
opment which states that "Every piece of knowledge must have a single, un-
ambiguous, authoritative representation within a system." By not writing
the same information over and over again, our code is more maintainable,
more extensible, and less buggy."[16]

∙ Convention over configuration - CoC — Conventions lower the barrier
of entry for onboarding and allow mainly new team members to cooperate
more flexibly, since many architectural decisions were already been made by
the framework itself, which means many aspects of a Rails application are
same across every Rails project.[16]

∙ ActiveRecord – ORM — As my business logic changes constantly, so
does the entities. ActiveRecord "maps one domain class to one database
table, and one instance of that class to each row of that database."[17] It "in-
cludes mechanisms for representing models and their relationships, CRUD
(create, read, update and delete) operations, complex searches, validations,
callbacks, and many more features."[17]

∙ Full stack framework — Ruby on Rails serves to build a monolith ap-
plication.[18] However, front-end technologies are widely supported
and Rails 5 comes with Webpack support[19], which pays off in the
long run.

1. https://contributors.rubyonrails.org/

30

https://contributors.rubyonrails.org/

5. Technology Stack Decisions

5.2 PostgreSQL

Web framework Ruby on Rails allows us many options in terms of choos-
ing the right database to store the application data. From a simple SQLite
through MySQL, MongoDB to PostgreSQL. Before talking about the actual
decision to choose PostgreSQL it is worth mentioning that Ruby on Rails
allows us to change the database at any time with only a few lines of code.

Listing 5.1: Changing the database with a single line of code.
database .yml
default: &default

adapter: postgresql
encoding: unicode

That is also thanks to migrations which are simple and unique atomic
actions that are performed on the database.

Listing 5.2: Migration file for creating the comments table.
20190120042516 _create_comments .rb
class CreateComments < ActiveRecord :: Migration

[5.2]
def change

create_table :comments do |t|
t.integer :author_id
t.text :body
t.integer :commentable_id
t.string :commentable_type

t.timestamps
end

end
end

Migrations are written in Ruby language so there is no need to worry
about precise SQL syntax. In other words, Ruby on Rails is database agnostic.
The database is already abstracted for us. The final structure of the database
is stored in the db/schema.rb file.

31

5. Technology Stack Decisions

Listing 5.3: Part of the schema.rb file showing the creation of the comments
table.

schema .rb
...
create_table "comments", force: :cascade do |t|

t.integer "user_id"
t.text "body"
t.integer "commentable_id"
t.string "commentable_type"
t.datetime "created_at", null: false
t.datetime "updated_at", null: false

end
...

SQLite is primarily meant for development or small projects. It has var-
ious technical limitations with regards to performance, scalability, and oth-
ers.

From the databases that were at my disposal, MySQL and PostgreSQL
both looked like a good choice. In the past, we would find more important
differences between those two but nowadays, one can not go wrong in choos-
ing either of these two.

MySQL does not allow for the usage of full SQL compliance (ie. lacks sup-
port for FULL JOIN clauses) and is not fully open sourced. Some of its edi-
tions are released under proprietary licenses. PostgreSQL supports more of
the full SQL compliance features with a long list of extensions, is fully open
sourced and extensible, however, has bigger limitatations on memory.[20]

Because I have worked with PostgreSQL before and never encountered
any problem, I have decided to stick with this database in this project, too. As
a reminder of what I have already said, it is up to the specific implementation
or organization on what database they will decide to use and Ruby on Rails
would make this switch basically seamless.

5.3 ElasticSearch

One of the options I had to implement the search functionality was to use
the built-in capability of the database to do full text.

However, based on the results of the user research I have performed, it
was clear that the requirements for search functionality are very high.

The search function turned out to be one of the most important elements
in any wiki for participants. Hence, I wanted to make sure that the search

32

5. Technology Stack Decisions

function that I implemented in the application would easily manage all kinds
of requests people can make.

To achieve this goal, I decided on implementing the ElasticSearch search
engine.2. It not only provides a full-text search, but also learns what people
are looking for. The more people search, the smarter it gets and the results
are better.

Some of the features worth mentioning are: [21]

∙ Handling:

– stemming - tomatoes matches tomato.
– special characters - jalapeno matches jalapeño.
– extra whitespace - dishwasher matches dish washer.
– misspellings - zuchini matches zucchini.
– custom synonyms - qtip matches cotton swab.

∙ Reindex with no downtime.

∙ Easily personalized results for each user.

∙ Autocomplete.

∙ “Did you mean” suggestions.

5.4 Sass

Sass is a CSS pre-processor which allows one to use features that do not
exist in CSS yet like user variables, mixins, nesting and other tweaks to write
modular and complex cascading styles.

Basically, it means that I would write seemingly more complicated CSS
code, which I would save into a file with .scss extension and then would use
Sass to compile this file and return a plain .css file as an output which would
be used for the browser.

This decision not only speeded up my workflow in the beginning but
also helped to keep the code easily maintainable in Future Development.

5.5 CSS Framework

Designing a consistent front end across multiple browsers, versions, and de-
vices is hard. Something that could help me accomplish this task easier was a

2. https://www.elastic.co/

33

https://www.elastic.co/

5. Technology Stack Decisions

CSS Framework. They provide a rich list of predefined classes and rules that
speeds up the workflow of designing the web applications tremendously.

According to the size od the community the top three CSS Frameworks
are: Bootstrap3, Materialize4, and Bulma5 in the respected order.

One of the factors in making the decision was to make the new user in-
terface feel different and fresh while also trying to avoid people’s responses
like "This looks totally like a system in my Android phone." This was exactly
the issue with Materialize CSS Framework which is based on the Google Ma-
terial Design6. The same would apply to Bootstrap as it is the most widely
used CSS Framework out there and is used among many of the new appli-
cations that were designed with limited resources. From this point of view,
I have seen Bulma CSS Framework as a solution which still shares the char-
acteristics of the big community around this project and at the same time as
a solution that no other application that I have ever seen uses. Simply put,
it felt different and yet fresh to me.

5.5.1 Bootstrap and Bulma Comparison

Bulma

∙ Using latest CSS3 features. Bulma aims to stay on the bleeding edge
of browser technology.

∙ Easy to learn syntax.

∙ Simple grid system.

∙ No JavaScript. Bulma provides a lightweight solution that can easily
be implemented in any development context.

Bootstrap

∙ Uses jQuery and includes some useful plugins to add interactivity.

∙ Larger community.

∙ Slightly better compatibility with IE11.

∙ Bootstrap has strong and pervasive compatibility with WCAG 2.0
guidelines.

3. https://getbootstrap.com/
4. https://materializecss.com/
5. https://bulma.io/
6. https://material.io/design/

34

https://getbootstrap.com/
https://materializecss.com/
https://bulma.io/
https://material.io/design/

5. Technology Stack Decisions

Above comparison was paraphrased from Bulma’s official website [22].
Since the name of my work includes the word "modern", I gravitated to-

wards the concept of the bleeding edge browser that Bulma provides. The
presence of jQuery in the project is widely discussed on the internet 7. Some
argue that it speeds up the workflow while others argue that many projects
do not need jQuery at all for the basic DOM manipulation. Because my plans
for Future Development (for more information continue reading this chap-
ter) relies on strictly separating the front end from the back end, I decided to
go for a leaner and lightweight implementation. That is another reason why
I have chosen Bulma and have decided to write a pure vanilla JavaScript.

7. Some examples:
https://hackernoon.com/you-truly-dont-need-jquery-5f2132b32dd1
https://blog.garstasio.com/you-dont-need-jquery/
http://youmightnotneedjquery.com/
https://github.com/nefe/You-Dont-Need-jQuery

35

https://hackernoon.com/you-truly-dont-need-jquery-5f2132b32dd1
https://blog.garstasio.com/you-dont-need-jquery/
http://youmightnotneedjquery.com/
https://github.com/nefe/You-Dont-Need-jQuery

6 Implementation Decisions

6.1 MVC Architecture

MVC Architecture or also known as Model-View-Controller architecture is
an architectural pattern that divides an application into three interconnected
parts:

∙ Model - represents the shape of the data and business logic.

∙ View - is a user interface. View displays data and allows its modifica-
tion.

∙ Controller - handles user requests.

Figure 6.1: MVC Architecture, from [23].

Advantages of this approach are: [23]

∙ Better scalability.

∙ Logical grouping.

∙ Ease of maintenance.

∙ Reusability.

The MVC architecture has become popular for designing web applica-
tions and Ruby on Rails web framework is no exception. It follows this de-
sign pattern, however, at the same time allows for replacing the view com-
ponent with simple JSON that allows for using the application as a REST

37

6. Implementation Decisions

API. That is definitely something I would like to take advantage of in the
Future Development.

More on MVC Architecture in Rails can be found in Sitepoint’s article
[23].

6.2 Multitenancy Architecture

When we talk about multitenancy we talk about "a software development archi-
tecture approach in which each client gets their own app configuration and data."[24]
These can be isolated softly or strictly from other clients. Each "instance" is
called a "tenant."[24]

Choosing this architecture from the beginning benefited the software
from a few aspects. The first benefit is that it was built as a cloud based
application. After deployment, one application is able to serve multiple or-
ganizations. This leads to lower costs of maintenance and updates, allow for
better scalability, efficiency in performance, and convenient onboarding of
new tenants (or in other words, people who create new wikis).

In my case, using Ruby on Rails and PostgreSQL, each tenant is a sepa-
rate PostgreSQL schema. To allow more personalized feeling for people using
the wiki, I have decided to specify wikis by subdomains. That means if the
application as a whole will be located on www.wik.com then each organiza-
tion using this application would be accessible through the subdomain like
www.organization.wik.com. Accessing this subdomain would serve data
from the "organization" database schema. However, some models would be
better shared across all tenants. These are ‘User‘, ‘Wiki‘ and ‘WikiUser‘ (rep-
resenting the relationship between users, wikis, and their assigned roles on
each wiki).

6.3 Database Design and Seed Data

The more features I was adding the more complex the database design was
becoming. The following picture shows the entity relationship diagram of
the actual database:

38

6. Implementation Decisions

ActiveStorage::Attachment
name string ∗
record_type string ∗

ActiveStorage::Blob
byte_size integer (8) ∗
checksum string ∗
content_type string
filename string ∗
key string ∗
metadata text

Article
ancestry string
archived_at datetime
body text
published_at datetime
slug string
title string ∗

ArticleVisit
visited_at datetime

Comment
body text ∗
commentable_type string

PaperTrail::Version
event string ∗
item_type string ∗
object text
whodunnit string

Pin

Reaction
reaction_type string
reactionable_type string

Searchjoy::Search
convertable_id integer (8)
convertable_type string
converted_at datetime
normalized_query string
query string
results_count integer
search_type string
user_id integer (8)

User
bio text
department string
email string ∗ U
encrypted_password string ∗
first_name string
invitation_accepted_at datetime
invitation_created_at datetime
invitation_limit integer
invitation_sent_at datetime
invitation_token string
invitations_count integer
invited_by_id integer (8)
invited_by_type string
last_name string
location string
position string
remember_created_at datetime
reset_password_sent_at datetime
reset_password_token string
slug string
telephone string
website string

Wiki
name string ∗
subdomain string ∗

WikiUser
role integer

Figure 6.2: Entity Relationship Diagram of the application.

39

6. Implementation Decisions

To fill the fresh installation of the application with some meaningful con-
tent fast and easy, I have created a set of basic dummy data with which the
database could be populated and later tested.

These include creating new users with different roles on different wikis,
and creating a bunch of pages and comments to them.

Listing 6.1: Showcase of seeding the database.
seeds.rb
...
reader_ctu = User.find_or_create_by !(

first_name: "Marek",
last_name: "Dlugos",
email: "reader@ctu.cz",
) do |user|
user.password = "hlavneheslo"
user.password_confirmation = "hlavneheslo"

end
...
ctu = Wiki.find_or_create_by !(name: "CTU",

subdomain: "ctu")
...

When seeding the database, each entity would by default have an ob-
ject which is fully populated with data, partially populated or very sparsely
populated. That way it was easier to uncover and test out more scenarios.

6.4 Polymorphic Associations

Polymorphic association represents a relationship from one class to multiple
classes. In other words, a model can belong to more than one other model,
on a single association.

This came in handy in two specific implementations; nested comments
and reaction on both, pages and comments.

Since one of my priorities was to encourage the social factor in the app, I
wanted to provide people with as many opportunities to express their opin-
ions and moods as possible. This resulted in an ability to spark the discus-
sion below every page, and on top of that people can discuss in a better,
more structured way thanks to the nested comments.

40

6. Implementation Decisions

Figure 6.3: Nested comments under an article.

Another opportunity to express the moods, agreeing or disagreeing with
the certain page or comment is via reactions. These are little buttons at-
tached to pages and comments in a form of Emojis, "a visual representation
of an emotion, object or symbol."[25] Other members of the wiki can later see
who reacted and how. This might come in handy, for example, with internal
company updates, voting for the best option or solution in the comments,
etc..

Figure 6.4: Reactions section under an article.

The above-mentioned features implementation would later look like this:
A comment can belong to a page (or article in other words) as well as another
comment (child comment would belong to the parent comment). The same
applies to reactions. A reaction would belong either to a page or to comment.

41

6. Implementation Decisions

Example of how I accomplished polymorphic associations with Rails in
my work:

Listing 6.2: Polymorphic association in Ruby on Rails.
comment .rb
class Comment < ApplicationRecord

...
belongs_to :commentable , polymorphic: true
has_many :comments , as: :commentable , dependent:

:destroy
...

end

The model for reactions would then look like this:

∙ id - represents the ID of the reaction.

∙ reaction_type - defines the type of the emoji (e.g. thumbsup, thumb-
sdown).

∙ reactionable_type - this is where the class the reaction belongs to
would be defined (e.g. Comment).

∙ reactionable_id - the ID of the object that the reaction belongs to (e.g.
14, but in this example it would be a comment with ID 14).

∙ user_id - who reacted.

Choosing this implementation I was able to better structure and reuse
the code and avoid extra database tables.

6.5 Tree Structures

Along the way of implementation, there have been cases where the real
world interpretation reflected tree structures, hence, I went ahead and im-
plemented this data structure in:

∙ categories - each page or in other words article, can have unlimited
children/parents.

∙ comments - the application supports nested comments to better struc-
ture the discussion.

42

6. Implementation Decisions

6.6 Security

Security is an important factor in every single organization when it comes
to storing their information. I kept this fact in mind and in line with the
Ruby on Rails security features1 and I took extra precautions that would
help organizations keep their data secure.

These were: multitenancy architecture (previously mentioned),
advanced authentication system (Devise), and user access with varying per-
missions.

6.6.1 Authentication Solution

Devise2 is an authentication solution for Rails. It uses Bcrypt3 to store a se-
cure hash of your users’ passwords. If a reader is interested in more details
on cryptographic operations, Tiago Alves has published a detailed article
on Medium.com worth reading 4.

Devise is based on the modularity concept and this plays an important
role in future development. Thanks to this characteristic it is fast to imple-
ment additional security features to better protect the data and users. Devise
has multiple extensions5, some of the worth mentioning are:

∙ devise_aes_encryptable6 - Adds AES encryption to Devise.

∙ devise_security7 - Adds options for industrial standard security de-
mands.

∙ devise_two_factor8 - Helps with implementation of 2FA authentica-
tion.

Every wiki can be accessed only after accepting the email notification. Here,
Devise comes in handy again as it offers an extension9 that helps with invit-
ing new people and sending out the invitations. Another advantage of De-
vise’s extensions is easy and fast implementation of signing up (or signing

1. https://rubyonrails.org/security/
2. https://github.com/plataformatec/devise
3. https://auth0.com/blog/hashing-in-action-understanding-bcrypt/
4. https://medium.com/p/how-does-devise-keep-your-passwords-safe-
d367f6e816eb
5. https://github.com/plataformatec/devise/wiki/Extensions
6. https://github.com/chicks/devise_aes_encryptable
7. https://github.com/devise-security/devise-security
8. https://github.com/tinfoil/devise-two-factor
9. https://github.com/scambra/devise_invitable

43

https://rubyonrails.org/security/
https://github.com/plataformatec/devise
https://auth0.com/blog/hashing-in-action-understanding-bcrypt/
https://medium.com/p/how-does-devise-keep-your-passwords-safe-d367f6e816eb
https://medium.com/p/how-does-devise-keep-your-passwords-safe-d367f6e816eb
https://github.com/plataformatec/devise/wiki/Extensions
https://github.com/chicks/devise_aes_encryptable
https://github.com/devise-security/devise-security
https://github.com/tinfoil/devise-two-factor
https://github.com/scambra/devise_invitable

6. Implementation Decisions

in) through third-party providers like Google. As of the beginning of the
year 2017, there were more than 3 million businesses paying for Google’s G
Suite[26, 27]. These businesses can represent potential users of the applica-
tion I have been working on. Hence, I can use Devise to implement authenti-
cation with Google and therefore attract more people to use the application.

Last, but not least, Devise also helps with handling edge cases like for-
gotten password, et cetera.

6.6.2 User Roles Management

Members of the organization usually carry different roles within this orga-
nization. I believe (and that is what my initial user research has shown) that
this fact should be reflected in the application itself as well.

Therefore, I came up with five default roles a person can have within the
application:

∙ Owner - a person who handles payments for the application, for in-
stance, owner of the company. Has all the rights.

∙ Administrator - manages wiki itself, including content and members
of the wiki.

∙ Moderator - can manage the content of the wiki. This is usually some-
one who already spent some time within the organization.

∙ Contributor - usually a newbie that can only create and edit own ar-
ticles, join discussions, give reactions.

∙ Reader (Guest) - has only the permission to read the content and give
reactions. This role is very restricted and suitable for newbies or peo-
ple from different organizations (guests).

44

6. Implementation Decisions

To better visualize permissions given by each role and to help with test-
ing these permissions I have come up with this compact matrix:

Figure 6.5: Visualization of permissions within the application.

These policies are put together in the ‘access_policy.rb‘ file which looks
as follows:

Listing 6.3: A code example for the Reader role.
role :reader , proc { |user| user.present? } do

can :read , Article
can :read , User
can [:read , :create], Wiki
can [:edit , :update , :destroy], User do |

edited_user , user|
edited_user.id == user.id

end
end

One of the challenges in implementation roles I came across was the fact
that one person can carry on different roles in different wikis. This relation-
ship is stored in wiki_users table which carries 3 columns:

45

6. Implementation Decisions

∙ user_id - Identification of the user

∙ wiki_id - Identification of the wiki

∙ role - a type of role

Because there are five roles to work with, the best way to interpret and later
work with roles was to use attribute enum as follows:

Listing 6.4: Enum attribute describing roles.
enum role: { owner: 1, administrator: 2, moderator

: 3, contributor: 4, reader: 5 }

So that I can later ask about the person role as follows:

Listing 6.5: An example of asking if current_user has role owner.
current_user.owner?

6.6.3 Password Strength Estimation

To ensure that new people joining the application will choose a password
that is strong enough, I took advantage of Dropbox’s zxcvbn library10 to
implement a live password strength estimation.

In the application it later looks like this:

Figure 6.6: Live password strength estimation during registration.

There is the progress bar under the password field that updates with the
input itself giving the person immediate feedback on how strong or weak
his/her password is.

10. https://blogs.dropbox.com/tech/2012/04/zxcvbn-realistic-password-
strength-estimation/

46

https://blogs.dropbox.com/tech/2012/04/zxcvbn-realistic-password-strength-estimation/
https://blogs.dropbox.com/tech/2012/04/zxcvbn-realistic-password-strength-estimation/

6. Implementation Decisions

6.6.4 Passwords from Data Breaches

After a person clicks on the "sign up" button during the registration process,
the application validates the entered password against PwnedPasswords
database.

PwnedPasswords project11 collects all the released passwords from
known data breaches allowing people to see if their password has appeared
in any of those databases. That adds an extra layer of security and avoids
common passwords.

6.7 Search and Search Analytics

As previously mentioned, to always ensure the most accurate search results,
I decided to use ElasticSearch. To allow people to find the information they
are looking for, I have extended the search not to only look through created
pages but also through comments and users.

So if a person would look for the term ‘Prague‘ it might result in:

∙ Page where ‘Prague‘ is mentioned. For instance, a page about the
Prague Office.

∙ Person somehow associated with Prague. For instance, a person who
filled out the ‘Location‘ field in his/her profile with ‘Prague‘.

∙ Someone’s comment including word ‘Prague‘.

In order to perform analytics on the search, I would need to store infor-
mation such as:

∙ Query - what a person typed into search input.

∙ Results count - how many results were returned on a searched query.

∙ Created at - when was the search performed.

∙ Conversions - I consider the event of clicking on the search result as
a conversion which represents "finding the right result".

The results of the analytics allowed me to retrieve a set of the most
searched terms with no results. While this might seem like a metric without
value, it can actually provide great information to the person managing the
wiki. For example, if members of the wiki were looking for a term "Design

11. https://haveibeenpwned.com/

47

https://haveibeenpwned.com/

6. Implementation Decisions

Guidelines" way too many times and always ended up with no results, it
might suggest that creating a page with this content could benefit the mem-
bers of the wiki. This feature can hence serve as suggestions for topics to
write about.

6.8 Testing Framework

Ruby on Rails usually comes with a testing framework called Minitest12.
While Minitest provides a complete suite of testing facilities, I have decided
to use RSpec in my work. RSpec is a "Ruby domain-specific language for specify-
ing the desired behavior of Ruby code."[17] The main reason in choosing RSpec
was the remarkable degree of code readability that it almost reads as a plain
English text.

I can not think of a better way how to describe RSpec than show you an
example code that tests creation of a wiki:

Listing 6.6: The code testing creation of a new wiki.
feature "User␣creates␣a␣new␣wiki" do

scenario "with␣valid␣name␣and␣subdomain" do
sign_in
visit new_wiki_url
fill_in ’wiki[name]’, with: "Test␣wiki"
fill_in ’wiki[subdomain]’, with: "test -wiki"
click_button ’Create␣Wiki’
expect(page).to have_content(’Wiki␣was␣

successfully␣created.’)
end
...

end

12. https://github.com/seattlerb/minitest

48

https://github.com/seattlerb/minitest

7 Evaluation

Since my whole work was built around people and their needs, it could not
end without the most important part — people. Therefore, once the first real
prototype was ready (following design thinking phases) it was time to test
it.

The goal was to reveal shortcomings that the prototype has, but to also
discover opportunities for further improvements prior to launching the ap-
plication.

Hence, I have met with five participants as a part of the user research to
interview them in an informal and unstructured way about their opinions,
insights, and suggestions for my work. To dive deeper into their minds, I
asked a lot of follow-up questions and also used supportive questions that
I had previously prepared.

Some of the responses were based on features that were not included in
the prototype (see the scope definition section) because they were not crucial
elements for the basic functionality of the application while some others
made me think in a different way about the application and its future.

7.1 User Interviews

Overall, the interviews helped me validate that the requirements of an orga-
nization on my application differs based on the actual size of the organiza-
tion. While smaller organizations mostly cared about attractiveness and new
features, bigger companies did not even mention these elements and were
more focused on important things like Single Sign-on, quick migration of
the content from other solutions, et cetera.

Different types of growth strategies go hand in hand with the size of the
company as well. I was told that to get my application installed at a new orga-
nization, a freemium model that would scale with the number of members
of the wiki, would help. Other participants that worked for larger organiza-
tions, introduced the obstacle of a complex sales process for implementing
new software.

This information allowed me to realize that I should pick the organiza-
tions I want to target with my solution first and lead the future development
towards requirements of the targeted organizations to satisfy their needs to
its fullest.

Another issue that stood out at the interviews to tackle is making the
transition from one solution to another as smooth as possible since if the

49

7. Evaluation

organization does not start from zero, they probably already have some kind
of solution for sharing information and collaborative work put in place. That
means to research export options from most used solutions on the market
and following the implementation of some kind of import functionality that
would speed up the transition.

To sum the feedback from evaluation interviews I can say that people
appreciated:

∙ The way the application works with data in wiki dashboards.

∙ Fulltext search that works across multiple entities.

∙ Social features like reactions, contributors profiles, and comments.

∙ Well separated rights based on the roles.

On the other hand, participants saw the main shortcomings of the appli-
cation in:

∙ No ability for easy and fast migration from other solutions.

∙ Missing page templates that would either encourage best practices or
follow the format they use within the organization.

∙ Missing Single Sign-on (only big organizations).

∙ Not that attractive and playful design.

Transcript of all the evaluation user interviews can be found in the Ap-
pendix B.

7.2 Software Testing

Since the performed user interviews helped me to better understand what
people think of the application and helped me to set up the goals for the
future, there is other important task when we talk the application and that
is to make sure that the application is fully functional. To help me achieve
this goal, software testing comes into play. This process excludes people’s
opinions and focuses clearly and only on the comparison of what we expect
the application to do (for instance, create a new wiki) and what the applica-
tion does when we try to perform this action (for instance, the application
throws an error).

50

7. Evaluation

Because the application is mostly about basic manipulation with data
(create, edit, update or delete), I found that the Unit Tests are not as applica-
ble as writing Integration Tests. What I wrote are not just, so-called, Integra-
tion Tests, these are Feature Tests; tests interacting with the application just
like a real person would do. When running these tests, system clicks on the
buttons, links, fill in forms. . . to ensure that people get value out of the appli-
cation. Or in other words, these tests are making sure that the application is
not broken in such a way that a user might notice.[28] "Because feature tests
need to mimic the user’s behavior as much and as close as possible they are using
a web browser to do their work and that is very slow, which is their biggest down-
side."[28] On top of that, the application was tested by manually performing
various actions step-by-step closely watching whether the behavior of the
application matches the expected behavior.

7.2.1 Feature Tests

When writing feature tests I have decided to cover the most crucial parts of
the application allowing people to perform the most important tasks. These
included:

∙ Signing up and signing in.

∙ Creating a new wiki.

∙ Creating a new page.

∙ Joining a discussion by leaving a comment.

∙ Updating a person’s profile.

∙ Reacting to a page.

A test case for creating a wiki looks as follows.

Test Case ID: 03_user_creates_wiki_spec. Based on the use case MH001.
Test Case Description: A user creates a new wiki.
Created By: Marek
Version: 1.0

Prerequisites: A user is signed in.
Test data:

∙ user[email] = valid@examplero.com

51

7. Evaluation

∙ user[password] = hlavneheslo

∙ wiki[name] = Test wiki

∙ wiki[subdomain] = test-wiki

Test scenario: User creates a wiki with a valid name and subdomain.

Expected result: The wiki will be created. This will be confirmed with
the notification including the text: "Wiki was successfully created."

Steps:

∙ Navigate to http://lvh.me:3000/u/sign_in

∙ Enter user[email] and user[password]

∙ Navigate to http://lvh.me:3000/wikis/new

∙ Enter wiki[name] and wiki[subdomain]

∙ Click on the "Create Wiki" button

∙ Expect the final page to show the notification with the text "Wiki was
successfully created."

A simple example of the feature test with different scenarios testing the
edge cases is provided below.

Listing 7.1: User creates a wiki feature test.
feature "User␣creates␣a␣new␣wiki" do

scenario "with␣valid␣name␣and␣subdomain" do
sign_in
visit new_wiki_url
fill_in ’wiki[name]’, with: "Test␣wiki"
fill_in ’wiki[subdomain]’, with: "test -wiki"
click_button ’Create␣Wiki’
expect(page).to have_content(’Wiki␣was␣

successfully␣created.’)
end
scenario "with␣valid␣name␣and␣invalid␣subdomain"

do
Should pass as the application is able to

sanitize the subdomain string before saving

52

7. Evaluation

sign_in
visit new_wiki_url
fill_in ’wiki[name]’, with: "Test␣wiki"
fill_in ’wiki[subdomain]’, with: "test␣is␣good

!"
click_button ’Create␣Wiki’
expect(page).to have_content(’Wiki␣was␣

successfully␣created.’)
end
scenario "with␣blank␣fields" do

sign_in
visit new_wiki_url
fill_in ’wiki[name]’, with: ""
fill_in ’wiki[subdomain]’, with: ""
click_button ’Create␣Wiki’
expect(page).to have_content("be␣blank")

end
end

After running the tests against a testing environment, all the tests passed
what proves that tested functionality meets the requirements.

53

8 Deployment

The way to deploy the Ruby on Rails application to the internet is very easy
and fast with the platform called Heroku1. It simplifies the whole process by
providing numerous tools like command line tools2, linking with Git repos-
itories3, and rich documentation4 on deploying web applications written in
various web frameworks and programming languages.

When I was about to use ElasticSearch as a supporting pillar for full-text
search I was not sure whether this decision will not introduce future issues
with deployment. Luckily, with Heroku, this is only a matter of two clicks
since Heroku offers plenty of extensions one can use to introduce additional
features to the servers. One of these extensions is also an extension5 that gets
ElasticSearch instance up and running.

If there would be a need to deploy the application to a different platform
the process is no different from deploying a regular Ruby on Rails applica-
tion and getting the ElasticSearch server up and running. Many of the tech-
nology stack decisions are highly abstracted in configuration files in Ruby
on Rails so it is easy to combine multiple providers of different services to-
gether. For instance, it is possible to have one database provider, another
place where the actual application would run, and another place where the
application would store uploaded data.

1. https://www.heroku.com/
2. https://devcenter.heroku.com/categories/command-line
3. https://devcenter.heroku.com/articles/git
4. https://devcenter.heroku.com/categories/language-support
5. Bonsai Elasticsearch — https://elements.heroku.com/addons/bonsai

55

https://www.heroku.com/
https://devcenter.heroku.com/categories/command-line
https://devcenter.heroku.com/articles/git
https://devcenter.heroku.com/categories/language-support
https://elements.heroku.com/addons/bonsai

9 Future Development

The application is currently under active development. The next steps are
directed towards implementation of more features; listed in the scope defi-
nition section; and making the application available to the first real people
to try it.

While the design was one of my capstones to innovate in, and I did my
best to make the design intuitive and usable, I am not fully satisfied with the
architecture that powers front end. Hence, after proving a product market fit
of the application and getting some initial traction I would love to separate
front end from back end creating a reactive user interface 1. The bright side
to the current user interface is the fact that Ruby on Rails uses so called
turbolinks. Turbolinks is "JavaScript library that, when enabled, attaches a click
handler to all links of an HTML page. When a link is clicked, Turbolinks will execute
an Ajax request, and replace the contents of the current page with the response’s
<body> tag."[17] Turbolinks makes the application appear faster and reactive
even though there is no well-known user interface framework like React,
Angular, or Vue in the background. Another advantage of Ruby on Rails
is that it serves the format you request. Hence, it does not require any extra
line of code to serve data in JSON when requested, allowing for future REST
API approach.

Lastly, after hearing out opinions of people who saw the first prototype
of the application and shaping a better picture of the course, I should follow,
I would love to catch up with automated tests as the application is getting
more and more complex and even in the last days before submitting this
work I felt that it is harder and harder to keep an eye on the correct function-
ality of every tiny feature of the app.

1. https://medium.com/modern-user-interfaces/a-journey-into-reactive-user-
interfaces-101-1daea5702486

57

https://medium.com/modern-user-interfaces/a-journey-into-reactive-user-interfaces-101-1daea5702486
https://medium.com/modern-user-interfaces/a-journey-into-reactive-user-interfaces-101-1daea5702486

Summary

Based on the the initial user research, competitive analysis, and conducted
user interviews, I, as well as participants of the research agreed that there is
room for improvement in wiki software space.

In my user research I have learned from participants that the most im-
portant things to them are discoverability, searchability, and rights management.
The problems that people using Wiki software face are that the information
gets obsolete fast, and there is rarely a dedicated person who would keep the
wiki up to date.

Following Design Thinking phases, I empathized with people using Wiki
software by the conducted user research (Empathize phase of Design Think-
ing), I have defined the problems, generated ideas how to solve them (Define
and ideate phase of Design Thinking), and brought those to the low-fidelity
wireframes which I right after turned into the code (Prototype phase of Design
Thinking) using latest technologies found on the market.

Once the prototype (the application) was ready for presentation, I have
conducted evaluation user interviews with five participants to validate (Test
phase of Design Thinking) with them that my prototype fulfills the require-
ments for a modern wiki web application.

The participants pointed out things they enjoy in the application, and
helped me to gather feedback and insights for the future development of the
application which I plan to actively continue with to present the application to
the first, real customers.

To me, this was an excellent opportunity to get my hands on whole prod-
uct development cycle from definition, through scoping, all the way to the de-
velopment. I learned how to develop web applications fast using the modern
Ruby on Rails framework, and how to resolve issues connected to shipping a
real world product.

59

A Initial User Interviews

Goal: Get to know what people use inside of their organizations nowadays
to share, gather and access knowledge. What they like about those solutions
and what they don’t like. What is missing and how the perfect software for
gathering and sharing information should look like.

A.1 Supporting Questions

A.1.1 About Participant

∙ What size is the organization that you currently work for? And how
the structure looks like?

∙ How long is the mentioned organization around?

∙ What does your typical weekday look like?

∙ What are some of the apps and websites you use on a regular basis?

∙ Tell me about your role at your company?

A.1.2 Product Related Questions

∙ In the terms of information gathering and sharing across your com-
pany. What are the things you are trying to get done? Why? (Ask why
few times in the row)

∙ How often do you seek an information regarding to your work/exis-
tence in the office? What information you seek?

∙ Where and how do you access these information? What tools you use?

∙ What other products or tools have you tried out?

∙ How did you hear about these other products or tools?

∙ What do you like or dislike about these other products or tools?

∙ How much time do you typically spend on finding a right informa-
tion?

∙ Tell me about the last time you tried to find some information?

∙ What do you like about how you currently search for the information?

61

A. Initial User Interviews

∙ What’s the biggest pain point related to finding the information?

∙ What are you currently doing to make this task easier?

∙ Have you ever shared information helpful for more people within
your organization? What was it?

∙ What do you like about how you currently search for the information?

∙ What’s the biggest pain point related to sharing the information?

∙ What are you currently doing to make this task easier?

∙ What is the hardest part about having information together at one
place?

∙ Are you looking for a solution or alternative for finding and gathering
the information?

A.1.3 After showing 2 Wireframes

∙ What do you think of this product?

∙ Why do you think someone would use this product?

∙ Now imagine this is a page where you would land. It’s your new com-
pany knowledge base.

∙ Is there anything you are missing on this screen?

∙ What could be done to improve the experience?

∙ Is there any information you would be missing on this screen?

A.2 Interviews Transcript

A.2.1 Participant no. 1

A Startup (± 50 people) recently acquired by big corporate for $ 100M.
A middle level management person, responsible for information man-

agement among many other things.
We distinguish 2 types of content in your wiki:

∙ True, long lasting knowledge that will be up to date even after 5 years

62

A. Initial User Interviews

∙ Temporary information (current projects, company news — we use
GDrive for it)

The big question is how to manage the Wiki:

∙ How to deal with moderators? Who can maintain the content?

∙ How to motivate people to contribute?

∙ How to motivate people to contribute with quality content.

(I showed him the roles proposal we have had.)
Reaction: If some people won’t be able to contribute → system will die.
Super important elements to him:

∙ Ability to search, good search (fast, full text)

∙ Discoverability (tree structure extremely important)

∙ Authentication (definitely SSO and/or Google Auth + public links
when you want to share the article with someone out of your organi-
zation)

Said that versioning is also very important to him, but after more deep
discussion he accepted that he doesn’t used it that much, but it would be
great if it will be available (just in a case). Plus, showed me the Dropbox
Paper History Changes page which was done very well.

What they use?

∙ Dropbox Paper — Why?

– He likes the document navigation on left side.
– He likes versioning view
– Loves WYSIWYG editor — markdown support, todo lists, code

snippets, mentions

∙ In the past he has an experience with Confluence

– The only thing he liked about it was creating the boxes which
help to highlight certain information (imagine those as simple
rectangle with colorful background)

He likes the Mac OS X spotlight search a lot. The same in Evernote and
Slack (a quick access to basically everything).

63

A. Initial User Interviews

He expressed how much he likes shadow under the images. I asked him
about image captions — said it’s nice to have but he doesn’t use it often.
Seems that aesthetics is important to him as well as user experience.

The problem he sees with Dropbox Paper is that in the case he wants to
share a folder he had to first share every single document. Would be great
to have an option to share any item in the tree (folder or document or file. . .
)

I asked him about having multiple “spaces” (wikis) within one Wiki. (It’s
how Confluence is done). Said, that it made sense in his previous company
(a bank) with over 130k people and it might fit also to a company that ac-
quired them recently with 1600 people. But not for them — a small startup.
His argumentation was that at some point you will end up in the stage where
what others within your company do, it’s not important to what you do. He
said, after that it would interesting to have distinguished homepage that
would separate him from others.

I showed him couple in process wireframes:
(Article)

∙ Breadcrumbs missing

∙ People scan, don’t read (10 min to read is unnecessary)

∙ Discussion at the end of the article and in-context comments feels
duplicating the same “feature”

∙ “It remains me a blogpost a bit” (because of related articles at the end)

(Homepage)

∙ Loved articles pinning (from time to time there are articles you access
twice a day)

∙ Recent activity (would be great if it can be tailored to his needs)

A.2.2 Participant no. 2

Works on marketing within small startup (± 30 people) that has been part
of prestigious 500 Startups accelerator.

They have used Gitlab Wiki for their projects and teams before. Now they
mix Dropbox Paper and Gitlab Wiki.

Very important is to keep information up to date and manage who has
access to what information.

64

A. Initial User Interviews

He feels like Dropbox Paper is more advanced and better than G Docs.
He loved the feature in Dropbox Paper that user can actually open the image
and comment on it (where he clicks he creates a new comment). Dropbox Pa-
per supports markdown, mentions (not only in comments but everywhere),
tasks. . . Dropbox Paper also remember the authors of every line, even when
user is copying or moving something across 2 different documents. He re-
ally likes versioning. It’s more human, not like in typical solutions where
people have “Tuesday 2.10.” and some message.

Everybody on their teams work based on issues assigned to them. They
link issues to the Dropbox Paper as well. He thinks that every strict structure
for small startup is bad. Strong need for collaboration, changing things.

He used mind mapping a lot but it was not enough for storing all the
information.

He said that lot of companies already has some starting point regarding
to their knowledge therefore the migration is really important.

Also expressed the importance of templates that help people to quickly
create new content without need to think of the format. (Template exam-
ples: Meeting Notes, Brainstorming, Checklist, etc.) It is easier to start with
something pre-made than with blank page.

3 examples of knowledge (ideas for templates):

1. Values, high level knowledge, company knowledge base

(a) e.g. working hours, Wi-Fi password, printers setup, tools com-
pany uses — document that you would send people on their first
day

2. Team level knowledge

(a) specify toolkit, regular meetings (who owns them — very impor-
tant)

3. Knowledge for people that spend some time with company — check-
lists for deployment, writing e-mail campaigns, etc.

“Those three templates would made creating knowledge base easier”
At the company he works for processes distilled from the bottom of the

company. Half year back they have started working in the sprints. Year back
they have started using OKRs. They are collecting a lot of data but doesn’t
have anyone who would evaluate them.

Interesting idea for him is to write about best practices for young firms to
create their knowledge base (on the blog as a content marketing). Tips what

65

A. Initial User Interviews

are the sprints, what are the OKRs. How-tos. Interesting market of small
startups and firms that are just about to set their company processes.

The important element for him is also integration with other services (G
Calendar, Gitlab, etc.). Last interesting idea was that people might ask for
permission other users and those can grant the access.

After showing him wireframes:
(Article)
Code highlighting is crucial
Component for article feedback could be fixed since user doesn’t go to

the end of the article always
(Homepage)
Recent activity, super important
Didn’t get the meaning of the tags under the search box
Recent activity — might feature the select box with team-wide, company-

wide options so that he can see only the relevant stuff.
Files in the tree structure should feature timestamps so it’s clear when

they were lastly updated.

A.2.3 Participant no. 3

10 years in huge corporate with 84k employees. Been writing a strategy about
knowledge management for the CEO in 2007. Now founded his own startup.

Back in the days people used e-mail to share the knowledge and it’s
widely used also nowadays. About the year 2005-2007 wiki forums become
a word. They have reduced the cost of support for example. People could
answer their questions themselves. Then the same principle was translated
internally to the companies. But everyone within the company is focused on
their own work. So the motivation for people to contribute with the content
is not that strong. Usually the ratio of contributors vs. people viewing the
content is 4% : 96% .

In his startup they use wiki as well but the informations got out-dated
quickly. People move to another project/task and the ownership is not trans-
ferred. The system is passive, doesn’t drive anybody to update the content
or archive it.

Google Doc is great for collaboration however it’s terrible for keeping
things up-to-date. This problem simply hasn’t solved yet.

Slack and other tools have come but they don’t solve this problem, it’s
hard to search for the knowledge. He sees the future in NLP (natural lan-
guage processing) and machine learning — so that software would figure

66

A. Initial User Interviews

out itself what is the knowledge. Would be great if we can create a knowl-
edge from unstructured conversations (Slack).

Has pointed out to the guy from NYC writing for Wall Street Journal that
they have a models that predicts what authors should write about and what
people are interested in. Might be our case — to be able to suggest people
what to write about.

A.2.4 Participant no. 4

A software engineer working for the most famous internet search engine in
the world.

They used to use their own internal wiki (custom made). But now they
use only markdown files that lives within software projects (mainly for doc-
umentation) — called g3doc that will generate documentation from those
markdown files. You can also link that markdown with the code and all doc-
umentation have the same look. The system enables to generate docs right
away from the code, almost like JavaDoc.

Across the company they have this “super search” , an internal tool that
can search across the whole huge code base and everything within the com-
pany. (again we can see the repeating pattern and the importance of search)

For the information not regarding to the code they have programmed
their own robust intranet. He said it’s also possible to navigate through the
“golinks” , where user would type in the browser go/eat and it will immedi-
ately show the menu for lunch for that day. Golinks are basically shortcuts
for different web sites.

There is four ways how to store information:

∙ Code (g3doc)

∙ Things like: “How to make a coffee” — using their own solution for
creating websites (also pretty famous in the public) but trying to make
transition to g3doc

∙ Another option to “How to make a coffee” information might be their
own Docs system. They use it also for solution design.

∙ Every single project has their own web site and dashboards.

He said, he uses search almost always. Don’t really care about outdated
information but strive for having the best search out there so they always
find the right information across the whole company. The problem with in-
ternal search is that ranking pages is harder since they doesn’t have enough
data.

67

A. Initial User Interviews

Participant typically search in the code. Last time he searched for some-
thing, he was looking for the presentation he attended — internal search and
then their own Docs engine where he found the presentation. He wrote few
documents to propose better solutions within company (using their own
Docs tool), sent it to the team mailing list and allowed sharing (which means
that also the internal search indexed the document).

A.2.5 Participant no. 5

CTO of an smaller size startup (± 50 people) recently acquired by a big cor-
porate.

He thinks that the problem with knowledge bases was still not solved.
He saw one solution in the past that he really liked — Corilla1.
There is a big difference if somebody from a company is specially dedi-

cated to maintain the system or not. Hardly depends on the size of the com-
pany. (Why?) Because when there is somebody taking care of the docs and
knowledge base the steeper learning curve doesn’t matter that much.

(I feel like he was shifting the whole interview to the totally technical
side and to writing the docs for code. But we would love discover this area
as well.)

Pointed out to readthedocs site2. They use sphynx3 — docs engine for
python. Absolutely technical, only for developers, tech audience.

He distinguish 2 types of content:
∙ Unstructured — who is on my team

∙ Content related to code
For him the ideal solution would be something that can be well con-

nected with the code.
All the big players use Confluence including the corporate that acquired

them because it works good with JIRA. However, the corporate has dedi-
cated team that maintain that knowledge base. That is the only case when
Confluence works well.

He saw a solution where people would write in the format heading +
paragraph so that it can be reused on the other places.

He said that bigger firms require on-premise solutions because of the
regulations and etc.. Docker has helped this a lot. There is also one startup
that can help develop on-premise solutions.

1. https://corilla.com/
2. https://readthedocs.org/
3. http://www.sphinx-doc.org/en/stable/

68

https://corilla.com/
https://readthedocs.org/
http://www.sphinx-doc.org/en/stable/

A. Initial User Interviews

Spynx

∙ Pros:

– integrated with code
– it’s modular
– their own structured language (enable links, embedding so that

the same information change across the whole knowledge base)

∙ They also do code reviews for documentations (someone would check
if what you have written to the docs is correct) — The con is work load
but pro is that undesirable content won’t show up in the docs.

∙ Cons:

– syntax of the language is not that good (markdown would be
better)

– the design of skins and layouts can be significantly improved
(information architecture is poor — navigation, search)

– big pain to work with images (first he has to create image on the
side, push it to the repository and then link)

Confluence

∙ Cons:

– Information architecture is poor (a lot of unstructured informa-
tion everywhere)

– Doesn’t guide user to write structured and relevant
– Missing feedback loop

In their startup there was never a person that would be dedicated to
maintain the knowledge base.

Since we were talking more about code docs, when code has changed
the docs changed with the code. So the docs remained up-to-date.

Showed him few wireframes (Article)

∙ Don’t put the discussion under the article. Do it as a “tickets” /issues
that need to be resolved “in the article” . User doesn’t want to get back
to the discussion.

(Homepage)

69

A. Initial User Interviews

∙ Recent activity is super important. Should be relevant, not spammy.

∙ Search is super important. He doesn’t care that much about tree struc-
ture because he believes that a person is not going to read everything
but look for one exact information (however, we already know from
the previous research that tree structure might be important if a per-
son writes a new article and doesn’t know into which category it falls.)

A.2.6 Participant no. 6

Software engineer at the most famous social network nowadays. Working
on the social network for organizations to help them get the work done.

He said, in the past they used to use their social network for everything
(groups and other features). It worked well so they have pivoted social net-
work for work. Personal social network account is totally separated from the
work account (people like they separate their own privacy from work).

Not everything is stored on this social network. They also have wiki
pages (mainly for “manuals”). Very good internal search (can search through
the social network groups as well as through the wiki pages). They use more
systems but because of the great search it doesn’t matter where the informa-
tion is stored.

When developing new product / working on the new project they create
3 groups:

∙ Information (FYI, announcements)

∙ Feedback Group (for providing a feedback)

∙ Internal (closed for people working on the project)

They also have Q & A groups (e.g. iOS) so that everyone who is interested
in this technology/architecture/product can ask and relevant people will
answer. The internal search index those as well. He likes that when starting
to write a new question, system will first try to provide him similar ques-
tions that has been already asked and are already answered. This preserves
duplicates and speed up the process of finding the information.

They do have 2 wiki engines. One is modified open source solution and
another in-house made. In the left sidebar there is navigation through chap-
ters. It supports markdown. User can generate document outline.

His using search almost all the time. Last use case: been coding some-
thing, needed to modify the part of the code base so he tried to search for

70

A. Initial User Interviews

some keywords, asked in the group and they have linked him to their inter-
nal wiki.

He sees writing a wiki pages as a time saver. So next time when some-
body writes him a message he can just simply link that person to the page
he has created.

He, as a person who consume the information most of the time, often
edit the pages. Actually, it is surprising if something is not out dated. To
update the page it’s just simple click, edit, and submit. No need to review,
approve content. People are happy that someone has edited it.

(Asked if it isn’t problem that the pages are out dated) Depends on the
pages and the frequency of the usage. More used the page, bigger problem
it is and vice versa. When the page is out dated it means more work for a
person because he/she has to explain the up to date information.

They use source control Mercurial, Q& A wiki, FAQs. . . He usually came
across dev manuals.

(What kind of information do you usually store?)

∙ static information

∙ dev manuals

∙ information about offices, basic information (expense policy)

∙ printers

∙ organizing events, company sponsoring, criteria, rules. . .

No templates provided in their wiki solution. Meeting notes are usually
posted to the group, so that people gets notified and can comment on it.

Using Quip — something like Google Docs. Good for real time collab-
oration in one document/table. Use case — planning or a draft for an an-
nouncement.

(Problems you came across when looking for the information?)

∙ hard to figure out if any wiki page exist for a given search term

∙ hard to say what to search for — e.g. looking for a answers on “how
the xy system works” — then he would go to the group and ask there.

Wiki is wild environment, no one pushes you to contribute, but you want
because it saves a time. When the content is out dated you can contact the
author and ask him. You can see who have contributed in the past, the whole
history of contributors. He has contributed in the past and then people asked
him for advice.

71

A. Initial User Interviews

Usually the media types are code snippets (dev manuals), images, noth-
ing special.

72

B Evaluation User Interviews

Goal: To find out what went well and what did not on the first prototype of
the application. See whether important features from initial user research
were implemented sufficiently, and document what other things might block
potential customers from using the application for their activities.

B.1 Supporting Questions

B.1.1 Product Related Questions

∙ Why do you think someone would use this product?

∙ What might keep you from using this product?

∙ What is the most you would be willing to pay for this product?

∙ Does it remind you of any other products? If so, what products?

∙ What is most appealing about this product?

∙ What is he hardest part about using this product?

∙ What could be done to improve this product?

∙ Was there anything missing from this product that you expected?

∙ What do you think of this product?

B.2 Interviews Transcript

B.2.1 Participant no. 1

The participant is an indie hacker who loves to create and run projects with
his friends.

He thinks that the product could be useful to store the information that
should be accessible by all the members of his team. Would consider using
it for his brand new idea.

As someone who has just an idea, he obviously does not have much
money for new tools so for him to make it attractive the solution would
have to be for free, at least at the beginning. He suggested at usually when
he is about to start something new, there is only a little portion of the peo-
ple working on the project, therefore, it would be able to build the pricing

73

B. Evaluation User Interviews

model around a number of members of the wiki. New startups should def-
initely get an advantage over companies that already make some revenue.
Lastly mentioned that freemium business model always worked the best in
his projects.

I asked about other products that it might remind him of and he pointed
out Atlassian’s Confluence and mentioned he heard about some open source
solutions but is not sure in what stage they currently are.

Going throw the application, wiki dashboards really stood out to him,
as he liked the idea of working with the data. Especially, he appreciated the
suggestions to keep the wiki up-to-date, review old pages or poorly rated
pages. After trying out the search he loved an idea of searching truly all the
content on the wiki — users, comments and pages.

He could not really point out any serious usability issues that would
restrict him from using the product. Although, he mentioned that as a brand
new organization he would love to have some kind of template showing the
best practices or pre-made structure to keep the information. In the end, he
mentioned that he sees a room for improvement in design and especially
interaction (for instance, adding animations et cetera).

B.2.2 Participant no. 2

The participant works at a large company with thousands of employees.
“I can definitely see the use of this solution in any kind of organization.

From the company that I work for which employs thousands of people to
nonprofits to make their lives easier.”

He dived deep into the process of big enterprise companies, their require-
ments and how do they choose the solutions. Briefly:

∙ To get such a product to the company, I would need a serious sales
team that would be able to negotiate with decision makers of the cus-
tomer company the terms and conditions. This process can usually
take months and it is hard to find the right decision maker in the
company.

∙ Really important are also contracts and legal documents. Without real
support from lawyers, proving the company that you really can pro-
tect the data they would be saving to the wiki you won’t succeed.

∙ Many big companies are starting moving to cloud which is good for
your application, however, not all of them. You might consider pro-
viding an option to install your solution on own servers.

74

B. Evaluation User Interviews

Did not want to discuss the price for such solutions in big companies.
When showcasing the application he noticed a couple of things that would

stop big companies from using this product:

∙ Missing Single Sign-on.

∙ No possibility for sending out the mass invitations to the desired
members of the wiki. Mentioned also a possibility for restricting the
registration to only people within the same domain (e.g. @acme.com)

∙ Very critical and yet not resolved issue he sees is that any larger orga-
nization already has some content put in the place. However, he does
not see any option for the new administrator to import the content to
the wiki. According to him, it is crucial to make the transition from
one solution to another one as easy as possible.

∙ Missing feature flags. While this might not be a deal breaker he still
thinks it is important for larger companies to have control over what
features are enabled and which are not.

∙ Lastly, he liked the idea of wiki dashboards and dictionary of con-
tributors, though, he said that usually larger organizations have ded-
icated solution to handle this area.

B.2.3 Participant no. 3

The participant works at a startup with up to 50 employees.
The one crucial part he sees missing is the import of the content. As their

startup already uses Confluence it might be too time-consuming to copy and
page all of their content into a new solution. That’s what would hold him
back from using my solution.

Since there is plenty of open source solutions he would definitely not
pay if he would be starting out a new company. However, said that in a later
stage, he would be willing to pay up to 30 dollars per month. Suggested to
base pricing on the number of members of the wiki.

He has already heard about people using Dropbox Paper as a place to
store the information accessible by anyone within the company but from
traditional solutions he mentioned:

∙ DokuWiki

∙ MediaWiki (Wikipedia runs on MediaWiki)

75

B. Evaluation User Interviews

∙ XWiki

∙ Confluence

The most appealing thing to him is the way the application works with
data and encourage users to take the right actions, leading to a healthy ecosys-
tem. Also liked the way people are able to react to pages, however, men-
tioned that there might be no need to react to some of the articles with long-
lasting knowledge. Reactions might be more interesting for pages that are
relevant at a certain point of time (note: touches on feature flags).

Expressed that he misses the ability to “watch” the page or in other
words be notified when there are changes to the page. Would love to see
some notifications system within the app as well as in his email inbox.

B.2.4 Participant no. 4

The participant works as a designer in a company with up to 20 employees.
“The visual of the application look way too basic to me with no person-

ality.” He would welcome a “cooler” design like Apple native apps have —
more animations and interactions. Making it more personal. Even suggested
using a serif font for pages to make them easier to read and to distinguish
the look from other solutions.

While writing creating new page he suggested an ability to create tasks,
in other words, a list of checkboxes so that he could use the application to
manage his work. Another block that would come handy to him was the
ability to create a table (this are currently not supported by the WYSIWYG
editor).

He liked the possibilities of the full text search as he pointed out that this
future is crucial.

At the end mentioned he misses an ability to create own pages tem-
plates which would follow the format of the documents they use within the
company like meeting notes, checklists (for instance, before releasing a new
project). When saw the comments at the bottom of the page, he expressed
the opinion that these are usually useless as he would like to comment in-
context like in Google Docs when, for instance, there is some mistake in the
page that needs to be fixed.

B.2.5 Participant no. 5

The participant works at a large software company with hundreds of em-
ployees.

76

B. Evaluation User Interviews

One thing that would hold him back from using it in the company he
works for is the missing Single Sign-on, as all the other software that they
use, support it and it is not acceptable for them to be creating brand new
accounts.

I received a good feedback on very precisely divided roles and permis-
sions linked to these roles. However, the participant also mentioned that in
the large organizations, sometimes you do not want one team to see some-
thing that other team can see. Therefore, he would work around this idea in
the future if the application would aim for enterprise space. He talked about
having special privacy settings for each page + introducing concepts of the
user groups that would have assigned roles.

Lastly, when browsing pages he mentioned a problem / an opportunity
as his use case is that, often, when storing the knowledge, not all the related
information are text files. According to him, it would come handy if one
would be able to attach or embed files to pages too, easily preview them
and download them or upload revision at any point of time.

77

C Wireframes

C.1 Landing Page

PricingHow it works Contact usBlog Try it FREE!LoginKnowlywiki

Wikipedia for your
organization
Build a modern knowledge base for your organization
and share information easier and faster.

Try it FREE!

Figure C.1: An example of the future landing page.

79

C. Wireframes

C.2 Onboarding

Create your account
Register with your work Google account

Full name

Work email

Password

E.g. Marek Dlugos

E.g. marek@acme.com

At least 8 characters

Register with Google →G

Register →

By clicking "Register" you agree to Knowlywiki’s Terms of Service and
Privacy Policy.

Photo of a person

“Helpful testimonial from the current customer.”

Figure C.2: Creating an account.

80

C. Wireframes

New knowledge base

Usually the name of your company.

Must be lowercase characters. No spaces.
Can’t be changed after.

Name of the knowledge base

Claim your site

E.g. Microsoft

E.g. microsoft knowlywiki.com

Note: Use JS to fill
in the domain

name based on
the name of the KB

Figure C.3: Creating a first wiki.

81

C. Wireframes

Search articles, colleagues…CTU knowledge base

🔥👍 👎

Welcome to Knowlywiki!
If you’re planning on buying a printer soon, you should consider buying an Ethernet or
wireless printer. Prices have come down in recent years and now that most people hve
wireless networks, you can setup your network so that you can print from anywhere in the
house or even the world using a service like Google Cloud Print! It’s also great for guests
because they can connect to your wireless network and print easily without having to fiddle
with cables and CDs, so you’ll get lots of kudos as a host!

First, connect the printer to your network by connecting one end of a Cat 5 or 6 cable (which
should have come with your printer) to your router and the other end into the network port
of your printer. Now, turn your printer on and wait for it to become ready.

Next you’ll need to get the IP address of your printer. The IP address is what will let your
computer know where to find your printer on the network. All network printers allow you to
print a configuration sheet that will list basic information about the printer along with the
current network configuration.

Network router.

Share the knowledge

Was this article helpful? 10+
👏 9 🎉 5

Author: Marek Dlugos Last update: 21st of November by Peter Toth 10 min to read

Marek Dlugos

You have a typo here.

Comment

26 min ago

Jennifer Lorenz

John Macron

Thomas Fach

Britney Houstan

Teresa Moe

+
👏 2

Teresa MoeTeresa Moe

DISCUSSION (2)
I follow the article but actually I’m getting the error: “No network printer has been
found.” Do you guys have any clue? @marek.dlugos @peter.toth

3 replies

26 min ago

Mary GreyMary Grey The same here. But fortunately I was able to figure it out by typing the new IP that is
192.168.0.12 for the printer in the blue meeting room. Would you mind to update this
article @marekdlugos? Thanks.

6 min ago

+
👏 92 replies

© 2017 CTU. All rights reserved.

ABOUT CTU | MEET THE CONTRIBUTORS

Pin | All versions (2) | Edit | Archive

Figure C.4: Welcome screen showcasing application features.
82

C. Wireframes

Search articles, colleagues…CTU knowledge base«

Welcome to Knowlywiki!
If you’re planning on buying a printer soon, you should consider buying an Ethernet or
wireless printer. Prices have come down in recent years and now that most people hve
wireless networks, you can setup your network so that you can print from anywhere in the
house or even the world using a service like Google Cloud Print! It’s also great for guests
because they can connect to your wireless network and print easily without having to fiddle
with cables and CDs, so you’ll get lots of kudos as a host!

First, connect the printer to your network by connecting one end of a Cat 5 or 6 cable (which
should have come with your printer) to your router and the other end into the network port
of your printer. Now, turn your printer on and wait for it to become ready.

Share the knowledge

Author: Marek Dlugos Last update: 21st of November by Peter Toth 10 min to read

Marek Dlugos

You have a typo here.

Comment

26 min ago

Add a page

Users

Wiki Dashboard

Research & Development

Welcome to Knowlywiki!

Marketing

Human Resources

Accounting and Finance

Figure C.5: Example of the menu rolling out from the left.

83

C. Wireframes

C.3 Wiki

Search for answers…
ux, integrations, marketing, how-tos, marketing plan, roadmap

Updated yesterday

Updated 2 weeks ago

© 2017 CTU. All rights reserved.

ABOUT CTU | MEET THE CONTRIBUTORS

Knowledge Base

CATEGORIES

PINNED RECENT ACTIVITY
John Doe edited
How to connect to the WiFi?
26 min ago

Marc Katz edited
04/04/2029 FEL FEST
26 min ago

Darius Monsef added a new page
Reward program
26 min ago

Teresa Moe deleted
[Obsolete] Firing up our people
26 min ago

Teresa Moe edited
How to connect to the WiFi?
26 min ago

YOUR WORK
How to setup a printer in the…

Integration with Amazon AWS EC2 instacies
How to: Setup a printer in the office

How tos

How to connect to the WiFi
02/12/2016 CTU Summit
Where to go in Prague?
Reward program

Load more…

Load more…

Operations

R&D

Marketing
Marketing plan
Meetings summaries
Marketing executives

Regular marketing meetups

Figure C.6: Example of an homepage after login.

84

C. Wireframes

🔥👍 👎

How to: Setup a printer in the
office
If you’re planning on buying a printer soon, you should consider buying an Ethernet or
wireless printer. Prices have come down in recent years and now that most people hve
wireless networks, you can setup your network so that you can print from anywhere in the
house or even the world using a service like Google Cloud Print! It’s also great for guests
because they can connect to your wireless network and print easily without having to fiddle
with cables and CDs, so you’ll get lots of kudos as a host!

Back to the list of articles

First, connect the printer to your network by connecting one end of a Cat 5 or 6 cable (which
should have come with your printer) to your router and the other end into the network port
of your printer. Now, turn your printer on and wait for it to become ready.

Next you’ll need to get the IP address of your printer. The IP address is what will let your
computer know where to find your printer on the network. All network printers allow you to
print a configuration sheet that will list basic information about the printer along with the
current network configuration.

Network router.

For most printers, this involves pressing the Menu button on the printer, going to the
Information option and choosing Print Configuration. Sometimes if there is no display, you
just press and hold the Go or Print button down for about 10 seconds and it’ll print the
configuration page. You will be looking for the TCP/IP section.

The IP Address is what you’ll need for the next steps. You printer should automatically get an
IP address from the DHCP server on your network. At home, the IP should be coming from
the wireless router or residential gateway if you have one that acts as a cable modem plus
router.

Step 1

Step 2

The last step is to add the printer to your computer. Click on Start, then Printers and Faxes.
If you don’t see this in your Start Menu, you can go to Start, Control Panel and then click on
Printers and Faxes there. Click Add Printer from the task pane on the left. The Add Printer
wizard will begin, so click Next to get started. On the next screen you’ll be asked whether
your printer is a local printer or a network printer. These options are confusing because a
network printer is actually referring either a printer connected to another computer or a
printer on a print server. Our printer is a stand-alone printer and so you must select Local
printer attached to this computer and make sure that you uncheck the box for automatically
detecting the printer.

Was this article helpful? 10+

+

👏 9

👏 2

🎉 5

How-tos | 1 min readHow-tos | 3 min read How-tos | 7 min read

RELATED TOPICS

How to: Connect your guest to
company’s WiFi
Just as the stories and advice on our blog
and written books are shared by the actual
team members who build, market and
support Intercom.

Just as the stories and advice on our blog
and written books are shared by the actual
team members who build, market and
support Intercom.

Just as the stories and advice on our blog
and written books are shared by the actual
team members who build, market and
support Intercom.

How to: Scan your first
document under 1 min

How to: Post meaningful
content on Wikisdome

Step 3

Author: Marek Dlugos Last update: 21st of November by Peter Toth 10 min to read

Marek Dlugos

You have a typo here.

Comment

26 min ago

Jennifer Lorenz

John Macron

Thomas Fach

Britney Houstan

Teresa Moe

Teresa MoeTeresa Moe

© 2017 CTU. All rights reserved.

ABOUT CTU | MEET THE CONTRIBUTORS

/**
 * A sample of a ploymorphic method.
 */
public class CreateASet {

 public static void main(String[] args){
 String[] words = {"A", "B", "B", "D", "C", "A"};
 System.out.println("original: " + Arrays.toString(words));
 System.out.println("as a set: " + Arrays.toString(makeSet(words)));

 Rectangle[] rectList = {new Rectangle(), new Rectangle(),
 new Rectangle(0, 1, 2, 3), new Rectangle(0, 1, 2, 3)};
 System.out.println("original: " + Arrays.toString(rectList));
 System.out.println("as a set: " + Arrays.toString(makeSet(rectList)));

 Object[] mixed = {"A", "C", "A", "B", new Rectangle(),
 new Rectangle(), "A", new Rectangle(0, 1, 2, 3), "D"};
 System.out.println("original: " + Arrays.toString(mixed));
 System.out.println("as a set: " + Arrays.toString(makeSet(mixed)));
 }

DISCUSSION (2)
I follow the article but actually I’m getting the error: “No network printer has been
found.” Do you guys have any clue? @marek.dlugos @peter.toth

3 replies

26 min ago

+
👏 9

Mary GreyMary Grey The same here. But fortunately I was able to figure it out by typing the new IP that is
192.168.0.12 for the printer in the blue meeting room. Would you mind to update this
article @marekdlugos? Thanks.

2 replies

6 min ago

Figure C.7: Example of an article.
85

C. Wireframes

Back

© 2017 CTU. All rights reserved.

ABOUT CTU | MEET THE CONTRIBUTORS

Meet the CTU contributors

Marek Dlugos
Student at CTU

View content

Jiri Vokrinek
Professor at CTU

View content

Miro Bures
Professor at CTU

View content

Peter Toth
Student at CTU

View content

Karel Richta
Professor at CTU

View content

Michal Trnka
Professor at CTU

View content

Jiri Sebek
PHD student at CTU

View content

Ivan Jelinek
Professor at CTU

View content

Antonin Komenda
Professor at CTU

View content

Figure C.8: List of contributors to the wiki.

86

C. Wireframes

© 2017 CTU. All rights reserved.

ABOUT CTU | MEET THE CONTRIBUTORS

Marek Dlugos
Student at CTU

Edit profile

E-mail

Personal

Activity

marek.dlugos@fel.cvut.cz

Website www.marekdlugos.com

Tel +420 895 983 233

Position

Designer 21yo • Living in Prague
!

 • Originally from
"

📷

 Amateur
self-taught photographer

🌍

 Traveling the world

🚶

See the world'
beautiful destinations

Organisation

Student

Dept Software Engineering & Technology

Location Dejvice, Prague

How to setup a printer in the office
Edited yesterday at 4:32pm

How to setup a printer in the office
Edited yesterday at 4:32pm

How to setup a printer in the office
Edited yesterday at 4:32pm

How to setup a printer in the office
Edited yesterday at 4:32pm

How to setup a printer in the office
Edited yesterday at 4:32pm

Knowledge Base

Figure C.9: Example of a contributor profile.

87

C. Wireframes

© 2017 CTU. All rights reserved.

ABOUT CTU | MEET THE CONTRIBUTORS

Sign in

Knowledge Base

E-mail address

Password

E.g. john@elton.com

●●●●●●●

LoginForgot password?

Figure C.10: Login screen.

88

C. Wireframes

© 2017 CTU. All rights reserved.

ABOUT CTU | MEET THE CONTRIBUTORS

Sign in

Knowledge Base

E-mail address

Password

We need your e-mail to reset the password.

E.g. john@elton.com

●●●●●●●

LoginForgot password?

Figure C.11: Forgotten password.

89

C. Wireframes

© 2017 CTU. All rights reserved.

ABOUT CTU | MEET THE CONTRIBUTORS

We have sent you an e-mail with
instructions on how to reset your password.

Knowledge Base

Contact administrator

Figure C.12: Forgotten password - success message.

90

C. Wireframes

Whoops! The content you are
trying to access is private.
You better contact the administrator to grant you the access. After that you will be able to
fully enjoy the content.

Back to the homepage

© 2017 CTU. All rights reserved.

ABOUT CTU | MEET THE CONTRIBUTORS

Figure C.13: Accessing a link that user does not have permission to access.

91

C. Wireframes

C.4 Administration Interface

Knowledge Base

In the last 30 days 231 people viewed your articles 1 234 times.

People were unable to find any results for following topics.

Dashboard

What to write next?

Dashboard

Users

Notifications

Files

Appearance

Settings

Searched term with no results

deployment on Bluemix 235

102

75

Count

connecting to private network

org chart

Articles that were not shown for a long time might be obsolete or not important for
your company. Good knowledge base is compact and updated.

Do you really need this?

Article name

How to: Setup a WiFi 0 Archive

Archive

Archive

1

75

Shown (last 3 months)

[Obsolete] How to fire people?

How to: Setup the alarm

Review your content

Article

How to: Setup a WiFi 20 Review

Review

Review

15

10

👎
Written by

Marek

Emily

Jenn

Updated

1 year ago

6 months ago

9 months ago

[Obsolete] How to fire people?

How to: Setup the alarm

New article

Figure C.14: Example of a wiki dashboard.

92

C. Wireframes

Figure C.15: General settings.

93

C. Wireframes

Figure C.16: List of wiki members.

94

C. Wireframes

Figure C.17: Editing profile.

95

C. Wireframes

Figure C.18: Adjusting the appearance of a wiki.

96

D Source Code

knowlywiki.zip - The zip file with source code of the application can be
found on the CD attached to this thesis. In order to install the application
Ruby, the Rails Framework, a Web Server and a Database System are re-
quired.

97

Bibliography

1. EBERSBACH, Anja; GLASER, Markus; HEIGL, Richard. Wiki web col-
laboration. Springer, 2006.

2. WEST, James A.; WEST, Margaret L. Using wikis for online collaboration
the power of the read-write Web. Jossey-Bass, 2009.

3. CUNNINGHAM, Ward. Wiki History [online]. 2014 [visited on 2019-04-
17]. Available from: http://wiki.c2.com/?WikiHistory.

4. LOWDERMILK, Travis. User-Centered Design: A Developers Guide to
Building User-Friendly Applications. 2013.

5. HOOVER, Cole. Human-Centered Design vs. Design-Thinking: How
They’re Different and How to Use Them Together to Create Lasting
Change [online]. 2018 [visited on 2019-04-17]. Available from: https:
//blog.movingworlds.org/human-centered-design-vs-design-
thinking - how - theyre - different - and - how - to - use - them -
together-to-create-lasting-change/.

6. BROWN, Tim. Design Thinking [online] [visited on 2019-04-17]. Avail-
able from: http://hbr.org/2008/06/design-thinking/.

7. GIBBONS, Sarah. Design Thinking 101 [online]. 2016 [visited on 2019-04-
23]. Available from: https://www.nngroup.com/articles/design-
thinking/.

8. GOODMAN, Elizabeth; KUNIAVSKY, Mike; MOED, Andrea. Observ-
ing the user experience: a practitioners guide to user research. 2nd ed. Else-
vier, 2012.

9. HARSHADEWA. Here’s why you should stop using Personas [online]
[visited on 2019-04-17]. Available from: https://uxdesign.cc/heres-
why-you-should-stop-using-personas-63c09a844e67.

10. TRAYNOR, Des; ADAMS, Paul. Intercom on Jobs-to-be-Done. 1st ed. In-
tercom. Available also from: https://www.intercom.com/books/
jobs-to-be-done.

11. DSDM. MoSCoW Prioritisation [online] [visited on 2019-04-17]. Avail-
able from: https : / / www . agilebusiness . org / content / moscow -
prioritisation.

99

http://wiki.c2.com/?WikiHistory
https://blog.movingworlds.org/human-centered-design-vs-design-thinking-how-theyre-different-and-how-to-use-them-together-to-create-lasting-change/
https://blog.movingworlds.org/human-centered-design-vs-design-thinking-how-theyre-different-and-how-to-use-them-together-to-create-lasting-change/
https://blog.movingworlds.org/human-centered-design-vs-design-thinking-how-theyre-different-and-how-to-use-them-together-to-create-lasting-change/
https://blog.movingworlds.org/human-centered-design-vs-design-thinking-how-theyre-different-and-how-to-use-them-together-to-create-lasting-change/
http://hbr.org/2008/06/design-thinking/
https://www.nngroup.com/articles/design-thinking/
https://www.nngroup.com/articles/design-thinking/
https://uxdesign.cc/heres-why-you-should-stop-using-personas-63c09a844e67
https://uxdesign.cc/heres-why-you-should-stop-using-personas-63c09a844e67
https://www.intercom.com/books/jobs-to-be-done
https://www.intercom.com/books/jobs-to-be-done
https://www.agilebusiness.org/content/moscow-prioritisation
https://www.agilebusiness.org/content/moscow-prioritisation

BIBLIOGRAPHY

12. CLARKE, Ben. Why These Tech Companies Keep Running Thousands
Of Failed Experiments [online] [visited on 2019-04-17]. Available
from: https://www.fastcompany.com/3063846/why-these-tech-
companies-keep-running-thousands-of-failed.

13. GOEL, Dhananjay. 8 Reasons to Incubate your next Startup (App) in
Ruby on Rails [online] [visited on 2019-04-17]. Available from: https:
//www.alphalogicinc.com/blog/8-reasons-to-incubate-your-
next-startup-app-in-ruby-on-rails/.

14. REJMAN, Michał. 40 Best Ruby On Rails Companies Websites [State
For 2019] [online] [visited on 2019-04-17]. Available from: https :
//ideamotive.co/blog/40- best- ruby- on- rails- companies-
websites/.

15. HARTL, Michael. Ruby on Rails tutorial: learn web development with Rails.
Addison-Wesley, 2017.

16. SICHANUGRIST, Prem. Getting Started with Rails [online]. 2019 [visited
on 2019-04-17]. Available from: https://guides.rubyonrails.org/
getting_started.html.

17. FERNANDEZ, Obie; BOWKETT, Giles. The Rails 5 way. 4th ed.
Addison-Wesley, 2018.

18. RODI, Alessandro. A Modern Web Application With Rails [on-
line] [visited on 2019-04-17]. Available from: https : / / medium .
com / rubyinside / a - modern - web - application - with - rails -
da3deb48014c.

19. SAM RUBY David B. Copeland, Dave Thomas. Agile Web Development
with Rails 5.1. 1st ed. Pragmatic Bookshelf, 2017.

20. OSTEZER; DRAKE, Mark. SQLite vs MySQL vs PostgreSQL: A
Comparison Of Relational Database Management Systems [online]
[visited on 2019-04-17]. Available from: https://www.digitalocean.
com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-
comparison-of-relational-database-management-systems.

21. KANE, Andrew. Searchkick [online]. 2018 [visited on 2019-04-17]. Avail-
able from: https://github.com/ankane/searchkick.

22. THOMAS, Jeremy; WALKER, Sunny. Bulma: an alternative to Bootstrap
[online]. 2018 [visited on 2019-04-17]. Available from: https://bulma.
io/alternative-to-bootstrap/.

100

https://www.fastcompany.com/3063846/why-these-tech-companies-keep-running-thousands-of-failed
https://www.fastcompany.com/3063846/why-these-tech-companies-keep-running-thousands-of-failed
https://www.alphalogicinc.com/blog/8-reasons-to-incubate-your-next-startup-app-in-ruby-on-rails/
https://www.alphalogicinc.com/blog/8-reasons-to-incubate-your-next-startup-app-in-ruby-on-rails/
https://www.alphalogicinc.com/blog/8-reasons-to-incubate-your-next-startup-app-in-ruby-on-rails/
https://ideamotive.co/blog/40-best-ruby-on-rails-companies-websites/
https://ideamotive.co/blog/40-best-ruby-on-rails-companies-websites/
https://ideamotive.co/blog/40-best-ruby-on-rails-companies-websites/
https://guides.rubyonrails.org/getting_started.html
https://guides.rubyonrails.org/getting_started.html
https://medium.com/rubyinside/a-modern-web-application-with-rails-da3deb48014c
https://medium.com/rubyinside/a-modern-web-application-with-rails-da3deb48014c
https://medium.com/rubyinside/a-modern-web-application-with-rails-da3deb48014c
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://github.com/ankane/searchkick
https://bulma.io/alternative-to-bootstrap/
https://bulma.io/alternative-to-bootstrap/

BIBLIOGRAPHY

23. GOODRICH, Glenn. Understanding the Model-View-Controller
(MVC) Architecture in Rails [online] [visited on 2019-04-17]. Available
from: https://www.sitepoint.com/model-view-controller-mvc-
architecture-rails/.

24. PETROV, Igor. Building a multi-tenant app is easy. . . if you have an
apartment! [online] [visited on 2019-04-17]. Available from: https://
medium.freecodecamp.org/building-a-multi-tenant-app-is-
easy-if-you-have-an-apartment-3465f6eda85b.

25. COSTA, Andre. What are Emoji’s? How and When to Use Them
[online] [visited on 2019-04-17]. Available from: https : / / www .
groovypost.com/howto/what-are-emojis-how-and-when-to-use-
them/.

26. LARDINOIS, Frederic. More than 3M businesses now pay for
Google’s G Suite [online] [visited on 2019-04-17]. Available from:
https://techcrunch.com/2017/01/26/more-than-3m-businesses-
now-pay-for-googles-g-suite/.

27. CLARK, Bryan. Google just passed 3M businesses paying for G Suite
[online] [visited on 2019-04-17]. Available from: https://thenextweb.
com/insider/2017/01/27/google-just-passed-3m-businesses-
paying-for-g-suite/.

28. HALMAGEAN, Cezar. Feature Tests vs. Integration Tests vs. Unit Tests
[online] [visited on 2019-05-22]. Available from: https://mixandgo.
com / learn / feature - tests - vs - integration - tests - vs - unit -
tests-in-ruby-and-rails.

101

https://www.sitepoint.com/model-view-controller-mvc-architecture-rails/
https://www.sitepoint.com/model-view-controller-mvc-architecture-rails/
https://medium.freecodecamp.org/building-a-multi-tenant-app-is-easy-if-you-have-an-apartment-3465f6eda85b
https://medium.freecodecamp.org/building-a-multi-tenant-app-is-easy-if-you-have-an-apartment-3465f6eda85b
https://medium.freecodecamp.org/building-a-multi-tenant-app-is-easy-if-you-have-an-apartment-3465f6eda85b
https://www.groovypost.com/howto/what-are-emojis-how-and-when-to-use-them/
https://www.groovypost.com/howto/what-are-emojis-how-and-when-to-use-them/
https://www.groovypost.com/howto/what-are-emojis-how-and-when-to-use-them/
https://techcrunch.com/2017/01/26/more-than-3m-businesses-now-pay-for-googles-g-suite/
https://techcrunch.com/2017/01/26/more-than-3m-businesses-now-pay-for-googles-g-suite/
https://thenextweb.com/insider/2017/01/27/google-just-passed-3m-businesses-paying-for-g-suite/
https://thenextweb.com/insider/2017/01/27/google-just-passed-3m-businesses-paying-for-g-suite/
https://thenextweb.com/insider/2017/01/27/google-just-passed-3m-businesses-paying-for-g-suite/
https://mixandgo.com/learn/feature-tests-vs-integration-tests-vs-unit-tests-in-ruby-and-rails
https://mixandgo.com/learn/feature-tests-vs-integration-tests-vs-unit-tests-in-ruby-and-rails
https://mixandgo.com/learn/feature-tests-vs-integration-tests-vs-unit-tests-in-ruby-and-rails

	Introduction and Motivation
	A Wiki Software
	 History of Wiki Software
	 Wiki Software Nowadays

	User-Centered Design
	 Design Thinking
	 User Research

	Product Discovery
	 Competitive Analysis
	 Personas
	 Initial User Interviews
	 User Research Results
	 Scope Definition
	 Must Have
	 Should have
	 Could have
	 Won't have this time

	Low-Fidelity Wireframes
	Technology Stack Decisions
	 Ruby and Ruby on Rails
	 PostgreSQL
	 ElasticSearch
	 Sass
	 CSS Framework
	 Bootstrap and Bulma Comparison

	Implementation Decisions
	 MVC Architecture
	 Multitenancy Architecture
	 Database Design and Seed Data
	 Polymorphic Associations
	 Tree Structures
	 Security
	 Authentication Solution
	 User Roles Management
	 Password Strength Estimation
	 Passwords from Data Breaches

	 Search and Search Analytics
	 Testing Framework

	Evaluation
	 User Interviews
	 Software Testing
	 Feature Tests

	Deployment
	Future Development
	Summary
	Initial User Interviews
	 Supporting Questions
	 About Participant
	 Product Related Questions
	 After showing 2 Wireframes

	 Interviews Transcript
	 Participant no. 1
	 Participant no. 2
	 Participant no. 3
	 Participant no. 4
	 Participant no. 5
	 Participant no. 6

	Evaluation User Interviews
	 Supporting Questions
	 Product Related Questions

	 Interviews Transcript
	 Participant no. 1
	 Participant no. 2
	 Participant no. 3
	 Participant no. 4
	 Participant no. 5

	Wireframes
	 Landing Page
	 Onboarding
	 Wiki
	 Administration Interface

	Source Code
	Bibliography

