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Abstrakt

Obfuskace je jednou z metod ochrany duševního vlastnictví proti pirátství,
kopírování nebo nechtěné modifikaci. Cílem této práce je vytvořit automat-
ický obfuskátor založený na Frameworku LLVM, jehož modularita umožňuje
implementaci obfuskačních transformací nezávislých na zdrojovém jazyce a
cílové architektuře. Hlavním úspěchem této práce je důkaz, že je možné
použít Framework LLVM k vytvoření transformací založených na virtualizaci.
Implementované transformace vedle virtualizace zahrnují šifrování řetězců a
vylepšené prokládání funkcí.

Klíčová slova obfuskační transformace, reverzní inženýrství, LLVM, vir-
tuální stroje, opkódy, šifrování řetězců
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Abstract

Obfuscation is one of the methods for protecting intellectual properties against
piracy, copying or tampering. This thesis aims to create an automatic obfus-
cator based on the LLVM Framework, whose modularity allows implementing
obfuscation transformations agnostic to the source language and target archi-
tecture. A major achievement of this thesis is the proof that it is possible to use
the LLVM Framework to create virtualization-based transformations. Imple-
mented transformations also include string encryption and improved function
interleaving.

Keywords obfuscation transformations, reverse engineering, LLVM, virtual
machines, opcodes, string encryption
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Introduction

Naturally, software creators strive for methods to protect their intellectual
properties against piracy, tampering or copying. The motivation emerges
from investments into expensive development of their products. Even further,
they may invent a new game-changing algorithm or another kind of asset that
requires a higher level of protection. For instance, most sales in the video
gaming industry occur during the first weeks after the release. Thus it is
crucial to protect their product as much as possible to delay the development
of modification (crack) that enables illegal use without a license. Piracy groups
responsible for developing cracks are even challenging themselves to be the first
in cracking a particular application.

One of the protection methods is keeping a crucial part of the software on
a server-side and only providing access to in the form of a thin client-side ap-
plication. This approach is often impractical for various reasons. For instance,
it requires a permanent Internet connection and consumes bandwidth. An-
other issue is that this method is currently unusable for applications requiring
to transfer large amounts of data, for example, the size of Adobe Photoshop
is more than one gigabyte, and the distribution of all its features from the
server-side would be too slow, possibly leading to lags even with the high-
speed connections nowadays widely available. In some cases, software vendors
choose a trade-off, where an application has a part of its features bundled in
the client-side, and the rest is provided through the server-side.

Due to mentioned discomforts and technical limitations, many software
companies and users prefer fully-featured client applications. The main divid-
ing line for protection methods of client applications is hardware and software.
Hardware protection is commonly in the form of a special device (also referred
to as dongle or hardware key) programmed with a product-key or crypto-
graphic protection mechanism that has to be plugged in to run software prop-
erly. Even though this method is conventional for expensive programs, dis-
tributing hardware-keys would be impractical for massively-distributed soft-
ware. In such a case, companies have to rely on software protection methods.
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Introduction

The available software protections are obfuscations, watermarking and
tamper-proofing. Obfuscation modifies a program in a way that makes it
more resilient against reverse-engineering while keeping its original function-
ality. Watermarking is a process of unique-copy distribution of an applica-
tion with a user identifier to trace the origin of its piracy. Tamper-proofing
protects software against unauthorized modifications (e.g., the removal of a
watermark), by causing them to result in malfunctioned software.

This thesis deals with obfuscation transformations. Barak et al. [1] proved
the impossibility of creating an unbreakable obfuscation and with sufficient
competency, time and energy given, every software can be reverse-engineered.
We see the goal of obfuscations as entirely different. By making software
hard to reverse-engineer, we try to discourage a potential reverse engineer
from investing his time into such feat. We aim to make reverse engineering
economically unfeasible.

The possible applications of obfuscations also include nefarious ones, such
as malware obfuscation. Malware is often obfuscated either to make analyses
conducted by antivirus companies as difficult as possible or because it ex-
ploits some unknown vulnerability (0-day) and is beneficial to the author to
delay the discovery of the vulnerability by security researchers. Nevertheless,
there are still many valid reasons to perform research in this area. The knowl-
edge of obfuscation techniques is inevitable for a reverse-engineer to be able
to deobfuscate malware, and there are many legitimate uses of obfuscations
mentioned at the beginning of this introduction.

Manual obfuscations are time-consuming and complicate deployment pro-
cess. Therefore, it is more convenient when the obfuscations are done auto-
matically as a part of the deployment process. Thus, we decided to imple-
ment an automatic obfuscator based on the LLVM Framework. Nowadays,
the LLVM Framework is very popular and leveraged by many tools such as
Xcode to perform optimizations on Swift code. LLVM supports a variety of
languages (C, C++, Obj-C, Swift, etc.) and its modularity allows us to create
transformations that are agnostic to a source language and target architecture.

The structure of this thesis is organized as follows: the first chapter ex-
plains theoretical basics and introduces obfuscation transformations, the sec-
ond chapter summarizes existing obfuscation tools, the third chapter presents
the LLVM Framework and puts forward the design of our obfuscator, the
fourth chapter deals with the details of our implementation, the fifth chapter
evaluates the created tool and the last chapter summarizes this thesis.
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Chapter 1
Obfuscation Transformations

In this chapter, we formally introduce obfuscation transformations and eval-
uation metrics. Then we explain basic concepts and several obfuscation tech-
niques. Informally, obfuscation transformations make the software more re-
silient against reverse-engineering but preserve its original functionality.

1.1 Definition
Collberg et al. [2] defined obfuscation in the following way:

Definition 1. Let P
τ−→ P ′ be a transformation of a source program P into

a target program P ′. P
τ−→ P ′ is an obfuscating transformation, if P and P ′

have the same observable behavior. More precisely, in order for P
τ−→ P ′ to be

a legal obfuscating transformation the following conditions must hold:

• If P fails to terminate or terminates with an error condition, then P ′

may or may not terminate.

• Otherwise, P ′ must terminate and produce the same output as P .

Observable behavior is defined loosely as “behavior as experienced by the
user”. This means that P may have side-effects (such as creating files, sending
messages over the Internet, etc) that P does not, as long as these side effects
are not experienced by the user. Note that we do not require P and P to be
equally efficient.

Collberg et al. [2] set the main dividing line of obfuscation transformations
to be the kind of information it targets:

• Layout obfuscations remove the source code formatting, scramble
identifier names and remove formatting.

3



1. Obfuscation Transformations

• Data obfuscations aggregate variables/arrays, change orders of ar-
rays/variables/methods, encrypt data, convert static data to procedures.

• Control obfuscations change program’s flow, for example by adding
conditional branches based on opaque predicates with unreachable code,
inlining to or outlining from functions.

• Preventive obfuscations are aimed against automatic tools. They
try to make automatic deobfuscation techniques more difficult or exploit
known issues in deobfuscators or decompilers.

1.2 Basic Terms

1.2.1 Function Representation

Entry

Condition

A B

C

End

Figure 1.1: Example of Control Flow Graph, instructions were omitted.

A function is set of Basic blocks [4, 10], where Basic Block (BB) is a sequence
of linear instructions, with one entry point (the first executed instruction)
and one exit point (the last executed instruction — terminator instruction).
The exit point, also called terminator instruction, is either a jump to another
BB or a return from a function. If BB A jumps to BB B, we say that A is
the predecessor of B and B is the successor of A. The first executed BB in
a function is called entry BB, and last one(s) called terminating BB. Each
function has exactly one entry BB and at least one terminating BB.

A function can be represented as a directed graph called Control Flow
Graph (CFG), where nodes are BBs and edges denotes predecessors and suc-
cessors.

In Figure 1.1 we can see an example of a CFG. Condition has one pre-
decessor Entry and two successors, A and B. Condition is also a predecessor

4



1.2. Basic Terms

of A. C has two predecessors A, B and one successor End. Finally, End is a
terminating BB and it returns from the function.

1.2.2 Opaque Constructs
The quality of transformations that obfuscate control flow directly depends
on opaque constructs. The goal of opaque constructs is to make transforma-
tions resistant to attacks from deobfuscators. To achieve this we use opaque
variables and opaque predicates.

• An opaque variable has some property known to the obfuscator but
difficult for deobfuscator to deduce.

• An opaque predicate has its outcome known to the obfuscator but
difficult for deobfuscator to deduce.

1.2.2.1 Trivial and Weak Opaque Constructs

int x = 5, y = 3;
if(x > 2){
// Always executed.
}

if(random(2,5) < 0){
// Never executed.
}

(a) trivial

int x = 5, y = 3;
if(y < 7){
// Always executed.
--x;
}
if(x > 4){
// Never executed.
}

(b) weak

Figure 1.2: An example of opaque constructs.

Collberg et al. [2] defined trivial and weak opaque constructs as:

• Trivial Opaque Construct can be cracked by deobfuscator using
static local analysis. Static local analysis is an analysis within a sin-
gle BB.

• Weak Opaque Construct can be cracked by deobfuscator using static
global analysis. Static global analysis is analysis within a single CFG.

In Figure 1.2 we can see a comparison of weak and trivial opaque con-
structs. In (a) we can crack opaque constructs just by looking at standalone
conditions because variables in conditions are not changed in previous BBs.
On the contrary, to analyze the second condition in (b), we need to evaluate
the first condition to know if the variable x was changed and consequently we
can evaluate the second one.

5



1. Obfuscation Transformations

1.2.2.2 Aliasing Predicates

Predicates to be useful should be created in polynomial time and should re-
quire exponential time to be cracked (according to the size of the program).
Collberg [3] proposed that this can be achieved by aliasing.

Aliasing concept means creating a set of complex data structures (heaps,
trees, graphs, etc.) and keeping several pointers into them. Then the cre-
ated structures are occasionally updated (adding/removing elements, split-
ting/merging structures and so on), while maintaining invariants. Such in-
variants are for instance: p1 points to a heap with a maximum element equal
to 100, p2 refers to a node that is never a predecessor of p3, there is always a
path from p4 to p5, and so on.

Static analyses of aliasing constructs were proved to be NP-hard [6], and
we can easily create invariants that can be tested in a constant time, which
gives us cheap bogus code.

1.3 Evaluation of Obfuscating Transformations
Before we introduce several transformations, it is desirable to be able to eval-
uate their quality. In this section, we will introduce metrics defined in [2].

1.3.1 Potency
Definition 2. Let τ be a behavior-conserving transformation, such that P

τ−→
P ′ transforms a source program P into a target program P ′. Let E(P ) be the
complexity of P , as defined by one of the metrics in Table 1.1.

τpot(P ), the potency of τ with respect to a program P , is a measure of the
extent to which τ changes the complexity of P . It is defined as:

τpot(P ) = E(P ′)
E(P )

− 1.

τ is a potent obfuscating transformation if τpot(P ) > 0.

Informally, we can say that potency describes how much additional work
of a human is required to understand an obfuscated program than its non-
obfuscated equivalent. Potency is measured on a three-point scale: low,
medium and high.
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1.3. Evaluation of Obfuscating Transformations

Metric Metric Name Description
µ1 Program

Length
E(P) increases with the number of op-
erators and operands in P .

µ2 Cyclomatic
Complexity

E(F) increases with the number of
predicates in F .

µ3 Nesting Com-
plexity

E(F) increases with the nesting level of
conditionals in F .

µ4 Data Flow
Complexity

E(F) increases with the number of
inter-basic block variable references in
F .

µ5 Fan-in/out
Complexity

E(F) increases with the number of for-
mal parameters to F , and with the
number of global data structures read
or updated by F .

µ6 Data Structure
Complexity

E(P) increases with the complexity of
the static data structures declared in
F . The complexity of an array in-
creases with the number of dimensions
and with the complexity of the element
type. The complexity of a record in-
creases with the number and complex-
ity of its fields.

Table 1.1: Overview of some popular software complexity measures. E(X) is
the complexity of a software component X. F is a function or method, C a
class, and P a program. [2]

1.3.2 Resilience
From the definition of potency, it would seem that we can effortlessly increase
µ1 or µ2 metrics by adding dead code. Unfortunately, these transformations
are useless as there are existing transformations that can easily undo this
operation.

For this reason, another metric must be introduced. This metric is called
resilience and means how much programmer’s effort we need to create an
automatic deobfuscator and how much computation resources the obfuscator
will require to undo a transformation.

It is difficult to estimate a programmer’s effort, and we have to come up
with something that is easily to evaluate, even it is not always 100% accurate.
In [2] programmer’s effort is measured on a four-point scale:

• Local: if it affects a single basic block

7



1. Obfuscation Transformations

Deobfuscator’s effort
Programmer’s effort Polynomial Exponential
Local trivial weak
Global weak strong
Inter-procedural strong full
Inter-process full full

Table 1.2: Definition of resilience. [2]

• Global: if it affects an entire function

• Inter-procedural: if it affects the flow of information between func-
tions

• Inter-process: if it affects the interaction between independently exe-
cuted threads

Definition 3. Let τ be a behavior-conserving transformation, such that P
τ−→

P ′ transforms a source program P into a target program P ′. τres(P ) is the
resilience of τ with respect to a program P .

τres(P ) is one-way if information is removed from P and cannot be recon-
structed from P ′. Otherwise, τres(P ) is defined in table 1.2.

Resilience is measured on a five-point scale: trivial, weak, strong, full,
one-way.

1.3.3 Resource Impact
The obfuscated program needs more resources (CPU time, space, memory)
than its non-obfuscated variant. The obfuscation transformation is a trade-off
between the number of resources and quality of the obfuscation. In [2] the
impact is measured on the following scale:

• Dear: if executing the obfuscated variant requires exponentially more
resources than regular one,

• Costly: if executing the obfuscated variant requires O(np), p > 1 more
resources than regular one,

• Cheap: if executing the obfuscated variant requires O(n) more re-
sources than regular one,

• Free: if executing the obfuscated variant requires O(1) more resources
than the regular one.

8



1.4. Outline of Obfuscation Techniques

1.4 Outline of Obfuscation Techniques
In [2] are obfuscations divided as follows.

Layout Transformations are trivial transformations such as removing com-
ments, source-code formatting and scrambling identifier names.

Control Transformations alters control-flow and are divided as:

• Computations Transformations insert dead or duplicate code in or-
der to hide the real control-flow, remove control-flow abstractions or
introduce fake abstractions.

• Aggregation Transformations include inlining, outlining, interleav-
ing or cloning methods.

• Ordering Transformations are explained as follows. Programmers
tend to organize their source code in a way that logically related things
are physically close. Ordering Transformations try to break-up these
relationships by changing the order in which operations are performed.

Data Transformations obscure data and data structures that a program
may use.

1.5 Computations Transformations

1.5.1 Insert Dead or Irrelevant Code

There is a strong correlation between the perceived complexity of code and the
number of predicates it contains. Some examples of irrelevant code insertion:

• An opaque predicate pT that always evaluate to true. False branch will
lead to dead code.

• An opaque predicate p? that sometimes evaluate to true and sometimes
to false. The true and false branches will contain the same but differently
obfuscated code.

• An opaque predicate pT that always evaluate to true. The true will
contain the correct code and false branch same code with some bugs.

Potency and resilience were evaluated in [2] as depending on used opaque
predicates.

9



1. Obfuscation Transformations

1.5.2 Extend Loop Conditions
Loop’s terminating condition can be obfuscated by adding an opaque predicate
in a way that it will not change the number of cycles. For instance, we can add
a predicate that always evaluates to true. Collberg et al. [2] also evaluated
the quality of this transformation as depending on used opaque predicates.

1.5.3 Remove Standard Library Calls
Most programs rely on calls to standard libraries, and it can provide significant
clues to a reverse engineer. We can replace them with our implementation
with the same behavior. Unfortunately, this will increase the binary size.
The transformation is estimated in [2] as having medium potency and strong
resilience.

1.5.4 Table Interpretation

Entry

Condition

A B

C

End

(a)

Entry

Dispatcher

Condition A B C End

(b)

Figure 1.3: Table Interpretation Example, (a) is the original CFG and (b) is
the CFG after transformation.

The complexity of a control flow determination is linear to the number of
BBs [13]. Table Interpretation, also referred to Control Flow Flattening [11]
or Dynamic Dispatcher [12], makes the determination harder by flattening
BBs. Each BB is assigned an identifier and does not jump directly to its
successor anymore but sets successor’s identifier and jumps to a new BB called
dispatcher. The dispatcher reads a value stored in a shared variable and
then jumps to the selected BB according to the value. Table Interpretation
brings some additional computing cost, created by jumps to dispatcher and
dispatcher’s workload.
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In Figure 1.3 we can see an example of Table Interpretation transformation.
Entry BB’s successor was changed from Condition to Dispatcher and the rest
BBs are flattened. We are not able to determine the real control flow in (b)
without analyzing instructions.

1.5.5 Bogus Control Flow

Bogus Control Flow is a replacement of an unconditional jump to a BB with
a conditional one based on an opaque construct. A new BB is either created
by cloning existing BBs or filled-in with junk instructions, and the condition
gives a misleading feeling that it may jump into the new BB that is never
executed.

1.5.6 Virtual Machine Based Obfuscation

Figure 1.4: Process of VM obfuscation. (1) Firstly, we disassemble the code
into native assembly code (1). (2) The assembly code is mapped into a custom
instruction set. (3) Then is encoded into a bytecode format. (4) Finally, the
generated bytecode is inserted into the binary. [7]

The idea of Virtual Machine (VM) Obfuscation is to convert a group of in-
structions into a custom instruction set unknown to attackers [7]. The in-
structions are then executed by an interpreter of the custom instruction set
bundled with the application. In Figure 1.4, we can see a detailed process of
VM obfuscation.

This is the extremely efficient protection, as a potential attacker has to
understand the instruction set and create a custom disassembler. It is even
possible to stack custom VMs, in this case, an interpreter does not translate
directly the custom instruction set into native machine code but into another
custom instruction set that has to be interpreted into native machine code.

This technique leads to a huge performance penalty, and we should use it
only for small parts or parts that require a high level of protection. Collberg
et al. [2] described virtualization as having high potency, strong resilience and
costly obfuscation cost.

11
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1.5.7 Redundant Operands
Another example of obfuscation transformation is adding redundant operands
to arithmetic expressions. This technique is the most appropriate for integer
values where we do not need to deal with numerical stability. See examples
below.

• X = X + V
τ−→ X = X + V ∗ P , where P = 1

• Z = L + 1 τ−→ Z = L +
P
Q

2 , where P = 2Q and Q = P
2

The quality of redundant operands is evaluated in [2] as depending on the
quality of used opaque predicate and nesting level.

1.6 Aggregation Transformations
Programmers use abstractions to overcome the complexity of software devel-
opment. This allows us to obscure function calls. There are several ways in
which methods can be obscured such as inlining, outlining, interleaving, and
cloning.

1.6.1 Inline and Outline Methods
Function Inlining is the replacement of a call to function with the function’s
body. Function outlining is exactly the opposite when we move a piece of
instructions into a new function, and instead of them, we put a call to this
newly created function. Both methods do not bring much performance penalty
but increase the binary size, and therefore, they should be used cleverly. They
are very good one-way methods, as they destroy programmer’s abstractions
or even create opaque abstractions to confuse a reverse-engineer.

In [2] is inlining estimated as having medium potency, one-way resilience
and free cost. Outlining is evaluated as having medium potency, strong re-
silience and free cost.

1.6.2 Interleave Methods
Function Interleaving is merging two or more functions into one, by merging
their bodies and arguments with an extra parameter to select a correct behav-
ior of the former function. Original functions are removed, and calls to them
are replaced with calls to a new interleaved function.

We can add more confusion by selecting functions with similar arguments
and reusing them in different contexts. It is also possible to add dead code
by selecting functions that do not change the number of arguments of the
interleaved function and copy their bodies without replacing calls. We will
refer such functions as dead functions.
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In [2] is the quality of interleaving evaluated as depending on used opaque
predicates in the selection logic.

1.6.3 Clone Methods

Reverse engineers try to understand the purpose of a function by looking at
places where it is being called. When the function is called at several places,
then creating several copies of a function and calling function’s copies instead
of the original function makes this process more difficult. Function Cloning
has no performance impact but leads to an increase of binary size.

Quality of cloning is described in [2] as depending on the difficulty for a
reverse-engineer to recognize that cloned functions are identical.

1.7 Ordering Transformations

Programmers tend to write logically related things close in the source code.
This provides clues to a reverse engineer. Thus, we randomize the placement
of items as much as possible. In some cases it is trivial, and in other, we have
to determine which re-orderings are legal and will not affect the behavior.

1.7.1 Shuffling Basic Blocks

After applying control-flow hiding transformations such as Table Interpreta-
tion, the position of basic blocks can still give clues of the real control flow. To
avoid that, we can shuffle all basic blocks within a function. This obfuscation
itself has zero potency and low resilience but can be helpful when used with
other transformations.

1.8 Data Transformation

1.8.1 Strings Encryption

Strings usually offer valuable knowledge or clues to a reverse-engineer. Even
worse is that strings can be usually obtained with zero effort. By encrypting
them, we make access to them more difficult. The process of encryption is
straightforward, we encrypt all strings in the binary and then, every-time
when we want to use any string we simply decrypt it on demand.

The binary has to contain at least one copy of the decryption algorithm.
Thus the encryption leads to increase of binary size. The decryption process
brings additional computing effort.
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1.9 Summary
In this chapter, we introduced obfuscation transformation, evaluation met-
rics to assess potency, resilience and performance costs. We described basic
concepts such as basic blocks, control flow graph to represent a function. We
mentioned opaque predicates and aliasing predicates whose static analysis was
proved to be NP-hard.

Then we went trough categories of obfuscation transformations — layout,
control, and data and for each category, we mentioned concrete examples such
as Inserting Dead Code, Inlining, Virtualization, etc.
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Chapter 2
Existing Tools

This chapter will present existing obfuscation tools. The profoundly most ob-
fuscators exist for Java/C++, but other languages are very sporadic. As we
are going to create an obfuscator based on LLVM (will be mentioned in the
next chapter), we are mainly interested in compiled languages supported by
this tool. Thus, we only consider tools for C/C++, Swift, Obj-C, and addi-
tionally assembly and Portable Executable (PE).

2.1 Commercial Tools
2.1.1 VMProtect
VMProtect1 obfuscates executables in PE format, which limits the usage to
Windows platform. The tool offers two methods for obfuscation:

• “Mutation” that replaces source code instructions with sequences of in-
structions that produces the same result but are much harder to analyze.
This method also hides calls to third-party libraries.

• Virtualization mentioned in 1.5.6.

Due to virtualization, the tool seems very powerful. The only disadvantage
is that it supports only Windows platform.

2.1.2 Themida
Themida2 obfuscates PE executables. It has the following important obfusca-
tion techniques:

• Virtualization,
1http://vmpsoft.com/products/vmprotect/
2https://www.oreans.com/themida.php
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• insertion of dead code.

This tool also supports virtualization which also makes it powerful. The
tool is available for years and has many consumers, so their implementation
of virtualization must be stable and efficient.

2.1.3 PELock/Obfuscator
PELock/Obfuscator3 works on the assembler level that supports Microsoft
Macro Assembler (MASM) syntax. The tool offers the following obfuscation
methods:

• change of code execution flow,

• mutation of original instructions into a series of equivalent opcodes,

• hide of direct calls to functions,

• insertion of dead code.

Due to limitations of assembly language to MASM, it effectively supports
only Windows platform. The tool is available as a Windows application, an
online interface or a web API.

2.1.4 CXX-OBFUS
CXX-OBFUS4 is an obfuscation tool for C/C++ that works on the source
code level. The tool is cross platform and provides the following selected
obfuscation techniques:

• replacing identifiers with random strings,

• replacing numerical constants with expressions that are harder to un-
derstand e.g., 232 with (0x14b6+2119-0x1c15),

• replacing characters in strings with hex escapes
e.g., “cust” with “\x63\x75\x73\x74”,

• renaming source code files.

Unfortunately, this tool does not change the logic and these transforma-
tions will not help much against reverse engineering the compiled binary, as
the most of the changes would not propagate into the binary anyway or could
be easily simplified (replacing numerical constants) by a compiler.

3https://www.pelock.com/products/obfuscator
4http://stunnix.com/prod/cxxo/
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2.2 Open-source Tools

2.2.1 Tigress C Obfuscator

Tigress C Obfuscator5 was created as a research project by (Collberg — co-
author of [2]) and others. It supports only C language and works on the source
code level.

The tool supports three major transformations:

• Virtualization mentioned in this thesis (creates a different instruction
set for each method),

• transform function that generates its machine code at runtime (Jitting6),

• transform function that continuously modifies its machine code during
runtime (JitDynamic7).

And three additional transformations:

• Control-Flow Flattening mentioned in 1.5.4,

• Aggregation Transformations mentioned in 1.6,

• Bogus Control Flow mentioned in 1.5.5.

The tool seems very powerful, and its authors even offer reverse engineering
challanges8 to deobfuscate binaries obfuscated by this tool. The only disad-
vantage is that it supports only C language. Seeing the major transformations
implemented for other languages or possibly using the LLVM platform (will
be mentioned in the next chapter) would be amazing. It also seems still being
maintained, as the last version was published in July 2018.

2.2.2 Swift Shield

Swift Shield9 is an obfuscation tool for iOS applications (Swift/Obj-C lan-
guages). The tool works on the source code level and automatically produces
conversion maps, so we can easily decode crash logs. Unfortunately, it is only
changing identifiers, and the logic remains untouched.

5http://tigress.cs.arizona.edu/index.html
6http://tigress.cs.arizona.edu/transformPage/docs/jitter/index.html
7http://tigress.cs.arizona.edu/transformPage/docs/dynamic/index.html
8http://tigress.cs.arizona.edu/challenges.html
9https://github.com/rockbruno/swiftshield
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2.2.3 iOS Class Guard

iOS Class Guard10 is an obfuscation tool for iOS applications that supports
Obj-C language. It works on the compiled version of an application, and
same as Swift Shield, it only obfuscates identifiers (class, protocol, property
and method names). The tool produces conversion maps in a JSON format.

2.2.4 Obfuscator-LLVM

Obfuscator-LLVM was initiated in 2010 to provide increased software security
through code obfuscation and tamper-proofing. It works on the LLVM IR level
(mentioned in subsection 3.1.3). Thus it is compatible with all languages and
platforms supported by the LLVM platform. The tool supports the following
methods: Instructions Substitution, Bogus Control Flow and Control Flow
Flattening.

Instructions Substitution replaces standard library operators like addition,
subtraction or boolean by an equivalent but much more complicated instruc-
tions.

For instance it replaces a = b − (−c) with r = rand(), a = b − r, a = a + b
and a = a+r. This obfuscation does not add much security, as it can be easily
removed by re-optimizing the generated code. Anyway, by using pseudo ran-
dom generator seeded with different values, instructions substitutions bring
diversity into the produced binary.

Unfortunately, the project does not seem to be actively maintained, has
many many unsolved issues on GitHub and there is no new code since 2017.

2.2.5 Petráček’s Obfuscator

Petráček’s [15] tool is based on LLVM platform. The implemented methods
are Inlining, Outlining, Interleaving, Splitting Blocks, Bogus Control Flow
and Table Interpretation.

The implemented Table Interpretation seems more advanced than the same
transformation in Obfuscator-LLVM, as it has implemented opaque predicates,
and adding invalid states to the dispatcher. It also increases the resilience by
not storing the direct identifier of the next BB but only a difference between
identifiers of current’s and successor’s BB. The dispatcher is confusing a po-
tential reverse engineer by using indirect jumps (indirectbr) that can jump
outside a function. For this reason, IDA (disassembler) is often unable to
correctly recognize an obfuscated function.

10https://github.com/Polidea/ios-class-guard
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2.3. Summary

2.2.6 Šíma’s Obfuscator
Šíma’s [17] tool is also based on the LLVM platform. The tool offers Dead
Code, Interleaving and Table Interpretation.

Dead Code transformation uses conditional jumps based on opaque pred-
icates to add dead and irrelevant code. The transformation provides CLI
parameters for granularity control.

2.3 Summary
The selected commercial tools mostly support Windows Platform and provide
only little details about used transformations. We can understand their un-
willingness to reveal the details to reverse-engineers, but this decreases our
capability to evaluate these tools. The most interesting tools seem to be VM-
Protect and Themida due to virtualization.

The selected open-source tools support C/C++/Swift/Obj-C. The tools
for iOS provide mainly layout transformations and do not seem to be very
powerful. The most powerful tool seems to be Tigress C Obfuscator, as it
supports advanced transformations such as Jitting or JitDynamic that are
far beyond our capabilities. Unfortunately, it supports only C language and
requires a lot of manual configuration. Obfuscator-LLVM is based on LLVM,
and it is very similar to the tool we are going to implement but does not
offer as good transformations as we want to create and it does not seem to be
actively maintained.

Petráček’s and Šíma’s tools seem to be more powerful than Obfuscator-
LLVM, even Obfuscator-LLVM is probably more stable and tested, because
it was made available for mass usage. As they are both based on the LLVM
platform, we will select the most advanced transformations from each tool and
bundle them together with transformations created in this thesis to create a
tool that offers a complex set of transformations.
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Chapter 3
Design

In this chapter, we will be talking about the design of the proposed obfuscation
tool. The chapter begins with the introduction of the LLVM Framework, the
essential building block of our obfuscator. Then we will describe a design of
several obfuscation techniques that are about to be implemented. Finally, we
will mention CLI parameters and pragmas to control the obfuscation process.

3.1 LLVM Framework
LLVM [8] began as a research project at the University of Illinois with the
aim to provide a modern compilation strategy for any programming language.
Currently, LLVM is an umbrella project that consists of many subprojects
such as LLVM Core, Clang (C/C++/Obj-C compiler) and many more.

3.1.1 Classical Compiler Design
The most common design for a static compiler consists of the front-end, opti-
mizer, and back-end [8], as shown in fig. 3.1. The front-end parses the source
code, checks it for errors and converts it to a language-specific Abstract Syn-
tax Tree. Then it can be converted into an internal representation used by
optimizer and back-end. The optimizer is doing various transformations to im-
prove the efficiency such as reducing redundant computations, and it is usually
more or less independent on a source language and target architecture. The
back-end maps the code onto the target instruction set.

Figure 3.1: Classical Compiler Design [8]
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The main pro of this design is that a compiler can support multiple lan-
guages and target architectures. As we can see in fig. 3.2, adding support
of additional language only requires implementing a new front-end, but the
rest can be reused. If these parts were not separated, we would need to start
every-time from scratch.

If a compiler serves a broader audience, it usually helps to make it better,
more reliable, to introduce better optimizations, etc. The excellent example
of this is GCC.

Figure 3.2: Design of a compiler with multiple front-ends and back-ends [8]

3.1.2 LLVM’s Implementation of Three-Phase Design

In LLVM’s implementation (see fig. 3.3), a front-end is responsible for pro-
cessing a source code and converting it to LLVM IR. Then LLVM Optimizer
improves the efficiency of code, and in the end, the code is sent into a back-end
to produce native machine code.

Figure 3.3: LLVM’s implementation of Three-Phase Design [8]
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int sum(int n)
{
if(n == 0) return n;
return n + sum(n-1);

}

(a) C language

define i32 @sum(i32 %n) {
entry:
%cmp = icmp eq i32 %n, 0
br i1 %cmp,

label %if.then,
label %if.end

if.then:
ret i32 %n

if.end:
%sub = sub nsw i32 %n, 1
%c = call i32 @sum(i32 %sub)
%add = add nsw i32 %n, %c
ret i32 %add

}

(b) LLVM IR

Figure 3.4: C function represented in LLVM IR. Note: some instructions were
wrapped for a better readability.

3.1.3 LLVM IR

LLVM IR [8] is the most significant part of LLVM design, which is a code
represented inside the compiler. It is defined as a first class language with the
aim to represent any high-level language ideas and has many features such as
lightweight runtime optimizations, cross-function/interprocedural optimiza-
tions, whole program analysis, aggressive restructuring transformations, etc.

LLVM IR is Static Single Assignment (SSA) language, strongly typed (e.g.,
uses i32 for a 32-bit integer), has an infinite set of virtual registers named
with % prefix. It supports linear sequences of instructions like add, compare,
branch, etc. and also supports labels. Instructions are in three address form;
they take some inputs and produce a result in a different register.

Due to efficiency, LLVM IR can be represented in three equivalent forms
[10]: an in-memory compiler IR, an on-disk bitcode representation for a JIT
compiler (has a .bc extension) and a human readable assembly language rep-
resentation (has a .ll extension).

In figure 3.4 we can see that LLVM IR looks like some sort of compromise
between an assembly language and procedural language.
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define i32 @nsum(i32 %n) {
entry:
%retval = alloca i32
%n.addr = alloca i32
store i32 %n, i32* %n.addr
%0 = load i32, i32* %n.addr
%cmp = icmp eq i32 %0, 0
br i1 %cmp,

label %if.then,
label %if.end

if.then:
%1 = load i32, i32* %n.addr
store i32 %1, i32* %retval
br label %return

if.end:
%2 = load i32, i32* %n.addr
%3 = load i32, i32* %n.addr
%sub = sub nsw i32 %3, 1
%c = call i32 @nsum(i32 %sub)
%add = add nsw i32 %2, %c
store i32 %add, i32* %retval
br label %return

return:
%4 = load i32, i32* %retval
ret i32 %4

}

(a) Value is stored in memory

define i32 @nsum(i32 %n) {
entry:
%cmp = icmp eq i32 %n, 0
br i1 %cmp,

label %if.then,
label %if.end

if.then:
br label %return

if.end:
%sub = sub nsw i32 %n, 1
%call = call i32

@nsum(i32 %sub)
%add = add nsw i32 %n,

%call
br label %return

return:
%rv.0 = phi i32

[ %n, %if.then ],
[ %add, %if.end ]

ret i32 %rv.0
}

(b) Using PHI instruction to select
a value

Figure 3.5: A comparison of two approaches for obtaining value from preceding
BBs. Note: code was optimized for better readability.

3.1.3.1 Static Single Assignment (SSA)

As we already mentioned, LLVM IR is an SSA language, which means that
a virtual register can have assigned only one value that cannot be changed.
This is not a case for memory operations, which are not in the SSA form [14].
For the most programming languages, it is essential to change the value of a
variable frequently. This introduces a problem for the SSA form in case of a
value coming from one of the preceding BBs [9].

As we can see in fig. 3.5 LLVM IR addresses this issue either by storing
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value in memory (load and store instructions) or by using PHI instruction that
assigns value based on a which preceding BB was executed. Both forms are
frequently used and LLVM IR has built-in transformations for the conversion
between them: “mem2reg” — promoting memory to register and “reg2mem”
— demoting register to memory.

3.1.3.2 Exception Handling

LLVM IR has three exception-handling related instructions11:

• landingpad is used to specify that a basic block is an exception handling
block — LLVM documentation refers to this block as a landing pad.
It occurs at the beginning of BB and can be preceded only by PHI
instruction.

• invoke is similar to a call instruction but it takes labels of two BBs,
the first one is used if a function returns normally and the second one is
used for exception propagation. In contrast of call, invoke is a terminator
instruction, and it has to be last in a BB.

• resume is used to resume propagation of an exception which was earlier
caught by combination of invoke and landingpad instructions.

LLVM IR does not provide any instruction to throw an exception. This is
left for front-end, e.g., in C++ is throwing achieved by calling __cxa_throw.

3.1.4 LLVM Pass Framework & LLVM API

The most significant part of LLVM Framework is LLVM Pass Framework, as
it offers a rich C++ API to perform transformations or analyses on LLVM IR
— referred to as passes.

Each element of LLVM IR (global variable, module, function, BB, etc.) is
represented as a class that provides methods to access and modify it.
In order to use LLVM, we need to inherit from Pass class and create our own
pass12.

The API also offers various utilities to perform complicated manipulations
such as:

• ReplaceInstWithInst replaces an instruction with another instruction
and all users of the deleted instruction are updated to use the new one.

11https://llvm.org/docs/ExceptionHandling.html
12https://llvm.org/docs/WritingAnLLVMPass.html
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• Value::replaceAllUsesWith Value is a subclass of Instruction and
represents Instruction’s result and can be used as operand. Method
replaceAllUsesWith updates all users of a Value to use a new one.

3.1.5 LLVM CLI Basic Usage
In this subsection we will describe several essential command line tools13 that
are inevitable to use the LLVM.

• clang is a C/C++/Objective-C compiler and part of the LLVM project.
The tool can also transform an input code to LLVM IR either in LLVM
assembly language (human readable) or LLVM bitcode format.

# C −> LLVM assembly
$ c lang −emit−l lvm −S example . c −o example . l l
# C −> LLVM bitcode
$ c lang++ −emit−l lvm −c example . cpp −o example . bc

# C++ −> LLVM assembly
$ c lang++ −emit−l lvm −S example . cpp −o example . l l
# C++ −> LLVM bitcode
$ c lang++ −emit−l lvm −c example . cpp −o example . bc

# LLVM assembly in a more readab le format
$ c lang −emit−l lvm −fno−discard −value−names −S

↪→ example . cpp −o example . l l

• llvm-as is the LLVM assembler which transforms LLVM IR in LLVM
assembly language to LLVM bitcode format.

$ llvm−as example . l l −o example . bc

• llvm-dis is the LLVM disassembler, which transforms LLVM IR in
LLVM bitcode format to LLVM assembly language.

$ llvm−d i s example . bc −o example . l l

• llvm-link is the LLVM linker links two or more LLVM bitcode files
together.

$ llvm−l i n k example1 . bc example2 . bc example3 . bc −o
↪→ example123 . bc

13https://llvm.org/docs/CommandGuide/
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• lli executes a program in LLVM bitcode format using a just-in-time
compiler or interpreter.

$ l l i example . bc

• llc is a compiler that takes an input either in LLVM assembly language
or in LLVM bitcode format and transforms it into assembly language
for a specified architecture.

$ l l c example . bc −o example . s

• opt is the modular LLVM optimizer and analyzer. It accepts input ei-
ther in the LLVM assembly language format or in the LLVM bitcode
format, performs the selected optimizations or analyses on it, and re-
turns an optimized file or analysis results. It is the most important tool
for us, as we will use this tool to run our obfuscator.
Examples of built-in analyzers14:

– basicaa: basic alias analysis

– da: dependence analysis

– instcount: counts the various instruction types

– loops: natural loop information

Examples of built-in optimizers14:

– constprop: simple constant propagation

– dce: dead code elimination

– inline: function inlining

– instcombine: combine redundant instructions

– licm: loop invariant code motion

– tailcallelim: tail call elimination

$ c lang −emit−l lvm −S example . c −o example . l l

# analyze loops
$ opt −ana lyze −l oops example . l l

# run dead code e l i m i n a t i o n
$ opt −dce −S example . l l −o example_dce . l l

14https://llvm.org/docs/Passes.html
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%a = alloca i32
%b = alloca i32
store i32 5, i32* %a
store i32 90, i32* %b

(a) BB’s commands

1 -> %a = alloca i32
2 -> %b = alloca i32
3 -> store i32 5, i32* %a
4 -> store i32 90, i32* %b

(b) BB’s commands with assigned opcodes

Figure 3.6: An example of assigning opcodes.

3.2 Transformation Passes

In this section, we will discuss the design of our implementation.

3.2.1 Lightweight VM Pass

This pass will destroy a function’s CFG by transforming its BBs into a virtual
machine with custom opcodes. To describe this pass, we need to define a new
term LLVM Assembly Command or shortly command, which will stand for
instruction with operands and assignment to a virtual register (if applicable).
For instance alloca is an instruction and %a = alloca i32 is a command.

We see two available ways of implementing virtual machines based obfus-
cation in LLVM. The first one is transforming the whole function into VM so
that the former control flow will completely disappear. This approach pro-
duces better resilience but also has downsides. The main downside is that
not all BBs can be easily obfuscated, as they may throw an exception, or for
a variety of another reason. The second approach is BBs based obfuscation.
Sometimes the user may want to go for a trade-off between the performance
and quality of the obfuscation by obfuscating only some portion of function’s
BBs. This can be done easily with this approach; thus we selected it for the
implementation.

3.2.1.1 Opcodes

We will assign a random opcode to every assembly command and move these
commands into VM interpreter. We can see in Figure 3.6 that commands are
considered uniquely, and instructions with different operands have assigned
different opcodes. This is due to the limitation of LLVM IR, which does
not allow to set instruction’s operands or virtual registers dynamically. As a
result, the VM interpreter will be more robust, and this will result in some
performance penalty caused by switch implementation. From the obfuscator’s
quality point of view, the obfuscated function should be harder to reverse
engineer, as one instruction will have multiple opcodes and it will be much
harder to write a disassembler to reverse this transformation.
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3.2.1.2 VM Interpreter

The VM interpreter is a combination of while and switch. It is located inside
an obfuscated function, and each obfuscated function has its interpreter. The
interpreter loads an opcode from array assigned in the obfuscated BB and
selects appropriate command according to the opcode.

3.2.1.3 Summary

We would like to sum up the all important features of the Lightweight VM
Pass:

1. the obfuscation will be conducted on BBs of a particular function,

2. user will be able to set the maximum number of obfuscated BBs,

3. VM Interpreter will be stored inside an obfuscated function,

4. for assigning opcodes, we will consider every command to be unique.

This technique seems very potent & resilient at the expense of slowdown.
The roughly estimated slowdown is around twelve times. Therefore, it should
not be used on the entire application but only for the parts that require a
higher level of protection (e.g., watermark, proprietary algorithm, an algo-
rithm that implements security by obscurity, etc.).

3.2.2 String Encryption Pass
Strings are trivially obtainable and can provide significant clues to a reverse-
engineer, which give us a strong motivation for creating this transformation.

There are two main requirements for this pass, the first one is quick de-
cryption to keep the obfuscation penalty as low as possible and the second
one is the minimal increase of binary size.

Stream ciphers are very efficient, but also prone to vulnerabilities [5].
Therefore, strings will be encrypted using a block cipher AES-256 in CBC
mode. To achieve fast decryption, we will use the optimized implementation
of AES [16]. The optimized AES uses bigger tables with the size around 6KB,
twelve times more than tables used in the standard AES implementation,
which is a tax of the faster decryption.

We will encrypt all strings up to two-dimensional arrays of chars (or one-
dimensional arrays of strings). Three and more dimensional arrays of chars are
very rare, and their encryption is tricky, so we leave them from the encryption
process. Wide strings will also be supported, and we will obtain the length of
wide chars from metadata in LLVM IR.
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3.2.2.1 Increasing resilience

Essentially, it is important to shadow information about the used cipher. The
most typical things that can reveal AES are its precomputed tables. We will
try to hide them by creating multiple variations of these tables, where each
variation will contain values XORred with a different random value.

Calls to decryption algorithm can also reveal information about the used
cipher. We tried inlining the whole decryption algorithm for every decryption,
but it led to a significant increase of binary size. In the case of 1000 strings, it
went from 56KB to 5MB; thus we had to go for a trade-off. We will create a
function for every variation of AES tables, and this function will have inlined
the whole decryption algorithm. In the decryption process, we will randomly
choose one of these functions. User will be able to control the number of
decryption functions by selecting from one up to twelve decryption functions.

3.2.2.2 Summary

We want to sum up the all important features of the String Encryption Pass:

1. strings will be encrypted using AES-256 in CBC mode,

2. support of standalone strings and up to two-dimensional arrays of char-
acters,

3. wide strings support,

4. for the decryption we will use randomly one of several decryption func-
tions with inlined decryption algorithm, where each function will use a
unique variation of AES tables XORed with a random number.

3.2.3 Shuffle BB Pass
A position of basic blocks can provide significant clues to a reverse engineer.
Therefore, we will create a pass to randomize positions of all BBs except the
entry one. This pass is entirely legal and will not cause any issues, as all
references to BBs will stay untouched.

3.2.4 Improved Function Interleaving Pass
Function Interleaving implemented in [15] merges only two functions together.
We can run it multiple times, but this will bring up additional parameters.
Therefore, we see there a motivation for improving it so that it can merge an
unlimited number of functions.

The second improvement will be adding dead code to add more confusion.
The dead code will consist of bodies from existing functions.
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The excellent advantage of the current implementations is that it uses
opaque predicates. This will not be a part of the new implementation. Thus,
we decided to go for a compromise. There will be CLI parameters to control
how many functions can be interleaved together and how many dead functions
can be added. If these parameters are set to two and zero (respectively),
then the algorithm will fully fall back to the implementation with opaque
predicates.

3.2.5 Included Passes
Our tool will also contain the following passes from Petráček’s [15] and Šíma’s
[17] theses:

1. Bogus Control Flow, Inlining, Opaque Predicates, Outlining, Table In-
terpretation and Split Blocks from [15],

2. DeadCode from [17].

The reason for bundling these passes together with obfuscation transfor-
mations created in this thesis is that we want to create an obfuscation tool
providing a complex set of transformations. It is also more convenient for the
user to have everything in one tool without the need to build the LLVM with
multiple obfuscation tools to achieve the same result.

3.3 Grain Control of Obfuscation Passes
Ability to control obfuscations is the essential requirement of obfuscator’s
users. We will implement CLI parameters that will be applied to the whole
module and pragmas applied to a specific function or variable.

The priority of parameters will be in a natural way. CLI parameters will
override default parameters, and pragmas will override parameters for a spe-
cific function or variable. We will implement grain control also to bundled
passes created in [15, 17].

3.3.1 Pragmas
Implementing custom pragmas would require customization of Clang/LLVM
code to parse pragmas and propagate them to LLVM IR. Therefore, we decided
to use annotations, as they are naturally supported by Clang and propagated
to LLVM IR. We can see an example of pragmas in Figure 3.7. Pragmas with
annotations do not look so good as custom pragmas, but it is always better
to use something supported by framework than customizing it, as it brings
additional effort to end users (they would have to patch LLVM and compile
it manually) and decreases compatibility with future’s versions.
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// annotate variable
#pragma clang attribute push (__attribute__((annotate(

"param=value"
))),
apply_to = variable)

int foo;
#pragma clang attribute pop

// annotate function
#pragma clang attribute push (__attribute__((annotate(

"param=value"
))),
apply_to = function)

void foo();
#pragma clang attribute pop

Figure 3.7: An example of pragmas. Note: pragmas are one-liners, the code
was wrapped for better readability.

3.4 Summary
In this chapter, we introduced a three-stage design, LLVM Framework, LLVM
IR and LLVM Pass Framework. We discussed SSA, Exception Handling,
LLVM API, and mentioned essential CLI commands to work with LLVM. We
created a design of our obfuscation tool consisting of the following obfuscation
transformations: Lightweight VM, String Encryption and Improved Function
Interleaving. In the end, we will include selected obfuscation passes from
theses [15, 17] in our tool. All passes will support parameters to grain control
obfuscation process.
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Chapter 4
Implementation

This chapter deals with the implementation details of the created obfuscation
tool and in several cases provides concrete examples of transformed code.
We will also mention the all significant struggles we encountered during the
implementation. For instance, in the case of Lightweight VM Pass, we had
to deal with switch and allocation instructions. And String Encryption Pass
brought issues with Constant Expressions. We will also mention cases, where
we implemented CLI-parameters or pragmas for a granularity control of the
obfuscation process.

4.1 Lightweight VM Pass
VM pass is performed on BBs of a particular function. At the beginning of
the transformation, we have to get rid of PHI instructions by using reg2mem
pass, as PHI instructions would not work well with VM.

We assign an opcode to every command in a BB and move all commands
to a VM Interpreter. For every command, we create a separate BB in the VM
interpreter. Then we create an array with all opcodes assigned to commands
from a BB. In the end, the obfuscated BB will contain only the assignment
of the array with opcodes to a shared opcode-array pointer used by the VM
Interpreter and jump to the VM Interpreter.

The VM interpreter iterates over the opcodes array assigned in a BB that
started the interpreter. According to the opcode value, it selects a BB contain-
ing a requested command. If the command is not a terminating instruction,
the BB jumps back to the body of VM interpreter. The last instruction in
every BB should be a terminating one, so the VM interpreter does not check
the size of operands array. In Listing 4.1 we can see an example of C function,
its representation in LLVM IR and VM obfuscated version.
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1 // C funct ion
2 i n t fn ( ) {
3 i n t a = 5 ;
4 return a ;
5 }
6
7 // non−obfuscated funct ion
8 de f ine i32 @fn ( ) #0 {
9 entry :

10 %a = a l l o c a i32 , a l i gn 4
11 s to r e i32 5 , i32 ∗ %a , a l i gn 4
12 %0 = load i32 , i32 ∗ %a , a l i gn 4
13 r e t i32 %0
14 }
15
16 // obfuscated funct ion
17 @opcodes = pr ivate constant [ 4 x i32 ] [ i32 609348 , i32 609350 , i32

609349 , i32 609351]
18
19 de f ine i32 @fn ( ) #0 {
20 entry :
21 %opcodesPtr = a l l o c a i32 ∗
22 %opcodesGVCast = b i t c a s t [ 4 x i32 ]∗ @opcodes to i32 ∗
23 s to r e i32 ∗ %opcodesGVCast , i32 ∗∗ %opcodesPtr , a l i gn 4
24 br l a b e l %VMInterpreter
25
26 VMInterpreter :
27 %i = a l l o c a i32 , a l i gn 4
28 s to r e i32 0 , i32 ∗ %i , a l i gn 4
29 %loadedOpcodePtr = load i32 ∗ , i32 ∗∗ %opcodesPtr
30 br l a b e l %VMInterpreterBody
31
32 VMInterpreterBody :
33 %loaded_i = load i32 , i32 ∗ %i
34 %increased_i = add i32 %loaded_i , 1
35 s to r e i32 %increased_i , i32 ∗ %i , a l i gn 4
36 %opcodesIdx = gete lementptr i32 , i32 ∗ %loadedOpcodePtr , i32 %

loaded_i
37 %loadedOpcode = load i32 , i32 ∗ %opcodesIdx
38 switch i32 %loadedOpcode , l a b e l %VMInterpreterBody [
39 i 32 609348 , l a b e l %VMInterpreterBB
40 i 32 609349 , l a b e l %VMInterpreterBB1
41 i 32 609350 , l a b e l %VMInterpreterBB2
42 i 32 609351 , l a b e l %VMInterpreterBB3
43 ]
44
45 VMInterpreterBB :
46 %a = a l l o c a i32 , a l i gn 4
47 br l a b e l %VMInterpreterBody
48
49 VMInterpreterBB1 :
50 %0 = load i32 , i32 ∗ %a , a l i gn 4
51 br l a b e l %VMInterpreterBody
52
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53 VMInterpreterBB2 :
54 s to r e i32 5 , i32 ∗ %a , a l i gn 4
55 br l a b e l %VMInterpreterBody
56
57 VMInterpreterBB3 :
58 r e t i32 %0
59 }

Listing 4.1: An example of VM obfuscation

4.1.1 Switch Implementation Details
The most appropriate way of implementing switch inside the VM Interpreter is
LLVM’s switchinst. The backend compiler will later use the most appropriate
way for selecting a branch, and in the best case, it will use jump tables which
are supposed to be the most efficient.

Unfortunately, using switchinst is sometimes leading to issues (mainly
when used with non-succeeding opcodes); thus we decided also to implement
our solution. Our solution is based on the divide-and-conquer approach with
O(ln n) complexity, where n is the number of commands in the VM inter-
preter. This solution is way slower than the most efficient way that can be
used for implementing switchinst (jump tables) but does not lead to issues
with non-succeeding opcodes.

We implemented a parameter, and a user can select either switchinst or
our implementation.

4.1.2 Allocation Instructions
Moving allocation instructions into the VM Interpreter sometimes leads to
issues, as the compiler has zero information of their life-cycle. Therefore, we
decided to move these instructions to the entry BB and keep them away from
the obfuscation.

We also implemented a parameter to enforce the obfuscation of these in-
structions.

4.1.3 Random Opcodes
We use two types of random opcodes: random non-succeeding opcodes and
succeeding opcodes. Succeeding opcodes are completely random numbers,
while in case of non-succeding opcodes the first opcode starts with a random
number and the next opcodes are the following numbers to the first one. In
both cases commands in a particular function have randomly assigned opcodes.
The motivation behind this is that if we use non-succeeding opcodes then
switchinst is sometimes leading to issues. Also, the compiler cannot efficiently
use jump tables for implementing switch with non-succeeding opcodes.
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We decided to provide a user a grain control over the VM obfuscation. User
can choose between succeeding opcodes and non-succeeding ones or between
switchinst and the custom switch implementation. The most appropriate com-
binations are non-succeeding opcodes with switchinst and succeeding opcodes
with the custom switch implementation. The first option should result in
better performance.

4.1.4 The maximum number of obfuscated BBs
Since this pass brings a significant performance penalty, the user may want
to choose a trade-off between the quality of obfuscation and performance. We
implemented a parameter to set the maximum number of BBs obfuscated in
a particular function.

4.1.4.1 Ignored BBs

We decided not to obfuscate some types of basic blocks. Either they have too
many corner cases, or their obfuscation is not worth the performance penalty.
List of such types:

1. exception handlers,

2. BBs that contains a PHI instruction (reg2mem does not always remove
all of them),

3. BBs with less than 6 selected for obfuscation.

4.2 String Encryption Pass
Surprisingly, the implementation of this pass was the most challenging part of
this thesis. The main issue arises from the behavior of Constant Expressions
in LLVM API. We will cover this issue in the following subsection.

The process of encryption can be described easily; we select all standalone
strings and strings in 2D arrays that are appropriate to be encrypted and
encrypt them. We also implemented the support for wide strings. In the end,
we find all places where the encrypted string is being accessed and add a there
a decryption function.

4.2.1 Constant Expressions
Constant Expression is a constant initialized with an expression using other
constants. In the context of String Encryption, we mainly focus on expression
called getelementptr. See an example of such expressions in Figure 4.1.

Constant expressions in LLVM are implemented in a way that if one ex-
pression is used multiple times, only one instance of this expression is created
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and shared everywhere. While the intention of making the LLVM Pass Frame-
work more performance efficient is clear and completely understandable, it also
brings issues to programmers using this API. The undesirable consequence of
this is that if we alter a constant expression, then we have to keep in mind
that it will be changed everywhere, and we have to fix all places of occurrence.

As an example, we can consider the following case. We have a string that
is used at multiple places, let us say in a 2D and 3D arrays. If we obfuscate
string in the 2D array and change the reference, the reference to the string
will also be updated in the 3D array, which we are not going to obfuscate.

4.2.2 Duplicating strings
To address the issue with constant expressions, we duplicate strings if they
are used in multiple arrays and fix references, so every array uses a unique
copy of a string. In Figure 4.1 we can see an LLVM IR representation of the
case when one string is used in multiple arrays. String Lorem is standalone
but also used in the 2D array, string Ipsum is used in the both 2D and 3D
arrays. GetElementPtr is a constant expression, and in the LLVM API, the
same constant expressions are instanced only once and shared between all
occurrences.

4.2.3 Wide strings
For the support of wide strings, we obtain wide char length from the metadata
in LLVM IR. The encrypted format of the string is the same for all strings,
regardless of their wideness, and they are stored in an array of bytes. Since
our decryption function only works with arrays of bytes, we bitcast an array
of decrypted string to have the correct byte-width.

4.2.4 Arrays
There are also cases when a string in an array is accessed dynamically (e.g.,
in loops), so at the compile time, we have no idea which string will be used.
To address this issue, we have to use the same key for all strings inside the
array, and we also store sizes of decrypted strings in a separate array.

4.2.5 IV & Decryption Keys
Every string is encrypted using a unique random key, except arrays, where all
strings in a particular arrays share the same key. Since we use a random key,
we believe there is no need for a random IV, and we decided to use hard-coded
& shared IV for all encryptions.

Hardering Decryption Keys AES uses 32-bytes long keys for decryp-
tion. This can reveal information about used cipher to a reverse-engineer. To
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// C language
const char str[] = "Lorem";
const char* _2D[] = {
"Lorem", "Ipsum"

};
const char* _3D[2][2] = {

{ "Lorem", "Ipsum" },
{ "Dolor", "Sit" },

};

// LLVM IR
@.str = private unnamed_addr constant [6 x i8] c"Lorem\00"
@.str.1 = private unnamed_addr constant [6 x i8] c"Ipsum\00"
@.str.2 = private unnamed_addr constant [6 x i8] c"Dolor\00"
@.str.3 = private unnamed_addr constant [4 x i8] c"Sit\00"
@2D = global [2 x i8*] [

i8* getelementptr inbounds (
[6 x i8], [6 x i8]* @.str, i32 0, i32 0
),
i8* getelementptr inbounds (
[6 x i8], [6 x i8]* @.str.1, i32 0, i32 0
)

]
@3D = global [2 x [2 x i8*]] [

[2 x i8*] [
i8* getelementptr inbounds (
[6 x i8], [6 x i8]* @.str, i32 0, i32 0
),
i8* getelementptr inbounds (
[6 x i8], [6 x i8]* @.str.1, i32 0, i32 0
)

],
[2 x i8*] [
i8* getelementptr inbounds (
[6 x i8], [6 x i8]* @.str.2, i32 0, i32 0
),
i8* getelementptr inbounds (
[4 x i8], [4 x i8]* @.str.3, i32 0, i32 0
)

]
]

Figure 4.1: An example of strings used in multiple arrays. Note: the code was
optimized for better readability.
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shadow this information, we will randomly add a fill-in in the form of one up
to four additional bytes to the decryption key.

4.2.6 Storage for Decrypted Strings
No less important is to discuss where to store decrypted strings. For selecting
proper storage, we have to consider the following situations. In most cases,
we use allocainst to allocate memory on stack to store a decrypted string.
However, if a function returns a pointer to a char/wchar_t array that is
directly or indirectly related to the decrypted string, there is a possibility
that the function returns the decrypted string and in this case, we cannot use
the memory allocated on the stack.

Therefore, we have to decrypt string to a global array. The global ar-
ray is created only in the case that there is at least one string that needs to
be decrypted there. Every string decrypted to the global array has its ex-
clusive position within the array, and once is decrypted, it never gets never
removed. This approach decreases the resilience, but we have to realize that
the decryption to a global array will be used only in minor cases.

4.2.7 Decryption Functions
One of the ways how to hide information about AES is inlining decryption
code. Tables used in AES also reveal a lot of information, so for each decryp-
tion function, we use unique tables XORed with some random value.

Decryption algorithm can reveal significant information about used cipher,
and this can help a reverse-engineer to build an automatic tool to undo this
obfuscation. Also, AES tables provide significant clues.

To make this process harder, we created decryption functions with inlined
all decryption code and XORed tables with a random value — to make their
identification more difficult. Each decryption function uses dedicated XORed
tables and a user can specify how many (up to twelve) decryption functions
he wants to use. For the decryption process, one of these functions is ran-
domly selected. Using more decryption functions increases a binary size, as
decryption function and dedicated XORed takes some space, together roughly
around 8 KB.

4.3 Improved Interleaving Pass
We improved the Interleaving Pass created in [15] to be able to interleave an
unlimited number of functions together. From the implementation point of
view, we take one function, and for every other function with the same return
type, we count how many arguments will have the interleaved function. From
this list sorted by the number of arguments we take first n functions (depends
on a parameter) and interleave them.
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This is not the best way how to select functions for interleaving, as they
may have mutually incompatible arguments, which will increase the number of
arguments. The proper way of selecting is subset selection, which was proved
to be NP-hard. It can be either implemented by trying all combinations or
using heuristics.

The second improvement is adding dead code. We find a function that will
not change the number of arguments, and we add it to the new interleaved
function in the same way as we do in case of regular interleaving. However,
in this case, we keep using the function that was added as a dead code to the
interleaved function and will not update calls.

4.4 Summary
In this chapter, we discussed the implementation of our obfuscation tool. For
the every implemented transformation, we mentioned how it was implemented,
provided concrete examples and we were also talking about issues we en-
countered during the implementation. In case of Lightweight VM Pass, we
mentioned why we decided to skip obfuscation of allocation instructions by
default, what problems we had with switch and why we implemented two
types of opcodes, succeeding and non-succeeding random opcodes.

During the implementation of String Encryption Pass, we had to deal
with Constant Expressions and decided to duplicate strings to avoid potential
issues. We also mentioned how we hardered decryption keys and what methods
we used for storing strings after decryption.

In many cases, and also for included transformations from [15, 17] we
implemented parameters for fine-grained control of the obfuscation process.
We also implemented parameters for cases where we encountered problems
and set them to have conservative default values. Therefore, the user still can
try to achieve better quality at the expense of possible negative effects.
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Chapter 5
Evaluation

This chapter evaluates the created obfuscation tool. We will assess potency,
resilience and the performance impact of the implemented obfuscation trans-
formations. The performance impact of String Encryption Pass will be mea-
sured separately in order to obtain more representative results. We will also
discuss the quality of Lightweight VM Pass. In the end, we will compare our
tool with existing solutions.

5.1 Obfuscation Metrics
In this section, we will measure the obfuscation metrics of implemented trans-
formations. The created tool also contains obfuscations from [15, 17]. How-
ever, the bundled transformations were already evaluated in the mentioned
theses. Therefore, we will only evaluate transformations created in this thesis.
It is necessary to remark that results of obfuscations may vary even in the case
of the same transformations applied to the same program, as all obfuscations
are randomized as much as possible.

5.1.1 Test Programs
For the evaluation we selected the following algorithms: AVL Tree15, AES16

and recursive QuickSort17. All algorithms were implemented in C language,
and the source code was compiled by using clang with O3 optimizations
and disabled inlining; otherwise, the evaluation of Function Interleaving Pass
would not be possible. We also increased a stack size, as we encountered
problems in VM transformation applied to the recursive QuickSort. The vir-
tualization transformation was always applied to all internal functions except
the main function.

15https://www.geeksforgeeks.org/avl-tree-set-1-insertion/
16https://fastcrypto.org/front/misc/rijndael-alg-fst.c
17https://www.geeksforgeeks.org/quick-sort/
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5.1.2 Potency

Potency is defined in [2] as a measure of how difficult is to understand an
obfuscated program compared to its non-obfuscated version. It is defined on
a three-point scale: low, medium and high. For the evaluation, we picked the
first two potency metrics defined in Table 1.1, changes of program length (µ1)
and changes of cyclomatic complexity (µ2). In Tables 5.1 and 5.2 we can see
potency metrics for selected programs.

Collberg et al. [2] estimated the potency of Function Interleaving as de-
pending on used opaque predicates. In Improved Function Interleaving Pass
we use simple switch without opaque predicates, and despite the quite good
results in some metrics, we evaluated the potency to be low.

ShuffleBBs Pass was created to confuse a reverse-engineer, as a position
of BB in a binary may provide him clues of the real control flow. This pass
is not intended to be used standalone but as a combination with other trans-
formations. Therefore, its potency is low.

Lightweight VM Pass is supposed [2] to provide a high potency. In the
results, we can see that it provides better results for larger programs. AES
is a quite huge algorithm with very high metrics, whereas QuickSort is a tiny
algorithm and its metrics are much lower. Hence the potency is the same as
was estimated in [2].

In the case of String Encryption Pass, we decided not to measure the
potency at all, as there is no program containing the average number of strings
of all programs and any result would be misleading. If a particular program
contains zero strings, the result would be zero and vice-versa.

AVL Tree AES QuickSort
Obfuscation [settings] Total Max Total Max Total Max
VM [default] 3.04 3.45 4.10 4.55 2.97 2.30
VM [customSwitch, NSO] 4.53 5.41 6.63 7.83 3.98 3.91
VM [allocs] 3.37 3.79 3.89 4.26 2.85 2.08
ShuffleBBs [default] 1.00 1.00 1.00 1.00 1.00 1.00
Interleaving [default] 2.42 4.09 2.81 5.12 2.75 2.15
Interleaving [unlimited] 2.16 5.85 2.01 8.91 1.83 2.67
Interleaving [deadFns=0] 2.10 4.09 1.86 2.50 1.77 2.11

Table 5.1: Program length changes (µ1) for selected programs. Total is a sum
for all functions, and Max is the maximum value among functions. Value is
a ratio of obfuscated and non-obfuscated program’s metrics. NSO stands for
non-succeeding opcodes and unlimited stands for merge unlimited functions
together. See B.2 for parameter explanation.
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AVL Tree AES QuickSort
Obfuscation [settings] Total Max Total Max Total Max
VM [default] 7.57 11.42 16.60 41.40 3.55 9.90
VM [customSwitch, NSO] 7.35 11.33 16.24 41.20 3.40 9.80
VM [allocs] 8.93 13.50 15.02 37.00 3.22 8.30
ShuffleBBs [default] 1.00 1.00 1.00 1.00 1.00 1.00
Interleaving [default] 1.17 1.33 1.10 2.60 1.15 1.80
Interleaving [unlimited] 1.15 2.92 0.86 4.60 1.01 1.80
Interleaving [deadFns=0] 1.24 1.33 0.98 1.80 1.06 1.80

Table 5.2: Cyclomatic complexity changes (µ2) for selected programs. Total
is a sum for all functions, and Max is the maximum value among functions.
Value is a ratio of obfuscated and non-obfuscated program’s metrics. NSO
stands for non-succeeding opcodes and unlimited stands for merge unlimited
functions together. See B.2 for parameter explanation.

5.1.3 Resilience
Resilience measures how difficult it is to create an automatic deobfuscator and
how much execution time it will require. Collberg et al. [2] defined resilience
on a five-point scale: trivial, weak, strong, full and one-way. Below, we will
discuss resilience for each implemented obfuscation transformation.

5.1.3.1 Lightweight VM Pass

We see two possible ways of undoing this transformation. The first one is to
manually/semi-automatically understand used opcodes and write disassem-
bler. Since this pass operates on functions and use randomized opcodes for
every obfuscated function, the creation of disassembler could be a quite dif-
ficult task, but the created disassembler should be very efficient and require
minimum running time. The second way is to detect the VM interpreter au-
tomatically, all obfuscated BBs within a particular function, assignment of
an array with opcodes to a shared variable for the VM interpreter and undo
all operations. This would be quite tricky to do it in a general way, as every
function is obfuscated randomly and some of BBs might not be obfuscated.

In [2] is the resilience of this pass estimated as strong. However, our VM
works on the function level, so we consider its resilience to be weak.

5.1.3.2 String Encryption Pass

For undoing the String Encryption, there are also two ways. The first one in-
cludes detecting at least one decryption function, extracting it from a binary,
running it to decrypt all obfuscated strings and then replacing all encrypted
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strings with the decrypted ones. The second one is detecting the used decryp-
tion algorithm, decrypting all strings and replacing them.

Both ways have pros and cons, extracting decryption functions could be
a bit tricky but also detecting the encryption algorithm is tricky, as we did
several countermeasures to make this process more difficult. For instance,
we use up to twelve decryption functions with inlined decryption code and
masked AES tables.

Anyway, the main issue is that even strings may provide a lot of clues,
undoing this pass would probably require much more effort than the pos-
sible result, and the reverse-engineer will probably give-up and focus more
on reverse-engineering program’s logic. Since this pass affects only BBs, we
estimated its resilience to be trivial.

5.1.3.3 ShuffleBBs Pass

Undoing this pass probably would not make much sense, as it is not worth
the effort and it could be tricky when used together with VM or Table Inter-
pretation. We estimated the resilience of this pass as weak.

5.1.3.4 Improved Interleaving Pass

To undo this pass, reverse-engineer will have to detect the interleaved func-
tions and extract the interleaved body’s back to separate functions. In [2]
is the resilience of this pass estimated as depending on used opaque pred-
icates. Our implementation does not use opaque predicates, so we see the
resilience as weak. However, its resilience can be increased by using this pass
in combination with other passes such as virtualization.

5.1.4 Performance impact
In this subsection, we will evaluate the performance impact of our obfusca-
tions. In [2] the performance impact is measured on a four-point scale: free,
cheap, costly and dear. The testing environment and used algorithms were
described at the beginning of this section. The input data were randomly gen-
erated and have not changed during testing. All programs were run ten-times,
and the average was calculated.

To measure the performance impact, we recorded run times for the both
non-obfuscated and obfuscated variants and also used them to calculate slow-
down ratios between obfuscated and non-obfuscated variants.

We have decided not to measure the performance impact of String Encryp-
tion and ShuffleBBs using the selected algorithms. For the String Encryption,
we have the same reason as in case of measuring its potency. However, we
will measure the performance of String Encryption separately. ShuffleBBs
does not have almost any performance impact, and it is completely pointless
to measure it.
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5.1.4.1 Lightweight VM Pass

We measured VM with (a) default settings, (b) custom switch and non-
succeeding opcodes and (c) with allocation instructions.

In Figure 5.1 we can see the performance of elements insertion to AVL Tree.
The both (a) and (b) provides slowdown around 3.5. (c) causes much higher
slowdown, from 7 to 12. The slowdown of inserting 250 thousand elements is
lower than in other near cases. If we take a look at execution times, the reason
for the lower slowdown is that the execution of the non-obfuscated version was
slower. Since all tests were run ten times, we can exclude that the difference
is caused by the observational error. The more meaningful reason could be,
for instance, caching.

In Figure 5.2 we can see the performance of AES Encryption. (b) leads
the lowest slowdown, from 12 to 18 and the both (a) and (c) have similar
slowdown from 20 to 27.

In Figure 5.3 we can see the performance of QuickSort. (a) is the fastest
one with slowdown around 25. The both (b) and (c) have similar slowdown
from 27 to 33. From these results, it seems that our implementation handles
recursions poorly.

In the design part of this thesis, we estimated slowdown around 12. It is
interesting that in the case of AVL the slowdown is much lower and in the
rest of cases much higher. The most probable reason is in the backend and
its transformation from LLVM IR to target architecture. We do not see any
correlation between the input size and the slowdown, but the slowdown is
much higher than in all other cases. Therefore, we estimated the performance
impact as costly.

5.1.4.2 Improved Interleaving Pass

We measured interleaving with default settings and with settings to interleave
unlimited functions together. The performance results are not very visible in
the produced graphs due to the strong difference between the performance
impact of virtualization and interleaving.

In case of elements insertion to AVL Tree (Figure 5.1), both variants of
settings produce similar results, and the slowdown is from 0.95 to 1.6. In
case of AES Encryption (Figure 5.2), the variant with default settings has
better results with the slowdown from 0.8 to 1.1 and the second variant has
the slowdown from 1.05 to 1.6. Finally, in case of QuickSort (Figure 5.3), the
variant with default settings has better results with the slowdown from 1.25
to 1.3 and the second variant has the slowdown from 1.25 to 1.4.

We do not see any correlation between the input size and slowdown ratio;
thus the performance impact is free.
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5.1.5 Summary
In this section, we evaluated potency, resilience and performance impact of
created obfuscation transformations. In Table 5.3 you can see the summary.

Obfuscation Potency Resilience Cost
Lightweight VM strong weak costly
StringEncryption — trivial free
ShuffleBBs low weak free
Improved Interleaving low weak free

Table 5.3: Evaluated obfuscation metrics. Performance impact of String En-
cryption was measured in section 5.2

In the case of Lightweight VM, the results differ from the evaluation in [2].
The differences emerge from different implementation, whereas they consider
transforming a whole program to VM; our approach is per function. We also
decided not to measure the potency of String Encryption Pass, as we think
that any result would be misleading.

5.2 Evaluation of String Encryption Pass
In this section, we will measure the performance and size penalty of String
Encryption. We decided to evaluate this pass, as measuring its parameters
on regular programs would be unreasonable. In the design of String Encryp-
tion Pass, we set two goals, quick decryption and low increase of binary size.
The evaluation will focus on these goals.

5.2.1 Test Programs
For the evaluation, we have generated programs in C language with random
forty-characters-long regular and wide strings. Strings are printed to standard
error output using fprintf or fwprintf. Length of wide characters is four bytes,
and we made sure that decryption arrays to store decrypted strings will always
be allocated on the stack using allocainst. The programs were compiled using
clang without any optimizations to avoid string concatenation.

5.2.2 Decryption Performance
In Figure 5.4 and Figure 5.5 we can see the performance of decryption process,
either in absolute values or a ratio of encrypted strings to plain ones. In the
case of regular strings, the slowdown is around two. More mystical is the case
of wide strings, where the slowdown goes from 2.5 to 4.5. The increase of
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slowdown is probably caused by the allocation of bigger arrays on the stack
to store decrypted strings.

Even the slowdown up to 4.5 may seem huge; we have to realize that
the tested program contains only strings which is not a case of regular pro-
grams, where logic takes a much bigger portion of binary size than strings.
If we consider that the decryption of ten thousand forty-characters-long wide
strings takes less than one second, we can say that the decryption is quick and
one of the goals is fulfilled. String encryption should not correlate with the
algorithm’s input size, so we evaluated the performance impact as free.

5.2.3 Size of Encrypted Strings
In Figure 5.6 we can see the increase of binary size with encrypted strings. It is
from 2.4 to 2.6 for regular strings and 1.5 for wide strings. The reasons why the
encryption of regular leads to bigger binary are following. Rounding of string
length to multiplications of AES block size makes a higher relative increase
in case of a binary with regular strings. Decryption keys and decryption logic
also take a higher relative portion of binary size in case of a binary with regular
strings.

The binary size could be smaller by using shared keys at the expense of
decreased resilience. We think that the increase in size is reasonable and the
goal of keeping the increase as low as possible is achieved.
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Figure 5.7: Visualization of AVL’s insert function in IDA. Non-obfuscated
version.

5.3 Quality of Lightweight VM
To subjectively asses the quality of VM obfuscation, we take a look at the
visualization of AVL Tree’s insert function in IDA. In Figure 5.7 we can see
the non-obfuscated version, which looks pretty simple, in Figure 5.8 we can
see the VM obfuscated version with default options. Finally, in Figure 5.9
we can see VM obfuscated version with custom switch and non-succeeding
opcodes. At the first look, we can say that VM adds a lot of confusion and
destroys the function’s CFG even for a simple function. If we take a deep
look at Figure 5.9, we can see a custom implemented switch, based on a tree
structure.

Another disadvantage in addition to the huge performance impact of VM
obfuscation is that the obfuscated function is, as you can see in the visualiza-
tions, obvious and it can motivate reverse-engineer to prioritize these functions
as they may contain something important.

5.4 Comparison with Existing Tools

5.4.1 Commercial Tools
VMProtect and Themida support virtualization, even we do not have exact im-
plementation details, we can guess that their virtualization is probably much
more optimized and provides better performance. Otherwise, they would not
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Figure 5.8: Visualization of AVL’s insert function in IDA. VM-obfuscated
with default options.

Figure 5.9: Visualization of AVL’s insert function in IDA. VM-obfuscated
with custom switch and non-succeeding opcodes.

be able to sell their tool massively. On the other hand, these tools support
only PE while our tool is source language and target architecture agnostic.

PELock offers changes of the code execution flow, mutation of original in-
structions, hide of calls and insertion of dead code. These obfuscation trans-
formations do not seem to be as good as virtualization. CXX-OBFUS offers
only layout obfuscations, which is far beyond virtualization.

5.4.2 Open-source Tools

Tigress C Obfuscator supports virtualization, more advanced and efficient
than one implemented in this thesis. Additionally, it also supports trans-
forming functions to generate their machine code at runtime or continuously
modify their machine code. This tool is far beyond the one created in this
thesis. Unfortunately, it supports only C language and requires a lot of fine-
tuning.

Swift Shield and iOS Class Guard provide only layout obfuscations.
Obfuscator-LLVM does not provide as strong obfuscation transformations as
we implemented in this thesis, or were implemented in [15, 17].

Petráček’s [15] and Šíma’s [17] obfuscators offer Table Interpretation, a
very significant obfuscation transformation. Obfuscator-LLVM provides Table
Interpretation too but in a simple form. Virtualization implemented in this
thesis creates a better confusion but at the expense of a huge performance
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penalty while Table Interpretation is a great trade-off between quality and
performance.

5.5 Summary
In this section, we compared our tool to existing obfuscation tools. VMProtect
and Tigress C OBfuscator offer the same type of obfuscation transformation
as our tool, implemented with higher efficiency. Also, these tools have a lot
of users, have been widely tested and probably are much more stable than
our tool. Anyway, they are limited to specific source languages and target
architectures.

Petráček’s [15] and Šíma’s [17] obfuscators offer Table Interpretation which
can be used widely, whereas our Virtualization due to performance penalty
should be used only on functions that require a higher level of protection.
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Chapter 6
Conclusion

The goals of this thesis were: a) to explore the taxonomy of obfuscation trans-
formations, b) to get acquainted with the LLVM Framework, c) to design and
implement an LLVM-based obfuscator, d) to implement the transformations
in such a way that they support parameters and pragmas to control the obfus-
cation process, e) to analyze the potency and resilience of each implemented
transformation, f) to compare the results with existing tools, and g) com-
bine selected transformations from [15, 17] together with the transformations
created in this thesis.

At the beginning of this thesis, we formally introduced obfuscation trans-
formations, mentioned concrete examples and evaluation metrics. We put
forward the LLVM Framework, described its philosophy and essential parts.
Then we designed and implemented the following obfuscation transformations:
Lightweight VM, String Encryption, ShuffleBBs, and Improved Function In-
terleaving.

The main achievement of this thesis is that it proves the possibility of
using the LLVM Framework to perform virtualization-based obfuscations.
Virtualization is one of the state-of-the-art transformations available nowa-
days, and also the most advanced transformation we implemented.

Nevertheless, we can find available tools offering more efficient and sta-
ble virtualization or even more potent transformations, such as VMProtect,
Themida and Tigress C Obfuscator. These tools have limitations as well. Ei-
ther they are limited to a particular platform and source language, or they
require complex configuration.

Our virtualization is not perfect and has its limits. Its performance penalty
is volatile and highly dependent on a specific implementation of an algorithm.
Furthermore, it also does not handle recursions efficiently. For instance, during
the evaluation, we had to increase stack size to be able to sort five million
numbers using the QuickSort algorithm.
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In the evaluation, we demonstrated the power of virtualization and effi-
ciency of string encryption that decrypts ten thousand wide strings under one
second. We also found out that some transformations have different potency
and resilience than the estimates in [2]. This is due to differences in their
design and implementation. All implemented transformations were evaluated
as having constant slowdown, unrelated to the input size.

Our obfuscation tool includes transformations implemented in [15, 17] and
for all transformations, we implemented support for CLI parameters and prag-
mas. The Appendices section includes information about usage and a list of
all available transformations, parameters, and pragmas that allow fine-grained
control of the obfuscation process.

6.1 Future Work
Our implementation of lightweight virtualization opens an unlimited space for
enhancement and further research. The main areas of potential improvements
are performance and quality. Any enhancement in these areas, discussed be-
low, is a possible continuation of this thesis.

One of the implementation downsides leading to decreased performance
is that every occurrence of instruction is considered to be unique and added
separately to the VM Interpreter. For instance, any two identical instructions
get assigned two different opcodes. While this increases potency and resilience,
it also increases the performance penalty and binary size. The transformation
was implemented this way due to the architecture of LLVM IR which does
not allow dynamic assignment of operands or virtual registers. This issue
could be solved by implementing support for dynamic assignment in LLVM
IR. Improving performance on recursions is also an opportunity for significant
performance improvement.

To increase potency or resilience, it is a possibility to move the VM In-
terpreter outside of the obfuscated functions and make it shared between all
obfuscated functions. This would add more confusion as instructions in the
VM Interpreter would be originating from various functions.

As a part of this thesis, we implemented virtualization that obfuscates
functions on the basic block level. This could be improved upon by obfuscating
the whole function, so its former basic blocks (except the entry one) will be
completely removed. This would make the obfuscation more resilient at the
expense of limiting the granularity of configuration.
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Appendix A
Acronyms

API Application Programming Interface

BB Basic Block

CFG Control Flow Graph

LLVM Low Level Virtual Machine

SSA Single Static Assignment

PE Portable Executable
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Appendix B
Usage

In this chapter, we will describe how to use the created obfuscation tool.

B.1 Getting Started
To use the obfuscator, we need to compile the LLVM Framework with the
obfuscator by following the steps below:

1. Download LLVM 7.0.1 sources.

2. Copy the directory with obfuscator’s sources located on the enclosed
drive in “SRC/Obfuscator” to “lib/Transforms/Obfuscator”.

3. Append a file located in “lib/Transforms/CMakeLists.txt” with a line
“add_subdirectory(Obfuscator)”.

4. To finish the compilation of LLVM follow this article:
https://llvm.org/docs/CMake.html.

Once the build is ready, the obfuscator should be compiled as a library
called Obfuscator.dylib (OS X) or Obfuscator.so (GNU/Linux). Note: The
process is more complicated on Windows Platform18. To use opt with the
library, we need to specify the library by using load parameter.

An example of usage:

$ opt −load=Obfuscator . dy l i b −nameOfPass −parameter −S
↪→ source . l l −o obfuscated . l l

To list all available obfuscation transformations:
18https://lists.llvm.org/pipermail/llvm-dev/2015-November/091960.html
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$ opt −load=Obfuscator . dy l i b −help− l i s t | grep ”\−obf ” |
↪→ grep ” Pass ”

To list all available parameters of obfuscation transformations:

$ opt −load=Obfuscator . dy l i b −help− l i s t | grep ”\−obf ” |
↪→ grep −v ” Pass ”

B.2 Available Passes & Parameters
In this section, we will list the all available passes and accepted CLI parameters
or pragmas to grain control of obfuscation transformations. CLI Parameters
override default values and pragmas override parameters for a specific func-
tion or variable. Parameters are simply appended to the opt command and
pragmas are used as described in 3.3.1.
List of available obfuscation transformations and their parameters:

• Pragma available in all passes:

obf-skip: A function will not be obfuscated, or string will not be en-
crypted.

• Lightweight VM Pass (-obf-vm)

– CLI Parameters:
-obf-vm-allocs: Allocainsts will be obfuscated. May cause issues.
[default=false]
-obf-vm-custom-switch: Use a custom switch implementation.
Usually slower than switchinst. [default=false]
-obf-vm-only-marked-functions: Obfuscate only marked functions.
[default=false]
-obf-vm-succeeding-opcodes: Use random succeeding opcodes.
Using random non-succeeding opcodes may cause issues when used
without a custom switch implementation. [default=true]

– Pragmas applicable to functions:
obf-vm / obf-vm-skip: A function will (will not) be converted to
the VM representation.
obf-vm-allocs / obf-vm-no-allocs
obf-vm-succeeding-opcodes / obf-vm-non-succeeding-opcodes
obf-vm-max-bbs=<unsigned>: The maximum number of func-
tion’s basic blocks converted to the VM representation.
[default=0, 0 means unlimited]
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Note: Lightweight VM Pass should always be applied as the last trans-
formation.

• String Encryption VM Pass (-obf-string-encryption)

– CLI Parameters:
-obf-string-encryption-decryption-fns=<uint>: The number of
decryption functions [min=1, max=12, default=2] with inlined
decryption code. Each function will use dedicated XORed tables
(6x1KB). One of these functions will be randomly selected for each
decryption.

– Pragmas applicable to variables:
obf-string-encryption-skip: A string or array of strings will not be
encrypted.

• ShuffleBBs Pass (-obf-shuffle-bbs)

– Pragmas applicable to functions:
obf-shuffle-bbs-skip: A function will be skipped from obfuscation.

• Function Interleaving Pass (-obf-fn-interleaving)

– CLI Parameters:
-obf-fn-interleaving-max-dead-fns=<uint>: The maximum num-
ber of dead functions added to interleaved functions. [default=2]
-obf-fn-interleaving-max-fns=<uint>: The maximum number of
interleaved functions. [default=10, 0 means unlimited]
-obf-fn-interleaving-max-interleaved-fns-together=<uint>:
The maximum number of functions merged together into a new
function. [default=3, 0 means unlimited]

– Pragmas applicable to functions:
obf-fn-interleaving-skip: A function will be skipped from obfusca-
tion.

Note: If we set -obf-fn-interleaving-max-dead-fns=0 and
-obf-fn-interleaving-max-interleaved-fns-together=2, the pass will fully
fall back to implementation from [15] and use opaque predicates.

• Table Interpretation Pass (-obf-table-interpretation)

– Pragmas applicable to functions:
obf-table-interpretation-skip: A function will be skipped from ob-
fuscation.
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• Bogus Control Flow Pass (-obf-bogus-flow)

– Pragmas applicable to functions:
obf-bogus-flow-skip: A function will be skipped from obfuscation.

• Inlining Pass (-obf-inlining)

– Pragmas applicable to functions:
obf-inlining-skip: A function will be skipped from obfuscation.

• Opaque Predicates Pass (-obf-opaque-predicates)

– Pragmas applicable to functions:
obf-opaque-predicates-skip: A function will be skipped from ob-
fuscation.

• Outlining Pass (-obf-outlining)

– Pragmas applicable to functions:
obf-outlining-skip: A function will be skipped from obfuscation.

• Split Blocks Pass (-obf-split-blocks)

– Pragmas applicable to functions:
obf-split-blocks-skip: A function will be skipped from obfuscation.

• Dead Code Pass (-obf-dead-code)

– CLI Parameters:
-obf-dead-code-irr-ratio=<uint>: The ratio between dead and ir-
relevant basic blocks (min=1, max=100). [default 50]
-obf-dead-code-new-ratio=<uint>: The ratio of newly added and
all basic blocks (min=1, max=100). [default 50]

– Pragmas applicable to functions:
obf-dead-code-skip: A function will be skipped from obfuscation.
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B.3 String Encryption Pass
String Encryption Pass is different from the rest because after using it, we
need to link the result with the decryption functions. The file containing de-
cryption functions is located on the enclosed drive in “SRC/rijndael-alg-fst.c”.

See an example of string encryption process below:

$ c lang −emit−l lvm −S source . c
$ opt −load=Obfuscator . dy l i b −obf−s t r i ng −encrypt ion −obf

↪→ −s t r i ng −encrypt ion−decrypt ion−f n s =12 −S source . l l
↪→ −o encrypted . l l

$ c lang −emit−l lvm −S r i j n d a e l −alg−f s t . c
$ llvm−l i n k −only−needed −S r i j n d a e l −alg−f s t . l l

↪→ encrypted . l l −o l i nked . l l
$ l l c l i nked . l l
$ c lang l i nked . s −o binary

B.4 Debug Mode
B.4.1 Assertions with Lightweight VM Pass
If we would like to use LLVM in debug mode with enabled assertions, we
need to make a tiny adjustment of LLVM’s source code by following the steps
below. Otherwise, Lightweight VM Pass would not work correctly.

1. Open lib/IR/Verifier.cpp.

2. Find and comment out the assert containing “Instruction does not dom-
inate all uses!”.

B.4.2 Debug Messages
In order to see more detailed messages about obfuscation process, LLVM must
be compiled in the debug mode. We can see debug messages by appending
-debug-only=nameOfPass to the opt command.

An example of running Lightweight VM Pass with debug messages:

$ opt −load=Obfuscator . dy l i b −obf−vm −debug−only=obf−vm
↪→ −S source . l l −o obfuscated . l l
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Appendix C
Contents of enclosed CD

DP_Turcan_Lukas_2019

readme.txt —– the file with CD contents description

SRC —– the directory of source codes

EXAMPLES –— the directory of example programs

TEXT — the thesis text directory

thesis.pdf — the thesis text in PDF format
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