
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Decision support backend module for
commercial ERP system

Richard Sadloň

Supervisor: RNDr. Štefan Dušík, Ph.D
May 2019

ii

Acknowledgements
I would like to thank my supervisor

RNDr. Štefan Dušík, Ph.D. for his guid-
ance during this work. I would also like to
thank my parents for their support during
this study.

Declaration
I declare that I have created this

project independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

In Prague on May 13, 2019

........................

v

Abstract
The goal of this project was to create a

decision support module for the company
Asseco Solutions, which develops ERP
systems. This module allows importing
data from a database, creating a dataset
suitable for training of classifiers, training
of classifiers and then using the trained
model to classify new data. The appli-
cation was developed mainly using the
programming language C# and applica-
tion framework Asp.Net Core 2.2. There
were three different factory data on which
functionality was tested.

Keywords: Classifier, C#, ERP,
Asp.Net Core, Machine Learning

Supervisor: RNDr. Štefan Dušík, Ph.D

Abstrakt
Cílem tohoto projektu bylo vytvořit mo-

dul podpory rozhodování pro firmu Asseco
Solutions, která se zabývá vývojem ERP
systémů. Tento modul umožnuje import
dát z databáze, vytvoření datasetu vhod-
ného na trénování klasifikátorů, trénování
klasifikátorů a následné použití natréno-
vaného modelu na klasifikaci nových dat.
Aplikace byla vyvinuta hlavně využitím
programovacího jazyku C# a aplikačního
frameworku Asp.Net Core 2.2. K dispozici
byly tři různé data z výroby na kterých
byla funkčnost otestována.

Klíčová slova: Klasifikátor, C#, ERP,
Asp.Net Core, Strojové učení

Překlad názvu: Modul podpory
rozhodování pro komerční ERP systém

vi

Contents
1 Introduction 1
1.1 ERP . 1
1.2 Financial forecast 1
1.3 Motivation . 1
1.4 Current situation 2
1.5 The goal of this project 3
2 Theoretical part 5
2.1 Data preparation 5
2.2 Classifiers preparation 6
2.2.1 Introduction 6
2.2.2 Used methods 7
2.2.3 Evaluation 8
2.2.4 k-Fold Cross-Validation 8

2.3 Classification 9
3 Analytical part 11
3.1 Architecture 11
3.2 Requirements 11
3.2.1 Functional Requirements 11
3.2.2 Non-Functional Requirements 12

3.3 Technologies 12
3.4 Python part 13
3.5 Use cases . 14
4 Implementation part 17
4.1 Structure of the project 17
4.2 Run the application 20
4.3 Data preparation 21
4.3.1 Import data 22
4.3.2 Prepare dataset 24
4.3.3 Remove help files 24
4.3.4 Import, prepare, clean 24

4.4 Training and evaluation of
classifiers . 25
4.4.1 Create train and test datasets 26
4.4.2 Prepare classifiers 26
4.4.3 Prepare train,test datasets and
classifiers . 27

4.4.4 Download trained models . . . 28
4.4.5 Remove trained models from
the storage 29

4.5 Use of trained model 29
5 Testing 31
5.1 Manual testing 31
5.2 Unit testing 32

6 Conclusion 35
7 Further Work 37
Bibliography 39
A List of abbreviations 41
B Content of the attached CD 43
C Setup of the project 45

vii

Figures
1.1 " The figure shows the dependence
of the parameter price on stock after
production vs. penalty value.
Colouring is based on price in stock
before production (of entered
semi-product)." Adapted from [6]. . . 3

3.1 C# calls python script. Adapted
from[13]. 14

3.2 Use case diagram 15

4.1 Solution’s projects 17
4.2 Impementation structure 18
4.3 Program.cs class 18
4.4 Swagger start page 20
4.5 PrepareDataController’s methods 21
4.6 Import of data from the db. 23
4.7 Successful response for import of
data from the db. 23

4.8 PrepareClassifiersController’s
methods. 25

4.9 Prepare train and test datasets. In
this case, train dataset will contain
years 2014 and 2015, test dataset will
contain years 2016 and 2017 and they
will be created from the
manufacture_command_ex.csv
which is in the
Resources/Datasets/pribory. 26

4.10 Prepare classifiers. In this case,
for training/testing it expects train
and test datasets in the
Resources/Datasets/pribory and
2-fold Cross-Validation will be
performed. 27

4.11 Creates train and test datasets for
training of classifiers, train classifiers
and at the end removes train,test
datasets. Explanation to the
attributes can be seen in the figures
4.9 and 4.10 . 28

4.12 Classification of new data. 30
4.13 Classification’s result. 30

C.1 Setup of a project part 1. 45
C.2 Setup of a project part 2. 46

Tables
2.1 Structure of the prepared dataset
(suitable for training). Description is
adapted from [5]. 6

2.2 The accuracy of the optimal model
for three different companies. 8

5.1 Manual testing results. 31
5.2 Table showing coverage of tested
methods. 32

viii

Chapter 1
Introduction

1.1 ERP

The acronym ERP stands for enterprise resource planning. It is a process
used by companies to manage and integrate the important parts of their
businesses. ERP systems tie together, define a plethora of business processes
and enable the flow of data between them. What primarily distinguishes ERP
software from stand-alone targeted software is a common central database
from which the various ERP software modules access information, some of
which is shared with the other modules involved in a given business process.

An ERP software system can integrate planning, purchasing inventory,
sales, marketing, finance, human resources, and more.

1.2 Financial forecast

Financial forecast is an estimate of a future financial outcome for an
organization. It estimates future income and expenses for a business over a
period of time. By analysing an organization’s current financial position and
other factors, a properly developed financial forecast presents an assumption
of how the organization will perform in the future.

1.3 Motivation

One of the problems of manufacture companies is production optimization.
They can not expect that the same number of pieces will be sold from each
product. Because of this reason some materials and semi-products lies in
warehouse for long period of time, that can mean significant fixation of fi-
nances and inefficient use of the storage capacities.

According to [5] the production planner who makes decisions about what
products and when they will be produced, does not focus on warehouse status
but makes decision based on:

1

1. Introduction
• leadership priority

• current orders

• available resources

• estimated needs

• own experience

However using historical production data and statistical methods, we can
create a certain assumption about warehouse status for the future. This
assumption can help production planner with making a decision whether to
add a semi-product to the manufacturing chain. This can improve productivity
and ultimately increase profit of the company.

1.4 Current situation

According to [5] and [6] in the current state there is already functional
application which was created by Victoria Eykhmann and Michal Bouška.
They implemented the application which can assign a numerical value to the
semi-products which are expensive and lies in warehouse for long time. This
value is called a penalty, and it represents the value of a semi-product in a
warehouse accumulated over time 1 . Subsequently, value of the penalty is
transformed. During this transformation, the penalty is multiplied by weight
for each day, where weight gradually increases from 0 to 1. It reflects a fact,
that company does not mind products stored for a short time, instead it
minds long-term stored product.

Then the products can be divided into three classes according to their penalty:

• products with low priority

• products with middle priority

• products with high priority

In this project, Michal Bouška created python scripts which can import
data from database and transforms them to a dataset suitable for training of
classifiers then training and using of classifiers.

The part which was done by Victoria Eykhmann provides graphical inter-
faces(see the figure 1.1).

1

penalty =
∑
days

number_of_total × price_of_one

2

................................ 1.5. The goal of this project

In this section, I would like to notice that this project was developed
based on their work.

1.5 The goal of this project

The goal of this project is to solve the problem from the motivation section by
implementing WEB API using C# language which should help a responsible
person to make decisions about manufacture orders.

Figure 1.1: " The figure shows the dependence of the parameter price on stock
after production vs. penalty value. Colouring is based on price in stock before
production (of entered semi-product)." Adapted from [6].

3

4

Chapter 2
Theoretical part

2.1 Data preparation

In the beginning, it is necessary to prepare a suitable dataset (ETL 1) for
the training of classifiers. In this dataset, the first row has to contain names
of attributes set for training and each additional row contains exactly one
instance (manufacture order). The following five files (description from [5])
are needed:

• manufacture_command.csv - contains raw data from Helios database

• material.csv - represents the tree of dependencies of semi-finished
products on materials

• slozitost.csv - contains TAC 2 for materials

• stock_load.csv - contains information about movements of the semi-
finished products in the warehouse

• stock_price.csv - contains the price of the semi-product.

After adding statistical/cumulative data and collecting only important
columns the final dataset which is suitable for training will be created:

• manufacture_command_ex.csv - contains columns needed for training,
evaluating and using of the classifiers, the order of the columns can not be
changed(see 2.1 for description and desired structure)

1Extract-Transform-Load
2The time required to perform an operation on one piece of product in minutes.

5

2. Theoretical part
order column description
1 index number of the row
2 command_price Order price (amount * manufacture_cost)
3 start_month Month from date of assignment

4 nrow_TAC Number of TAC entries needed
to create the product (number of steps)

5 sum_TAC Amount of TAC needed to create the product
6 material_sum Sum of the materials needed to create the product
7 material_nrow Number of materials needed to create the product
8 parent_pieces_order_count Number of parent orders at start_date
9 parent_pieces_order_mean
10 parent_pieces_order_max
11 parent_pieces_order_min
12 parent_depth Maximum depth of parents in the semi-product tree
13 parent_count Number of unique parents in the semi-product tree

14 end_stock_price Reflects the target money, that are blocked
in the storage after finishing the manufacture order

15 actual_cost Actual price

16 ongoing_same_pieces Sum of products on manufacturing
order from ongoing_same_command

17 ongoing_same_command
Number of running manufacturing order
on the day of the production order
with the same product

18 ongoing_all_command Number of running manufacturing order
on the day of the production order entry

19 ongoing_all_pieces Sum of pieces from ongoing_all_command
20 cost_sin_2_6 value of the penalty
21 start_date Actual date of start of manufacture command

Table 2.1: Structure of the prepared dataset (suitable for training). Description
is adapted from [5].

2.2 Classifiers preparation

2.2.1 Introduction

Machine learning is a scientific study of algorithms and statistical models
that computer systems use to effectively perform a specific task without
using explicit instructions, relying on patterns and inference instead. Machine
learning algorithms build a mathematical model based on sample data, known
as "training data", in order to make predictions or decisions without being
explicitly programmed to perform the task.

Supervised learning is the machine learning task of learning a function that
maps an input to an output based on example input-output pairs. In super-

6

.................................2.2. Classifiers preparation
vised learning, each example is a pair consisting of an input object and the
desired output value. A supervised learning algorithm analyses the training
data and produces an inferred function, which can be used for mapping new
examples. Classification is a supervised learning in which data are used to pre-
dict a category. The case where the output is a real value is called a regression.

In spite of the fact that we want to classify the priority (low/mid/high) of
new production order which is actually a category, first we need to "predict"
the value of the penalty and because of this reason, we will use regression
methods. After estimating the value, we will classify the priority into cate-
gories based on the given boundaries:

penalty < 250 000 = low priority

250 000 <= penalty < 1 000 000 = medium priority

penalty >= 1 000 000 = high priority

Before we can start with training and evaluating of classifiers we need
to create train and test datasets. This is done by posting parameters:
start_year_train, end_year_train, start_year_test and end_year_test.

2.2.2 Used methods

These methods are used from [8]. The reason why I used mainly decision
tree based methods lies in the previous work of Michal Bouška[6].

1. FastTree (Boosted Trees) Regression
Trains gradient boosted decision trees to fit target values using least-squares.

2. FastTree (Boosted Trees) Tweedie Regression
Trains gradient boosted decision trees to fit target values using a Tweedie
loss function. This learner is a generalization of Poisson, compound Poisson,
and gamma regression.

3. Fast Forest Regression
Trains a random forest to fit target values using least-squares.

4. Generalized Additive Model(GAM) for Regression
This GAM trainer is implemented using shallow gradient boosted trees to
learn nonparametric shape functions

7

2. Theoretical part
The accuracy of the optimal model for three different companies: "hudba",

"pribory" and "letadla" can be seen in the following table 2.2:

hudba letadla pribory
train years 2014, 2015 2013, 2014 2016
test years 2016, 2017 2015 2017
accuracy 0.7 0.73 0.75

Table 2.2: The accuracy of the optimal model for three different companies.

2.2.3 Evaluation

Evaluation is divided into two parts:

• regression metrics

• percentage of correct predictions (of priority) on the test dataset

For every model we will count the following regression metrics:

• L1 - the absolute loss of the model

• L2 - the squared loss of the model

• Rms - root mean square loss which is the square root of the L2

• RSquared - the coefficient of determination

Then we will classify the priority of the penalty for the test dataset based
on real value and based on the predicted value for every instance in the test
dataset. From this information, we will determine a percentage of the correct
predictions. Based on this percentage is chosen an optimal model but in the
export of classifiers are all models including their evaluation.

2.2.4 k-Fold Cross-Validation

Cross-validation is a resampling procedure used to evaluate machine learn-
ing models on a limited data sample. The procedure has a single parameter
called "k" that refers to the number of groups that a given data sample is to
be split into. As such, the procedure is often called k-fold cross-validation.

In our case, there is an option to evaluate the model using cross-validation
by posting num_of_folds parameter, if num_of_folds is less or equals 1 then
the cross-validation will not be performed.

8

.................................... 2.3. Classification

2.3 Classification

New manufacture commands which priority we want to classify have to be
in a CSV 3 file containing the first 19 columns (order 1-19) from the table
2.1. But in this case, they do not have to be in an exact order.

The resultant file is a CSV file which contains two columns: "index" (to
identify the manufacture order) and "priority".

3Comma Separated Value(s) (database export/import format and file extension)

9

10

Chapter 3
Analytical part

3.1 Architecture

Software architecture refers to the high-level structures of a software system
and the discipline of creating such structures and systems. Each structure
comprises software elements, relations among them, and properties of both
elements and relations.

This project implements REST API which is an architecture style for
designing loosely coupled applications over HTTP, that is often used in the
development of web services. A web service is a software system destined to
support interoperable machine-to-machine interaction over a network.

3.2 Requirements

The software requirements are a description of the features and functionali-
ties of the target system. Requirements convey the expectations of users from
the software product. The requirements can be obvious or hidden, known or
unknown, expected or unexpected from a client’s point of view.

3.2.1 Functional Requirements

Requirements, which are related to functional aspect of software fall into
this category. They define functions and functionality within and from the
software system.

Functional requirements for this project are:

1. import data from database (Microsoft SQL Server)

2. prepare dataset suitable for training of the classifiers

3. create train and test datasets

11

3. Analytical part
4. training of the classifiers to create a classification model

5. evaluation of the trained models

6. choose optimal model

7. export models

8. use model to classify new data

3.2.2 Non-Functional Requirements

Requirements, which are related to the functional aspect of software fall
into this category. They define functions and functionality within and from
the software system.

Non-Functional requirements for this project are:

1. training of the classifiers must not blocking the application

2. give the user feedback if the request was successful or not

3. implementation will be based on the C# language

4. delete files once they are redundant from the storage (filesystem
in our case)

3.3 Technologies

All technologies used to create this project are open-source.

C#[14] is a programming language developed by Microsoft which is de-
signed for Microsoft’s .NET Framework. This allows developers to take
advantage of all the features offered by the .NET API.

The application was developed using ASP.Net Core 2.2[15] which is
a free and open-source managed computer software framework for the Win-
dows, Linux, and macOS operating systems. It fully supports C#. The reason
for version 2.2 is that ASP.NET Core 2.x can target both .NET Core and
.NET Framework. Besides that .NET Core is cross-platform and open-source
there are more advantages to use it instead of .Net Framewrok as improved
performance, side-by-side versioning and new APIs.

For posting parameters such as "start_year_train", "num_of_folds", etc.
was used JSON[16] which is a lightweight format for storing and transporting
data. The big advantage of it is that JSON is a "self-describing" and easy to

12

..................................... 3.4. Python part

understand.

For easier use of this API was used Swagger[17] which is tooling ecosystem
for developing APIs with the OpenAPI Specification. It gives us option to call
web services, shows basic description and input JSON structure. However,
swagger cannot generate full documentation for the project. Because of this
reason documentation was generated by Doxygen tool.

Doxygen[18] is a tool for generating documentation from annotated C++
sources, but it also supports other popular programming languages including
C#. Documentation is generated from the source code (includes xml com-
ments) as html pages where XML[19] is a markup language that defines a
set of rules for encoding documents in a format that is both human-readable
and machine-readable and HTML[20] is the standard markup language for
creating web pages and web applications.

Based on personal sympathies, for versioning the code I chose Git[21]
which is a free and open source distributed version control system designed to
handle everything from small to very large projects with speed and efficiency.

In one case (described below) there is a need to call Python 3 script.
"Python is an interpreted, high-level, general-purpose programming language.
Python is dynamically typed and garbage-collected. It supports multiple
programming paradigms, including procedural, object-oriented, and func-
tional programming. Python features a comprehensive standard library, and
is referred to as "batteries included"."[24]

3.4 Python part

One of the functional requirements is from the imported data prepare
dataset suitable for training of classifiers. In the Michal’s Bouška work[6]
already exists python script "prepare_data.py" which prepares three files :
"days.txt", "data_cont.csv" and "manufacture_command_ex.csv" from the
imported data (CSV files). First two files are needed for the preparation of
the last one, when the "manufacture_command_ex.csv" contains all needed
values for training.

I tried to implement similar functionality in C#. However, for creating this
dataset the python script uses Pandas which is: "a Python package providing
fast, flexible, and expressive data structures designed to make working with
structured (tabular, multidimensional, potentially heterogeneous) and time
series data both easy and intuitive. It aims to be the fundamental high-level
building block for doing practical, real world data analysis in Python."[23].
After reviewing this python script I found Pandas very powerful tool for this
job. Unfortunately, I could not find something with similar functionality for
C#. Regardless of that, I have implemented preparation of "days.txt" and
"data_cont.csv". On the same machine, preparation of these files lasted about

13

3. Analytical part
2 minutes in Python and about 16 minutes in C#. For this reason, I decided
for external calling of python script mentioned above.

The following figure shows how calling of python works in C#(3.1).

Figure 3.1: C# calls python script. Adapted from[13].

3.5 Use cases

A use case diagram is a dynamic or behaviour diagram in UML1. Use case
diagrams model the functionality of a system using actors and use cases. Use
cases are a set of actions, services, and functions that the system needs to
perform. For use case diagram see the figure 3.2.

1UML is a way of visualizing a software program using a collection of diagrams.

14

...................................... 3.5. Use cases

Figure 3.2: Use case diagram

15

16

Chapter 4
Implementation part

4.1 Structure of the project

This application consists of two projects AssecoWebApp.csproj and Assec-
oWebAppTestProject.csproj. These projects are in the solution AssecoWe-
bApp.sln which is simply a container for one or more related projects. In
the AssecoWebApp.csproj is the implementation of the API and AssecoWe-
bAppTestProject.csproj contains unit tests.

Figure 4.1: Solution’s projects

The following text describes implementation part, unit tests are described
in the section 5.2 .

Classes in C# have extension ".cs". On the figure 4.2 can be seen two
important classes of this application Startup and Program.

17

4. Implementation part..................................

Figure 4.2: Impementation structure

The web application starts executing from the entry point "public static
void Main(string[] args)" in the Program class where a host for the web
application is created.

The Startup class is specified to the app when the app’s host is built. The
app’s host is built when Build is called on the host builder in the Program
class (see the figure 4.3).

Figure 4.3: Program.cs class

18

................................ 4.1. Structure of the project

The Startup class:

• Includes a ConfigureServices method to configure the app’s services. A
service is a reusable component that provides app functionality. Services are
configured in ConfigureServices and consumed across the app via dependency
injection (DI) or ApplicationServices.

• Includes a Configure method to create the app’s request process-
ing pipeline.

ConfigureServices and Configure are called by the runtime when the app
starts.

Dependency injection is a software design pattern, which is a technique for
achieving Inversion of Control (IoC) between classes and their dependencies.

Inversion of Control is a design principle. It is used to invert different
kinds of controls in object-oriented design to achieve loose coupling. Here,
controls refer to any additional responsibilities a class has, other than its
main responsibility. This include control over the flow of an application, and
control over the flow of an object creation or dependent object creation and
binding.

You can see on the Figure 4.2 that the application is divided into several
folders.

The Controllers folder contains controllers which are classes that handle
http requests. They take input values from requests and pass these values to
services which do the expected job. After the job is finished, the controller
shows the response code and needed information.

The Services folder contains services which are classes doing the business
logic of the application and are directly called in controllers.

The Handlers folder contains classes which implement functionality used
in multiple service’s classes.

Among others classes in the Models folder, there is also the Manufacture
class. This class maps the "manufacture_command_ex.csv" (see the table
2.1) as C# class, where column’s names in CSV file reflect attributes in the
class.

To understand the way I was working with constants in this project,
see following arrangements:

• if the constant is used only in one class then it is defined in the
beginning of this class

• constants for saving/loading data on/from filesystem are defined in
the PathConstants.cs (Constants folder)

19

4. Implementation part..................................
• column’s names of the manufacuture_command_ex.csv are defined in

the ManufactureAttributes.cs (Constants folder)

Resources subfolders:

• Classifiers - helps with training, evaluating of classifiers and defines
how the result folder with trained models will look like

• CreatedClassifiers - storage for the trained models

• Datasets - storage for company data

• Python - contains python scripts used in this project, only the script
"prepare_data.py" is called directly even though it requires functions from
other scripts

4.2 Run the application

To run the application open AssecoWebApp project in console and run the
command: "dotnet run". Subsequently, go to the:

"https://localhost:5001/swagger/index.html"
(see the figure 4.4)

Figure 4.4: Swagger start page

On the bottom of the figure 4.4, there are three sections: Classification,
PrepareClaasifiers and PrepareData. Each of them stands for controller class,
e.g. Classification stands for the ClassificationController.cs .

20

................................... 4.3. Data preparation

4.3 Data preparation

The purpose of this part is preparation of dataset suitable for training of
classifiers (manufacture_command_ex.csv). This job is divided into three
steps (see the figure 4.5):

1. import data from the database

2. use imported data to create needed dataset

3. remove "help files"1

Figure 4.5: PrepareDataController’s methods

1files imported from the db + days.txt, data_cont.csv

21

4. Implementation part..................................
However, specific situations may arise. One of them is that a data specialist

may want to check help files so it is not advisable to delete them immediately.
Another situation that happened in our case, when for the companies "hudba"
and "letadla" imported data from the databases were already available, but
connection to databases worked no longer. For these reasons there are two
possible scenarios. The first is to do the whole job from importing the data
to cleaning the help files, the second is to call these web services separately
according to your need.

The following subsections describe how to use these web services properly
and what are the their prerequisites.

4.3.1 Import data

To import data from the database there are two prerequisites. First is to
setup connection string to the database in the file "appsetings.json". This
connection string has to be written in the section "ConnectionStrings". The
connection string has to have its own unique name, the connection string key
which identifies it among the others.

Secondly is that there has to exist a folder where the imported data will be
saved. This folder must be placed in the "Resources/Datasets/

{
folderName

}
".

To make it work properly, the "folderName" has to be the same as the con-
nection string key. In the current state, this works only for the company:
"pribory". There is already connection string for the company: "pribory" in
the appsetings.json and also in the "Resources/Datasets" exists folder with
the name: "pribory".

To execute data import, we need to call http GET method on the following
route:

"api/PrepareData/Import/
{
company

}
"

where parameter company equals to connection string key and folder name
described above. This can be done using swagger as follows (see the figure 4.6):

1. click on: GET /api/PrepareData/Import/company
2. click: try it out
3. set parameter company to: pribory
4. click execute

Once the job is finished, the response code should be 201 (see the figure
4.7) likewise the "pribory" folder should contain the following files: "mate-
rial.csv", "slozitost.csv", "manufacture_command.csv", "stock_price.csv" and
"stock_load.csv".

22

................................... 4.3. Data preparation

Figure 4.6: Import of data from the db.

Figure 4.7: Successful response for import of data from the db.

23

4. Implementation part..................................
4.3.2 Prepare dataset

The purpose of this part is to create dataset suitable for training of clas-
sifiers (manufacture_command_ex.csv). The company folder must exist in
the "/Resources/Datasets/" and it has to contain all five needed CSV files
(see the section 2.1). This can be done in two ways. The first is to call
Import method (see the section 4.3.1). The second is to put files in this
folder manually. In the current state, this can be done for the companies
"hudba" and "pribory", the needed files are in the folder "NewDbData".

In this case the application calls external python script, for this reason
the python 3 and a few of its modules must be installed (see the Appendix C).

To do the job we need to call http GET method on the following route:

"api/PrepareData/Prepare/
{
company

}
"

where parameter company equals to company folder (described in the section
4.3.1).

If the job is finished successfully, the response code will be 201 and to the
company folder will be added following files: "days.txt", "data_cont.csv" and
"manufacture_command_ex.csv".

4.3.3 Remove help files

The purpose of this part is to remove files which are not needed anymore
(described in the 4.3). There is only one requirement to do that, in the
"Resources/Datasets/" must be company folder from which the files should
be removed.

To do so, we need to call http DELETE method on the following route:

"api/PrepareData/Clean/
{
company

}
"

where parameter company has same meaning as in the previous two sec-
tions.

If the job finished successfully, the response code will be 200 and in the
company folder will remain only one file: "manufacture_command_ex.csv".

4.3.4 Import, prepare, clean

Following web service merges work done by previous three sections in the
one. Because we are importing data from the database, this works only for
the company: "pribory" (same as in the section 4.3.1).

To carry out the job, we need to call http GET method on the following

24

.......................... 4.4. Training and evaluation of classifiers

route:

"api/PrepareData/ImportPrepareClean/
{
company

}
"

where parameter company has the same meaning as in the previous sec-
tions.

If the job finished successfully, the response code will be 201 and in the
company folder will be only "manufacture_command_ex.csv" file.

4.4 Training and evaluation of classifiers

This section describes methods of the PrepareClassifiersController (see the
figure 4.8). Before the training can start, train and test datasets must be
created. Once the training and evaluating is finished, there will be availability
to download classifiers or to remove them from the storage. How to do this is
described in the subsections below.

Figure 4.8: PrepareClassifiersController’s methods.

25

4. Implementation part..................................
4.4.1 Create train and test datasets

The purpose of this web service is to create train and test datasets. Both
of these datasets are subsets of the file manufacture_command_ex.csv, for
this reason in the company folder this file must exist.

To do the job we need to call http POST method on the following route:

"api/PrepareClassifiers/PrepareTrainTest"

by the POST method must be send JSON with the name: "data" containing
following attributes: "start_year_train","end_year_train", "start_year_test",
"end_year_test", "company". See the following figure 4.9 for better under-
standing.

Figure 4.9: Prepare train and test datasets. In this case, train dataset will
contain years 2014 and 2015, test dataset will contain years 2016 and 2017 and
they will be created from the manufacture_command_ex.csv which is in the
Resources/Datasets/pribory.

If the call finished successfully, the response code will be 201 and to the
company folder will be added "TrainDataset.csv" and "TestDataset.csv".

4.4.2 Prepare classifiers

This web service will train classifiers, evaluate them and choose the op-
timal model. Once the job is finished, all models will be saved as zip file

26

.......................... 4.4. Training and evaluation of classifiers

to the folder "Resources/CreatedClassifiers". To carry this out, the must be
datasets for training and testing in the company folder (see the section 4.4.1).

To make it happen, we need to call http POST method on the follow-
ing route:

"api/PrepareClassifiers/PrepareClassifiers"

by the POST method must be send JSON with the name: "data" containing
following attributes: "company" and "num_of_folds". See the following figure
4.10 for better understanding.

Figure 4.10: Prepare classifiers. In this case, for training/testing it expects train
and test datasets in the Resources/Datasets/pribory and 2-fold Cross-Validation
will be performed.

If the job finished successfully, the response code should be 201. To the
"Resources/CreatedClassifiers" will be added zip file (name from the inputted
JSON) with all trained models.

4.4.3 Prepare train,test datasets and classifiers

This part combines the work of two previous sections (4.4.1 and 4.4.2) plus
it will remove train and test datasets at the end. In this case there is only
one prerequisite, the "manufacture_command_ex.csv" should be existent in
the company folder.

To make it happen, we need to call http POST method on the follow-
ing route:

27

4. Implementation part..................................
"api/PrepareClassifiers/PrepareTrainTestClassifiersClean"

by the POST method must be send JSON with the name: "data" and with the
following attributes: "start_year_train", "end_year_train", "start_year_test",
"end_year_test", "company", "num_of_folds".

For example see the following figure:

.
Figure 4.11: Creates train and test datasets for training of classifiers, train clas-
sifiers and at the end removes train,test datasets. Explanation to the attributes
can be seen in the figures 4.9 and 4.10

Once the job finished successfully, the response code will be 200. To the
"Resources/CreatedClassifiers" will be added zip file (name from the inputted
JSON) with all trained models and from the company folder train and test
datasets will be removed.

4.4.4 Download trained models

This part describes how to download trained models. The result of this is
zip file which contains all trained models, evaluation and optimal model.

To execute this we need to call http POST method on the following
route:

"api/PrepareClassifiers/Download"

by the POST method must be send JSON with the name: "data". The

28

................................. 4.5. Use of trained model

JSON attributes must be the same as in the training part, that means if for
training was used web service from the section 4.4.2 then the exactly same
JSON has to be send for downloading and so on for the web service from the
section 4.4.3 .

4.4.5 Remove trained models from the storage

In this section two web services will be described, the first will remove all
files with trained models from the folder "Resources/CreatedModels". The
second will remove zip file with models only for the inputted JSON which
identifies it.

To use the first option, call http DELETE method(without parameters)
on the following route:

"/api/PrepareClassifiers/RemoveAllClassifiers"

Once the job is finished successfully, the response code will be 200 and
"Resources/CreatedModels" will be empty.

To use the second option, call http DELETE method on the following route:

"/api/PrepareClassifiers/RemoveAllClassifiers"

by the POST method must be send JSON with the name: "data". For
JSON attributes applies the same rules as in the section 4.4.4 .

Once the job is finished successfully the response code will be 200 and
a zip file with models will be removed from the "Resources/CreatedModels".

4.5 Use of trained model

This section describes how to use downloaded models to classify new data.
For that the ClassificationController class will be used.

In this part there is only one web service which will carry out the job. To
do so, you need to call http POST method on the following route:

"/api/Classification/Classify"

by this method, two parameters must be send, the first has name: "model"
and it has to be one of the downloaded models in zip format. The second has
name: "dataset" and it has to be a CSV file which should be classified (see
the section 2.3 for the description).

29

4. Implementation part..................................
To try this out, you can use as a model "OptimalModel.zip" from the

section 4.4.4 (or any other). As the dataset which should be classified you
can use "ClassificationTest.csv" which is in the "Resources/Datasets". See the
figure 4.12 for better understanding.

After execution, a result file with the predicted priorities should be pro-
duced. To download it click on the "Download File" (see the figure 4.13).

Figure 4.12: Classification of new data.

Figure 4.13: Classification’s result.

30

Chapter 5
Testing

5.1 Manual testing

In this section, I have tested the required functionality manually. For every
web service which was tested I asked the following questions:

1. Does the web service work as expected with correct input given?

2. Is there a suitable feedback if the input is not correct?

The results can be see in the following table 5.1 :

row method route Q1 Q2
1 GET /api/PrepareData/ImportPrepareClean/{company} yes yes
2 GET /api/PrepareData/Import/{company} yes yes
3 GET /api/PrepareData/Prepare/{company} yes yes
4 DELETE /api/PrepareData/Clean/{company} yes yes
5 POST /api/PrepareClassifiers/PrepareTrainTestClassifiersClean yes yes
6 DELETE /api/PrepareClassifiers/RemoveClassifier yes -
7 DELETE /api/PrepareClassifiers/RemoveAllClassifiers yes -
8 POST /api/PrepareClassifiers/PrepareTrainTest yes yes
9 POST /api/PrepareClassifiers/PrepareClassifiers yes yes
10 POST /api/PrepareClassifiers/Download yes yes
11 POST /api/Classification/Classify yes yes

Table 5.1: Manual testing results.

There are a few notes to the table above:

1. In the current state, web services can be clearly identified. For
this reason post/delete parameters are not mentioned in the table.

2. In the row 6, the web service checks if a file exists and if it does then
removes it, there is no bad input here. For this reason, the second question
was not answered.

31

5. Testing
3. In the row 7, there is no input at all. For this reason, the second

question was not answered.

5.2 Unit testing

Unit testing is a level of software testing where individual units/ compo-
nents of a software are tested. The purpose is to validate that each unit of
the software performs as designed. A unit is the smallest testable part of
any software. It usually has one or a few inputs and usually a single output.
In procedural programming, a unit may be an individual program, function,
procedure, etc. In object-oriented programming, the smallest unit is a method,
which may belong to a base/ super class, abstract class or derived/ child class.
In unit testing we want to test methods of one class in isolation. But classes
are not isolated. They are using services and methods from other classes. So
in that situation, we mock the services and methods from other classes and
simulate the real behaviour of them using some mocking framework.

Writing of unit tests was carried out by Xunit which is an open-source unit
testing tool for the .NET framework. As the Mocking framework I have used
Moq which is mocking library for .NET.

Unit tests can be found in the AssecoWebAppTestProject. To run them,
open AssecoWebAppTestProject in console and run the command: "dotnet
test". There are 20 unit tests and all should pass.

Unit tests were written for public methods of Controllers, Services and
Handlers. The following table 5.2 shows the coverage of that:

name total tested
ClassificationHandler 3 3
CsvHandler 2 1
DataTableHandler 2 2
ManufactureHandler 2 1
ClassificationController 1 0
PrepareClassifiersController 6 5
ClassificationService 1 1
CleanService 4 3
PrepareClassifiersService 1 1
PrepareTrainTestDatasetService 1 1
ImportDatasetService 1 0
PrepareClassificationDatasetService 1 0

Table 5.2: Table showing coverage of tested methods.

32

..................................... 5.2. Unit testing

I believe that unit tests should be fast, otherwise it could lead to be skipped
by developers. Importing of data and preparation of the dataset suitable for
training of classifiers takes a lot of time, for this reason unit tests were not
written for this part.

33

34

Chapter 6
Conclusion

During this work, I became acquainted with the functioning of ERP sys-
tems, two already existing projects that served as a decision support tool for
production planner. I also learned about machine learning, cross validation,
decision tree method and a few other classification and regression methods. I
got acquainted with C# language and ASP.Net Core web framework. Based
on the acquired knowledge and instructions for this project, I analysed the
problem. Subsequently, I implemented functional REST API which allows
importing data from database, prepare a dataset suitable for training of clas-
sifiers, create training and testing datasets, train classifiers and then evaluate
them, select an optimal model, export models and then use the model to clas-
sify new data. I also created documentation for the code. At the end, I tested
the required functionality manually and for suitable parts of code I have also
written unit tests. I see the application as fully functional and suitable for use.

Additionally, I have to mention one requirement which I failed to fully
meet. Although the application is able to create a dataset from imported
data which is suitable for training of classifiers for preparation of this dataset
there is called python script which was not done by me.

35

36

Chapter 7
Further Work

The application is functional and ready to use, yet there are few things to
be improved in near future:

1. removing python dependency in data preparation part

2. providing wider range of tests, e.g. integration tests

3. using database as storage instead of filesystem

37

38

Bibliography

[1] Marianne Bradford: Modern ERP: Select, Implement, and Use Today
's Advanced Business Systems, 2008

[2] Kamel Nidal, Aamir Saeed Malik: EEG/ERP Analysis: Methods and
Applications, 2014

[3] The definition of ’Financial forecast’ [online, 2018-4-15] from https://
www.syndicateroom.com/learn/glossary/financial-forecast

[4] Financial Forecasting[online, 2018-4-15]
from https://corporatefinanceinstitute.com/resources/
knowledge/modeling/financial-forecasting-guide/

[5] Victoria Eykhmann: Forecasting in Finance (ERP) [online, 2018-4-15]
from https://dspace.cvut.cz/handle/10467/76448, Bachelor Project,
Open Informatics, Czech Technical University in Prague

[6] Michal Bouška: EclubAsseco Predikce [online, 2018-4-15] from
https://www.overleaf.com/14980802pxsxccmdyhth#/56877630/

[7] What is Machine Learning? A definition[online, 2018-4-15]
from https://www.expertsystem.com/machine-learning-definition/

[8] Microsoft: ML.NET [online, 2018-4-15] from https://dotnet.
microsoft.com/apps/machinelearning-ai/ml-dotnet

[9] Wikipedia contributors: Decision tree learning[online, 2018-4-15] from
https://en.wikipedia.org/wiki/Decision_tree_learning

[10] Difference Between Classification and Regression in Machine Learn-
ing[online, 2018-4-15] from https://machinelearningmastery.com/
classification-versus-regression-in-machine-learning/

[11] Microsoft: ML.NET API reference[online, 2018-4-15] from
https://docs.microsoft.com/en-us/dotnet/api/microsoft.ml.
data.regressionmetrics?view=ml-dotnet

[12] Todd Fredrich, Pearson eCollege: Intro to REST [online, 2018-4-15] from
https://www.restapitutorial.com/lessons/whatisrest.html

39

https://www.syndicateroom.com/learn/glossary/financial-forecast
https://www.syndicateroom.com/learn/glossary/financial-forecast
https://corporatefinanceinstitute.com/resources/knowledge/modeling/financial-forecasting-guide/
https://corporatefinanceinstitute.com/resources/knowledge/modeling/financial-forecasting-guide/
https://dspace.cvut.cz/handle/10467/76448
https://www.overleaf.com/14980802pxsxccmdyhth#/56877630/
https://www.expertsystem.com/machine-learning-definition/
https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet
https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet
https://en.wikipedia.org/wiki/Decision_tree_learning
https://machinelearningmastery.com/classification-versus-regression-in-machine-learning/
https://machinelearningmastery.com/classification-versus-regression-in-machine-learning/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.ml.data.regressionmetrics?view=ml-dotnet
https://docs.microsoft.com/en-us/dotnet/api/microsoft.ml.data.regressionmetrics?view=ml-dotnet
https://www.restapitutorial.com/lessons/whatisrest.html

Bibliography
[13] Microsoft Developer Network Samples[online, 2018-4-15] from

http://microsoftdevelopernetworksamples.blogspot.com/2017/
03/windowsdesktopc-and-python-interprocess.html

[14] Wikipedia contributors: C Sharp (programming language)[online, 2018-
4-15] from https://en.wikipedia.org/wiki/C_Sharp_(programming_
language)

[15] Microsoft: ASP.NET Core Documentation[online, 2018-4-15] from
https://docs.microsoft.com/en-us/aspnet/?view=aspnetcore-2.
2#pivot=core)

[16] Introducing JSON [online, 2018-4-15] from https://www.json.org/

[17] SmartBear Software: Swagger [online, 2018-4-15] from https://swagger.
io/

[18] Dimitri van Heesch: Doxygen[online, 2018-4-15] from http://www.
doxygen.nl/

[19] Introduction to XML[online, 2018-4-15] from https://www.w3schools.
com/xml/xml_whatis.asp

[20] HTML5 Tutorial[online, 2018-4-15] from https://www.w3schools.com/
html/

[21] Wikipedia contributors: Git[online, 2018-4-15] from https://en.
wikipedia.org/wiki/Git

[22] Python 3.x documentation[online, 2018-5-2] from https://docs.python.
org/3/

[23] AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData
Development Team: Python Data Analysis Library[online, 2018-5-2] from
https://pandas.pydata.org/

[24] Wikipedia contributors: Python (programming language)[online, 2018-
5-2] from https://en.wikipedia.org/wiki/Python_(programming_
language)

[25] Wikipedia contributors: xUnit.net)[online, 2018-5-2] from https://en.
wikipedia.org/wiki/XUnit.net

40

http://microsoftdevelopernetworksamples.blogspot.com/2017/03/windowsdesktopc-and-python-interprocess.html
http://microsoftdevelopernetworksamples.blogspot.com/2017/03/windowsdesktopc-and-python-interprocess.html
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://docs.microsoft.com/en-us/aspnet/?view=aspnetcore-2.2#pivot=core)
https://docs.microsoft.com/en-us/aspnet/?view=aspnetcore-2.2#pivot=core)
https://www.json.org/
https://swagger.io/
https://swagger.io/
http://www.doxygen.nl/
http://www.doxygen.nl/
https://www.w3schools.com/xml/xml_whatis.asp
https://www.w3schools.com/xml/xml_whatis.asp
https://www.w3schools.com/html/
https://www.w3schools.com/html/
https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Git
https://docs.python.org/3/
https://docs.python.org/3/
https://pandas.pydata.org/
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/XUnit.net
https://en.wikipedia.org/wiki/XUnit.net

Appendix A
List of abbreviations

ERP - Enterprise Resource Planning

API - Application Programming Interface

ETL - Extract-Transform-Load

REST - Representational State Transfer

HTTP - Hypertext Transfer Protocol

GAM - Generalized Additive Model

UML - Unified Modeling Language

JSON - JavaScript Object Notation

HTML - Hypertext Markup Language

XML - Extensible Markup Language

PANDAS - Python Data Analysis Library

DB - Database

DI - Dependency Injection

IoC - Inversion of Control

APP - Application

41

42

Appendix B
Content of the attached CD

• code

- AssecoWebApp

- AssecoWebAppTestProject

- Documentation

- NewDbData

- AssecoWebApp.sln

- README.md

• text

- source

- F3-BP-2019-Sadlon-Richard-Thesis.pdf

43

44

Appendix C
Setup of the project

Figure C.1: Setup of a project part 1.

45

C. Setup of the project..................................

Figure C.2: Setup of a project part 2.

46

	Introduction
	ERP
	Financial forecast
	Motivation
	Current situation
	The goal of this project

	Theoretical part
	Data preparation
	Classifiers preparation
	Introduction
	Used methods
	Evaluation
	k-Fold Cross-Validation

	Classification

	Analytical part
	Architecture
	Requirements
	Functional Requirements
	Non-Functional Requirements

	Technologies
	Python part
	Use cases

	Implementation part
	Structure of the project
	Run the application
	Data preparation
	Import data
	Prepare dataset
	Remove help files
	Import, prepare, clean

	Training and evaluation of classifiers
	Create train and test datasets
	Prepare classifiers
	Prepare train,test datasets and classifiers
	Download trained models
	Remove trained models from the storage

	Use of trained model

	Testing
	Manual testing
	Unit testing

	Conclusion
	Further Work
	Bibliography
	List of abbreviations
	Content of the attached CD
	Setup of the project

