
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

SLAM Localization Using Stereo Camera

Lukáš Majer

Supervisor: Ing. Jan Chudoba
May 2019

ii

Acknowledgements
I would like to thank my supervisor Ing.
Jan Chudoba for his patience and guid-
ance, as well as the whole Intelligent and
Mobile Robotics Group for providing nec-
essary equipment and support. Last, but
not least I am grateful for all the support
provided by my girlfriend.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, May 22, 2019

...............

signature

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze, 22. května 2019

................................

podpis autora práce

iii

Abstract
This work deals with an application of
simultaneous localization and mapping
(SLAM) methods for a stereo camera for
the purpose of a mobile robot or human
localization. First, research of available
method implementation is conducted and
selected methods are evaluated with the
comparison. Based on results from pre-
vious steps a system for a mobile robot
localization is proposed and tested.

Keywords: RGB-D SLAM, stereo
camera, localization

Supervisor: Ing. Jan Chudoba
CIIRC B-323,
Jugoslávských partyzánů 3,
16000 Praha 6

Abstrakt
Tato práce se zabývá aplikací současného
mapování a localizace (SLAM) pro stereo
kameru s cílem lokalizace mobilního ro-
botu nebo člověka. Nejprve je provedena
rešerše dostupných metod, ze kterých je
posléze několik otestováno a porovnáno.
Na základě těchto výsledků je následně na-
vržen a otestován lokalizační systém pro
mobilního robota.

Klíčová slova: RGB-D SLAM, stereo
kamera, lokalizace

Překlad názvu: Lokalizace SLAM pro
stereokameru

iv

Contents
1 Introduction 3
1.1 Context . 3
1.2 Structure . 3
2 Mathematical apparatus 5
2.1 Rotation matrix 5
2.2 Euler angles 6
2.3 Quaternion 6
2.4 Homogenous coordinates 7
3 Camera model 9
3.1 Pinhole camera model 9
3.1.1 Projection equation 9
3.1.2 Distortion model 11

3.2 Stereo camera rig 12
3.2.1 Epipolar geometry 12
3.2.2 Finding correspondences 13
3.2.3 Estimating depth 14
3.2.4 Error modeling 15

4 ZED Stereo camera 17
4.1 Hardware description 17
4.2 Software interface 18
5 RGB-D SLAM 21
5.1 Problem definition 21
5.2 Other approaches 22
5.2.1 RTAB-Map 22
5.2.2 Direct RGB-D SLAM 23

5.3 Used solutions 23
5.3.1 ICP SLAM 23
5.3.2 ORB2 SLAM 25
5.3.3 ZED SLAM 27

6 Practical experiments 29
6.1 Lab environment 29
6.2 Setting up algorithms 30
6.2.1 Training dataset 1 31
6.2.2 Training dataset 2 31
6.2.3 Optimal settings 31

6.3 Results . 33
6.3.1 Testing dataset 1 34
6.3.2 Testing dataset 2 36
6.3.3 Testing dataset 3 38
6.3.4 Discussion 39

7 SLAM with a mobile robot 41
7.1 Theory . 41
7.1.1 Mobile robot 41
7.1.2 Extended Kalman filter 42

7.1.3 ICP with odometry 45
7.2 Results . 46
7.2.1 Discussion 48

8 Conclusion 49
8.1 Evaluation 49
8.2 Future work 49
Bibliography 51
A List of Mathematical Notation 55
B List of Abbreviation 57
C DVD Content 59

v

Figures
2.1 Definition of Euler angles. 6

3.1 Coordinate system definition for
pinhole camera model. 10

3.2 Radial distortion. 11
3.3 Epipolar geometry. 13
3.4 Estimating depth from rectified
stereo setup. 14

4.1 ZED Stereo Camera illustration. 17
4.2 Illustration of ZED Stereo Camera
3D reconstruction. 19

5.1 Flowchart of ICP scan alignment. 25
5.2 ORB-2 SLAM architecture
overview.[1] . 26

6.1 Vicon setup for measuring
data-sets with ground truth. 30

6.2 Translational error for dataset 1. 34
6.3 Angular error for dataset 1. 35
6.4 Translational error for dataset 2. 36
6.5 Angular error for dataset 2. 37
6.6 Translational error for dataset 3. 38
6.7 Angular error for dataset 3. 39

7.1 Experimental platform consisting
of HUSKY robot and ZED Stereo
Camera. 42

7.2 Flowchart of sensor fusion using
EKF. 45

7.3 Flowchart of ICP scan alignment
with additional odometry input. . . 45

7.4 Trajectory comparison of ORB-2
SLAM with EKF odometry fusion. 47

7.5 Trajectory comparison of ZED
SLAM with EKF odometry fusion. 47

7.6 Trajectory comparison of ICP
SLAM with EKF odometry fusion. 48

Tables
4.1 ZED Stereo Camera hardware
specifications. 18

4.2 ZED Stereo Camera calibration
parameters for WVGA resolution. . 18

6.1 Information about first training
dataset. 31

6.2 Evaluation of training dataset 1. 31
6.3 Information about second training
dataset. 31

6.4 Evaluation of training dataset 2. 31
6.5 Empirically determined ICP SLAM
settings. 32

6.6 Empirically determined ORB-2
SLAM settings. 33

6.7 Empirically determined ZED
SLAM settings. 33

6.8 Information about first testing
dataset. 34

6.9 Evaluation of testing dataset 1. . 34
6.10 Information about second testing
dataset. 36

6.11 Evaluation of testing dataset 2. 36
6.12 Information about third testing
dataset. 38

6.13 Evaluation of testing dataset 3. 38

7.1 Information about first testing
dataset. 46

7.2 Evaluation of testing dataset 1. . 46

vi

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

457193Personal ID number:Majer LukášStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

RoboticsBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

SLAM Localization Using Stereo Camera

Bachelor’s thesis title in Czech:

Lokalizace SLAM pro stereokameru

Guidelines:
The topic of the thesis is an application of simultaneous localization and mapping (SLAM) methods for stereo camera for
the purpose of mobile robot or human localization. Do a research of 3D SLAM methods able to use a depth map from the
stereo camera as an input. Select a convenient available method implementation (or more methods allowing comparison)
and apply data from the camera provided by the thesis supervisor. Suppose a general type of the camera motion. Perform
the practical experiments and make an evaluation of an achievable localization precision and limits of the method
functionality.

Bibliography / sources:
[1] Šonka, M., Hlaváč, V.: Počítačové vidění. Grada, Praha 1992
[2] Besl, Paul J.; N.D. McKay (1992). "A Method for Registration of 3-D Shapes". IEEE Trans. on Pattern
[3] R. Mur-Artal, J. D. Tardós, "ORB-SLAM2: An open-source SLAM system for monocular stereo and RGB-D cameras",
IEEE Trans. Robot., vol. 33, no. 5, pp. 1255-1262, Oct. 2017.

Name and workplace of bachelor’s thesis supervisor:

Ing. Jan Chudoba, Intelligent and Mobile Robotics, CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2019Date of bachelor’s thesis assignment: 09.01.2019

Assignment valid until: 30.09.2020

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Jan Chudoba
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

2

Chapter 1
Introduction

1.1 Context

SLAM, which is an abbreviation for Simultaneous Localization And Mapping,
has been the main research interest in robotics for more than thirty years
and to this day is considered one of the most fundamental problems in mobile
robotics. As the name suggests, the goal is to build a map of the unknown
environment while also keeping track of a position in said map. In other
words, an input to SLAM algorithms are sensor measurements and optionally
control inputs, the output of SLAM is a location inside the map and optionally
also the map itself.

This work deals with a subset of SLAM problems, called RGB-D SLAM,
where the only or one of the sensors is a stereo camera. Unlike a regular
camera, which provides a two-dimensional representation of three-dimensional
scene without depth information, the stereo camera is able to capture a three-
dimensional image, sometimes called scans. This approach to SLAM has been
on the rise in recent years because it simulates human binocular vision and
the way humans use eyes to navigate.

The goal of this thesis is to find one or more suitable methods for RGB-D
SLAM and conduct practical experiments. In order to do so it is also needed
to get familiar with stereo cameras in general and understand how the 3D
scene is captured.

1.2 Structure

My thesis can be divided into three main parts. The first part provides a brief
overview of mathematical constructs used in this work while also getting the
reader familiar with a basic camera model. This knowledge is then expanded
to build a simple yet accurate model of a stereo camera. Also, hardware and
software parameters of the device used for practical experiments, ZED Stereo
Camera, are discussed.

3

1. Introduction
Next part deals with RGB-D SLAM, first it defines the problem itself while

also stating the most prominent challenges. It gives a theoretical overview of
used algorithms, while also presenting details about respective implementa-
tion. Other approaches to the problem are also discussed and referenced.

Last part is the center of this work. It describes practical experiments and
gives an overview of obtained results. Those results are then employed to a
more practical problem of SLAM with a mobile robot.

4

Chapter 2
Mathematical apparatus

In this chapter, I would like to give a short overview of the mathematics used
throughout the thesis. Also, important conventions are set here, which are
used and respected throughout the whole work.

First, I outline ways of representing rotation in R3 space and discuss met-
rics of rotation, then I describe homogeneous coordinates and how to use this
mathematical construct to transform between different coordinate systems.
Also, a topic of determining the difference between two rotations (metric) is
discussed.

Let me first make a few remarks. Throughout the thesis, unless stated
otherwise, I will use a right-handed Cartesian coordinate system. The default
unit of distance will be meter and radians will be used for angular distance.

2.1 Rotation matrix

Perhaps the most straightforward way to represent the rotation of an object
is to use a rotational matrix. Rotation matrix is 3x3 matrix in general form
as follows

R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 . (2.1)

One way to construct such a matrix is to use a formula, which represents
rotation around one of the principal axes as defined in [2]. Rotation matrix
representing rotation of angle γ around z axis

Rz(γ) =

 cos(γ) −sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

 (2.2)

then rotation matrix representing a rotation of the angle β around new y axis

Ry(β) =

 cos(β) 0 sin(β)
0 1 0

−sin(β) 0 cos(β)

 (2.3)

5

2. Mathematical apparatus
and rotation matrix representing a rotation of the angle α around new x axis

Rx(α) =

 1 0 0
0 cos(α) −sin(α)
0 sin(α) cos(α)

 . (2.4)

To represent full rotation, which consists of 3 DOF, three consecutive rotations
must be used. This is achieved by simple matrix multiplication

R = Rz(γ)Ry(β)Rx(α). (2.5)

2.2 Euler angles

Another way to represent rotation is to use Euler angles. Euler angles are a
set of three numbers, each representing rotation around the previously defined
axis.

In my work I use yaw (γ), pitch (β) and roll (α) convention (in order), this
means rotation around z axis, new y axis and new x axis, as can be seen in
figure 2.1.

x

y

z

yaw

pitch
roll

Figure 2.1: Definition of Euler angles.

Euler angles are not redundant, are relatively easily interpreted, but suffer
from gimbal lock problem. Also, there is no direct formula for rotating a
vector using Euler angles. For that we can use, among others, corresponding
combination of equations 2.4,2.3 and 2.2 or convert them to quaternions.

2.3 Quaternion

Quaternion, as defined in [2], has following equation

q = w + xi+ yj + zk (2.6)

6

............................... 2.4. Homogenous coordinates

where w is real number and x, y, z represent imaginary parts. In this work I
will use unit quaternion, which satisfies a condition |q| = 1. To rotate vector
r by quaternion q the following formula can be used

r′ = qrq∗ (2.7)

where q∗ stands for a complex conjugate defined as

q∗ = w − xi− yj − zk. (2.8)

Moreover, a rotation matrix as defined in 2.1 can be constructed directly
from quaternion using a following formula

R(q) =

 1− 2(y2 + z2) 2(xy − zw) 2(xz + yw)
2(xy + zw) 1− 2(x2 + z2) 2(yz − xw)
2(xz + yw) 2(yz + xw) 1− 2(x2 + y2)

 . (2.9)

Using quaternion it is possible and also convenient, according to [3], to
represent the difference between two rotations. This mapping is also called
metric and can be obtained using following equation

α = 2 arccos(|q1 · q2|), (2.10)

which will be my default metric to evaluate error between two rotations.

2.4 Homogenous coordinates

Most of my thesis deals with transitions between different coordinate sys-
tems, to achieve this task I use homogeneous coordinates. If x,y and z are
regular Cartesian coordinates in R3 space, then we can define homogeneous
coordinates as follows

r =

x
y
z
w

 (2.11)

where w stands for scale. To transform between non-homogeneous and
homogeneous coordinates we can use following relations

 x
y
z

→

x
y
z
1

 (2.12)

x
y
z
w

→
 x/w
y/w
z/w

 . (2.13)

7

2. Mathematical apparatus
One advantage of using homogeneous coordinates is possibility of constructing
a transformation matrix, representing rotation and translation, defined as
follows

A =
[

R t
0 1

]
. (2.14)

Transformation matrix A represents translation and orientation of an object
and is sometimes called pose. To transform a vector in homogeneous, coor-
dinates we multiply the vector by the transformation matrix on the right
side

r′ = Ar. (2.15)

In some cases it is required to apply multiple transformations in a row, using
homogeneous coordinates this can be achieved by matrix multiplication of
consecutive transformations between coordinate systems 0,1,...,n as

A0
n = A0

1A1
2...An−1

n . (2.16)

Throughout the thesis A(q, t) notation is used, which represents transfor-
mation matrix as defined in 2.14, but constructed using quaternion q and
translation vector t as

A =
[

R(q) t
0 1

]
. (2.17)

8

Chapter 3
Camera model

The goal of this chapter is to propose a suitable mathematical model of passive
stereo camera and outline ways to use said model for 3D reconstruction. First,
a standard pinhole camera model is introduced, which is later expanded by
accounting for various distortions. Then I highlight a way to obtain depth
from a pair of regular cameras.

3.1 Pinhole camera model

3.1.1 Projection equation

Figure 3.1 shows four important coordinate systems with all four of them
using homogeneous coordinates. I will adopt notation used in [4]. The first co-
ordinate system with origin Ow represents the world coordinate system. Then
there is Oc, which stands for camera coordinate system, which is positioned
in a way that Zc axis is aligned with camera optical center with Yc axis facing
down. The third coordinate system represents a normalized image plane with
origin oi and last coordinate system, which represents an image influenced
by intrinsic camera parameters, with origin oa also located on the image plane.

Transformation from Ow to Oc, also called extrinsic camera matrix, can be
expressed using homogeneous coordinates as

E =

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

 . (3.1)

Matrix E is transformation matrix as defined in equation 2.14,thus repre-
senting rotation and translation. Now matrix representing projection from
camera coordinate frame Oc to normalized image plane oi can be written as

H =

 1 0 0 0
0 1 0 0
0 0 1 0

 . (3.2)

9

3. Camera model

Ow

C=Oc

X

Zc

XcYc

Oi=Oa

wi optical axis

ui

ua

vi

va

wa

Xw

Yw

Zw

u

u0

Figure 3.1: Coordinate system definition for pinhole camera model.

Matrix representing camera intrinsic parameters and transformation to coor-
dinate system oa is defined as

K =

 fx s −u0
0 fy −v0
0 0 1

 (3.3)

where fx and fy are focal lengths in respective axis in meters, u0 and v0 are
coordinates of the principal point u0 also in meters and s represents shear
parameter, which is sometimes omitted. Equations 3.1,3.2 and 3.3 together
form a camera matrix defined as

M = KHE. (3.4)

It is important to note that in most of the software used in this thesis, I
represent the focal length and principal point in pixels. To convert from
distance unit to pixel unit, a simple formula can be used

fp = mfd. (3.5)

Value m has units [pixel/meter] and represents pixel density, value fd repre-
sents focal length/principal point in [meters] and fp represents the same, but
in [pixel] units.

The complete process of projection from the 3D world coordinate system
to 2D image coordinate system is then defined as follows in equation

10

.................................3.1. Pinhole camera model

 u
v
w

 =

 fx s −u0
0 fy −v0
0 0 1

 1 0 0 0

0 1 0 0
0 0 1 0

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

Xw

Yw
Zw
1

 .
(3.6)

3.1.2 Distortion model

Radial distortion

(a) : undistorted image (b) : distorted image

Figure 3.2: Radial distortion.

The ideal pinhole camera model does not account for lens distortion, which
especially in cheap cameras, can be quite substantial. It is mostly visible
when taking pictures with visible straight lines. Lines passing image center
will appear undistorted, but lines farther away from the center will appear
curved as seen in figure 3.2. One obvious solution to solve such a problem
is to use lens with minimal optical deficiency. That might not always be
an option considering price and desired accuracy. One way to address this
issue is to use a software correction. As proposed by [5], radial distortion
can be represented as a polynomial of even degree, with second degree term
accounting for most of the distortion. With this knowledge, radial distortion
can be modeled as

xd = x(1 + k1r
2 + k2r

4 + k3r
6) (3.7)

yd = y(1 + k1r
2 + k2r

4 + k3r
6) (3.8)

r2 = x2 + y2 (3.9)

where x, y stand for undistorted pixel coordinates xd, yd for distorted pixel
coordinates and parameters k1, k2, k3 are called radial distortion coefficients.
These parameters are either provided by lens manufacturer or have to be
estimated.

11

3. Camera model
Tangential distortion

Tangential distortion occurs when the lens and a camera sensor are not in
parallel. Result of this distortion is an image tilt around one or both of the
image axis. Although this kind of defect is usually not as substantial as radial
distortion, it can be corrected by the following equations

xd = x+ (2p1xy + p2(r2 + 2x2)) (3.10)

yd = y + (p1(r2 + 2y2) + 2p2xy) (3.11)

where x, y stand for undistorted pixel coordinates xd, yd for distorted pixel
coordinates and parameters p1 and p2 are tangential parameters and r is
defined by equation 3.9.

3.2 Stereo camera rig

The motivation behind this section is to devise a way to estimate depth from
two images using two cameras in a special configuration. Depth estimation is
typically done in three steps:..1. Establishing constraints based on known information about both cameras,

e.g. extrinsic and intrinsic camera parameters...2. Finding correspondences between pixels in the left and the right image...3. Using found correspondences to estimate depth.

The task of reconstructing 3D scene is non-trivial and in some cases, also
impossible as discussed later on.

3.2.1 Epipolar geometry

In order to make finding correspondences easier, it is desirable to apply as
many constraints as possible. One of those constraints is an epipolar con-
straint, as mentioned in [6]. In figure 3.3 a basic stereo setup can be seen.

Points e and e′ are called epipoles. It is obvious that epipole e′ is projection
of the optical center C in the image plane of the left camera and vice versa.
From vectors u and e a line can be constructed representing all possible
locations of u′ in the left image plane. Thus epipolar constraint restricts
search for pixel correspondences from 2D space (whole image) to 1D space
(line).

Searching for correspondences can be further simplified with rectified
camera configuration. To define such configuration of cameras k and k′ with
their respective optical centers C and C′ and image planes p and p′ . Then
we call k and k′ a rectified configuration iff p1 and p2 coincide and line CC′

is parallel to p and p′ .

12

.................................. 3.2. Stereo camera rig

In rectified camera configuration epipoles e and e′ lie in infinity. This makes
lines ue and u′e′ horizontal and thus matching correspondences becomes
more convenient.

Xc

C C'

u

e

u'

e'

left camera right camera

Figure 3.3: Epipolar geometry.

3.2.2 Finding correspondences

The most difficult part of a 3D scene reconstruction process is to find pixel
correspondences between a pair of images.This can either be done manually or
more preferably by correspondence matching algorithm. Many such algorithms
were proposed over the years, and more approaches are being researched even
now. Two most prominent categories of algorithms are:

. Correlation-based block matching.

. Feature-based correspondence matching.

Correlation-based block matching algorithms use a premise that cor-
responding pixels have similar intensity levels. Although intensity alone is not
enough to find correspondences, neighbouring pixels can also be considered
and thus forming a block of pixels. This block is then searched for in the
other image based on a metric.

Feature-based correspondence matching algorithms usually work in
two steps. First "features" features are extracted from images and then
matched between images. Some examples are SURF features [7], SIFT [8] and
ORB [9]. An in-depth explanation of above features is beyond a scope of this
thesis. However, general idea common to these algorithms is to use distinctive
points in an image to generate a feature descriptors. This description can
then be used to identify and register key points. It is desirable for these
descriptor generators to offer some "resistance" to changes in illumination,
scale or noise.

13

3. Camera model
3.2.3 Estimating depth

Based on the knowledge presented in previous chapters I am now able to
estimate depth from stereo camera rig, but first a few assumptions have to
be made:. Intrinsic parameters of both cameras are known and are presumed to be

the same.. Cameras are in rectified configuration.. Baseline, the distance between optical centers of both cameras, is known.

Xc

b

C C'x

z

x'

z'

f

u u'

Figure 3.4: Estimating depth from rectified stereo setup.

First, a term called disparity should be defined. It is the difference in horizon-
tal coordinates of corresponding image points, therefore can be represented
by the following equation

d = u
′ − u. (3.12)

Looking at figure 3.4 there are two coordinate systems with origins C and
C′ representing right and left camera. All points will be in the coordinate
system of the left camera with origin C. The right camera coordinate system
is for illustration. To reconstruct point in the 3D scene, I start with the use
of triangle similarity

u

f
= −x

z
(3.13)

u
′

f
= −b− x

z
. (3.14)

Combining equation 3.13, 3.14 and 3.12 while eliminating x, depth information
z can be recovered as

z = bf

d
. (3.15)

14

.................................. 3.2. Stereo camera rig

Similarly from equations 3.13, 3.14, 3.12 and eliminating z, it is possible to
calculate x coordinate as

x = −b(u+ u
′)

2d . (3.16)

Using assumption about rectified stereo camera configuration as stated before:

v = v
′ (3.17)

To obtain the last coordinate y, once again similar triangles can be used as
v

f
= y

z
. (3.18)

Plugging equation 3.15 into 3.18 last 3D coordinate y can be obtained as
follows

y = bv

d
. (3.19)

3.2.4 Error modeling

As suggested in [10] depth error can be obtained by differentiating equation
3.15 with respect to disparity as

δz

δd
= −bf

d2 . (3.20)

Substituting eq. 3.15 to 3.20 and rearranging the equation following relation
can be obtained

|δz| = z2δd

bf
(3.21)

where f is focal length, b denotes baseline and δd stands for disparity error.
It is important to note the interpretation, error in depth estimation grows
quadratic-ally with distance.

15

16

Chapter 4
ZED Stereo camera

This chapter contains a description of used stereo camera sensor used in my
thesis. ZED Stereo Camera was provided by my supervisor Ing. Jan Chudoba.
First important hardware specifications are outlined, and then I give a brief
overview of ZED native SDK.

4.1 Hardware description

ZED Stereo Camera is a passive stereo device developed by Stereolabs Inc.
and as such knowledge about under the hood hardware is limited to the
public. For illustration, I include a picture of ZED Stereo Camera along with
product dimensions in figure 4.1.

(a) : photo of ZED camera [11]

175 mm

30 mm

120 mm

(b) : schematics with dimensions

Figure 4.1: ZED Stereo Camera illustration.

In table 4.1 general hardware specifications are presented as listed in [11].
For experiments, I decided the lowest resolution because the goal of this
thesis is to design SLAM solution capable of real-time operation and for this
resolution, ZED Stereo Camera provides reasonable 100 frames per second.

Each camera comes with a unique factory calibration file, which is down-
loaded automatically. Camera calibration parameters unique for ZED Stereo
Camera used in this thesis are in table 4.2. The notation is the same as in
chapter 3. It is important to note that calibration file from Stereolabs Inc.
completely omits tangential distortion and shear parameter s and uses only
the first two terms of radial distortion. This approximation should not have
a huge influence on accuracy, because as mentioned earlier, their magnitude
in modern digital cameras is minimal.

17

4. ZED Stereo camera
Parameter Value

Resolution (side by side) 4416 x 1242 pixels with 15 FPS
with respective max. FPS 3840 x 1080 pixels with 30 FPS

2560 x 720 pixels with 60 FPS
1344 x 376 pixels with 100 FPS

Baseline 200 mm
Depth range 0.5 - 20 m

Table 4.1: ZED Stereo Camera hardware specifications.

Parameter Left camera Right camera

fx [pixels] 350.034 349.87
fy [pixels] 350.034 349.87
u0 [pixels] 358.473 346.888
v0 [pixels] 206.673 201.366
k1 [-] -0.173 -0.170
k2 [-] 0.027 0.026

baseline [mm] 119.907

Table 4.2: ZED Stereo Camera calibration parameters for WVGA resolution.

4.2 Software interface

The exact process how camera estimates depth was not at the time of writing
of this thesis has not been made public, however due hardware nature of this
sensor it is safe to say it follows the process outlined in section 3.2 with some
unknown modifications.

The camera itself is controlled by C++ ZED SDK with online documenta-
tion which can be found in [12]. Mentioned API provides means to capture
regular images, depth maps, video and also incorporates its own SLAM
method.

Typical usage of said SDK resolves around Camera class. First, Camera
object is created which is then provided with InitParameters which defines
resolution, FPS and also defines the coordinate system in which all data is
received. Data can then be obtained using grab() method. Output of the
stereo camera is 2D RGB image and corresponding depth map, which is then
re-projected into a 3D colored point cloud. Result can be seen in figure 4.2.

18

.................................. 4.2. Software interface

(a) : Image of the scene.

(b) : Reconstructed scene as 3D colored point cloud.

Figure 4.2: Illustration of ZED Stereo Camera 3D reconstruction.

19

20

Chapter 5
RGB-D SLAM

This chapter should give a potential reader an overview of RGB-D SLAM
problem, outline used solutions and present other approaches. Furthermore I
discuss implementation details of SLAM algorithms.

5.1 Problem definition

RGB-D SLAM is a specific case of Simultaneous Localization And Mapping
where a 3D colored point cloud serves as an input. The output is a camera
pose, which is represented by a transformation matrix as defined in equation
2.14. To get a more formal definition, let me denote Zi a 2-tuple of stereo
camera measurement Xi and associated time ti. RGB-D SLAM is then a map-
ping which assigns a pose Ai(q, t), consisting of quaternion q and translation
vector t, to every Zi for i = 1,2,...,N , where N is a number of measurements.

The stereo camera measurement Xi is represented as a 3D colored point
cloud. To define such a term let me first consider a set of vectors P =
{x1,x2, ...,xn} where xi ∈ R3. The set P is called a 3D point cloud. Now
consider a mapping c: xi −→ V where V is an RGB color space and xi ∈ R3.
Then the 3D colored point cloud is a 2-tuple of P = {x1,x2, ...,xn} and
C = {c(x1), c(x2), ..., c(xn)} .

The uniqueness of this problem comes from providing two kinds of infor-
mation at the same time. It provides pure geometric information as a regular
3D point cloud, but also providing a corresponding 2D colored image aligned
with the said point cloud. Therefore it is obvious that most of the approaches
trying to solve RGB-D SLAM problem will either try pure geometric approach,
image feature based approach or their combination [13].

There are many difficulties when solving RGB-D SLAM. The most promi-
nent among them is time and space algorithmic complexity. Typical 3D
colored point cloud needs seven numbers to represent a point, considering x,
y, z components of position and R, G, B, alpha color channels. If a stereo
camera with n x n resolution is considered, for each scan 7n2 numbers are
generated. Although there are more compact representations of 3D scans,

21

5. RGB-D SLAM
curse of dimensionality can not be eliminated. This proves especially prob-
lematic if a long term navigation over a large distance is required.

Also dealing dealing with outliers, caused for example by improper 3D scene
measurement, can prove to be quite problematic. Another common problem
is caused by uniform environment. Imagine now a simple scene consisting of
a perfectly flat wall. For a human observer, the scene is understandable, but
for RGB-D SLAM algorithm there are no geometric nor visual features to
navigate by.

Problem constraints. The camera is able to move and rotate in all three axes. Thus every pose
of the camera has 6 DOF.. Considering the purpose of mobile robot and human localization, I will
consider the maximum translation velocity of ≈ 1.5m/s and angular
velocity of ≈ 25◦/s. Such speeds are more than sufficient for a human
or a mobile robot, while also allowing me to neglect the effect of rolling
shutter.. As stated before uniform environments (empty halls) are a difficult
task, for that reason, I will limit the experiments to places with visual
landmarks (office, forest, etc).. Because I am using a passive stereo camera, there must be enough
illumination. Only sufficiently lit (> 80 lux) environments (common
classroom with lights on) will be considered, thus excluding poorly lit
environments (dark rooms, nighttime, etc).. Considering the range of ZED Stero Camera, it is required for robot or
human to be within the sensor distance of the scene. In other words, I
will consider a ground robot or a low flying UAV (<10 m of height).. Algorithm should be able to work in real-time. However, it is difficult to
give a general definition of real time, so for my purposes, I will consider
0.5 FPS as a boundary.

5.2 Other approaches

5.2.1 RTAB-Map

RTAB-Map as described in [14] is a graph-based SLAM approach. Unlike
previously mentioned SLAM algorithms it has native support for odometry
as a direct input. It relies on feature extractor GFTT [15] and BRIEF feature
descriptor [16] for pose estimation. SLAM problem is represented as a graph
where every node corresponds to a pose of the robot, and every edge marks a

22

.................................... 5.3. Used solutions

constraint between them. This graph is then continuously optimized based
on new measurements and loop detection.

5.2.2 Direct RGB-D SLAM

The approach developed in [17] is unique a solution to RGB-D SLAM, because
instead of relying on feature extraction, it operates directly on pixel intensities.
It uses an assumption that if 3D point x is a pixel u in the first image and
pixel u′ in the second image then

I(u) = I(u′) (5.1)

where I is a pixel intensity. This assumption is also called photo-consistency.
Direct RGB-D SLAM then tries to find an optimal transformation A by max-
imizing photo-consistency while at the same time minimizing the difference
between the predicted and the actual depth measurement, thus obtaining
camera motion.

5.3 Used solutions

In this section, I will provide a more in-depth overview of RGBD-SLAM
algorithms used in this thesis. First, the general idea is presented and their
respective implementations are discussed. In total, I have tested three RGB-D
SLAM approaches. ICP algorithm was chosen as an example of shape based
approach and ORB-2 SLAM represents feature extraction group of RGB-D
SLAM algorithms. ZED SLAM is also tested as it is conveniently included in
the ZED SDK.

5.3.1 ICP SLAM

Principle

Iterative closest point algorithm as proposed by [18] works generally in three
steps. An input is a point set of a new unregistered scan P = {p1,p2, ...,pn}
pi ∈ R3 and X = {x1,x2, ...,xn} xi ∈ R3 which denotes our base scan to
match P against. First step is to find corresponding point xi in X for every
pi in P . In other words it is required for every pi to find minimal distance
from point set X. This process can be described by equation

d(p, A) = min d(p,ai) i ∈ {1, 2, .., N}. (5.2)

With set correspondences, next step is to find a transformation A(q, t),
consisting of quaternion q and translation vector t, for which the distances
between corresponding points will be minimal. This can be done with mean
square error function

e(q, t) = 1
Np

Np∑
i=1
|xi −R(q)pi − t|2 (5.3)

23

5. RGB-D SLAM
whereNp is number of correspondences. Then optimal transformation between
point sets can be acquired as

A(q, t) = arg min
q,t

e(q, t). (5.4)

Now to put this all together into a complete ICP algorithm:..1. Considering a new unregistered scan P and a base scan X compute
d(pi, X) ∀pi ∈ P ...2. Minimize error function e(q, t) and retrieve optimal transformation
A(q, t)...3. Apply resulting transformation A(q, t) on P ...4. Repeat steps 1-3 until terminating condition (required precision, number
of iterations) is met.

Implementation

The implementation included in MRPT [19] has in total, five settings and
can be described with pseudo-code as follows:

Algorithm 1 Iterative closest point
1: i← 0
2: Pose(i)← Pose(0)
3: while i < maxIterations or thresDist > thresDistMin do
4: matchings←matchPoints(m1,m2)
5: Pose(i+ 1)← leastSquare(matchings))
6: if |Pose(i+ 1)− Pose(i)| < err then
7: thresDist← thresDist ∗ alpha
8: thresAngl← thresAngl ∗ alpha
9: i← i+ 1

With following parameters:..1. maxIterations defines a maximum number of iterations before the
algorithms terminates..2. alpha scaling constant for pose transformation correction..3. theresDist maximal translational distance for which points are consid-
ered to correspond with each other..4. theresAngl maximal angular distance for which points are considered
to correspond with each other..5. theresDistMin distance for which algorithm terminates

24

.................................... 5.3. Used solutions

My program then takes a new scan and tries to align it relatively to the
previous scan. This is done in an endless loop and thus it keeps building
the map from registered scans until terminated. Overview of the process is
outlined in figure 5.1. This approach is implemented in icp_slam.

Figure 5.1: Flowchart of ICP scan alignment.

5.3.2 ORB2 SLAM

ORB features

ORB-2 SLAM uses ORB features [9], which as the full name Oriented FAST
and Rotated BRIEF suggests have two main components FAST [20] key
feature detector and BRIEF[16] feature descriptor.

FAST is a corner detection method. Considering pixel p which is to be
tested for being FAST feature and Bresenham circle around the pixel p with a
radius of three. Then all pixels inside the circle are sorted into three categories
based on their intensity: darker than p, lighter than p and similar intensity
to p. If 8 consecutive pixels are darker or lighter than p, then p is considered
as FAST feature.

There is an obvious problem with scale variance, which is handled by
constructing a pyramid with original image on base level. Then on every
other level is a down sampled (zoomed) version of the image on previous level.
FAST features are then extracted from the whole pyramid instead of just
the original image. This approach offers partial scale in-variance at cost of
increased computational time.

To determine corner orientation pixel intensity moment of p+q order,

mpq =
∞∑

u=−∞

∞∑
v=−∞

upvqI(u, v) (5.5)

where u,v are pixel coordinates and I(u, v) denotes pixel intensity, can be
used. Orientation of corner is then easily extracted as

θ = atan2(m01,m10). (5.6)

25

5. RGB-D SLAM
BRIEF takes FAST features found by the FAST algorithm and converts

it into a binary feature vector representing N bit binary string. To construct
such a string BRIEF chooses N random pixel pairs px and py in the pixel
neighbourhood and performs a binary test defined as

τ(px, py) =
{

1 I(px)< I(py)
0 I(px) ≥ I(py)

(5.7)

where I(p) represents pixel intensity. The whole binary string is then itera-
tively constructed as

f(n) =
N∑
i=1

2i−1τ(px, py). (5.8)

The problem is that BRIEF descriptor can not deal with the rotation of key-
points. ORB proposes a method to steer BRIEF according to the orientation
of key-points.

Principle

Next SLAM algorithm is ORB2 SLAM as devised by [1]. Overview of the
whole system can be seen in fig. 5.2.
ORB2 SLAM utilizes three parallel threads. First thread performs tracking

Figure 5.2: ORB-2 SLAM architecture overview.[1]

with every new frame by finding key feature matches in the local map with
the help of motion-only Bundle Adjustment. Second thread maintains a local
map using local Bundle Adjustment. Third thread performs detection of
loops in the map and in case a loop is found starts another thread which
performs global Bundle Adjustment.

Considering m points in a 3D scene which are denoted xi and n camera
views which are represented by camera matrix Mj Bundle Adjustment as
defined in [4] can then be formulated as an optimization problem as

min
xi,Mj

m∑
i=1

n∑
j=1

(mj
1xi

mj
3xi
− ujj

)2

+
(

mj
2xi

mj
3xi
− ujj

)2 (5.9)

26

.................................... 5.3. Used solutions

where mj
i denotes i-th row of camera matrix Mj as defined in equation 3.4.

Implementation

ORB-2 SLAM implementation can be found on Raul Mur-Artal Github
repository[21]. In my thesis I use version based on commit with the specified
SHA-1 hash f2e6f51cdc8d067655d90a78c06261378e07e8f3.

Implementation takes the following arguments tied to feature extraction:..1. nFeatures defines number of ORB features extracted per frame..2. nLevels determines number of levels in the scale pyramid..3. scaleFactor scaling factor between levels in the scale pyramid..4. iniThFAST thereshold for FAST extraction..5. minThFAST thereshold for FAST extraction in case of no extracted
corners

Also to reconstruct 3D points, ORB-2 SLAM needs camera calibration param-
eters from section 4.1 excluding distortion parameters, because ZED Stereo
Camera provides already corrected images and bag of binary words used in
BRIEF stage. This approach is implemented in orb2_slam.

5.3.3 ZED SLAM

Principle

ZED SLAM is a commercial SLAM implementation by Stereolabs Inc. and
the time of writing this thesis said company have not made their algorithm
public, and their description of the used algorithm is relatively vague.

"The ZED uses visual tracking of its surroundings to understand the
movement of the user or system holding it. As the camera moves in the

real-world, it reports its new position and orientation. This information is
called the camera 6DoF pose. Pose information is output at the frame rate of

the camera, up to 100 times per second in WVGA mode."
[22, Stereolabs Inc.]

Due to the nature of the ZED Stereo Camera, I will try to make an educated
guess, but first I would like to list a few observations:. ZED SLAM implementation runs on the same frequency as image acqui-

sition.. Some key features of unknown nature are already extracted in order to
reconstruct 3D scene.. ZED SLAM can keep a local map of the camera surroundings.

27

5. RGB-D SLAM
Based on these observations my hypothesis is that their software keeps track
of previously extracted features from correspondence determination step of
3D reconstruction. ZED SLAM then reuses those features to compute optimal
transformation between scans. This pose can later be refined based on some
kind of local map, possibly with a loop closure detection algorithm.

The fact that ZED SLAM implementation is not known does not bring any
new value from the scientific point of view but serves as a comparison between
a finished commercial product and public open source implementation of
published approaches from scientific community.

Implementation

ZED SLAM implementation has the following parameters:..1. initial_world_transform defines an initial position of the camera in
the world coordinate frame..2. enable_spatial_memory enables ZED to keep a local map..3. enable_pose_smoothing provides pose refinement based on interpo-
lation between poses..4. set_floor_as_origin initializes the tracking aligned with the ex-
tracted floor plane

Due to nature of use (via ZED SDK), it is not implemented as standalone
software, but is a part of data_gatherer program.

28

Chapter 6
Practical experiments

In this chapter, I describe the testing environment in which all of the practical
experiments were conducted. In addition obtained results are presented and
evaluated.

6.1 Lab environment

For capturing of datasets and processing point clouds I used laptop ASUS
ROG GL702VT with CPU IntelCore i76700HQ and dedicated graphic
card NVIDIA GeForce GTX 970M. As an operating system I used Linux
Ubuntu 18.04.2 LTS. Experiments were conducted with NVIDIA CUDA
V9.0.176 and graphic card driver version 390.116.

For comparison of SLAM algorithms, computational time and accuracy
are generally used as those are two most defining factors. Time is easily
measured by computer, that is performing SLAM, accuracy, on the other
hand, is much more complicated problem. There are multiple approaches to
evaluating accuracy of SLAM algorithms. The one I use in this project works
by capturing the motion of the stereo-camera with an external device and
pairing each stereo camera measurement with the corresponding location and
thus creating the "ground-truth".

For capturing "ground-truth", I used Vicon [23] motion capture system.
Illustration of a laboratory environment used to capture "ground-truth" can
be seen in fig. 6.1. ZED Stereo Camera is provided with special markers
which are then tracked by multiple cameras in Vicon system.

Vicon provides 6 DOF position, which is relative to Vicon coordinate
system. For experiment evaluation, I needed "ground-truth" relative to first
measurement of ZED. This is easily accomplished by measuring transformation
A(q, t) from origin of Vicon o to origin of coordinate system of the the first
measurement o′ and constructing inverse of said transformation. The new
transformation A′i relative to the first measurement is then obtained as

A′i = A−1(q, t)Ai (6.1)

29

6. Practical experiments

x

y

z

O

x'

y'

z'

O'q,t

cam cam cam cam

Figure 6.1: Vicon setup for measuring data-sets with ground truth.

where Ai is transformation relative to Vicon coordinate system and q is
quaternion representing orientation and t is translational vector.

For capturing datasets with corresponding ground truth software called
data_gatherer was developed. There are two parallel threads, first one gathers
measurements from the stereo camera using ZED SDK and every time a new
measurement is captured, it starts three new threads, to save an image, a
binary depth map and a depth map as a picture. Second thread continuously
receives ground truth measurements from Vicon using TCP/IP protocol.

6.2 Setting up algorithms

It is needed to find out the proper settings of previously stated algorithms.
In order to do so, I captured two training datasets. These will be used to
empirically find out optimal settings. Totally two datasets were collected with
ZED Stereo Camera mounted on a wheeled vehicle to restrict the motion to
two translational DOF and one rotational DOF. For ground truth collection,
I used Vicon motion capture system. The logic behind this approach is that
using restricted motion, it is easier to empirically estimate optimal settings.
Training datasets are not attached because of the large file size. Results,
obtained on training datasets, are included for reference in tables 6.2 and 6.4.
The error was computed between the last output pose of SLAM algorithm
and corresponding ground truth.

30

................................. 6.2. Setting up algorithms

6.2.1 Training dataset 1

Dataset info Value
Trajectory 15.1353 m

Number of scans 864 [-]
Camera FPS 15 FPS

Scan resolution 672 x 376

Table 6.1: Information about first training dataset.

Algorithm Translational error [m] Angular error [◦] Processing time [s]
ICP 1.14 35.886 797.170

ORB-2 0.118 0.834 15.142
ZED 0.480 11.442 57.600

Table 6.2: Evaluation of training dataset 1.

6.2.2 Training dataset 2

Dataset info Value
Trajectory 6.321 m

Number of scans 416 [-]
Camera FPS 15 FPS

Scan resolution 672 x 376

Table 6.3: Information about second training dataset.

Algorithm Translational error [m] Angular error [◦] Processing time [s]
ICP 1.011 3.166 397.373

ORB-2 0.450 1.902 5.206
ZED 0.336 4.284 27.733

Table 6.4: Evaluation of training dataset 2.

6.2.3 Optimal settings

ICP

Finding optimal settings for Iterative Closest Point algorithm proved to be
the most difficult out of all three used algorithms. I was not able to find any
setting for which algorithm runs at the ZED Stereo Camera scanning rate of
15 Hz. Imposing imaginary boundary, for a SLAM algorithm to be considered
real time capable, to be at-least 0.5 FPS, anything more than 100 iterations of
ICP proved to be unacceptable. On the other hand, lowering maxIterations

31

6. Practical experiments
directly impacted resulting accuracy. Parameter theresDistMin was set in a
similar fashion.

Parameters theresDist and theresAngl distance serve as correspondence
rejection attributes. Higher values increase computational time while some-
times increasing accuracy. Lowering said attributes can cause too few cor-
respondences to be found, thus making it impossible to find the correct
transformation between scans. Settings for which ICP performed best on
training datasets can be seen in table 6.5.

Parameter Value
maxIterations 100

alpha 0.5
theresDist 0.05
theresAngl 0.01

theresDistMin 0.1

Table 6.5: Empirically determined ICP SLAM settings.

ORB-2

Attribute nFeatures sets an upper boundary to the number of extracted
ORB features. Raising above 1000 features did not improve accuracy while
only increasing run time and around 500 I noticed a decrease in precision,
thus optimal value I find to be 800. Next pair of parameters is nLevels
and scaleFactor both are tied to FAST feature extraction scale pyramid
explained in section 5.3.2. Setting nLevels to higher values improves partial
scale variance, but increases computational time.

For example, for close quarters, it makes sense to set this parameter to
lower values because the change in scale of the features is minimal. On the
other hand consider a stereo camera mounted on the front of a moving car
with optical axes collinear to the direction of motion, in this case, there is
a considerable change in scale between each frame and number of detected
features can be greatly improved. Parameter scaleFactor should then be
adjusted according to number of levels and camera resolution. For general
purpose best settings proved to be ten levels of the pyramid with the scale
factor of 1.2. For an outdoor environment with I would advise to increase the
number of levels and to lower scale factor and when deployed to close quarters
or for the purpose of mapping historical monuments to do the opposite.

Last two parameters iniThFAST and minThFAST influences the thresh-
old for sorting pixels into bins during FAST extraction. Adjusting of these
parameters is done according to expected illumination and thus resulting
contrast of images. For darker scenes, they should have a higher value, for
an environment with more illumination lower. Table 6.6 presents settings
for which ORB-2 SLAM performed the best on the training datasets. It
should be noted that slight changes in those parameters did not have a drastic
influence on accuracy.

32

....................................... 6.3. Results

Parameter Value
nFeatures 800
nLevels 10

scaleFactor 1.2
iniThFAST 20
minThFAST 7

Table 6.6: Empirically determined ORB-2 SLAM settings.

ZED

Only parameters which directly affect accuracy are enable_spatial_memory
and enable_pose_smoothing. Setting first parameter to true considerably
improved accuracy on testing datasets. Parameter enable_pose_smoothing
on the other hand lead to false corrections. Full settings can be seen in table
6.7.

Parameter Value
initial_world_transform -
enable_spatial_memory true
enable_pose_smoothing false
set_floor_as_origin false

Table 6.7: Empirically determined ZED SLAM settings.

6.3 Results

This section presents a performance comparison on captured testing datasets.
Testing datasets were captured in the same environment described in section
6.1, but with different trajectories. All algorithms were run with settings
described in section 6.2.3 and were not manipulated or optimized to improve
results on testing datasets. These datasets are complex and non trivial, in
other words, combined translation and rotation is present in all three axes.
Experiments were conducted walking around the laboratory while holding
ZED Stereo Camera in hand.

33

6. Practical experiments
6.3.1 Testing dataset 1

Results

Information about the first testing dataset can be seen in table 6.8, trajectory
value is an absolute distance the camera travelled during the whole dataset.
Results, which seen in table 6.9, are distances between the last output pose
of SLAM algorithm and corresponding ground truth. Processing time for
ZED SLAM is devised from camera FPS, the real computational time can
not be measured directly. It is important to note, that ZED SLAM can run
on 100 FPS for this resolution. Figures 6.2 and 6.3 show instantaneous error
for each pose computed by SLAM algorithm.

Dataset info Value
Trajectory 10.830 m

Number of scans 121 [-]
Camera FPS 15 FPS

Scan resolution 672 x 376

Table 6.8: Information about first testing dataset.

Algorithm Translational error [m] Angular error [◦] Processing time [s]
ICP 2.228 22.686 228.005

ORB-2 0.344 6.795 1.928
ZED 0.578 4.436 8.000

Table 6.9: Evaluation of testing dataset 1.

0 20 40 60 80 100 120
Pose index [-]

0

0.5

1

1.5

2

2.5

E
rr

or
 [m

]

Instantaneous translational error

ORB-2 SLAM
ZED SLAM
ICP SLAM

Figure 6.2: Translational error for dataset 1.

34

....................................... 6.3. Results

0 20 40 60 80 100 120
Pose index [-]

0

5

10

15

20

25

30

E
rr

or
 [°

]

Instantaneous angular error

ORB-2 SLAM
ZED SLAM
ICP SLAM

Figure 6.3: Angular error for dataset 1.

35

6. Practical experiments
6.3.2 Testing dataset 2

Results

Information about the second testing dataset can be seen in table 6.10 and
results can be seen in table 6.11. Figures 6.4 and 6.5 show error for each
computed pose.

Dataset info Value
Trajectory 16.613 m

Number of scans 331 [-]
Camera FPS 15 FPS

Scan resolution 672 x 376

Table 6.10: Information about second testing dataset.

Algorithm Translational error [m] Angular error [◦] Processing time [s]
ICP 3.036 8.488 342.607

ORB-2 0.095 6.452 3.662
ZED 0.044 3.064 22.066

Table 6.11: Evaluation of testing dataset 2.

0 50 100 150 200
Pose index [-]

0

0.5

1

1.5

2

2.5

3

3.5

E
rr

or
 [m

]

Instantaneous translational error

ORB-2 SLAM
ZED SLAM
ICP SLAM

Figure 6.4: Translational error for dataset 2.

36

....................................... 6.3. Results

0 50 100 150 200
Pose index [-]

0

2

4

6

8

10

12

14
E

rr
or

 [°
]

Instantaneous angular error

ORB-2 SLAM
ZED SLAM
ICP SLAM

Figure 6.5: Angular error for dataset 2.

37

6. Practical experiments
6.3.3 Testing dataset 3

Results

Information about third testing dataset can be seen in table 6.12 and results
can be seen in table 6.13. Figures 6.6 and 6.7 show error for each computed
pose. In this dataset camera optical axis is mostly co-linear to motion.

Dataset info Value
Trajectory 24.221 m

Number of scans 727 [-]
Camera FPS 15 FPS

Scan resolution 672 x 376

Table 6.12: Information about third testing dataset.

Algorithm Translational error [m] Angular error [◦] Processing time [s]
ICP 7.418 22.618 970.307

ORB-2 0.991 10.527 13.7595
ZED 1.043 12.836 48.466

Table 6.13: Evaluation of testing dataset 3.

0 100 200 300 400 500 600 700
Pose index [-]

0

2

4

6

8

10

E
rr

or
 [m

]

Instantaneous translational error

ORB-2 SLAM
ZED SLAM
ICP SLAM

Figure 6.6: Translational error for dataset 3.

38

....................................... 6.3. Results

0 100 200 300 400 500 600 700
Pose index [-]

0

5

10

15

20

25

30
E

rr
or

 [°
]

Instantaneous angular error

ORB-2 SLAM
ZED SLAM
ICP SLAM

Figure 6.7: Angular error for dataset 3.

6.3.4 Discussion

It is obvious that ICP SLAM is an inferior approach in both accuracy and
processing time. There is an intuitive explanation for this. Looking at the
captured 3D scan in figure 4.2, one can clearly see there is a lot of "noise" in
the measurement, walls are not perfectly flat, and objects suffer from obvious
deformation. Because in ICP all points are considered equal, even those noisy
points are processed. A possible solution would be to either try correcting
3D scans based on for example plane detection. This could, in theory work,
but would increase the processing time even further.

The other question is why ORB-2 SLAM and ZED SLAM perform much
better. For this, I can also offer an intuitive explanation. When ZED Stereo
Camera reconstructs the 3D scene, it extracts features in both images. It
is obvious that distinctive points (corners, sudden color change, etc.) are
easier to match, than non-distinctive points. This, in turn, means distinctive
points are less likely to be mismatched. ORB-2 SLAM and ZED SLAM
extract features from images which are likely to be a subset of features from
a reconstruction of the 3D scene. This means that both of these algorithms
compute the transformation based on points which have a high chance of
being reconstructed properly. Of course, my statement can not be formally
proven, because the precise process of reconstruction, performed by ZED
Stereo Camera, is not known.

Conducted experiments clearly show, that ICP approach is sub-par com-
pared to other algorithms and that ORB-2 SLAM and ZED SLAM performed
similarly in terms of accuracy.

39

40

Chapter 7
SLAM with a mobile robot

This chapter provides a description of how to incorporate odometry, which is
information provided by wheel odometers of a mobile robot, into previously
proposed SLAM algorithms. Because used robot moves on a plane, constraints
outlined in section 5.1 will be further restricted to 2 DOF of translation and
1 DOF of rotation.

7.1 Theory

7.1.1 Mobile robot

Robot model

To describe robot motion I use a pure kinematic model proposed by [24].
The idea behind this representation is to use state space approach to model
robot kinematics. This has obvious advantage when working with Extended
Kalman Filter as discussed later. If xk, yk and θk denote current states with
xk being x coordinate, yk being y coordinate and θk an angle representing
orientation of the robot, then state space representation can be described as xk

yk
θk

 =

 xk−1
yk−1
θk−1

+

 ∆sk cos(θk−1 + ∆θk/2)
∆sk sin(θk−1 + ∆θk/2)

∆θk

 (7.1)

∆sk = (∆rk + ∆lk) /2 (7.2)

∆θk = (∆rk −∆lk) /b (7.3)

where ∆rk and ∆lk are translational distances of the right/left wheel, which
are treated as control inputs, and b is distance between wheels. It is important
to note that proposed kinematic model is non-linear.

Experimental platform

As experimental platform HUSKY [25] was used. Although this robot has four
wheels it can still be modelled with equation 7.1 provided wheels at the same
side turn at approximately the same speed. Overview of the experimental

41

7. SLAM with a mobile robot...............................
platform can be seen in figure 7.1. ZED Stereo Camera is mounted on the
HUSKY robot with its optical axis being perpendicular to robot motion.

Figure 7.1: Experimental platform consisting of HUSKY robot and ZED Stereo
Camera.

7.1.2 Extended Kalman filter

Principle

Because the robot model presented in section 7.1.1 is not linear, I can not
use regular Kalman Filter [27] for sensor fusion. EKF or Extended Kalman
Filter [26] is an extension of regular Kalman filter for non-linear systems.
Regular KF is an optimal linear quadratic estimator, but for EKF optimality
is generally not guaranteed. Nevertheless, it is still one of the most widely
used algorithms for estimation.

For nonlinear systems discrete time state space model can be represented
as

xk = f(xk−1, uk) + wk (7.4)

yk = h(xk, uk) + vk (7.5)

where functions f(xk, uk) and h(xk, uk) are non-linear vector functions of state
transitions. Vector wk is called process noise and vk is called measurement
noise, both are assumed to be zero mean Gaussian noises.

Extended Kalman Filter works in two steps. First is prediction step de-
scribed by equations 7.6 and 7.7 and update step defined with equations from

42

....................................... 7.1. Theory

7.9 to 7.1.2.

Predict step is performed when the system receives a control input. First,
current estimate of state is predicted using control input and state transition
function

x̂k = f(xk−1, uk) (7.6)

and then state co-variance matrix is adjusted as

Pk = FkPk−1FT
k + GkQkGT

k (7.7)

where Qk is control input co-variance matrix and Fk is Jacobi matrix of
function f(xk, uk) defined as

Fk =

∂f1
∂x1

... ∂f1
∂xn...

∂fm

∂x1
... ∂fm

∂xn

|xk−1,uk

(7.8)

fi marks i-th row of state transition function from equation 7.6 and xj stands
for j-th state variable. Matrix Gk is also Jacobi matrix, but differentiated
with respect to control input variables.

Update step is performed every time a new observation of states zk is
obtained. First innovation ek is computed as

ek = zk − h(xk,uk). (7.9)

Then Kalman gain Kk is computed as

Kk = Pk−1HT
k S−1

k (7.10)

where Hk is Jacobian matrix of function h(xk, uk) differentiated with respect
to state variables and Sk is defined as

Sk = HkPk−1Hk + Rk (7.11)

Using equations 7.9 and 7.10 states can be updated as

x̂k = xk + Kkek (7.12)

with respective state co-variance matrix updated as well

Pk = (I−KkHk) Pk−1. (7.13)

From equations above it is obvious that EKF works similar to KF, but uses
linearization of the state transition and output function.

43

7. SLAM with a mobile robot...............................
Implementation

EKF was implemented using Matlab in ekf. Flowchart of the implementation
can be seen in figure 7.2. The output of the RGB-D SLAM algorithm serves
as state measurement, and odometry is a control input. As state transition
function as described in equation 7.6 I used the kinematic robot model from
equation 7.1, which gives following state space form

xk =

 xk−1 + ∆sk cos(θk−1 + ∆θk/2)
yk−1 + ∆sk sin(θk−1 + ∆θk/2)

θk−1 + ∆θk

 (7.14)

yk =

 xk
yk
θk

 . (7.15)

Constructing Jacobi matrix Fk from 7.14 as outlined in equation 7.8 yields

Fk =

 1 0 −∆sk sin(θk−1 + ∆θk/2)
0 1 ∆sk cos(θk−1 + ∆θk/2)
0 0 1

|xk−1,uk

. (7.16)

Matrix Gk is obtained in similar fashion as

Gk =

cos(θk−1+c)

2 + sin(θk−1+c)∆sk

8
cos(θk−1+c)

2 − sin(θk−1+c)∆sk

8
sin(θk−1+c)

2 − cos(θk−1+c)∆sk

8
sin(θk−1+c)

2 + cos(θk−1+c)∆sk

8
−1

2
1
2

|xk−1,uk

(7.17)
with substitution term c defined as

c = (∆lk −∆rk)
4 . (7.18)

Output matrix Hk is computed from equation 7.15 as

Hk =

 1 0 0
0 1 0
0 0 1

 . (7.19)

Matrices Qk, Rk are estimated empirically, however their exact values is not
as important as their ratio. Also looking at equation 7.7 one can see that Pk

must have a non-zero initial value. P1 represents uncertainty of initial state
and a rule of thumb is to set Pk as Pk := Rk.

44

....................................... 7.1. Theory

Figure 7.2: Flowchart of sensor fusion using EKF.

7.1.3 ICP with odometry

Extending Iterative Closest Point with odometry can be done by using the
output of the equation 7.1 as an initial guess. This should, in theory, decrease
ICP run time and also increase accuracy, if the odometry is precise enough.
Reason for this is, that if scans are already nearly aligned ICP will require
fewer iterations, thus decreasing run time and also there is a lesser chance to
get stranded in local optimum, thus increasing accuracy. Also, the output of
ICP can be improved by merging it with odometry using EKF. Overview of
the whole process can be seen in figure 7.3.

Figure 7.3: Flowchart of ICP scan alignment with additional odometry input.

45

7. SLAM with a mobile robot...............................
7.2 Results

Dataset was captured with data_gatherer program which was extended to
receive odometry via TCP/IP connection from HUSKY robot. Information
can be seen in table 7.1 and results in table 7.2. Figures 7.4, 7.5 and 7.6
represent 2D trajectory of the mobile robot. In each plot, there are four
trajectories: ground truth captured by Vicon, unmodified odometry output
and the comparison of SLAM algorithms versus their respective outputs of
EKF.

Dataset info Value
Trajectory 24.292 m

Number of scans 1245 [-]
Camera FPS 15 FPS

Scan resolution 672 x 376

Table 7.1: Information about first testing dataset.

Algorithm Trans error [m] Angular error [◦] Processing time [s]
ICP + odometry 0.544 7.278 2244.006

ICP + odometry + EKF 0.596 7.394 2244.006 + 0.101
ORB-2 0.118 1.185 24.193

ORB-2 + EKF 0.111 1.171 24.193 + 0.0847
ZED 0.983 9.620 83.000

ZED + EKF 0.940 9.452 83.000 + 0.0803

Table 7.2: Evaluation of testing dataset 1.

46

....................................... 7.2. Results

0 2 4 6 8
X [m]

-2

0

2

4

6

8
Y

 [m
]

Trajectory of HUSKY robot

EKF + ORB-2 SLAM
ground truth
ORB-2 SLAM
odometry

Figure 7.4: Trajectory comparison of ORB-2 SLAM with EKF odometry fusion.

0 2 4 6 8
X [m]

-2

0

2

4

6

8

Y
 [m

]

Trajectory of HUSKY robot

EKF + ZED SLAM
ground truth
ZED SLAM
odometry

Figure 7.5: Trajectory comparison of ZED SLAM with EKF odometry fusion.

47

7. SLAM with a mobile robot...............................

0 2 4 6 8
X [m]

-2

0

2

4

6

8

Y
 [m

]

Trajectory of HUSKY robot

EKF + ICP SLAM
ground truth
ICP SLAM
odometry

Figure 7.6: Trajectory comparison of ICP SLAM with EKF odometry fusion.

7.2.1 Discussion

While there was only a questionable increase in accuracy for ORB-2 SLAM
and ZED SLAM, there was a substantial improvement for ICP SLAM in
terms of overall trajectory. However considering an extremely long run time
compared to the other two algorithms, it is safe to say, that even with the
help of additional sensors, ICP algorithms is not the right approach for ZED
Stereo Camera.

Even though the improvement was only minor for the other two algorithms,
there is also a benefit of not being dependent on only one sensor. For example,
imagine a scenario, with sudden occlusion in camera objective caused by some
external disturbance. Without additional sensors robot would lose track of
the environment and might not be able to localize again, but with odometry
input disturbance recovery is quite simple.

48

Chapter 8
Conclusion

8.1 Evaluation

The first goal of this thesis was to get familiar with a stereo camera as a
sensor providing RGB-D measurements, the second goal of this thesis was
to find one or more SLAM approaches capable of working with the stereo
camera and produce an evaluation in terms of accuracy and computational
time. Both of them were fulfilled and, in addition, this thesis presents a
real-world application with mobile robot navigation.

The most valuable contribution of this work is a detailed performance
analysis of SLAM algorithms with ZED Stereo Camera based on captured
ground truth. Most of the published studies about RGB-D SLAM deal with
the active stereo camera like Microsoft Kinect and not with the passive stereo
devices such as ZED Stereo Camera. In this contex,t my thesis presents
much-needed data.

Based on the results of my study, it can be seen that ICP is generally not
suitable for SLAM with the passive stereo camera as it obviously lacks in
both accuracy and computational time compared to other tested algorithms.
While ORB-2 SLAM performed slightly better ZED SLAM, it is interesting
to note that a commercial product was almost on par with the published
state of the art approach.

Last part of my thesis presented a real-world application of simultaneous
localization and mapping with a mobile robot, using approaches from previous
chapters, which was not necessary to fulfill my bachelor project requirements,
but it fits the context of this work.

8.2 Future work

There are three main areas where this work could progress further, the sensor,
RGB-D SLAM algorithm and application.

ZED Stereo Camera is still lacking in the accuracy (visible just by visual

49

8. Conclusion......................................
inspection), which means results could be improved if company Stereolabs
Inc. improved their product or by using different stereo camera altogether.
Another problem I see with the sensor itself is its dependency on an external
GPU, which poses a difficulty, especially for applications with UAVs. Not
only does an external GPU increases the cost of the whole system, but it also
takes spaces, power and adds weight. One possible solution to some of the
problems would be to implement the 3D reconstruction process on FPGA.

While RGB-D SLAM algorithms are still a hot topic for many researchers,
there is still much work to be done. Although best of the tested algorithms
ORB-2 SLAM showed very promising results and could sometimes correct a
drifting error by performing a loop closure, there is still an obvious bottleneck
for long term navigation (distances in the order of kilometres).

The method proposed in section 7.1.2 could be extended for use with UAVs,
which can prove challenging for a number of reasons. First, there is no such
thing as wheel odometry for UAVs in terms of reliability and sensor cost.
This could be overcome with a fusion of multiple measurements from different
sensors. Another issue with EKF is lack of reliable vector space representation
of rotation, although this problem could be dealt with by using the approach
outlined in [28].

50

Bibliography

[1] Raúl Mur-Artal and Juan D. Tardós. ORB-SLAM2: an open-source
SLAM system for monocular, stereo and RGB-D cameras. IEEE Trans-
actions on Robotics, 33(5):1255–1262, 2017.

[2] Reza N. Jazar. Theory of applied robotics kinematics, dynamics, and
control. Springer, 2 edition, 2010.

[3] Du Q. Huynh. Metrics for 3d rotations: Comparison and analysis.
Journal of Mathematical Imaging and Vision, 35(2):155–164, 2009.

[4] Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image processing, analysis,
and machine vision. Thompson Learning, 3 edition, 2008.

[5] Duane C. Brown. Close-range camera calibration. PHOTOGRAMMET-
RIC ENGINEERING, 37(8):855–866, 1971.

[6] David Forsyth and Jean Ponce. Computer vision: a modern approach.
Pearson, 2012.

[7] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded
up robust features. Computer Vision – ECCV 2006 Lecture Notes in
Computer Science, page 404–417, 2006.

[8] David G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, 2004.

[9] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb:
An efficient alternative to sift or surf. 2011 International Conference on
Computer Vision, 2011.

[10] C. Chang and S. Chatterjee. Quantization error analysis in stereo vision.
pages 1037–1041 vol.2, Oct 1992.

[11] ZED Stereo Camera. https://www.stereolabs.com/zed/. Accessed:
2019-04-11.

[12] ZED API Reference. https://www.stereolabs.com/docs/api/. Ac-
cessed: 2019-04-18.

51

https://www.stereolabs.com/zed/
https://www.stereolabs.com/docs/api/

Bibliography
[13] Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Ren, and Dieter

Fox. Rgb-d mapping: Using depth cameras for dense 3d modeling of
indoor environments. Experimental Robotics Springer Tracts in Advanced
Robotics, page 477–491, 2014.

[14] Mathieu Labbé and François Michaud. Rtab-map as an open-source lidar
and visual simultaneous localization and mapping library for large-scale
and long-term online operation. Journal of Field Robotics, 36(2):416–446,
2018.

[15] Jianbo Shi and Tomasi. Good features to track. Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition CVPR-94,
1994.

[16] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua.
Brief: Binary robust independent elementary features. Computer Vision
– ECCV 2010 Lecture Notes in Computer Science, page 778–792, 2010.

[17] C. Kerl, J. Sturm, and D. Cremers. Dense visual slam for rgb-d cameras.
In Proc. of the Int. Conf. on Intelligent Robot Systems (IROS), 2013.

[18] P.j. Besl and Neil D. Mckay. A method for registration of 3-d shapes.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
14(2):239–256, Feb 1992.

[19] The Mobile Robot Programming Toolkit API Reference. http://mrpt.
ual.es/reference/1.5.5/. Accessed: 2019-04-23.

[20] E. Rosten, R. Porter, and T. Drummond. Faster and better: A machine
learning approach to corner detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(1):105–119, 2010.

[21] ORB2 SLAM Github repository. https://github.com/raulmur/ORB_
SLAM2. Accessed: 2019-04-11.

[22] ZED SDK Documentation. https://www.stereolabs.com/docs/
positional-tracking/#how-it-works. Accessed: 2019-04-18.

[23] Vicon Vantage Motion Capture Camera. https://www.vicon.com/
products/camera-systems/vantage. Accessed: 2019-04-23.

[24] Bruno Siciliano. Robotics: modelling, planning and control. Springer,
2009.

[25] Vicon HUSKY unmanned ground vehicle. https://www.
clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/.
Accessed: 2019-04-28.

[26] Dan Simon. Optimal state estimation: Kalman, H and nonlinear ap-
proaches. Wiley-Interscience, 2006.

52

http://mrpt.ual.es/reference/1.5.5/
http://mrpt.ual.es/reference/1.5.5/
https://github.com/raulmur/ORB_SLAM2
https://github.com/raulmur/ORB_SLAM2
https://www.stereolabs.com/docs/positional-tracking/#how-it-works
https://www.stereolabs.com/docs/positional-tracking/#how-it-works
https://www.vicon.com/products/camera-systems/vantage
https://www.vicon.com/products/camera-systems/vantage
https://www.clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
https://www.clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/

.......................................Bibliography

[27] R. E. Kalman. A new approach to linear filtering and prediction problems.
Journal of Basic Engineering, 82(1):35, 1960.

[28] Christoph Hertzberg, René Wagner, Udo Frese, and Lutz Schröder. Inte-
grating generic sensor fusion algorithms with sound state representations
through encapsulation of manifolds. Information Fusion, 14(1):57–77,
2013.

53

54

Appendix A
List of Mathematical Notation

Symbol Meaning

r Vector of numbers.
A Matrix of numbers.
A−1 Inverse of matrix A.
A Set.
x̂ Estimated value.
q∗ Complex conjugate.
f(x1, x2, .., xn) Scalar function of n variables.
f(x1, x2, .., xn) Vector function of n variables.
∆x Amount of change in variable x between two events.
xk Variable x in discrete time point k.

55

56

Appendix B
List of Abbreviation

Symbol Meaning

DOF Degrees of Freedom.
UAV Unmanned Aerial Vehicles
GPU Graphical Processing Unit
FPGA Field Programmable Array
KF Kalman Filter
EKF Extended Kalman Filter
SLAM Simultaneous Localization And Mapping
RGB Red Green Black
RGB-D Red Green Black - Depth
FPS Frames per second

57

58

Appendix C
DVD Content

File Content

F3-BP-2019-Lukas-Majer.pdf This thesis in PDF format.
icp_slam/ Implementation of ICP SLAM.
orb2_slam/ Implementation of ORB-2 SLAM.
data_gatherer/ Software for capturing datasets.
evaluator/ Software for evaluating SLAM algorithms.
ekf/ Implementation of EKF sensor fusion.
datasets/ Captured datasets used for evaluation.

59

	Introduction
	Context
	Structure

	Mathematical apparatus
	Rotation matrix
	Euler angles
	Quaternion
	Homogenous coordinates

	Camera model
	Pinhole camera model
	Projection equation
	Distortion model

	Stereo camera rig
	Epipolar geometry
	Finding correspondences
	Estimating depth
	Error modeling

	ZED Stereo camera
	Hardware description
	Software interface

	RGB-D SLAM
	Problem definition
	Other approaches
	RTAB-Map
	Direct RGB-D SLAM

	Used solutions
	ICP SLAM
	ORB2 SLAM
	ZED SLAM

	Practical experiments
	Lab environment
	Setting up algorithms
	Training dataset 1
	Training dataset 2
	Optimal settings

	Results
	Testing dataset 1
	Testing dataset 2
	Testing dataset 3
	Discussion

	SLAM with a mobile robot
	Theory
	Mobile robot
	Extended Kalman filter
	ICP with odometry

	Results
	Discussion

	Conclusion
	Evaluation
	Future work

	Bibliography
	List of Mathematical Notation
	List of Abbreviation
	DVD Content

