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Abstrakt / Abstract

Systémy, které vužívají bezpilotních
letounů, vyžadují, aby tyto letouny byly
schopny autonomně přistávat. Tato
práce se soustředí na efektivní detekci
přistávacích vzorů. Tato práce bude
obsahovat návrh vzoru na základě již
exitujících variant a implementaci me-
tody, která bude detekovat navrhnutý
vzor. Následně bude metode ještě mo-
difikována pro spuštění na grafickém
procesoru.

Klíčová slova: Zpracování obrazu, Pa-
ralelní Výpočty, Bezpilotní letouny, Vi-
zuální Navádění

Překlad titulu: Efektivní detekce
vzorů pro vizuálně naváděné přistávání
bezpilotního stroje

Autonomous landing of Unmanned
Aerial Vehicles (UAVs) is required for
any system that utilizes such vehicles.
This thesis focuses on efficent detection
of artificial marker known as landing
pattern. In this thesis a pattern will
be created based upon existing variants
and a method will implemented to de-
tect such pattern using a camera. Then
the method will be modified to run on
a Graphical Processing Unit (GPU) to
gain a performance boost.

Keywords: Image Processing, Parral-
lel Computing, UAV, Visual Guiding
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Chapter 1
Introduction

Small Unmanned Aerial Vehicles (UAVs) gained interest of research communities and
military/civilian companies in recent years. Due to their small size, high agility, repro-
grammability they can be used in various missions both indoors and outdoors. They
can sent on missions which could prove dangerous to normal presonnel such mapping
out dangerous areas, damaged buildings or missions where success rate depends on time
elapsed e.g. search and rescue missions and speed these missions up.

One major drawback of these UAVs is short battery life. Currently these quarotors
can last anywhere between 10 and 30 minutes [1]. To overcome this drawback several
automatic battery recharging solutions were developed that do not rely on extension
cord plugged into a UAV, which would sacrifice its mobility. Charging pads [2] are
a solution that requires a drone to land on a platform. These charging pads do not
require precision landing. When the quadrotor lands on the platform charging can
proceed regardless of orientation, size or position of quadrotor on platform. Charging
process takes between tens of minutes to several hours which can have negative impact
on mission efficiency. Other solution is to change the battery using electromechanical
system [3] which takes several seconds but requires precise positioning and orientation
on platform.

Figure 1.1. Charging pad with a quadrotor [2]

Several approches can be used to land on these charging platforms. Possible solutions
include using Global Positioning System (GPS) or vision based approaches or combi-
nations. Precision landing can be easily achieved using artificial landmarks detected by
vision based approach [4]. Artificial landmarks can be modified to suit either of these
charging solutions and their use is not limited to quadrotors guidance only. Other Ver-
tical Take-Off and Landing (VTOL) Unmanned Aerial Vehicles(UAVs) can utilize this
approach for guidance.

1.1 Organization of thesis
In this thesis I will focus on vision based detection of artificial landmarks. I chose two
landmarks for detection: a symmetrical landmark that can be utilized in situations
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1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
where only precise positioning is required but there are no requirements for orienta-
tion and a asymmetrical landmark when there are requirements for both position and
orientation.

Then I will implement robust detection method in c++ using OpenCV library [5].
The goal of this method is: in an image detect the position of pattern and orientation
if appliable. Then I will modify the method to be executable on a Nvidia Graphical
Processing unit (GPU) using existing OpenCV methods for GPU to increase its speed.
At last I will compare the original method against its GPU modification performance-
wise – Time needed for computing and correct classifications.

2



Chapter 2
Landing Patterns

It is possible to design many different landing patterns using artificial landmark. Such
patterns have different properties and varying degree of robustness. I classified patterns
as follows:

. Colored versus black and white.. Geometric shapes versus QR codes and apriltags.. With bounding shape versus without bounding shape.

The properties of landing patterns I consider important for robustness are:

. Resistance to pattern illumination changes.. Resistance to disruptive elements - elements that are similar to targeted landing
patterns or pattern’s components.. Ability to be detected during all stages of landing (over different distances).

2.1 Properties of patterns

2.1.1 Resistance to pattern illumination changes

As the illumination of pattern will change depending on various factors (time of the
day, shadows, artifical light sources, ...), the color of pattern and its instensity will also
change too. This may cause problems for colored patterns [6], [7]. In extreme cases
mono-colored light could disrupt the detection process completely.

Black and white patterns [4] depend on intensity of light rather than its color are
more resistant to this circumstance. Black and white patterns are expected to start
failing when there is enough light to illuminate the pattern (night, unlit windowless
room, ...).

3



2. Landing Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.1. Colored pattern on top [7] and black/white pattern on bottom [4]

2.1.2 Resistance to disruptive elements
Colored patterns could also be problematic for one more reason. Introducing a similarly
colored could cause problems for the detection method, if the method is insuficiently
sophisticated.

Over-simplified patterns (e.g. sigle circle, single square) are also prone to disruptions,
because objects similar to these pattern could disrupt the detection process completely.

One way to battle this situation is have a pattern with bounding shape (e.g. circle)
as can be seen bottom part of figure 2.1. The detection can be restricted to part of
image inside the bounding shape.

2.1.3 Ability to detect pattern during all stages of landing
During the landing some parts of patterns can get out of field of vision. Suitable landing
patterns should have enough defining features to be detectetable at close distance while
not having excessive amout of features to not be detectable over larger distances.

Apriltags [8],[9] are patterns that could have some their features undetectable over
larger distances and could be properly detected only from closer distances.

Figure 2.2. Apriltag example [9]
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Used patterns

Several approaches can be employed for keeping the pattern detectable at wide ranges
of distances. First pattern can have a smaller version at the landing point [4], recursion
[10] or by detecting only part of the pattern at close ranges [11], [12].

2.2 Used patterns
I have created two patterns based on cross in a circle pattern [11], [12]. The symmetrical
is modified cross in a circle and the asymmetrical is 3 triangles. The top triagle is the
asymmetrical pattern has one vertex at the center of the circle so it makes the detection
more straightforward. Both of these patterns can be scaled up, to increase detection
range if required.

Figure 2.3. Symmetrical pattern

Figure 2.4. Asymmetrical pattern

5



Chapter 3
GPU acceleration

In my detection method I want to utilize a Nvidia GPU (Graphical Processing Unit)
[13] to speed up the detection. I want to use the GPU to mainly boost image processing.
Modern GPUs are specialized utilized for highly intensive computational tasks using
high amount of threads at the cost of flow control and data caching, which primarly
CPU’s job today. GPUs are mainly used for graphical rendering and image/video
processing. [14]. Also Nvidia is currently dominating in fields of Machine Learning
and Artificial Intelligence thanks to its CUDA platform [15]. While there other notable
companies making video cards (e.g. AMD) in market Nvidia is leader in this field.

3.1 Di�erence between GPU and CPU

Today main difference CPU and GPU is that CPU mainly handles flow control, and
data caching while GPU handles tasks that are computationally demanding. GPU
achives this by massivelly multithreading tasks that are given to it. GPU is focused
mainly on computational throughput and very high memory bandwidth [14].

Figure 3.1. Simplified chip schematic of CPU (on left) and GPU (on right)[14]

As it can be seen in figure 3.1, GPU dedicates most of its transistors to data pro-
cessing while CPU on the other hand devotes most of its transistors to other tasks. In
figure 3.2 and figure 3.3 can be seen how much has Intel’s CPUs has fallen behind
Nvidia’s GPUs in terms of computational power and memory bandwith.

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Di erence between GPU and CPU

Figure 3.2. Comparison of floating point operations per second CPU between GPU[14]
(GPU is green)

Figure 3.3. Comparison of memory bandwith CPU between GPU[14] (GPU is green)

Still the main bottleneck is the separation of Nvidia GPU’s memory and CPU’s
memory. The rate of data transfer between CPU and GPU is getting better over time,
but its not worth tasking GPU to work with small amount of data because the losses

7



3. GPU acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
of time by transfering the data between CPU and GPU can be bigger than time gained
from processing the data on GPU instead of CPU. Good practice to gain most out of
the GPU is to do as much processing on the data as possible before CPU has to retrive
it from GPU’s memory [14].

3.2 CUDA platform
CUDA is a parralel computing platform and programming model developed by Nvidia
to leverage its GPUs [14], [15]. It allows to C programming language to used as a
high-level language. CUDA also has C++ language support.

When develeping with CUDA in C++, the code splits into host code (ran on CPU)
and device code (ran on GPU), so it makes programming for Nvidia cards in C/C++
convenient because writing code for GPU is very similar to writing code for CPU.
Device code is implemented using kernel functions. These kernel functions are then
called from host’s code [14].

8



Chapter 4
Implementation

I implemented the application in C++ with OpenCV 3.4 and CUDA 10 Toolkit. Ap-
plication is object oriented and both detection methods reside in their own class with
shared parent class. Their GPU counterpars have also their own class.

The application can be simplified into following pseudocode:

image = loadimage()
grayImage = convertToGrayscale(image)
blurredImage = gaussianBlur(grayImage)
binaryImage = convertToBinary(blurredImage)
contours = findContours(binaryImage)
ellipses[] = detectEllipses(contours)

for each e in ellipse do:
crop = cropImage(binaryImage)
edges = cannyEdges(crop)
lineSegments = houghSegments(edges)
joinedLines = joinLines(lineSegments)
intersections = findIntersection(joinedLines)
patternFound, patternPosition = detectShape(intersections)
if patternFound do:

return patternPosition
end

end

edges = cannyEdges(binaryImage)
lineSegments = houghSegments(edges)
joinedLines = joinLines(lineSegments)
intersections = findIntersection(joinedLines)
if patternFound do:

return patternPosition
end

return [-1, -1]

I designed the application using C++ classes. Object hiearchy can be found in figure
4.1.
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4. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4.1. Object-orieted design of the application

4.1 Convert colored image to binary

To detect the pattern I have to first convert the initial image I have gotten from camera
to binary image. This piece of code is responsible for it:

grayImage = convertToGrayscale(image)
blurredImage = gaussianBlur(grayImage)
binaryImage = convertToBinary(blurredImage)

Converting an image to grayscale image is the first step. Then a gaussian blur is
applied to the image to reduce noise and detail [16]. I had to deal with a low-quality
print of the patterns and I had touch them up with a black whiteboard marker, so the
edges are not perfect. Then the Otsu’s method [17] is applied to convert the blurred
image to binary image. All three functions can found implemented in the OpenCV.

Figure 4.2. Image converted by Otsu’s method

10



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Ellipse detection

4.1.1 CUDA Implementation

OpenCV has CUDA implementation of conversion to grayscale image and gaussian
filter but it does not have the implementation of Otsu’s method. Only constant thresh-
older is available. I have repurposed an implementation [18] of Otsu’s method to be
run on GPU. Otsu’s method consist of three steps. First a pixel intensity histogram
computation of an image that is to be converted. OpenCV has CUDA implementation
of histogram calculation. Then a threshold has to be computed. This step can be
done using CPU due to its low computational demands. Threshold that I gained with
this step was used as an threshold argument for OpenCV’s CUDA implementation of
constant thresholder.

4.2 Ellipse detection

The next step I have to do is to detect ellipses in the image. This is achieved using this
part of the code:

contours = findContours(binaryImage)
ellipses[] = detectEllipses(contours)

First contours have to be detected using findContours function in OpenCV library
[19]. Contour is a set of points which are around shape’s perimeter. Then a function
fitEllipse [20] is called on one contour at the time to fit an ellipse around these contours.
These functions do not have a CUDA implementation and are going to be left without
one. Because fit ellipse does not check whether an contour is an ellipse, I am checking
every’s ellipse corresponding contour whether said contours approximately same area
as the ellipse.

Figure 4.3. Binary image with contours highlighted in blue

11



4. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4.4. Binary image with correct ellipses highlighted in green

4.3 Line segment detection
Line segment detection is the next step to succesful pattern detection.

edges = cannyEdges(binaryImage)
lineSegments = houghSegments(edges)

First I apply to a binary image a canny edge detector [21]. It detects edges in a
grayscale image. Similar to contours but instead of points this function returns an
image. Canny edge detector is implemented in Open CV. Then I use probabilistic
hough line transform [22] to detect line segments in the output of canny edge detector.
Unlike fitEllipse this function differentiates between edges that are line segments and
edges that are not. Probabilist hough transform has an implementation in OpenCV’s
library under name houghLinesP.

This step is first applied to cropped images figure 4.5, figure 4.6 and then the whole
images figure 4.7, figure 4.8 if a pattern is not detected inside an ellipse.

4.3.1 CUDA implementation

OpenCV has a CUDA implementation for both hough line segment and canny edge
detector functions. I used in an effort to speed up the detection method.

12



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Line segment detection

Figure 4.5. Binary image with cropped areas which are inside the rectangles and high-
lighted edges

Figure 4.6. Binary image with cropped areas which are inside the rectangles and high-
lighted line segments in red

Figure 4.7. Binary image with highlighted edges

Figure 4.8. Binary image with highlighted line segments in red

13



4. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4 Instersection detection
This is the last before final pattern detection is performed.

joinedLines = joinLines(lineSegments)
intersections = findIntersection(joinedLines)

I implemented these two functions myself. The first takes lines segments detected by
hough line transform and joins ones that lie on the same line and returns these newly
created line segments. The point is that segments detected by hough transform never
form an intersection. But these newly created lines can. The patterns are designed
to exploit this functionality and allow for a relatively robust detection. After creating
these lines a search for their intersections is performed and these are after used for
pattern detection. As with the previous function these functions first get into contact
with cropped images figure 4.9, figure 4.10 and then with the full images figure 4.11,
figure 4.12 when a pattern is not detected within an ellipse. These functions are only
ran on CPU, because hough lines segment detector returns low amout of segments most
of the time.

Figure 4.9. Binary image with cropped areas which are inside the rectangles and high-
lighted joined line segments

Figure 4.10. Binary image with cropped areas which are inside the rectangles and high-
lighted intersection of joined lines

14



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Pattern Detection

Figure 4.11. Binary image with cropped areas which are inside the rectangles and high-
lighted joined line segments

Figure 4.12. Binary image with highlighted intersection of joined lines

4.5 Pattern Detection

This is the code that handles the final step of detections.

patternFound, patternPosition = detectShape(intersections)

if patternFound do:
return patternPosition
end

4.5.1 Symmetrical Pattern

Cross in a circle is detected when at least 4 intersections ale located very close to
each other. When the detection is performed inside an ellipse there is also an extra
requirement that all the intersections must lie in the centre of the ellipse.

15



4. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4.13. Pattern detected inside an ellipse, yellow circle shows its center

Figure 4.14. Pattern detected, yellow circle shows its center

4.5.2 Asymmetrical Pattern
Triangles in a circle are detected when three intersections are forming a rough isosceles
triangle. One edge of this triangle has to close to half the length of other edges. Vertex
between two sides of the same length lies in the centre of the ellipse. Intersection form
at vertex of triangles.

Figure 4.15. Intersection at the verteces of the triangles
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Pattern Detection

Figure 4.16. Asymmetrical pattern detected, yellow arrow shows its oriantation

Figure 4.17. Asymmetrical pattern detected in ellipse, yellow arrow shows its oriantation,
arrow begins at the center of the ellipse
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Chapter 5
System overview

The code was tested on my laptop here are my specifications:

Msi GE 70 2PE ApachePro laptop
Intel® Core i5-4200H CPU @ 2.80GHz 4
8 GB RAM
Ubuntu 18.04.2 LTS

Linux x64 (AMD64/EM64T) Display Driver
Version: 430.14
Driver Release Date: 2019.5.14
Operating System: Linux 64-bit

Number of CUDA devices 1.
There is 1 device supporting CUDA
For device #0
Device name: GeForce GTX 860M
Major revision number: 5
Minor revision Number: 0
Total Global Memory: 2101870592
Total shared mem per block: 49152
Total const mem size: 65536
Warp size: 32
Maximum block dimensions: 1024 x 1024 x 64
Maximum grid dimensions: 2147483647 x 65535 x 65535
Clock Rate: 1019500
Number of muliprocessors: 5

Images were acquired with:

Logitech HD Pro Webcam C910
Xiaomi Redmi Note 4 64GB
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Chapter 6
Testing

In this part I will examine the performace of implemented method, its weakness and
unexpected behavior. I will compare between performan between CPU only method
and GPU accelerated method and their components. All tests were done in terminal
mode in Ubuntu with lightdm service stopped.

6.1 Symmetrical patterm

6.1.1 Landing pattern far
The input data for both tables are the same.

Figure 6.1. Input data - Img 1

Figure 6.2. Input data - Img 1 outlier

In table 6.2 are times for Total on CPU + GPU very high. Its due some bug in
opencv that in terminal caused massive delays when calling gpuMat’s release function
which was measured by this item. There is also an outlier in the same in the first row.

Hough segment detector running on CUDA failed and classified too many lines. I
had problem with this implementation during debugging.

It seems like gaussian blur on GPU is slower than its CPU counterpart. Hough
transform in the Img 2-5 and RGB to Grayscale conversion were a lot faster than its
CPU counterparts. Also no detections on CPU’s side. Contour detection was struggling
on GPU’s side.
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6. Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CPU in ms Img 1 Img 2 Img 3 Img 4 img5
RGB to Grayscale conversion on CPU 1.85 1.86 2.13 1.94 1.82
Gaussian blur on CPU 0.36 0.31 0.31 0.33 0.31
Otsu’s binarization on CPU 0.4 0.37 0.37 0.36 0.37
Contour detection on CPU 0.47 0.46 0.46 0.47 0.45
Ellipse detection on CPU 0.44 0.4 0.39 0.37 0.4
Canny on CPU 0.73 0.76 0.85 0.75 0.82
Hough transform on CPU 3.48 3.62 3.7 3.58 4.65
Line detection on CPU 0.22 0.15 0.26 0.13 0.37
Cross validation on CPU 0 0 0 0 0
Total on CPU 8.49 8.5 9.09 8.52 9.86
Detected 0 0 0 0 0

Table 6.1. Symmetrical pattern far on CPU

GPU in ms Img 1 Img 2 Img 3 Img 4 Img 5
RGB to Grayscale conversion on GPU 0.26 0.27 0.25 0.25 0.25
Gaussian blur on GPU 0.35 0.37 0.37 0.36 0.36
Otsu’s binarization on GPU 0.23 0.22 0.21 0.21 0.21
Contour detection on CPU 1.98 1.88 2.01 1.97 1.97
Ellipse detection on CPU 0.42 0.41 0.4 0.38 0.38
Canny on GPU 2.02 0.32 0.33 0.42 0.42
Hough transform on GPU 1.43 0.45 0.41 0.44 0.44
Line detection on CPU 17.53 18.95 6.2 9.02 9.02
Cross validation on CPU 553.52 29.41 0 1.81 1.81
Total on CPU + GPU 775.91 603.64 561.68 567.64 567.64
Detected 0 1 1 1 1

Table 6.2. Symmetrical pattern far on GPU

6.1.2 Landing pattern midpoint

Figure 6.3. Input data - Img 1

Again hough segment detector on GPU failed. There is a minor speed increase in
Otsu’s GPU Implementation. Again same bug with the release function, so the total
times on GPU side are hardly representative.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 Symmetrical patterm

CPU in ms Img 1 Img 2 Img 3 Img 4 img5
RGB to Grayscale conversion on CPU 1.9 1.88 1.9 1.83 1.88
Gaussian blur on CPU 0.31 0.32 0.33 0.32 0.33
Otsu’s binarization on CPU 0.37 0.36 0.35 0.36 0.36
Contour detection on CPU 0.46 0.44 0.46 0.46 0.46
Ellipse detection on CPU 0.39 0.33 0.39 0.36 0.37
Canny on CPU 0.39 0.3 1.59 0.26 0.26
Hough transform on CPU 2.4 2.11 3.17 1.61 1.7
Line detection on CPU 0.04 0.04 0.36 0.09 0.06
Cross validation on CPU 0 0 0 0 0
Total on CPU 6.87 6.39 7.96 5.9 6.02
Detected 1 1 1 1 1

Table 6.3. Symmetrical pattern midpoint on CPU

GPU in ms Img 1 Img 2 Img 3 Img 4 img5
RGB to Grayscale conversion on GPU 0.26 0.27 0.26 0.25 0.25
Gaussian blur on GPU 0.36 0.35 0.36 0.35 0.37
Otsu’s binarization on GPU 0.21 0.21 0.22 0.21 0.21
Contour detection on CPU 1.92 2.04 1.99 2 2.02
Ellipse detection on CPU 0.4 0.33 0.41 0.36 0.39
Canny on GPU 2.07 0.88 0.4 0.61 0.64
Hough transform on GPU 1.21 0.56 0.46 0.64 0.63
Line detection on CPU 0.39 0.12 2.46 3.07 2.59
Cross validation on CPU 0 0 0 0 0
Total on CPU + GPU 555.75 557.88 559.433 561.01 599.84
Detected 1 1 1 1 1

Table 6.4. Symmetrical pattern midpoint on GPU

Figure 6.4. Input data - Img 4 outlier
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6. Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1.3 Landing pattern close

Figure 6.5. Input data - Img 1

CPU in ms Img 1 Img 2 Img 3 Img 4 img5
RGB to Grayscale conversion on CPU 1.83 1.83 1.86 1.87 1.84
Gaussian blur on CPU 0.3 0.3 0.3 0.33 0.32
Otsu’s binarization on CPU 0.38 0.4 0.39 0.42 0.44
Contour detection on CPU 0.5 0.51 0.43 0.44 0.45
Ellipse detection on CPU 0.48 0.56 0.39 0.37 0.36
Canny on CPU 0.67 0.45 0.63 0.68 0.6
Hough transform on CPU 3.64 2.65 2.81 2.48 2.41
Line detection on CPU 0.04 0.07 0.03 0.02 0.03
Cross validation on CPU 0 0 0 0 0
Total on CPU 8.41 7.39 7.38 7.19 7.05
Detected 0 1 0 1 1

Table 6.5. Symmetrical pattern close on CPU

GPU in ms Img 1 Img 2 Img 3 Img 4 img5
RGB to Grayscale conversion on GPU 0.26 0.27 0.26 0.25 0.25
Gaussian blur on GPU 0.36 0.35 0.36 0.35 0.37
Otsu’s binarization on GPU 0.21 0.21 0.22 0.21 0.21
Contour detection on CPU 1.92 2.04 1.99 2 2.02
Ellipse detection on CPU 0.4 0.33 0.41 0.36 0.39
Canny on GPU 2.07 0.88 0.4 0.61 0.64
Hough transform on GPU 1.21 0.56 0.46 0.64 0.63
Line detection on CPU 0.39 0.12 2.46 3.07 2.59
Cross validation on CPU 0 0 0 0 0
Total on CPU + GPU 555.75 557.88 559.433 561.01 599.84
Detected 0 1 0 1 1

Table 6.6. Symmetrical pattern close on GPU

6.2 Asymmetrical patterm
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Asymmetrical patterm

6.2.1 Landing pattern far

Figure 6.6. Input data - Img 1

CPU in ms Img 1 Img 2 Img 3 Img 4 img5
RGB to Grayscale conversion on CPU 1.84 1.86 1.91 1.97 1.83
Gaussian blur on CPU 0.32 0.3 0.32 0.31 0.31
Otsu’s binarization on CPU 0.36 0.37 0.37 0.36 0.36
Contour detection on CPU 0.44 0.45 0.45 0.43 0.45
Ellipse detection on CPU 0.34 0.37 0.41 0.33 0.35
Canny on CPU 0.25 0.26 0.25 0.25 0.24
Hough transform on CPU 1.57 1.62 1.51 1.37 1.34
Line detection on CPU 0.17 0.23 0.12 0.08 0.11
Triangle validation on CPU 0 0 0 0 0
Total on CPU 5.91 6.08 5.94 5.67 5.58
Detected 1 1 1 1 1

Table 6.7. Asymmetrical pattern far CPU
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6. Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GPU in ms Img 1 Img 2 Img 3 Img 4 img5
RGB to Grayscale conversion on GPU 0.25 0.29 0.25 0.25 0.26
Gaussian blur on GPU 0.35 0.38 0.35 0.35 0.35
Otsu’s binarization on GPU 0.21 0.23 0.21 0.21 0.21
Contour detection on CPU 1.98 2.09 1.98 1.98 2
Ellipse detection on CPU 0.34 0.37 0.38 0.34 0.34
Canny on GPU 0.38 0.44 0.43 0.38 2.16
Hough transform on GPU 0.45 0.62 0.64 0.46 1.48
Line detection on CPU 4.89 4.17 6.01 5.37 5.98
Triangle validation on CPU 0 0 0.02 0.03 0
Total on CPU + GPU 558.19 561.67 559.8 559.14 564.9
Detected 1 1 1 1 0

Table 6.8. Asymmetrical pattern far GPU

6.2.2 Landing pattern midpoint

Figure 6.7. Input data - Img 1
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Asymmetrical patterm

CPU in ms Img 1 Img 2 Img 3 Img 4 img5
RGB to Grayscale conversion on CPU 1.87 1.84 1.85 1.84 1.85
Gaussian blur on CPU 0.34 0.31 0.32 0.3 0.31
Otsu’s binarization on CPU 0.41 0.35 0.36 0.39 0.37
Contour detection on CPU 0.46 0.47 0.47 0.47 0.42
Ellipse detection on CPU 0.4 0.35 0.4 0.37 0.34
Canny on CPU 0.69 0.32 0.36 0.46 0.27
Hough transform on CPU 2.9 2.19 1.76 2.4 1.68
Line detection on CPU 0.03 0.04 0.16 0.04 0.06
Triangle validation on CPU 0 0 0 0 0
Total on CPU 7.65 6.52 6.27 6.89 5.91
Detected 0 1 1 1 1

Table 6.9. Asymmetrical pattern midpoint CPU

GPU in ms Img 1 Img 2 Img 3 Img 4 img5
RGB to Grayscale conversion on GPU 0.26 0.26 0.26 0.26 0.26
Gaussian blur on GPU 0.36 0.35 0.35 0.35 0.36
Otsu’s binarization on GPU 0.21 0.22 0.22 0.21 0.21
Contour detection on CPU 1.96 2.04 2.05 2 1.96
Ellipse detection on CPU 0.35 0.36 0.37 0.37 0.35
Canny on GPU 1.89 0.89 2.34 1.23 0.54
Hough transform on GPU 1.04 0.6 1.5 0.59 0.49
Line detection on CPU 0.07 0.19 0.44 0.07 1.97
Triangle validation on CPU 0 0 0 0 0
Total on CPU + GPU 556.15 555.72 561.25 555.37 560.925
Detected 1 1 0 1 1

Table 6.10. Asymmetrical pattern midpoint GPU
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6. Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.3 Landing pattern close

Figure 6.8. Input data - Img 1

CPU in ms Img 1 Img 2 Img 3 Img 4 img5
RGB to Grayscale conversion on CPU 1.82 1.83 1.86 1.86 1.85
Gaussian blur on CPU 0.31 0.31 0.33 0.32 0.32
Otsu’s binarization on CPU 0.4 0.42 0.4 0.4 0.4
Contour detection on CPU 0.47 0.44 0.46 0.47 0.48
Ellipse detection on CPU 0.39 0.31 0.41 0.42 0.43
Canny on CPU 0.65 0.76 0.65 0.65 0.64
Hough transform on CPU 2.71 2.44 3.01 2.97 2.84
Line detection on CPU 0.03 0.04 0.04 0.06 0.05
Triangle validation on CPU 0 0 0 0 0
Total on CPU 7.36 7.08 7.7 7.71 7.54
Detected 1 1 1 1 1

Table 6.11. Asymmetrical pattern close CPU
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Asymmetrical patterm

GPU in ms Img 1 Img 2 Img 3 Img 4 img5
RGB to Grayscale conversion on GPU 0.26 0.25 0.25 0.25 0.26
Gaussian blur on GPU 0.37 0.35 0.35 0.35 0.36
Otsu’s binarization on GPU 0.22 0.22 0.21 0.21 0.22
Contour detection on CPU 2.01 1.93 1.9 2.06 1.95
Ellipse detection on CPU 0.4 0.43 0.44 0.41 0.313
Canny on GPU 1.91 1.87 1.87 1.88 1.86
Hough transform on GPU 1.03 1.06 1.06 1.07 1.04
Line detection on CPU 0.06 0.08 0.1 0.09 0.05
Triangle validation on CPU 0 0 0 0 0
Total on CPU + GPU 563.877 554.73 557.68 554.25 556.38
Detected 1 0 1 1 0

Table 6.12. Asymmetrical pattern close GPU
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Chapter 7
Conclusion

I have designed two patterns and implemented an application for a vision based detec-
tion. Patters are designed in such a way, that they can resized without need of larger
modification to the app. I have modified the to use a Nvidia CPU on my laptop to
speed up detection process. While some of the method were good idea, some of the
method performed worse than their CPU counterparts. I would reccomend retesting
this on newer graphics card.

With the system I had CPU only approch takes about 5-10 miliseconds to process
the frames sized 640x480. GPU proved inconclusive since there was a problem that was
beyond my reach.

For future I would recommend putting into a on-board o a UAV and I would try to
expand this even further and optimizing further the CUDA support.
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Appendix A
DVD

/app - Source codes for app
/app/images - Testing data
/patterns - Patterns used in this thesis
/thesis/ctustyle2 - sources for this document
/thesis/ctustyle2/images - images used in this document
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