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Abstract

This thesis addresses the problem of visual retrieval in large-scale image datasets, where
the goal is to find all images of an object instance. The object is specified by a query
image, which can be a photograph, painting, edge-map, human-drawn sketch etc. Solu-
tions to this problem can be widely used in many applications such as place or location
recognition, copyright violation detection, product search, 3D reconstruction, etc. The
task of visual retrieval of an object instance is a challenging one, as the representation
of the object appearance has to handle: significant viewpoint, scale, and illumination
change; heavy occlusions; and, different image modalities (photograph, painting, car-
toon, sketch). At the same time, the search has to be performed online, i.e., when a
user submits the query, the response should be immediate, even when searching through
millions of images. Towards this goal, we propose methods for compact image represen-
tation, that achieve high accuracy, while maintaining low memory and computational
requirements.

A number of image retrieval related problems is stated, studied and resolved in the
theses. Two conceptually different approaches to compact image representation are
proposed. First, a method of joint dimensionality reduction of multiple vocabularies
for bag-of-words-based compact representation is proposed. Second, a method to fine-
tune convolutional neural networks (CNNs) for compact image retrieval from a large
collection of unordered images in a fully automated manner is proposed. We addi-
tionally show that the CNN trained with edge maps of landmark images, instead of
photographs, improves performance in the cases where shape is carrying the dominant
information. The proposed compact representations are evaluated on a range of dif-
ferent tasks, providing improvements on challenging cases of instance image retrieval,
generic sketch-based image retrieval or its fine-grained counterpart, and domain gener-
alization.

We address the issue of image retrieval benchmarking. We extend standard and pop-
ular Oxford Buildings and Paris datasets by novel annotations, protocols, and queries.
The novel protocols allow fair comparison between different methods, including those
using a dataset pre-processing stage. An extensive comparison of the state-of-the-art
methods is performed on the new benchmark. The results show that image retrieval is
far from being solved.

Finally, we introduce the concept of target mismatch attack for deep learning based
retrieval systems to generate an adversarial image to conceal the query image. The
adversarial image looks nothing like the user intended query, but leads to identical or
very similar retrieval results. We evaluate the attacks on standard retrieval benchmarks
and compare the results retrieved with the original and adversarial image.

vii



Abstrakt

Tématem této prace je vyhleddvani v rozsahlych kolekcich obrazkt pomoci obrazové
informace s cilem najit vSechny obrézky zobrazujici konkrétni objekt. Hledany ob-
jekt, tzv. dotaz, je také definovdan obrazkem, coz muze byt fotografie, malba, hranovy
obréazek, nacrt, atd. ReSeni tohoto problému mé siroké uplatnéni v mnoha aplikacich
jako je rozpoznani mista nebo polohy kamery, detekce poruseni autorskych prav, vyh-
leddvani produktt nebo 3D rekonstrukce. Uloha vizudlniho vyhledavani konkrétniho
objektu je naro¢na, protoze reprezentace vzhledu objektu musi brat v ivahu: podstat-
nou zmeénu thlu pohledu, mefitka ¢i osvéleni; podstatné zakryti objektu; a ruzné formy
vyobrazeni (fotografie, malba, kresba, nacrt). Dalsim pozadavkem je, ze vyhleddvani
musi bézet v redlném case. V okamziku, kdy uzivatel odesle dotaz na vyhledani, musi
okamzité dostat vysledek, i pokud jsou prohleddvény miliony obrazku. Abychom toho
docilili, navrhujeme metody pro kompaktni reprezentace obrazku, které dosahuji vysoké
presnosti a soucasné maji nizké pamétové a vypocetni naroky.

Rada problému souvisejicich s vizudlnim vyhleddvénim je formulovana, studovéna a
vyTeSena v této praci. Jsou navzeny dva konceptualné odlisné piistupy ke kompaktnim
reprezentacim obrazku. Prvni je metoda pro soucasné snizeni dimenze vice slovniku pro
kompaktni reprezentace zalozené na metodé vizudlnich slov. Druhym piistupem je plné
automatické dotrénovani konvoluénich neuronovych siti pro kompaktni reprezentaci
obrazku a nasledné vyhleddvani v rozsahlych neusporadanych kolekcich. Déle ukazu-
jeme, ze konvoluéni neuronové sité trénované s hranovymi obrazky budov namisto je-
jich fotografii dosahuji lepsich vysledku v ptipadech, kde je tvar dominujici informaci v
obrazku. Tyto kompaktni reprezentace jsou vyhodnoceny na ruznych tlohach a posky-
tuji zlepSeni u ndaroénych dotazu vizudlniho vyhleddvani, vyhledavéani kreseb v piipadé
obecnych i konkrétnich objekti, a u zobecnéni domény dat.

Problém testovani pfesnosti vizudlniho vyhleddvani je také dotéen. RozSifujeme
standardni a oblibené datasety Oxford Buildings a Paris o nové anotace, vyhodnocovaci
protokoly a vizudlni dotazy. Nové vyhodnocovaci protokoly ndm umoznuji spravedlivé
porovnani ruznych metod, véetné téch, které kolekce obrazku predzpracovavaji pred
samotnym vyhleddvanim. Pomoci téchto protokolu je provedeno rozsahlé porovnani
nejmodernéjsich state-of-the-art metod. Vysledky ukazuji, ze problém vizualniho vyh-
ledavéani jesté neni vyteseny.

Nakonec piredstavujeme koncept itoku na zdménu cile pro vizudlni vyhledavani zalozeném
na popisech z hlubokych siti tak, ze vytvaiime zdstupny obrazek zakryvajici obsah
puvodniho dotazu.
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Chapter

Introduction

OMPUTER vision is a research area dedicated to developing methods that can auto-
matically perform tasks that the human visual system can do. In a similar way to
humans who learn to understand their environment by processing the input they receive
from the eyes, given digital images and/or videos from cameras as the input, computer
vision develops methods that provide a high-level understanding of the world. In order
to achieve optimal performance, one would need an extremely large amount of images
to teach and develop such automated systems. Due to a recent boom in photo-sharing
websites, e.g. Flickr!, Facebook?, and Instagram?, there are millions, possibly even bil-
lions, of new images and videos appearing on the Internet every day. Thanks to such a
large amount of available content, a very fast development of computer vision has been
accomplished. Many recently developed state-of-the-art computer vision methods have
become a crucial part of the commercial systems. For example, tasks that were once
dependent on human interaction, are now, with the help of computer vision, performed
better by a machine, e.g., electronic toll collector with a plate recognition system,
self-driving car with a full visual system, video assistant referee in football, Hawk-Eye
system in various sports such as tennis, badminton, volleyball, etc. On the other hand,
systems that are fully machine-operated are more vulnerable to cyberattacks.

twww.flickr.com
2www.facebook.com
3www.instagram.com

Image
=) Retrieval =)
System

Query
Image

Large Internet
photo collection

Retrieved Images

Figure 1.1. Simple illustration of the instance image retrieval task.
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1. Introduction

Figure 1.3. Example of the same object photographed under significant illumination changes.

Nowadays, there is a vast variety of computer vision problems involving images,
videos, or both. The most popular ones are image classification, image retrieval, object
detection, video tracking, 3D reconstruction, etc. This thesis is mainly focusing on the
problem of instance image retrieval, that is formulated in the following section.

1.1. Addressed challenges

Instance image retrieval (or particular object image retrieval) is a task in which a query
image with an object of interest is given as an input. The goal is to find the object
depicted in the query image in a large unordered collection of images. Ideally, the image
retrieval system should return all images from the collection that contain the object in
question, see Figure 1.1. Unlike in image classification or object detection, where the
object of interest can only be from a predefined set of classes, there are no assumptions
imposed in the instance image retrieval, i.e., the set of all possible different object
instances is arbitrarily large. Hence, the solutions developed for image classification
and object detection tasks are not directly applicable here. As an example, if a user
queries with an image of a particular landmark, such as Prague Astronomical Clock,
the results should only contain images of that specific building, as in Figure 1.1.

Nowadays, there are commercial products to search vast number of images that ap-
pear on the Internet, e.g., Google Image Search?, Bing Image Feed®, TinEye®, etc.
Popular e-commerce websites, such as Amazon” and eBay®, integrated instance image
retrieval systems to help users better find their favorite products. Even so, instance
image retrieval is an open problem due to a high variation in the visual appearance of
the same object. The desired representation of the image has to be robust enough to
deal with the following challenges:

images.google.com
www.bing.com/images
www.tineye.com
WWW.amazon.com

4
5
6
7
8 www.ebay.com
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1.1. Addressed challenges

Figure 1.5. Example of visually similar but different object instances.

e Significant viewpoint and/or scale change is caused by the fact that the same object
can be photographed from a variety of locations, see Figure 1.2.

e Significant illumination change is caused by different lighting conditions, e.g. day/night,
or seasonal change, see Figure 1.3.

e Severe occlusions that cover some or most of the object of interest happen because
of a cluttered environment, see Figure 1.4.

e Visually similar but different objects should not be retrieved together, see Figure 1.5.

e Same object instance can be depicted in different image modalities, such as, photo-
graph, painting, cartoon drawing, free-hand sketch drawing, etc., see Figure 1.6.

At the same time, the retrieval system has to be able to handle billions of images,
from the memory requirement, processing time, and search time point of views. First
successful approach to deal with these challenges was proposed by Sivic and Zisser-
man [151], details of which are given in the related work in Chapter 2, Section 2.1.1.
The success of this method, denoted as bag-of-words (BoW), stems from hand-crafted
local features [98, 96, 121] and descriptors [92, 4], that are specifically designed to deal
with mentioned challenges: viewpoint and scale change are handled by the affine co-
variant local features and invariant descriptors; illumination invariance is treated by
color-normalization of the feature descriptors; occlusion is handled with the locality of
the features and geometric verification [125]; finally, similar but different objects are
disambiguated by the discriminability of local features and geometric verification. To
handle image retrieval at scale, local descriptors are quantized to visual words, which
are efficiently matched by using an inverted file data structure [151]. In return, quanti-
zation process sacrifices discriminability to some extent. Still, BoW approach can only
handle few million images on the single machine, so a compact BoW image representa-
tion was proposed [68]. In this manuscript we improve the compact BoW-based image
representation by creating high-variable multiple vocabularies to reduce the quantiza-
tion artifacts and boost the performance after the joint dimensionality reduction.



1. Introduction

Figure 1.6. Example of the same object depicted in different image modalities.

Another popular approach to produce compact image representations for retrieval
is based on convolutional neural networks (CNNs). First attempts simply utilized the
activations of CNNs trained for image classification task [55, 8, 76, 138, 168, 191]. Al-
though CNN representation did show certain generalization abilities, the performance
of these methods suffered due to the task shift between image classification and re-
trieval. For example, in a training set for classification there is a building class, thus
pushing a CNN to embed images of all buildings in the same part of the image rep-
resentation space. In instance image retrieval, we want to be able to disambiguate
particular buildings, i.e. we want to embed images of particular buildings close to each
other in the representation space, but sufficiently far from images of different buildings.
Ideally, learned representation would be able to deal with the challenges depicted in
Figures 1.2-1.6. To overcome this, a large annotated training set for image retrieval
is required. Constructing such dataset requires man-years of manual effort. For the
sake of bypassing costly human annotators, in this manuscript, we propose to utilize
a sophisticated BoW pipeline in order to guide the CNN training procedure without
any human interaction. As a result, the student surpassed the teacher, i.e., a compact
CNN-based image representation is obtained, achieving higher accuracy, faster search
time, and lower memory requirement than the BoW pipeline used for automatic training
set selection.

Both hand crafted local-feature-based approaches such as BoW, and CNN-based
approaches tend to rely on texture or colour in the images. While this is very successful
in most of the common use-case scenarios of image retrieval, there are some specific
cases where it is not enough. One such case, where the same object is depicted in
completely different image modalities, is given in Figure 1.6. Any method that relies
heavily on the texture or colour information will surely under-perform in this problem,
as the important information is carried in the shapes of the image content. To alleviate
the challenge of different image modalities, we propose a descriptor that is specifically
designed to capture the shape of the objects depicted in images. We show that the
proposed shape descriptor can be successfully combined with a standard texture-based
image descriptor to embed both natural images, as well as paintings, cartoon drawings,
and sketch drawings close to each other in the image representation space. Additionally,
proposed shape representation improves image retrieval, and can be successfully used for
cross-modal image matching, e.q., sketch-based image retrieval, in which a hand-drawn
sketch of an object is used as a query to retrieve images of the same object.

By changing image pixels of a query, the outcome of an image retrieval system can be
heavily affected. For example, making unrealistic image edits by changing its texture
and colours, one can negatively impact the success of the system. In fact, it has been
shown that even an imperceptible non-random image perturbations can be learned to
mislead a CNN-based image representation. These image perturbations are popularly
known as adversarial attacks, and were firstly introduced and tested on image classifi-
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cation by Szegedy et al. [158]. If the image pixels are perturbed in order for the image
to be missclassified to any other (wrong) class, an attack is denoted as a non-targeted
missclassification, otherwise, if the perturbed image is changed to be missclassified to a
specific (target) class, then the attack is denoted as a targeted missclasification. Sim-
ilarly to image classification, adversarial attacks can be performed in the domain of
image retrieval too. A non-targeted attack attempts to generate an image that for
a human observer carries the same visual information, while for the CNN it appears
dissimilar to other images of the same object [87, 91, 192]. This way, a user protects
personal images and does not allow them to be indexed for content-based search, even
when the images are publicly available. Only non-targeted attacks have been studied in
image retrieval, until now. In this work, we address targeted attacks aiming to retrieve
images that are related to a hidden target query without explicitly revealing the query
image.

Finally, evaluating an image retrieval system is a non-trivial problem by itself. It
requires a separate annotation of the whole database for each possible query in the
benchmark. The most popular benchmarks [125, 126] to evaluate instance image re-
trieval were introduced more than 10 years ago, and as such they are becoming outdated,
because the annotation was done with a different idea of image retrieval limits in mind.
Also, the largest annotated benchmark [125] is up to 100k images. In this thesis, we
redefine large-scale image retrieval benchmarking, and perform an extensive evaluation
of many state-of-the-art approaches, including ours, on a newly proposed annotation
with a set of difficulty levels and more than a million images. With this, we show that
image retrieval is far from being solved, and there are many challenges to be faced in
the following years.

Throughout the thesis we use the term image retrieval for brevity, for the task that is
more precisely defined as instance image retrieval or particular object image retrieval.

1.2. Contributions

The main contributions of the thesis:

e As a first contribution, Chapter 4 addresses the problem of large-scale image retrieval
test dataset construction. More specifically, new annotation for Oxford and Paris
datasets is generated, the evaluation protocol is updated, new more difficult queries
are defined, and a new set of over a million challenging distractors is created. This
work has been published in [130].

e Chapter 5 addresses the construction of a BoW-based compact image representation
for large-scale image retrieval. A method of joint dimensionality reduction of multiple
visual vocabularies is proposed. More precisely, a variety of vocabulary generation
techniques are studied: different k-means initializations, different descriptor trans-
formations, different measurement regions for descriptor extraction. This work has
been published in [131].

e In the following contribution, a costly BoW-based approach, with many bells and
whistles, is utilized to perform the training of CNNs for image retrieval, without any
human intervention. This approach focuses on producing compact image representa-
tion, as well. In particular, our combined retrieval and structure-from-motion (SfM)
pipeline, both using local features, is first exploited to reconstruct all 3D models in an
unordered dataset. The retrieval-SfM pipeline has been developed in a collaboration
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with the group from the University of North Carolina, and author focused on devel-
oping the retrieval part of the pipeline. This work has been published in [146, 132].
Next, reconstructed 3D models and their SfM information is used to enforce, not
only hard non-matching, but also hard-matching examples for CNN training. This
is shown to enhance the derived image representation. This work has been published
in [133, 135] and the contribution is described in Chapter 6, Section 6.2.

Other contributions in the CNN-based image retrieval pipeline are further proposed.
Namely, whitening learned in a supervised way is proposed. Its effect is comple-
mentary to fine-tuning and it further boosts performance. Next, a trainable pooling
layer that generalizes existing popular pooling schemes for CNNs is proposed. It
significantly improves the retrieval performance while preserving the same descrip-
tor dimensionality. Improved multi-scale representation based on the same pooling is
shown to increase image retrieval accuracy, as well. Finally, a novel a-weighted query
expansion technique is proposed, that is more robust compared to the standard aver-
age query expansion technique widely used for compact image representations. These
contributions have been described in Chapter 6, Section 6.1, and have been published
in [133, 135]. We also set a new state-of-the-art result on standard image retrieval
benchmarks, which is validated by the experiments in Chapter 6, Section 6.3.

In Chapter 7, we perform large-scale image retrieval evaluation, on our newly pro-
posed test datasets introduced in Chapter 4. As a contribution, extensive evaluation
of image retrieval methods is provided, ranging from local-feature based to CNN-
descriptor based approaches, including various methods of re-ranking. This work has
been published in [130].

The novel concept of target mismatch attack for CNN-based image retrieval systems
is formulated in Chapter 8. It is used to generate an adversarial image to conceal the
query image and protect user privacy. The adversarial image looks nothing like the
user intended query, but leads to identical or very similar retrieval results. We show
successful attacks to partially unknown systems, by designing various loss functions
for the adversarial image construction. This work originates from [167].

Finally, Chapter 9 deals with problems from the area of shape matching. A new CNN-
based compact shape descriptor is proposed, which is shown to be highly beneficial
for two problems: (i) domain generalization in the case of classification, and (ii) cross
modality matching of sketches to images. Additionally, shape information is shown to
be useful even in the specific cases of traditional image retrieval. This work originates
from [134, 136].

Several other contributions were proposed by the author. However, they are left out
this manuscript to keep it more focused and easier to follow. A full list of authors

publications is given in the following section.
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This thesis build on the results previously published in the following publications. The
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[130]
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[136]

[167]

F. Radenovic, H Jegou, O. Chum. Multiple Measurements and Joint Dimen-
sionality Reduction for Large Scale Image Search with Short Vectors.
ICMR, 2015.

J. L. Schonberger, F. Radenovic, O. Chum, J. Frahm. From Single Image Query
to Detailed 3D Reconstruction. CVPR, 2015.

F. Radenovic, J. L. Schonberger, D. Ji, J. Frahm, O. Chum, J. Matas. From Dusk
till Dawn: Modeling in the Dark. CVPR, 2016.

F. Radenovic, G. Tolias, O. Chum. CNN Image Retrieval Learns from BoW:
Unsupervised Fine-Tuning with Hard Examples. ECCV, 2016.

F. Radenovic, G. Tolias, O. Chum. Fine-tuning CNN Image Retrieval with
No Human Annotation. TPAMI, 2018.
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Paris: Large-Scale Image Retrieval Benchmarking. CVPR, 2018.

F. Radenovic, G. Tolias, O. Chum. Deep Shape Matching. FCCYV, 2018.

F. Radenovic, G. Tolias, O. Chum. Deep Shape Matching for Domain Gener-
alization and Cross-Modal Retrieval. Under submission, 2019.

G. Tolias, F. Radenovic, O. Chum. Query with a Flower to Retrieve the Tower:
Adversarial Attack to Conceal the Query Image. Under submission, 2019.

The following publications were not included in the thesis, in order to keep the thesis

more focused and easier to follow:

[103]

[17]

[144]

[104]

[105]

A. Mikulik, F. Radenovic, O. Chum, J. Matas. Efficient Image Detail Mining.
ACCYV, 2014.

M. Cadik, J. Vasicek, Hradis M., F. Radenovic, O. Chum. Camera Elevation
Estimation from a Single Mountain Landscape Photograph. BM V(. 2015.

T. Sattler, M. Havlena, F. Radenovic, K. Schindler, M. Pollefeys. Hyperpoints
and Fine Vocabularies for Large-Scale Location Recognition. ICCV, 2015.

A. Mishchuk, D. Mishkin, F. Radenovic, J. Matas. Working hard to know your
neighbor’s margins: Local descriptor learning loss. NIPS, 2017.

D. Mishkin, F. Radenovic, J. Matas. Repeatability Is Not Enough: Learning
Affine Regions via Discriminability. FCCV, 2018.
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1. Introduction

1.4. Structure of the thesis

This thesis is organized as follows. Related work and state-of-the-art approaches in
related areas are described in Chapter 2. Standard test datasets and their evaluation
protocols are introduced in detail in Chapter 3, while our newly proposed large-scale
image retrieval test datasets, with over million images, are described in Chapter 4.
Chapters 5 and 6 present our proposed contributions for the image retrieval with com-
pact codes, using both hand-crafted and CNN-based features. An extensive evaluation
of many state-of-the-art image retrieval approaches, including our own, is performed
on the newly proposed test datasets in Chapter 7. Non-targeted adversarial attack
on image retrieval to conceal the query image is formulated and tackled in Chapter 8.
Chapter 9 describes our contributions for shape matching via the training of CNNs.
Finally, Chapter 10 gives closing discussions and concluding remarks.

1.5. Authorship

I hereby certify that the results presented in this thesis were achieved during my own
research, in cooperation with my thesis advisor Ondiej Chum, published in [131, 146,
132, 133, 135, 130, 134, 136, 167], with Giorgos Tolias, published in [133, 135, 130, 134,
136, 167], with Johannes L. Schonberger and Jan-Michael Frahm, published in [146,
132], with Hervé Jégou, published in [131], with Dinghuang Ji and Jif{ Matas, published
in [132], and with Ahmet Iscen and Yannis Avrithis, published in [130].
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Chapter

Related Work

HIS chapter provides an overview of related work to the main contributions of the
T thesis. In Section 2.1 we describe all relevant methods for standard image retrieval
task, i.e., when a query is given by a user defined image or image region. Next, Sec-
tion 2.2 provides overview of methods focused on the sketch-based image retrieval task,
in which a query is given as a human-drawn sketch. Finally, domain generalization
related work is given in Section 2.3.

2.1. Image retrieval

Image retrieval is a task where given a query the system has to retrieve related images
from a large unordered collection. First successful retrieval methods utilize local fea-
tures and bag-of-words image representation [151, 113], and are further improved by
spatial verification [125], Hamming embedding [69], selective match kernel [163], and
query expansion [31]. Further attempts are mostly focused on creating compact image
representations, which started with compact aggregation of local descriptors [72], or
extreme dimensionality reduction of sparse bag-of-word vectors [68]. Nowadays, the
best performing compact image representations for retrieval are based on convolutional
neural networks (CNNs). The earliest CNN-based image retrieval approaches use the
network trained on ImageNet [140] and the activations of its fully-connected layer as
the global image representations [9, 55]. Subsequent attempts show that focusing on
the activations of convolutional layers provide much stronger image descriptors [138].

In the following, we split work related to image retrieval into two main parts. Namely,
the first one in Section 2.1.1 describes approaches utilizing the local features extracted
from images, and the second in Section 2.1.2, describes CNN-based approaches.

2.1.1. Local-feature-based methods

Image representation. Typical pipelines start with local feature detection and descrip-
tor extraction. For each image in the dataset, regions of interest are detected [98, 96,
121] and described by an invariant descriptor which is d-dimensional [92, 4]. Normally,
each image contains a few thousand of such local descriptors. Next, the descriptors of
the whole dataset are clustered into k clusters using a variant of k-means algorithm,
which creates a visual vocabulary. Sivic and Zisserman [151] cluster local descriptor of
the database with on the order of ten thousand visual words. First scalable retrieval
is achieved by Nister and Stewenius [113] with a hierarchical k-means that efficiently
reaches several million visual words. Philbin et al. [125] show that an approximate

13



2. Related Work

k-means algorithm can be used to achieve higher performance with similar computa-
tional cost as hierarchical k-means. Finally, in [126] authors investigate how using an
independent dataset to learn the vocabulary influences the performance. Our work is
focused on this realistic scenario, i.e., always using an independent training dataset to
perform any kind of learning.

Local features for each image in the database are assigned to a respective visual
word from the visual vocabulary. Bag-of-words (BoW) image representation [151] is
then computed as a histogram of occurrences of visual words, with vector components
weighted by inverse document frequency (idf) terms. An improvement over BoW, called
Hamming embedding [69], provides binary signatures that refine the matching based
on visual words, and is further extended by selective match kernels [163]. Methods
that utilize significantly less visual words than a standard BoW are also proposed.
Perronnin et al. [123] apply Fisher kernel, while Jegou et al. [72] propose vector of
locally aggregated descriptors (VLAD) that accumulates, for each visual word, the
differences of the respective visual word and the vectors assigned to it.

Image search. Inspired by text search, cosine similarity is used to compare two im-
age representations. All aforementioned image representations are usually /o normal-
ized and the search is performed as a nearest neighbor search between the query and
database vectors, using the Euclidean distance. Ranking based on Euclidean distance
of I3 normalized vectors is equivalent to the ranking based on cosine similarity. For the
BoW representation with a large vocabulary, the search is efficiently implemented via
inverted file structure [151]. After the initial search is performed, one can utilize the
geometry of the local features and perform spatial verification (SP) [125]. This is usu-
ally performed only on a set of top ranked images, which are in result re-ranked based
on the number of inliers from SP, and the standard solution is to use the RANSAC
algorithm [49]. SP can also be performed at the same time as the initial search, if
the score of an image is computed during traversing of the inverted file in a document
at a time (DAAT) manner [155]. Inverted file in this case contains both visual words
and respective feature geometries [155]. Another popular post-processing step is query
expansion (QE), introduced in the image retrieval domain by Chum et al. [31]. This
method combines the verified images in the ranked list, to issue a new enhanced query
and boost the recall of the system. An extension of QE, denoted as Hamming query
expansion (HQE) [166] is a combination of QE and HE.

Compact image representation. A most common approach to obtain compact image
representation from local-feature-based methods is by principal component analysis
(PCA) [12] dimensionality reduction. In [73] and [124], aggregated descriptors (VLAD
and Fisher vector respectively) are used followed by PCA to produce low dimensional
image descriptors. Jegou and Chum [68] analyze the effects of PCA dimensionality
reduction on the BoW and VLAD vectors. They propose a joint dimensionality reduc-
tion of multiple vocabularies. Image representation vectors are separately power-law
normalized [124] for each vocabulary, concatenated and then jointly PCA-reduced and
whitened [68]. In a paper about VLAD [5], authors propose a method for adaptation of
the vocabulary built on an independent dataset and intra-normalization method that
lo normalizes all VLAD components independently, which suppresses the burstiness ef-
fect [70]. In [74], a democratic weighted aggregation method for burstiness suppression
is introduced. Compact binary representations are proposed as well [169, 177], with a
few hundred bits per image, for efficient retrieval on billions of images.
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2.1. Image retrieval

In this work, we extend the approach of Jegou and Chum [68], by combining multiple
vocabularies that are differing not just in random initialization of clustering procedure,
but also in the data used for clustering. In this way, created vocabularies will be
more complementary and joint dimensionality reduction of concatenated image vectors
originating from several vocabularies will carry more information, resulting in a higher
retrieval accuracy while maintaining the same compact dimensionality.

2.1.2. Convolutional-neural-network-based methods

CNN-based representation is appealing for image retrieval and in particular for retrieval
with compact image representations. In this work, instance retrieval is cast as a metric
learning problem, i.e., an image embedding is learned so that the Euclidean distance
captures the similarity well. Typical architectures for metric learning, such as the
two-branch siamese [26, 59, 62] or triplet networks [175, 147, 61] employ matching
and non-matching pairs in the training. Here, the problem of annotations is even
more pronounced, i.e., for classification one needs only object category label, while for
particular objects the labels have to be per image pair. Two images from the same
object category could potentially be completely different, e.g., different viewpoints of
the building or different buildings. We solve this problem in a fully automated manner,
without any human intervention, by starting from a large unordered image collection
and utilizing BoW-based retrieval pipeline and SfM modelling.

In the following text we discuss the related work for our main contributions regarding
the CNN-based image retrieval, i.e., the training data collection, the pooling approaches
to construct a global image descriptor, the descriptor whitening, the multi-scale repre-
sentation, and the query expansion techniques for CNN-based image representation.

Training data. A variety of related methods apply CNN activations on the task of im-
age retrieval [55, 8, 76, 138, 168, 191]. The accuracy achieved on retrieval is evidence of
generalization properties of CNNs. The employed networks are trained for image clas-
sification using ImageNet dataset [140] by minimizing classification error. Babenko et
al. [9] go one step further and re-train such networks with a dataset that is closer to
the target task. In [9], authors perform training with object classes that correspond to
particular landmarks/buildings. Performance is improved on standard retrieval bench-
marks. Despite the achievement, still, classification loss is optimized, instead of directly
learning the metric used in image retrieval.

Constructing retrieval training datasets requires manual effort. In recent work, geo-
tagged datasets with timestamps provide the ground for weakly-supervised fine-tuning
of a triplet network [3]. Two images taken far from each other can be easily considered
as non-matching. Matching examples are picked by the most similar nearby images,
where, in the approach of [3], the similarity is defined by the current representation
of the CNN. This is the first approach that performs end-to-end fine-tuning for image
retrieval and, in particular, for the geo-localization task. The training images are now
relevant to the final task. We differentiate by discovering matching and non-matching
image pairs in an unsupervised way. At the same time, we derive matching examples
based on 3D reconstructions which allows for harder examples.

Even though hard-negative mining is a standard process [54, 3|, this is not the case
with hard-positive examples. Mining of hard positive examples have been exploited in
the work Simo-Serra et al. [149], where patch-level examples were extracted though the
guidance from a 3D reconstruction. Hard-positive pairs have to be sampled carefully.
Extreme hard-positive examples (such as minimal overlap between images or extreme
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scale change) do not allow to generalize and lead to over-fitting. For example, if the
scale change between positive-pair images is too big, the network can learn proper
representation for this specific landmark by memorizing, but it cannot generalize to
unseen ones.

A concurrent work to ours also uses local features and geometric verification to select
positive examples [57, 58]. In contrast to our fully unsupervised method, they start
from a landmarks dataset, which had to be manually cleaned, and the landmark labels
of the dataset, rather than the geometry, were used to avoid exhaustive evaluation.
The same training dataset is used by Noh et al. [114] to learn global image descriptors
using a saliency mask. However, during test time the CNN activations are seen as local
descriptors, indexed independently, and used for a subsequent spatial-verification stage.
Such approach boosts accuracy compared to global descriptors, but at the cost of much
higher time and space complexity.

Pooling method. Early application of CNNs for image retrieval included methods that
use the fully-connected layer activations as the global image descriptors [9, 55]. The
work by Razavian et al. [138] moves the focus to the activations of convolutional layers
followed by a global-pooling operation. A compact image representation is constructed
in this fashion with dimensionality equivalent to the number of feature maps of the
corresponding convolutional layer. In particular, authors of [138] propose to use max
pooling, which is later generalized with integral max pooling [168] over all possible
regions.

Sum pooling was initially proposed by Babenko and Lempitsky [8], which was shown
to perform well especially due to the subsequent descriptor whitening. One step further
is the weighted sum pooling of Kalantidis et al. [76], which can also be seen as a way to
perform transfer learning. Popular encodings such as BoW, VLAD, and Fisher vectors
are adapted in the context of CNN activations in the work of Mohedano et al. [106],
Arandjelovic et al. [3], and Ong et al. [115], respectively. In the end, sum pooling of
the feature embeddings is performed over all feature locations.

A hybrid scheme is the R-MAC method [168], which performs max pooling over re-
gions and finally sum pooling of the regional descriptors. Mixed pooling is proposed
globally for retrieval [110] and the standard local pooling is used for object recogni-
tion [84]. It is a linear combination of max and sum pooling. A generalization scheme,
similar to our contribution presented in Chapter 6, Section 6.1.2, is proposed in the
work of Cohen et al. [32] but in a different context. Cohen et al. [32] replace the stan-
dard local max pooling with the generalized one. Finally, generalized mean is used by
Morere et al. [109] to pool the similarity values under multiple transformations.

Descriptor whitening. Whitening the data representation is known to be very essential
for image retrieval since the work of Jegou and Chum [68]. Their interpretation lies in
down-weighting co-occurrences and, thus, handling the problem of over-counting. The
benefit of whitening is further emphasized in the case of CNN-based descriptors [137,
8, 168]. Whitening is commonly learned in a generative manner. More specifically, it
is learned in an unsupervised way by PCA on an independent dataset.

We propose to learn the whitening transform in a discriminative manner, using the
same acquisition procedure of the training data from 3D models. A similar approach
has been used to whiten local-feature descriptors by Mikolajczyk and Matas [97]. In
constrast, Gordo et al. [58] learn the whitening in the CNN in an end-to-end manner.
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Multi-scale representation. Multi-scale processing is done during test time without
any additional learning. It was introduced by Gordo et al. [58], and done by feeding the
image to the network at multiple scales. The resulting descriptors are finally sum-pooled
and re-normalized to constitute a multi-scale global image representation.

We adopt a different pooling of multi-scale descriptors, which utilizes a parameter
learned during training, and we show that this approach is consistently superior to
standard average pooling.

Query expansion. CNN global image descriptors can be combined with simple average
query expansion (AQE) [8, 168, 76, 58] to boost the search recall. An initial query
is issued by Euclidean search and AQE acts on the top-ranked images by average
pooling of their descriptors. However, selecting an appropriate number of top-ranked
images to be averaged, across different datasets, can be a non-trivial task. If the top-
ranked images used for AQE are non-matching to the query, topic drift can easily
happen [31]. We generalize AQE method by a weighted average approach, where the
weights depend on the similarity between retrieved images and the respective query
image. Our experiments verify that this is a more robust choice even for datasets with
a significantly different statistics.

Query expansion can be additionally combined by a database-side augmentation
(DBA) [4], which replaces every image signature in the database by a combination
of itself and its neighbors. This procedure is done only once for the whole database,
during the offline pre-processing. Again, the number of neighbors to be used in DBA
is not an easy choice, as it depends on unknown dataset statistics.

2.1.3. Adversarial attacks on image retrieval

Adversarial attacks were introduced by Szegedy et al. [158] on the task of image clas-
sification. In that context, adversarial attacks are divided into two categories, namely
non-targeted and targeted. The goal of non-targeted attacks is to change the predic-
tion of a test image to an arbitrary class [108, 107], while targeted attacks attempt
to make a specific change of the network prediction, ¢.e., to misclassify the test im-
age to a predefined target class [158, 22, 43]. Follow up approaches are categorized
to white-box attacks [158, 56] if there is complete knowledge of the model or to black-
bor [118, 119] otherwise. Adversarial images are generated by various methods in
the literature, such as optimization-based approaches using box-constrained L-BFGS
optimizer [158], gradient descent with change of variable [22]. A fast gradient sign
method [56] and variants [82, 43] are designed to be fast rather than optimal, while
DeepFool [108] analytically derives an optimal solution method by assuming that neu-
ral networks are totally linear. All these approaches solve an optimization problem
given a test image and its associated class in the case of non-targeted attacks or a
test image and a target class in the case of targeted attacks. A universal non-targeted
approach is proposed by Moosavi et al. [107], where an image-agnostic Universal Adver-
sarial Perturbation (UAP) is computed and applied to unseen images to cause network
misclassification.

Adversarial attacks on image retrieval are studied by recent work [87, 91, 192] in a
non-targeted scenario for CNN-based approaches. Liu et al. [91] and Zheng et al. [192]
adopt the optimization-based approach [158], while Li et al. [87] adopt the UAP [107].
Similar attacks on classical retrieval systems that are based on SIFT local descrip-
tors [92] have been addressed in an earlier line of work by Do et al. [38, 37]. In this
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work, we deal with the targeted attacks exclusively. To the best of our knowledge, no
existing work focuses on targeted adversarial attacks for image retrieval.

2.2. Sketch-based image retrieval

Sketch-based image retrieval has been, until recently, handled with hand-crafted de-
scriptors [47, 63, 141, 120, 176, 14, 128, 142, 180, 164, 165]. Deep learning methods
have been applied to the task of sketch-based retrieval [11, 129, 184, 143, 15, 148, 90]
much later than to the related task of image retrieval. We attribute the delay to the
fact that the training data acquisition for sketch-based retrieval is much more tedious
compared to image-based retrieval because it not only includes labeling the images, but
also sketches must be drawn in large quantities. Methods with no learning typically
carry no assumptions on the depicted categories, while the learning based methods of-
ten include category recognition into training. The method proposed in this work aims
at generic sketch-based image retrieval, not limited to a fixed set of categories; it is,
actually, not even limited to objects.

2.2.1. Learning-free methods

Learning-free methods have followed the same initial steps as in the traditional image
search. These include the construction of either global [23, 141, 128] or local [46, 139,
63, 18, 176] image and/or sketch representations. Local representations are also using
vector quantization to create a bag-of-words model [93]. The domain gap between
hand-drawn sketches and images is handled by applying representations that are easily
applicable on both domains. Histogram of gradients [36] is a popular choice for both
global [141, 128] and local representations [63]. The latter is also extended to color
instances [14]. Further cases are symmetry-aware and flip invariant descriptors [18],
and descriptors that are based on local contours [139] or line segments [176]. Recently,
asymmetric feature maps (AFM) are used to derive a short vector image representation,
that supports efficient scale and translation invariant sketch-based image retrieval [164,
165]. Despite their small dimensionality, these short codes provide query localization in
the retrieved image. An efficient approximation of Chamfer matching allows [20, 156] to
scale the searchable collections to millions or even billion images. However, precision is
sacrificed along with the transformation invariance. In contrast, the method proposed
in this work offers high precision, is fully translation invariant, and scalable, because it
reduces to nearest-neighbor search in a descriptor space.

2.2.2. Learning-based methods

Learning-based methods require annotated data in both domains, typically for a fixed
set of object categories, making the methods [174, 11, 129, 184, 143, 148, 90, 15, 153]
to be category specific and may limit a good performance to those categories. End-to-
end learning methods are applied to both category level [90, 15] and to fine-grained,
i.e. sub-category level retrieval [184, 143, 148, 153], while sometimes a different model
per category has to be learned [88, 184, 152, 153]. A common characteristic of these
deep-learning methods [184, 143, 148, 90, 15] is that a sequence of different learning
and fine-tuning stages is applied. These include training with a category loss on images
and/or sketches, ranking loss of category level similarity, fine-grained similarity, and
cross-view pairwise loss. Deep learning has not been restricted to learning sketch /image
descriptors; learning hash codes is achieved with a combination of different losses [90].
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Training data for all these stages are required, which involves massive manual effort at
various stages. For example, the Sketchy dataset [143] required going through about
70k images and selecting those that are sketchable. More than 600 users collectively
spent about 4k hours to create 5 sketches per sketchable image. On the contrary, our
proposed fine-tuning does not require any manual annotation.

2.3. Domain generalization

Domain generalization is handled in a variety of ways, ranging from learning do-
main invariant features [52, 111], to learning domain invariant classifiers [181, 78],
or both [85, 13]. Then, well known faster R-CNN [53] object detection approach is
extended for domain generalization with new deep learning components in the work of
Chen et al. [25]. Several approaches assume that multiple domains are available during
training and the goal is to generalize inference to an unseen domain. This is the case
in, e.g., the work of Mancini et al. [95], where a separate classifier per training domain
is learned and their combination is used for testing. Adversarial examples are shown
useful in learning an invariant representation across the multiple training domains [86].
Adversarial training is also used in a work [173] with no assumptions about multiple
available domains during training, where data augmentation is used to improve the
generalization. Finally, sometimes the focus is on one-way shift between two domains,
such as sketch-based retrieval (addressed below) or learning on real photos and testing
on art [34, 35].

Research on domain generalization is facilitated by the advent of new appropriate
benchmarks. This is the case with the benchmark released in the work of Li et al. [85],
where four domains of increasing visual abstraction are used, namely photos, art, car-
toon, and sketches (PACS). Prior domain generalization methods [52, 111, 181] are
shown effective on PACS, while simply training a CNN on all the available (seen) do-
mains is a very good baseline [85]. Another relevant benchmark is the Behance Artistic
Media (BAM) dataset [179]. In the work of [179], authors evaluate baseline approaches,
such as directly testing on an unseen domain a CNN classifier that is trained on mul-
tiple training domains. We tackle the same problem from the representation point of
view and focus on the underlined shapes. Our shape descriptor proposed in this work is
extracted and the class labels are used only to train a linear classifier. In this fashion,
we are able to train on a single domain and test on all the rest. This is in contrast to
many prior domain generalization approaches that require different domains present in
the training set.
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Chapter

Standard Test Datasets and Evaluation Protocols

N this chapter, we thoroughly describe all standard test datasets used throughout this
work, as well as their evaluation protocols. We split the benchmarks into three main
categories: (i) image retrieval benchmarks are described in Section 3.1; (ii) sketch-based
image retrieval benchmarks are discussed in Section 3.2; and, (iii) domain genralization
benchmark is introduced in Section 3.3.

One of the contributions of this work is addressing of issues with image retrieval
benchmarking on standard and popular Oxford5k [125] and Paris6k [126] datasets.
Newly proposed benchmark is described in Chapter 4, and an extensive comparison of
the state-of-the-art methods that is performed on it is described in detail in Chapter 7.

3.1. Image retrieval datasets

We start by describing two most popular image retrieval datasets in Section 3.1.1, that
depict popular landmarks of two cities, namely Oxford and Paris. Then, two datasets
made by a selection of creators personal photographs are described in Section 3.1.2,
covering a large variety of scenes, man-made as well as natural. Finally, a distractor
set of around 100k images, usually added to evaluate retrieval at scale, is presented in
Section 3.1.3.

3.1.1. Oxfordbk and Parisbk

Oxford Buildings [125] and Paris [126] datasets, commonly denoted as Ozford5k and
Paris6k, contain a set of 5,062 and 6,392 high-resolution (1024 x 768) images, respec-
tively. Both datasets contain 11 different annotated landmarks together with distrac-

Figure 3.1. Sample queries for 11 landmarks of Oxford5k (top) and Paris6k (bottom) datasets.

21



3. Standard Test Datasets and Evaluation Protocols

Figure 3.2. Sample queries for Holidays (top) and Copydays (bottom) datasets.

tors, downloaded from Flickr! by searching for tags of popular landmarks from Oxford
and Paris, respectively. For each of the 11 landmarks there are 5 different images with
query regions defined by a bounding box, which are supposed to cover approximately
the same physical surface of the respective landmark. This results in a total of 55 query
regions per dataset. Sample query regions for 11 landmarks of Oxford5k and Paris6k
are given in Figure 3.1.

For each image and landmark in this dataset, one of four possible labels is given by
a consensus of human annotators [125]:

e Good: A nice, clear picture of the object/building.
e OK: More than 25% of the object is clearly visible.

Junk: Less than 25% of the object is visible, or there are very high levels of occlusion
or distortion.

Absent: The object is not present.

For the performance evaluation three labels are essentially used, i.e., good and ok images
are used as positive examples of the landmark in question, absent images as negative
examples and junk as null examples that are ignored (the evaluation is performed as if
they were not present in the database).

The performance is evaluated as follows [125]. The performance for a single query
is evaluated as the average precision (AP) measure computed as the area under the
precision-recall curve. Precision is defined as the ratio of retrieved positive images to
the total number of images retrieved, while recall is defined as the ratio of the number
of retrieved positive images to the total number of positive images in the database. To
reach an ideal precision-recall curve, the image retrieval system has to obtain precision
1 over all recall levels, which will result in an average precision equal to 1. Next, AP
is averaged over all queries in the dataset (55 queries for Oxford5k and Paris6k) to
obtain a mean average arecision (mAP), which is a single number that evaluates the
overall performance. Note that, all images in these datasets have the natural upright
orientation.

3.1.2. Holidays and Copydays

INRIA Holidays [69] and INRIA Copydays [44] datasets, commonly denoted as Holidays
and Copydays, is a selection of personal holidays photos (1,491 and 3,055 high-resolution
images, respectively) from INRIA, including a large variety of scene types (natural,
man-made, water and fire effects, etc.). For Holidays, a set of 500 images from the
whole dataset is selected for query purposes. For Copydays, original 157 images are

www.flickr.com
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3.2. Sketch-based image retrieval datasets
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Figure 3.3. Sample query sketches for Flickr15k dataset.

selected as queries, while the rest are created by distorting original images with three
kinds of artificial attacks: JPEG, cropping and “strong”. Sample query images from
Holidays and Copydays datasets are given in Figure 3.2.

The performance for both datasets is reported as mean average precision (mAP) [125],
as described in Section 3.1.1, after excluding query image from the results, i.e., assuming
it to be null example that is ignored from the evaluation. Unlike Oxford5k and Paris6k,
images in Holidays dataset are not always in the natural upright orientation. More
specifically, most of the images are correctly oriented (or can be with the help of EXIF
orientation tag). However about 5%—10% of the images, spread over the groups, are
rotated (unnaturally for a human observer). Because of this, two additional versions of
Holidays dataset emerged: (i) images were rotated using EXIF information only [121];
(ii) images were manually rotated whenever correct upright orientation was obvious [57].

3.1.3. Oxford Distractors

Oxford Distractors dataset [125], also known as Ozford100k, is created by crawling
Flickr with its 145 most popular tags and consists of 99,782 high-resolution (1024 x 768)
images. It is frequently used in combination with standard image retrieval datasets, to
allow for evaluation at larger scale. We denote the combination of Oxford100k distrac-
tors and Oxford5k, Pairs6k, and Holidays as Oxford105k, Paris106k, and Holidays101k,

respectively.

3.2. Sketch-based image retrieval datasets

Four standard sketch-based image retrieval benchmarks used throughout the thesis
are presented in this section. Section 3.2.1 describes a dataset designed to evalu-
ate category-level performance, while for fine-grained performance datasets in Sec-
tions 3.2.2 and 3.2.3 are used. Finally, sketch-based image retrieval at large scale is
tested on a dataset presented in Section 3.2.4.

3.2.1. Flickrl5k

Flickr15k dataset [63] consists of 14,660 database images collected by crawling Flickr
images for objects that represent distinct types of shape, using a set of semantic tags
(e.g., Louvre, pyramids, etc.). The images are manually labeled into final 33 cate-
gories, which include particular object instances (Brussels Cathedral, Colosseum, Arc
de Triomphe, etc.), generic objects (airplane, bicycle, bird, etc.), and shapes (circle
shape, star shape, heart, balloon, etc.). Selected set of images exhibit significant affine
variation in appearance and in presence of background clutter.
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Figure 3.4. Sample sketch—photo pairs for Shoes, Chairs, and Handbags datasets, respectively.

Ten non-expert sketchers were recruited [63] to provide free-hand sketched queries
for each category. Participants were shown the example images per category before
the drawing, then the sketches were drawn solely based on memory. This resulted in
330 query sketches in total, i.e., one per category for each of the 10 sketchers. Sample
queries from Flickr15k dataset are presented in Figure 3.3. The performance is reported
as mean average precision (mAP) [125] over all 330 queries, as described in Section 3.1.1.

3.2.2. Shoes, Chairs, and Handbags

Shoes, Chairs, and Handbags [184, 153] datasets contain images and sketches from a sin-
gle category each, i.e. shoe, chair, and handbag category, respectively. The image part
of datasets was collected from online shopping websites (IKEA, Amazon, and Taobao)
or product datasets (UT-Zap50k [183]). The sketch part of datasets was created by
recruiting 22 non-expert volunteer sketchers [184]. One photo of shoe/chair/handbag
was shown to a volunteer on a tablet for 15 seconds, then, he/she had to sketch the
object they just saw using their fingers on the tablet. As a result, these datasets consist
of pairs of a photo and a corresponding hand-drawn detailed sketch of this photo, both
in a 256 x 256 resolution. Examples of sketch—photo pairs for all three datasets are
illustrated in Figure 3.4.

There are 419, 297, and 568 sketch—photo pairs of shoes, chairs, and handbags,
respectively. Out of these, 304, 200, and 400 pairs are selected for training, and 115, 97,
and 168 for testing shoes, chairs, and handbags, respectively. At evaluation, the search
is performed on test images using test sketches as queries. The underlying task is quite
different compared to Flickrl5k (see Section 3.2.1 for more details). The photograph
used to generate the sketch is to be retrieved, while all other images are considered
false positives. The performance is measured via the matching accuracy at the top K
retrieved images, averaged over all sketch queries, denoted by acc.@QK [184].

3.2.3. Sketchy

Sketchy [143] dataset consists of 12,500 images and 75,471 sketches (roughly 5 sketches
per photo), spanning 125 categories of common objects like horse, apple, axe, guitar,
etc. These categories are chosen using the criteria in [45]: exhaustive, recognizable, and
specific; with an additional sketchability criterion [143]. To pick sketchable photographs,
a total of 69,495 images were reviewed with 24,819 being selected, using a subjective
ranking by answering the question “How easily could a novice artist capture the subject
category and pose?” As part of this process, volunteer annotators ranked each image
with a subjective score ranging from 1 (very easy to sketch) to 5 (very difficult to
sketch). Then, for each of the 125 categories, 100 images are chosen at random with a
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Figure 3.5. Sample sketch—photo pairs for Sketchy dataset.

distribution of 40 very easy, 30 easy, 20 average, 10 hard, and 0 very hard photographs.
This constitutes 12,500 examples for the image part of the Sketchy dataset.

For the collection of the sketch part of the dataset, volunteer sketchers were em-
ployed [143]. Each participant is given a randomly selected category name, a random
image from the respective category, and a blank canvas on which to sketch. The image
can be seen for 2 seconds at a time, as many times as needed, but the canvas is cleared
every time the volunteer decides to take a look at the image. Sketchers are instructed
to sketch the object from the named category with a pose similar to that of the object
in the photograph, sketch only the object itself without the image clutter, and avoid
shading. This procedure forces workers to draw from memory, rather than directly
copying the boundaries. Each photograph was sketched five times by different partic-
ipants. In total, 644 individuals were involved in this procedure, over the course of 6
months, and they collectively spent 3,921 hours sketching. Finally, all sketches were
manually validated to remove erroneous ones, resulting in a total of 75,471 sketches for
the sketch part of the Sketchy dataset. Examples of sketch—photo pairs for the Sketchy
dataset are given in Figure 3.5.

For the evaluation purposes, 1,250 database photos and 6,312 query sketches are
selected, still spanning the same 125 categories. At test time, the search is performed
on all images using sketches as queries. Each sketch query is associated to a single
image, the one that prompted the creation of this particular sketch. The performance is
measured via recall at various ranks, where recall@K for a particular sketch query is 1 if
the corresponding photo is within the top K retrieved results and 0 otherwise [143]. The
results are averaged over all queries to produce one final recall@QK for the whole dataset.
Note that recall@K is basically the same as acc.QK of the Shoes/Chairs/Handbags
datasets (see Section 3.2.2 for more details).

3.2.4. SBIR175

SBIR175 [120] dataset consists of 1.2M images and 175 sketch queries. The image
part of the dataset is a combination of images taken from the MIR-Flickr-1M [64] and
ImageNet [42] image collections. Around 1M images are taken from the first collection,
while around 200k images from the second collection, in order to cover many com-
mon objects. Five volunteer participants drew sketches on a touch-based tablet, which
resulted in 75 sketches [120]. The other 100 are taken from a crowd-sourced sketch
database of Eitz et al. [45]. Query sketches depict objects from 40 different categories,
and sample query sketches are presented in Figure 3.6.

The performance is measured via precision at K top-ranked images per query, and
average precision over all queries is reported [120]. This dataset has no available an-
notation, so we use external annotators to manually evaluate the top retrieved images
for each query and evaluated method. We evaluate the results based on a particular
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Figure 3.7. Sample images per domain (Photo, Art (painting), Cartoon, Sketch) and per cat-
egory (dog, elephant, giraffe, guitar, horse, house, person) for PACS dataset.

instance retrieval paradigm. In other words, results are annotated per query instance,
according to its shape, but not according to the general category that the query be-
longs to. External annotators did evaluation for a single query at a time, using following
instructions:

e Positive: An object that is of the correct category and the same pose or similar as
the query. An object that is of a different category but very similar in shape of the
sketch, in cases where a similar sketch could have been drawn with the intention to

retrieve the image in question.

e Negative: Retrieved image and sketch contain objects with different shapes, while
the category might be matching or not.

3.3. Domain generalization datasets

To evaluate domain generalization performance of image representations, one needs
a dataset that covers various object categories, where each category is contained in
different image domains. A popular dataset designed to achieve this goal is presented

in Section 3.3.1.
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3.3. Domain generalization datasets

3.3.1. PACS

PACS is a recently introduced domain generalization dataset by Li et al. [85]. It consists
of 9,991 images coming from 4 domains with varying level of abstraction, namely: Photo,
Art (painting), Cartoon, and Sketch. Images are labeled according to 7 categories: dog,
elephant, giraffe, guitar, horse, house, and person. A sample image per domain and
per category is given in Figure 3.7. This dataset is created by intersecting the classes
found in Caltech256 (Photo), Sketchy (Photo, Sketch) [143], TU-Berlin (Sketch) [45],
and Google Images (Art, Cartoon, Photo).

For evaluation, each time, one domain is considered unseen, also called target or
test domain, while the images of the other 3 are used for training. Finally, multi-class
accuracy is evaluated on the unseen domain.
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Chapter

Large-Scale Image Retrieval Test Datasets

MAGE retrieval methods have gone through significant development in the last decade.
I In order to measure the progress and compare different methods, standardized image
retrieval benchmarks are used. Besides the fact that a benchmark should simulate a
real-world application, there are a number of properties that determine the quality of
a benchmark: the reliability of the annotation, the size, and the challenge level.

Errors in the annotation may systematically corrupt the comparison of different meth-
ods. Too small datasets are prone to over-fitting and do not allow the evaluation of
the efficiency of the methods. The reliability of the annotation and size of the dataset
are competing factors, as it is difficult to secure accurate human annotation of large
datasets. The size is commonly increased by adding a distractor set, which contains
irrelevant images that are selected in an automated manner (different tags, GPS in-
formation, etc.) Finally, benchmarks where all the methods achieve almost perfect
results [83] cannot be used for further improvement or quantitative comparison.

Many datasets have been introduced to measure the performance of image retrieval.
Most popular are Oxford [125] and Paris [126]. Numerous methods of image re-
trieval [31, 121, 29, 102, 166, 8, 168, 76, 135, 58] and visual localization [51, 3] have used
these datasets for evaluation. Reason for their popularity is that, in contrast to datasets
that contain small groups of 4-5 similar images like Holidays [69] and UKB [113], Oxford
and Paris contain queries with up to hundreds of positive images.

Despite the popularity, there are known issues with the two datasets, which are re-
lated to all three important properties of evaluation benchmarks. First, there are errors
in the annotation, including both false positives and false negatives, see Figure 4.2. Fur-
ther inaccuracy is introduced by queries of different sides of a landmark, sharing the
annotation despite being visually distinguishable. Second, the annotated datasets are
relatively small (5,062 and 6,392 images respectively). Third, current methods report
near-perfect results on both the datasets. It has become difficult to draw conclusions
from quantitative evaluations, especially given the annotation errors [67].

The lack of difficulty is not caused by the fact that non-trivial instances are not
present in the dataset, but due to the annotation. The annotation was introduced at
the early years of image retrieval. At that time, the annotators had different perception
of what the limits of image retrieval are. Many instances that are nowadays considered
as a change of viewpoint expected to be retrieved, are de facto excluded from the
evaluation by being labelled as Junk.

The size issue of the datasets is partially addressed by the Oxford 100k distractor set.
However, this contains false negative images, as well as images that are not challenging.
The state-of-the-art methods maintain near-perfect results even in the presence of these
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Figure 4.1. The newly added queries for ROxford (top) and RParis (bottom) datasets. Merged
with the original queries, they comprise a new set of 70 queries in total.

distractors. As a result, additional computational effort is spent with little benefit in
drawing conclusions.

As a contribution, we generate new annotation for Oxford and Paris datasets, up-
date the evaluation protocol, define new, more difficult queries, and create new set
of challenging distractors. As an outcome we produce Revisited Ozford, Revisited
Paris, and an accompanying distractor set of one million images. We refer to them
as ROxford, RParis, and R1M respectively. Another contribution connected to these
revisted datasets is described in Chapter 7, where we provide extensive evaluation of
image retrieval methods, ranging from local-feature based to CNN-descriptor based
approaches, including various methods of re-ranking.

The contents of this chapter have been published in [130]. The revisited benchmark,
along with the new distractor images, is publicly available!. The rest of the chapter is
organized as follows. The original Oxford and Paris datasets are briefly introduced in
Section 4.1. We describe how and why we revisit the annotation and add new difficult
queries in Section 4.2, while a new evaluation protocol with three difficulty setups
is described in Section 4.3. Newly proposed distractor set with more than a million
challenging images is presented in Section 4.4. Finally, concluding remarks are given in
Section 4.5.

4.1. The original datasets

The original Oxford and Paris datasets consist of 5,063 and 6,392 high-resolution (1024 x
768) images, respectively. Each dataset contains 55 queries comprising 5 queries per
landmark, coming from a total of 11 landmarks. Given a landmark query image, the
goal is to retrieve all database images depicting the same landmark. The original
annotation (labeling) is performed manually and consists of 11 ground truth lists since
5 images of the same landmark form a query group. Three labels are used, namely,
positive, junk, and negative?.

1cmp.felk.(:vut.cz/revisitop
2We rename the originally used labels {good, ok, junk, and absent} for the purpose of consistency
with our terminology. Good and ok were always used as positives.
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4.2. Revisiting the annotation

Figure 4.2. Examples of extreme labeling mistakes in the original labeling. We show the query
(blue) image and the associated database images that were originally marked as negative
(red) or positive (green). Best viewed in color.

Positive images clearly depict more than 25% of the landmark, junk less than 25%,
while the landmark is not shown in negative ones. The performance is measured via
mean average precision (mAP) [125] over all 55 queries, while junk images are ignored,
i.e. the evaluation is performed as if they were not present in the database. More
details on the original Oxford and Paris datasets is given in Chapter 3, Section 3.1.1.

4.2. Revisiting the annotation

The annotation is performed by 5 annotators, and it is performed in the following steps.

Query groups. Query groups share the same ground-truth list and simplify the label-
ing problem, but also cause some inaccuracies in the original annotation. Balliol and
Christ Church landmarks are depicted from a different (not fully symmetric) side in the
27d and 4™ query, respectively. Are de Triomphe has three day and two night queries,
while day-night matching is considered a challenging problem [172, 132]. We alleviate
this by splitting these cases into separate groups. As a result, we form 13 and 12 query
groups on Oxford and Paris, respectively.

Additional queries. We introduce new and more challenging queries (see Figure 4.1)
compared to the original ones. There are 15 new queries per dataset, originating from
five out of the original 11 landmarks, with three queries per landmark. Along with
the 55 original queries, they comprise the new set of 70 queries per dataset. The query
groups, defined by visual similarity, are 26 and 25 for ROxford and RParis, respectively.
As in the original datasets, the query object bounding boxes are simulating not only a
user attempting to remove background clutter, but also cases of large occlusion.

Labeling step 1: Selection of potential positives. Fach annotator manually inspects
the whole dataset and marks images depicting any side or version of a landmark. The
goal is to collect all images that are originally incorrectly labeled as negative. Even
uncertain cases are included in this step and the process is repeated for each landmark.
Apart from inspecting the whole dataset, an interactive retrieval tool is used to actively
search for further possible positive images. All images marked in this phase are merged
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Table 4.1. Number of images switching their labeling from the original annotation (positive,
junk, negative) to the new one (easy, hard, unclear, negative).

ROxford RParis
Labels Easy | Hard | Uncl. | Neg. Labels Easy | Hard | Uncl. | Neg.
Positive 438 50 93 1 Positive 1222 643 136 6
Junk 50 222 72 9 Junk 91 813 835 61
Negative 1 72 133 | 63768 Negative 16 147 273 | 71621

together with images originally annotated as positive or junk, creating a list of potential
positives for each landmark.

Labeling step 2: Label assignment. In this step, each annotator manually inspects
the list of potential positives for each query group and assigns labels. The possible
labels are Fasy, Hard, Unclear, and Negative. All images not in the list of potential
positives are automatically marked negative. The instructions given to the annotators
for each of the labels are as follows.

e Fasy: The image clearly depicts the query landmark from the same side, with no
large viewpoint change, no significant occlusion, no extreme illumination change, and
no severe background clutter. In the case of fully symmetric sides, any side is valid.

e Hard: The image depicts the query landmark, but with viewing conditions that are
difficult to match with the query. The depicted (side of the) landmark is recognizable
without any contextual visual information.

e Unclear: (a) The image possibly depicts the landmark in question, but the content
is not enough to make a certain guess about the overlap with the query region, or
context is needed to clarify. (b) The image depicts a different side of a partially
symmetric building, where the symmetry is significant and discriminative enough.

e Negative: The image is not satisfying any of the previous conditions. For instance,
it depicts a different side of the landmark compared to that of the query, with no
discriminative symmetries. If the image has any physical overlap with the query, it
is never negative, but rather unclear, easy, or hard according to the above.

Labeling step 3: Refinement. For each query group, each image in the list of potential
positives has been assigned a five-tuple of labels, one per annotator. We perform major-
ity voting in two steps to define the final label. The first step is voting for {easy,hard},
{unclear}, or {negative}, grouping easy and hard together. In case majority goes to
{easy,hard}, the second step is to decide which of the two. Draws of the first step are
assigned to unclear, and of the second step to hard. Illustrative examples are (EEHUU)
— E, (EHUUN) — U, and (HHUNN) — U. Finally, for each query group, we inspect
images by descending label entropy to make sure there are no errors.

Revisited datasets: ROxford and RParis. Images from which the queries are cropped
are excluded from the evaluation dataset. This way, unfair comparisons are avoided in
the case of methods performing off-line preprocessing of the database [4, 67]; any pre-
processing should not include any part of query images. The revisited datasets,
namely, ROxford and RParis, comprise 4,993 and 6,322 images respectively, after re-
moving the 70 queries.
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4.3. Evaluation protocol

Figure 4.3. Sample query (blue) images and images that are respectively marked as easy
(dark green), , and . Best viewed in color.

In Table 4.1, we show statistics of label transitions from the old to the new anno-
tations. Note that errors in the original annotation that affect the evaluation, e.g.
negative moving to easy or hard, are not uncommon. The transitions from junk to
easy or hard are reflecting the greater challenges of the new annotation. Representative
examples of extreme labeling errors of the original annotation are shown in Figure 4.2.
In Figure 4.3, representative examples of easy, hard, and unclear images are shown for
several queries. This will help understanding the level of challenge of each evaluation
protocol listed below.

4.3. Evaluation protocol

Only the cropped regions are to be used as queries; never the full image, since the
ground-truth labeling strictly considers only the visual content inside the query region.

The standard practice of reporting mean average precision (mAP) [125] for perfor-
mance evaluation is followed. Additionally, mean precision at rank K (mPQK) is
reported. The former reflects the overall quality of the ranked list. The latter reflects
the quality of the results of a search engine as they would be visually inspected by
a user. More importantly, it is correlated to performance of subsequent processing
steps [31, 77]. During the evaluation, positive images should be retrieved, while there is
also an ignore list per query. Three evaluation setups of different difficulty are defined
by treating labels (easy, hard, unclear) as positive or negative, or ignoring them:

e Easy (E): Easy images are treated as positive, while Hard and Unclear are ignored
(same as Junk in [125]).

e Medium (M): Easy and Hard images are treated as positive, while Unclear are
ignored.

e Hard (H): Hard images are treated as positive, while Easy and Unclear are ignored.

If there are no positive images for a query in a particular setting, then that query is
excluded from the evaluation.
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Figure 4.5. The most distracting images per query for two queries.

The original annotation and evaluation protocol is closest to our Easy setup. Even
though this setup is now trivial for the best performing methods, it can still be used for
evaluation of e.g. near duplicate detection or retrieval with ultra short codes. The other
setups, Medium and Hard, are challenging and even the best performing methods
achieve relatively low scores. See Chapter 7 for details.

4.4. Distractor set R1M

Large scale experiments on Oxford and Paris dataset are commonly performed with
the accompanying distractor set of 100k images, namely Oxford100k [125]. Recent re-
sults [67, 66] show that the performance only slightly degrades by adding Oxford100k
in the database compared to a small-scale setting. Moreover, it is not manually cleaned
and, as a consequence, Oxford and Paris landmarks are depicted in some of the distrac-
tor images (see Figure 4.4), hence adding further noise to the evaluation procedure.

Larger distactor sets are used in the literature [125, 126, 69, 161] but none of them
are standardized to provide a testbed for direct large scale comparison nor are they
manually cleaned [69]. Some of the distractor sets are also biased, since they contain
images of different resolution than the Oxford and Paris datasets.

We construct a new distractor set with exactly 1,001,001 high-resolution (1024 x
768) images, which we refer to as R1M dataset. It is cleaned by a semi-automatic
process. We automatically pick hard images for a number of state-of-the-art methods,
resulting in a challenging large scale setup.

YFCC100M and semi-automatic cleaning. We randomly choose 5M images with
GPS information from YFCC100M dataset [160]. Then, we exclude UK, France, and
Las Vegas; the latter due to the Fiffel Tower and Arc de Triomphe replicas. We end up
with roughly 4.1M images that are available for downloading in high resolution. We rank
images with the same search tool as used in labeling step 1. Then, we manually inspect
the top 2k images per landmark, and remove those depicting the query landmarks
(faulty GPS, toy models, and paintings/photographs of landmarks). In total, we find
110 such images.

Un-biased mining of distracting images. We propose a way to keep the most chal-
lenging 1M out of the 4.1M images. We perform all 70 queries into the 4.1M database
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Table 4.2. Performance (mAP) evaluation with the Medium protocol for different distractor
sets. The methods considered are (1) Fine-tuned ResNet101 with GeM pooling [135]; (2)
Off-the-shelf AlexNet with MAC pooling [138]; (3) HesAff-rSIFT-ASMK* [163]; (4) Fine-
tuned ResNet101 with R-MAC pooling [58]; (5) HesAff-rSIFT-VLAD [72]. The sanity check
includes evaluation for different distractor sets, i.e. all, hardest subset chosen by method
(1,2,3), (1,2,3,4), (1,2,4,5), and a random 1M sample.

ROxford ‘ RParis

Distractor set Method

Ojeoleo]leoleololo]le]®w]e
4M 33.3 | 11.1 | 33.2 | 33.7 | 15.6 | 40.7 | 11.4 | 30.0 | 45.4 | 17.9
1M (1,2,3) 33.9 | 11.1 | 34.8 | 33.9 | 17.4 | 44.1 | 11.8 | 31.7 | 48.1 | 19.6
1M (1,2,3,4) 33.7 | 11.1 | 34.8 | 33.8 | 17.5 | 43.8 | 11.8 | 31.8 | 47.7 | 19.7
1M (1,2,3,5) 33.7 | 11.1 | 34.6 | 33.9 | 17.2 | 43.5 | 11.7 | 31.4 | 47.7 | 19.2
1M (random) 37.6 | 13.7 | 37.4 | 38.9 | 20.4 | 47.3 | 16.2 | 34.2 | 53.1 | 21.9

with a number of methods. For each query and for each distractor image we count the
fraction of easy or hard images that are ranked after it. We sum these fractions over all
queries of ROxford and RParis and over different methods, resulting in a measurement
of how distracting each distractor image is. We choose the set of 1M most distracting
images and refer to it as the R1M distractor set.

Three complementary retrieval methods are chosen to compute this measurement.
These are fine-tuned ResNet with GeM pooling [135], pre-trained (on ImageNet) AlexNet
with MAC pooling [138], and ASMK [163]. More details on these methods are given in
Chapter 7, Section 7.1. Finally, we perform a sanity check to show that this selection
process is not significantly biased to distract only those 3 methods. This includes two
additional methods, VLAD [72] and fine-tuned ResNet with R-MAC pooling by Gordo
et al. [58]. As shown in Table 4.2, the performance on the hardest 1M distractors is
hardly affected whether one of those additional methods participates or not in the se-
lection process. This suggests that the mining process is not biased towards particular
methods.

Table 4.2 also shows that the distractor set we choose (version 1M (1,2,3) in the Table)
is much harder than a random 1M subset and nearly as hard as all 4M distractor images.
Example images from the set R1M are shown in Figure 4.5.

4.5. Concluding remarks

We have revisited two of the most established image retrieval datasets, that were per-
ceived as performance saturated. To make it suitable for modern image retrieval bench-
marking, we address drawbacks of the original annotation. This includes new annota-
tion for both datasets that was created with an extra attention to the reliability of the
ground truth, and an introduction of 1M hard distractor set.
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Chapter

Improving Bag-of-Words-Based Compact Image Retrieval

HIS chapter tackles the problem of generating compact image representation start-
T ing from a high-dimensional bag-of-words approach [151]. In fact, methods pro-
posed here can be successfully used in any image retrieval method based on local fea-
tures that depends on generating visual vocabularies, e.g., vector of locally aggregated
descriptors (VLAD) [72] or Fisher vectors [124]. The contents of this chapter have
been published in [131]. After this publication, convolutional-neural-network-based
approaches provided compact representations leading to higher accuracy. We discuss
the convolutional-neural-network-based approaches, and our respective contributions in
that area, in Chapter 6.

The BoW vectors are high dimensional (up to 64 million dimensions in [102]), and as
such they require inverted file structure for the efficient search of several million images
on a single machine. Building a vocabulary with millions of visual words is a demanding
process, making the offline preprocessing stage computationally expensive. Addition-
ally, quantizing a query image is often a bottleneck of online stage, again due to the large
vocabulary size. There are more scalable approaches that tackle memory and computa-
tional limitations problem by generating compact image representations [169, 124, 72],
where the image is described by a short vector that can be additionally compressed
into compact codes using binarization [169, 177], product quantization [71], or addi-
tive quantization [7] techniques. In this work we propose and experimentally evaluate
simple techniques that additionally boost retrieval performance, but at the same time
preserve low memory and computational costs.

Short vector image representations are often generated using the principal compo-
nent analysis (PCA) [12] technique to perform the dimensionality reduction over high-
dimensional vectors. Jegou and Chum [68] study the effects of PCA on BoW repre-
sentations. They show that both steps of PCA procedure, i.e., centering and selection
of de-correlated (orthogonal) basis minimizing the dimensionality reduction error, im-
prove retrieval performance. Centering (mean subtraction) of BoW vectors provides a
boost in performance by adding a higher value to the negative evidence: given two BoW
vectors, a visual word jointly missing in both vectors provides useful information for the
similarity measure [68]. Additionally, the authors of [68] advocate the joint dimensional-
ity reduction with multiple vocabularies to reduce the quantization artifacts underlying
BoW and VLAD. These vocabularies are created by using different initializations for
the k-means algorithm, which may produce highly correlated vocabularies.

In this chapter, we propose to reduce the redundancy of the joint vocabulary rep-
resentation (before the joint dimensionality reduction) by varying parameters of the
local feature descriptors prior to the k-means quantization. In particular, we propose:
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(i) different sizes of measurement regions for local description, (ii) different power-law
normalizations of local feature descriptors, and (iii) different linear projections (PCA
learned) to reduce the dimensionality of local descriptors. In this way, created vocabu-
laries will be more complementary and joint dimensionality reduction of concatenated
BoW vectors originating from several vocabularies will carry more information. Even
though the proposed approaches are simple, we show that they provide significant boosts
to retrieval performance with no memory or computational overhead at the query time.

The rest of the chapter is organized as follows. Section 5.1 gives a brief overview of
used datasets and evaluation protocols, as well as an overview of several methods: bag-
of-words (BoW), efficient PCA dimensionality reduction of high dimensional vectors,
and baseline retrieval with multiple vocabularies. Section 5.2 introduces novel meth-
ods for joint dimensionality reduction of multiple vocabularies and presents extensive
experimental evaluations. Concluding remarks are given in Section 5.3.

5.1. Evaluation, background and baseline

This section gives a short overview of the evaluation datasets, background of bag-of-
words (BoW) based image retrieval, and the baseline method used in [68]. Key steps,
ideas, and implementation details are discussed in higher detail to help the understand-
ing of the chapter.

5.1.1. Datasets and evaluation

Results of our methods are evaluated on the datasets that are widely used in the image
retrieval area, namely, Oxford5k [125], Paris6k [126], and Holidays [69]. Also, we com-
pare our results with other approaches evaluated on the same datasets. All of the afore-
mentioned datasets consist of a set of query images that are used to rank the database
images, and the performance is evaluated as mean average precision (mAP) [125] given
the ground-truth defining which images are relevant per query. In order to evaluate
the search performance on a large scale, Oxford Distractors dataset [125] is used in the
combination with Oxford5k, denoted as Oxford105k. For more details on all of these
datasets see Chapter 3, Section 3.1.

For the purposes of our experiments we use Paris6k as a training dataset in order to
learn the visual vocabulary and projections of PCA dimensionality reduction. When
evaluating our methods on Oxfordbk, Oxford105k, and Holidays, we always use the
data learned on Paris6k.

5.1.2. Bag-of-words image representation

First efficient image retrieval based on BoW image representation was proposed by
Sivic and Zisserman [151]. They use local descriptors extracted in an image in order to
construct a high-dimensional global descriptor. This procedure follows four basic steps:

1. For each image in the dataset, regions of interest are detected [98, 96] and described
by an invariant descriptor which is d-dimensional. In this work we use the multi-
scale Hessian-Affine [121], Harris-Affine [100], and MSER [96] detectors, followed
by SIFT [92] or RootSIFT [4] descriptors. The rotation of the descriptor is either
determined by the detected dominant orientation [92], or by the gravity vector as-
sumption [121]. The descriptors are extracted from different sizes of measurement
regions [96], as described in detail in Section 5.2.
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2. Descriptors extracted from the training (independent) dataset (see Section 5.1.1)
are clustered into k clusters using the k-means algorithm, which creates a visual
vocabulary.

3. For each image in the dataset, a histogram of occurrences of visual words is com-
puted. Different weighting schemes can be used, the most popular is inverse document
frequency (idf), which generates a D dimensional BoW vector (D = k).

4. All resulting vectors are lo normalized, as suggested in [151], producing final global
image representations used for searching.

5.1.3. Efficient PCA of high dimensional vectors

In most of the cases BoW image representations have very high number of dimensions
(D can take values up to 64 million [102]). In these cases the standard PCA method
(reducing D to D’) computing the full covariance matrix is not efficient. The dual
gram method (see Paragraph 12.1.4 in [12]) can be used to learn the first D’ eigen-
vectors and eigenvalues. Instead of computing the D x D covariance matrix C, the
dual gram method computes the n x n matrix XX, where X is a set of vectors used
for learning, and n is the number of vectors in the set X. Eigenvalue decomposition
is performed using the Arnoldi algorithm, which iteratively computes the D’ desired
eigenvectors corresponding to the largest eigenvalues. This method is more efficient
than the standard covariance matrix method if the number of vectors n of the training
set is smaller than the number of vector dimensions D, which is usually the case in the
BoW approach.

Jegou and Chum [68] analyze the effects of PCA dimensionality reduction on the
BoW and VLAD vectors. They show that even though PCA successfully deals with
the problem of negative evidence (higher importance of jointly missing visual words in
compared BoW vectors), it ignores the problem of co-occurrences (co-occurrences lead
to over-count some visual patterns when comparing two image vector representations,
see [28]). In order to tackle the over-counting problem, they propose performing a
whitening operation, similar to the one done in independent component analysis [33]
(implicitly performed by the Mahalanobis distance), jointly with the PCA. In our ex-
periments we use dimensionality reduction from D to D’ components, as done in [68]:

1. Every image vector v = [v1,...,Vp] is post-processed using power-law normaliza-
tion [124]: ¥; = |vi|Psign(v;), with 0 < B < 1 as a fixed constant. Vector v is
lo normalized after processing. It has been shown [73] that this simple procedure
reduces the impact of multiple matches and visual bursts [70]. In all our experiments
B = 0.5, denoted as signed square rooting (SSR).

2. First D’ eigenvectors of matrix C are learned using power-law normalized training
vectors X = [vi|...|v], corresponding to the largest D’ eigenvalues A1, ..., Apr.

3. Every power-law normalized image descriptor used for searching v is PCA-projected,
and at the same time whitened and re-normalized to a new vector v(*) that is the
final short vector representation with dimensionality D’:

M=

_ _1
_ diag(A; ?,. .. ,)\D,Q)PT (V—p) (5.1)

_ 1
‘ diag(A; 2,..., Ap?)PT (Vv — u)'

()

N
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Figure 5.1. Performance evaluation of the baseline methods. Left plots show mAP performance
on Oxford5k (upper plot) and Holidays (lower plot) after straightforward concatenation of
BoW vectors (no PCA dimensionality reduction performed) generated using multiple vocabu-
laries. Note that dimensionality of BoW grows linearly with every new concatenation. Right
plots present mAP performance on Oxfordbk and Holidays after joint PCA dimensionality
reduction of concatenated BoW representations to a D’ = 128 dimensional vector.

where p is the mean vector to perform centering, and the D x D’ matrix P is formed
by the largest eigenvectors calculated in the previous step. Comparing two vectors
after this dimensionality reduction with the Euclidean distance is now similar to using
a Mahalanobis distance. It has been argued that the re-normalization step is critical
for a better comparison metric, see [68].

In order to compare results in a fair manner, we will use D’ = 128 dimensions for all
our experiments following the trend of previous research in short image representations.

5.1.4. The baseline method

This work builds upon the work [68], which is briefly reviewed in this section. In [68], a
joint dimensionality reduction of multiple vocabularies is proposed. Image representa-
tion vectors are separately SSR normalized for each vocabulary, concatenated and then
jointly PCA-reduced and whitened as explained in the Section 5.1.3. The idf term is
ignored, and it is noted that the influence is limited when used with multiple vocabu-
laries. Results of this method are shown in Figure 5.1 (right plots). Comparing to the
straightforward concatenation (Figure 5.1, left plots) where the results do not notice-
ably improve after adding multiple vocabularies, it can be noticed that an improvement
in performance is achieved even when keeping low memory requirements by using PCA
dimensionality reduction. However, for some vocabularies (i.e. k = 2k), performance
is dropping after only few vocabularies used.
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Table 5.1. Complexity of vocabularies used throughout the experiments. Complexity is given
as a number of vector comparisons per local descriptor during the construction of the final
BoW image representation.

Vocabulary ‘ Complexity ‘
8k 8192
4k 4096
2k 2048
1k 1024
4k+2k+...+128 8064
2k+1k+. .. +128 3968
1k+512+256+128 1920
51242564128 896

5.2. Sources of multiple codebooks

We propose combining multiple vocabularies that are differing not just in random ini-
tialization of clustering procedure, but also in the data used for clustering. The feature
data are alternated in the process of local features description. This process is not try-
ing to synthesize appearance deformations, but rather varying certain design choices in
the pipeline of feature description, such as the relative size of the measurement region.
Vocabularies created in this manner will contain less redundancy. This is combined
with joint PCA dimensionality reduction (as described in Sections 5.1.3 and 5.1.4) in
order to produce short-vector image representations that are used for searching the
most similar images in the dataset.

Quantization complexity for all vocabularies used in experiments is given in Table 5.1.
As stated in [68], time necessary to quantize 2000 local descriptors of a query image,
for four k = 8k vocabularies, on 12 cores is 0.45s, using a multi-threaded exhaustive
search implementation. Timings are proportional to the vocabulary size, i.e., to the
number in the right column of Table 5.1.

5.2.1. Multiple measurement regions

An affine invariant descriptor of an affine covariant region can be extracted from any
affine covariant constructed measurement region [96]. As an example of a measurement
region that is, in general, of a different shape than the detected region, is an ellipse
fitted to the regions, as proposed by [170] and also used for MSERs [96]. An important
parameter is the relative scale of the measurement region with respect to the scale of
the detected region. Since the output of the detector is designed to be repeatable, it is
usually not discriminative. To increase the discriminability of the descriptor, it is com-
monly extracted from area larger than the detected region. In case of [121], the relative
change in the radius is » = 3v/3. The larger the region, the higher discriminability of
the descriptor, as long as the measurement region covers a close-to-planar surface. On
the other hand, larger image patches have higher chance of hitting depth discontinuities
and thus being corrupted. An example of multiple measurement regions is shown in
Figure 5.2. To take the best of this trade off, we propose to construct multiple vocabu-
laries over descriptors extracted at multiple relative scales of the measurement regions.
Including lower scales leverages the disadvantages of large measurement regions, while
joint dimensionality reduction eliminates the dependencies between the representations.

We consider using different sizes of measurement regions: 0.5 xr, 0.75xr, 1 X7, 1.25x
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Figure 5.2. An example visualization of multiple measurement regions. A corresponding fea-
ture is detected in two images (left). Multiple measurement regions for a single detected
feature are shown in each row. The normalized patches (right) show different image content
described by the respective descriptor.
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Figure 5.3. Performance evaluation of the multiple measurement regions (mMeasReg) ap-
proach. Performance improvement on Oxford5k, measured via mAP, after PCA reduction
to D' = 128 of concatenated BoW vectors produced on vocabularies created using SIFT
descriptors with different measurement regions: 0.5xr, 0.75xr, 1xr, 1.25x7r, 1.5X7.

r, 1.5 x r; creating slightly different STF'T descriptors used to learn every vocabulary.
Implementation is very simple and during online stage the computation has to be done
only for the features from query image region. Though simple, this method provides
significant improvement even when concatenating vocabularies of small sizes (i.e. k =
2k and k = 1k), see Figure 5.3 (left plot). We also explore the use of vocabularies
with different sizes. All BoW vectors in this case are weighted proportionally to the
logarithm of their vocabulary size [68]. In each step we concatenate a new bundle of
vocabularies with multiple sizes, calculated with a different measurement region. We
notice improvement when using multiple vocabulary sizes as well, see Figure 5.3 (right
plot). For presentation of results on both plots in Figure 5.3, in every step we are
adding a different vocabulary created on SIFT vectors with measurement regions in

predefined order: 0.5 x r, 0.75 x r, 1 x r, 1.25 x r, 1.5 x r. This approach is denoted as
mMeasReg.
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Figure 5.4. Performance evaluation of the multiple power-law normalized SIFT descriptors
(mRootSIFT) approach. Performance improvement on Oxford5k, measured via mAP, after
PCA reduction to D’ = 128 of concatenated BoW vectors produced on vocabularies created
using multiple local feature descriptors: SIFT, SIFT?#, SIFT®5, SIFT®C.

5.2.2. Multiple power-law normalized SIFT descriptors

SIFT descriptors [92] were the popular choice in most of the image retrieval systems
for a long time. Arandjelovic et al. [4] show that using a Hellinger kernel instead of
standard Euclidean distance to measure the similarity between SIF'T descriptors leads
to a noticeable performance boost in retrieval system. The Hellinger kernel for two Iy
normalized vectors, x and y, is defined as:

D

H(xy) =Y Ew. (5.2)

=1

In the case of SIFT descriptors, the kernel is implemented by a simple two step proce-
dure: (i) SIFT vector is I; normalized (originally it has unit 3 norm); (ii) each element
of SIFT vector is square rooted, which in turn makes the resulting vector Iy normal-
ized again. Resulting vector is denoted as RootSIFT [4]. Using Euclidean distance on
RootSIFT descriptors will give the same result as using Hellinger kernel on the original
SIFT descriptors:

Ivx = VylI* =2 - 2H(x,y). (5:3)

In general, a power-law normalization [124] with any power 0 < 3 < 1 can be applied to
the descriptors (5 = 0.5 resulting in RootSIFT [4]). Voronoi cells constructed in power-
law normalized descriptor spaces can be seen as non-linear hyper-surfaces separating
the features in the original (SIFT) descriptor space. Concatenation of such feature
space partitionings reduces the redundant information.

There is no additional memory required and the change can be done on-the-fly with
virtually no additional computational cost using simple power operation. We consider
building four different vocabularies using: SIFT and SIFT with every component to
the power of 0.4, 0.5, 0.6 (denoted as SIFT%4 SIFT?® SIFT® respectively). Per-
formance improves when concatenating vocabularies created using different power-law
normalized SIFT descriptors, see Figure 5.4, left plot. Additional improvement can be
achieved by using a bundle of vocabularies with different sizes, see Figure 5.4, right plot.
Adding all SIFT modifications to the process of vocabulary creation achieves noticeable
improvement of retrieval performance in the case of all vocabulary sizes. We denote
this method as mRootSIFT.
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Combining vocabularies of different SIF'T exponents improves over combining dif-
ferent vocabularies of a single SIFT exponent. For example, for 4 x 2k vocabularies,
the mAP on Oxford5k is 46.5 for 4 x SIFT®, and 47.7 (Figure 5.4 left) for exponent
combination.

5.2.3. Multiple linear projections of SIFT descriptors

In locality sensitive hashing (random) linear projections are commonly used to reduce
the dimensionality of the space while preserving locality. The idea pursued in this part
of the chapter is to use linear projections on the feature descriptors (SIFTs) before
the vocabulary construction via k-means. However, random projections do not reflect
the structure of the descriptors, resulting in noisy descriptor space partitionings. We
propose to use PCA learned linear projections of SIFTs, learned on different training
sets or subsets. The projections learned this way account for the statistics given by the
training sets and hence produce meaningful distances, while inserting different biases
into the vocabulary construction.

The improvement is twofold: (i) increased performance measured by mAP, and (ii)
shorter query quantization time due to more compact local descriptors after dimension-
ality reduction. On the other side there is a small amount of storage required to save
learned projection matrices for every vocabulary, which we reuse at query. We consider
and evaluate three different approaches for learning the eigenvectors used to project
SIFT vectors from D to D’ dimensions:

1. Eigenvectors are learned on Paris6k dataset and reduce the 128-dimensional SIFT
descriptors to D’ = 80,64, 48,32 in the respective order for every newly created
vocabulary (mPCA;1-SIFT). Results of this experiment are shown in Figure 5.5, 1°¢
TOW.

2. Eigenvectors are learned on different datasets: Paris6k, Holidays, University of Ken-
tucky benchmark (UKB) [113], PASCAL VOC 2007 training set [48], in the respective
order, for every newly created vocabulary (mPCA2-SIFT). Dimension of SIFT de-
scriptors is reduced to D’ = 80 in all cases. For the mAP performance on Oxford5k,
see Figure 5.5, 2" row.

3. Eigenvectors are learned on different datasets: Parisbk, Holidays, UKB, PASCAL
VOC 2007 training set, and reduce the dimension of SIFT descriptors differently
for each dataset (D' = 80,64,48,32 respectively) creating different vocabularies
(mPCA3-SIFT). Performance is presented in Figure 5.5, 3™ row.

Note that first vocabulary in all three different approaches is produced using standard

SIFT descriptors without PCA reduction. A new vocabulary is added in every step of

the experiment having joint dimensionality reduction of 5 concatenated BoW vectors

in the end.

5.2.4. Multiple feature detectors

In the Video Google approach [151] the authors combine vocabularies created from
two different feature types. In this work we attempt to combine Hessian-Affine [121]
and MSER [96] detectors. Even though straightforward concatenation of BoW vectors
created on k = 8k vocabularies (48.7 mAP on Oxford5k) gives improvement over using
single BoW representations with Hessian-Affine (44.7) and MSER (40.1) features, after
joint PCA reduction there is a decrease of performance when combining features (37.0
mAP on Oxford5k) compared to only doing PCA reduction on a single Hessian-Affine
vocabulary (38.6), and an increase in performance when compared to PCA-reduced
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Figure 5.5. Performance evaluation of the multiple linear projections of SIFT descriptors
(mPCA-SIFT) approach. Performance improvement on Oxford5k, measured via mAP, after
PCA reduction to D’ = 128 of concatenated BoW vectors produced on vocabularies created
using different PCA-reduced SIFT descriptors. For more details about all three presented
methods see Section 5.2.

BoW vectors built on a single MSER vocabulary (24.4). Similar conclusions are made
when combining smaller vocabulary sizes, i.e., there is always a drop in performance
when comparing PCA reduction on a single vocabulary with Hessian-Affine features and
PCA on combined vocabularies with Hessian-Affine and MSER, features; mAP drop:
from 39.8 to 39.1, from 40.7 to 38.7, from 36.8 to 35.1 for k = 4k, 2k, 1k respectively. We
also experimented with combining Harris-Affine [100] with Hessian-Affine features in the
same manner as with MSER, but the improvement is not significant. PCA reduction of
a single k = 8k vocabulary on Hessian-Affine yields 38.6 mAP on Oxford5k while joint
PCA after adding a vocabulary of the same size built on Harris-Affine improves mAP to
39.0, which is smaller improvement than using two vocabularies built on Hessian-Affine
features with different randomization (40.0 mAP).
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Table 5.2. Comparison with the state-of-the-art on short vector image representation based
on local features. Dimensionality of all presented methods is fixed to 128. Results in the first
section of the table are mostly obtained from [73], except for the recent method on triangula-
tion embedding and democratic aggregation with rotation and normalization (¢pa+1q+RN)
proposed in [74]. In the second section we present results from methods that are using joint
PCA and whitening of high dimensional vectors as we do. Results marked with T are obtained
after our reimplementation of the methods using feature detector and descriptor as described
in Section 5.1.2 and Paris6k as a learning dataset. In the last section of the table we present
results of our methods, which are marked with x. Previous state of the art is highlighted in
bold, new state of the art in red outline. Best viewed in color.

’ Method ‘ Vocabulary Oxford5k | Oxford105k ‘ Holidays
BoW [151] =20k 19.4 - 45.2
Improved Fisher [124] k=64 30.1 - 56.5
VLAD [72] k=64 - - 51.0
VLAD+SSR [73] k=64 28.7 - 55.7
A+ +RN [74] k=16 43.3 35.3 61.7
mVocab/BoW [68] k=4x8k 414 33.2 63.0
mVocab/BoW [68] k=2x(32k+...4+128) 42.9 35.1 64.5
mVocab/VLAD [68] k=4x256 - - 61.4
mVocab/VLAD+adapt+innorm [5] k=4x256 44.8 37.4 62.5
* mMeasReg/mVocab/BoW k=5x2k 46.9 38.9 66.9
* mMeasReg/mVocab/BoW k=4x(4k+...+128) 47.7 39.2 67.3
* mRootSIFT/mVocab/BoW k=4x2k 47.7 39.8 64.3
* mRootSIFT/mVocab/BoW k=4x(2k+...+128) 48.8 414 65.6
* mPCA3-SIFT/mVocab/BoW k=5x2k 45.8 38.1 63.2
* mPCA;-SIFT /mVocab/BoW k=5x (4k+ ... +128) 45.5 37.8 64.6

5.2.5. Effective vocabulary size

In order to better understand the impact of using multiple vocabularies we count the
number of unique assignments in the product vocabulary. It corresponds to the number
of non-empty cells of the descriptor space generated by all vocabularies simultaneously.
The maximum possible number of unique assignments is equal to the product of number
of clusters (cells) of all joint vocabularies. The number is related to the precision
of reconstruction of each feature descriptor from its visual word assignments. For
combination of vocabularies with different SIFT exponents (mRootSIFT) the number
of unique assignments for Oxford5k dataset is shown in Figure 5.6. The plots are similar
for all vocabulary combinations.

5.2.6. Comparison with the state-of-the-art

Comparison with the current methods dealing with short vector image representation
based on local features is given in Table 5.2. Authors of the baseline approach on
multiple vocabularies (mVocab) did not provide results for Oxford5k and Oxford105k
datasets using all of their proposed methods, so we reimplemented and presented the
corresponding results. Compared to their best method on Oxford5k that achieves 42.9
mAP, our best method (48.8 mAP) obtains significant relative improvement of 13.8%.
In fact, all our methods outperform mVocab baseline methods on Oxford5k by a notice-
able margin, with an improvement of 6.1% in the case of our worst performing method.
When evaluating large-scale retrieval on Oxford105k dataset our methods again out-
perform the baseline method, relative improvement is 17.9% for our best performing
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Figure 5.6. Number of unique assignments (vocabulary cells) for Oxford5k dataset when com-
bining vocabularies built on multiple power-law normalized SIFT descriptors (mRootSIFT):
SIFT, SIFT%4, SIFT?5, SIFT®S.

method, and 7.7% for the worst performing one. In order to make a fair comparison
when evaluating on Holidays dataset we again reimplemented the baseline approach,
using Paris6k for learning the vocabularies and PCA projections (as we did in all our
methods). In this case, the relative improvement is 4.3% with our best method (from
64.5 mAP to 67.3 mAP). We also compare our methods to two recent state-of-the-art
approaches on short representations [5, 74]. On Oxford5k and Oxford105k we improve
as much as 8.9% and 10.7%, respectively, compared to VLAD based approach [5], and
12.7% and 17.3%, respectively, compared to T-embedding based approach [74]. On Hol-
idays dataset relative improvement is 7.7% compared to the former and 9.1% compared
to the latter. Note that the dataset used for learning of the meta-data for Holidays
is different: we use Paris6k, while both [5] and [74] are using an independent dataset
comprising of 60k images downloaded from Flickr.

5.2.7. Discussion

Even though this chapter is dedicated to packing bag of words, we apply the same
idea to pooled activations of convolutional neural networks for comparison. All used
convolutional neural networks were trained on the image classification task. Final rep-
resentation is always PCA-reduced to D’ = 128, whitened, and evaluated on Oxford5k
dataset. AlexNet [81] with max and sum pooling of its last convolutional activations
achieves 40.1 and 43.7 mAP, respectively, while VGG [150] with max and sum pool-
ing achieves 50.9 and 52.6 mAP, respectively. Concatenating AlexNet max-pooled and
sum-pooled representations and jointly PCA-reducing them achieves 44.8, while the
same experiment with VGG obtains 54.7 mAP. Finally, concatenating all four combi-
nations, i.e., both AlexNet and VGG with sum and max-pooling, obtains 54.3 mAP.
We conclude that joint dimensionality reduction of representations originating from
different convolutional-neural-network sources brings improvements, as well.
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5.3. Concluding remarks

Methods for multiple vocabulary construction were studied and evaluated in this chap-
ter. Following [68], the concatenated BoW image representations from multiple vocab-
ularies were subject to joint dimensionality reduction to 128-dimensional descriptors.
We have experimentally shown that generating diverse multiple vocabularies has crucial
impact on search performance. Each of the multiple vocabularies was learned on local
feature descriptors obtained with varying parameter settings. That includes feature
descriptors extracted from measurement regions of different scales, different power-law
normalizations of the SIFT descriptors, and applying different linear projections to fea-
ture descriptors prior to k-means quantization. The proposed vocabulary constructions
improve performance over the baseline method [68], where only different initializations
were used to produce multiple vocabularies. More importantly, all of the proposed
methods exceed the state-of-the-art results [5, 74] by a large margin. The choice of the
optimal combination of vocabularies to combine still remains an open problem.
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Chapter

Training Convolutional Neural Networks for Image Retrieval

ONVOLUTIONAL neural networks (CNNs) achieve state-of-the-art performance in
many computer vision tasks. However, this achievement is preceded by extreme
manual annotation in order to perform either training from scratch or fine-tuning for
the target task. An approach to train CNNs for image retrieval, without any human
annotations of images, is proposed in this chapter. Our proposed approach produces a
high-quality compact representation for image retrieval.

Neural networks have attracted a lot of attention after the success of Krizhevsky
et al. [81] in the image-classification task. Their success is mainly due to the use of
very large annotated datasets, e.g. ImageNet [140]. The acquisition of the training
data is a costly process of manual annotation, often prone to errors. Networks trained
for image classification have shown strong adaptation abilities [6]. Specifically, using
activations of CNNs, which were trained for the task of classification, as off-the-shelf
image descriptors [41, 137] and adapting them for a number of tasks [54, 65, 55] have
shown acceptable results. In particular, for image retrieval, a number of approaches
directly use the network activations as image features and successfully perform image
search [55, 138, 8, 76, 168].

Fine-tuning of the network, i.e. initialization by a pre-trained classification network
and then training for a different task, is an alternative to a direct application of a pre-
trained network. Fine-tuning significantly improves the adaptation ability [187, 116];
however, further annotation of training data is required. The first fine-tuning approach

1 1
1 e 1
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1 . — 1
1 Generalized Mean 1
1 = = GeM = {’2 = f < !
R ix i
1 1
1 1
1 1
1 1
1 1

GeM descriptor

Image Convolutional layers Pooling Normalization Descriptor

Siamese learning

Figure 6.1. The architecture of our network with the contrastive loss used at training time. A
single vector f is extracted to represent an image.
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for image retrieval is proposed by Babenko et al. [9], in which a significant amount
of manual effort was required to collect images and label them as specific building
classes. The approach of Babenko et al. [9] improved retrieval accuracy; however, their
formulation is much closer to classification than to the desired properties of instance
retrieval. In another approach, Arandjelovic et al. [3] perform fine-tuning guided by geo-
tagged image databases and, similar to our work, they directly optimize the similarity
measure to be used in the final task by selecting matching and non-matching pairs to
perform the training.

In contrast to previous methods of training-data acquisition for image search, we
dispense with the need for manually annotated data or any assumptions on the training
dataset. We achieve this by exploiting the geometry and the camera positions from 3D
models reconstructed automatically by a structure-from-motion (SfM) pipeline. Our
state-of-the-art retrieval-SfM pipeline takes an unordered image collection as input and
attempts to build all possible 3D models. To make the process efficient, fast image
clustering is employed. A number of image clustering methods based on local features
have been introduced [27, 178, 127]. Due to spatial verification, the clusters discovered
by these methods are reliable. In fact, the methods provide not only clusters, but also
a matching graph or sub-graph on the cluster images. The SfM filters out virtually
all mismatched images and provides image-to-model matches and camera positions for
all matched images in the cluster. The whole process, from unordered collection of
images to detailed 3D reconstructions, is fully automatic. Finally, the 3D models guide
the selection of matching and non-matching pairs. We propose to exploit the training
data acquired by the same procedure in the descriptor post-processing stage to learn a
discriminative whitening.

An additional contribution of this work lies in the introduction of a novel pooling
layer after the convolutional layers. Previously, a number of approaches have been used.
These range from fully-connected layers [9, 55], to different global-pooling layers, e.g.
max pooling [138], average pooling [8], hybrid pooling [110], weighted average pool-
ing [76], and regional pooling [168]. We propose a pooling layer based on a generalized-
mean that has learnable parameters, either one global or one per output dimension.
Both max and average pooling are its special cases. Our experiments show that it
offers a significant performance boost over standard non-trainable pooling layers. Our
architecture is shown in Figure 6.1.

To summarize, in this chapter we address the unsupervised fine-tuning of CNNs for
image retrieval. In particular, we make the following contributions: (i) We exploit
SfM information and enforce, not only hard non-matching (negative), but also hard-
matching (positive) examples for CNN training. This is shown to enhance the derived
image representation. We show that compared to previous supervised approaches, the
variability in the training data from 3D reconstructions delivers superior performance
in the image-retrieval task. (ii) We show that the whitening traditionally performed on
short representations [68] is, in some cases, unstable. We propose to learn the whitening
through the same training data. Its effect is complementary to fine-tuning and it further
boosts the performance. (iii) We propose a trainable pooling layer that generalizes
existing popular pooling schemes for CNNs. It significantly improves the retrieval
performance while preserving the same descriptor dimensionality. (iv) In addition,
we propose an improvement of the multi-scale representation, and a novel a-weighted
query expansion that is more robust compared to the standard average query expansion
technique widely used for compact image representations. (v) Finally, we set a new
state-of-the-art result for Oxford5k, Paris6k, and Holidays datasets by re-training the
commonly used CNN architectures, such as AlexNet [81], VGG [150], and ResNet [60].
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Figure 6.2. Visualization of image regions that correspond to MAC descriptor dimensions that
have the highest contribution, i.e. large product of descriptor elements, to the pairwise image
similarity. The example uses VGG before (top) and after (bottom) fine-tuning. Same color
corresponds to the same descriptor component (feature map) per image pair. The patch size
is equal to the receptive field of the last local pooling layer.

The work described in this chapter has been published in the following papers [146,
132, 133, 135]. More specifically, the retrieval-SfM pipeline, described in Section 6.2.1,
has been published in [146, 132], while the rest has been published in [133, 135]. Training
data, trained models, and code (using MATLAB/MatConvNet!' and Python/PyTorch?
frameworks) are publicly available®.

The rest of the chapter is organized as follows. Our network architecture, learning
procedure, and search process is presented in Section 6.1, and our proposed automatic
acquisition of the training data is described in Section 6.2. Finally, in Section 6.3 we
perform an extensive quantitative and qualitative evaluation of all proposed novelties
with different CNN architectures and compare to the state of the art. Concluding
remarks are given in Section 6.4.

6.1. Architecture, learning, search

In this section we describe the network architecture and present the proposed generalized-
pooling layer. Then we explain the process of fine-tuning using the contrastive loss and
a two-branch network. We describe how, after fine-tuning, we use the same training
data to learn projections that appear to be an effective post-processing step. Finally, we
describe the image representation, search process, and a novel query expansion scheme.
Our proposed architecture is depicted in Figure 6.1.

Laithub.com /filipradenovic/cnnimageretrieval
2github.com/filipradenovic/cnnimageretrieval-pytorch
3cmp.felk.cvut.cz/cnnimageretrieval
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Figure 6.3. Visualization of X} projected on the original image for a pair of query-database
image. The 9 feature maps shown are the ones that score highly, i.e. large product of
GeM descriptor components, for the database image (right) but low for the top-ranked non-
matching images. The example uses fine-tuned VGG with GeM and single p for all feature
maps, which converged to 2.92.

6.1.1. Fully convolutional network

Our methodology applies to any fully convolutional CNN [117]. In practice, popular
CNNs for generic object recognition are adopted, such as AlexNet [81], VGG [150],
or ResNet [60], while their fully-connected layers are discarded. This provides a good
initialization to perform the fine-tuning.

Now, given an input image, the output is a 3D tensor X of W x H x K dimensions,
where K is the number of feature maps in the last layer. Let X} be the set of W x H
activations for feature map k € {1...K}. The network output consists of K such
activation sets or 2D feature maps. We additionally assume that the very last layer is
a Rectified Linear Unit (ReLU) such that X is non-negative.

6.1.2. Generalized-mean pooling and image descriptor

We now add a pooling layer that takes X as an input and produces a vector f € R
as an output of the pooling process. This vector in the case of the conventional global
max pooling (MAC vector [138, 168]) is given by

£m) — [ffm) . f,gm) e fé(m)]—r, flgm) = max z, (6.1)
T€Xy
while for average pooling (SPoC vector [8]) by
a a a a a 1
) — (g f@ T f,g>:72 x. (6.2)
| k‘ TEX}

Instead, we exploit the generalized mean [39] and propose to use generalized-mean
(GeM) pooling whose result is given by

1
Pk

1
£0) = [f@) 1O )T gl - mzw , i € [1,00]. (6.3)
rEX}
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p=1 p=3 p=10

Figure 6.4. Visualization of X} projected on the original image for three different values of p.
Case p = 1 corresponds to SPoC, and larger p corresponds to GeM before the summation of
(6.3). Examples shown use the off-the-shelf VGG.

Pooling methods (6.1) and (6.2) are special cases of GeM pooling given in (6.3), i.e.,
max pooling when pi — 0o and average pooling for pp = 1. The feature vector finally
consists of a single value per feature map, i.e. the generalized-mean activation, and its
dimensionality is equal to K. For many popular networks this is equal to 256, 512 or
2048, making it a compact image representation.

The pooling parameter p; can be manually set or learned since this operation is
differentiable and can be part of the back-propagation. The corresponding derivatives
(while skipping the superscript (g) for brevity) are given by

ofy, 1

_ 1Pk . pr—1 6.4
8fk fk ‘Xk| ZmeX Pk log X
— = — | log + Pk k . 6.5
8pk pz ( ZZBGXk ajpk ZZGXk xpk ( )

There is a different pooling parameter per feature map in (6.3), but it is also possible
to use a shared one. In this case py = p,Vk € {1... K} and we simply denote it by
p and not pr. We examine such options in the experimental section and compare to
hand-tuned and fixed parameter values.

Max pooling, in the case of MAC, retains one activation per 2D feature map. In
this way, each descriptor component corresponds to an image patch equal to the re-
ceptive field. Then, pairwise image similarity is evaluated via descriptor inner product.
Therefore, MAC similarity implicitly forms patch correspondences. The strength of
each correspondence is given by the product of the associated descriptor components.
In Figure 6.2 we show the image patches in correspondence that contribute most to the
similarity. Such implicit correspondences are improved after fine-tuning. Moreover, the
CNN fires less on ImageNet classes, e.g. cars and bicycles.

In Figure 6.4 we show how the spatial distribution of the activations is affected by
the generalized mean. The larger the p the more localized the feature map responses
are. Finally, in Figure 6.3 we present an example of a query and a database image
matched with the fine-tuned VGG with GeM pooling layer (GeM layer in short). We
show the feature maps that contribute the most into making this database image being
distinguished from non-matching ones that have large similarity, too.

The last network layer is an le-normalization layer. In the rest of the chapter, GeM
vector corresponds to the lo-normalized vector f and constitutes the image descriptor.
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6.1.3. Siamese learning and loss function

We adopt a siamese architecture and train a two-branch network. Each branch is a
clone of the other, meaning that they share the same parameters. The training input
consists of image pairs (7, ) and labels Y (7, j) € {0,1} declaring whether a pair is non-
matching (label 0) or matching (label 1). We employ the contrastive loss [26] that acts
on matching and non-matching pairs and is defined as

EO) —EGIE if V(i,j) =1
(max{0, 7 — [|£(:) — £(7)I[})*, i Y(i,j) =0

1
L) i, j) = {f (6.6)
2
where f(i) is the ly-normalized GeM vector of image i, and 7 is a margin parameter
defining when non-matching pairs have large enough distance in order to be ignored
by the loss. We train the network using a large number of training pairs created
automatically (see Section 6.2). In contrast to other methods [175, 147, 61, 3], we find

that the contrastive loss generalizes better and converges at higher performance than
the triplet loss [24]

£9(g,m(q),n(q)) = max{0, |[£(q) - £(m()|* — [[E(¢) — E(n(@))[]* + 7}, (6.7)

where f(q), f(m(q)), f(n(q)) are the lp-normalized GeM vectors of query image ¢, and
its matching m(q) and non-matching n(gq) image, and 7 is a margin parameter defining
zero loss when the distance between the query and the non-matching image is greater
by a margin than the distance between the query and the matching image.

6.1.4. Whitening and dimensionality reduction

In this section, the post-processing of fine-tuned GeM vectors is considered. Previous
methods [8, 168] use PCA of an independent set for whitening and dimensionality
reduction, i.e. the covariance matrix of all descriptors is analyzed. For more details on
PCA whitening see Chapter 5, Section 5.1.3. We propose to leverage the labeled data
provided by the 3D models and use linear discriminant projections originally proposed
by Mikolajczyk and Matas [97] in the context of local feature descriptors. The projection
is decomposed into two parts: whitening and rotation. The whitening part isi the inverse

of the square-root of the intraclass (matching pairs) covariance matrix C,,?, where
Frn FON (B Fo T
Cn= Y (E)— () (£G) ()" (6.5)
Y (i.j)=1
The rotation part is the PCA of the interclass (non-matching pairs) covariance matrix
_1 _1
in the whitened space eig(C,,*> C,,Cy,? ), where

Co= > (FG)—F() (FG) —F()) " - (6.9)

Y (i,5)=0

1 1 1
The linear transformation P = Cy,%eig(Cp,*> C,,C,?) is then applied as P T (f(i) — p),
where p is the mean GeM vector that is subtracted to perform the centering. To reduce
the descriptor dimensionality from D to D’ dimensions, only eigenvectors corresponding
to D’ largest eigenvalues are used. Projected vectors are subsequently lo-normalized.
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Our approach uses all available training pairs efficiently in the optimization of the
whitening. It is not optimized in an end-to-end manner and it is performed without
using batches of training data. We first optimize the GeM descriptor and then optimize
the whitening.

The described approach acts as a post-processing step, once the fine-tuning of the
CNN is finished. We additionally compare with the end-to-end learning of the whiten-
ing. Whitening consists of vector shifting and projection which is modeled in a straight-
forward manner by a fully connected layer*. The results favor our approach and are
discussed in the experimental section.

6.1.5. Image representation and search

Once the training is finished, an image is fed to the network shown in Figure 6.1.
The extracted GeM descriptor is whitened and re-normalized. This constitutes the
global descriptor for an image at a single scale. Scale invariance is learned to some
extent by the training samples; however, additional invariance is added by multi-scale
processing during test time without any additional learning. We follow a standard
approach [58] and feed the image to the network at multiple scales. The resulting
descriptors are finally pooled and re-normalized, producing a multi-scale global image
representation. We adopt GeM pooling for this state too, which is shown, in our
experiments, consistently superior to the standard average pooling.

Image retrieval is simply performed by exhaustive Euclidean search over database de-
scriptors w.r.t. the query descriptor. This is equivalent to the inner product evaluation
of I normalized vectors, i.e. vector-to-matrix multiplication, and sorting. CNN-based
descriptors are shown to be highly compatible with approximate-nearest neighbor search
methods, in fact, they are very compressible [58]. In order to directly evaluate the effec-
tiveness of the learned representation, we do not consider this alternative in this work.
In practice, each descriptor requires 4 bytes per dimension to be stored.

It has recently become a standard policy to combine CNN global image descriptors
with simple average query expansion (AQE) [168, 76, 8, 58]. An initial query is issued
by Euclidean search and AQE acts on the top-ranked nqg images by average pooling
of their descriptors. Herein, we argue that tuning nqg to work well across different
datasets is not easy. AQE corresponds to a weighted average where nqg descriptors
have unit weight and all the rest zero. We generalize this scheme and we propose
performing weighted averaging, where the weight of the i-th ranked image is given
by (f(q)"f(i))®. The similarity of each retrieved image matters. We show in our
experiments that AQE is difficult to tune for datasets of different statistics, while this
is not the case with the proposed approach. We refer to this approach as a-weighted
query expansion («QE). The proposed aQE reduces to AQE for a = 0.

6.2. Training dataset

In this section we summarize the tightly-coupled bag-of-words (BoW) image-retrieval
and structure-from-motion (SfM) 3D reconstruction system that is employed to auto-
matically select our training data. Then, we describe how we use the 3D information
to select harder matching pairs and hard non-matching pairs with larger variability.
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zoom out zoom in

left 7 right zoom in details

Figure 6.5. Different image retrieval mining techniques for the example query image: context
of the query image (zoom out — top left), two examples of mid-level detail (zoom in), and
three high-level detailed images for each of the mid-level details (rightmost). Two examples
of the left and right sideways crawl of the query are shown in the bottom left.

6.2.1. BoW and 3D reconstruction

First, we detail our efficient reconstruction of 3D models contained in a given image
database. The retrieval engine used here builds upon BoW with fast spatial verifica-
tion [125]. It uses Hessian affine local features [100], RootSIFT descriptors [4], and a
fine vocabulary of 16M visual words [102]. Then, query images are chosen via min-hash
and spatial verification, as in [27]. Image retrieval based on BoW is used to collect
images of the objects/landmarks. These images serve as the initial matching graph for
the succeeding SfM reconstruction, which is performed using the state-of-the-art SfM
pipeline [50, 1, 145]. Different mining techniques illustrated in Figure 6.5, e.g. zoom
in/out [101, 103], sideways crawl [146], help to build a larger and more complete model.

Clustering. To seed our iterative reconstruction process efficiently, we find indepen-
dent sets of spatially overlapping images using the clustering approach by Chum et
al. [27]. This approach first indexes all database images in a min-Hash table and then
uses spatially verified hash collisions as cluster seeds. Next, an incremental query ex-
pansion [125, 31] with spatial verification extends the initial clusters with additional
images of the same landmark. The nearest-neighbor images in this query expansion
step then define the graph of overlapping images, the so-called scene graph. Given
that query expansion is a depth first search strategy, the resulting scene graph is only
sparsely connected. However, in order to achieve a successful reconstruction, SfM re-
quires a denser scene graph than provided by the clustering method. Therefore, we first
densify the scene graph as described in the following paragraph before using it in SfM.
Rather than seeding the reconstruction with all images in the database, this clustering
procedure reduces the number of seeds by 3 orders of magnitude.

Densification. Next, we densify the initially sparse scene graph for improved recon-
struction robustness and completeness. We exploit the spatially verified image pairs
and their visual word matches along with an affine model to serve as hypotheses for
subsequent exhaustive feature matching and epipolar verification. From this exhaustive
verification, we not only obtain a higher number of feature correspondences but we also
determine additional image pairs to densify the scene graph. More importantly, be-

4The bias is equal to the projected mean vector used to center the data.
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Figure 6.6. Two feature tracks containing both day and night images/features. Each row
depicts two images from day and night modality, respectively, followed by a subset of feature
patches depicted in two rows, one for day and one for night features, respectively. Intensity
normalized patches, grayscale versions used for feature description, are shown to the right of
the respective color patches. Notice the variation in lighting conditions for day and night,
expressed as a significant color difference of patches. Best viewed in color.

yond the benefit of additional image pairs, the significantly increased number of feature
correspondences is essential for establishing feature tracks from day to night images
through dusk and dawn [132]. Only through these transitive connections, we are able
to reliably register day and night images into a single 3D model. Examples of 3D point
tracks that contain features from both day and night images are shown in Figure 6.6.

Structure-from-Motion. The densified scene graph is the input to the subsequent
incremental SfM algorithm, which treats each edge in the graph as a putative image
pair for reconstruction and attempts to reconstruct every connected component within
a cluster. Connected components with less than 20 registered images are discarded.
Figure 6.7 shows the SfM reconstructions for a variety of scenes.

Extension. To boost registration completeness, a final extension step issues further
queries for all registered images in each reconstructed connected component. If new
images are found and spatially verified, we again perform scene graph densification and
use SfM to register the new views into the previously reconstructed models. While
significantly increasing the size of the reconstructed models, the extension process also
improves the performance of the day/night modeling. Typically, the initial set of images
obtained in clustering often only contains images from one modality, i.e., either day or
night, even though our large-scale image database contains images of both modalities for
almost all landmarks. The iterative extension overcomes this problem by incrementally
growing the model from day to night or vice versa through transition images during
dusk and dawn. Figure 6.8 demonstrates the improved completeness and accuracy of
night models produced with our approach.

Non-overlapping 3D models. We drop redundant (overlapping) 3D models, that
might have been constructed from different seeds. Models reconstructing the same
landmark but from different and disjoint viewpoints are considered as non-overlapping.
Finally, for each image, the estimated camera position is known, as well as the local
features registered on the 3D model.
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Figure 6.7. Structure-from-motion reconstructions from top to bottom: Bridge of Sighs, UK;
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Arc de Triomphe, France; Notre Dame, France; Sagrada Familia, Spain. Left: 3D model ob-
tained from our retrieval and reconstruction system. Middle: registered images illustrating
the range of views from overview images to images of a specific architectural detail. Right:
visualization of the surface resolution from high resolution in red (approximately Imm sur-
face resolution) to low resolution in blue. Presented 3D models are produced by Johannes
Schonberger in COLMAP (github.com/colmap/colmap).


https://github.com/colmap/colmap
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Day Image Day Model Night Model Fused Night Model Night Image

Figure 6.8. Examples of final 3D models produced by our joint retrieval and reconstruc-
tion system for: St. Peter’s Basilica, Vatican; Colosseum in Rome, Italy; Astronomical
Clock in Prague, Czech Republic; Altare della Patria in Rome, Italy; and Pantheon in
Rome, Italy. Presented 3D models are produced by Johannes Schonberger in COLMAP
(github.com/colmap/colmap).

6.2.2. Selection of training image pairs

A 3D model is described as a bipartite visibility graph G = (ZUP, £) [89], where images
7 and points P are the vertices of the graph. The edges of this graph are defined by
visibility relations between cameras and points, i.e. if a point p € P is visible in an
image i € Z, then there exists an edge (i,p) € £. The set of points observed by an
image ¢ is given by

Pi)={peP: (ip) €&} (6.10)

We create a dataset of tuples (¢, m(q), N (q)), where ¢ represents a query image, m(q)
is a positive image that matches the query, and N (q) is a set of negative images that do
not match the query. These tuples are used to form training image pairs, where each
tuple corresponds to [N (g)| 4+ 1 pairs. For a query image ¢, a pool M(q) of candidate
positive images is constructed based on the camera positions in the 3D model of ¢. It
consists of the k£ images with camera centers closest to the query. Due to the wide range
of camera orientations, these do not necessarily depict the same object. We therefore
compare three different ways to select the positive image. The positive examples are
fixed during the whole training process for all three strategies.

Positive images: CNN descriptor distance. The image that has the lowest descriptor
distance to the query is chosen as positive, formally

mi(q) = argmin ||f(q) — £(2)|]. (6.11)
i€eM(q)
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Figure 6.9. Examples of training query images (green border) and matching images selected as
positive examples by methods: m;(¢q) — the most similar image based on the current network;
mz(q) — the most similar image based on the BoW representation; and our proposed ms(q) — a
hard image depicting the same object.

This strategy is similar to the one followed by Arandjelovic et al. [3]. Authors of [3]
adopt this choice since only GPS coordinates are available and not camera orientations.
As a consequence, the chosen matching images already have small descriptor distance
and, therefore, small loss too. The network is thus not forced to drastically change/learn
by the matching examples, which is the drawback of this approach.

Positive images: maximum inliers. In this approach, the 3D information is exploited
to choose the positive image, independently of the CNN descriptor. In particular, the
image that has the highest number of co-observed 3D points with the query is chosen.
That is,

ma(q) = argmax |P(q) NP (i)]. (6.12)

1€EM(q)

This measure corresponds to the number of spatially verified features between two
images, a measure commonly used for ranking in BoW-based retrieval. As this choice is
independent of the CNN representation, it delivers more challenging positive examples.

Positive images: relaxed inliers. Even though both previous methods choose positive
images depicting the same object as the query, the variance of viewpoints is limited.
Instead of using a pool of images with similar camera position, the positive example
is selected at random from a set of images that co-observe sufficient number of points
with the query, but do not exhibit too extreme of a scale change. We want to have the
scale change that is large but can still be captured by the receptive field of the network,
otherwise, the network cannot learn from it. The positive example in this case is

m3(q) = rnd {z e M(q) : [P() N Plg)l > t;, scale(i,q) < ts} ) (6.13)

Pl@l  —
where scale(i,q) is the scale change between the two images. This method results in
selecting harder matching examples that are still guaranteed to depict the same object.
Method m3 chooses different image than m; on 86.5% of the queries. In Figure 6.9
we present examples of query images and the corresponding positives selected with the
three different methods. The relaxed method increases the variability of viewpoints.
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Figure 6.10. Examples of training query ¢ (one per row shown in green border), and their
corresponding negatives chosen by different strategies. We show the hardest non-matching
image n(q), and the additional non-matching images selected as negative examples by N7 (q)
and our method N3(q). The former chooses k-nearest neighbors among all non-matching
images, while the latter chooses k-nearest neighbors but with at most one image per 3D
model.

Negative images. Negative examples are selected from 3D models different than the
model of the query image, as the models are non-overlaping. We choose hard nega-
tives [149, 54], that is, non-matching images with the most similar descriptor. Two
different strategies are proposed: In the first, Ni(q), k-nearest neighbors from all non-
matching images are selected. In the second, Na(q), the same criterion is used, but at
most one image per 3D model is allowed. While Ni(q) often leads to multiple, and very
similar, instances of the same object, Na(q) provides higher variability of the negative
examples, see Figure 6.10. While positives examples are fixed during the whole train-
ing process, hard negatives depend on the current CNN parameters and are re-mined
multiple times per epoch.

6.3. Experiments

In this section we discuss implementation details of our training, evaluate different
components of our method, and compare to the state of the art.

6.3.1. Training setup and implementation details

Structure-from-Motion. Our training samples are derived from a generic dataset,
which consists of 7.4 million images downloaded from Flickr using keywords of popular
landmarks, cities and countries across the world. The clustering procedure [27] gives
around 20k images to serve as query seeds. The extensive retrieval-SfM reconstruction
of the whole dataset results in 1,474 reconstructed 3D models. Removing overlapping
models leaves us with 713 3D models containing more than 163k unique images from
the initial dataset. The initial dataset contains, on purpose, all images of Oxford5k and
Paris6k datasets. In this way, we are able to exclude 98 3D models that contain any
image (or their near duplicates) from these test datasets.

Training pairs. The size of the 3D models varies from 25 to 11k images. We randomly
select 551 models (around 133k images) for training and 162 (around 30k images) for
validation. The number of training queries per 3D model is 10% of its size and limited
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to be less or equal to 30. Around 6,000 and 1,700 images are selected for training and
validation queries per epoch, respectively.

FEach training and validation tuple contains 1 query, 1 positive and 5 negative images.
The pool of candidate positives consists of k = 100 images with the closest camera
centers to the query. In particular, for method mg, the inlier-overlap threshold is
t; = 0.2, and the scale-change threshold ¢t = 1.5. Hard negatives are re-mined 3 times
per epoch, i.e. roughly every 2,000 training queries. Given the chosen queries and the
chosen positives, we further add 20 images per model to serve as candidate negatives
during re-mining. This constitutes a training set of around 22k images per epoch when
all the training 3D models are used. The query-tuple selection process is repeated every
epoch. This slightly improves the results.

Learning configuration. To perform the fine-tuning as described in Section 6.1, we
initialize by the convolutional layers of AlexNet [81], VGG16 [150], or ResNet101 [60].
AlexNet is trained using stochastic gradient descent (SGD), while training of VGG and
ResNet is more stable with Adam [79]. We use initial learning rate equal to Iy = 1073 for
SGD, initial stepsize equal to lo = 107% for Adam, an exponential decay lo exp(—0.17)
over epoch i, momentum 0.9, weight decay 5 x 104, margin 7 for contrastive loss
0.7 for AlexNet, 0.75 for VGG, and 0.85 for ResNet, justified by the increase in the
dimensionality of the embedding, and a batch size of 5 training tuples. All training
images are resized to a maximum size of 362 x 362, while keeping the original aspect
ratio. Training is done for at most 30 epochs and the best network is selected based on
performance, measured via mean Average Precision (mAP) [125], on validation tuples.
Fine-tuning of VGG for one epoch takes around 2 hours on a single TITAN X (Maxwell)
GPU with 12 GB of memory.

We overcome GPU memory limitations by associating each query to a tuple, i.e.,
query plus 6 images (5 positive and 1 negative). Moreover, the whole tuple is processed
in the same batch. Therefore, we feed 7 images to the network, which represents 6
pairs. In a naive approach, when the query image is different for each pair, 6 pairs
require 12 images.

6.3.2. Test datasets and evaluation protocol

Test datasets. We evaluate our approach on Oxford5k [125], Paris6k [126] and Hol-
idays® [69] datasets. The first two are closer to our training data, while the last is
differentiated by containing similar scenes and not only man-made objects or buildings.
These are also combined with 100k distractors from Oxford Distractors dataset [125] to
allow for evaluation at larger scale. The performance is measured via mAP. We follow
the standard evaluation protocol for Oxford5k and Paris6k and crop the query images
with the provided bounding box. The cropped image is fed as input to the CNN. For
more details on these test datasets and evaluation protocols see Chapter 3, Section 3.1.
Further evaluation of our approach on the benchmark proposed in Chapter 4 is given
in Chapter 7.

Single-scale evaluation. The dimensionality of the images fed into the CNN is limited
to 1024 x 1024 pixels. In our experiments, no vector post-processing is applied if not
otherwise stated.

5We use the up-right version of Holidays dataset where images are manually rotated so that depicted
objects are up-right. This makes us directly comparable to [58]. A different version of up-right
Holidays is used in our earlier work [133], where EXIF metadata is used to rotate the images.
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Figure 6.11. Performance comparison of methods for positive and negative example selection.
Evaluation is performed with AlexNet MAC on Oxford105k and Paris106k datasets. The plot
shows the evolution of mAP with the number of training epochs. Epoch 0 corresponds to
the off-the-shelf network. All approaches use the contrastive loss, except if otherwise stated.
The network with the best performance on the validation set is marked with *.

Multi-scale evaluation. Multi-scale representation is only used during test time. We
resize the input image to different sizes, then feed multiple input images to the network,
and finally combine the global descriptors from multiple scales into a single descriptor.
We compare the baseline average pooling [58] with our generalized mean whose pooling
parameter is equal to the value learned in the global pooling layer of the network. In
this case, the whitening is learned on the final multi-scale image descriptors. In our
experiments, a single-scale evaluation is used if not otherwise stated.

6.3.3. Results on image retrieval

Learning. We evaluate the off-the-shelf CNN and our fine-tuned ones after different
number of training epochs. The different methods for positive and negative selection
are evaluated independently in order to isolate the benefit of each one. Finally, we
also perform a comparison with the triplet loss [3], trained on the same training data
as the contrastive loss. Note that a triplet forms two pairs. Results are presented in
Figure 6.11. The results show that positive examples with larger viewpoint variability
and negative examples with higher content variability acquire a consistent increase in
the performance. The triplet loss® appears to be inferior in our context; we observe
oscillation of the error in the validation set from early epochs, which implies over-fitting.
In the rest of the chapter, we adopt the mg3, No approach.

Dataset variability. We perform fine-tuning by using a subset of the available 3D
models. Results are presented in Figure 6.12 with 10, 100 and 551 (all available)
3D models, while keeping the amount of training data, i.e. number of training queries,
fixed. In the case of 10 and 100 models, we use the largest ones. It is better to train with
all 3D models due to the resulting higher variability in the training set. Remarkably,
significant increase in performance is achieved even with 10 or 100 models. However,
the network is able to over-fit in the case of few models. In the rest of our experiments
we use all 551 3D models for training.

5The margin parameter for the triplet loss is set equal to 0.1 [3].

63



6. Training Convolutional Neural Networks for Image Retrieval

Oxford105k Paris106k
56
54 |-
52 |-
50 |-
Ay 48 - A
< 8 <
g 46 - g
44
42 |- —e— 551 models || 42 —e— 551 models | |
—e— 100 models —e— 100 models
40¢ —e— 10 models [ 40‘ —e— 10 models [
38 | | T T T 38 | | I N S S
5 10 15 20 25 30 0 5 10 15 20 25 30
Epoch Epoch

Figure 6.12. Influence of the number of 3D models used for CNN fine-tuning. Performance is
evaluated with AlexNet MAC on Oxford105k and Paris106k datasets using 10, 100 and 551
(all available) 3D models. The network with the best performance on the validation set is
marked with *.

Table 6.1. Performance (mAP) comparison after CNN fine-tuning for different pooling layers.
GeM is evaluated with a single shared pooling parameter or multiple pooling parameters (one
for each feature map), which are either fixed or learned. A single value or a range is reported
in the case of a single or multiple parameters, respectively. Results reported with AlexNet
and with the use of Ly,. The best performance highlighted in bold.

Pooling ‘ Initial p ‘Learnedp Oxford5k |Oxford105k| Paris6k ‘Parile6k‘ Holidays ‘ Hol101k ‘

MAC inf - 62.2 52.8 68.9 54.7 78.4 66.0
SPoC 1 - 61.2 54.9 70.8 58.0 79.9 70.6
3 - 67.9 60.2 74.8 61.7 83.2 73.3

2, 5] - 66.8 59.7 74.1 60.8 84.0 73.6

[2, 10] - 65.6 57.8 72.2 58.9 81.9 71.9

GeM 3 2.32 67.7 60.6 75.5 62.6 83.7 73.7
(1.0, 6.5] 66.3 57.8 74.0 60.5 83.2 72.7

2,10] | [1.6,9.9] 65.3 56.4 71.4 58.6 81.4 70.8

Pooling methods. We evaluate the effect of different pooling layers during CNN fine-
tuning. We present the results in Table 6.1. GeM layer consistently outperforms the
conventional max and average pooling. This holds for each of the following cases, (i) a
single shared pooling parameter p is used, (ii) each feature map has different p; and (iii)
the pooling parameter(s) is (are) either fixed or learned. Learning a shared parameter
turns out to be better than learning multiple ones, as the latter makes the cost function
more complex. Additionally, the initial values seem to matter to some extent, with
a preference for intermediate values. Finally, a shared fixed parameter and a shared
learned parameter perform similarly, with the latter being slightly better. This is the
case which we adopt for the rest of our experiments, i.e. a single shared parameter p
that is learned.
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Table 6.2. Performance (mAP) comparison of CNN vector post-processing: mno post-
processing, PCA-whitening [68] (PCA,) and our learned whitening (Ly,). No dimensionality
reduction is performed. Fine-tuned AlexNet (Alex) produces a 256D vector and fine-tuned
VGG a 512D vector. The best performance highlighted in bold, the worst in blue. The
proposed method consistently performs either the best (22 out of 24 cases) or on par with
the best method. On the contrary, PCA,, [68] often hurts the performance significantly. Best
viewed in color.

Oxford5k | Oxford105k Paris6k Paris106k Holidays Hol101k
MAC | GeM | MAC | GeM | MAC | GeM | MAC | GeM | MAC | GeM | MAC | GeM

- 60.2 | 60.1 | 54.2 | 54.1 | 67.5 | 68.6 | 54.9 | 56.9 | 74.5 | 78.7 | 64.8 | 70.9
Alex |PCAy | 256 | 56.9 | 63.7 | 44.1 | 53.7 | 64.3 | 73.2 | 46.8 | 57.4 | 75.4 | 82.5 | 63.1 | 71.8
Ly 62.2 | 67.7 | 52.8 | 60.6 | 68.9 | 75.5 | 54.7 | 62.6 | 78.4 | 83.7 | 66.0 | 73.7

Net Post | Dim

- 82.0 | 82.0| 76.0 | 76.9 | 78.3 | 79.7 | 7T1.2 | 72.6 | 79.9 | 83.1 | 69.4 | T4.5
VGG |PCAy | 512 | 78.4 | 83.1 | 71.3 | 77.7 | 80.6 | 84.5 | 70.9 | 76.9 | 82.2 | 86.6 | 70.0 | 75.9

L 82.3|85.9|77.0| 81.7|83.8 | 8.0|76.2|79.6 | 84.1 |87.3|71.9|77.1
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Figure 6.13. Performance comparison of the dimensionality reduction performed by PCA,, and
our Ly, with the fine-tuned VGG with MAC layer and the fine-tuned VGG with GeM layer
on Oxford105k and Paris106k datasets.

Learned projections. The PCA-whitening [68] (PCAy,) is shown to be essential in
some cases of CNN-based descriptors [9, 8, 168]. On the other hand, it is shown that on
some datasets, the performance after PCA,, substantially drops compared to the raw
descriptors (max pooling on Oxford5k [8]). We perform comparison of the traditional
whitening methods and the proposed learned discriminative whitening (Ly,), described
in Section 6.1.4. Table 6.2 shows results without post-processing, with PCA, and
with Ly. Our experiments confirm that PCA, often reduces the performance. In
contrast to that, the proposed Ly achieves the best performance in most cases and is
never the worst-performing method. Compared with the no post-processing baseline,
Ly reduces the performance twice for AlexNet, but the drop is negligible compared to
the drop observed for PCAy,. For VGG, the proposed Ly always outperforms the no
post-processing baseline.

We conduct an additional experiment by appending a whitening layer at the end
of the network during fine-tuning. In this way, whitening is learned in an end-to-end
manner, along with the convolutional filters and with the same training data in batch-

65



6. Training Convolutional Neural Networks for Image Retrieval

Table 6.3. Performance (mAP) evaluation of the multi-scale representation using the fine-
tuned VGG with GeM layer. The original scale and down-sampled versions of it are jointly
represented. The pooling parameter used by the generalized mean is the same as the one
learned in the GeM layer of the network and equal to 2.92. The results reported include the
use of Ly,.

Scal
Pooling over scales cae Oxfordbk | Oxfl05k | Paris6k | Parl06k | Holidays | Holl01lk
i [l e [vus] va
- [a] T ] [ [ ®9 [8] 79.6 87.3 71
e 80.2 88.1
L NN N 80.
Average 6
L N NN NN |
| BN BN BN |
| BN |
| BN NN |
Generalized mean
| N BN BN
L N NN NN |

mode. Dropout [154] is additionally used for this layer which we find to be essential.
We observe that convergence of the network comes much slower in this case, i.e. after
60 epochs. Moreover, the final achieved performance is not higher than our Ly. In
particular, end-to-end whitening on AlexNet MAC achieves 49.6 and 52.1 mAP on
Oxford105k and Paris106k, respectively, while our Ly, on the same network achieves
52.8 and 54.7 mAP on Oxford105k and Paris106k, respectively. Therefore, we adopt
Ly as it is much faster to train and more effective.

Dimensionality reduction. We compare dimensionality reduction performed with PCA,
[68] and with our Ly. The performance for varying descriptor dimensionality is plotted
in Figure 6.13. The plots suggest that Ly, works better in most dimensionalities.

Multi-scale representation. We evaluate multi-scale representation constructed at
test time without any additional learning. We compare the previously used averag-
ing of descriptors at multiple image scales [58] with our generalized-mean of the same
descriptors. Results are presented in Table 6.3, where there is a significant benefit when
using the multi-scale GeM. It also offers some improvement over average pooling. In
the rest of our experiments we adopt multi-scale representation, pooled by generalized
mean, for scales 1, 1/v2, and 1/2. Results using the supervised dimensionality reduction
by Ly on the multi-scale GeM representation are shown in Table 6.4.

Query expansion. We evaluate the proposed aQE, which reduces to AQE for a = 0,
and present results in Figure 6.14. Note that Oxford and Paris have different statistics
in terms of the number of relevant images per query. The average, minimum, and
maximum number of positive images per query on Oxford is 52, 6, and 221, respectively.
The same measurements for Paris are 163, 51, and 289. As a consequence, AQE behaves
in a very different way across these dataset, while our aQE is a more stable choice. We
finally set o = 3 and nqg = 50.
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Figure 6.14. Performance evaluation of our a-weighted query expansion («QE) with the VGG
with GeM layer, multi-scale representation, and Ly, on Oxford105k and Paris106k datasets.
We compare the standard average query expansion (AQE) to our aQE for different values of
o and number of images used nqE.

Over-fitting and generalization. In all experiments, all 3D models including any im-
age (not only query landmarks) from Oxford5k or Paris6k datasets are removed. We
now repeat the training using all 3D models, including those of Oxford and Paris land-
marks. In this way, we evaluate whether the network tends to over-fit to the training
data or to generalize. The same amount of training queries is used for a fair compari-
son. We observe negligible difference in the performance of the network on Oxford and
Paris evaluation results, i.e. the difference in mAP was on average 4+0.3 over all testing
datasets. We conclude that the network generalizes well and is relatively insensitive to
over-fitting.

Comparison with the state of the art. We extensively compare our results with the
state-of-the-art performance on compact image representations and on approaches that
do query expansion. The results for the fine-tuned GeM based networks are summa-
rized together with previously published results in Table 6.5. The proposed methods
outperform the state of the art on all datasets when the VGG network architecture and
initialization are used. Our method is outperformed by the work of Gordo et al. [58] on
Paris with the ResNet architecture, while we have the state-of-the-art score on Oxford.
We are on par with the state-of-the-art on Holidays. Note, however, that we did not
perform any manual labeling or cleaning of our training data, while in the work of [58]
landmark labels were used. We additionally combine GeM with query expansion and
further boost the performance.

Visualization with t-SNE. We use t-distributed Stochastic Neighbor Embedding (t-
SNE) [171] to perform dataset visualization and examine the similarities. The illustra-
tion is given in Figure 6.15 for database images of both Oxford5k and Paris6k. It is
clearly visible that images of the same landmark are grouped closely together, even in
the cases of significant viewpoint, scale, and illumination (day—night) change.
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Table 6.4. Performance (mAP) evaluation for varying descriptor dimensionality after reduction
with L. Results reported with the fine-tuned VGG with GeM and the fine-tuned ResNet
(Res) with GeM. Multi-scale representation is used at the test time for both networks.

| Net [ Dim [ Oxfordsk [Oxford105k| Paris6k | Paris106k | Holidays | Holl0lk |

512 87.9 83.3 87.7 81.3 89.5 79.9

256 85.4 79.7 85.7 78.2 87.8 77.2

128 81.6 75.4 83.4 74.9 84.4 72.6

VGG 64 77.0 69.9 77.4 66.7 81.1 66.2
32 66.9 57.4 72.2 58.6 72.9 54.3

16 56.2 44.4 63.5 45.5 60.9 36.9

8 34.1 25.7 43.9 29.0 43.4 13.8

2048 87.8 84.6 92.7 86.9 93.9 87.9

1024 86.2 82.4 91.8 85.3 92.5 86.1

512 84.6 80.4 90.0 82.6 90.6 83.2

256 83.1 77.3 87.5 78.8 88.4 80.2

Res 128 79.5 72.2 84.5 74.3 85.9 76.5
64 74.0 65.8 78.4 65.3 80.3 66.9

32 57.9 48.5 70.8 56.1 71.2 51.9

16 40.3 31.8 61.8 45.6 56.4 31.3

8 25.3 16.3 44.3 27.8 37.8 11.4

6.4. Concluding remarks

We addressed fine-tuning of CNN for image retrieval. We propose to fine-tune CNN for
image retrieval from a large collection of unordered images in a fully automated manner.
Tightly coupled state-of-the-art retrieval and SfM methods are employed to obtain 3D
models, which are used to guide the selection of the training data for CNN fine-tuning.
The reconstructions consist of buildings and popular landmarks; however, the same
process is applicable to any rigid 3D objects. We show that larger and more complete 3D
models are beneficial as they allow for both hard positive and hard negative examples,
which in turn enhance the final performance in instance image retrieval with compact
codes. The proposed method does not require any manual annotation and yet achieves
top performance on standard benchmarks. The achieved results reach the level of the
best systems based on local features with spatial matching and query expansion while
being faster and requiring less memory. The proposed pooling layer that generalizes
previously adopted mechanisms is shown to improve the retrieval accuracy while it is
also effective for constructing a joint multi-scale representation. Training data, trained
models, and code are publicly available’.

“emp.felk.cvut.cz/cnnimageretrieval
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Table 6.5. Performance (mAP) comparison with the state-of-the-art image retrieval using

VGG and ResNet (Res) deep networks, and using local features. F-tuned: Use of the fine-
tuned network (yes), or the off-the-shelf network (no), not applicable for the methods using
local features (n/a). Dim: Dimensionality of the final compact image representation, not ap-
plicable (n/a) for the BoW based methods due to their sparse representation. Our methods
are marked with x and they are always accompanied by the multi-scale representation and
our learned whitening L. Previous state of the art is highlighted in bold, new state of the
art in red outline. Best viewed in color.

Net | Method [F-tuned| Dim | Oxf5k [Oxf105k| Par6k |[Parl06k| Hol [Hol101k]

Compact representation using deep networks ‘

MAC [138] no 512 56.4 47.8 72.3 58.0 79.0 66.1
SPoC [8]Jr no 512 68.1 61.1 78.2 68.4 83.9 75.1
CroW [76] no 512 70.8 65.3 79.7 72.2 85.1 -
R-MAC [168] no 512 66.9 61.6 83.0 75.7 86.9% -
BoW-CNN [106] no | n/a | 739 | 59.3 | 820 | 648 - -
VGG | NetVLAD [3] no | 4096 | 66.6 - 77.4 - 88.3 -
NetVLAD [3] yes | 512 | 67.6 - 74.9 - 86.1 -
NetVLAD (3] yes 4096 71.6 - 79.7 - 87.5 -
Fisher Vector [115] yes 512 81.5 76.6 82.4 - - -
R-MAC [57] yes 512 83.1 78.6 87.1 79.7 89.1 -
* GeM yes 512 87.9 83.3 87.7 81.3 89.5 79.9
R-MAC [168]* no 2048 69.4 63.7 85.2 77.8 91.3 -
Res | R-MAC [58] yes 2048 86.1 82.8 94.5 90.6 94.8 -
* GeM yes 2048 87.8 84.6 92.7 86.9 93.9 87.9
’ Re-ranking (R) and query expansion (QE)
BoW+R+QE [29] n/a | n/a | 827 | 767 | 805 | 71.0 - -
n/a | BoW-fVocab+R+QE [102] n/a | n/a | 84.9 | 795 | 824 | 773 | 75.8 -
HQE [166] n/a n/a 88.0 84.0 82.8 - - -
CroW+QE [76] no | 512 | 749 | 706 | 848 | 794 - -
R-MAC+R+QE [168] no | 512 | 773 | 732 | 865 | 798 - -
VGG | BoW-CNN+R+QE [106] no n/a 78.8 65.1 84.8 64.1 - -
R-MAC+QE [57] yes 512 89.1 87.3 91.2 86.8 - -
* GeM+aQE yes 512 91.9 89.6 91.9 87.6 - -
R-MAC+QE [168]F no | 2048 | 789 | 755 | 89.7 | 85.3 - -
Res R-MAC+H+QE [58] yes 2048 90.6 89.4 96.0 93.2 - -
* GeM+aQE yes 2048 91.0 89.5 95.5 91.9 - -

. Our evaluation of MAC and SPoC with PCA, and with the off-the-shelf network.
f: Evaluation of R-MAC by [58] with the off-the-shelf network.
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Oxford5k

Paris6k

SNE.

Figure 6.15. Visualization of the Oxford5k (top) and Paris6k (bottom) datasets with t-
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Chapter

Image Retrieval: State of the Art Evaluation

HIS chapter describes an extensive evaluation of state-of-the-art image retrieval
T methods as of the year 2018. The evaluation is performed on a newly proposed
benchmark, which is described in Chapter 4. The methods range from local-feature
based to convolutional-neural-network (CNN) based approaches, including various meth-
ods of re-ranking. Note that, all of the methods evaluated here were developed before
this benchmark was proposed, and, as such, they were not tuned or tailored for it. We
set up a fair environment for the comparison, using the same independent dataset to
perform any additional processing, such as visual vocabulary (codebook) learning, or
descriptor whitening learning. Besides performance, we also provide time and memory
requirements across the representative methods.

The contents of this chapter have been published in [130]. The revisited benchmark,
along with the new distractor images, is publicly available!. The rest of the chapter is
organized as follows. A large variety of different state-of-the-art methods is briefly in-
troduced in Section 7.1, and then, they are extensively evaluated on the new benchmark
in Section 7.2. Concluding remarks are given in Section 7.3.

7.1. Extensive evaluation

We evaluate a number of state-of-the-art approaches on the new benchmark and offer
a rich testbed for future comparisons. We list the approaches in this section and we
split them into two main categories, namely, classical retrieval approaches using local
features and CNN-based methods producing global image descriptors.

7.1.1. Local-feature-based methods

Methods based on local invariant features [99, 100] and the bag-of-words (BoW) model [151,
125, 31, 126, 30, 102, 166, 19, 189, 193, 159] were dominating the field of image retrieval
until the advent of CNN-based approaches [138, 8, 168, 76, 3, 58, 135, 106, 186]. A
typical BoW pipeline consists of invariant local feature detection [100], local descrip-
tor extraction [99], quantization with a visual codebook [151], typically created with
k-means, assignment of descriptors to visual words and finally descriptor aggregation in
a single embedding [73, 124] or individual feature indexing with an inverted file struc-
ture [162, 125, 121]. In particular, we use up-right Hessian-affine (HesAff) features [121],
RootSIFT (rSIFT) descriptors [4], and create the codebooks on the landmark dataset
from [135], same as the one used for the whitening of CNN-based methods. Note that we

temp.felk.cvut.cz/revisitop
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always crop the queries according to the defined region and then perform any processing
to be directly comparable to CNN-based methods.

We additionally follow the same BoW-based pipeline while replacing Hessian-affine
and RootSIFT with the deep local attentive features (DELF) [114]. The default ex-
traction approach is followed (i.e. at most 1000 features per image), but we reduce the
descriptor dimensionality to 128 and not to 40 to be comparable to RootSIFT. This
variant is a bridge between classical approaches and deep learning.

VLAD. The Vector of Locally Aggregated Descriptors [72] (VLAD) is created by first-
order statistics of the local descriptors. The residual vectors between descriptors and the
closest centroid are aggregated w.r.t. a codebook whose size is 256 in our experiments.
We reduce its dimensionality down to 2048 with PCA, while square-root normalization
is also used [68].

SMK*. The binarized version of the Selective Match Kernel [163] (SMK*), a simple
extension of the Hamming Embedding [69] (HE) technique, uses an inverted file struc-
ture to separately indexes binarized residual vectors while it performs the matching
with a selective monomial kernel function. The codebook size is 65,536 in our experi-
ments, while burstiness normalization [70] is always used. Multiple assignment to three
nearest words is used on the query side, while the hamming distance threshold is set to
52 out of 128 bits. The rest are the default parameters.

ASMK*. The binarized version of the Aggregated Selective Match Kernel [163] (ASMK*)
is an extension of SMK* that jointly encodes local descriptors that are assigned to the

same visual word and handles the burstiness phenomenon. Same parametrization as
SMK™* is used.

SP. Spatial verification (SP) is known to be crucial for particular object retrieval [125]
and is performed with the RANSAC algorithm [49]. It is applied on the 100 top-ranked
images, as these are formed by a first filtering step, e.g. the SMK* or ASMK* method.
Its result is the number of inlier correspondences, which is one of the most intuitive
similarity measures and allows to detect true positive images. To assume that an image
is spatially verified, we require 5 inliers with ASMK* and 10 with other methods.

HQE. Query expansion (QE), firstly introduced by Chum et al. [31] in the visual
domain, typically uses spatial verification to select true positive among the top retrieved
result and issues an enhanced query including the verified images. Hamming Query
Expansion [166] (HQE) is combining QE with HE. We use same soft assignment as
SMK* and the default parameters.

7.1.2. CNN-based global descriptor methods

We list different aspects of a CNN-based method for image retrieval, which we later
combine to form different baselines that exist in the literature.

CNN architectures. We include 3 highly influential CNN architectures, namely AlexNet [81],
VGG-16 [150], and ResNet101 [60]. They have different number of layers, complexity,

and also produce descriptors of different dimensionality (256, 512, and 2048, respec-
tively).
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7.1. Extensive evaluation

Table 7.1. Performance (mAP) on Oxford (Oxf) and Paris (Par) with the original annotation,
and ROxford and RParis with the newly proposed annotation with three different protocol
setups: Easy (E), Medium (M), Hard (H).

ROxford RParis

Method Oxf Par

HesAff-rSIFT-SMK* 78.1 74.1 | 594 | 354 | 746 | 80.6 | 59.0 | 31.2
R-[O]-R-MAC 78.3 | 742 | 49.8 | 185 | 90.9 | 89.9 | 74.0 | 52.1
R-[135]-GeM 87.8 | 84.8 | 64.7 | 38.5 | 92.7 | 92.1 | 77.2 | 56.3
R-[135]-GeM+DFS 90.0 | 86.5 | 69.8 | 40.5 | 95.3 | 93.9 | 889 | 78.5

Table 7.2. Time and memory measurements. Extraction time on a single thread GPU (Tesla
P100) / CPU (Intel Xeon CPU E5-2630 v2 @ 2.60GHz) per image of size 1024x768, the
memory requirements and the search time (single thread CPU) reported for the database of
ROxford+R1M images. Feature extraction + visual word assignment is reported for ASMK*.
SP: Geometry information is loaded from the disk and the loading time is included in search
time. We did not consider geometry quantization [121].

Memory Time (sec)
Method Extraction
Search

(GB) GPU [ CPU
HesAff—rSIFT-ASMK* 0.98

62.0 n/a + 0.06 1.08 + 2.35
HesAffrSIFT-ASMK*+SP 2.00
DELF-ASMK*+SP 10.3 0.41 + 0.01 n/a + 0.54 0.52
A-[135]-GeM 0.96 0.12 1.99 0.38
V—[135]-GeM 1.92 0.23 31.11 0.56
R—[135]-GeM 7.68 0.37 14.51 1.21

Pooling. A common practice is to extract a convolutional feature map and perform
a pooling mechanism to construct a global image descriptor. We consider max-pooling
(MAC) [138, 168], sum-pooling (SPoC) [8], weighted sum-pooling (CroW) [76], regional
max-pooling (R-MAC) [168], generalized mean-pooling (GeM) [135], and NetVLAD
pooling [3]. The pooling is always applied on top of the last convolutional feature map.

Multi-scale. The input image is resized to a maximum 1024 x 1024 size. Then, three
re-scaled versions with scaling factor of 1, 1/v2, and 1/2 are fed to the network. Finally,
the resulting descriptors are combined into a single descriptor by average pooling [58]
for all methods, except for GeM where generalized-mean pooling is used [135]. This is
shown to improve the performance of the CNN-based descriptors [58, 135].

Off-the-shelf vs. retrieval fine-tuning. Networks that are pre-trained on ImageNet [140]
(off-the-shelf) are directly applicable on image retrieval. We further consider the fol-
lowing cases of fine-tuning for the task. Radenovic et al. [133] fine-tune a network with
landmarks photos using contrastive loss [59]. This is available with MAC [133] and
GeM pooling [135]. Similarly, Gordo et al. [58] fine-tune R-MAC pooling with land-
mark photos and triplet loss [175]. Finally, NetVLAD (3] is fine-tuned using street-view
images and GPS information.
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Figure 7.1. Performance (AP) per query on ROxford + R1M with Medium setup. AP is shown
with a bar for 8 methods. The methods, from left to right, are HesAff—rSIFT-ASMK*4-SP,
DELF-ASMK*+SP, DELF-HQE+SP, V-[O]-R-MAC, R-[0]-GeM, R-{135]-GeM,
R-[135]-GeM+DFS, HesAff-rSIFT-ASMK*+SP — R—-[135]-GeM+DFS. The total number

of easy and hard images is printed on each histogram. Best viewed in color.

Descriptor whitening is known to be essential for such descriptors. We use the same
landmark dataset [135] to learn the whitening for all methods. We use PCA whiten-
ing [68, 8] for all the off-the-shelf networks, and supervised whitening with SfM la-
bels [97, 133] for all the fine-tuned ones. One exception is the tuning that includes the
whitening in the network [58].

Query Expansion is directly applicable on top of global CNN-based descriptors. More
specifically, we use a query expansion (a«QE) [135] and diffusion (DFS) [67].

7.2. Results

We report a performance comparison between the old and the revisited datasets. Ad-
ditionally, we provide an extensive evaluation of the state-of-the-art methods on the
revisited dataset, with and without the new large-scale distractor set, setting up a
testbed for future comparisons.

The evaluation includes local feature-based approaches (see Section 7.1.1 for details
and abbreviations), referred to by the combination of local feature type and represen-
tation method, e.g. HesAff-rSIFT-ASMK*. CNN-based global descriptors are denoted
with the following abbreviations. Network architectures are AlexNet (A), VGG-16 (V),
and ResNet101 (R). The fine-tuning options are triplet loss with GPS guided mining [3],
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Figure 7.2. Performance (AP) per query on RParis + R1M with Medium setup. AP is shown
with a bar for 8 methods. The methods, from left to right, are HesAff—rSIFT-ASMK*4-SP,
DELF-ASMK*+SP, DELF-HQE+SP, V-[O]-R-MAC, R-[0]-GeM, R-{135]-GeM,
R-[135]-CeM+DFS, HesAffrSIFT-ASMK*+SP — R-{135]-GeM+DFS. The total number

of easy and hard images is printed on each histogram. Best viewed in color.

1

mn

triplet loss with spatially verified positive pairs [58], contrastive loss with mining from
3D models [133] and [135], and finally the off-the-shelf [O] networks. Pooling approaches
are as listed in Section 7.1.2. For instance, ResNet101 with GeM pooling that is fine-
tuned with contrastive loss and the training dataset by Radenovic et al. [135] is referred
to as R—[135]-GeM.

Revisited vs. original. We compare the performance when evaluated on the original
datasets, and the revisited annotation with the new protocols. The results for four
representative methods are presented in Table 7.1. The old setup appears to be close
to the new Easy setup, while Medium and Hard appear to be more challenging. We
observe that the performance of the Easy setup is nearly saturated and, therefore, we
only evaluate Medium and Hard setups in the subsequent experiments.

State of the art evaluation. We perform an extensive evaluation of the state-of-the-
art methods for image retrieval. We present time/memory measurements in Table 7.2
and performance results in Table 7.3. We additionally show the average precision (AP)
per query for a set of representative methods in Figures 7.1 and 7.2, for ROxford and
RParis, respectively. The representative set covers the progress of methods over time in
the task of image retrieval. In the evaluation, we observe that there is no single method
achieving the highest score on every protocol per dataset. Local-feature-based methods
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7. Image Retrieval: State of the Art Evaluation

Table 7.3. Performance evaluation (mAP, mP@10) on ROxford (ROxf) and RParis (RPar)
without and with R1M distractors. We report results with the revisited annotation, using
Medium and Hard evaluation protocols. We use a color-map that is normalized according to
the minimum (white) and maximum (green / orange) value per column.

Medium Hard
Method ROxf [ROxf+RIM| RPar [RPar+RIM| ROxf [ROxf+RIM| RPar [RPar+RIM
mAP ‘mP@lU‘ mAP ‘mP@lO‘ mAP ‘mP@lO‘ mAP ‘mP@lU mAP ‘mP@lD‘ mAP ‘mP@IO‘ mAP ‘mP@lO‘ mAP ‘mP@lD
HesAffirSIFT-VLAD
HesAff-rSIFT-SMK*
HesAffrSIFT-ASMK*
HesAffrSIFT-SMK*+SP
HesAffrSIFT-ASMK*+SP
DELF-ASMK*+SP
A- [0] - MAC
A- [0] - GeM
A— [133] - MAC
A— [135] - GeM
V- [0] - MAC
V- [0] - SPoC
V- [0] - CroW
V- [0] - GeM
V- [0] - R-MAC
V- 3] - NetVLAD
V- [133] - MAC
V- [135] - GeM
R- [0] - MAC
R- [0] — SPoC
R- [0] - CroW
R- [0] - GeM
R- [0] - R-MAC
R- [135] - GeM
R- [58] - R-MAC
‘ Query expansion (QE) and diffusion (DFS)
HesAffrSIFT-HQE 66.3 | 85.6 | 42.7 | 67.4 | 68.9 | 97.3 [ 44.2 ] 90.1 413 232 376|447 ] 799 203514
HesAfirSIFT-HQE+SP 71.3 | 8.1 | 52.0 | 76.7 | 70.2 | 98.6 | 46.8 | 93.0 | 49.7 29.8 501 | 45.1 | 83.9 21.8 | 61.9
DELF-HQE+SP 73.4 | 88.2 | 60.6 | 79.7 | 84.0 | 98.3 | 65.2 | 96.1 50.3 37.9 56.1 | 69.3 | 93.7 35.8 | 69.1
R- [0] — R-MAC+aQE 51.9 | 70.3 | 30.8 | 49.7 | 77.3 | 97.9 | 55.3 | 947 218 5.2 159 | 57.0 | 87.6 28.0 | 76.1
V- [135] - GeM+aQE 66.6 | 85.7 | 47.0 | 72.0 | 74.0 | 98.4 | 52.9 21.1 346 | 51.0 [ 884 25.6 | 75.0
R— [135]— GeM+aQE 67.2 | 86.0 | 49.0 | 74.7 | 80.7 58.0 24.2 403 | 61.8 [ 90.6 31.0 | 80.4
R- [58] — R-MAC+aQE 64.8 | 78.5 | 45.7 | 66.5 | 82.7 61.0
V- [135] - GeM+DFS 69.6 | 84.7 | 60.4 | 79.4 | 85.6 | 97.1 | 80.7
R— [135]— GeM+DFS 69.8 | 84.0 | 61.5 | 77.1 | 88.9 | 96.9
R- [58] — R-MAC+DFS 69.0 | 82.3 | 56.6 | 68.6 | 89.5
HesAff-rSIFT-ASMK*+SP — R~ [135]-GeM+DFS
HesAff-rSIFT-ASMK* +SP — R~ [58]-R-MAC+DFS
DELF-ASMK*+SP — R- [58]-R-MAC+DFS

perform very well on ROxford, especially at large scale, achieving state-of-the-art per-
formance, while CNN-based methods seem to dominate on RParis. We observe that
BoW-based classical approaches are still not obsolete, but their improvement typically
comes at significant additional cost. Recent CNN-based local features, i.e. DELF,
reduce the number of features and improve the performance at the same time.

CNN fine-tuning consistently brings improvements over the off-the-shelf networks.
The new protocols make it clear that improvements are needed at larger scale and the
hard setup. Many images are not retrieved, while the top 10 results mostly contain false
positives. Interestingly, we observe that query expansion approaches (e.g. diffusion)
degrade the performance of queries with few relevant images (see Figures 7.1 and 7.2).
This phenomenon is more pronounced in the revisited datasets, where the the query
images are removed from the preprocessing. We did not include separate regional
representation and indexing [138], which is previously shown to be beneficial. Our
experiments with ResNet and GeM pooling show that it does not deliver improvements
that are significant enough to justify the additional memory and complexity cost.
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7.3. Concluding remarks

The best of both worlds. The new dataset and protocols reveal space for improve-
ment by CNN-based global descriptors in cases where local features are still better.
Diffusion performs similarity propagation by starting from the query’s nearest neigh-
bors according to the CNN global descriptor. This inevitably includes false positives,
especially in the case of few relevant images. On the other hand, local features, e.g.
with ASMK*+SP, offer a verified list of relevant images. Starting the diffusion process
from geometrically verified images obtained by BoW methods combines the benefits
of the two worlds. This combined approach, shown at the bottom part of Table 7.3,
improves the performance and supports the message that both worlds have their own
benefits. Of course this experiment is expensive and we perform it to merely show a
possible direction to improve CNN global descriptors. There are more methods that
combine CNNs and local features [190], but we focus on the results related to methods
included in our evaluation.

7.3. Concluding remarks

We have revisited two of the most established image retrieval datasets in Chapter 4,
that were perceived as performance saturated. This includes new annotation for both
datasets that was created with an extra attention to the reliability of the ground truth,
and an introduction of 1M hard distractor set.

The goal of this chapter was not to propose a new method, but rather to evaluate the
best performing approaches as of the year 2018. An extensive evaluation, performed in
this chapter, provides a fair testbed for future comparisons. Evaluated methods range
from local-feature based to CNN based approaches, and there is no single approach that
achieves the maximum performance on all datasets and difficulty settings. The best
results are achieved by taking the best of the two worlds, but at a heavy computational
and memory cost. Thus, we conclude that image retrieval is still an open problem,
especially at large scale and under difficult viewing conditions. In fact, image retrieval
appears far from being solved.
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Chapter

Adversarial Attack to Conceal the Query Image

CCESS to online visual search engines implies sharing of private user content — the
A query images. We introduce the concept of target mismatch attack for deep learn-
ing based retrieval systems to generate an adversarial image to conceal the query image.
The adversarial image looks nothing like the user intended query, but leads to identical
or very similar retrieval results, see Figure 8.1.

Information about users is valuable. Websites, service providers, and even operating
systems collect and store user data. The collected data have various forms, e.g. visited
websites, interactions between users in social networks, hardware fingerprints, keyboard
typing or mouse movement patterns, etc. Internet search engines record what the users
search for, as well as the responses, i.e. clicks, to the returned results.
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Query Retrieval results

Figure 8.1. Top two rows show retrieval results to the user query image (target). Bottom three
rows show the results of our attack where a carrier image (flower, Lena, Notre Dame) has
been perturbed to have identical descriptor to that of the target in the first row. Identical
results are obtained without disclosing the target.
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8. Adversarial Attack to Conceal the Query Image

Recent development in computer vision allowed efficient and precise large scale image
search engines to be launched, such as Google Image Search. Nevertheless, similarly
to text search engines, queries — the images — are stored and further analyzed by the
provider!. In this work, we protect the user image (target) by constructing a novel
image. The constructed image is visually dissimilar to the target, however, when used
as a query, identical results are retrieved as with the target image. Large-scale search
methods require short-code image representation, both for storage minimization and
for search efficiency, which are usually extracted with Convolutional Neural Networks
(CNN). We formulate the problem as an adversarial attack on CNNs.

Adversarial attacks, as introduced by Szegedy et al. [158], study imperceptible non-
random image perturbations to mislead a neural network. The first attacks were in-
troduced and tested on image classification. In that context, adversarial attacks are
divided into two categories, namely non-targeted and targeted. The goal of non-targeted
attacks is to change the prediction of a test image to an arbitrary class [108, 107], while
targeted attacks attempt to make a specific change of the network prediction, i.e., to
misclassify the test image to a predefined target class [158, 22, 43].

Similarly to image classification, adversarial attacks have been proposed in the do-
main of image retrieval too. An non-targeted attack attempts to generate an image
that for a human observer carries the same visual information, while for the neural
network it appears dissimilar to other images of the same object [87, 91, 192]. This
way, a user protects personal images and does not allow them to be indexed for content-
based search, even when the images are publicly available. In this chapter, we address
targeted attacks aiming to retrieve images that are related to a hidden target query
without explicitly revealing the image (see Figure 8.1). A concept that bears resem-
blance to ours exists in the speech recognition, but in a malicious context. Carlini et
al. [21] generate hidden voice commands that are imperceivable to human listeners but
are interpreted as commands by devices. We investigate adversarial attacks beyond the
white-box scenario, in which all the parameters and design choices of the retrieval sys-
tem are known. Specifically, we analyze the cases of unknown indexing image resolution
and unknown global pooling used in the network.

The work described in this chapter originates from [167]. This chapter is organized
as follows. Section 8.1 gives the background on adversarial attacks on both image
classification and image retrieval domains. In Section 8.2, we formulate the targeted
attack on image retrieval problem, and propose an approach to address it. We validate
the success of our proposed attack in Section 8.3, and finally, we give concluding remarks
in Section 8.4.

8.1. Background

We provide the background for non-targeted and targeted adversarial attacks in the
domain of image classification, then detail the basic components of CNN-based image
retrieval approaches, and finally discuss non-targeted attacks for image retrieval. All
variants presented in this section assume white-box access to the network classifier for
classification or the feature extractor network for retrieval.

LGoogle Search Help: “The pictures you upload in your search may be stored by Google for 7 days.
They won’t be a part of your search history, and we’ll only use them during that time to make our
products and services better.”
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8.1. Background

8.1.1. Image classification attacks

We denote the initial RGB image, called the carrier image, by tensor x.. € [0, 1]WV>H*3,

and its associated label by y. € {1...K}. A CNN trained for K-way classification,
denoted by function f : RW*#*x3 5 RK produces vector f(x.) comprising class confi-
dence values. Adversarial attack methods for classification typically study the case of
images with correct class prediction, i.e. argmax; f(x.); is equal to y., where f(x.); is
the i-th dimension of vector f(x.). An adversary aims at generating adversarial image
X, that is visually similar to the carrier image but is classified incorrectly by f. The

goal of the attack can vary [2] and corresponds to different loss functions optimizing
= [07 1]W><H><3_

Non-targeted misclassification is achieved by reducing the confidence for class y.,
while increasing for all other classes. It is achieved by minimizing loss function

LHC(XC7yc§ X) = _gce(f<x)7 yc) +A HX - XCH2' (8'1)

Function e (f(x),y.) is the cross-entropy loss which is maximized to achieve the mis-
classification. In this way, misclassification is performed to any wrong class. The second
term ||x —x.||?, called carrier distortion or simply distortion, is the squared I norm of
the perturbation r = x — x,.

Targeted misclassification has the goal of generating an adversarial image that gets
classified into target class y;. It is achieved by minimizing loss function

Ltc(xca yt;x) = Ece(f(x)7yt) + A ”X - Xc||2' (8'2)

In contrast to (8.1), cross-entropy loss is minimized w.r.t. the target class instead of
maximized w.r.t. the carrier class.

Optimization of (8.1) or (8.2) generates the adversarial images given by
X, = argmin Ly¢(Xe, Ye; X), (8.3)
X

or
X, = argmin L. (Xe, ¥4; X), (8.4)
X

respectively. In the literature [158, 22], various optimizers such as Adam [79], or L-
BFGS [16] are used. The box constraints, i.e. x € [0, 1]"*#*3 are ensured by projected
gradient descent, clipped gradient descent, change of variables [22], or optimization
algorithms that support box constraints such as L-BFGS. It is a common practice to
perform line search for weight A > 0 and keep the attack of minimum distortion. The
optimization is initialized by the carrier image.

8.1.2. Image retrieval components

This work focuses on attacks on CNN-based image retrieval with global image descrip-
tors. An image is mapped to a high dimensional descriptor by a CNN with a global
pooling layer. The descriptor is consequently normalized to have unit [ norm. Then,
retrieval from a large dataset w.r.t. a query image reduces to nearest neighbor search
via inner product evaluation between the query descriptor and dataset descriptors. The
model for descriptor extraction consists of the following components or parameters.
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8. Adversarial Attack to Conceal the Query Image

Image resolution: The input image x is re-sampled to image x° to have maximum
resolution equal to s x s.

Feature extraction: Image x° is fed as input to a Fully Convolutional Network (FCN),
denoted by function g : RW*H*3 5 Rwxhxd which maps x* to tensor g(x*). When
the image is processed at its original resolution we denote it by g(x).

Pooling: A global pooling operation h : R¥*"*4 s RY maps the input tensor g(x*) to
descriptor (h o g)(x®). We assume that ls normalization is included in this process, so
that the output descriptor has unit /o norm. We consider various options for pooling,
namely, max pooling (MAC) [138, 168], sum pooling (SPoC) [8], generalized mean
pooling (GeM) [135], regional max pooling (R-MAC) [168], and spatially and channel-
wise weighted sum pooling (CroW) [76]. The framework can be extended to multiple
other variants [3, 115, 106].

Whitening: Descriptor post-processing is performed by function w : R¢ — R¢, which
includes centering, whitening and lo re-normalization [135]. Finally, input image x* is
mapped to descriptor (w o ho g)(x*).

For brevity we denote gx = g(x), hx = (ho g)(x), and wx = (wo ho g)(x). In the
following, we consider an extraction model during the adversarial image optimization
and another one during the testing of the retrieval/matching performance. In order
to differentiate between the two cases we refer to the components of the former as
attack-model, attack-resolution, attack-FCN, attack-pooling and attack-whitening and
the latter as test-model, test-resolution, test-FCN, test-pooling and test-whitening.

8.1.3. Image retrieval attacks

Adversarial attacks for image retrieval are so far limited to the non-targeted case.

Non-targeted mismatch aims at generating an adversarial image with small pertur-
bation compared to the carrier image and descriptor that is dissimilar to that of the
carrier. This is formulated by loss function

Ly (x¢;%) = (X, %e) + A ||x — XC||2
=h h, +X\|[x—x]> (8.5)

The adversarial image is given by minimizer
X, = argmin Ly, (X; X). (8.6)
X
In this way, the adversary modifies images into their non-indexable counterpart. The
exact formulation in (8.5) has not been addressed; the closest is the work of Li et al. [87]

which learns universal adversarial perturbations (UAP) by maximizing [; descriptor
distance instead of minimizing cosine similarity.

8.2. Method

We formulate the problem of targeted mismatch attack and then propose various loss
functions to address it and construct concealed query images.
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Adversarial
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Figure 8.2. In targeted mismatch attack we generate an adversarial image given a carrier and
a target image. The adversarial image should match the descriptor of the target image but
be visually dissimilar to the target; visual dissimilarity to the target is achieved via visual
similarity to the carrier. The attack is formed by a retrieval query using the adversarial
image, where the goal is to obtain identical results as with the target query while keeping
the target image private.

8.2.1. Problem formulation

The adversary tries to generate an adversarial image with the goal of using it as a
(concealed) query for image retrieval instead of a target image. The objective is to
obtain the same retrieval results without disclosing visual information about the target
image itself.

We assume a target image x; € R"W*H*3 and a carrier image x. with the same
resolution (see Figure 8.2). The goal of the adversary is to generate an adversarial
image x, that has high descriptor similarity but very low visual similarity to the target.
Visual (human) dissimilarity is not straightforward to model; we model visual similarity
w.r.t. another image, ¢.e. the carrier, instead. We refer to this problem as targeted
mismatch attack and the corresponding loss function is given by

Ly (Xe, X4 %) = lip (X, %) + A ||x — XCH2. (8.7)

In the following we propose different instantiations of the performance loss li; according
to the known and unknown components of the test-model.

8.2.2. Targeted mismatch attacks

In all the following, we assume a white-box access to the FCN, while the whitening
is assumed unknown and is totally ignored during the optimization of the adversarial
image; its impact on the attack is evaluated by adding it to the test-model. In general,
if all the parameters of the test-model are known, the task is to generate an adversarial
image that reproduces the descriptor of the target image. Then, nearest neighbor search
will retrieve identical results as if querying with the target image. Choosing a different
performance loss introduces invariance or robustness to some parameters of the attacked
retrieval system, when these parameters are unknown. We list different performance
loss functions used to minimize (8.7).

Global descriptor. Loss function

gdeSC(Xa Xt) =1- h;(rhxt- (88)



8. Adversarial Attack to Conceal the Query Image

is suitable when all parameters of the retrieval system are known, including the pooling,
and when the image is processed by the neural network at its original resolution. Pooling
function h is MAC, SPoC, or GeM in our experiments.

Activation tensor. In this scenario, the output of the FCN should be the same for the
adversarial and target image, at the original resolution. This is achieved by minimizing
the mean squared difference of the two activation tensors

B 2
gtens(xvxt) = w (89)

Identical tensors guarantee identical descriptors computed on top of these tensors, in-
cluding those where spatial information is taken into account. This covers all global or
regional pooling operations, and even deep local features, e.g. DELF [114]. However,
our experiments show that preserving the activation tensor may result in transferring
the target’s visual content on the adversarial image (see Figure 8.7). Further, the vi-
sual appearance of the target image can be partially recovered by inverting [94] the
activation tensor of the adversarial image.

Activation histogram. Preserving channel-wise first order statistics of the activation
tensor, at the original resolution, is a weaker constraint than preserving the exact
activation tensor. It guarantees identical descriptors for all global pooling operations
that ignore spatial information. Activation histogram loss function is defined as

d
1
ehist(xvxt) = g E Hu(g)u b)z - u(gxta b)sz (810)
=1

where u(gx, b); is the histogram of activations from the i-th channel of gx and b is the
vector of histogram bin centers. Histograms are created with soft assignment by an
RBF kernel. We use

(z—b)?
e 202

, (8.11)

where o = 0.1, z is a scalar activation normalized by the maximum activation value of
the target, and b is the bin center. We uniformly sample bin centers in [0,1] with step
0.05. Compared with the tensor case, the histogram optimization does not preserve
the spatial distribution, is significantly faster, and does not suffer from undesirable
disclosure artifacts.

Different image resolution. We require an adversarial image at the original resolution
of the target (W x H), which when down-sampled to resolution s, it retrieves similar
results as the target image down-sampled to the same resolution. This is achieved by
loss function

LE(x, x5 %) = L (x°,x5) + A ||x — x|, (8.12)

where /i can be any of the descriptor, tensor, or histogram based performance loss
functions. Note that (8.12) is different from (8.7), the performance loss is computed
from re-sampled images, while the distortion loss is still on the original images.

A common down-sampling method used in CNNs is bi-linear interpolation. We have
observed that different implementations of such a layer result in different descriptors.
The difference is caused by the presence of high-frequencies in the high-resolution im-
age. The adversarial perturbation tends to be high-frequency, therefore different down-
sampling results may significantly alternate the result of attack. In order to reduce
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8.3. Experiments

the sensitivity to down-sampling, we introduce high-frequency removal by Gaussian
blurring in the optimization. Instead of (8.12), the following loss is used

Lfr(x,xt;x) :Etr(x§,xf) + A HX—XCHQ, (8.13)

where x® is image x blurred with Gaussian kernel with o, and then down-sampled. Our
experiments show, that blurring plays an important role when the attack-resolution s
does not exactly match the test-resolution s', i.e. s’ = s+ A.

Ensembles. We perform the adversarial optimization for a combination of the afore-
mentioned loss functions by minimizing their sum. Some examples follow.

The test-pooling operation is unknown but there is a set P of possible pooling opera-
tions. Minimization of (8.7) is performed for performance loss

Zpep gp (X7 Xt)

P (8.14)

E’P(Xa Xt) =

The test-resolution is unknown. Joint optimization for a set S of resolutions is per-

formed with
ZSES Etr (Xs7 X?)
S|

Any performance loss ¢y, is used, with or without blurring.

LY(x, x4 X) = + A |Jx — x| % (8.15)

8.2.3. Optimization

The optimization is performed with Adam and projected gradient descent is used to
apply the box constraints, i.e. x € [0, 1]WXH %3 The adversarial image is initialized by
the carrier image, while after every update its values are clipped to be in [0,1]. The
adversarial image is given by

X, = argmin L, (Xc, X¢; X), (8.16)
X

where L, can be Lges. (with “desc” equal to MAC, SPoC, or GeM), Lp, Lypist, O Ltens
according to the variant, while the variants with multiple scales are denoted e.g. by
Lfist without blur or Lﬁist with blur.

8.3. Experiments

Given a test architecture, we validate the success of the targeted mismatch attack in two
ways. First, by measuring the cosine similarity between descriptors of the adversarial
image x, and the target x; (should be as high as possible), and second, by using x,
as an image retrieval query and compare its performance with that of the target query
(should be as close as possible).

8.3.1. Datasets and evaluation protocol

We perform experiments on four standard image retrieval benchmarks, namely Holi-
days [69], Copydays [44], ROxford [130], and RParis [130]. They all consist of a set of
query images and a set of database images, while the ground-truth denotes which are
the relevant dataset images per query. We choose to perform attacks only with the first
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Figure 8.3. We generate adversarial images with different loss function and report various
measurements as they evolve with the number of iterations. We show (a) the distortion
w.r.t. the carrier image, (b) the performance loss from (8.7), (c¢) descriptor similarity of the
adversarial image to the target for test case [«/,GeM,sq] and (d) descriptor similarity of the
adversarial image to the carrier for test case [27,GeM,sg]. The target and carrier images are
the ones shown in Figure 8.7.

50 queries for Holidays and Copydays to form adversarial attack benchmarks of reason-
able size, while for ROxford and RParis we keep all 70 of them. All queries are used
as targets to form an attack and retrieval performance is measured with mean Average
Precision (mAP). Unless otherwise stated we use the “flower” of Figure 8.1 as the car-
rier; it is cropped to match the aspect ratio of the target. All images are re-sampled to
have maximum image resolution equal to 1024 x 1024, this is the original image resolu-
tion. ROxford and RParis are treated differently than the other two due to the cropped
image queries?; the relative scale change between queries and database images should
be preserved not to affect the ground truth. When the image resolution for descriptor
extraction is different than the original one, we down-sample the cropped image with
the same scaling factor that the un-cropped one should have been down-sampled with.
Results are reported for the Medium evaluation setup of these two benchmarks. More
details on Holidays and Copydays datasets and their evaluation protocol are given in
Chapter 3, Section 3.1.2. ROxford and RParis datasets are introduced and described
in detail in Chapter 4.

2The cropped image region that defines the query is used as a target.
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Figure 8.4. Descriptor similarity between the adversarial image and the target or the carrier
as it evolves with the number of iterations. We compare the cases without (solid) and with
(dashed) blurring for test-resolutions that are not in the attack-resolutions. We use — to
denote the adversarial optimization (left) and the test model (right). The target and carrier
images are from Figure 8.7.

8.3.2. Implementation details and experimental setup

We set the learning rate equal to 0.01 in all our experiments and perform 100 iterations
for Lgese and Lye, while 1000 iterations for Liens. If there is no convergence, we decrease
the learning rate by a factor of 5 and increase the number of iterations by a factor 2
and re-start. We normalize the distortion term with the dimensionality of x; this is
skipped in the loss function of Sections 8.1 and 8.2 for brevity. Moreover, in order to
handle the different range of activations for different FCNs, we normalize activation
tensors with the maximum target activation before computing the mean squared error
in (8.9). Image blurring at resolution s in (8.13) is performed by a Gaussian kernel
with o, = 0.3 max(W, H)/s. The exponent of GeM pooling is always set equal to 3.

Setting A = 0 provides a trivial solution to (8.7), i.e. x, = x;. However, we observe
that initialization by x. converges to a local minima that are significantly closer to x.
than x; even for the case of A = 0. In this way, we satisfy the non-disclosure constraint,
i.e. the adversarial image is visually dissimilar to the target, and do not sacrifice the
performance loss. The image distortion w.r.t. to the carrier image does not sacrifice the
goal of concealing the target and preserving user privacy. Therefore, in our experiments
we mostly focus on cases with A = 0, but also validate cases with A > 0 to show the
impact of the distortion term or in order to promote the non-disclosure constraint for
the case of Liens.

We experiment with different loss functions for targeted mismatch attacks. We define
So, S1 and Sy as sets of attack-resolutions

So = {s0}, s0 = 1024, (8.17)
S1 = Sy U {300,400, 500, 600, 700, 800, 900}, (8.18)
Sy = 81 U {350,450, 550, 650, 750, 850, 950} (8.19)

We denote AlexNet [81], ResNet18 [60], and VGG16 [150] by <7, %, and ¥, respec-
tively, while we only keep their fully convolutional part. The ensemble of AlexNet and
ResNet18 is denoted by &; mean loss over the two networks is minimized. We report
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. Lty Original Laenm Lp Liist Lyens
mAP mAP difference to original
GeM 41.3 —0.0 —-0.0 —0.5 —0.2
MAC 37.0 -0.5 —0.0 -1.3 -0.0
SPoC 32.9 —4.4 —0.1 —0.2 —0.8
R-MAC 44.1 —-1.1 —0.5 —-0.9 —-0.1
CroW 38.2 —1.3 —0.4 —0.2 —0.5
X/ Xa
GeM 1.000 1.000 1.000 0.997 0.998
MAC 1.000 0.972 1.000 0.985 0.997
SPoC 1.000 0.910 1.000 0.999 0.996
R-MAC 1.000 0.972 0.978 0.979 0.997
CroW 1.000 0.968 0.994 0.996 0.998

Table 8.1. Performance evaluation for attacks based on AlexNet, various loss functions opti-
mized at the original image resolution sg, and A = 0. We test on [«7,desc,sq] for multiple
types of descriptor/pooling. We show mAP on RParis and mean descriptor similarity be-
tween the adversarial image and the target across all queries. Original corresponds to queries
without attack.

the triplet attack-model, loss function and value of A to denote the kind of adversarial
optimization, for example (&7 ,Lfi;t,O). Similarly for other variants. For testing, we
report the triplet test-model, test-pooling and test-resolution, for example [« ,GeM,s].

8.3.3. Results

For each adversarial image we perform the following measurements. We compute its
similarity to the target and to the carrier by cosine similarity of the corresponding
descriptors, we measure the carrier distortion and, lastly, we perform an attack by
using it as a query and measure the average precision which is compared to that of the
target image.

Optimization iterations. We perform the optimization for different loss functions and
increasing number of iterations. Multiple measurements are reported in Figure 8.3. Op-
timizing global descriptor or histogram converges much faster than the tensor case and
results in significantly lower distortion. This justifies our choice of using a lower number
of iterations for the two approaches. Increasing the value of A keeps the distortion lower
but sacrifices the performance loss, as expected.

In Figure 8.4 we show how the similarity to the target and the carrier evolves for
test-resolution that is not included in the set of attack-resolutions. Processing the
images with image blurring offers significant improvements, especially for the smaller
resolutions.

Robustness to unknown test-pooling. In Table 8.1 we present the evaluation com-
parison for different loss functions and test-pooling. The case of same attack- and
test-resolution is examined first. If the test-pooling is directly optimized (Lgem or Lyp
case), then perfect performance is achieved. The histogram and tensor based approaches
both perform well for a variety of test-descriptors.

Robustness to unknown test-resolution. Cases with different attack-resolution and
test-resolution are evaluated and results are presented in Figure 8.5. Resolutions that
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Figure 8.5. Performance evaluation for attack based on AlexNet and a set of attack-

8.3. Experiments

resolutions. We show mAP on RParis and mean descriptor similarity between the adversarial
image and the target across all queries, and at increasing test-resolution. Comparison using
two sets of attack-resolutions: S; (top), and Sy (bottom); and comparison for optimization

without (S) and with (S) image blurring.

were not part of the attack-resolutions suffer from significant drop in performance when
blurring is not performed, while blurring improves it. We clearly observe how the
retrieval performance and descriptor similarity between adversarial image and target
are correlated.

Impact of the distortion term. We evaluate [o/,GeM,so] on queries of RParis for
(o,L;2,,A\) and X equal to 0, 0.1, 1, 10. The average similarity between the adversarial
image and the target is 0.990, 0.987, 0.956, and 0.767, respectively, while the average
distortion is 0.0177, 0.0083, 0.0026, and 0.0008, respectively. Examples of adversarial
images are shown in Figure 8.6.

Impact of the whitening in the test-model. We now consider the case that the
test-model includes descriptor whitening. The whitening is unknown during the time
of the adversarial optimization. We evaluate the performance of RParis while learn-
ing whitening with PCA on ROxford. Testing without whitening and [</,GeM,s¢] or
[o7 ,GeM,768] achieves 41.3, and 40.2 mAP, respectively. After applying whitening the
respective performances increase to 47.5 and 48.0 mAP. Attacks with (<7 ,L32,,0) achieve
40.2, and 39.4 mAP when tested in the aforementioned cases without whitening. At-
tacks with («7,L;2,,0) achieve 47.3, and 42.9 mAP when tested in the aforementioned
cases with whitening. Whitening introduces some additional challenges, but the attacks
seem effective with slightly reduced performance.
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Target Carrier A=0 A=0.1 A=1 A=10

0.987 0.987 0.972

0.628 0.989 0.984 0.976 0.918

Figure 8.6. Adversarial examples for a carrier image and two different targets while optimizing
(o ,Ly2,,A) for various values of A\. We report descriptor similarity for [«7,GeM,sg].

Concealing/revealing the target. We generate adversarial images for different loss
functions and show examples in Figure 8.7. The corresponding tensors show that spa-
tial information is only preserved in the tensor-based loss function. The tensor-based
approach requires the distortion term to avoid revealing visual structures of the tar-
get (adversarial images in 6-th and 7-th column). We now pose the question “can
the FCN activations of the adversarial image reveal the content of the target?”. To
answer, we invert tensor gy, at multiple resolutions using the method of Mahendran
and Vedaldi [94]. The tensor-based approach indeed reveals the target’s content in
the reconstruction, while no other approach does. This reveals the benefits of the
proposed histogram-based optimization. Note that the reconstructed image resembles
the target less if the resolutions used in the reconstruction are not the same as the
attack-resolutions (rightmost column).

Timings. We report the average optimization time per target image on Holidays
dataset and on a single GPU (Tesla P100) for some indicative cases. Optimizing
(o ,Laau,0), (o, Lén,0), (o, LPL,,0), (o7,Ly2,,0), and (o ,LS.,0) takes 1.9, 7.5, 12.3,

22.9, and 68.4 seconds, respectively. Using ResNet18 (%, Lgen,0) and (2,L32,,0) take
3.9 and 40.6 seconds, respectively.

Multiple attacks. We show results of multiple attacks in Table 8.2. We present the
original retrieval performance together with the difference in the performance caused
by the attack. It summarizes the robustness of the histogram and tensor based op-
timization to unknown pooling operations. It emphasizes the challenges of unknown
test-resolution and the impact of the blurring; this outcome can be useful in various dif-
ferent attack models. The very last row suggests that transfer-attacks to different FCNs
are hard to achieve and much harder than the case of attacks on classification [158].
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Carrier  (o/,Liy,0) (,Lik,.0) (L, 1) (oL

) (‘!y Lfens’ ) (ML 0) (VQ{ Ltens’ )

tens? tens?

1.000 1. 000 0.994 0. 999 0.997 0. 998

S1 S

Figure 8.7. 'We show target, carrier and adversarial images for different variants (top image
row), a summary of tensor gy by depth-wise maximum (middle image row) and the inversion
of gx,, 8x., Or 8x, , respectively, over multiple resolutions (bottom image row); the resolutions
for inversion are reported below the bottom row. The tensor inversion shows whether the
target, or any information about it, can be reconstructed from the adversarial image. The
first two inversions are presented as a reference. We report descriptor similarity to the target
below the first image row for [« ,GeM,1024].

ttac! est xfor aris olidays opydays
A k T ROxford RPari Holid Copyd
(, Lﬁ‘st,O) [« ,GeM,s0] 269 /+0.2 | 41.3 / -1.1 | 81.5 /+0.0 | 80.4 / -0.5
[%#,GeM,s0] 215 / -0.7 | 469 / -04 | 829 / -03 | 69.3 / -0.7
(L%,LffeM,O) [%2,GeM,768] 23.0 / -42 | 479 / -3.8 | 836 / -2.2 | 758 / -3.1
[%2,GeM,512] 22,5 / -6.1 | 499 /-11.5 | 838 / -2.1 | 81.1 / -9.5
[%2,GeM,s0] 21.5 / -1.2 | 469 / -1.9 | 829 / -04 | 693 / -14
(2, thjt,) [%#,GeM,768] 23.0 / -42 | 479 / -74 | 836 / -29 | 758 / -64
[%#,GeM,512] 225 /-11.7 | 49.9 /-20.7 | 83.8 /-22.1 | 81.1 /-18.8
[%#,GeM,s0] 215 / -0.8 | 469 / -2.0 | 829 / -25 693 / -14
(2, Lﬁfst,o) [%,GeM,768] 23.0 / -5.2 | 479 / -5.7 | 836 / -1.9 | 75.8 / -4.3
[%2,GeM,512] 225 / -6.9 | 499 /-12.2 | 838 / -54 | 81.1 /-10.3
(Q,Lf}z,o) 22.0 / -1.2 | 45,0 / -0.6 | 81.0 /4+1.0 | 67.0 / -1.6
(2, L‘Efst,o) [2,CroW,so] 22.0 / -1.0 | 45.0 / -0.8 | 81.0 /+1.7 | 67.0 / -0.9
(%, Ltens,) 220 / -1.0 | 45.0 / -0.2 | 81.0 / -3.6 | 67.0 / -2.9
[¢7,GeM,s0] 269 / -2.7 | 413 / -5.6 | 81.5 / -4.7 | 80.4 / -5.0
(&, Lﬁm,) [%,CroW,so) 22.0 / -0.8 | 45.0 / -0.7 | 81.0 /+1.1 | 67.0 / -1.0
[7,GeM,s0] 38.1 /-35.0 | 54.0 /-47.4 | 8.7 /-72.9 | 80.0 /-72.8

Table 8.2. Performance evaluation for multiple attacks, test-models, and datasets. We report
mAP over the original queries, together with the mAP difference to the original caused by
the attack. The parameters of the adversarial optimization during the attack are shown in
the leftmost column, while the type of test-model used is shown in the second column.
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8.4. Concluding remarks

We have introduced the problem of targeted mismatch attack for image retrieval and
address it in order to construct concealed query images instead of the initial intended
query. We show that optimizing the first order statistics is a good way to generate im-
ages that result in the desired descriptors without disclosing the content of the intended
query. We analyze the impact of image re-sampling, which is a natural component of
image retrieval systems and reveal the benefits of simple image blurring in the adversar-
ial image optimization. Finally, we show that transfer-attacks to new FCNs are much
more challenging than their image classification counterparts.
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Chapter

Training Convolutional Neural Networks for Shape Matching

N a number of computer vision problems, colour and/or texture in the images is
I not available or misleading. Three examples are shown in Figure 9.1. In the case
of sketches or outlines, there is no colour or texture available at all. In the case of
artwork, colour and texture are present, but often can be unrealistic to stimulate certain
impression rather than exactly capture the reality. Finally, under extreme illumination
changes, such as a day-time versus night images, colour may be significantly distorted
and the texture weakened. On the other hand, image discontinuities in colour or texture,
as detected by modern edge detectors, and especially their shapes, carry the information
about the content, independent of, or insensitive to, the illumination changes, artistic
drawing and outlining.

This chapter is targeting at shape matching, in particular the goal is to extract
a descriptor that captures the shape depicted in the image. The shape descriptors
are extracted by a convolutional neural network (CNN) which is fed with image edge
maps. The network is fine-tuned without any human supervision or image, sketch or
shape annotation. Starting from a pre-trained classification network stripped off the
fully connected layers, the CNN is fine-tuned using a simple contrastive loss function.
To acquire the training data, the domain of landmark photographs is used, as richer
information than shapes is available in such images. Matching and non-matching image
pairs are obtained based on the 3D models and estimated camera positions. Edge maps
detected on these images provide training data for the network. Examples of positive

CNN with an RGB input Our shape matching network
3 \ p fl \ X |

.

Figure 9.1. Three examples where shape is the only relevant information: sketch, artwork,
extreme illumination conditions. Top retrieved images from the Oxford Buildings dataset
[125]: CNN with an RGB input [133] (left), and our shape matching network (right). Query
images are shown with black border.
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Figure 9.2. Edge maps extracted from matching and non-matching image pairs that serve as
training data for our network.

and negative pairs of edge maps are shown in Figure 9.2. Given our trained network,
shape descriptors of photographs and paintings are extracted from the corresponding
image edge maps, while sketches or black and white line drawings are simply considered
as a special type of an edge map.

We show the importance of shape matching on two problems: (i) domain general-
ization in the case of classification, and (ii) cross modality matching of sketches to
images. The domain generalization task is evaluated by performing object recognition.
We extract the learned descriptors and train a simple classifier on the seen domain(s),
which is later used to classify images of the unseen domain(s). We show, that for some
combinations of seen-unseen domains, such as artwork and photograph, descriptors us-
ing colour and texture are useful. However, for some combinations, such as photograph
and line drawing, the shape information is crucial. Combining both types of descriptors
outperforms the state-of-the-art approach in all settings.

In the case of cross modality matching, it is commonly assumed that annotated
training data is available for both modalities [14, 143]. Once more, we apply the do-
main generalization approach by using the descriptors learned on edge maps of build-
ing images. We evaluate the performance on sketch-based image retrieval datasets.
Modern sketch-based image retrieval takes the path of object recognition from human
sketches [185]. Rather than performing shape matching, the networks are trained to
recognize simplified human drawings. Such an approach requires very large number of
annotated images and drawn sketches for each category of interest [14, 143]. Recently,
Yelamarthi et al. [182] notice that existing models for sketch-based image retrieval that
are trained in a discriminative setting learn only class specific mappings and fail to gen-
eralize to the unseen classes. Our extensive quantitative and qualitative experiments
support this claim. On the contrary, even though our proposed network is not trained
to recognize human-drawn object sketches, our experiments show that it performs well
on standard benchmarks.

Our training is performed once and the same network is used to extract shape descrip-
tors for both domain generalization for object recognition and multiple benchmarks for
sketch-based image retrieval.

The contents of this chapter originate from [134, 136]. Training data, trained models,
and code are publicly available!. The rest of the chapter is organized as follows. Our
training and evaluation approach are presented in Section 9.1. In Section 9.2 we evaluate
our network on domain generalization and sketch-based retrieval and compare with the
state of the art. Finally, we give conclusions in Section 9.3.

!emp.felk.cvut.cz/cnnimageretrieval
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9.1. Method
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Figure 9.3. Filtered edge maps (top row) from a random sample of the Flickr15k sketch dataset
and sketch queries (bottom row).
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9.1. Method

In this section we describe the proposed approach. The process of fine-tuning the CNN
is described in Section 9.1.1, while the final representation and the way it is used for
retrieval and classification is detailed in Section 9.1.2.

We break the end-to-end process of image description into two parts. In the first part,
the images are turned into edge maps. In particular, throughout our main experiments
we use the edge detector of Dollar and Zitnick [40] due to its great trade-off between
efficiency and accuracy, and the tendency not to consider textured regions as edges.
Our experiments show that marginally worse or better results are achieved with a
CNN-based edge detector [80], depending on the descriptor network architecture. An
image is represented as an edge map, which is a 2D array containing the edge strength
in each image pixel. The edge strength is in the range of [0,1], where 0 represents
background. Sketches, in the case of sketch-to-image retrieval, are represented as a
special case of an edge map, where the edge strength is either 0 for the background or
1 for a contour.

The second part is a fully convolutional network extracting a global image descriptor.
The two part approach allows, in a simple manner, to unify all modalities at the level
of edge maps. Jointly training these two parts, e.g., in the case of a CNN-based edge
detector [80], can deliver an image descriptor too. However, this descriptor may not be
based on shapes. It is unlikely that such an optimization would end in a state where
the representation between the two parts actually corresponds to edges. Enforcing this
with additional training data in the form of edge maps and a loss on the output of the
first part is exactly what we are avoiding in this work.

9.1.1. Training

We use a network architecture previously proposed for image classification [81, 150], in
particular, we use all convolutional layers and the activations of the very last one, i.e.,
the network is stripped of the fully-connected layers. The CNN is initialized by the
parameters learned on a large scale annotated ImageNet [42] dataset. This is a fairly
standard approach adopted in a number of problems, including image search [3, 133,
57, 58, 135]. The network is then fine-tuned with pairs of image edge maps.

The network. The image classification network expects an RGB input image, while
the edge maps are only two dimensional. We sum the first convolution filters over
RGB. Unlike in RGB input, no mean pixel subtraction is performed to the input data.
To obtain a compact, shift invariant descriptor, a global max-pooling [138] layer is
appended after the last convolutional layer. This approach is also known as Maximum
Activations of Convolutions (MAC) vector [168]. After the MAC layer, the vectors are
{5 normalized.
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Figure 9.4. Sample images, the output of the edge detector, the filtered edge map, and the
learned edge-filtering function.

Edge filtering. A typical output of edge detectors is a strength of an edge in every
pixel. We introduce an edge filtering layer to address two frequent issues with edge
responses. First, the background often contains close-to-zero responses, which typically
introduce noise into the representation. This issue is commonly handled by thresholding
the response function. Second, the strength of the edges provides ordering, i.e., higher
edge response implies that the edge is more likely to be present, however its value
typically does not have practical interpretation. Prior to the first convolution layer, a
continuous and differentiable function is pre-pended. This layer is trained together with
the rest of the network to transform the edge detector output with soft thresholding
by a sigmoid and power transformation. Denote the edge strength by w € [0,1]. Edge
filtering is performed as
wP

f(w) = 1+ @ﬂ(T—w)’
where p controls the contrast between strong and weak edges, 7 is the threshold pa-
rameter, and [ is the scale of the sigmoid choosing between hard thresholding and a
softer alternative. The final function (9.1) with learned parameters is plotted in Fig-
ure 9.4 (right). The figure also visually demonstrates the effect of application of the
filtering. The weak edges are removed on the background and the result appearance is
closer to a rough sketch (see Figure 9.3), while the uncertainty in edges is still preserved.

(9.1)

Fine tuning. The CNN is trained with Stochastic Gradient Descent in a Siamese
fashion with contrastive loss [26]. The positive training pairs are edge maps of matching
images (similarity of the edge maps is not considered), while the negative pairs are
similar edge maps (according to the current network state) of non-matching images.

Given a pair of vectors x and y, the loss [26] is defined as their squared Euclidean
distance ||x — y||? for positive examples, and as max{(m — ||x — y|[)?,0} for negative
examples. Hard-negative mining is performed several times per epoch which has been
shown to be essential [3, 133, 57].

Training data. The training images for fine tuning the network are collected in a fully
automatic way. In particular, we use our publicly available dataset described in Chap-
ter 6, Section 6.2 and follow the same methodology, briefly reviewed in the following.
A large unordered image collection is passed through a 3D reconstruction system based
on local features and bag-of-words retrieval [146, 132]. The outcome consists of a set of
3D models which mostly depict outdoor landmarks and urban scenes. For each land-
mark, a maximum of 30 six-tuples of images are being selected. The six-tuple consists
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of: one image as the training query, then one matching image to the training query,
and five similar non-matching images. This gives arise to one positive and five nega-
tive pairs. The geometry of the 3D models, including camera positions, allows to mine
matching images, i.e., those that share adequate visual overlap. Negative-pair mining
is facilitated by the 3D models, too: negative images are chosen only if they belong to
a different model.

Data augmentation. A standard data-augmentation, i.e., random horizontal flipping
(mirroring) procedure is applied to introduce further variance in the training data and
to avoid over-fitting. The training query and the positive example are jointly mirrored
with 50% probability. Negative examples are sought after eventual flipping. We propose
an additional augmentation technique for the selected training queries. Their edge map
responses are thresholded with a random threshold uniformly chosen from [0, 0.2] and
the result is binarized. Matching images (in positive examples) are left unchanged;
negative images are selected after the transformation. This augmentation process is
applied with a probability of 50%. It offers a level of shape abstraction and mimics
the asymmetry of sketch-to-edge map matching. The randomized threshold can be also
seen as an approximation of the stroke removal in [184].

9.1.2. Representation, classification and search

We use the trained network to extract image and sketch descriptors capturing the
underlying shapes, which are then used to perform cross-modal image retrieval, in par-
ticular sketch-based, and object recognition via transfer learning, in particular domain
generalization.

Representation. The input to the descriptor extraction process is always resized to a
maximum dimensionality of 227 x 227 pixels. A multi-scale representation is performed
by processing at 5 fixed scales, i.e., re-scaling the original input by a factor of Y2, Y43,
1, v/2, 2, and, with the additional mirroring, 10 final instances are produced. Images
undergo edge detection and the resulting edge map [40] is fed to the CNNZ2. Sketches
come in the form of strokes, thin line drawings, or brush drawings, depending on the
input device or the dataset. To unify the sketch input, a simple morphological filter is
applied to a binary sketch image. Specifically, a morphological thinning followed by di-
lation is performed. After the pre-processing, the sketch is treated as an edge map. As
a consequence of the rescaling and mirroring, an image/sketch is mapped to 10 vectors.
We refer to these ls normalized vectors as EdgeMAC descriptors. They are subse-
quently mean-pooled or indexed separately, depending on the evaluation benchmark,
see Section 9.2 for more details.

Classification. EdgeMAC descriptors are extracted from labeled images and a multi-
class linear classifier [122] is trained to perform the task of object recognition. This is
especially useful for transfer learning when the training domain is different from the
target/testing one. In this case, no labeled images of the training domain are available
during the training of our network and no labeled images of the target domain are
available during classifier training.

2We perform zero padding by 30 pixels to avoid border effects.
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Figure 9.5. Neighborhood graph fusing different similarities. Links (graph edges) of different
descriptors are shown in different color and solid line, while the links to the initial nearest
neighbors of the query (EdgeMAC only) are shown with dashed line.

Search. An image collection is indexed by simply extracting and storing the cor-
responding EdgeMAC descriptors for each image. Search is performed by nearest-
neighbors search of the query descriptor in the database. This makes retrieval compat-
ible with approximate methods [112, 75] that can speed up search and offer memory
savings.

Search boosting. We use the derived representation to perform Query Expansion (QE),
which is a popular category of techniques in image retrieval that boost the recall [31].
We employ global diffusion, as proposed by Iscen et al. [67], where the ranking is
based on a neighborhood graph, which is a mutual kNN-graph of a dataset. We con-
struct the neighborhood graph by combining kNN-graphs built on two different simi-
larities [10, 188]: edge-map similarity and image similarity. The image descriptors are
generated using an off-the-shelf CNN [150] and are used only for the kNN-graph con-
struction, unlike [164, 11] where the image descriptors had to be stored together with
the sketch descriptors. A toy example of such a graph is illustrated in Figure 9.5.

QE has been used before for sketch-based image retrieval [164, 165], where sketch
matching is performed as an initial stage and then only image appearance matching is
used to perform QE. A similar concept is used by Bhattacharjee et al. [11] who perform
max-flow on a graph of top-K retrieved region proposals.

9.1.3. Implementation details

In this section we discuss implementation details. The training dataset used to train
our network is presented. We train a single network, which is then used for different
tasks. Training sets provided for specific tasks are not exploited.

Training data. We use the training set which comprises landmarks and urban scenes [133].
There are around 8k tuples. Due to the overlap of landmarks contained in the training
set and one of the test sets involved in our evaluation, we manually excluded these
landmarks from our training data. We end up with with 5,969 tuples for training and
1,696 for validation. Hard negatives are re-mined 3 times per epoch from a pool of
around 22k images.
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Training implementation. We initialize the convolutional layers by VGG16 [150] (re-
sults in 512D EdgeMAC descriptor) trained on ImageNet and sum the filters of the first
layer over the feature maps dimension to accommodate for the 2D edge map input in-
stead of the 3D image. The edge-filtering layer is initialized with values p = 0.5, 7 = 0.1
and ( is fixed and equal to 500 so that it always approximates hard thresholding. Ad-
ditionally, the output of the egde-filtering layer is linearly scaled from [0, 1] to [0, 10].
Initial learning rate is ly = 0.001 with an exponential learning rate decay lpexp(—0.15)
over epoch j; momentum is 0.9; weight decay is 0.0005; contrastive loss margin is 0.7;
and batch size is equal to 20 training tuples. All training images are resized so that the
maximum extent is 200 pixels, while keeping the original aspect ratio.

Training time. Training is performed for at most 20 epochs and the best network is
chosen based on the performance on validation tuples. The whole training takes about
10 hours on a single GeForce GTX TITAN X (Maxwell) GPU with 12GB of memory.

9.2. Experiments

We evaluate EdgeMAC descriptor on domain generalization and sketch-based image
retrieval. However, we also go beyond sketch-dependent tasks, and show that our pro-
posed method can be successfully used in any problem where the important information
is encoded in the shape. We train the network once and apply it across different tasks
proving the generic nature of the representation, i.e., there is no per-task re-training.

9.2.1. Domain generalization through shape matching

In this experiment, we evaluate on domain generalization to validate the effectiveness of
our representation on shape matching. The EdgeMAC descriptors are extracted from
images, mean-pool descriptors of rescaled and mirrored instances are ls normalized to
produce one descriptor per image. A linear classifier [122] is trained on the labelled
images to perform object recognition.

PACS dataset [85] consists of 10k images coming from 4 domains with varying level
of abstraction: art (painting), cartoon, photo, and sketch; labeled according to 7 cat-
egories: dog, elephant, giraffe, guitar, horse, house, and person. More details on this
dataset can be found in Chapter 3, Section 3.3.

For evaluation, each time, one domain is considered unseen, also called target or
test domain, while the images of the other 3 are used for training. Finally, multi-class
accuracy is evaluated on the unseen domain. Additionally, we perform classifier training
using a single domain and then test on the rest. We find this scenario to be realistic,
especially in the case of training on photos and testing on the rest. The domain of
realistic photos is the richest in terms of annotated data, while others such as sketches
and cartoons are very sparsely annotated.

Baselines. We are interested in translation invariant representations and consider the
two following baselines. First, MAC [168] descriptors extracted using a network that
is pre-trained on ImageNet. Second, MAC descriptors extracted by a network that is
fine-tuned for image retrieval in a siamese manner [133] (presented in Chapter 6). These
two baselines have the same descriptor extraction complexity as ours, i.e., multi-scale
and mirroring, and are extracted on RGB images, while ours on edge maps. Note, that
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Table 9.1. Multi-class accuracy on PACS dataset for 4 different descriptors. The combined
descriptor (pre-trained + ours) is constructed via concatenation. A: Art, C: Cartoon, P:
Photo, S: Sketch, 3: all 3 other domains.

Pre-trained (RGB) Siamese [133] (RGB) Ours (edge map) Pre-trained+Ours
Test — A o] P S A [¢] P S A C P S A C P S

Train A N/A 1 331 N/A [EOBINEEEN 129 ~/a BN 612 FEEEN N/ 38.4
N/A

Train C |77 370 [610°7 N/A [77.0 51.6 452 N/A | 57.3 (748 55.3

Train P 725 333 N/A 248 [66.0 380 N/A 319 454 423 N/A 463 340 N/A 27.6
Train S 319 (495 425 N/A 387 [493 | 444 N/A 348 [JGSON 433 N/A 337 434 N/A
Train 3 780 680 944 471 715 643 851 560 538 6T.9 645 747 800 68.7 937 627
Mean 3 71.9 69.2 65.2 76.2

we treat all domains as images with our approach and extract edge maps, i.e., we do
not perform any special treatment on sketches as in the case of sketch retrieval.

Performance comparison. We evaluate our descriptor, the two baselines, and the
concatenated version of ours and the descriptor of the pre-trained baseline network, and
report results in Table 9.1. Our representation significantly improves sketch recognition
while training on a single or all seen domains. Similar improvements are observed for
cartoon recognition when training on photos or sketches, while when training on artwork
the color information appears to be beneficial. We consider the case of training only on
photos and testing on other domains to be the most interesting and realistic one. In this
scenario, we provide improvements, compared to the baselines, for sketch recognition
(15% and 22%) and cartoon recognition (4% and 9%). Finally, the combined descriptor
reveals the complementarity of the representations in several cases, such as artwork and
cartoon recognition while training on all seen domains, or training on single domain
when artwork is involved, e.g., train on P (or A) and test on A (or C). The best reported
score on PACS is 69.2 [85] by fine-tuning AlexNet on PACS. The achieved score by our
descriptor with fine-tuned VGG (PACS not used during network training) is 76.2, which
is significantly higher. The same experiment with AlexNet achieves 70.9. Performance
is reported per category in Figure 9.6. The proposed descriptor achieves significant
improvements on most categories for sketch recognition, while the combined is a safe
choice in majority of the cases. Interestingly, our experiments reveal that the siamese
baseline slightly improves shape matching, despite being trained on RGB images.

Visualization with t-SNE. We use t-distributed Stochastic Neighbor Embedding (t-
SNE) [171] to reduce the dimensionality of descriptors to 2 and visualize the result
for the pre-trained baseline and our descriptor in Figure 9.7. Different modalities are
brought closer with our descriptor. Observe how separated is the sketch modality with
the pre-trained network that receives an RGB image for input.

9.2.2. Sketch-based image retrieval

We extract the proposed descriptors to index an image collection, morphologically pre-
process sketch queries as described in Section 9.1.2 and perform sketch-based image
retrieval via simple nearest neighbor search.
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Figure 9.6. Classification accuracy on PACS dataset with different descriptors. Testing is
performed on one unseen domain each time, while training is performed on the other three.

Test datasets and evaluation protocols. The method is evaluated on four standard
sketch-based image retrieval benchmarks and using the protocols defined with those
datasets. We give brief description of those datasets in the following, while the more
detailed presentation can be found in Chapter 3, Section 3.2.

Flickr15k [63] consists of 15k images and 330 sketch queries from 33 categories, in-
cluding particular object instances, generic objects, and shapes. The performance is
measured via mean average precision (mAP) [125]. We mean-pool EdgeMAC descrip-
tors of rescaled and mirrored instances and lo normalize to produce one descriptor per
image. Search is performed by a cosine similarity nearest-neighbor search.

Shoes/Chairs/Handbags [184, 153] datasets contain images from one category only,
i.e. shoe/chair/handbag category respectively. It consists of pairs of a photo and a
corresponding hand-drawn detailed sketch of this photo. There are 115, 97, and 168
sketch—photo pairs for testing shoes, chairs, and handbags, respectively. The perfor-
mance is measured via the matching accuracy at the top K retrieved images, denoted
by acc.@QK. We follow the standard protocol [184] which is as follows. Descriptors
are extracted from 5 image crops (corners and center) and their horizontally mirrored
counterparts. This holds for database images and the sketch query. During search,
these 10 descriptors are compared one-to-one and their similarity is averaged. For fair
comparison, we adopt this protocol and do not use a single descriptor per image/sketch
for this benchmark. However, instead of image crops, we extract EdgeMAC descriptors
at 5 image scales and their horizontally mirrored counterparts, as these are defined in
Section 9.1.2.

Sketchy [143] test dataset consists of 1,250 database photos and 6,312 query sketches
spanning 125 categories of common objects like horse, apple, axe, guitar, etc. We
evaluate on the test set, but we do not use the training set. Fach sketch query is
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Figure 9.7. Visualization of PACS images with t-SNE (more overlap is better).

Table 9.2. Performance evaluation of the different components of our method on Flickrl5k
dataset. Network: off-the-shelf (O), fine-tuned (F).

Component Network

O O F F F F F F
Train/Test: Edge filtering ] | | | ] ] |
Train: Query binarization | | ] | |
Test: Mirroring | ] |
Test: Multi-scale ] ] |
Test: Diffusion |

| mAP | 25.0 [ 279 [ 384 | 41.9 | 434 [ 456 | 461 | 689 |

associated to a single image, the one that prompted the creation of this particular
sketch. The performance is measured via recall at various ranks, where recall@QK is
basically the same as acc.QK of the Shoes/Chairs/Handbags datasets. We mean-pool
EdgeMAC of rescaled and mirrored instances and /3 normalize to produce one descriptor
per image. Search is performed by a cosine similarity nearest-neighbor search.
SBIR175 [120] dataset consists of 1.2M images and 175 sketch queries. Query
sketches depict objects from 40 different categories. The performance is measured
via precision at K top-ranked images per query, and average precision over all queries
is reported. We mean-pool EdgeMAC descriptors of rescaled and mirrored instances
and [y normalize to produce one descriptor per image. Search is performed by a cosine
similarity nearest-neighbor search. This dataset has no available annotation, so we use
external annotators to manually evaluate the top retrieved images for each query and
evaluated method (see Chapter 3, Section 3.2.4 for details on the annotation).

Impact of different components. Table 9.2 shows the impact of different components
on the final performance of the proposed method as measured on Flickrl5k dataset.
Direct application of the off-the-shelf CNN on edge maps already outperforms most
prior hand-crafted methods (see Table 9.4). Adding the edge-filtering layer to the off-
the-shelf network improves the precision. In this case, the initial parameters for filtering
are used. Fine-tuning brings significant jump to 38.4 mAP, which is already the state-
of-the-art on this dataset. Random training-query binarization and multi-scale with
mirroring representation further improve the mAP score to 46.1. This constitutes our
final descriptor which is used throughout all our experiments.
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Table 9.3. Performance evaluation on the Flickrl5k dataset for different CNN architectures
used as a feature extractor and for different edge detectors. Feature extractor: AlexNet [81],
VGG [150]. Edge detector: DollarEdge [40], DeepEdge [80]. Evaluation mode: single-
scale (SS), multi-scale (MS), mirror (MR).

Architect
reecture Evaluation mode (mAP)
Feature Edge detector
extractor Train Test SS SS+MR ‘ MS ‘ MS+MR
DollarEd, 32.2 34.3 37.9 39.2
DollarEdge DO al;ﬁ)d 8¢ 4 9 )
AlexNet eepEdge 30. 32.0 36. 36.8
DollarEdge 32.2 33.9 37.0 38.3
DeepEdge
DeepEdge 31.4 32.9 36.6 37.4
DollarEd 41.9 43.4 45.6 46.1
DollarEdge D0 al;i)d . 43.1 44.5 46.4 46.9
VGee eepEdge . . . .
DollarEdge 39.7 40.8 42.6 43.1
DeepEdge
DeepEdge 43.3 44.4 46.2 46.7

Finally, the diffusion process based on the combination of edge-map and image sim-
ilarity kNN graphs boosts the performance to 68.9 mAP. Image-to-image similarity for
the kNN graph is computed based on CroW descriptors [76] extracted from RGB images
using the off-the-shelf VGG network. The proposed diffusion is superior to alternative
methods, such as average QE on edge-map descriptors (57.3 mAP), average QE on im-
age descriptors (61.7 mAP — needs additional set of descriptors), diffusion on edge-map
kNN graph (66.2 mAP), and diffusion on image kNN graph (65.9 mAP).

Impact of different architectures. Table 9.3 shows the impact of using different archi-
tectures both for the edge detector part of our pipeline, and the convolutional feature
extractor part, as measured on Flickr15k dataset. We experiment with the light-weight
AlexNet [81] and the more computationally heavy VGG [150]. Our experiments show
that VGG provides a significant performance boost, even though our result on AlexNet
already exceeds the state of the art on this dataset (see Table 9.4). We further evaluate
performance when using two different edge detectors, the very efficient DollarEdge de-
tector [40], and the more costly DeepEdge detector [80]. We also evaluate cases where
one detector is used for training and another during testing. Both detectors achieve
similar performance, and changing the detector during testing does not sacrifice the per-
formance. All the rest of our experiments use VGG as feature extractor and DollarEdge
as edge detector.

Performance evolution during learning. We report the performance of the fine-tuned
network at different stages (epochs) of training. The same network is evaluated for
all datasets as we train a single network for all tasks. The performance is shown in
Figure 9.8 for three benchmarks. On all datasets, the fine-tuning significantly improves
the performance already from the first few epochs.

As a sanity check, we also perform a non-standard sketch-to-sketch evaluation on
the Flicker15k and on Sketchy datasets. On the Flickr15k dataset, the 330 sketches
are used both as database and as query set (the query sketch is removed from the
evaluation), the task is to retrieve sketches of the same category. On Sketchy dataset,
all 6,312 sketches form the database, each sketch is also used as a query. The goal
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Figure 9.8. Performance evaluation of the fine-tuned network over training epochs for the
single-scale representation. All shown datasets and their evaluation protocols are described
in Section 9.2.2. Evaluation: sketch-to-image (sk2im), sketch-to-sketch (sk2sk).

is to retrieve sketches generated from the same image as the query sketch. Sketches
of the same category but generated for different images are excluded from the query
evaluation. The sketch-to-sketch retrieval is evaluated by mAP and the performance is
presented in Figure 9.8. The evolution of the performance shows similar behavior as
the sketch-to-image search, i.e., the learning on edge maps improves the performance
on sketch-to-sketch retrieval.

Comparison with the state of the art. We extensively compare our method with the
state-of-the-art performing methods on all before-mentioned benchmarks. Whenever
code and trained models are publicly available, we additionally evaluate them on test
sets they were not originally applied on. In cases that the provided code is used for
evaluation on Flickr15k and SBIR175 we center and align the sketches appropriately
in order to achieve high scores, while our method is translation invariant so there is
no such need. First we give a short overview of the best performing and most relevant
methods. Finally, a comparison via quantitative results is given.

Siamese network [129] is a two-branch network, with a newly proposed architecture
that is similar to Sketch-a-Net [185]. Training is performed from scratch with con-
trastive loss on Flickrl5k dataset. Training pairs are selected by randomly choosing a
sketch and its category-level positive and negative image. Then, the sketch is fed in
one and the image edge map in the other branch.

Shoes/Chairs/Handbags networks [184, 153] are trained from scratch based on the
Sketch-a-Net architecture [185]. This is achieved by the following steps [184]3: (i) Train-
ing with classification loss for 1k categories from ImageNet-1K data with edge maps
input. (ii) Training with classification loss for 250 categories of TU-Berlin [45] sketch
data. (iii) Training a triplet network with shared weights and ranking loss on TU-Berlin
sketches and ImageNet images. (iv) Finally, training separate networks for fine-grain
instance-level ranking using the Shoes/Chairs/Handbags training datasets. This ap-
proach is later improved [153] by adding an attention module with a coarse-fine fusion
(CFF) into the architecture, and by extending the triplet loss with a higher order
learnable energy function (HOLEF). Such a training involves various datasets, with
annotation at different levels, and a variety of task-engineered loss functions. Note that
the two models available online achieve higher performance than the ones reported
in [184], due to parameter retuning. We compare our results to their best performing
models.

$Networks/code available at github.com/seuliufeng/DeepSBIR
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Table 9.4. Performance comparison via mean Average Precision (mAP) with the state-of-the-
art sketch-based image retrieval on the Flickr15k dataset. Best result is highlighted in red,
second best in bold. Query expansion methods are shown below the horizontal line and are
highlighted separately. Our evaluation of the methods that do not originally report results
on Flickr15 is marked with f.

CNN-based methods

Hand-crafted methods ’ Method ‘ Dim‘ mAP ‘
Method | Dim| mAP | Sketch-a-Net+EdgeBox [11] 5120] 27.0
GF-HOG [63] n/a| 12.2 Siamese network [129] 64| 19.5
S-HELO [141] 1296 | 12.4 Shoes network [184]F 256 | 29.9
HLR+S+C+R [176] n/a| 171 Chairs network [184]F 256 | 29.8
GF-HOG extended [14] n/a| 18.2 Sketchy network [143]" 1024 | 34.0
PerceptualEdge [128] 3780 | 18.4 Quadruplet network [148] 1024 | 32.2
LKS [142] 1350 | 24.5 Triplet no-share network [15] 128 | 36.2
AFM [165] ou3| 304 * EdgeMAC 512| 46.1
AFM+QE [165] 755 | 57.9 il;itj}ggéeBox ©GraphQE [11] n/a| 32.3

* EdgeMAC+Diffusion n/a| 68.9

TU-Berlin network is a baseline considered in [143]. It is a GoogLeNet [157] network
fine-tuned for classification with the 250 sketch categories from TU-Berlin dataset. Edge
maps are used as an input for photos during testing time. This is the only network
in the work of [143] that is evaluated on Sketchy testset without being trained on its
training counter-part.

Sketchy network [143] consists of two asymmetric sketch and image branches, both
initialized with GoogLeNet. The training involves the following steps*: (i) Training for
classification on TU-Berlin sketch dataset. (ii) Separate training of the sketch branch
with classification loss on 125 categories of Sketchy dataset and training of the image
branch with classification loss on the same categories with additional 1000 Flickr photos
per category. (iii) Training both branches in a triplet network with ranking loss on the
Sketchy sketch—photo pairs. The last part involves approximately 100k positive and a
billion negative pairs.

Quadruplet network [148] tackles the problem in a similar way as Sketchy network,
however, they use ResNet-18 [60] architecture with shared weights for both sketch and
image branches. The training involves the following steps: (i) Training with classifi-
cation loss on Sketchy dataset. (ii) Training a network with triplet loss on Sketchy
dataset, while mining three different types of triplets.

Triplet no-share network [15] consists of asymmetric sketch and image branches ini-
tialized by Sketch-a-Net and AlexNet [81], respectively. The training involves: (i) Sep-
arate training of the sketch branch with classification loss on TU-Berlin and training of
the image branch with classification loss on ImageNet. (ii) Training a triplet network
with ranking loss on TU-Berlin sketches augmented with 25k corresponding photos har-
vested from the Internet. (iii) Training a triplet network with ranking loss on Sketchy
dataset.

Performance comparison. We compare our network with other methods on all the
aforementioned benchmarks. Cases that the original publication did not report perfor-

*Network/code available at github.com/janesjanes/sketchy
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Table 9.5. Performance comparison via accuracy at rank K (acc.@K) with the state-of-the-art
sketch-based image retrieval on the Shoes/Chairs test datasets. Best result is highlighted
in red, second best in bold. Note that [184] and [153] train a separate network per object
category. TWe evaluate the publicly available networks, because the performance is higher
than the one originally reported in [184].

. Shoes Chairs Handbags

Method Dim
acc.@1 lacc.@lo acc.@1 lacc.@lo acc.@1 lacc.@l(]

BoW-HOG  + rankSVM [184] 500 174 67.8 28.9 67.0 2.4 10.7
Dense-HOG 4 rankSVM [184] 200K 24.4 65.2 52.6 93.8 15.5 40.5
Sketch-a-Net + rankSVM [184] 512 20.0 62.6 47.4 82.5 9.5 44.1
CCA-3V-HOG + PCA [180] n/a 15.8 63.2 53.2 90.3 - -
AFM [165] 243 32.2 79.1 59.8 89.7 - -
Shoes net [184]* 256 52.2 92.2 65.0 92.8 23.2 59.5
Chairs  net [184]F 256 30.4 75.7 72.2 99.0 26.2 58.3
Handbags net [153] 256 - - - - 39.9 82.1
Shoes net + CFF + HOLEF [153] 512 61.7 94.8 — — — -
Chairs  net + CFF + HOLEF [153] 512 - - 81.4 95.9 - -
Handbags net + CFF + HOLEF [153] 512 - - - - 49.4 82.7
* EdgeMAC 512 40.0 76.5 85.6 95.9 35.1 70.8
* EdgeMAC + whitening 512 54.8 92.2 85.6 97.9 51.2 85.7

mance on a particular dataset are evaluated by ourselves by using the publicly avail-
able networks. Results on the Flickr15k dataset are presented in Table 9.4, where our
method significantly outperforms both hand-crafted descriptors and CNN-based that
are learned on a variety of training data. This holds for both plain search with the
descriptors, and for methods using re-ranking techniques, such as query expansion [31]
and diffusion [67].

Results on the fine-grained Shoes/Chairs/Handbags benchmark are shown in Ta-
ble 9.5. In this experiment, we also report the performance after applying descriptor
whitening which is learned in a supervised way [133] by using the descriptors of the
training images of this benchmark. Details on supervised learning of descriptor whiten-
ing can be found in Chapter 6, Section 6.1.4. A single whitening transformation is
learned for all three datasets. Such a process takes only a few seconds once descrip-
tors are given. It is orders of magnitude faster than using the training set to perform
network fine-tuning. We achieve the top performance in 2 out of 3 categories and the
second best in the other one. The approach of [184] and [153] train a separate network
per category (3 in total), which is clearly not scalable to many objects. In contrast
our approach uses a single generic network. We evaluated the publicly available Shoes
and Chairs networks on categories they were not trained on. The observd drop in
performance, see Table 9.5, confirms that these are single-purpose networks.

On Sketchy dataset, superior results by large margin are achieved by the Sketchy
network [143] and the Quadruplet network [148]. These networks are designed for
this particular task, using sub-category level annotation during training. Our generic
method outperforms all other methods on this dataset, see Table 9.6. Training with
sub-category level annotation of the Sketchy dataset appears to be essential for good
performance on this dataset. We include detailed discussion and a qualitative compar-
ison in the following paragraphs. On other datasets, the best performing Sketchy [143]
and Quadruplet [148] networks are inferior to ours and a number of other approaches.
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Table 9.6. Performance comparison via recall at one (recall@1) with the state-of-the-art sketch-
based image retrieval on Sketchy testset. Best result is highlighted in red, second best in
bold. Our evaluation of the methods that do not originally report results on Sketchy dataset
is marked with .

Method Dim | recall@l |
GALIF [47) 2500 3.9
Shoes network [184] 256 6.1
Chairs network [184]F 256 6.5
TU-Berlin network [143] 1024 5.2
Sketchy network [143] 1024 37.1
Quadruplet network [148] 1024 42.2
* EdgeMAC 512 9.6

Finally, we compare the performance of our network with the state-of-the-art Sketchy
network on the large-scale SBIR175 [120] dataset. To better understand the difference
between the proposed approach and Sketchy, we further divide the queries by the cate-
gory of the depicted object into two groups. The first group consists of categories that
are used to train the Sketchy network, the other contains categories that the Sketchy
network has not seen during the training. In particular, 29 out of 40 categories from this
large-scale dataset coincide with categories used in the process of the Sketchy network
training. Out of 175 test queries, 146 belong to these 29 categories. The second, smaller
group, contains 11 categories and 29 queries. We follow the same procedure as reported
by the Sketchy network, i.e., resize sketch queries to a 256 x 256 so that a longer sketch
side is occupying 78% of the canvas. This appeared crucial in order to achieve high
performance with Sketchy network. Our proposed network has the same parameters
as in the other experiments. The quantitative comparison is provided in Table 9.7.
Precision at 5, 10, and 25 results respectively was measured. The performance of our
method remains the same for both groups of queries. However, the performance of the
Sketchy network is remarkably lowered for categories not used in the training. Overall,
both networks perform similarly for precision at 5, while Sketchy is better for precision
at more images. We conclude, that the Sketchy network strongly benefits from the
category recognition, where it achieves better results. The proposed method performs
a generic sketch-based image search relying on the shapes and thus generalizes better
to unseen categories (as all categories are unseen for our method).

Qualitative comparison. We perform qualitative evaluation on the dataset with the
largest scale, i.e., SBIR175 dataset [120]. We first visually demonstrate the bias of
the Sketchy network towards categories used to train the category loss and towards
specific examples used for those categories. Figure 9.9 shows example queries from
the first group, i.e. from categories used to train the Sketchy network. We observe
that Sketchy tends to find images of the correct category (such as an airplane), or
images with objects similar to the category (such as lens for the canon query), but
not necessarily of the correct pose or shape. The proposed method finds objects of
the correct pose / shape (as with airplanes) or fails (canons) when the shape is not
present. We find the result comparison for the glasses query quite interesting. Most
training examples of the Sketchy network contain images with glasses on faces. These
kind of images are correctly retrieved but not the images of glasses without faces (first
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Table 9.7. Performance comparison via precision at rank K (p@QK), with the state-of-the-art
sketch-based image retrieval on the large-scale dataset [120]. TOur evaluation of the Sketchy
network [143].

| Method | Dim | pas | pa1o | p@2s |

’ 29 categories (146 queries) appearing in Sketchy dataset ‘
Sketchy network [143]F 1024 | 774 | T7.2 | 76.5
* EdgeMAC 512 69.9 | 67.0 | 61.5

’ 11 categories (29 queries) not appearing in Sketchy dataset ‘
Sketchy network [143]F 1024 | 379 | 359 | 32.1
* EdgeMAC 512 65.5 | 63.1 | 59.6

’ All 40 categories (175 queries) ‘
Sketchy network [143]F 1024 | 70.9 | 70.3 | 69.2
* EdgeMAC 512 69.1 | 66.3 | 61.1

appears at rank 1779). This happens, despite the fact that these images contain shapes
almost identical to the sketch query. Figure 9.10 shows example queries of the second
group, i.e. categories not seen by the Sketchy network. Our method retrieves objects of
similar shape to the query, while Sketchy fails to retrieve relevant images, even though
the shape is very simple, such as in the ‘tire’ query. In some queries, such as the ‘bulb’
query, the sketch is similar to the hot-air balloon class, which is retrieved by Sketchy.

We further analyze the behavior of the different methods in Figure 9.11 where we
show that Sketchy correctly links glasses sketch (glasses category was used to train
Sketchy) to faces with glasses. However, the second query, face sketch (not used to
train Sketchy) fails to find faces. Our method in both cases performs shape matching,
not always retrieving a correct category. Since for both methods, images and sketches
are mapped into the same space, we can also find nearest sketches to query images. The
last query in Figure 9.11 shows a query with a face (with no glasses) image. Sketchy still
classifies that as glasses and the nearest sketches are all three glasses sketches present in
the dataset. Our method retrieves similar shapes, starting with all three face sketches
first. From this experiment we conclude that the Sketchy network strongly relies on
recognition of known classes, while objects of unknown classes will be unavoidable
misclassified. Finally, in Figure 9.12 we show examples of queries that are not related
to any object category; they are rather characterized as “scenes”, where our approach
performs much better than Sketchy:.

Visualization with t-SNE. We use t-distributed Stochastic Neighbor Embedding (t-
SNE) [171] to perform dataset visualization. We jointly visualize hand-drawn sketches
and images (based on their edge-maps) to examine their similarities. We repeat the
process both for our network and the off-the-shelf network. The illustration is given in

Figure 9.13 for Flickrl5k.

It is clearly visible that images of the same category are grouped closer after the
learning. Also, after the training, query sketches are, in most cases, grouped together
with images of the same category, which was not the case with the off-the-shelf repre-
sentation.
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Figure 9.9. Selection of sketch queries on SBIR175 for categories that appear in the Sketchy
network training set [143]. We show the top ranked images using two networks: Sketchy
network [143] (top row), and our network (bottom row).
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Figure 9.10. Selection of sketch queries on SBIR175 for categories that do not appear in the
Sketchy network training set [143]. We shows top ranked images using two networks: Sketchy
network [143] (top row), and our network (bottom row).
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Figure 9.11. Retrieval examples for 2 sketch queries on SBIR175 and for 1 image query search-
ing in the set of sketches (reverse scheme). We show the top ranked images/sketches for the
Sketchy network (left) and our network (right). The glasses category is part of the Sketchy
network training set [143], while the face category is not.

Sketchy network EdgeMAC

Figure 9.12. Not all sketch queries are object classes. Sketchy network (left) vs our network
(right) on non-object queries from Flickr15k.

The number of parameters. Our reported results use the VGG16 network stripped off
the fully connected layers (FC), leaving ~15M parameters. The number of parameters
of Sketch-A-Net [185] is ~8.5M parameters, while when used for SBIR in two different
branches (Shoes, Chairs, Handbags [184]) there is ~17M parameters. Triplet no-share
network [15] uses two branches (Sketch-a-Net with additional FC layer and AlexNet [81])
leading to ~115M, and Sketchy [143] uses 2x GoogLeNet leading to ~26M parameters.
Our network has the smallest number of parameters from the competing methods.

9.2.3. Edge-map to edge-map image retrieval

We depart from the original motivation of domain generalization and sketch-based im-
age retrieval and apply the trained network on image-to-image matching, ¢.e. traditional
image retrieval. To demonstrate the applicability of our approach beyond sketches, we
downloaded from Google image search images of Oxford and Paris that are difficult to
match with known image retrieval methods. These include dark night images, paintings,
images with unrealistic colors due to editing, etc.. Such images are used as queries for
two standard image benchmarks, i.e., Oxford Buildings [125] and Paris [126] datasets,
containing 5k and 6k database images respectively, which are described in detail in
Chapter 3, Section 3.1.1. We compare the proposed method applied to edge-maps on
query and database images (EdgeMAC) with the state-of-the-art image retrieval [133]
(RgbMAC) applied to RGB images, presented in Chapter 6. Note that both methods
are trained on the same set of images, while the network architecture is the same, as it
is based on VGG and MAC layer.
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Off-the-shelf network

m
5

Figure 9.13. Visualization of the Flickr15k dataset with t-SNE in the case of descriptors with
the off-the-shelf CNN (top) and our trained network (bottom). Edge-maps (for images) or
sketches are fed to the networks in both cases.
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A qualitative evaluation is shown in Figure 9.14. EdgeMAC performs significantly
better than RgbMAC when the reliable information is only in the shape of the objects.
In other examples, e.g., query with a night image, both methods fully retrieve positive
images but RgbMAC mostly retrieves images of the same modality, while EdgeMAC
gets images from both day and night modality. We conclude that the proposed method
has a potential contribution beyond sketch retrieval, in particular in cross-modality
retrieval problems and in the presence of significant change in illumination.

9.3. Concluding remarks

We have introduced shape matching for domain generalization and cross-modal re-
trieval. Images are described by a CNN-based shape descriptor. The network training
is perfomed in the domain of landmark images, where the training data is aquired with-
out any manual annotation, by mining image pairs from large scale 3D reconstruction.
The network is trained once and then applied to different tasks.

The generic applicability of the representation is supported by validating on a variety
of cases. The descriptor is shown beneficial for object recognition via transfer learning,
especially to classify images of unseen domains, such as cartoons and sketches, where
the amount of annotated data is limited. Remarkably, the same network is applied in all
the different tasks. The state-of-the-art results are achieved on standard benchmarks
for sketch-based image retrieval, while we have further demonstrated the applicability
beyond sketch-based image retrieval. Promising results were shown for queries with
different modality (artwork) and significant change of illumination (day-night retrieval).
Training data, trained models, and code used in this work are publicly available®.

Scmp.felk.cvut.cz/cnnimageretrieval
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EdgeMAC RgbMAC EdgeMAC RgbMAC EdgeMAC RgbMAC EdgeMAC RgbMAC EdgeMAC RgbMAC EdgeMAC RgbMAC EdgeMAC RgbMAC

Figure 9.14. Image retrieval examples for query images collected from Google. Retrieval is
performed on the Oxford Buildings [125] and Paris [126] datasets with two networks: a
network that receives RGB input and is trained for retrieval [133] (top row), and our network
that receives edge-map input (bottom row). Edge-maps are used both for query and database
images, but we only show it for the query images.
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Chapter

Conclusions

ARIOUS aspects of visual retrieval with compact representations are studied in this
thesis. Novel compact representations are proposed in Chapters 5, 6, and 9. In
Chapter 5, a variety of vocabulary generation techniques is studied to improve the per-
formance of joint dimensionality reduction of multiple vocabularies for bag-of-words.
We show that different combinations of vocabularies, each partitioning the descriptor
space in a different yet complementary manner, results in a significant performance im-
provement. Chapter 6 describes fine-tuning of convolutional neural networks (CNNs) for
compact image retrieval without human interaction. We show that more complete and
detailed 3D reconstructions are achieved by tightly coupling structure from motion and
retrieval, especially retrieval with constraints such as sideways crawl, zoom-out, zoom-
in or detail mining. We also show that both hard positive and hard negative examples,
selected by exploiting the geometry and the camera positions from the 3D models,
enhance the performance of instance image retrieval. Our proposed CNN descriptor
whitening discriminatively learned from the same training data outperforms commonly
used PCA whitening. We additionally show that our novel trainable generalized-mean
(GeM) pooling layer boosts retrieval performance. GeM has become a standard pool-
ing for retrieval, used by a majority of well-performing entries in competitions such as
Google Landmark Recognition and Retrieval Challenge 2018. CNN trained with edge
maps of landmark images, instead of photographs, is described in Chapter 9. Compact
shape representation is learned in this manner, providing improvements on challenging
cases of domain generalization, generic sketch-based image retrieval or its fine-grained
counterpart. In contrast to other methods that learn a different model per task, ob-
ject category, or domain, our single network achieves state-of-the-art results in multiple
benchmarks.

Chapter 4 addresses the issues of image retrieval benchmarking by expanding existing
Oxford Buildings and Paris datasets. In particular, annotation errors, the size of the
dataset, and the level of challenge are addressed: new annotation for both datasets is
created with an extra attention to the reliability of the ground truth. Three new pro-
tocols of varying difficulty are introduced. For each dataset, 15 new challenging queries
are introduced. Finally, a new set of 1M hard, semi-automatically cleaned distractors is
selected. An extensive comparison of the state-of-the-art methods is performed on the
new benchmark in Chapter 7. Different types of methods are evaluated, ranging from
local-feature-based to modern CNN-based methods. We conclude that image retrieval
is far from being solved, and believe that the newly proposed benchmark will be used
to improve future approaches.
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10. Conclusions

Chapter 8 introduces the concept of target mismatch attack for deep-learning-based
retrieval systems to generate an adversarial image to conceal the query image. Trans-
fer attacks to fully unseen networks are challenging, and are left for future research.
Successful attacks to partially unknown systems are achieved, by designing various loss
functions for the adversarial image construction. These include loss functions for un-
known global pooling operation or unknown resolution change by the retrieval system.
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Appendix

Common Image Retrieval Terms and Acronyms

Average Precision (AP). The performance for a single query in image retrieval is often
evaluated as the average precision (AP) [125] measure computed as the area under the
precision-recall curve. Precision is defined as the ratio of retrieved positive images to
the total number of images retrieved, while recall is defined as the ratio of the number
of retrieved positive images to the total number of positive images in the database. To
reach an ideal precision-recall curve, the image retrieval system has to obtain precision
1 over all recall levels, which will result in an average precision equal to 1.

Bag of words (BoW) image representation [151] is an lp-normalized histogram of
occurrences of visual words. Usually, inverse document frequency (idf) weighting of
visual words is used before the histogram is computed. The dimensionality of BoW
representation is equal to the number of clusters in the visual vocabulary.

Contrastive loss. The training input consists of image pairs (7, j) and labels Y (i, j) €
{0,1} declaring whether a pair is non-matching (label 0) or matching (label 1). Con-
trastive loss acts on matching and non-matching pairs and is defined as [26]

1y1¢( 0 \12 . .o
£,y = 3 MO DS if (i, ) = 1 N
) {%(max{oﬁ—Hf(@')—f(j)H})Q, if Y (4, 5) =0 (A1)

where (i) is the I3 normalzied global representation vector of image 4, and 7 is a margin
parameter defining when non-matching pairs have large enough distance in order to be
ignored by the loss.

Cosine similarity for two vectors, x, y € RP is defined as:

D . .
Zi:1 TiYi (A2)

cos(x,y) = :
[1x[l]y]l

where ||x|| is the [ norm of vector x. If the vectors are Iy normalized, cosine similarity
and Fuclidean distance have a monotonic relation, therefore, they can be interchanged
to provide identical ordering of the results:

lIx —y|| =2 —2cos(x,y). (A.3)

CroW. Cross-dimensional weighted (CroW) representation [76] is obtained by weighted
sum pooling over all locations of a convolutional activations tensor. Weights are applied
both spatial- and channel-wise. See also global image representation.

117



A. Common Image Retrieval Terms and Acronyms

Fisher vectors image representation [123] is created by modelling the visual words
with a Gaussian mixture model (GMM), restricted to diagonal variance matrices for
each of the k& components of the mixture. Deriving a diagonal approximation of the
Fisher matrix of a GMM, (2d+1) x k— 1 dimensional image representation is obtained,
or d X k dimensional when considering only the components associated with either
the means or the variances of the GMM, where d corresponds to the local descriptor
dimensionality and k is the visual vocabulary size. See also global image representation.

GeM. Generalized-mean (GeM) representation [135] is obtained by a spatial generalized-
mean pooling over all locations of a convolutional activations tensor. See also global
image representation.

Global image representation encodes the whole image into a single D dimensional
vector, x € RP. Global representation is often computed by local-feature or convolutional-
neural-network-feature aggregation. Examples of local-feature-based global representa-
tions are BoW [151], Fisher vectors [123], VLAD [72], etc. Examples of convolutional-
neural-network-based global representations are MAC [138, 168], SPoC [8], CroW [76],
R-MAC [168], GeM [135], NetVLAD [3].

Hamming embedding (HE) improves the visual vocabulary by subdividing its clus-
ters [69]. This results in binary signatures associated to every visual word that refines
the local descriptor matching quality. HE is further extended by the binarized selective
match kernel (SMK*) [163] that uses an inverted file structure to separately index bina-
rized residual vectors while it performs the matching with a selective monomial kernel
function. Binarized version of the aggregated selective match kernel [163] (ASMKX)
additionally extends SMK* by jointly encoding local descriptors that are assigned to
the same visual word.

Hellinger kernel for two [; normalized vectors, x, y € RP, is defined as:

D
H(x,y) =Y V. (A.4)
i=1

Square-rooting /1 normalized vectors makes them ls normalized, so the Euclidean dis-
tance can be used instead of Hellinger kernel, to achieve the same result:

IVx = Vyll = v2 - 2H(x,y). (A.5)

Local features and descriptors. A distinctive pattern or structure found in an image is
reffered to as local feature. The features usually differ from its immediate surroundings
by texture, color, or intensity. Popular local-feature detectors are multi-scale Hessian-
Affine [121], Harris-Affine [100], MSER [96], etc. Local features are represented by a
position in the image, scale, and shape (usually an ellipse). Such features are typically
geometrically normalized into a cannonical form. The cannonical form is transformed
into a compact vector representation denoted as a local descriptor. Most popular and
widely used local descriptors in image retrieval are SIFT [92], RootSIFT [4], or Hard-
Net [104]. One image is typically represented by a few thousand local features and
descriptors. See also bag of words (BoW).

MAC. Maximum activations of convolutions (MAC) representation [138, 168] is ob-
tained by a spatial max pooling over all locations of a convolutional activations tensor.
See also global image representation.
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Multi-scale image representation with CNN. In order to improve robustness of the
image representation to scale change, image is typically resized to a set of pre-defined
scales and each re-scaled version is fed to the network. Finally, the resulting descriptors
are combined into a single descriptor by average pooling [58], or generalized-mean
pooling [135].

Nearest neighbor (NN) search is an optimization problem of finding the data point
in a dataset that is the closest (or the most similar) to a given point (query). Often,
the top k nearest neighbors to the query are identified. This is referred to as k-nearest
neighbor (k-NN) search. Commonly used similarity metrics in image retrieval NN search
are cosine similarity, or Hellinger kernel.

NetVLAD. A generalized VLAD representation NetVLAD [3] treats a convolutional
activations tensor as a set of local descriptors, which are describing each spatial location.
Then, the descriptor aggregation is performed in a similar fashion as VLAD [72], in a
differentiable manner. See also global image representation.

Off-the-shelf and fine-tuned convolutional neural network (CNN). Networks that
are pre-trained for some other task, often for image classification on ImageNet [140],
are denoted as off-the-shelf, and can be directly applied on image retrieval. Starting
from pre-trained ones, networks are additionally trained with the metric suitable for
the image retrieval task, and these are denoted as fine-tuned. Metric learning losses
commonly used in image retrieval are contrastive loss [26] and triplet loss [24].

Pooling of CNN features. A common practice with CNN image retrieval is to con-
sider a convolutional feature map, represented by a 3D tensor, and perform a pooling
mechanism to construct a global image descriptor. The global pooling also introduces
translation invariance which is in contrast with fully-connected layers typically used
in classification. The pooling is always applied on the last convolutional feature map.
Most popular and widely adopted pooling schemes are MAC [138, 168], SPoC [8],
CroW [76], R-MAC [168], GeM [135], NetVLAD [3], etc. Usually, the resulting global

image representation is ls normalized.

Query expansion (QE) with BoW typically uses spatial verification to select true
positive among the top retrieved result. The estimated image-to-image mapping is
then used to back-project local features into the query region [31]. New and enhanced
query is finally issued.

Query expansion (QE) with CNN. Similarly as with local-features-based QE, top-
ranked images after initial ranking are selected, and their CNN representations are
averaged together with the query image, thus creating a new improved query repre-
sentation. Instead of standard averaging of the descriptors, weighted average can be
used, where the weights depend on the similarity between the query and the retrieved
image [135]. This is denoted as a query expansion (aQE).

R-MAC. Regional maximum activations of convolutions (R-MAC) representation [168]
first performs a spatial max pooling over convolutional activations regions, and finally
sum pooling of the regional descriptors. See also global image representation.
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Spatial verification (SP) utilizes the location, and possibly scale and shape of fea-
tures, to verify the spatial consistency between the query and top-ranked retrieved
images [125]. This is achieved by a fast and robust hypothesize-and-test procedure that
estimates an affine transformation between the query and the target image, often per-
formed with the random sample consensus (RANSAC) algorithm [49]. SP result is the
number of inlier correspondences, which is one of the most intuitive similarity measures
and allows to detect true positive images with a high confidence.

SPoC. Sum-pooled convolutional (SPoC) representation [8] is obtained by a spatial
sum pooling over all locations of a convolutional activations tensor. See also global
image representation.

Tf-idf. Term frequency-inverse document frequency. See bag of words (BoW).

Triplet loss. The training input consists of image triplets (¢, m(q),n(q)), and f(q),
f(m(q)), f(n(q)) are the lo normalzied global representation vectors of query image ¢,
and its matching m(q) and non-matching n(q) image. Triplet loss is then defined as [24]

£Y(q,m(q), n(g)) = max{0, |[£(q) — £(m())|1* — [[(a) — £(n(a)|* + 7}, (A6)

where 7 is a margin parameter defining zero loss when the distance between the query
and the non-matching image is greater by a margin than the distance between the query
and the matching image.

Visual vocabulary (codebook) and visual words. A set of local descriptors is clustered
into k distinct clusters, and those clusters form a visual vocabulary (codebook). This
can be done by a standard k-means [151], hierarchical k-means [113], or approximate
k-means [125] algorithm. The objective is to vector quantize a local descriptor into a
single cluster id value, denoted as visual word. Term wisual vocabulary size corresponds
to the number k of clusters in the visual vocabulary.

VLAD. Vector of Locally Aggregated Descriptors image representation [72] is created
by aggregating statistics of the local descriptors beyond a simple histogram. The resid-
ual vectors between descriptors and the closest centroid are aggregated w.r.t. a visual
vocabulary. The dimensionality of VLAD representation is equal to the product of the
local descriptor dimensionality and the visual vocabulary size. See also global image
representation.

Whitening of descriptors. Whitening the data representation is known to be very
essential for image retrieval [68]. Interpretation of [68] lies in down-weighting co-
occurrences and, thus, handling the problem of over-counting. Whitening is commonly
learned in a generative manner. More specifically, it is learned in an unsupervised way
by PCA on an independent dataset. Additionally, whitening can be learned in a dis-
criminative manner, using the training data with pairs of matching descriptors [135].
Whitening improves performance of local descriptors, local-feature-based image repre-
sentations such as BoW [151] and VLAD [72], and CNN-based image representations
such as MAC [138, 168], SPoC [8], CroW [76], R-MAC [168], GeM [135], NetVLAD [3].
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