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dvoromar@fel.cvut.cz

Department of Computer Graphics and Interaction
Faculty of Electrical Engineering

Czech Technical University in Prague
Karlovo nam. 13, 121 35 Prague 2, CZ

Abstract

Animated feature-length movies produced by renowned studios such as Disney Animation
or Pixar are nowadays almost exclusively created on computers using various advanced
digital techniques such as physically-based rendering or simulation. Those algorithmic
solutions make the movies highly appealing to the audience and substantially increase the
level of automation in the production process which leads to a visible unification of the
motion as well as appearance stylization. In contrast, traditional animation techniques
that were used in the production of animated feature films formerly allowed artists to
express better their unique artistic vision enabling them to work with physical, artistic
media and have full creative freedom over the production process. Nowadays, due to their
extreme time demands, traditional animation techniques are utilized only marginally.
Nevertheless, the recent release of several critically acclaimed movies which combine
digital pipeline with hand-drawn animation indicates an emerging trend to bring features
of the traditional techniques back in the game.

In this thesis, we propose a set of tools that enable to combine the benefits of com-
puter-assisted production with the freedom of manual work. With these tools, an artist
can create traditional hand-drawn animations that have appearance comparable to com-
puter-generated movies or use automation of repetitive manual tasks while still retaining
the original hand-drawn look. To enable this connection, we developed and practically
verified several new techniques that allow to process and decompose hand-drawn input
into a set of reusable structures. Those can be utilized for the creation of a new con-
tent that retains the unique artistic style and preserves essential visual characteristics
of the used artistic media. In particular, we developed: (1) a method for cleaning up a
time-lapse video of a painting process and decomposing it into a set of translucent layers;
and (2) a method for extracting character’s appearance and motion characteristics from
hand-drawn animations. We show how to utilize those extracted structures in various ap-
plications including the synthesis of novel hand-drawn animations and non-trivial editing
of real-world paintings. We also present a method for reconstruction of 3D models from
a drawing which enables enhancement of hand-drawn animations with physically-based
rendering effects.

This thesis is presented as a collection of four research papers which describe the
proposed approaches. Three articles were published in a journal with impact factor and
one in conference proceedings.

Keywords

hand-drawn animation, computer-generated animation, time-lapse video, decomposition
into layers, 3D reconstruction, example-based synthesis, skeletal animation, style trans-
fer, stylization, artistic freedom
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Abstrakt

Celovečerńı kreslené filmy z d́ılen renomovaných animačńıch studíı, jako je Disney Ani-
mation nebo Pixar, jsou v dnešńı době téměř výlučně tvořeny na poč́ıtač́ıch s využit́ım po-
kročilých digitálńıch technik, jakými jsou např. realistická syntéza obrazu nebo fyzikálńı
simulace. Tyto algoritmy dodávaj́ı filmům vysoce atraktivńı vizuálńı podobu a zároveň
zvyšuj́ı úroveň automatizace celého výrobńıho procesu. Docháźı tak k viditelnému sjedno-
ceńı stylizace a to jak na úrovni vzhledu, tak i z hlediska výsledného pohybu animovaných
postav. V kontrastu k poč́ıtačovým metodám stoj́ı tradičńı animačńı techniky, jež byly
použ́ıvány při výrobě kreslených filmů dř́ıve. Jejich hlavńı výhodou oproti digitálńı ani-
maci byl fakt, že skrze práci s fyzickými výtvarnými médii umožnily animátoru plnou
tv̊urč́ı svobodu. V dnešńı době jsou však kv̊uli extrémńım časovým nárok̊um využ́ıvány
pouze okrajově. Nedávný úspěch animovaných filmů, jež kombinuj́ı digitálńı techniky
s ručńı animaćı, ale naznačuje vznikaj́ıćı trend, který přináš́ı tradičńı kreslenou animaci
zpět do hry.

V této disertačńı práci představujeme soubor nových algoritmů, které umožńı kombi-
novat výhody poč́ıtačem podporované tvorby se svobodou ručńı práce. Dı́ky navrženým
nástroj̊um může umělec vytvářet tradičńı ručně kreslené animace maj́ıćı vzhled srovna-
telný s filmy generovanými na poč́ıtači nebo naopak využ́ıt automatizaci opakuj́ıćıch se
ručńıch úkon̊u při zachováńı vzhledu p̊uvodńı ručńı kresby. K dosažeńı tohoto ćıle bylo
nutné vyvinout a prakticky ověřit několik nových algoritmů. Ty umožńı dekomponovat
ručně nakreslený vstup do souboru elementárńıch struktur, které lze následně využ́ıt ke
generováńı nového vizuálńıho obsahu. Konkrétně jsme vyvinuli algoritmus pro čǐstěńı
časosběrného videa zaznamenávaj́ıćıho proces malby a jeho následné rozložeńı do sady
polopr̊uhledných vrstev. Dále jsme navrhli algoritmus pro extrakci základńıch vizuálńıch
charakteristik a jednotlivých pohybových prvk̊u z ručně kreslených animaćı. S jejich
využit́ım lze následně generovat nové kreslené animace nebo provádět netriviálńı úpravy
na fyzických malbách tak, že z̊ustane zachován p̊uvodńı výtvarný ráz. Představujeme
také metodu rekonstrukce 3D model̊u z ručńı kresby, jež umožňuje dodat kreslené ani-
maci atraktivńı fotorealistický vzhled běžný pro poč́ıtačem generované obrazy.

Tato práce je prezentována jako soubor čtyř článk̊u popisuj́ıćıch navrhované př́ıstupy.
Tři z těchto článk̊u byly publikovány v impaktovaném časopise a jeden na konferenci ve
sborńıku.

Kĺıčová slova

ručně kreslená animace, poč́ıtačem generovaná animace, časosběrné video, rozklad na
vrstvy, 3D rekonstrukce, syntéza založená na př́ıkladu, skeletálńı animace, přenos stylu,
stylizace, umělecká svoboda
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Chapter 1

Introduction

1.1 Motivation

Animation is a popular medium for communication and entertainment. Its dynamic
nature and the ability to convey stylization makes it attractive for the audience and
helps to communicate feelings, emotions, and ideas. Animation techniques evolve over the
last century starting with traditional hand-drawn and stop-motion animation. In hand-
drawn animation, every frame is created by hand using physical, artistic media whereas
in stop-motion animation, pre-created 2D or 3D physical models are manipulated in each
animation frame. Despite the fact that both early animation techniques are extremely
labor-intensive and require highly experienced artists, their advantage is hidden in the
fact that all strokes or manipulations are performed in a physical world which provides
unlimited creative possibilities and gives the artists complete freedom to develop their
own distinctive ideas.

In the past, traditional techniques were the standard for production of animated feature
films; nevertheless, with the advent of computers, a constantly growing effort has been
devoted into utilizing computer power to facilitate the process of animation production.
Physical tools were slowly replaced by their digital counterparts like a computer tablet
or animation software. Advances in computer hardware and algorithms brought new
opportunities for employing computer in labor-intensive tasks such as inbetweening (the
creation of intermediate poses between keyframes) or filling the hand-drawn outlines
with colors. The computer assistance started to make the animation production less
time-consuming and boosted its development.

Nowadays, computer-generated (CG) animation is understood as a descendant of tra-
ditional animation. It typically uses 2D or 3D digital models and exploits algorithms
designed to simplify the creation of models’ movement and appearance. There are several
reasons for the preference of CG animation by the audience and also the movie indus-
try [A. Jones and Oliff 2006]. Recent advances in algorithms utilized in various stages
of CG animation pipeline and also performance boost in computer hardware enabled
3D CG animation to include rich visual effects including stereoscopic vision. Those fea-
tures have brought a higher level of entertainment into animations and made them more
appealing to the audience which naturally resulted in higher cinema attendances. More-
over, the ability to reuse assets, create different views of a scene using virtual cameras,
compute physically plausible effects by utilizing a computer simulation, or to transfer
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(a)

(b)

(c)

(d)

(e)

Figure 1.1: Recent movies that combine CG animation (or live action) with hand-drawn
animation to benefit from both media: Paperman, The Walt Disney Company (2012) (a), The
Red Turtle, Studio Ghibli (2017) (b), Spider-Man: Into the Spider-Verse (2018) (c), Loving
Vincent (2018) (d), Annie, Riot Games (2018) (e). (All images come from respective movie
trailers or behind-the-scenes documentaries.)
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human motion onto virtual characters notably enlarges possibilities and has a positive
effect on the production budget.

On the downside, with the advent of computer-assisted animation production, some
of the essential properties of its traditional counterpart started to be suppressed. For
example, a physical media like pencil, chalk or watercolor contain specific kind of texture
variations which are difficult to simulate and which give the observer an impression that
the artwork was created by hand. Their digital counterparts typically lack this richness
which invoked a kind of sterile computer-generated appearance. Furthermore, physical
animation workflow allowed artists to express their creative intents with notably greater
freedom as compared to the computerized approach which requires artists to deal with
various technological limitations such as predefined animation rigs.

Due to this reason, production of CG animation is still usually preceded with a hand-
drawn concept or rough hand-drawn animation. The reason lies in the artist’s capability
to capture the moment of inspiration quickly on the paper. The hand-drawn artwork
is then transformed into 3D models which usually have to obey certain geometrical and
physical constraints to allow for their easier manipulation. The process is, however,
prone to causing the resulting models not to precisely conform to the style of the original
author which may make their appearance too artificial. There are no such constraints in
traditional animation. Visual representation of a character may vary considerably across
frames, various deformations are often used to exaggerate character’s action [Thomas
and Johnston 1981] (see Figure 1.2), and even temporal flickering can be used as a tool
of expression [Noris et al. 2011]. Nevertheless, the fact that it requires an enormous
amount of time even for an experienced artist to produce a short animation is one of the
main reasons for today’s preference for CG animation in the industry. Features present in
hand-drawn animation are often mimicked in 3D CG animation [Lasseter 1987]. However,
it involves laborious manual tweaking of a 3D model for each animation frame.

Maybe right due to the aforementioned reasons, the growing trend of CG animation
seems to slow down a bit, and animation studios start to getting back to experiments
with traditional techniques. Several recent movies which combine computer animation
with traditional techniques (see Figure 1.1) have been recently critically acclaimed. All
this indicate a tendency of bringing the traditional techniques back in the game.

1.2 Aim of the Work

The aim of this work is to contribute to bridging the world of hand-drawn and CG anima-
tion by developing tools that enable to facilitate the creation of hand-drawn animations
by utilizing contemporary CG animation pipelines and a small amount of hand-drawn
input. These tools will be specifically designed to faithfully retain artist’s individual
style and the characteristics of the utilized physical media (in case such media has been
used as input). Moreover, the tools should allow the artist to create with freedom of the
hand-drawn workflow while at the same time significantly reducing time demands on the
animation production by utilizing computer power.

The resulting animations created using these tools may resemble an entirely hand-
drawn content, or they can combine 2D and 3D features as presented in the approach by
Sýkora et al. [2014] and they thus may be more appealing to the contemporary audience
(see Figure 1.3).
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Figure 1.2: Computer-generated animation utilizes 3D models which usually have to obey
certain geometrical and physical constraints to allow for their easier manipulation. On the
one hand, this allows the resulting animation to easily include rich visual effects which may
be more appealing to the audience (top), on the other hand, it poses a restriction on artistic
expressivity. Traditional hand-drawn animation allows artists to create more freely. In such
animation, the visual representation of a character may vary across frames to a large extent,
and various deformations are often used to exaggerate character’s action (bottom). These effects
add legibility to the resulting animation, however, the production of hand-drawn animation is
extremely demanding. (The top images come from Sintel movie by Blender Institute, the bottom
ones from Who Framed Roger Rabbit movie trailer.)

To address the requirements on the tools mentioned above, we developed new tech-
niques that enable to (1) extract editable structures from the hand-drawn input, and
(2) manipulate and reuse the structures to generate a new content that retains the style
of the input.

1.3 Overview of the Contributions

To extract the aforementioned structures, we developed several novel approaches: (1) a
method enabling to decompose time-lapse videos of painting process into translucent lay-
ers together with a technique for cleaning up the videos from unwanted objects such as
painter’s hand, and (2) techniques for extracting appearance and motion characteristics
from hand-drawn animations. We demonstrate the utility of the extracted structures
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Figure 1.3: Ink-and-ray [Sýkora et al. 2014] allows to reconstruct a proxy 3D model from a
hand-drawn image. The model can be rendered with a texture to enrich the hand-drawn artwork
with attractive global illumination effects like shadows and glossy reflections. Hand-drawn inputs
by Štěpánka Sýkorová (bottom left) and Lada Br̊unová (the rest).

for various applications including non-trivial editing of real paintings on the computer
retaining look of the physical media and also the synthesis of novel hand-drawn anima-
tions. To enhance hand-drawn artwork with appealing visual effects that are typical for
photorealistic CG artwork, we invented a method for reconstruction of high-relief models
from a single hand-drawn image that enables the production of seamless organic models
which can be applied in the contemporary CG pipeline.

In the following paragraphs, we overview the techniques and the specific contributions
of this work. We group the techniques into the three following categories: (1) decomposi-
tion of time-lapse paintings into layers, (2) seamless reconstruction of high-relief models
from hand-drawn images, and (3) example-based synthesis of hand-drawn animations.

Decomposition of time-lapse paintings into layers

We start with examining the process of painted artwork creation, for instance, the process
of painting a picture or a single animation frame. The process itself contains valuable
information that is typically lost in the final artwork such as the information about the
placement of individual strokes and their overlap. To retain the information, we invented
several novel algorithms that are capable of extracting a creation history from digital and
real-world time-lapse recordings of the painting process. We capture the creation history
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Figure 1.4: The process of painted artwork creation contains information about the spatiotem-
poral placement of strokes and their overlap. Such information is typically lost in the final art-
work. (A few frames from a recording of painting process are selected on the left.) Our method
is capable of extracting a spatiotemporal volume retaining the painting history. (The volume is
visualized in the middle column at the bottom, the spatial and temporal domain is depicted using
blue and red arrows, respectively.) We also present a method for removing unwanted artifacts
from the recording such as occlusions caused by the artist’s hand and its shadow (visible on the
left). The volume enables artists to perform otherwise arduous edits, such as recoloring or dots
removal (right), efficiently. (Input time lapse video by Marcello Barenghi.)

in the form of a spatiotemporal volume, i.e., paint layers in time – see Figure 1.4 for
an illustration of the volume. The algorithms have been designed to reconstruct layers
that are useful for later editing. Therefore, instead of seeking opaque solutions, we look
for solutions yielding translucent layers which increase the number of possible editing
operations.

The extracted spatiotemporal volume enables numerous exciting applications such as
scribble-based spatiotemporal selection, layers recoloring, color gradient controlled by
time or a temporal eraser (see Figure 1.4 for examples). There is a body of previous
work dealing with editing history interaction for digital content for which our method
may provide a new source of data for physical paintings. (See Section 2.1 for more details
about such previous work.) In the context of animation production, the spatiotemporal
volume may be utilized to extract a structure of animated objects, for instance by per-
forming a semi-automatic segmentation and depth ordering prediction of object-parts,
and the volume may also contain information about the shape or texture of hidden over-
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Figure 1.5: From a single drawing with a small amount of additional input (left), our technique
can reconstruct a high-relief model with seamless interconnections of individual parts (middle
column). Compared to our approach, the state-of-the-art method of Sýkora et al. [2014] produces
results with unwanted seams (right column).

lapping object-parts. The extracted structures thus may also find their applications in
the 3D reconstruction and the hand-drawn animation synthesis which we discuss later
in this section.

The decomposition algorithms mentioned earlier require the time-lapse recordings to
be free of the typical real-world artifacts such as occlusions caused by the artist’s hand
and its shadow or lighting and color changes. (See Figure 1.4(left) for an illustration
of these artifacts.) To address this, we devised a pipeline for processing the recordings
capable of suppressing the unwanted objects. This pipeline may also enable the artist
to use physical tools like brush and canvas as an artistic input device (like a natural
tablet [Xu et al. 2006]). The above-mentioned methods are thoroughly described in
Chapter 3.

Seamless reconstruction of high-relief models from hand-drawn images

Our next contribution is a method capable of reconstructing a high-relief model with
seamlessly interconnected parts from a single hand-drawn image and a small amount of
additional user input (see Figure 1.5). Working in the 2D domain helps the artist to
stay focused on the creative process and not be distracted by 3D modeling aspects such
as manipulation with geometric primitives in 3D space and working with multiple 2D
projections, which is frequent in 3D modeling software like Blender or Autodesk Maya.
Even though we do not aim at reconstructing a full 3D model but an approximation,
thanks to the bas-relief ambiguity [Belhumeur et al. 1999], such results are sufficient
to be rendered with global illumination effects, self shadowing, glossy reflections, and
color bleeding, as was demonstrated by Sýkora et al. [2014]. Moreover, thanks to this
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simplification, our technique takes only a single image as input and does not require
side-view information.

Our method is tailored to an interactive modeling scenario where the input drawing
can be separated into a set of semantically meaningful parts of which relative depth
order is known beforehand. For this kind of input, our technique allows inflating individ-
ual components to have a semi-elliptical profile, positioning them to satisfy prescribed
depth order, and providing their smooth and seamless interconnection. Opposed to the
previous work on this topic which separates the reconstruction process into several sub-
sequent subproblems – such as inflation, shifting and smoothing of object-parts – we
propose a novel unified non-linear energy functional of which minimization solves for
both inflation and shifting simultaneously. This process delivers seamless organic shapes
that seem like sculpted from a single block of material. Because direct optimization of
the functional is computationally challenging, we propose an approximate solution which
yields comparable results orders of magnitude faster and thus enables an interactive user
workflow.

The reconstruction method may be applied independently to every frame of a hand-
drawn animation, and the resulting models may then be put into the contemporary CG
animation pipeline to produce a 2D animation retaining the style given by hand-drawn
outlines and textures while enriched with attractive global illumination effects or also
stereoscopic features. The method is described in detail in Chapter 4.

Example-based synthesis of hand-drawn animations

The largest part of this thesis is dedicated to methods for example-based synthesis of
hand-drawn animations that we invented. We present end-to-end solutions for simplify-
ing the production of hand-drawn animations of colliding stylized 2D rigid body objects
and also moving hand-colored characters. Our techniques are based on animation analogy
concept which extends the established analogy approach of Hertzmann et al. [2001] for
style transfer between images to animations. The animation analogy utilizes a guiding
source animation which prescribes motion (imagine a walk cycle of a skeletal character)
and a corresponding stylized hand-drawn exemplar animation (imagine a fully hand-
colored walking character with exaggerated motion). For a more complex guiding target
animation, such as jumping or dancing skeletal animation, the aim is to automatically
synthesize an output animation that follows the target motion while preserving the spe-
cific visual appearance and stylized motion of the hand-drawn exemplar animation. (See
Figure 1.6 for an illustration of the principle for character animation and Figure 1.7 for
2D rigid body animation.)

The core of our techniques is an analysis and synthesis phase. The analysis phase ex-
tracts appearance and motion stylization characteristics contained in the exemplar and
source animation, and the subsequent synthesis phase transfers the extracted proper-
ties to the target animation. The analysis phase assumes the knowledge of one-to-one
correspondence between frames of the source and exemplar animation and captures the
stylization characteristics by using a template which may either be a special unstylized
frame in a rest pose or a suitable frame taken from the exemplar animation. The template
is registered to the corresponding object in each frame of the exemplar animation, which
enables extraction of deformations, and the known bijection then allows for capturing
various kinds of differences between the source and exemplar animation. Such extracted
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Figure 1.6: An example of analogy principle for character animations: The analogy between
a source skeletal animation (top left) and a corresponding fully stylized hand-colored exemplar
animation supplied by an artist (bottom left) is applied to a different target skeletal animation
(top right) to produce an output hand-colored animation (bottom right). Notice how the styl-
ized version of the character is different from the skeletal one in terms of both hand-colored
appearance and exaggerated motion. (Stylized exemplar animation by Zuzana Studená.)

Figure 1.7: An example of analogy principle for 2D rigid body animations: Pairs of source
and exemplar sequences obtained using a physical simulation system and drawn by an artist,
respectively (left column), are utilized to transfer the artist-defined style to a different and
more complex computer-generated target sequence (middle column) producing the stylized output
animation (right column). (Stylized exemplar animations by Zuzana Studená.)
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information is then utilized in the synthesis phase. To make reusing of the exemplar ani-
mation feasible for the creation of a different target animation, we partition all animations
into shorter ones which we refer to as sub-sequences. For each target sub-sequence, the
synthesis phase then searches for the best matching source sub-sequence and utilizes the
corresponding differences and deformations to perform a parametric synthesis. The re-
sult of the parametric synthesis typically contains artifacts due to distortion or blending
of textures which invoke unwanted CG appearance. We thus alleviate these artifacts
by utilizing the parametric synthesis results only as a guide for non-parametric image
synthesis. This approach allows our methods to perform fully automatic synthesis of con-
vincing hand-drawn cartoon animations from a small number of animation exemplars.
Compared to previous work, our techniques are the first to preserve both the detailed vi-
sual appearance and stylized motion of the original hand-drawn content. Chapter 5 and
Chapter 6 describe the techniques for example-based expressive animations of 2D rigid
bodies and example-based synthesis of hand-colored cartoon animations, respectively.

1.4 Structure of the Thesis

The rest of the thesis is structured as follows: Chapter 2 reviews previous work related
to our research. Chapters 3, 4, 5, 6 describe the individual contributions of our work in
depth. These chapters correspond to individual papers that have been published in jour-
nals with impact factor or conference proceedings. Chapter 7 summarizes contributions
of this work, briefly describes concurrent work and proposes avenues for future work.
Appendix A lists author’s publications also with a list of citations to date of submis-
sion of this thesis, Appendix B specifies author’s contribution to the individual papers,
and Appendix C contains supplementary material for “Decomposition of Time-Lapse
Paintings into Layers” paper.
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Chapter 2

Previous Work

This chapter reviews previous work related to our research. The work is grouped into
three sections corresponding to the three fields that this thesis contributes to, as intro-
duced in the previous chapter. This chapter is an illustrated extension of the correspond-
ing sections from our papers.

2.1 Decomposition of Time-Lapse Paintings

into Layers

During the painting process, artists paint strokes one after another on a 2D canvas. In
time, the strokes typically get superimposed and the information about the spatiotem-
poral placement of strokes and their overlap is lost in the final artwork. From a video
recording of the painting process, our method that is described in Chapter 3 enables to
retain this information by decomposing the time-lapse painting into translucent layers,
capturing the creation history, which can be later utilized to facilitate editing of the art-
work. Moreover, our technique also deals with removal of unwanted real-world artifacts
such as painter’s hand that may be present in the recording.

In this section, we review related techniques for decomposition of images into editable
structures and also related image matting methods. There is a body of work on inter-
action with editing history for which our method could provide a new source of data for
physical paintings. We conclude this section with a brief description of these works.

Decomposition into editable structures

Xu et al. [2006] introduced a technique for decomposition of a real painting into brush
strokes and utilized them for the creation of animated paintings. Their method assumes
that the painting consists of a smaller number of strokes of which each depicts some-
thing specific in the real world (such as leaves, stems, etc.) which is the case for Chinese
paintings and some other types of artwork. To extract the geometry and appearance of
brush strokes, they exploit a library of strokes, made by an expert on Chinese paintings,
which are utilized as shape priors to avoid extracting implausible shapes. To extract
the appearance of overlapping strokes after separation, they minimize the color varia-
tions along the brush direction parallel to the stroke’s skeleton. In our work, we utilize
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Figure 2.1: From a pair of images (top left), inverse image editing method [Hu et al. 2013]
is able to recover image editing history (top middle). The editing history may be used for
various applications such as re-editing (top right) or editing history transfer. Our work solves
the orthogonal problem: for each pair of successive frames of a recording of a painting process
(bottom left), we recover maximally translucent layers (bottom right).

time-lapse video to facilitate the segmentation. Moreover, we do not aim at extracting
individual strokes but rather translucent paint layers.

A method for decomposing a real painting of a plant into semantically meaningful
parts like leaves, petals, and stems was described by Amati and Brostow [2010]. Their
work focuses only on Sumi-e, which is a style of monochromatic art with relatively few
strokes. Similar to our work, they utilize a video recording of the painting process. They
allow using a low-resolution video, which is sufficient to recover the order in which parts
were painted, paired with a high-resolution scan of the final artwork that captures stroke
details. Their method also handles the removal of real-world objects other than ink such
as hand, brush, and shadows. In their technique, a small number of clean frames is
found by comparing binary thresholded frames to the binary thresholded final painting.
The result of their analysis is a segmentation of the final painting into parts. We take
inspiration from this work and share the observation that methods for skin detection
and foreground subtraction are unstable and that the paint is far more temporally stable
than occlusions.

Fu et al. [2011] presented a method to reconstruct the order of individual strokes and
their directions from a single line drawing. Their goal is to derive a drawing order that is
visually plausible for a human viewer. To do that, they base the technique on guidelines
for drawing order [Van Sommers 1984] and take into account the hierarchical structure of
a drawing [Tversky 1999]. Their work is tailored to line art images with cleanly defined
lines or curves while our work operates on paintings and utilizes time-lapse videos. Like
in their work, we also assume that the drawing order is not random.

An automatic approach to recover semantically-meaningful image editing history from
a before-after image pair was proposed by Hu et al. [2013]. (See Figure 2.1 for an illustra-
tion.) Their method allows finding editing operations such as geometric transformations,
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(a) (b) (c) (d)

Figure 2.2: Image matting is a problem of separation of an image (a) into a foreground and
background resulting in a matte (c). A user input (b) may be required to make the problem
tractable. Image matting allows applications like a substitution for a different background (d).
(The illustration is borrowed from [J. Wang and Cohen 2008].)

color adjustments with spatially-varying brushes, cropping, and object insertion or re-
moval. They, however, do not consider the translucency of edits. In contrast, our method
allows for efficient reconstruction of maximally translucent layers between consecutive
frames of a time-lapse painting using the traditional Porter-Duff [Porter and Duff 1984]
compositing model and also the Kubelka-Munk [Kubelka 1948] model which is best suited
for physical paintings.

Richardt et al. [2014] presented an interactive tool for decomposition of an input
bitmap image into a set of opaque and semi-transparent vector layers, which can be
exploited to make editing of the image easier. Their approach supports vector layers
with a linear or radial color gradient. The technique is suited for drawings and studio
photographs containing smooth color gradients and may not work well for natural images
or images containing complex texture variations.

Image matting

Color separation is also related to layer extraction and image matting. Szeliski et al.
[2000] presented a solution to the layer extraction problem in which two independent
“images” are layered on top of each other as a result of reflection or transparency. Their
approach requires that the layered images are moving with respect to each other, a
reasonable assumption for a reflection on a window, but one that does not holds in
our scenario. Farid and Adelson [1999] introduced another solution to this problem,
but require as input two photographs taken with a polarized light filter. Smith and
Blinn [1996] study the related blue-screen matting problem of separating a potentially
translucent foreground object from one or two known backgrounds. Their analysis of the
problem shows that the problem is, in general, underspecified. Zongker et al. [1999] solve
a generalized version of the matting problem which allows for reflections and refractions.
A large body of works [J. Wang and Cohen 2008] deals with image matting for natural
images that typically contain a background with non-constant colors (see Figure 2.2).
Since the problem is ill-posed, additional user input is often required. In our problem,
two successive frames are given which makes the problem easier.
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Figure 2.3: Systems for interaction with editing history like Chronicle [Grossman et al. 2010]
allow users to explore document workflow histories. Our method for decomposing time-lapse
paintings into layers can provide a new source of data for these systems.

Applications

Interacting with editing history is a powerful concept in human-computer interac-
tion [Nancel and Cockburn 2014]. This rich literature on history systems extends far
beyond undo/redo. For digital image editing, this literature includes a generalization of
layers for scaling, resizing, and recoloring strokes [Nancel and Cockburn 2014], revision
control [H.-T. Chen et al. 2011], grouping command history [H.-T. Chen et al. 2012],
learning from or reapplying previous commands [Grossman et al. 2010; Berthouzoz et al.
2011; Xing et al. 2014] (Figure 2.3). Wetpaint [Bonanni et al. 2009] explored a tangible
“scraping” interaction to visualize layered information, such as a painting’s history. Such
powerful interactions are unavailable for physical paintings, even when digitized.

In addition to the history-based interactions for image editing, related interactions have
also been proposed for 2D and 3D vector graphics. Su et al. [2009] presented a tech-
nique for 2D vector graphics editing which suggests objects to select based on previous
selections in the user’s command history. Noris et al. [2012] presented a scribble-based
approach to segment 2D vector graphics sketches based on time of creation, which helps
distinguish nearby strokes drawn at very different times. VisTrails [2009] is a commer-
cial tool for reviewing and reusing command history in the commercial 3D modeling
package Maya. Denning and Pellacini [2013] presented algorithms for revision control
of 3D meshes. H.-T. Chen et al. [2014] introduced a technique for choosing good views
and segmenting 3D models based on the editing history. Two other works analyze and
visualize changes in outdoor, urban scenes [Matzen and Snavely 2014] and construction
sites [Karsch et al. 2014]. These approaches operate on a collection of photographs from
different viewpoints, relying on structure-from-motion to obtain a 3D reconstruction (the
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former) or a 3D architectural model (the latter). Finally, while not about editing his-
tory per se, McCann and Pollard [2009] and McCann and Pollard [2012] introduced two
noteworthy generalizations of layers for image editing.

2.2 Seamless Reconstruction of High-Relief Models

from Hand-Drawn Images

The traditional way of 3D object modeling using professional 3D modeling software
requires skilled users who are comfortable working in the virtual 3D space. Such work
is far from natural for 2D artists who prefer to draw. Closer to the 2D workflow are
sketch-based modeling systems, such as [Igarashi et al. 1999; Igarashi and Hughes 2003;
Tai et al. 2004; Schmidt et al. 2005; Nealen et al. 2007; Borosán et al. 2012], which allow
modeling of 3D objects by adding a volume to user-drawn sketches and by manipulation
of the created shapes. In such modeling systems, the user typically starts with drawing
a closed 2D shape. After finishing the sketch, a volume is added to the 2D shape by
utilizing a 3D shape reconstruction method like, e.g., shape inflation. The user may
then change camera viewpoint, edit the shape using various operations (e.g., by pulling
its outline), or draw another shape’s outline and attach the newly created shape to the
existing one. (See Figure 2.4 for an example of such a modeling system.) To produce
3D models with a more complex topology, the user typically has to view the object from
different viewpoints and manually position parts of the object in space. These systems
thus still require dealing with the 3D domain which may be perceived as a distraction
for the user.

To reduce the distractions, a number of techniques that enable the production of 3D
models from a single drawing, such as [Gingold et al. 2009; Shtof et al. 2013; T. Chen
et al. 2013; Sýkora et al. 2014; Entem et al. 2015; Zeng et al. 2015; Bessmeltsev et al.
2015; Yeh et al. 2017], have been introduced. A more topologically complex 3D object
typically consists of several parts which may be positioned in depth and attached or
smoothly connected. In a drawing, these parts are usually delineated by outlines. (The
2D projections of these parts are also referred to as regions. See Figure 2.5(a,i) for
examples of such drawings.) To resolve the absolute depth position of the object-parts,
most of these approaches propose an automatic method for doing so, usually based on a
small number of user-provided cues.

Aside from the approach of Sýkora et al. [2014] and Entem et al. [2015], the tech-
niques produce models that have object-parts attached, and they do not make any ef-
fort to smoothen the interconnections. The method of Sýkora et al. [2014] and Entem
et al. [2015] consider smooth interconnections, however, the resulting models still have
smoothness-related issues.

In previous work, the reconstruction process is typically separated into a set of indi-
vidual sub-problems which are solved sequentially:

• First, the input regions are inflated to obtain volume.
• Then they are shifted in depth to preserve depth ordering.
• Finally, already inflated and shifted components are stitched together or smoothly

interconnected.
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Figure 2.4: An example of a sketch-based modeling system: By performing a sequence of
operations that consists of drawing shapes, changing camera viewpoints and shapes adjustion
(an example at the top), it is possible to model 3D objects with a certain level of complexity.
The 3D models are obtained by inflating initially flat surfaces and constraining them by the
shapes. This figure illustrates the FiberMesh system [Nealen et al. 2007].

This section reviews advances in solving these sub-problems. We also point out the
main issues of the methods that are the most related to our work ([Sýkora et al. 2014],
[Entem et al. 2015]) and which we address in our work. The pipeline of these methods
is visualized in Figure 2.5 and Figure 2.6, respectively.

Inflation of regions

The idea of adding volume into a 2D drawing by inflation was introduced by Williams
[1991]. In the sketch-based modeling system by Igarashi et al. [1999], a 2D shape is
inflated by using the distance from a chordal axis of the input 2D region to displace
vertices of its triangulated interior. This technique produces surfaces that are coarse and
suffer from a low level of smoothness. Igarashi and Hughes [2003] later improved the
output model quality by beautification of the coarse mesh using implicit surfaces. Tai et
al. [2004] utilized convolution surfaces for inflation. Their method computes a convolution
of a linearly weighted kernel along a medial axis of the 2D shape and sums the obtained
fields. A procedure of sweeping 2D template scalar field followed by bounding of the
resulting 3D field is utilized in [Schmidt et al. 2005] while Nealen et al. [2007] use non-
linear optimization to generate a fair surface interpolating the 2D shape. In [Gingold
et al. 2009], primitives such as generalized cylinders or ellipsoids are fitted into the user
sketches. Shtof et al. [2013] and T. Chen et al. [2013] also utilize such primitives along
with performing computer-assisted fitting to outlines of the reconstructed object-part to
simplify the placement of the primitive. Borosán et al. [2012] approximate the input
sketches using a set of smoothly joined generalized cylinders. Those are also utilized
in [Zeng et al. 2015] followed by the application of a simple Laplacian filtering to make
the reconstructed surface smoother. Sýkora et al. [2014] perform a two-step inflation
procedure to obtain smooth rounded shapes precisely copying the outlines. They first
solve a Poisson equation to obtain a shape with a parabolic cross-section and then by
taking the square root of the height of the parabolically inflated surface, they obtain a
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surface with a semi-elliptical profile – this process is visualized in Figure 2.5(c,d). Yeh
et al. [2017] follow a similar region inflation approach. They first diffuse user-specified
curvature cues (Laplacian values) over the 2D region and then reconstruct the surface
by solving a Poisson equation. They note, however, that such inflation procedure results
in shapes with parabolic profiles. To obtain fully 3D shapes, Feng et al. [2016] propose
a simple extension to the inflation method of Sýkora et al. [2014] that utilizes mirroring.
In [Entem et al. 2015], an implicit surface defined by a skeleton of the 2D shape and its
radius function is used to reconstruct the volume while Bessmeltsev et al. [2015] represent
the 3D shape of 2D regions by a union of generalized surfaces of revolution.

Shifting of inflated regions

The approaches for finding absolute depth position of parts may be categorized as manual
and automatic.

The manual approach requires the user to sketch in a different projection or position the
parts or some auxiliary structure, such as the skeleton, in 3D space manually. Methods
using such an approach include [Igarashi et al. 1999; Igarashi and Hughes 2003; Tai et al.
2004; Schmidt et al. 2005; Nealen et al. 2007; Borosán et al. 2012; Bessmeltsev et al.
2015; Feng et al. 2016].

The automatic approaches first infer the missing relative depth information using vari-
ous cues and then perform the positioning in an automatic fashion using this information.
Gingold et al. [2009] utilize user-supplied connection curve annotations to establish the
relative depth between two parts (with optional specification of an intersection curve).
Shtof et al. [2013] and T. Chen et al. [2013] make use of semantic geometric constraints
such as parallelism, orthogonality, collinear centers, concentricity, and coplanarity to
determine the relative depth of primitives in 3D space. To find the absolute depth po-
sitions of object-parts, Shtof et al. [2013] formulate a non-linear problem utilizing the
geosemantic constraints, which they optimize using L-BFGS solver with automatic dif-
ferentiation. T. Chen et al. [2013] improve on the speed of the process by decomposing
the non-linear problem into two steps – first finding initial depths of all parts at once
to satisfy the geometric constraints and then proceeding with full optimization allowing
change of shapes of the parts. In [Sýkora et al. 2014], illusory surfaces [Geiger et al. 1998]
are employed to predict the relative depth ordering between object-parts with optional
correction of prediction error using user-supplied inequalities [Sýkora et al. 2010]. Then
they solve a quadratic program to find as-constant-as-possible shifting surfaces that de-
form object-parts in depth while meeting the inferred relative depth ordering. Zeng et al.
[2015] propose an iterative optimization process to find consistent object positions on a
supporting plane. As relative depth information, they utilize T-junctions with ground
contact cues. Entem et al. [2015] base their method for finding relative depth ordering
of regions on structural symmetry and then automatically position the 3D reconstructed
regions in depth by considering their thickness. The process may, however, cause some
parts to interpenetrate. Yeh et al. [2017] allow deforming regions in depth with the use of
user-specified slope cues. To shift the inflated and deformed regions in depth so that the
parts do not interpenetrate, they formulate an energy function which aims to minimize
additional deformations of the object-parts and also the gaps between them and meet
the prescribed relative depths. To estimate the relative depth ordering, they employ
T-junctions and overlap area hypotheses [Liu et al. 2013; Yeh et al. 2015].
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Figure 2.5: A brief description of the pipeline of Ink-and-ray method [Sýkora et al. 2014]:
A single input image (a) with determined regions and their relative depth ordering (b) is 3D
reconstructed by inflating each region separately on a common base plane. The inflation is based
on first solving a Poisson equation (c) yielding parabolic profile and then taking the square root of
the height to obtain semi-elliptical profile (d). The absolute depth position of regions (e) is found
by solving a quadratic program taking into account the relative depth ordering. The resulting
model (f) has individual inflated regions attached but not smoothly interconnected. To produce
smooth joints, they perform an additional smoothing step by using biharmonic interpolation (g)
yielding the final model (h). For a different input drawing (i), the method may produce models
that have visible seams at connections of regions (j) while the desired result should rather have
seamless interconnections of parts (k).

Smooth merging of inflated and shifted regions

The works of Gingold et al. [2009], Shtof et al. [2013], T. Chen et al. [2013], Zeng et al.
[2015], Bessmeltsev et al. [2015], Feng et al. [2016], and Yeh et al. [2017] do not support
smoothly interconnected object-parts.

Igarashi et al. [1999] smoothen the part of the mesh in an area marked by the user using
a heuristic method followed by a surface fairing algorithm [Taubin 1995], and a non-linear
geometric fairing algorithm [Schneider and Kobbelt 2001] is employed in their follow-up
work [Igarashi and Hughes 2003]. A variant of the non-linear fairing algorithm is utilized
in [Nealen et al. 2007] for shape reconstruction from control curves which ensures smooth
and seamless interconnections of individual modeled object parts. Borosán et al. [2012]
perform the Laplacian smoothing around the intersection loop. In [Sýkora et al. 2014],
a smoothing area is first computed based on user-given parameters, and bi-harmonic
interpolation is then performed in the area. Such smoothing procedure may, however,
still produce joints with unwanted seams (see Figure 2.6(j)). Some works [Tai et al. 2004;
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(a)

(b) (c) (d) (e)

(f) (g) (h)

Figure 2.6: A brief description of the pipeline of a method for 3D reconstruction of animals
from a single image [Entem et al. 2015]: From a single input image (a), regions are extracted
and their relative depth ordering is found based on structural symmetry (b). Individual regions
are 3D reconstructed using skeleton-based convolution surfaces (c), and the absolute depth posi-
tion of regions is determined based on the thickness of their 3D reconstruction (d). The final 3D
model with individual parts smoothly interconnected (e) is obtained by summation. The recon-
structed model usually has visible protrusions as depicted inside the red circle. For a different
input image (f), this method produces a result with visible bulges (g) while the desired result
should rather have truly seamless interconnections of individual parts (h).

Schmidt et al. 2005; Entem et al. 2015] utilize implicit surfaces which enable smooth
blending of parts by using Ricci’s operator [Ricci 1973]. This approach allows control
over the smoothness of each joint, however, when combined with the shifting technique
of Entem et al. [2015], the result usually has visible protrusions in areas where several
parts are interconnected. Such behavior may be unwanted as depicted in Figure 2.6(g).

Conclusion

The works mentioned in this section decouple the modeling process into separate sub-
problems. Because of this sequential process, the quality of the resulting mesh often
suffers from the lack of smoothness in the areas where individual parts were stitched
together. Our method described in Chapter 4 unifies inflation, positioning, and seamless
joining of individual components into a single energy minimization framework. From
a single hand-drawn image and with minimal user intervention, our approach makes
it possible to create organic high-relief models with rounded parts that are automati-
cally correctly positioned in depth and seamlessly interconnected. The resulting models
produced using our method resemble objects sculpted from a single piece of material.
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2.3 Example-Based Synthesis of Hand-Drawn

Animations

Despite today’s prevalence of 3D animation, 2D animation remains a popular and en-
gaging medium for storytelling. Production of 2D animation with qualities of traditional
hand-drawn animation is, however, extremely demanding process that requires highly ex-
perienced artists. Since the pioneering work of Catmull [1978], many follow-up research
has been carried out over the last few decades to facilitate the production of traditional
hand-drawn animation using computers.

Computer-assisted inbetweening

One of the problems that have received significant attention is computer-assisted inbe-
tweening. It aims to generate intermediate poses between two (or more) extreme key
poses (keyframes). The problem is challenging as the extreme poses are projections of a
usually 3D object in animator’s mind and they thus typically miss some important in-
formation, for instance, due to occlusions [Catmull 1978]. Various techniques have been
proposed to tackle the problem, achieving impressive results both in the vector [Kort
2002; Baxter and Anjyo 2006; Whited et al. 2010; Yang 2018; Yang et al. 2018] and
raster domains [Baxter et al. 2009; Sýkora et al. 2009; Arora et al. 2017] (see Figure 2.7
for an illustration). Some of these methods [Baxter and Anjyo 2006; Baxter et al. 2009;
Arora et al. 2017] propose N-way interpolation between multiple keyframes to widen the
available pose space. Nevertheless, these techniques are designed to deliver plausible
transitions only between keyframes. To produce animation for a new target motion,
artists must create additional keyframes by hand.

Simulation of animation principles

One of the long-term goals of computer graphics has been to reproduce the expressiveness
of traditional hand-drawn 2D animations while reducing the cost and effort of producing
it. The fundamental principles of animation developed at Walt Disney Studio play a
crucial role in this expressiveness, and many works have tried to adapt them to digital
animation tools. The 2D animation principles include squash-and-stretch, timing and
spacing, anticipation, follow-through, arc trajectories, and lines of action [Thomas and
Johnston 1981]. Lasseter [1987] described how these principles might also be manually
applied by an artist to produce expressive 3D keyframe animations. Much subsequent
work has been done to automatize the creation of the animation effects using comput-
ers. The techniques aiming to do so may be categorized as procedural techniques and
techniques that employ physical simulation.

Procedural techniques. To simulate anticipation and follow-through as well as squash-
and-stretch deformations, J. Wang et al. [2006] propose a simple temporal filter that
enables the production of these effects by delaying parts of an existing animation rep-
resented by 2D polygonal shapes or motion captured (MoCap) data. Lee et al. [2012]
obtain similar effects on segmented objects in a video by relating a set of representative
2D deformations to the modal analysis of the object motion. Focusing on 3D skeletal
animation, Noble and Tang [2006] present a tool to automatically bend the limbs of a
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Figure 2.7: Recent computer-aided inbetweening methods [Yang et al. 2018] allow generating
smoothly interpolated animation (frames in the middle) from a set of hand-drawn keyframes
(left and right) even for challenging poses with occlusions. However, inbetweening methods are
designed to deliver plausible transitions only between keyframes. Based on a short hand-drawn
input animation, our animation synthesis methods can generate a longer and more complex
novel animation retaining the style of the input.

character following lines of actions or arcs. On the artistically controllable side, Y. Li
et al. [2003] present a sketching interface that allows a user to guide the deformation of
both the input animated skeleton and surface mesh to improve the expressiveness of Mo-
Cap data. Recently, several 2D sketching systems [Kazi et al. 2014a; Kazi et al. 2014b;
Kazi et al. 2016; Xing et al. 2016] have been developed to simplify the production of
dynamic illustrations, reproducing most principles of character or special effects anima-
tion. To stylize motion in CG animation, Schmid et al. [2010] proposed programmable
motion effects which extend the concept of surface shader and demonstrate their utility
for generating motion blur, stroboscopic images, speed lines, and also time shifting which
can be used to bend a moving object automatically.

Since artist’s style is a highly personalized concept, the stylization of one animation
effect may differ considerably between two animators and even a single animator may
create many variations. (See Figure 2.8(a) for a short illustration.) The variability of
real hand-drawn animation thus cannot be easily parameterized. The works mentioned
above employ algorithmic routines to simulate animation effects which inherently limits
the stylization variability. Unlike our work, they are not tailored to the specific style
given by the artist.

Physics-driven approaches. Physical simulation is a convenient way to animate a large
number of 2D or 3D bodies automatically, but the expressiveness of the resulting motion
is limited by the degree of complexity modeled by the physical system. For instance, it is
common to restrict the simulation to rigid bodies for computational efficiency, while tra-
ditional hand-drawn animated objects more often resemble deformable bodies governed
by exaggerated physical laws. To enhance basic 3D simulations, multiple works [Chenney
et al. 2002; Haller et al. 2004; Garcia et al. 2007] derive automatic procedural rules to
generate squash-and-stretch and temporal effects based on motion parameters (velocity,
acceleration, etc.) but such methods have limited art-directability.

To allow artistic control, the spacetime [Witkin and Kass 1988] and dynamic [Barzel
and Barr 1988] constraint formulations cast physical simulation as a constrained opti-
mization problem. Through those constraints, the artist can direct the simulation to act
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(a)

(b)

(c)

Figure 2.8: Traditional hand-drawn animation offers almost unlimited stylization variability.
For illustration, two different stylizations of squash-and-stretch effect for a simple bouncing
square animation were created by a single artist (a). Sketching systems for 2D animation
production like Motion Amplifiers [Kazi et al. 2016] (b) enable the creation of 2D dynamic
illustrations enriched with various animation effects. The effects are, however, encoded as
scripted deformations which inherently limits the variability. 2D animation systems like [Bai
et al. 2016] (c) combine keyframing of local deformations with physical simulation and also
enable reproducing many of the animation principles. These systems, however, require the user
to manipulate higher-level controls instead of simply drawing frames which is unnatural and
more constrained. They also do not consider faithful preservation of hand-drawn appearance
and produce visual artifacts.



2.3. EXAMPLE-BASED SYNTHESIS OF HAND-DRAWN ANIMATIONS 23

Figure 2.9: Sýkora et al. [2009] propose an example-based shape deformation technique that
enables reusing consecutive frames of original hand-drawn animation (left) for generating novel
poses by inbetweening and subsequent deformation (right).

as a physically-plausible interpolation mechanism between key-poses. Bai et al. [2016]
leverage this idea to build a 2D animation system that combines the keyframing of local
deformations with physical simulation for powerful inbetweening (Figure 2.8(c)). Al-
though this approach allows an unprecedented level of artistic control and manages to
reproduce many of the principles of animation, it requires the user to specify control
handles, which are constrained and unnatural to use when compared to simply drawing
frames, in particular when the artist desires a precise control over shape outlines.

Physical simulation is also leveraged in [Willett et al. 2017] to simplify the creation of
secondary motion effects for layered 2D artwork. Zhu et al. [2017] utilize physics-driven
deformation to perform planar interpolation with dynamic secondary motion effects and
B. Jones et al. [2015] leverage example-based physical simulation [Koyama et al. 2012]
to navigate in a manifold of example poses.

Although the methods mentioned above may achieve the look-and-feel of traditional
animation, they might not preserve specific motion details that often characterize a given
artist’s style. These techniques also do not consider how to faithfully preserve the detailed
visual appearance of hand-drawn artwork that is in motion. In most cases, textures are
simply stretched and deformed, which causes visual artifacts.

Original content manipulation

To retain more of a hand-drawn appearance, some techniques directly reuse or manipulate
existing hand-drawn content. They either use the animation sequences unchanged [Buck
et al. 2000; de Juan and Bodenheimer 2004; van Haevre et al. 2005; de Juan and Boden-
heimer 2006] and only reorder the animation frames, add more inbetweens, or directly
manipulate the appearance on a pixel level [Sýkora et al. 2009; Sýkora et al. 2011; Zhang
et al. 2012] to enhance the visual content or change the motion characteristics. (See
Figure 2.9 for an illustration). Although these approaches better preserve the notion
of hand-colored animation, their potential to make substantial changes to the motion is
rather limited. Extensive manual work is typically required when a different animation
needs to be produced out of existing footage.

Example-based methods

Example-based techniques provide a natural and intuitive interface, where examples are
used to capture the style and intent of an artist. Rather than directly reusing hand-
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drawn frames, image analogies [Hertzmann et al. 2001] provide a powerful framework for
synthesizing new content based on example artwork. In this approach, a guiding image
and its stylized version are provided to define the style transfer analogy. The analogy is
then used to produce the stylized version of a different guiding image. (See Figure 2.10
for an illustration of the principle). The approach has been improved by utilizing a non-
parametric texture optimization technique [Kwatra et al. 2005; Wexler et al. 2007] with
uniform usage of source patches to avoid the undesirable wash-out effect [Jamrǐska et al.
2015]. Fǐser et al. [2016] demonstrated that taking object illumination and its styliza-
tion into account combined with the encouragement of uniform usage of source patches
better preserves the visual richness of hand-created style exemplars. In their follow-up
work [Fǐser et al. 2017], they proposed specifically designed guidance channels for the
synthesis of stylized faces (see Figure 2.11). Gatys et al. [2016] utilized a convolutional
neural networks approach to tackle the style transfer problem, however, their method has
difficulties to preserve the textural richness and may distort local visual features. The
image analogies approach has also been extended to stylize animations [Bénard et al.
2013] with later work adding user control over the amount of temporal flickering [Fǐser
et al. 2014; Fǐser et al. 2017] to preserve better the impression that every animation
frame was created by hand independently.

Nevertheless, these analogy-based approaches only support appearance style transfer
and do not consider how to represent and apply motion stylizations. There are some
exceptions, such as Bregler et al. [2002] who propose to capture and re-target motion
from existing cartoon animations by combining a global affine deformation with drawings
interpolation using a key-shape model. B. Jones et al. [2015] follows a similar approach,
connecting the navigation in a simplicial complex [Ngo et al. 2000] with events of a 2D
physical simulation. Pose-space interpolation can produce impressive results, but the
quality of the output is highly dependent on a good choice of the key-shapes which an
artist has to select and organize manually beforehand.

To guide or enrich 3D simulations, example-based approaches augment the simulated
objects with examples of desirable deformations [Martin et al. 2011; Koyama et al. 2012;
Coros et al. 2012; B. Jones et al. 2016]. In those approaches, however, exact correspon-
dences between deformation exemplars are known beforehand, and only a simple para-
metric deformation with a limited number of degrees of freedom is used. Even though
this setting may be natural for digital 3D artists, it is again limited and constraining for
traditional 2D animators.

Closest to the traditional animation pipeline, Xing et al. [2015] present an interactive
system for computer-assisted 2D animation. It combines discrete texture synthesis with
an as-rigid-as-possible deformation model to predict and interpolate drawings based on
the current and previous frames. This approach is convincing for frame-by-frame anima-
tion, but the spatiotemporal locality of the analysis makes it unsuited for pose-to-pose
planning. Since the interpolations are solely based on the past drawings using local
affine transformations, the predicted motion and deformations tend to be unnatural and
cannot easily be edited, unless the artist draws most intermediate frames.

Skeletal animation

Skeletal animation [Burtnyk and Wein 1976] has proven to be an efficient tool for deform-
ing 2D shapes [Hornung et al. 2007; Vanaken et al. 2008]. It has been used to control
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(a) (b)

(d)(c)

(e) (f) (g) (h)

Figure 2.10: Image Analogies [Hertzmann et al. 2001] make possible to learn a style from
a pair of unstylized (a) and stylized (b) images and transfer the learned style to a different
image (c) to obtain a stylized version of it (d). In a similar application (Texture by Numbers),
an analogy between a pair of a segmented (e) and original (f) image is determined and then
applied to a modified segmentation (g) to produce a novel image (h) similar in appearance to
the original image.
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Figure 2.11: FaceStyle [Fǐser et al. 2017] use the concept of Image Analogies [Hertzmann
et al. 2001] to transfer the appearance of a source painting of a face (top right) to frames of
a target video sequence (bottom right). To achieve this, they use specifically designed guidance
channels (all columns except the rightmost). Unlike our work, such analogy-based approaches
only support appearance style transfer and do not consider how to represent and apply motion
stylizations.

deformation in the context of cartoon animations [Sýkora et al. 2005; X. Wang et al.
2013] as well as to transfer motion from a sequence of drawings [Bregler et al. 2002;
Davis et al. 2003; Jain et al. 2009] or a single pose [Bessmeltsev et al. 2016] onto a 3D
model. In our framework described in Chapter 6, we demonstrate that skeletal animation
can also be used as an effective guide to performing style transfer between hand-drawn
exemplars and target animation.

Conclusion

The above-mentioned 2D animation research mostly focuses on individual subproblems
such as inbetweening and motion or appearance transfer. Dealing with the subproblems
separately may cause the result missing some important features of the input hand-
drawn content. For example, in some cases, shapes are interpolated with the proper
motion characteristics, but the result invokes computer-generated appearance due to
artifacts caused by distortion or blending of textures [Baxter et al. 2009; Sýkora et al.
2009; Arora et al. 2017]. Or, the appearance is transferred properly, but the underlying
motion feels too artificial [Fǐser et al. 2014; Fǐser et al. 2017]). Our techniques for
example-based animation synthesis combine motion and appearance stylization into a
unifying framework that reproduces both the appearance and motion characteristics of
hand-drawn animations.
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Tan, J., Dvorožňák, M., Sýkora, D., and Gingold, Y. [2015]. “Decomposing Time-Lapse
Paintings into Layers”. ACM Transactions on Graphics 34.4, p. 61

https://doi.org/10.1145/2766960
https://doi.org/10.1145/2766960


ACM Reference Format
Tan, J., Dvoroznak, M., Sykora, D., Gingold, Y. 2015. Decomposing Time-Lapse Paintings into Layers. 
ACM Trans. Graph. 34, 4, Article 61 (August 2015), 10 pages. DOI = 10.1145/2766960 
http://doi.acm.org/10.1145/2766960.

Copyright Notice
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted 
without fee provided that copies are not made or distributed for profi t or commercial advantage and that 
copies bear this notice and the full citation on the fi rst page. Copyrights for components of this work owned 
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specifi c permission and/or a fee. Request 
permissions from permissions@acm.org.
SIGGRAPH ‘15 Technical Paper, August 09 – 13, 2015, Los Angeles, CA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM. 
ACM 978-1-4503-3331-3/15/08 ... $15.00.
DOI: http://dx.doi.org/10.1145/2766960

Decomposing Time-Lapse Paintings into Layers
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Figure 1: Our approach enables rich history-based editing operations on physical paintings. From a time lapse recording of the painting
process (bottom) we extract translucent paint layers into a temporal creation history. This allows artists to perform otherwise impossible
spatio-temporal selections & edits which leverage temporal information to produce complex effects such as color gradients controlled by
time (top left) or temporal eraser (top right). (Paint layers in this example use Porter-Duff “over” blending.) Time lapse video c©Marcello
Barenghi.

Abstract

The creation of a painting, in the physical world or digitally, is a
process that occurs over time. Later strokes cover earlier strokes,
and strokes painted at a similar time are likely to be part of the
same object. In the final painting, this temporal history is lost, and
a static arrangement of color is all that remains. The rich literature
for interacting with image editing history cannot be used. To enable
these interactions, we present a set of techniques to decompose a
time lapse video of a painting (defined generally to include pencils,
markers, etc.) into a sequence of translucent “stroke” images. We
present translucency-maximizing solutions for recovering physical
(Kubelka and Munk layering) or digital (Porter and Duff “over”
blending operation) paint parameters from before/after image pairs.
We also present a pipeline for processing real-world videos of paint-
ings capable of handling long-term occlusions, such as the painter’s
hand and its shadow, color shifts, and noise.

CR Categories: I.3.7 [Computer Graphics]: Picture/Image

∗e-mail:tanjianchaoustc@gmail.com

Generation—Bitmap and framebuffer operations I.4.6 [Image Pro-
cessing and Computer Vision]: Segmentation—Pixel classification;

Keywords: images, surfaces, depth, time, video, channel, segmen-
tation, layers, photoshop, painting

1 Introduction

A painting is an arrangement of colors on a 2D canvas. During
the painting process, artists deposit color throughout the canvas
via a sequence of strokes, often with a real (or simulated, in the
case of digital paintings) paint brush. The final painting is, from
a computational point of view, a grid of unstructured color values.
Extracting structure from the final painting is extremely challenging.
Yet the temporal record, which is lost in the final painting, is infor-
mative about the scene being painted. Complex drawings are drawn
according to a hierarchical structure [Taylor and Tversky 1992]. Ob-
jects and parts of objects are drawn together using lower-level rules
[Van Sommers 1984; Novick and Tversky 1987; Tversky 1999].

Interacting with editing history is a powerful concept in human-
computer interaction. (See Nancel and Cockburn’s CAUSAL-
ITY [2014] for a recent survey and conceptual model.) This rich
literature on history systems extends far beyond undo/redo. For
digital image editing, this literature includes a generalization of lay-
ers for scaling, resizing, and recoloring strokes [Nancel and Cock-
burn 2014], revision control [Chen et al. 2011], grouping command
history [Chen et al. 2012], learning from or reapplying previous
commands [Grossman et al. 2010; Berthouzoz et al. 2011; Xing
et al. 2014]. Wetpaint [Bonanni et al. 2009] explored a tangible
“scraping” interaction to visualize layered information, such as a
painting’s history. Such powerful interactions are unavailable for
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physical paintings, even when digitized.

To enable these interactions, we propose to extract editing history
from paintings by analyzing time lapse videos of their creation and
decomposing them into translucent paint layers. These paint layers
correspond to the “commands” necessary for history-based editing
applications. Throughout this paper (unless stated otherwise), we
use “paint” in a general sense to mean any kind of physical marking,
including pencils, pens, markers, watercolor, acrylic, etc. Time
lapse videos of paintings are readily available online, often for
instructional or demonstrative purposes. Our analysis can also be
used to recover a command history for time-lapse videos of digital
paintings; this is useful for applying history-based editing operations
to popular digital painting applications.

There are two primary challenges to extracting paint layers from
time lapse videos. The first challenge is that, given two images from
a time lapse, the paint layer which effected the observed difference
is ambiguous. For example, an observed change from white to pink
could be the result of opaque pink paint or translucent red paint.
Because opaque paint completely covers or hides colors underneath,
it limits the reuse of covered strokes in history-based editing op-
erations. Therefore, we seek maximally translucent paint in order
for the layers to be maximally reusable. In Section 3, we present
solutions based on the Kubelka-Munk model of pigment layering
[Kubelka 1948] and the standard Porter and Duff [Porter and Duff
1984] “over” blending equation used throughout computer graph-
ics. The second challenge is that time-lapse painting videos contain
many changes not due to the application of paint. Spurious changes
may be caused by occlusions, such as the painter’s hand or brush
and accompanying shadows; camera motion, refocusing, or color
balance changes; compression noise, watermarks, or overlays; and
dynamic effects like canvas vibration and the drying of watercolor.
Unlike the foreground object subtraction problem in computer vi-
sion, some parts of the canvas may be occluded more often than
not. In Section 4, we present a solution for processing real-world
time-lapse painting videos. Our solution removes even extremely
frequent occlusions, noise, and global color shifts. Camera and
canvas motion are beyond the scope of this work.

Contributions

• A pipeline for processing real-world time-lapse paintings (Sec-
tion 4), capable of suppressing long-term occlusions such as
the painter’s hand and its shadow, short-term occlusions like
brushes, noise due to compression and lighting, and color
shifts.

• Extremely efficient algorithms for decomposing image se-
quences into translucent paint layers according to either the
Kubelka-Munk model for physical material layering, an exten-
sion of their model for mixing, or the standard linear blending
algorithm used in digital painting (Section 3).

Our contributions are in the generation of this data, not in its down-
stream applications (Section 5).

2 Related Work

Interacting with editing history In addition to the previously
mentioned history-based interactions for image editing, related inter-
actions have also been proposed for 2D and 3D vector graphics. Su et
al. [2009] presented a technique for 2D vector graphics editing which
suggests objects to select based on previous selections in the user’s
command history. Noris et al. [2012] presented a scribble-based
approach to segment 2D vector graphics sketches based on time
of creation, which helps distinguish nearby strokes drawn at very

different times. VisTrails [2009] is a commercial tool for review-
ing and reusing command history in the commercial 3D modeling
package Maya. Denning and Pellacini [2013] presented algorithms
for revision control of 3D meshes. Chen et al. [2014] introduced
a technique for choosing good views and segmenting 3D models
based on the editing history. Two recent works analyze and visualize
changes in outdoor, urban scenes [Matzen and Snavely 2014] and
construction sites [Karsch et al. 2014]. These approaches operate
on a collection of photographs from different viewpoints, relying on
structure-from-motion to obtain a 3D reconstruction (the former) or
a 3D architectural model (the latter). Finally, while not about editing
history per se, McCann and Pollard [2009; 2012] introduced two
noteworthy generalizations of layers for image editing.

Decomposing edits Hu et al. [2013] investigated the related prob-
lem of recovering an image editing operation from a pair of images.
The editing operations they support are duplicating and geometri-
cally transforming an image region, and adjusting the color of an
image region. We solve the orthogonal problem of recovering maxi-
mally translucent paint layers using both a physical Kubelka-Munk
model and the traditional “over” digital compositing operation. Our
work also includes a far more efficient algorithm for finding per-pixel
opacity for a single-color layer.

Amati and Brostow [2010] analyzed videos of sumi-e paintings, a
style of monochromatic (shades of black) art with relatively few
strokes. They find a small number of clean frames by comparing
binary thresholded frames to the binary thresholded final painting.
The result of their analysis is a segmentation of the final painting
into parts (e.g. leaves and flowers). We are inspired by this work and
share the observation that paint is far more temporally stable than
occlusions, and that algorithms for skin detection and foreground
subtraction are unsuitably unstable for analyzing painting videos.

Fu et al. [2011] extract an animated stroke order from static line
drawings based on such cognitive and geometric properties. They
operate at the part level and take as input a drawing segmented into
objects. In contrast, we operate on paintings and are already given
a time lapse sequence of its creation. Both our work and Fu et
al. [2011] rely on a similar assumption, that the order of markings
made when drawing or painting is not random.

Xu et al. [2006] introduced an algorithm that decomposes a single
image of a Chinese painting into a collection of layered brush strokes.
This comprises image segmentation, detecting the curves of painted
strokes, and separating colors for overlapping strokes. Richardt
et al. [2014] presented a semi-automatic approach to decompose
single images into a mix of transparent and opaque vector graphic
layers, where the vector graphics can be filled with linear and radial
gradients. In contrast, our approach relies on a video of the creation
process, which simplifies segmentation though not color separation.
We treat color separation in terms of both the Kubelka-Munk physi-
cal layering model and the digital compositing “over” operation, and
transform the problem into a simple geometric one in RGB-space.

Image matting Color separation is also related to layer extraction
and blue-screen matting. Szeliski et al. [2000] presented a solution
to the layer extraction problem in which two independent “images”
are layered on top of each other as a result of reflection or trans-
parency. Their approach requires that the layered images are moving
with respect to each other, a reasonable assumption for a reflection
on a window, but one that does not holds in our scenario. Farid
and Adelson [1999] introduced another solution to this problem,
but require as input two photographs taken with a polarized light
filter. Smith and Blinn [1996] study the related blue-screen matting
problem of separating a potentially translucent foreground object
from one or two known backgrounds. Their analysis of the problem
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Figure 2: The cube of valid RGB colors. Left: The color of a pixel
before and after a modification to a painting defines a line. With
Porter-Duff’s “over” compositing, the paint color must lie on the
portion of the line beyond after and within the cube. Right: In RGB-
space, the after color of every pixel (here, i, j, k, l) affected by a
stroke is the result of pulling its before color towards the stroke’s
color.

shows that the problem is, in general, underspecified. Zongker et
al. [1999] solve a generalized version of the matting problem which
allows for reflections and refractions.

3 Decomposing Time Lapse Paintings

c© Will Kemp

Viewed as a time lapse, the darkening of a
lemon (right) has an ambiguous interpreta-
tion. The darker color could either be the
result of painting with an opaque, darker
shade of yellow, or else it could be the re-
sult of painting with a “translucent” black
or brown pigment. (Translucency could be the result of pigment
layering or mixing; see below.) The opaque interpretation is always
possible, but completely hides all previous information, preventing
its use in later editing applications. For history-based editing oper-
ations, we claim that the translucent interpretation is more useful
and, in general, a better conceptual match to the painting process.
In other words, we wish not to distinguish between paint mixed on
the easel and paint mixed directly on the canvas, and to view even
“opaque” acrylic paint as potentially translucent.

Input We take as input a time lapse recording of a painting in the
form of a sequence of albedo or reflectance images It1 , It2 , . . . , Itn .
(We describe our process for obtaining such images from real-world
videos in Section 4.) An image Iti stores the state of the painting at
time ti. Each RGB color channel of a pixel store a value in [0, 1] rep-
resenting the overall fraction of incident light that is reflected at that
wavelength. Given two such images Iti−1 and Iti , our goal is to re-
cover the per-pixel parameters of “paint” Pti such that applying Pti

to Iti−1 results in It1 . We do this using a physical Kubelka-Munk
model of material layering (Section 3.1, Pti = (Rti , Tti)) and using
the linear blending equation [Porter and Duff 1984] commonly used
for digital compositing and painting (Section 3.2, Pti = RGBti ).

3.1 Recovering Physical Paint Parameters

Kubelka and Munk [Kubelka and Munk 1931; Kubelka 1948] mod-
eled the reflectance R and transmittance T of a layer of homoge-
neous material in terms of the material’s absorption and scattering
coefficients K and S. (All parameters are per-wavelength.) The
model is widely used in paint, plastic, paper, and textiles and has
previously been used in computer graphics for accurately simulating

paint [Konieczny and Meyer 2009; Curtis et al. 1997; Baxter et al.
2004; Haase and Meyer 1992; Lu et al. 2014; Budsberg 2007; Dan-
nen 2012]. A summary of useful formulae related to the Kubelka-
Munk model can be found in [Barbarić-Mikočević and Itrić 2011].
When multiple materials are present, the Kubelka-Munk model can
be used in two ways: layering and mixing.

RR1

T1 R2

T2

T

Layer2

Layer1

Layering Kubelka [1948] presented
formulae for the overall reflectance and
transmittance of a stack of non-opaque
layers, given each layer’s individual re-
flectance R and transmittance T coeffi-
cients.1 R and T can be expressed in terms of absorption, scattering,
and thickness parameters, but it is more straightforward and involves
fewer parameters to simply consider R and T . In our scenario, we
observe a sequence of reflectance images Iti . Each Iti stores the
overall reflectance underneath every pixel at time ti. It0 , the initial
frame, stores the reflectance of the backing material, such as a blank
canvas or sheet of paper. We wish to find the reflectance Rti and
transmittance Tti of the paint layer that results in Iti when placed
above Iti−1 . The equation is [Kubelka 1948; Kubelka 1954]:

Iti = Rti +
T 2
tiIti−1

1−RtiIti−1

(1)

R, T ∈ [0, 1] and, due to the conservation of energy, T + R ≤ 1.
(The fraction of illumination absorbed by the layer is 1− T −R.)
In general, there are infinitely many solutions, including the opaque
solution Tti = 0, Rti = Iti . To maximize the reusability of recov-
ered layers, we find the solution that maximizes the transmittance
T :

if Iti−1 = 0: Rti = Iti , Tti = 1− Iti
else if Iti = 0: Rti = 0, Tti = 0

else if Iti +
1

Iti−1
≤ 2: Rti = 0, Tti =

√
Iti

Iti−1

else if
Iti

Iti−1
≤ 1: Rti = 0, Tti =

√
Iti

Iti−1

else: Rti = X =

Iti
Iti−1

−1

Iti+
1

Iti−1
−2

Tti = 1−X

To the best of our knowledge, these transmittance-maximizing so-
lutions have not previously been presented. See Appendix A for a
derivation. In our setting, where the I are RGB reflectance images,
R and T are also RGB images (with values in [0, 1]) and easily vi-
sualized (Figure 4). R is an additive image (transparent R is black)
and T is a multiplicative image (transparent T is white). Our solu-
tion continuously transitions between multiplicative blending with
bright backgrounds and additive blending with dark ones. Nearly
all changes are partially translucent, and more extreme changes
gradually become opaque. We compare our maximally transmissive
solutions to scanned watercolor layers in Figure 3.

Mixing The Kubelka-Munk mixing model, while suitable for ho-
mogeneous mixtures such as wet paint, is not as suited for our
purposes as layering. The mixing model can only approximate a
completely opaque layer of paint via very large mixing coefficients
(see supplemental materials). Moreover, the scattering and absorp-
tion parameters are less intuitive. They have no upper bound, unlike
transmittance and reflectance, which range from 0 to 1, and can be
visualized as an additive and multiplicative image. For completeness,

1Kubelka [1948] points out that the layering equation we use was inde-
pendently derived and presented by Gurevic in 1930 and by Judd in 1934.
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Figure 3: Our Kubelka-Munk layering model recovers different re-
flectance and transmittance layers depending on the backing paper’s
brightness. To illustrate this difference, we scan blue and yellow
watercolor paint and their overlap (left column). By assuming dark
or bright backing paper, we can correspondingly recover different
pairs of reflectance and transmittance layers for the blue and yellow
paint, and reconstruct the overlap colors (middle and right columns).
When assuming dark backing paper (middle column), recovered lay-
ers are both reflective (additive) and transmissive (multiplicative),
and the overlap color will depend on the layer order. When assum-
ing bright backing paper (right column), the recovered paint layers
are purely transmissive (multiplicative). Purely transmissive layers
commute; the overlap color is independent of the layer order, and
the two reconstructed overlap colors are the same.

we include solutions for minimal modification of current mixing
parameters in the supplemental materials.

3.2 Recovering Digital Paint Parameters

In digital painting and compositing, the standard blending equation
is Porter and Duff [1984]’s “over” operation:

after = (1− α)before + α · paint (2)

In our setting, we treat before and after as the observed per-pixel
RGB reflectance in Iti−1 and Iti . The layer’s translucency α ∈
[0, 1] is the interpolation parameter between before and paint.

To determine α and paint, we view the blending equation geomet-
rically in RGB space (Figure 2). For every changed pixel, possible
paint colors lie on the line passing through before and after, and, for
a given paint color on the line, α = after−before

paint−before . There are additional
constraints: 0 < α ≤ 1 and paint’s RGB components must all lie
within [0, 1]. Note that paint cannot deviate from this line, or else
before would not exactly reconstruct after.

This is still, however, an under-constrained problem. We propose two
techniques for choosing paint and α, one that minimizes α and one
that computes a consistent paint color among pixels. A comparison
of these techniques can be seen in Figure 4. To minimize α, each
pixel’s paint is chosen to be the intersection of its line with the RGB
cube itself. This is equivalent to choosing the most extreme paint
possible. This SMALL-ALPHA approach is extremely efficient and
results in “minimally” opaque layers.

When minimizing α, however, pixels’ paint colors aren’t necessarily
consistent (Figure 4). For short time-lapse intervals, however, we
expect that the artist will only have used one color. Our CLOSEST-
PAINT approach finds the color that minimizes the squared distance
(in RGB-space) to every changed pixel’s line. The minimizing color
is then projected onto each pixel’s

←−−−−−→
before after line. Solving the

least squares problem entails solving a simple 3× 3 linear system
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Figure 4: Before and after a stroke is applied. The RGBA layers
recovered by our algorithms SMALL-ALPHA, CLOSEST-PAINT,
CLOSEST-PAINT with quantization correction, and the ground truth
stroke itself. The Kubelka-Munk R and T values for the layer, and
the R, T values composited with white.

of equations (3 being the number of color channels):

E =

∥∥∥∥
ui · (paint − beforei)

‖ui‖2
ui + beforei − paint

∥∥∥∥
2

, (3)

where ui = afteri − beforei. Building the 3 × 3 system requires
a summation over all n changed pixels. This approach is far more
efficient than the n × n approaches presented in Xu et al. [2006]
and Hu et al. [2013] and assumes nothing about α’s smoothness.

The intuition behind the CLOSEST-PAINT approach is that every
pixel affected by a stroke is pulled towards the stroke’s paint color,
by an amount determined by each pixel’s α parameter (Figure 2).
After projecting the global paint color onto the valid region of each
pixels’ line, we compute per-pixel α values.

Two minor improvements to CLOSEST-PAINT account for the quan-
tization of (typically 8-bit) color component values. Taking quanti-
zation into account, we seek paint and α such that

after = ROUND ((1− α)before + α · paint)

Because after is the result of rounding, the line that paint must lie
on can pass through any part of the RGB “pixel cube” that rounds
to after. The accuracy of each line’s direction is proportional to its
length, so our first improvement is to weight each term in Equation 3
by ‖afteri − beforei‖2. Once we solve the least squares problem
and find the global paint color, our second improvement is to project
after onto the line between before and the minimizing paint color—
or as far towards the line as possible without crossing the boundary
of after’s “pixel cube.” We perform this quantization-correcting
projection prior to the final projection of the minimizing color onto
the valid region of the line passing through before and âfter.

4 Processing time lapse videos

Time lapse painting videos are readily available online, often for
instructional or demonstration purposes. Before these videos can be
processed by our layer decomposition algorithms (Section 3), they
must first be filtered to eliminate changes not due to the applica-
tion of paint and finally converted to reflectance (albedo) images.
Spurious changes can be caused by the environment (occlusions
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Figure 6: A slice of the egg video in time, and its annotated reflec-
tion. Many pixels are occluded for the majority of frames. Video
c© Marcello Barenghi.
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Figure 7: Background estimation algorithms are challenged by time-
lapse painting videos. We train Zivkovic and van der Heijden [2006]
and Godbehere et al. [2012] on 200 frames and vary their respective
thresholds. Both algorithms classify painted strokes as foreground
(or, with a liberal threshold, misclassify the hand and shadow). Our
algorithm’s keyframe mask (cyan) suppresses the hand and shadow;
the moving standard deviation (pure blue), with varying thresholds,
masks the pencil tip and little additional paint. Video c©Marcello
Barenghi.

of the canvas, such as the painter’s hand or instruments, and ac-
companying shadows); camera (motion or color balance changes);
post-processing (compression noise, permanent watermarks or over-
lays, and other visual effects); and dynamics (canvas vibration or
motion and the drying of watercolor). In this work, we process time
lapse videos with long-term occlusions, global color shifts, compres-
sion noise, and a mild amount of watercolor paint dynamics. We
assume that the camera and canvas are fixed. Camera motion, canvas
vibration and motion, and permanent post-processing watermarks
and overlays are beyond the scope of this work. We further assume
that the input video has been manually cropped to the canvas.

Existing background/foreground estimation algorithms are not well-
suited for our particular input (a finding shared by Amati and Bros-
tow [2010]). To begin, many pixels are occluded or in shadow for
the majority of frames (Figure 6). The “background” in our case is
the painting, which is constantly changing in tandem and exactly un-
derneath the foreground object. The occluder includes a paintbrush
whose tip is exactly the same color as the paint we are interested in.
Likewise, we do not want to use a model of human skin, because

the hand may be similar to the paint colors. Background estimation
algorithms [Zivkovic and van der Heijden 2006; Godbehere et al.
2012] are challenged by our data and would produce large numbers
of spurious changes (Figure 7). Finally, watercolor and markers take
some time to dry, so they include some dynamics. If we waited until
they were completely dry, layer order would be strongly affected.

The recent time lapse motion compensation algorithm of Rubinstein
et al. [2011] is limited to very short sequences (300 frames took
50 hours, whereas our input sequences have ∼5000 frames). They
search for motion in space as well as time; we do not need this
significant computational overhead. Nearly all steps in our video
processing pipeline are per-pixel (and embarrassingly parallel).

4.1 Our pipeline

Our video processing pipeline (Figure 5) handles global color-shifts,
removes noise, and is capable of ignoring frequent or majority occlu-
sions. To motivate our approach, consider the changes to a horizontal
slice of a painted egg in time (Figure 6). The color of an unpainted
background pixel drifts significantly. The color of all pixels exhibit
significant noise (some due to video compression and some due to
global illumination effects). Many pixels, especially towards the
right side of the painting (the painter’s dominant handedness) are
occluded in the majority of frames.

Our approach is based on two key observations. I. The value of an
unoccluded pixel should be piecewise constant in time; equivalently,
changes to a pixel on the canvas should be sparse in time. (The
stability of paint versus occluders has also been noted by Amati
and Brostow [2010].) Our approach is based on detecting and ig-
noring unstable pixels via moving standard deviation. II. Identical
sequences of frames, which indicate that no occluders are present,
provide crucial checkpoints for the progress of the painting. We call
such identical frames keyframes. We use keyframes to mask and
eliminate spurious changes in the intervening frames.

Color correction The first step in our pipeline corrects color drift
between adjacent frames. We do not include all pixels in the calcu-
lation, as many pixels may have changed due to occlusion or paint.
We solve for the per-channel linear function (offset and slope) that
minimizes the color difference in a least-squares sense, considering
only pixels whose magnitude of change lies between first and second
octiles. (Pixels which changed the least may be due to outliers, e.g.
oversaturated pixels.) We found this approach to be stabler than the
non-linear color correction described in [Hu et al. 2013].

Keyframe detection The second step in our pipeline searches
for keyframes, or sequences of repeated frames. We assume that a
sequence of repeated frames implies no foreground occluders. We
consider two frames to be repeated if they differ in less than n pixels;
we detect differences with an L*a*b*-space threshold. (See Table 1
for all parameters.) After a keyframe is detected, we reduce noise
by replacing its pixels with the per-pixel average in time. With these
known good frames, we perform our color correction step a second
time, this time aligning every frame with the most recent keyframe.

Inter-keyframe processing Keyframes allow us to reduce the
number of pixels under consideration. A pixel which does not change
from one keyframe to another should not change in the intervening
frames; any such changes should be ignored. We compute a differ-
ence mask between adjacent keyframes for use in inter-keyframe
processing. We again detect differences with a L*a*b*-space thresh-
old and close pixel-sized gaps in the mask with a 3× 3 topological
closing operation. Outside of the mask, we linearly interpolate col-
ors between keyframes. Inside of the mask, we detect and repair
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Figure 5: Our pipeline for processing time lapse painting videos. See Section 4.1 for details.

rose egg eye apple cube candy cola graffiti

detection L*a*b* threshold 10 10 10 7 10 10 12 8
detection # differing pixels 50 50 50 50 50 50 80 50
detection # repeated frames 4 4 4 4 4 4 4 2
mask L*a*b* threshold 8 8 8 9 9 8 8 4
standard deviation threshold 1.5 0.5 0.5 0.6 1 0.8 1 1.5

Table 1: Keyframe parameters in our video processing pipeline.

occlusions. Painted marks are sparse in time and smoothly varying
or piecewise constant; we detect unstable values—occluders—at
each pixel with a thresholded L*a*b*-space moving standard de-
viation (in time, window size 7). We repair unstable pixels with a
moving median filter (in time) [Cheung and Kamath 2004] whose
window is made up of the m = 9 most recent stable pixels. The
moving standard deviation threshold is the most sensitive parameter
of our entire video processing pipeline. A small threshold minimizes
false positives (occlusions) but degrades the temporal resolution of
layers in the processed video. We have not found this to be a prob-
lem in our history-editing based applications (Section 5). See the
supplemental materials for processed videos in which we manually
selected thresholds for each subsequence to be as large as possible
while still suppressing occluders.

Smoothing To suppress temporal noise and enforce temporal spar-
sity, we perform adaptive bilateral filtering [Tomasi and Manduchi
1998] on each inter-keyframe sequence (in time, with window size
15 and maximum σ = 200), and then we perform L0 smoothing [Xu
et al. 2011] (in time, κ = 1.1, λ = 0.001) for each pixel across all
frames in the entire video. In 1D, Xu et al.’s L0 smoothing algorithm
amounts to repeatedly solving a tridiagonal system of equations; we
constrain the very first and last pixels’ values (with a hard constraint)
to ensure that they remain unchanged.

Illumination division To convert our scrubbed videos into albedo
(reflectance) images, we must divide each pixel’s value by the incom-
ing illumination. We assume that the spatial variation in illumination
is unchanged throughout the entire sequence (e.g. the light source
does not move) and divide each pixel’s value by an illumination esti-
mate computed from the first frame. In the first frame, the canvas is
blank or nearly blank, so we perform a large, spatial median (window
size 55) and use each pixel’s maximum value (in any channel) as the
unnormalized illumination divisor. Although the canvas material’s
true reflectance is unknown, estimates for the reflectance of paper
placed on a non-white surface [Hubbe et al. 2008] typically range
from 0.5 to 0.7. We normalize all pixels’ illumination divisors with
the globally brightest value encountered at any point in the video.

This value is typically around 0.6; we cap it at 0.7. This step ensures
that the brightest value in our albedo images is less than 1.

Input videos and the result of our pipeline can be seen in Figure 8
and in the supplemental material.

5 Applications

The layer decomposition for a painting stores its time lapse history
as a sequence of RGBA or reflectance and transmittance images
containing the individual layers (see Figure 8 and the supplementary
materials) extracted from the original time lapse sequence using one
of the algorithms from Section 3. As these layers typically affect
only a small portion of the entire painting and are spatially coherent,
they can be represented compactly in memory using simple run-
length encoding. To achieve interactive response, we also store
bounding boxes of layers and compare them with the bounding box
of the edit so that the compositing operations can be done on a small
fraction of the total pixels. Moreover, when the edit affects a certain
interval in time, we can pre-composite prior and subsequent layers
into two RGBA images or four reflectance and transmittance images,
which are then blended together with the modified content.

Translucency-maximizing solutions are stable, general, and useful.
The CLOSEST-PAINT method, which seeks to recover the true color
and transparency, is appropriate for clean data where the differ-
ence between frames truly is a Porter-Duff over composite with a
single color, such as digital painting sequences (supplemental mate-
rials). Physical painting sequences are noisy, so we use translucency-
maximizing solutions, which make no assumptions about the input
data. The Kubelka-Munk layering model is a physically-based ap-
proach. When editing, the reflectance and transmittance layers can
be hue-shifted or modulated (increasing transparency and decreas-
ing the reflectance). The linear (Porter-Duff) model is “correct” for
extracting digital layers. It also works well for physical paintings.
It has the advantage that it is simple to work with, as it is built into
digital editing tools and GPU’s.

The apple in Figures 1 & 9 and the rose in Figure 9 were edited with
the Porter-Duff model. The eye in Figure 12 was edited with the
Kubelka-Munk layering model. The Kubelka-Munk model typically
produces layers that are more “translucent” than those produced in
the Porter-Duff model. The graffiti example in Figure 10 provides a
side-by-side comparison of the two models.

For videos with approximately 500 × 500 resolution, our entire
pipeline runs at around 2 frames per second on a single core of an In-
tel Core i7-3520M CPU (except for the whole-video L0 smoothing
stage). Most stages are pixelwise, and the algorithms are embar-
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Figure 8: Examples of layers (bottom) reconstructed from a time lapse video (top) which was pre-processed using our pipeline (middle).
Individual layers were grouped into larger clusters to enhance their visibility. Time lapse c© Marcello Barenghi.

rassingly parallelizable. The final whole-video L0 smoothing stage
was parallelized and run on a 60-core cluster of Intel Xeon E5-2670
CPU’s; this stage took around 10 minutes for a ∼5000 frame video.
The decomposition of the ∼5000 frame rose example takes ∼60 MB
to store as a sequence of RGBA images (PNG format) and ∼140
MB as a sequence of Kubelka-Munk reflectance and transmittance
images (as gzipped double-precision floating point values).

Given a painting and its layer decomposition, we can perform various
selection and editing operations (see Figure 1, 9, 10, 11, 12, and
the supplementary materials) that generalize the notion of layers in
digital painting programs.

Spatio-temporal selection & layering There are several possibil-
ities for using temporal information for selection. Users can position
the mouse at a specific spatial location and pick the temporal value of
the pixel underneath. They can also alter the selected temporal value
by scrubbing through time with the mouse wheel. When two or more
locations are specified, the tool can select layers which lie in the

Figure 9: Edits created using our Porter-Duff layer decomposition
on the apple sequence from Figure 1 (top), and on the rose sequence
(bottom, original image is on the left). Time lapse sequences c©
Marcello Barenghi.

specified time interval. A more complex selection can be achieved
using selection strokes—scribbles. In this scenario algorithms based
on temporal information such as [Noris et al. 2012] can be used
to improve segmentation results. In Figure 11 we present a simpli-
fied solution where temporal statistics of all pixels underneath the
scribble are analyzed and then a set of dominant temporal clusters is
retrieved which can then be offered to the user as possible candidates
for selection. This approach can also be understood as a supervised
layer decomposition that helps artist convert the layer decomposition
into a smaller set of meaningful layers. The user can perform various
edits which composite nicely with prior and subsequent layers, as in
a digital image editing workflow (see Figure 1). The great advantage
of our approach is that the user can create different sets of layers
ex post even for physical paintings, in contrast with the traditional,
digital workflow which involves planning in advance.

Modification of extracted layers Besides recoloring extracted
layers or clustering them, the user can also modify their structure
directly or use temporal information to perform additional opera-
tions. It is possible to erase or re-order selected layers, which has
the effect of cloning, undo-ing or replaying a stroke at a different
spatial or temporal location. Existing algorithms can be used to
perform local layering [McCann and Pollard 2009] as well as soft
stacking [McCann and Pollard 2012] to rearrange recovered layers
and let them appear partially at multiple time frames. The user may
also draw new strokes at specific times, create a spatial selection at a
specific time and then move this selection to a different time to per-
form edits, or use time-of-creation as a parameter which can affect
edits, such as the creation of color gradients (see Figure 1, 9, 10, 12,
and supplementary material for illustrations of these operations).

6 Conclusions and Future Work

Our video processing pipeline tailored to time lapse painting videos
can clean the videos of even persistent occlusions, and produce
reflectance images suitable for paint layer decomposition and editing.
The less-used Kubelka-Munk layering equations are a convenient
alternative to their material mixing model and more suitable for
real-world data than the “over” blending operation used throughout
computer graphics. These equations can be “solved” efficiently
to find maximally transparent stroke layers. With a single-stroke
assumption for digital images, our 3 × 3 system can recover the
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Figure 10: Comparing edits created with our layer decomposition using the Porter-Duff (first row) and Kubelka-Munk (second row) models.
In each model, similar clusters of layers were recolored. Note the difference in layer translucency and the effect of recoloring. The original
unmodified painting is on the left while the final composition is on the right. Thumbnails of individual edits are shown on top of the Figure.
Time lapse video c© Matyáš Veselý.

original stroke color and its alpha channel extremely robustly (within
1

255
in each channel).

The history of a painting contains valuable information that can be
stored efficiently using run-length encoding and used for a variety
of history-based editing applications to generalize the notion of
layers. A live implementation for decomposing on-the-fly would
allow artists to use physical tools as their artistic input device.

One limitation of our approach is that we do not extract vector
strokes. This is challenging because physical tools may create quite
complex brush “shapes,” and an approximation, when replayed,
would not exactly match the final painting.

If an input video has too-low temporal resolution, multiple over-
lapping strokes could be painted between adjacent frames, and the
original painted colors may not be recoverable. Moreover, the greater
the magnitude of change, the less transparent the solution. Extreme
noise manifests as spurious strokes that appear and then disappear.
Artist drawing order will affect applications such as selection based
on time ranges (including our clustering). This is true for all applica-
tions of editing history, regardless of the problem domain. Our work
provides a new data source, but does not aim to solve problems in
the literature on interacting with editing history.

In the future, we plan to replace software instrumentation in systems
such as Chronicle [Grossman et al. 2010] and Chen et al. [2011;
2012] with our framework, in order to deliver similar functionality
for both digital and real-world paintings. One can imagine, for ex-
ample, an interactive gallery where visitors can inspect the creation
process of individual exhibited paintings using visualization systems
like WetPaint [Bonanni et al. 2009]. Recovered layers of real world
paintings can also be used to generate painting tutorials in the spirit
of Grabler et al. [2009]. Our technique can also enrich the tool set
of appearance operators for inverse image editing [Hu et al. 2013].
Such operators can be used for content-adaptive macros [Berthouzoz
et al. 2011], to predict the final appearance by example, and to per-
form automatic completion as in [Xing et al. 2014]. We wish to
explore applications in forensics and artwork restoration. Finally,

we wish to expand the class of videos we are able to process. Canvas
vibrations are a challenge unique to our domain.

A Kubelka-Munk Layering Derivation

Recall Equation 1 and our solution. The first two solutions, when
Iti = 0 or Iti−1 = 0, are self-evident. For Iti−1 6= 0, we can
express Equation 1 as T 2

ti = (Rti − Iti)(Rti − 1
Iti−1

). Recall our

physical constraints 0 ≤ Rti , Tti , Iti , Iti−1 ≤ 1 andRti+Tti ≤ 1.
The latter is equivalent to T 2

ti ≤ (1 − Rti)
2. Thus we have an

equality for T 2
ti which is a parabola inRti , and an inequality for T 2

ti ,
also a parabola in Rti . Both parabola open upwards, and both reach
their minima when Rti > 0 (because neither Iti nor Iti−1 equal 0),
and so are already increasing in T 2

ti when Rti = 0. The remaining
solutions follow algebraically by intersecting the parabolas with
each other and with the line T 2

ti = 1.
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Figure 12: Editing a decomposed painting with the Kubelka-Munk model. The user modifies colors in two extracted layers to adjust the
original painting. Unprocessed time lapse recording of the painting process is depicted below. Time lapse video c© Marcello Barenghi.

(b)

(c) (d)

(a)

Figure 11: Image selection & layering: the user draws a selection
scribble (a), the system then suggests several temporal clusters
containing pixels underneath the scribble (b-d). The user can select
the appropriate cluster and use it as a layer for further editing.
Source time lapse video c© Marcello Barenghi.
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Chapter 4
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of Part-Based High-Relief Models
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Figure 1: A comparison of our approach with the current state-of-the-art: the original input drawing (a); the result of Entem
et al. [2015] (b) in contrast to the result of our technique (c) that produces a more natural transition between individual parts;
the result of Sýkora et al. [2014] suffers from visible seams between individual parts (d) whereas our approach delivers smooth
transition (e). (Images (a) and (b) come from [Entem et al. 2015].)

ABSTRACT
We present a new approach to reconstruction of high-relief surface
models from hand-made drawings. Our method is tailored to an
interactive modeling scenario where the input drawing can be
separated into a set of semantically meaningful parts of which
relative depth order is known beforehand. For this kind of input,
our technique allows inflating individual components to have a
semi-elliptical profile, positioning them to satisfy prescribed depth
order, and providing their seamless interconnection. Compared to
previous methods, our approach is the first that formulates this
reconstruction process as a single non-linear optimization problem.
Because its direct optimization is computationally challenging, we
propose an approximate solution which delivers comparable results
orders of magnitude faster enabling an interactive user workflow.
We evaluate our approach on various hand-made drawings and
demonstrate that it provides state-of-the-art quality in comparison
with previous methods which require comparable user intervention.
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1 INTRODUCTION
Recent advances in interactive 3Dmodeling from a single image [En-
tem et al. 2015; Feng et al. 2016; Li et al. 2017; Sýkora et al. 2014;
Xu et al. 2014; Yeh et al. 2017] make the creation of 3D models less
demanding for artists and also more accessible for novice users
who do not have sufficient experience with professional 3D model-
ing tools. Such tools need complex manipulation with geometric
primitives in 3D space which requires working with multiple 2D
projections. A key advantage of staying in the 2D domain is that
it allows the user to remain entirely focused on the creative pro-
cess and not be distracted by resolving consistency in depth. This
important aspect also explains why 2D sketches are often used as
concept art or in early stages of 3D model design.
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In this paper, we focus on a branch of single image modeling
methods that are suitable for organic structures composed of several
rounded parts that are positioned in depth and attached or smoothly
connected to each other [Entem et al. 2015; Feng et al. 2016; Sýkora
et al. 2014; Yeh et al. 2017]. In the original image, these parts are
usually delineated by outlines or have distinct boundaries that can
be easily extracted. Thanks to the 2.5D layered structure, this kind
of input usually requires only little user intervention while the
resulting meshes still have a certain level of complexity which
would be more difficult to achieve using standard 3D modeling
tools. The desired result is akin to a high-relief sculpture, defined
in classic sculpture as a relief where more than half of the shape
projects from the background at full depth (see, e.g., [Read 1961]).

With previous methods, however, the reconstruction process
is usually separated into a set of individual sub-problems which
are solved sequentially, e.g., the input regions are first inflated and
then shifted to preserve the relative depth. Finally, already inflated
and shifted components are stitched together or smoothly intercon-
nected. Due to this sequential process, the quality of the resulting
mesh often suffers from the lack of smoothness in the areas where
individual parts were stitched together. In this paper, we formulate a
single optimization problem that unifies all of the above-mentioned
sub-problems within a single energy minimization framework, de-
livering seamless organic shapes that seem like sculpted from a
single block of material.

The contributions of our work are as follows: (1) We formulate
the reconstruction of high-relief models from a single hand-drawn
image as a minimization of a unified non-linear energy functional.
Thanks to this joint formulation, our technique naturally produces
meshes where the individual parts are interconnected smoothly and
seamlessly. (2) We propose an efficient approximate method to our
non-linear solution which enables interactive modeling workflow.

2 RELATEDWORK
Igarashi et al. [1999] introduced the concept of modeling by infla-
tion. They add volume to a 2D shape procedurally by triangulating
the shape and setting vertex heights proportional to chordal axis
distance. This concept was later extended by others using convo-
lutional surfaces [Tai et al. 2004], sweeping 2D template scalar
field [Schmidt et al. 2005], using mass-spring system [Karpenko
and Hughes 2006], non-linear optimization [Nealen et al. 2007],
generalized cylinders [Borosán et al. 2012; Zeng et al. 2015], sur-
faces of revolution [Bessmeltsev et al. 2015], level set method [Levi
and Gotsman 2013], and finally by an implicit surface which is
defined by a skeleton of the inflated region’s shape and its radius
function [Entem et al. 2015].

Other methods provide an extension that allows specification
of cross-sectional functions for individual components [Olsen and
Samavati 2010] or define a set of primitives that can be used to
approximate their shape [Chen et al. 2013; Gingold et al. 2009; Shtof
et al. 2013]. Sýkora et al. [2014] and Feng et al. [2016] obtain inflated
shapes with semi-elliptical profiles by solving Poisson equation of
the squared height (recovering the height by taking the square
root). Yeh et al. [2017] and Jayaraman et al. [2018] utilize user-
specified curvature annotations to infer gradient fields and obtain
inflated shapes with parabolic profiles by solving Poisson equation

(a) (b)

y

x

z

y

Figure 2: Comparison of inflation with a parabolic (a) and a
semi-elliptical (b) profile for a frontal (top) and a side (bot-
tom) view. Notice how the semi-elliptical inflation is steeper
at boundaries and more evenly rounded which gives the
frontal render (top right) a more natural appearance.

of the (unsquared) height (see Fig. 2). Li et al. [2017] use an iterative
process guided by several types of user-provided curves.

As the inflation process is usually applied only to a single 2D re-
gion, the resulting 3D object has only limited structural complexity.
To produce more complex 3D objects, individual components need
to be inflated separately and then joined together. In this “piece-
wise” workflow, correct absolute depth values need to be specified
in order to preserve the overall 3D structure and avoid potential pen-
etration of the individual parts. A typical approach how to resolve
this problem is to let the user to view the object from side-views
and specify absolute depths manually [Borosán et al. 2012; Feng
et al. 2016; Igarashi et al. 1999; Nealen et al. 2007]. Gingold et al.
[2009] use manually constructed intersection curves to guide the
positioning of parts in depth, and Bessmeltsev et al. [2015] delegate
depth specification to an underlying 3D skeleton positioned by the
user. Finally, Yeh et al. [2017] allows the user to specify a set of
sparse slope cues which locally define surface increase in depth.

Other approaches try to infer the missing depth information
using various cues and perform the positioning in an automatic
fashion. Sýkora et al. [2010] use a set of sparse depth (in)equalities
given by the user. Sýkora et al. [2014] utilize illusory surfaces to
predict depth (in)equalities. Liu et al. [2013] use relative depth
cues represented by T-junctions while Zeng et al. [2015] combines
them also with ground contact cues. In [Yeh et al. 2015], angles at
junctions and region overlaps are used as a layering metric while
Shtof et al. [2013], as well as Chen et al. [2013], utilize geosemantic
constraints as relative depth cues. Finally, Sýkora et al. [2014] use
quadratic programming to automatically find smooth surfaces that
translate and deform parts along axis perpendicular to the image
so that the relative depth ordering is satisfied.

After determining the relative depth positioning of the individual
components, the remaining task is to join the components together,
ideally in a smooth and seamless way. Igarashi et al. [1999] lets the
user specify a region for subsequent surface fairing by low-pass
filtering [Taubin 1995]. In a follow-up work [Igarashi and Hughes
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Figure 3: Original drawings (top) and the input to our method (bottom): pre-tesselated regions with completed occluded parts
have their relative depth ordering visualized in grayscale (the lighter is the closer). Equality and inequality constraints are
visualized using cyan and magenta, respectively, and interconnection lines using blue color. The Robin boundary constraints
(green-to-red gradient) may be automatically determined by our system. (Original drawings: wolf, bunny, farmer © Anifilm;
unicorn, elephant come from [Entem et al. 2015]; lamb © Marek Dvorožňák.)

2003], simple filtering is replaced by a non-linear method [Schnei-
der and Kobbelt 2001]. A similar approach is used by Nealen et al.
[2007], utilizing a fairing interpolation of surfaces defined by con-
trol curves. Borosán et al. [2012] use Laplacian smoothing around
intersection loops, and Levi and Gotsman [2013] utilize a heuris-
tic where a boolean union of spheres and reconstructed parts at
joints is followed by bi-Laplacian smoothing. Blending of implicit
primitives based on Ricci’s operator [Ricci 1973] is used in Schmidt
et al. [2005] as well as in Entem et al. [2015]. This approach al-
lows control over the smoothness of each joint. To produce smooth
joints, Sýkora et al. [2014] perform additional smoothing step by
performing biharmonic interpolation in regions corresponding to
connections of the individual components.

Despite the progress made in the above-mentioned work, the
modeling process remains decoupled into separate steps. In this
paper, we unify inflation, positioning, and seamless joining of indi-
vidual components. Due to this unified formulation, hand-drawn
images can be converted into high-quality meshes with minimal
user intervention.

In this section, we have described methods that deal with the re-
construction of 3D shapes from sketches. The results are either full
3D models or some of their approximations, like high-relief mod-
els. There are also different techniques [Arpa et al. 2015; Cignoni
et al. 1997; Schüller et al. 2014; Weyrich et al. 2007] that aim at bas-
or high- relief generation out of a full 3D model. However, those
deal with depth compression of the model as opposed to the model
reconstruction.

3 OUR APPROACH
The aim of our approach is to reconstruct a high-relief model from
a hand-drawn image. As an input to our method, we expect a set
of semantically meaningful regions with completed occluded parts

of which relative depth ordering is known. In addition to that, we
assume (in)equality constraints for region boundaries and boundary
vertices where two regions should merge (see Fig. 3). All this can
be obtained using a semi-automatic process described in [Sýkora
et al. 2014].

We would like the final high-relief model to satisfy the following
requirements:

• regions should be inflated in a way so that the resulting
shapes have semi-elliptical profiles,
• they should be shifted in depth to satisfy the prescribed
relative depth ordering,
• interconnection of regions should be seamless, and
• the resulting model should closely match contours of the
input 2D drawing when using orthographic projection.

Although the inflation with parabolic profile is solvable using
linear system [Sýkora et al. 2014], non-linear semi-elliptical infla-
tion is more desirable because it produces shapes that are steeper
at boundaries and more evenly rounded. This is especially impor-
tant for organic models such as cartoon characters (see Fig. 2 for
comparison).

To restrict the high-relief model to stay within the boundaries
given by the outlines of the original drawing, we restrict the infla-
tion and shifting of individual parts to take place only in a direction
that is perpendicular to the original image plane, i.e., we will op-
timize only z coordinates of the final 3D mesh as in [Sýkora et al.
2014].

In the rest of this section, we first show how to inflate a single
region to have a desired semi-elliptical profile by formulating a
non-linear inflation functional (Einflation). Then, we consider joint
inflation of multiple regions and satisfaction of their relative depth
order. For this, we combine Einflation with a shifting functional
(Eshift) which gives us the final non-linear energy E that expresses
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the whole reconstruction problem. Finally, we show how to lin-
earize E and get an approximate solution which can be solved
using a quadratic program. This enables substantial speedup while
retaining similar quality as the original non-linear solution.

3.1 Non-linear Formulation
Inflation of a single region. An initial planar region Ωi can be

inflated to a semi-elliptical profile by finding a function f (x) : Ωi →
R that minimizes the following energy functional

Esinflation =

∫

int(Ωi )

(
∆f 2 (x) − c

)2
dx (1)

subject to

f (x) = 0 ∀x ∈ ∂Ωi (2)

where int(Ωi ) and ∂Ωi is the interior and the boundary of Ωi ,
respectively, ∆ is the Laplacian operator and c is a scalar specifying
a user-controllable amount of inflation. The energy is non-linear
because the Laplacian is applied to the square of f and therefore, the
result is not invariant to translation of the boundary conditions. To
be able to move the parts in the z direction, which may be necessary
to meet the relative depth order, we introduce a separate shifting
function.

Simultaneous inflation and stitching of multiple regions. Given
n initially planar regions Ωi , we topologically interconnect those
individual overlapping components at areas where seamless con-
nection is desired (see Fig. 3). This enables us to achieve seamless
transitions among them. Now, the task is to find an inflation and
a shifting function f (x) : Ω → R and д(x) : Ω → R, respectively,
that minimize the following energy functional:

E = Einflation + λshiftEshift (3)

where

Einflation =

∫

int(Ω)

(
∆f 2 (x) − c

)2
dx + λbnd

∫

B
( f (x))2 dx, (4)

Eshift =

∫

Ω
∥∇д(x)∥2dx, (5)

Ω = Ω1 ∪ . . .∪Ωn is a unifying region that contains all the regions
Ωi and λshift is a regularization parameter controlling the balance
between the inflation and the shifting of parts in the optimization.

As compared to the inflation of a single region where the bound-
ary of the region is fixed at the plane z = 0 (Formula 1 and 2),
the inflation energy Einflation is extended by a term (controlled by
the parameter λbnd) that allows movement of the boundary of f
on a subset B ⊆ ∂Ω. This relaxation proves useful in alleviating
unwanted reconstruction artifacts visually resembling pits. The in-
fluence of λbnd is visualized in Fig. 4 and also in our supplementary
video. Fig. 9 (a) and (c) shows how the results with and without
these artifacts look like when rendered.

The aim of the shifting energy Eshift, where ∇ stands for the
gradient operator, is to find a function д that deforms the inflated
shape f in a way that the result h = f +д satisfies the relative depth
conditions while encouraging д to be as flat as possible. The energy

h

f

д

Figure 4: Converged results of the non-linear optimization
with visualization of the inflation (f ) and the shifting (д)
function for the final result h = f + д, and also of the in-
fluence of the inflation boundary relaxation term λbnd. The
result in the right column has its boundary more flexible
(λbnd = 0.01) than the result in the left column (λbnd = 100)
which mitigate formation of pits (depicted inside circles).
See accompanying video for an animation.

E is minimized subject to the following relative depth conditions:

fi (x) + дi (x) = fj (x) + дj (x) ∀x ∈ C=i, j ,
fi (x) + дi (x) ≤ fj (x) + дj (x) ∀x ∈ C≤i, j ,
fi (x) + дi (x) ≥ fj (x) + дj (x) ∀x ∈ C≥i, j ,

(6)

where C=i, j ,C
≤
i, j ,C

≥
i, j ⊆ Ωi ∩ ∂Ωj are sets of points that specify

relative depth order for two overlapping regions Ωi and Ωj . The
resulting function h is then simply h = f + д.

3.2 Efficient Reformulation of Non-linear
Energy

Although the non-linear solution that we have described fulfills our
reconstruction requirements, depending on the mesh resolution
and chosen numerical method, the convergence of the non-linear
optimization may be relatively slow. In our implementation, the
optimization often lasts hours for input with moderate complexity
(see more details in Section 4). Even though more sophisticated
numerical methods could offer higher performance, in this section
we propose a different approach based on the observation that
for a suitable λshift, when the optimization converges, the infla-
tion energy Einflation is minimized and f is therefore completely
inflated. To obtain a solution that is orders of magnitude faster
while producing results that are comparable in quality, we build on
this observation and separate the problem into the two subsequent
steps: inflation and shifting.

As shown by Sýkora et al. [2014], the inflation with a semi-
elliptical profile that corresponds to the Formula 1 can be obtained
efficiently by solving the Poisson equation

∆ f̃ (x) = c (7)
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which produces a shape f̃ with a parabolic profile, and then the
following cross-section function is used to change the shape of f
to a semi-elliptical profile:

f (x) = d
√
f̃ (x) (8)

where d is a scaling factor allowing to obtain flatter profile or
reverse inflation.

To allow for greater modeling flexibility, we extend this inflation
method to support transition between fixed and free boundaries
via Robin boundary conditions for Equation 7:

α (x) f (x) + (1 − α (x)) ∂ f
∂n

(x) = 0 ∀x ∈ ∂Ωi (9)

where α (x) ∈ [0, 1] specifies the interpolation between Dirichlet
and Neumann boundary constraints. This extension allows us to
mimic the behavior of non-linear solution where the boundary can
be shifted (Formula 4).

To obtain the final surface h that satisfies the specified relative
depth order, we minimize:

∫

Ω
∥∇h(x) − ∇f (x)∥2dx (10)

subject to (in)equality constraints representing the relative depth
conditions:

hi (x) = hj (x) ∀x ∈ C=i, j ,
hi (x) ≤ hj (x) ∀x ∈ C≤i, j ,
hi (x) ≥ hj (x) ∀x ∈ C≥i, j .

(11)

This formulation is mathematically equivalent to the one used in
[Sýkora et al. 2014]. However, it allows us to directly optimize for
the final mesh h as opposed to the two-step procedure in [Sýkora
et al. 2014].

3.3 Implementation Details
We discretize our continuous formulation using the finite element
method. We assume that each planar region Ωi is converted into
a triangular mesh with additional interior vertices for boundary
vertices of each region Ωj that overlaps with Ωi . This instantly
gives us pairs of corresponding vertices that are used to satisfy rel-
ative depth ordering, i.e., the sets C=i, j , C

≤
i, j and C

≥
i, j . Please refer to

[Sýkora et al. 2014] for more details about the procedure. Then, we
reconnect the meshed regions at vertices where seamless transition
is expected. These are visualized using blue lines in Fig. 3.

Non-linear formulation details. The inflation and shifting non-
linear energies (Formula 4 and 5) are discretized as follows

Einflation ≈
(
M−1in Linf

2
in − c

)T
Min
(
M−1in Linf

2
in − c

)

+ λbndf
T
bndMbndfbnd,

Eshift ≈ (Gg)T T (Gg) ,

where c is a column vector of scalars c (see Formula 1),T,M andM−1
are diagonal matrices representing areas of mesh triangles, the mass
matrix and its inverse, G and L are sparse matrices representing
discretization of the gradient operator and the usual cotangent
discretization of the Laplacian operator [Meyer et al. 2003]. The
square of a vector is understood as element-wise operation and

Figure 5: Example of boundary conditions used for mitiga-
tion of pits. Movable boundary utilized in our non-linear
solution is visualized using yellow color (left) and Robin
boundary conditions that we employ in our approximate so-
lution using green-to-red gradient (right). User input is visu-
alized using green and red points which specify the range of
the specified conditions.

the subscripts in and bnd denote a part of a matrix or a vector
corresponding to interior and boundary vertices, respectively.

Efficient reformulation details. The Poisson equation for obtain-
ing a parabolic inflation (Formula 7) is discretized as

Lf̃ = Mc

and the minimization of functional in Formula 10 with (in)equalities
(Formula 11) is discretized as a quadratic program, i.e., we minimize:

1
2h

TLh − hTLf (12)

subject to (in)equality constraints:
hi (p) = hj (p) ∀p ∈ C=i, j ,
hi (p) ≤ hj (p) ∀p ∈ C≤i, j ,
hi (p) ≥ hj (p) ∀p ∈ C≥i, j .

(13)

4 RESULTS
We implemented both the original non-linear method and the
linearized approximation in C++. Our implementation relies on
the Eigen library [Guennebaud et al. 2010] for linear algebra rou-
tines, libigl [Jacobson et al. 2013] for discrete differential operators,
solvers of quadratic problems and programs, and L-BFGS non-linear
solver [Liu and Nocedal 1989]. To compute the gradient of the en-
ergy used in the non-linear solver, we used reverse-mode automatic
differentiation from the Stan Math Library [Carpenter et al. 2015].

For all results included in this paper, we use the following pa-
rameters: c = 4 to obtain an inflation with hemispherical profile
for circular regions and a semi-elliptical profile for regions with
different shapes, λshift = 1 to equally balance inflation with shifting,
λbnd = 100 for results that contain pits, and λbnd = 0.01 for results
that mitigate pits.

According to our experiments, including the entire boundary
of the function f into the subset B in Formula 4 may result in
unwanted shifting of parts of the boundary that should stay fixed.
This is caused by the competition between the individual terms in
energy E (Formula 3). We resolve this by restricting B as follows:
For each two overlapping regions that are interconnected and one
is supposed to be above the other one, we include only boundary
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Figure 6: Comparison of results produced by Entem et al.
[2015] (top) with our approach (bottom); for the unicorn and
the elephant example. Our results more closely reproduce
outlines of the original input drawings and contain seam-
lessly merged body parts without bulges. (Images located at
the top come from [Entem et al. 2015].)

vertices of the top region that are overlapping with the bottom
region into B (an example of the resulting subset B is depicted
using yellow color in Fig. 5, left). For top regions that are entirely
surrounded by the bottom components (e.g., elephant’s ear), a user
intervention may be needed to obtain satisfactory result. For these
cases, we provide a simple two-click interface to specify the range
manually.

We use the same technique for specification of Robin boundary
conditions for the top region (Formula 9) in our approximate solu-
tion. We set α (x) ∈ [0, 0.2] for boundary points that are adjacent to
the interconnection line (blue line in Fig. 5), α (x) = 1 for points that
are at the borderline of the bottom region and linearly interpolate
α between the points. For all other boundary points, we assume
α (x) = 1. For obtaining a reverse inflation (e.g., rabbit’s ears or
farmer’s shovel in Fig. 7), the parameter d was set to −1, otherwise
we used d = 1.

We ran our implementation on a quad-core CPU (Core i7, 2.7 GHz,
16 GB RAM). Summarized running times for our approximate solu-
tion are presented in Table 1.

Our implementation of non-linear solution often required hours
to converge (see the supplementary material for a time-lapse video
which illustrates convergence of the non-linear optimization). In
contrast, the approximate version is significantly faster while the
results look nearly identical (see Fig. 9 for a comparison).

We also compared the results produced by our method with the
results produced by the two most closely related previous works:
Ink-and-Ray [Sýkora et al. 2014] and a method by Entem et al.
[2015].

The results of Ink-and-Ray with visible seams at connections of
regions are shown in Fig. 7 and are even more pronounced when
the lighting conditions changes, see Fig. 8 and the supplementary
material. Those seams are caused by bi-Laplacian smoothing in a
user-specified area around the connection that is performed in a
post-processing grafting phase. Since we reconnect the overlap-
ping regions before the reconstruction phase, our results naturally
reproduce seamless connections that respect the specified inflation
profile.

Table 1: Running times of our approximate solution.

model # vertices # faces time
wolf 32 k 52 k 10.1 s
bunny 19 k 33 k 2.7 s
farmer 33 k 55 k 1.5 s
unicorn 22 k 36 k 3.8 s
elephant 39 k 68 k 12.4 s
lamb 30 k 50 k 7.1 s

The method of Entem et al. [2015] represents each part of a
reconstructed 3D model by a skeleton-based convolution surface.
These parts are then positioned in depth based on thickness of their
3D reconstruction and then smoothly blended together by simple
summing operation. The quality of this blend strongly depends
on the shape of completed regions as well as on their positions in
depth. Due to this reason, unwanted bulges may appear in the final
solution (see Fig. 6) as opposed to our method which guarantees to
produce seamless connections between individual parts.

In addition to the rendered results presented in this paper, we
include the resulting meshes for all models present in Fig. 7 and 9
in our supplementary material.

5 LIMITATIONS AND FUTURE WORK
Our method enables reconstruction of smooth high-relief models
for a variety of different input drawings. However, we would like
to point out some limitations of our approach which can serve as
motivation for future work.

In some configurations where there are two regions smoothly
interconnected and one is assumed to be above the other one, our
solution may pull the top region down a bit and produce unwanted
deformation of the lower region (see Fig. 10 for an example). As a
future work, we plan to incorporate additional user-assisted com-
pensation for such kind of configurations.

Our method assumes that the resulting model consists of a set of
rounded shapes which have semi-elliptical profiles. Although this
assumption is realistic for most organic shapes, there can still be
situations which would require local modifications of the shape pro-
file. For those, one may incorporate, e.g., the concept of curvature
cues used in [Yeh et al. 2017] and modify the ∇f in Formula 10.

Although we provide a quick user-assisted mitigation of pits, an
interesting avenue for future work would be an automatic approach
such as determining suitable α (x ) without user intervention. As
future work, we plan to extend our technique from high-relief
models to full 3D models by taking into account shape mirroring
extension as used in [Feng et al. 2016].
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Figure 7: Comparison of results produced by Ink-and-Ray system [Sýkora et al. 2014] (top row) and the results of our method
(bottom row). The differences in smoothness are pointed out with arrows. The reverse inflation of rabbit’s ears and mouth,
and farmer’s shovel may be obtained by setting the parameter d to −1 for these parts.

Figure 8: Comparison between a sequence of light variation on results produced by Ink-and-Ray method [Sýkora et al. 2014]
(top) and our method (bottom). See accompanying video for an animation.

6 CONCLUSION
We presented a method to reconstruct high-relief part-based models
from a single hand-drawn image. In contrast to previous techniques
where the modeling process was subdivided into several indepen-
dent steps, we proposed a unified non-linear energy minimization
formulation which enables joint inflation and shifting of individ-
ual parts. In addition, we also proposed an efficient approximate
method which delivers comparable solution as the original non-
linear formulation but is notably faster. This enables us to create
an interactive 3D modeling framework that enables production
of high-quality meshes where individual parts are interconnected
seamlessly. We confirmed the improvement in quality by compar-
ing renderings of our resulting models and those obtained with the
current state-of-the-art techniques.
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(a)

(b)

(c)

(d)

Figure 9: Comparison between the non-linear solution (a and c) and the approximate solution (b and d)—(a) results of the
non-linear solution with pits, (b) corresponding approximations, (c) results of the non-linear solution with mitigated pits,
(d) corresponding approximations (our final results).

Figure 10: Limitation of our method: A top region (nose)
which is interconnected with a bottom region (head) may
pull the bottom region down a bit which may produce
unwanted deformation. This deformation is more evident
when rendered from a side view (right).
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(b) target sequence (c) stylized sequence (d) stroke appearance transfer(a) style pairs

Fig. 1. Given a small set of exemplars consisting of computer-generated and hand-drawn 2D animation pairs (a), our method transfers to a new target
sequence produced by physical simulation (b) both the high-level deformations and fine-scale appearance variations (c) present in the example animations.
Optionally, the final appearance of the drawings can be modified by re-synthesizing di�erent stroke textures (d).

We present a novel approach to facilitate the creation of stylized 2D rigid
body animations. Our approach can handle multiple rigid objects following
complex physically-simulated trajectories with collisions, while retaining a
unique artistic style directly speci�ed by the user. Starting with an existing
target animation (e.g., produced by a physical simulation engine) an artist
interactively draws over a sparse set of frames, and the desired appearance
and motion stylization is automatically propagated to the rest of the sequence.
The stylization process may also be performed in an o�-line batch process
from a small set of drawn sequences. To achieve these goals, we combine
parametric deformation synthesis that generalizes and reuses hand-drawn
exemplars, with non-parametric techniques that enhance the hand-drawn
appearance of the synthesized sequence. We demonstrate the potential of
our method on various complex rigid body animations which are created
with an expressive hand-drawn look using notably less manual interventions
as compared to traditional techniques.
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1 INTRODUCTION
Despite the recent success of computer-generated animations, tra-
ditional hand-drawn approaches often yield more expressive and
stylized looks than those produced with the currently available dig-
ital tools. However, creating hand-drawn animations is a tedious
process that requires years of training by an artist and countless
hours of labor. Furthermore, style is a highly personalized concept,
and two di�erent artists never animate exactly in the same way. As
a result, example-based stylization has been a long-standing goal in
computer graphics.

In this work we focus on rigid bodies, which are particularly
challenging to animate by hand, since multiple objects may collide
and rebound in ways that are di�cult to plan in advance. Conversely,
using physical simulation, computer-based methods can quickly
give rise to rigid body animations with realistic trajectories, but
ones that lack expressiveness. Our main goal is therefore to combine
the ease of use of computer-simulated 2D rigid body animations
with the expressive qualities of hand-drawn techniques.

To accomplish this goal, we have a number of added requirements.
First, editability is of paramount importance to animators, and an
ideal solution should work iteratively, always providing the artist
with the ability to re�ne the current solution. Second, producing
each hand-drawn frame is time consuming, so a practical example-
based 2D animation system should be able to generalize from a
very limited set of artistic inputs, while being able to apply these
edits seamlessly into the dense set of �nal target frames. These
two requirements make example-based 2D animation out of reach
of current data-driven machine learning techniques, due to the
scarcity of data (tens of exemplars, rather than tens of thousands),
and uniqueness of each style.

Instead, our approach is inspired by a work�ow that is widespread
among both traditional and digital animators. A 2D animation is

ACM Transactions on Graphics, Vol. 36, No. 4, Article 127. Publication date: July 2017.
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successively produced and re�ned at three di�erent temporal scales
(see Figure 3): the full animation scale at which timing, contacts
and trajectories are planed; the pose-to-pose scale, at which the
overall dynamics and deformations between contacts are considered;
and the frame-to-frame scale at which the actual drawings with
secondary deformations and precise collisions are produced.

At the full animation scale, we split the input computer-generated
sequences based on collision events, and we independently analyze
and stylize each sub-sequence around a hit point, which we call
a key pose. Next, for every sub-sequence, we estimate the spatial
deformations of the hand-drawn exemplars before and after the
key pose; these are then transferred using a parametric synthesis
algorithm. Correspondences between sub-sequences are estimated
by leveraging the physical properties of each frame, which ensures
preservation of appropriate stylistic e�ects given the forces applied
at each frame. The �nal frame-by-frame drawings are then synthe-
sized from the artist drawings using a non-parametric technique,
that captures residual deformations and appearance details.

We show that this organization is necessary to capture both the
long- and short-range stylistic choices made by the artist, while pro-
ducing results that have the desired hand-drawn look and feel. When
taken as a whole, our method considerably reduces the amount of
work needed to create the entire sequence by hand.

In summary, we present the following contributions:
• a careful analysis of traditional hand-drawn animations,

especially focusing on the correlation between physical
parameters and deformations,

• a parametric motion synthesis algorithm capable of trans-
ferring deformations from exemplars,

• an example-based non-parametric stylization technique
capturing the �ne-scale drawing appearance.

2 PREVIOUS WORK
We present prior work related to general stylized computer anima-
tion, followed by those driven by physical simulations, and �nally
example-based solutions.

Techniques inspired by the principles of animation. From its begin-
ning, one of the goals of computer graphics has been to reproduce
the expressiveness of traditional hand-drawn 2D animations, while
reducing the cost and e�ort of producing it. The fundamental prin-
ciples of animation, developed from the late 1920’s to the 1930’s
at Walt Disney Studio [Thomas and Johnston 1981], play a crucial
role in this expressiveness, and many works have tried to adapt
them to digital animation tools. Lasseter [1987] describes these 2D
principles – including squash and stretch, timing and spacing, an-
ticipation and follow-through, arc trajectories and lines of action
– and how they can be manually applied by an artist to produce
expressive 3D keyframe animations.

Subsequent work has aimed at fully or partially automatizing
those e�ects. Wang et al [2006] describe a simple temporal �lter
that produces anticipation and follow-through as well as squash-
and-stretch deformations by delaying parts of an existing animation,
represented by 2D polygonal shapes or motion captured (MoCap)
data. Lee et al. [2012] obtain similar e�ects on segmented objects in
a video by relating a set of representative 2D deformations to the

modal analysis of the object motion. Focusing on 3D skeletal ani-
mation, Noble and Tang [2006] present a tool to automatically bend
the limbs of a character following lines of actions or arcs. On the
artistically controllable side, Li et al. [2003] present a sketching in-
terface that allows a user to guide the deformation of both the input
animated skeleton and surface mesh to improve the expressiveness
of MoCap data. Recently, several 2D sketching systems [Kazi et al.
2014a,b, 2016; Xing et al. 2016] have been developed to simplify the
production of dynamic illustrations, reproducing most principles
of character or special e�ects animation. However these principles
are essentially encoded as scripted deformations or animated loops
triggered by events, and unlike our work are not tailored to the
speci�c style of a given artist.

Physics-driven approaches. Physical simulation is a convenient
way to automatically animate a large number of 2D or 3D bodies,
but expressiveness of the resulting motion is restricted by the degree
of complexity modeled by the physical system. For instance, it is
common to restrict the simulation to rigid bodies for computational
e�ciency, while traditional hand-drawn animated objects more
often resemble deformable bodies governed by exaggerated physical
laws. To enhance basic 3D simulations, multiple works [Chenney
et al. 2002; Garcia et al. 2007; Haller et al. 2004] derive automatic
procedural rules to generate squash-and-stretch and temporal e�ects
based on motion parameters (velocity, acceleration, etc.) but such
methods have limited art-directability.

To allow artistic control, the spacetime [Witkin and Kass 1988]
and dynamic [Barzel and Barr 1988] constraint formulations cast
physical simulation as a constrained optimization problem. Through
those constraints, the artist can direct the simulation to act as a
physically-plausible interpolation mechanism between key-poses.
Bai et al. [2016] leverage this idea to build a 2D animation system
that combines keyframing of local deformations with physical sim-
ulation for powerful inbetweening. Although this approach allows
an unprecedented level of artistic control and manages to reproduce
many of the principles of animation, it requires the user to specify
control handles, which are constrained and unnatural to use when
compared to simply drawing frames, in particular when the artist
desires a precise control over shape outlines.

Example-based methods. This family of techniques provides a
natural and intuitive interface, where examples are used to capture
the style and intent of an artist. Such approaches have already
produced impressive results for static images and videos, either
using non-parametric texture synthesis [Bénard et al. 2013; Fišer
et al. 2016; Hertzmann et al. 2001; Lu et al. 2012] or more recently
with neural networks [Gatys et al. 2016]. Yet these methods are
mostly restricted to appearance stylization, leaving motion largely
untouched.

There are some exceptions, such as Bregler et al. [2002] who
propose to capture and re-target motion from existing cartoon ani-
mations by combining a global a�ne deformation with drawings
interpolation using a key-shape model. Jones et al. [2015] follows
a similar approach, connecting the navigation in a simplicial com-
plex [Ngo et al. 2000] with events of a 2D physical simulation. Pose-
space interpolation can produce impressive results, but the quality
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Source sequence F S Style exemplars F E Target sequence FT Stylized sequence FO

Fig. 2. Stylization analogy setup — given a set of frames F S coming from reference 2D rigid body source animations, corresponding hand-animated exemplars
F E , and a new target animation FT , the synthesis algorithm relates physical parameters in F S and FT to produce the output stylized sequence FO that
resembles F E . (Animations are depicted with onionskins, colored from green to blue according to frame numbers.)

of the output is highly dependent on a good choice of the key-shapes
which an artist has to select and organize manually beforehand.

To guide or enrich 3D simulations, example-based approaches
augment the simulated objects with examples of desirable deforma-
tions [Coros et al. 2012; Jones et al. 2016; Koyama et al. 2012; Martin
et al. 2011]. In those approaches, however, exact correspondences
between deformation exemplars are known beforehand and only a
simple parametric deformation with limited number of degrees of
freedom is used. Even though this setting may be natural for digital
3D artists, it is again limited and constraining for traditional 2D
animators.

Closest to the traditional animation pipeline, Xing et al. [2015]
present an interactive system for computer-assisted 2D animation.
It combines discrete texture synthesis with an as-rigid-as-possible
deformation model to predict and interpolate drawings based on
the current and previous frames. This approach is convincing for
frame-by-frame animation, but the spatio-temporal locality of the
analysis makes it unsuited for pose-to-pose planning. Since the
interpolations are solely based on the past drawings using local
a�ne transformations, the predicted motion and deformations tend
to be unnatural and cannot easily be edited, unless the artist draws
most intermediate frames.

3 OVERVIEW
Similar in spirit to Image Analogies [Hertzmann et al. 2001], our
algorithm transforms a target 2D rigid body animation FT into an
output stylized version FO using an example-based transformation
de�ned by a set of source sequences FS and a corresponding set
of hand-drawn exemplars FE (Fig. 2). Sequences FS and FT can
be computer-generated using, e.g., physical simulation. The style
exemplars FE are created by an artist digitally or physically, by
redrawing a small subset of the source frames FS . In one application,
the untouched frames of FS can be added to FT , in which case our
method can be seen as an interactive style propagation tool. This is
shown in the accompanying video where the artist �rst draws over a
few frames, sees the intermediate result, identi�es parts which have
not been successfully stylized, provides additional examples, and
iterates this procedure until she is satis�ed by the stylized result.

The key challenge here comes from the fact that FT will typically
not contain sub-sequences exactly like those in FS , and thus stylized
frames from FE cannot simply replace original rigid frames in FT .
To tackle this problem, we take inspiration from guidelines in tradi-
tional 2D animation books [Thomas and Johnston 1981; Williams

Keys1. Full animation

2. Pose-to-pose

3. Frame-to-frame

Fig. 3. Three scales hierarchical decomposition of the animation process,
based on [Williams 2001, p.67].

2001], especially from Richard Williams’ hierarchical decomposi-
tion of the animation process (see Figure 3). We identify three main
stages or temporal scales: (1) the full animation scale, at which tim-
ing and spacing are planned by choosing the key events, (2) the
pose-to-pose stage, at which the main dynamics and deformations
are de�ned between two key poses by drawing “extremes” and
“breakdowns”, and (3) the frame-to-frame scale, corresponding to
�nal straight-ahead “runs” (or drawing passes) during which subtle
variations and details are added.

Each of the three stages need to be analyzed for transferring
the style of a hand-drawn animation and our method thus follows
this organization. First, timing and spacing are speci�ed by the
input sequences FS and all animations are subdivided into overlap-
ping sub-sequences around key events (Section 4). The style pairs
FS : FE are then decomposed into a coarse geometric deformation
D and a �ne-scale “residual” stylization R (Section 5.1). Our aim is
to transfer bothD and R to the target sequence FT . For each target
sub-sequence independently, a new parametric deformation is syn-
thesized by selecting and blending together multiple deformations
D coming from similar sub-sequences of the style pairs (Section 5.2).
Finally, sub-sequences are blended together, the �ne-scale details are
reintroduced on a frame-by-frame basis by morphing the residual
changes R, and the appearance of individual strokes is changed to
have a desired look of particular artistic media (Section 6). In the
following, we use the classical “bouncing ball” animation to illus-
trate the various steps of our algorithm; results on more complex
sequences (collisions between objects, bouncing square, textured
objects) are shown in Section 7 and the supplemental material.
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F

F1

F2

M1,2e1
e2

N1

Fig. 4. Decomposition into sub-sequences — an input sequence F is sub-
divided into sub-sequences (Fi ) of Ni frames around key events (ei ∈ E)
with an overlap of Mi,i+1 frames with the following sub-sequence.

4 TIMING AND SPACING
The source FS and target FT input sequences consist in 2D rigid
body animations produced using physical simulation. In practice, we
use Box2D [Catto 2007]. Similar to prior work [Kazi et al. 2016], an
arbitrary target rigid body is represented by its proxy geometry, e.g.,
bounding circle, square, or any other closed polygon. In addition
to images, the simulation generates, at each frame and for each
object, a set of physical parameters including the object velocity v
and the rotation angle α around the object centroid with respect to
the local trajectory frame. The timing and spacing are dictated by
the simulation; the artist draws over existing frames, establishing
one-to-one temporal correspondences between FS and FE .

The simulation also identi�es frames at which semantically impor-
tant events E occur, such as contact points or collisions. Following
the guidelines of Richard Williams [2001], these frames represent
key poses. Analyzing the hand-drawn exemplars FE , we also ob-
served that those frames, and their immediate neighbors in time,
are the ones most stylized by the artist, whereas distant frames are
less modi�ed. In addition, we noticed that the physical parameters
along the simulated trajectories before and after these key events
largely in�uence the artist’s stylization choices, e.g., the magnitude
of the deformation.

These observations motivate us to subdivide FS , FT and FE into
a set of smaller overlapping sub-sequences FSi , FTi and FEi around
every key event ei of E. Each sub-sequence Fi contains Ni consecu-
tive animation frames and overlap with the next sub-sequence on
Mi,i+1 frames. As shown in Figure 4, the overlapping part between
two events resides at frames where there are no abrupt changes in
physical parameters and moderate artistic stylization, making them
most suitable for stitching.

5 POSE-CENTERED DEFORMATIONS
At this stage, we consider each sub-sequence independently, and fo-
cus on the coarse deformations used by artists when hand-animating
rigid bodies to reproduce e�ects described in the principles of anima-
tion (squash-and-stretch, arc trajectories, lines of action). Residual
deformations and appearance variation that are not captured by this
coarse deformation will be reintroduced in Section 6.

5.1 Parametric deformation analysis
For each frame of a style pair FSi : FEi , we �rst estimate a coarse
parametric deformation D (see Figure 5(a)) using the registration
algorithm of Sýkora et al. [2009] which aligns bitmap images with
an as-rigid-as-possible grid deformation. However, instead of the

=
D D−1

f s f e f r

(a) (b)

Fig. 5. Deformation analysis — (a) The parametric deformation D is esti-
mated using as-rigid-as-possible registration between the source f s and
exemplar f e frames. (b) The residual frame f r is then computed by applying
the inverse deformation D−1 on f e .

deformable grid matching, we use a single quadratic transformation
as in Müller et al. [2005]. The main advantage of this quadratic
model is that besides shear and stretch, it also captures twist and
bending modes (see Figure 6) which better represent the larger scope
of deformations used in traditional animation.

The output of the image registration phase consists of 12 parame-
ters describing the corresponding quadratic deformation that warps
pixels p = (x ,y)> from the source frame f s ∈ FSi to match pixels
p′ = (x ′,y′)> of the stylized frame f e ∈ FEi :

x ′ = a11x + a12y + q11x
2 + q12y

2 +m1xy + t1

y′ = a21x + a22y + q21x
2 + q22y

2 +m2xy + t2
(1)

Written in matrix form:

p′ =
[
A Q m t

]︸               ︷︷               ︸
D

p̃ (2)

where p̃ = (x ,y,x2,y2,xy, 1)> is p expressed in extended homo-
geneous coordinates, and D is a quadratic transformation matrix
composed of a�ne A, purely quadratic Q , mixed m, and translation
t parts:

A =

[
a11 a12
a21 a22

]
Q =

[
q11 q12
q21 q22

]
m =

(
m1
m2

)
t =

(
t1
t2

)
.

5.2 Parametric deformation synthesis
Based on traditional hand-drawn animation resources as well as
our own observations and discussions with 2D animators, we make
the key hypothesis that deformation is closely tied to motion. As
a result, to perform the deformation transfer, we search for corre-
spondences between source FSi and target FTj sub-sequences using
physical parameters that describe the frame’s motion (velocity, tra-
jectory orientation, and the object’s rotation), and we assume that
the matching sub-sequences should undergo similar deformations
D as the source ones.

a�ine A quadratic Q mixed m

Fig. 6. Visualization of the 10 modes defined by the quadratic deformation
of Müller et al. [2005].
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Source-target sub-sequence matching. Practically, we de�ne the
following di�erence metric between a source sub-sequence FSi and
a target sub-sequence FTj :

Di�(FSi , F
T
j ) = λvelVel(F

S
i , F

T
j )

+ λdirDir(FSi , F
T
j ) (3)

+ λrotRot(FSi , F
T
j ),

where weights λvel, λdir, λrot are used to balance the in�uence of
individual terms:
• Vel(FSi , F

T
j ) measures the di�erence between rigid body centroid

velocities v :

Vel(FSi , F
T
j ) =

N∑
n=1
| |vn (F

S
i ) −vn (F

T
j )| |

2, (4)

• Dir(FSi , F
T
j ) penalizes discrepancy of the trajectory orientation δ :

Dir(FSi , F
T
j ) =

N∑
n=1
| |δn (F

S
i ) 	 δn (F

T
j )| |

2, (5)

where 	 computes the smallest di�erence between two angles,
• Rot(FSi , F

T
j ) accounts for di�erences in the rotation α of the rigid

body around its centroid:

Rot(FSi , F
T
j ) =

N∑
n=1
| |αn (F

S
i ) 	 αn (F

T
j )| |

2. (6)

When computing the metric we assume that both sub-sequences
are centered at a key event and have the same number of frames
N . This can be done by resampling the original trajectories to have
equidistant samples according to their arc length. The longest sub-
sequence is trimmed to have the same length as the shortest one.

Deformation blending. Since it is unlikely that any source sub-
sequence perfectly matches a given target sub-sequence FTj , we
retrieve K nearest neighbor sub-sequences FS1 . . . F

S
K instead of a

single one. For each frame in FTj , we then compute its stylized
version as a combination of K quadratic transformationsD1 . . .DK
from theK best corresponding frames in source sub-sequences using
weights w1 . . .wK proportional to their similarity:

wk =
1/Di�(FSk , F

T
j )∑K

κ=1 1/Di�(F
S
κ , F

T
j )
, k ∈ [1 . . .K]

where normalization is used to obtain the partition of unity. See Fig-
ure 7 for an overview of this blending scheme (with K = 3) which
adds robustness to the matching process and gives more stable
results than simply using the single best match (K = 1).

To perform a meaningful interpolation of the rotational part of the
transformation, the a�ne part A of the matrixD is factorized using
polar decomposition [Higham and Schreiber 1990] into a linear
stretch U (not used directly) and a rotation matrix Rα , from which
the rotation angle α = arctan(r11/r21) is extracted. A weighted
blend is computed on α1 . . . αK :

α̂ = w1 α1 ⊕ . . . ⊕wK αK (7)

D1 D2 D3

w1
w2

w3

D̂

f e1 f s1

f e2
f s2 f s3

f e3

Fig. 7. Blending quadratic deformations D — individual quadratic deforma-
tions D1, D2, D3 estimated from the source frames f s1 , f

s
2 , f

s
3 and their

corresponding stylized counterparts f e1 , f
e
2 , f

e
3 are blended together using

the weights w1, w2, w3 to obtain the resulting quadratic deformation D̂.

where ⊕ computes a weighted average of circular quantities. The
remaining coe�cients of rotation-free quadratic transformations
D ′1 · · · D

′
K are similarly computed:

D̂ ′ = w1D
′
1 + . . . +wK D

′
K (8)

where D ′ = R-αD. Finally, the blended quadratic transformation
matrix D̂ is constructed from α̂ and D̂ ′:

D̂ = Rα̂ D̂
′ (9)

Data augmentation. To generate plausible results even when the
global orientation or scale of the target trajectory departs consid-
erably from the available exemplars, we enrich the set of source
analogies by scaling, rotating, and �ipping the input sequences. We
can directly extract the set of required rotation angles γ by ana-
lyzing the target simulation. Based on our experiments, we also
use 5 scaling factors ρ between 0.2 to 1 and allow symmetries with
respect to the vertical axis only (to preserve gravity e�ects). For
rotationally symmetric objects of order n, we modify the 	 operator
in a way that it outputs zero di�erence for angles k 360◦

n where the
apperance of the rotated object is the same. For the circle the order
of rotational symmetry is in�nite so instead we set λrot = 0.

The drawback of the augmentation is that it may lead to incorrect
stylizations when the source exemplars are far from the target mo-
tion. For example, a source exemplar corresponding to a small jump
will not be equivalent to a source exemplar with a higher jump. To
account for this, we dampen the resulting quadratic transformation
D̂ by computing a weighted blend of D̂ with the identity matrix I
using weight ξ , proportional to the ratio of the average source and
target velocities:

D̂ = ξ D̂ + (1 − ξ ) I with ξ =

∑N
n=1vn (F

S
i )∑N

n=1vn (F
T
j )

(10)

However, if rotational invariance is not (even approximately) satis-
�ed, orientation augmentation cannot be used, and the artist will
need to prepare a set of additional exemplars corresponding to the
correct rotational motion.
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D̂

f r1 f r2 f r3

f̂ r1

n-way morph

w1
w2

w3

f̂ r

D̂ D̂
f̂ r3 f̂ r2

Fig. 8. Synthesis of fine-scale details R — the synthesized quadratic de-
formation D̂ is applied to individual residual frames f r1 , f

r
2 , f

r
3 producing

their deformed counterparts f̂ r1 , f̂
r
2 , f̂

r
3 . Those are then blended together

using n-way morphing [Lee et al. 1998] to produce the resulting frame f̂ r .

6 FRAME-BY-FRAME STYLIZATION
Although the parametric transformations D capture most of the
dominant global deformations, there are still small residual deforma-
tions and appearance variationsR (e.g., sketch lines of the drawings)
which cannot be simply described by the quadratic deformation
model. These residual changes represent a very important part of
the stylization, as they provide much of the uniqueness of traditional
hand-drawn, as opposed to computer-generated animation.

Extraction of the residual. Due to the parametric deformation
model, extracting R from the source exemplars is straightforward.
We compute and store the residual frames in FRi by “rectifying”
the example frames in FEi using the inverse transformation to the
deformation D estimated in Section 5.1 (see Figure 5(b)).

Synthesis of �ne-scale details. For a given target frame in FTj , we
now want to re-introduce the residual variations to the synthesized
parametric transformation D̂. As illustrated in Figure 8, we deform
the corresponding residual frames in f r1 , . . . , f

r
K using D̂ to produce

a set of deformed example frames f̂ r1 . . . f̂
r
K . We then compute a set

of pairwise pixel-level warping �elds ϕκ,κ′ : f̂ rκ → f̂ rκ′ ∀(κ,κ ′) ∈
{1 . . .K}2 using deformable image registration [Glocker et al. 2008].
Finally we apply a weighted n-way morph [Lee et al. 1998] to pro-
duce a single output frame f̂ r by displacing and blending pixels in
f̂ r1 . . . f̂

r
K according to the same weights w1 . . .wK as in Section 5.2

and the warping �elds ϕκ,κ′ .

Sub-sequence stitching. Since the style transfer is applied indepen-
dently on each animation sub-sequence, stylized overlapping sub-
sequences need to be stitched together to avoid abrupt changes. We
apply the same approach as described in previous paragraphs, but
now only with two frames and with blending weights proportional
to the temporal distance τ : to stitch overlapping sub-sequences i
and i + 1, we use wi = τ/Mi,i+1 and wi+1 = 1 − τ/Mi,i+1, where
Mi,i+1 is the number of frames in the transition.

Contact points adjustment. Our synthesis process does not guar-
antee that the resulting animation preserves the alignment with
obstacles at contacts. This issue bears resemblance to the foot step
detection/correction mechanism used when blending motions in
skeletal animation. Yet our problem is simpler since we know the
position of contact points; we can easily verify whether the spatial
alignment with obstacles is preserved. If not, we simply shift or
slightly rotate the synthesis result so that it aligns perfectly with
the obstacle at collision time. To estimate the corresponding trans-
lation and rotation we use again image registration algorithm of
Sýkora et al. [2009]. To avoid ambiguity in translation along the
obstacle during the registration, we restrict the centroid of the syn-
thesized drawing to move perpendicularly to (along the normal of)
the nearest obstacle.

Texturing. We support two options to apply a texture inside the
deformed drawings. The �rst one takes as input a static image
whose content is constant during the full sequence. This image is
�rst rotated according to the target sequence orientation, then it is
registered with every residual frame f ri using [Glocker et al. 2008],
and �nally replaces those during the subsequent �ne-scale synthesis
steps (see Figure 13(c)). If the content of the texture varies in time,
the artist needs to provide two versions of the style exemplar: one
only showing the outline of the drawing and another with the full
texture (see Figure 17). The former is used for quadratic registration
whereas the latter is copied during the frame-by-frame synthesis.

Stroke appearance transfer. To o�er additional artistic controls,
we optionally allow the stroke appearance to be re-synthesized by
exemplar using StyLit [Fišer et al. 2016]. This can also help suppress
resampling artifacts that may occur when applying the quadratic
and free-form deformations. In practice we replace the complex
illumination-based guidance with a simple gray-scale guiding chan-
nel G that softly demarcates positions of strokes in the source and
in the target image (see Figure 9).

(a) (b)

(c)

(d)

(e)

Fig. 9. Stroke appearance transfer based on StyLit algorithm [Fišer et al.
2016] — it takes as input an exemplar drawing containing few strokes created
using the desired drawing media, e.g., color pencil (a), its corresponding
guiding channel (b), the target frame synthesized using our method (c) and
its guiding channel (d), and produces the resulting appearance transfer (e).

To generate G we �lter the input stroke style exemplar as well
as the output frame using the FDoG �lter [Kang et al. 2007] which
suppresses local discrepancies caused by physical properties of the
artistic medium (in the stroke style exemplar) or by errors caused
by warping and blending pixels (in the target stylized frame) and
produces clean stroke outlines. Then a Gaussian blur is applied on
this clean outline mask and the resulting bitmap image is normalized
and used as a guiding channel for the StyLit algorithm.
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Fig. 10. Style pair database — overview of the source animations and their corresponding stylizations of a bouncing ball drawn by a professional artist.

target sequence synthesis (one example trajectory) synthesis (all example trajectories) ground truth stylization

Fig. 11. Results of our synthesis algorithm — (from le� to right) target animation computed using physical simulation, synthesis using only one exemplar
trajectory, synthesis using all available exemplar trajectories shown in Figure 10, ground truth stylization drawn by a professional artist.

7 RESULTS
We implemented our approach using a combination of Matlab/C++
code, and integrated it as a plug-in into “TVPaint Animation”, a pro-
fessional 2D animation software. In all our experiments, the input se-
quences were split into sub-sequences of Ni =

2
3#(ei−1, ei+1) frames,

where #(ei , ej ) is the number of frames between the key events ei
and ej . The overlap Mi,i+1 was set to 2

3#(ei , ei+1). For source-target
sub-sequence matching, N was set to 20 and the weights were set
to λvel = 1, λdir = 1, λrot = 50 to encourage consistent rotation.

To validate our method we designed two practical usage scenarios:
(1) an o�-line scenario where an existing database of pre-made style
exemplars is used to perform stylization of new more complex
sequences and (2) an interactive scenario where an animator speci�es
a set of sparse style exemplars in the target sequence and those are
then used as a source for the synthesis of the entire sequence.

In the case of the o�-line scenario, to create the database, we
asked a professional animator to stylize a few physical simulations
with a single ball (see Figure 10) and square bouncing on the ground
(see Figure 1). This database of exemplars was then used to stylize
more complex physical simulations containing multiple interacting
objects in di�erent environment (see Figures 1, 11, 12, 16, 13, 17
and the supplementary video). For this scenario, we precompute
parametric deformations for each exemplar in the database. Our
implementation can precompute 10 frames in about 13 seconds on
average. Using the precomputed deformations, synthesis of an ani-
mation containing 100 frames lasts approximately 56 seconds. The
most time consuming parts of the pipeline are the image registration
phases. Parallel processing could be used to accelerate the block

target synthesis

Fig. 12. Result of our synthesis algorithm for two bouncing balls — target
sequence computed using physical simulation (le�); resulting synthesis
computed using all available exemplar trajectories shown in Figure 10 (right).

matching step of Sýkora et al. [2009] and the graph-cut computa-
tion in Glocker et al. [2008]. In Figure 14 we also demonstrate the
synthesized sequences with additional stroke appearance transfer
which further enhances the hand-drawn look and feel.

For the interactive scenario, we let the artist work in TVPaint
Animation, a professional animation software, using our plug-in to
iteratively improve the stylization of a target sequence. The artist
�rst selects a few frames where a more pronounced stylization
is required and draws over them. The target sequence is then re-
synthesized taking into account those modi�ed frames, and the artist
can inspect the result, tweak already modi�ed frames, or provide
stylization for additional frames (see the supplementary video for
the recording of a live editing session). In this scenario, we compute
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(b) synthesis(a) target sequence (c) textured result

Fig. 13. Result of our synthesis algorithm for more colliding balls — (a) target sequence computed using physical simulation; (b) resulting synthesis computed
using all available exemplar trajectories shown in Figure 10; (c) “stone wheel” texture applied during the frame-by-frame synthesis.

our method ground truth stylization

Fig. 14. Stroke appearance transfer applied to our stylized result (le�), and
on the same sequence drawn by a professional artist (right).

parametric deformations only for newly stylized frames and then
the synthesis is executed with comparable computational overhead
as in the o�-line scenario. In the captured session, the artist stylized
only 5 percent of the frames until she was satis�ed with the result.
The method could even work with a single stylized frame, but it
will obviously produce visually pleasing results only when a few
frames before and after a collision event are provided.

To con�rm that our approach reproduces the hand-drawn style
well, we asked the professional artist to stylize the entire sequence
frame-by-frame (ground truth), and we also let our algorithm syn-
thesize the same sequence using exemplars (1) from the database
and (2) from a fraction of the stylized frames in the ground truth se-
quence (see Figure 11). Then, we asked two professional animators
and three casual observers to compare the three results side-by-
side and assess the overall motion stylization quality. In most cases
the results were almost indistinguishable from ground truth for
non-professional observers. Professional artists were able to see
some discrepancies namely in frames of which assumed stylization
diverted signi�cantly from the available exemplars, however, the
overall response was very positive and they highly appreciate the
advantage of having a trade-o� between the �nal visual quality and
the time required to produce the exemplars.

In addition to the comparison with a ground truth sequence, we
also provide an additional comparison showing the necessity of
the decomposition into a quadratic deformation D and residual
changes R. We synthesize sequences using only our parametric
model and then compare with those synthesized using the full pro-
cessing pipeline (see Figure 15).

D only D plus R

Fig. 15. Comparison — synthesis using only the quadratic deformation
model D (le�), and with the full processing pipeline which includes both
the quadratic deformation D and the residual changes R (right). Note
how the addition of the residual changes R significantly improves the
expressiveness of the resulting animation.

8 LIMITATIONS AND FUTURE WORK
We have shown that our approach can produce good results using
only a small subset of exemplar frames, and as a result can notably
lower the amount of manual work required to create a variety of
2D animations. However, those are currently restricted to simple
rigid bodies, and some practical – rather than conceptual – limita-
tions need to be addressed to allow the stylization of more complex
sequences.

First, as mentioned in Section 4, for simplicity, our method does
not explicitly model the spacing variations that an artist may intro-
duce compared to the physical simulation (e.g., ease-in / ease-out
e�ects). This is especially noticeable in the dynamics of collisions.
To a certain extent, those variations are implicitly captured by the
translational part of the parametric transformation, but only as a
linear frame-by-frame approximation when it should maybe be mod-
eled as a continuous function along the rigid body trajectory. This
can be seen in instances where a shape deforms along the contact
plane just before or right after the collision (levitation e�ect).

Besides, our approach takes advantage of rigid body symmetries
which are helpful namely for the synthesis of rotations. In particular,
exemplars of symmetric counterparts can be reused in situations
where there is no corresponding sequence available in the original
orientation. However, for asymmetric objects this simpli�cation
cannot be used and thus more exemplars need to be provided in
order to be able synthesize consistent orientations. To further reduce
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target sequence synthesis

Fig. 16. Result of our synthesis algorithm for two interacting squares — the style pairs of Figure 1 are used, these only contain collisions with the ground plane.

the burden on the artist in such cases, it would be required to model
the rotation of the example object separately and allow some amount
of re-targeting during the transfer to the novel sequence.

The success of our method also strongly depends on the result of
the automatic image registration phase, during which the quadratic
deformation model is �t to the stylized exemplar. For elongated
objects such as the car in Figure 17, it would be interesting to explore
the use of multiple quadratic deformation clusters such that the front
of the object may be stylized earlier than its rear along the motion
trajectory. More complex or excessive stylization may not �t well
to the available degrees of freedom and consequently the resulting
residual changes may become overly large. This can cause di�culties
during the deformable image registration and the subsequent n-way
morphing phase. As future work, we would like to explore di�erent
parametric models which would be able to describe a larger variety
of deformations occurring in hand-drawn animations. Those more
complex models will probably require a better image registration
algorithm with a hierarchical processing that is able to adaptively
add individual degrees of freedom to avoid getting stuck in some
erroneous con�gurations. It would also require a more advanced
blending scheme.

When the exemplar animations di�er considerably as compared
to the target motion our method just picks a set of most similar ones
which likely would not be appropriate. Moreover, when there is a
large di�erence in velocities, the dampening phase tends to remove
the stylization e�ect. Both e�ects are undesirable and serve as a
signal for the artist to provide some more appropriate exemplars.

A last drawback of our technique is that it requires multiple pixel-
based warping operations to produce the �nal shape. Although
their number can be minimized by applying compound quadratic
transformations, subsequent image re-sampling may still introduce
artifacts that can alter the genuine appearance of the used artistic
media. This limitation can be partially alleviated by additional post-
processing steps such as the proposed appearance re-synthesis or
vectorization.

Combining all these improvements, we plan to extend our method
to articulated objects such as cartoon characters. In this case a more
complex, potentially hierarchical parametric model will be needed.

9 CONCLUSION
We have presented a method allowing to perform style transfer from
an existing 2D hand-drawn animation exemplar to a more complex
rigid body animation. To the best of our knowledge this is the �rst
attempt to provide a solution for such a challenging task. Despite
the recent success of example-based stylization techniques focusing
on appearance transfer, animation is still a mostly unexplored area
and we believe that the results provided in this paper will motivate
other researchers to explore and solve the large variety of challenges
that emerges when considering transfer of motion style to more
complex articulated objects such as cartoon characters.
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Fig. 1. An example of hand-colored animation synthesized using our approach (bottom row) following the user-specified skeletal animation (top row) and
preserving the motion as well as appearance style prescribed by an artist (see a corresponding style exemplar in Fig. 10). Note how the synthesized images still
resemble the hand-colored original.

We present a new example-based approach for synthesizing hand-colored
cartoon animations. Our method produces results that preserve the specific
visual appearance and stylized motion of manually authored animations
without requiring artists to draw every frame from scratch. In our framework,
the artist first stylizes a limited set of known source skeletal animations
from which we extract a style-aware puppet that encodes the appearance and
motion characteristics of the artwork. Given a new target skeletal motion,
our method automatically transfers the style from the source examples
to create a hand-colored target animation. Compared to previous work,
our technique is the first to preserve both the detailed visual appearance
and stylized motion of the original hand-drawn content. Our approach has
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1 INTRODUCTION
While advances in computer graphics have contributed to the evo-
lution of 3D animation as an expressive, mature medium, 2D an-
imation remains an extremely popular and engaging way to tell
stories. One common workflow for creating 2D animations is to
decompose characters, objects and the background into separate
layers that are transformed (either rigidly or non-rigidly) over time
to produce the desired motion. A key advantage of this layer-based
approach is that a single piece of artwork (i.e., layer) can be reused
across many animated frames. As long as the appearance of the
layer does not change dramatically (e.g., a character’s torso turning
from a front to side view), the artist does not need to redraw from
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scratch. Compared to drawing and coloring every frame by hand,
animating with layers greatly reduces the authoring effort, which is
one reason why many modern cartoon series (e.g., Archer, BoJack
Horseman, Star vs the Forces of Evil) are created in this manner.
Unfortunately, this increase in efficiency comes at a cost. While

hand-created animations give artists complete freedom to specify
the appearance of each frame, many styles of artwork are hard
to animate using a typical layer-based workflow. Since layers are
reused and transformed across several frames, painterly artwork
can look awkward as textured regions are compressed and stretched.
In addition, rendering styles with visible brush strokes often appear
somewhat “dead” when the pattern of strokes remains fixed from
frame to frame. Beyond the appearance of the artwork, the motion
of layers is also constrained since commercial tools typically enable
a limited set of transformations that do not directly support many
secondary effects or exaggerated bending and bulging of moving
parts. As a result, most layer-based animations are rendered in
simple, flat-shaded styles and exhibit relatively stiff or jerky motion.
In this work, we propose an example-based layered animation

workflow that allows artists to customize the appearance and mo-
tion of characters by specifying a small set of hand-colored example
frames for one or more specific source motions. Our system auto-
matically captures and applies the style of the example to new target
motions. The key difference between our approach and standard
layered animation is that target animation frames are generated by
synthesizing each layer based on the set of example frames rather
than transforming a single drawn layer. Since the synthesis proce-
dure preserves stylistic aspects in the appearance and motion of the
hand-colored source animation, our method supports a much wider
range of animation styles. Compared to traditional frame-by-frame
drawing, our approach allows artists to get much greater use out of
their artwork, since a relatively small set of drawings can be lever-
aged to produce animated results for a variety of related motions
(e.g., a drawn walk cycle can be used to generate a fast angry walk,
slow sneaky walk, etc.).
Existing example-based techniques for 2D animation mostly fo-

cus on individual sub-problems such as 2D shape interpolation,
motion, or appearance transfer. However, focusing on individual
steps separately leads to noticeable discrepancies between the real
hand-drawn artwork and computer generated output: either the
motion characteristics or visual appearance lack quality. For exam-
ple, in some cases shapes are interpolated with the proper motion
characteristics, but the appearance includes artifacts due to distor-
tion or blending of textures [Arora et al. 2017; Baxter et al. 2009;
Sýkora et al. 2009]. Or, the appearance is transferred properly, but
the underlying motion feels too artificial [Fišer et al. 2017, 2014]).
Thus, a key remaining challenge is to combine motion and appear-
ance stylization into a holistic framework that produces synthesis
results with all the characteristics of hand-drawn animations. To
our best knowledge, our approach is the first that provides such a
joint solution and enables fully automatic synthesis of convincing
hand-colored cartoon animations from a small number of animation
exemplars.

We tailor our method to handle in-plane motions with occlusions,
which are typical for cartoon animations and gaming scenarios.
Focusing on such motions allows us to apply a relatively simple

algorithm that still produces effective results supporting a range of
practical applications. For out-of-plane motions that involve more
complex depth order changes as well as topological variations, ad-
ditional manual intervention would be necessary.

Our paper makes the following specific contributions. We define
the concept of a layered style-aware puppet that is flexible enough
to encode both the appearance and motion stylization properties
exemplified by the artist’s hand-colored animation frames. We also
present a mechanism to combine the information captured by this
puppet to transfer motion and appearance style to target anima-
tions prescribed by skeletal motion. A key benefit of our technique
over previous work is that we specifically designed our pipeline
to preserve the visual characteristics of the original artistic media,
including a user-controllable amount of temporal incoherence.

2 RELATED WORK
Pioneered by Catmull [1978], there has been a concerted effort
over the last few decades to simulate or simplify the production of
traditional hand-drawn animation using computers.
Computer-assisted inbetweening [Kort 2002] — i.e., generating

smoothly interpolated animation from a set of hand-drawn keyframes
— is one of the problems that has received significant attention. Vari-
ous techniques have been proposed to tackle it, achieving impressive
results both in the vector [Baxter and Anjyo 2006; Whited et al. 2010;
Yang 2017] and raster domains [Arora et al. 2017; Baxter et al. 2009;
Sýkora et al. 2009]. Some of these techniques propose N-way morph-
ing between all available frames to widen the available pose space.
Nevertheless, inbetweening is designed to deliver plausible tran-
sitions only between keyframes. To produce animation for a new
target motion, artists must create additional keyframes by hand.

Another large body of research focuses on the simulation of basic
motion principles seen in traditional animations, including squash-
and-stretch, anticipation, and follow-through [Lasseter 1987]. Ex-
isting work proposes customized procedural techniques [Kazi et al.
2016; Lee et al. 2012; Schmid et al. 2010; Wang et al. 2006] as well as
controllable physical simulation [Bai et al. 2016; Jones et al. 2015;
Willett et al. 2017; Zhu et al. 2017]. Although these methods are
capable of achieving the look-and-feel of traditional animation, they
do not in general preserve specific motion details that often charac-
terize a given artist’s style. These techniques also do not consider
how to faithfully preserve the detailed visual appearance of hand-
drawn artwork that is in motion. In most cases, textures are simply
stretched and deformed, which leads to visual artifacts.
To retain more of a hand-drawn appearance, some techniques

directly reuse or manipulate existing hand-drawn content. They
either use the animation sequences unchanged [Buck et al. 2000;
van Haevre et al. 2005; de Juan and Bodenheimer 2004, 2006] and
only reorder the animation frames, add more inbetweens, or di-
rectly manipulate the appearance on a pixel level [Sýkora et al. 2011,
2009; Zhang et al. 2012] to enhance the visual content or change the
motion characteristics. Although these approaches better preserve
the notion of hand-colored animation, their potential to make sub-
stantial changes to the motion is rather limited. Extensive manual
work is typically required when a different animation needs to be
produced out of existing footage.
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So : source skeletal animation To : target skeletal animation

Ss : exemplar motion and appearance stylization Ts : resulting stylized animation synthesized using our method

Fig. 2. The animation analogy concept: for a given source skeletal animation (So ), an artist prepares a corresponding hand-colored animation which jointly
expresses stylization of character’s motion and appearance (Ss ). Then for a different target skeletal animation (To ), our system produces a synthetically-
generated hand-colored animation (Ts ) that respects the provided analogy So : Ss :: To : Ts and transfers the motion and appearance style to (To ).

Rather than directly reusing hand-drawn frames, image analo-
gies [Hertzmann et al. 2001] provides a powerful framework for
synthesizing new content based on example artwork. In this ap-
proach, a guiding image and its stylized version are provided to
define the style transfer analogy. This approach has been extended
to stylize animations [Bénard et al. 2013] with later work adding
user control over the amount of temporal flickering [Fišer et al.
2017, 2014] to better preserve the impression that every animation
frame was created by hand independently. However, these analogy-
based approaches only support appearance style transfer and do
not consider how to represent and apply motion stylizations.
Recently, Dvorožňák et al. [2017] presented a motion style anal-

ogy framework that has similar motivations to our pipeline. In their
workflow, an artist prepares a set of hand-drawn animations that
stylize input rigid body motion (of circles or squares) computed us-
ing physical simulation. Then they analyze the style by registering
a quadratic deformation model as well as a residual deformation.
Finally, for a given target rigid body animation, they synthesize a
hand-drawn animation by blending the deformation parameters
from similar exemplar trajectory segments. One key difference in
our work is that we focus not only on motion stylization but also ap-
pearance synthesis for fully colored drawings. While Dvorožňák et
al.’s method does synthesize simple outline drawings, our approach
is designed to support a wide range of hand-colored rendering styles.
In addition, the previous technique only handles simple rigid body
scenarios where each object in the scene can be represented by
a single artwork layer and one set of deformation parameters. In
contrast, we describe an analogy framework that works for complex,
multi-layered, articulated characters.

Skeletal animation [Burtnyk and Wein 1976] has proven to be an
efficient tool for deforming 2D shapes [Hornung et al. 2007; Vanaken
et al. 2008]. It has been used to control deformation in the context
of cartoon animations [Sýkora et al. 2005; Wang et al. 2013] as well
as to transfer motion from a sequence of drawings [Bregler et al.

2002; Davis et al. 2003; Jain et al. 2009] or a single pose [Bessmeltsev
et al. 2016] onto a 3D model. In our framework, we demonstrate
that skeletal animation can be used also as an effective guide to
perform style transfer between hand-drawn exemplars and target
animation.

3 OUR APPROACH
The primary goal of our work is to help artists create hand-colored
animations of characters without having to draw every frame from
scratch.
Motivated by the abundance of available motion capture data

thanks to recent advances in pose estimation [Mehta et al. 2017],
professional MoCap systems (Vicon, OptiTrack, The Captury), and
existing motion databases (CMU, HumanEva, HDM05), we assume
skeletal animation is easily accessible and can serve as a basic tool
to convey motion characteristics. Moreover, tools such as Motion-
Builder allow users to combine and extend existing MoCap data
using forward/inverse kinematics to create skeletal motions suitable
for our method.

Thus, we focus on the challenge of generating colored animations
that match a given target skeletal motion while at the same time
follow the visual appearance and motion style of an artist-created
analogy where a few hand-colored frames serve as an example of
how the artist would stylize a particular skeletal animation. Inspired
by previous analogy-based techniques [Dvorožňák et al. 2017; Hertz-
mann et al. 2001] we call our approach animation analogies.
In our framework, the artist first chooses a short source skeletal

animation So and creates a source stylized animation Ss by author-
ing hand-colored frames that express the stylization of the source
skeletal animation. We call this pair a source exemplar So : Ss . In
the source exemplar, we assume that frames of Ss roughly follow
the motion in So , but the details of the motion can be different due
to stylization effects. For example, if So is a walk cycle, we assume
the foot steps in Ss are synchronized, but the legs themselves may
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Pd Pr Pp PtP

⊖

Fig. 3. A style-aware puppet Ps consists of a layered template puppet P , coarse deformation of individual puppet shapes Pd , their residual elastic deformations
captured by multi-layer residual motion field Pr (layers and the magnitude of deformation are color-coded), the difference between the source and stylized
skeletal pose Pp , and the stylized texture of the character Pt .

bend and stretch in an exaggerated way. We also assume that each
stylized frame Ss (i ) can be separated into a consistent set of lay-
ers that are associated with the skeleton bones in So (i ) and that
the depth order of the layers matches that of the corresponding
bones. The shape of occluded parts in those layers can be either
automatically reconstructed [Sýkora et al. 2014; Yeh et al. 2017] or
manually inpainted. An artist can also specify detailed appearance
stylization of those occluded parts. However, this step is optional as
our appearance transfer technique can be used to fill the missing
areas automatically. We then analyze the appearance and motion
stylization given by the source exemplar So : Ss and let the artist or
another user provide multiple novel target skeletal animations To
that represent the desired motions of the character for the final
animation. Finally, our method uses the analogy So : Ss :: To : Ts
to automatically generate the corresponding hand-colored output
frames Ts (see Fig. 2).

While the target skeletal motionsTo can differ considerably from
the source So , we expect some similarities for our analogy-based
framework to work. For example, the artist might stylize a standard
walk cycle and transfer the stylization to a sneaky walk, drunk
walk, or running cycle. However, a jumping motion might be too
dissimilar from the source to stylize successfully, in which case a
different style exemplar can be created.
To enable this analogy-based workflow, we propose a guided

synthesis technique that uses the style exemplar So : Ss to generate
stylized frames Ts for the target skeletal motion To . Our method
has two main stages. First, we analyze the source animations to
determine the relationship between the skeletal animation So and
the corresponding hand-colored data Ss . Specifically, we construct a
style-aware puppet Ps that encodes the pose, shape, and appearance
stylization Ss for every frame from So . Once we have this encoding,
we can automatically apply the stylization to frames in To and
generate a new hand-colored animation Ts . The following sections
describe these two stages in detail.

3.1 Representing Source Stylization
Given the source skeletal So and stylized Ss animations, we con-
struct a style-aware puppet Ps that describes the pose, shape and
appearance properties of the exemplars with respect to a layered

template puppet P . The template puppet P represents the charac-
ter in a “neutral” pose; it has the same set of layered parts as the
source artwork where each part is associated with a corresponding
portion of the source skeleton (see Fig. 4). In case some parts are
occluded in the original artwork, we ask the artist to complete their
shapes and also specify important semantic details that needs to
be preserved (e.g., facial features or cloth draping). We then en-
code the stylization by registering the template puppet P to every
hand-colored source frame Ss (i ). This allows us to extract the de-
formed skeletal pose as well as detailed shape deformation of the
character with respect to the neutral pose of P . We also encode the
appearance of the character in the form of a texture. More formally,
a style-aware puppet Ps consists of a layered template puppet P and
a tuple [Pd , Pr , Pp , Pt ] for each stylized frame i (see Fig. 3): Pd (i )
captures the coarse deformation of individual puppet shapes, Pr (i )
their residual elastic deformation, and Pp the difference between
the source skeletal pose So (i ) and stylized skeletal pose Sp (i ). Pt (i )
is the stylized texture of the character. We use these tuples to stylize
novel skeletal animations To .

Layered Template Puppet Creation. To create a layered template
puppet P , we can either use a special unstylized frame in a rest

(a) (b) (c) (d)

Fig. 4. An example of a layered template puppet: for a single existing hand-
colored frame (a), we create a set of semantically meaningful layers which
are interconnected at junctions (b) and assign joints of the source skeleton (d)
to corresponding locations on each individual layer (c).
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pose created by the artist or one of the frames taken from the input
hand-drawn animation Ss . It consists of a set of semantically mean-
ingful layers (e.g., head, body, hands, and legs) manually stitched
together at locations where they naturally connect. Each layer must
be attached to the underlying skeleton at one or more user-specified
joints. These attachments define the correspondence between bones
and layers (see Fig. 4).

Registration. To register the template puppet P to every frame i of
the segmented hand-colored animation Ss , we use a similar approach
as in Dvorožňák et al. where a coarse deformation is estimated first
and then a more detailed residual motion is extracted. This coarse-to-
fine strategy improves the robustness of the registration algorithm
while still allowing us to encode very accurate deformations. While
Dvorožňák et al. use a single as-rigid-as-possible (ARAP) mesh, a
key improvement of our approach is that we use a layered ARAP
model with multiple piecewise connected meshes defined by our
layered template puppet P .

We compute the coarse deformation using the ARAP image reg-
istration algorithm [Sýkora et al. 2009], which iteratively applies
two steps: the pushing phase shifts every point on the ARAP mesh
towards a better matching location in the target image using a block-
matching algorithm; and the regularization phase keeps the ARAP
mesh consistent. To use this approach with our multi-mesh ARAP
model, we adapt the pushing phase so that the block-matching
only uses the content of the corresponding layer to shift each mesh
(see Fig. 6, left). This concept is similar to the depth-based separa-
tion used in [Sýkora et al. 2010], which avoids clutter caused by
occlusion and improves the overall accuracy of the final registration.
The registration process as described is automatic. Nevertheless,
there can be challenging configurations (e.g., when the deforma-
tion is large compared to the template) where manual intervention
(dragging a control point to the desired location) can help to speed
up the registration process or correct possible misalignments.
Once we obtain a coarse deformation of our layered template

puppet Pd (i ), we rectify each hand-colored part by removing the
computed coarse deformation and perform a more accurate elastic
registration between the template and the rectified frame using the
method of Glocker et al. [2008]. The result of this step is a multi-
layer residual motion field Pr (i ) that encodes subtle shape changes
of individual body-parts (Fig. 6, right).

To compute Pp (i ) we need to infer the stylized skeletal pose Sp (i )
from the configuration of the registered puppet layers. We aim to
only obtain a 2D projection of the stylized pose. To do so, we use a
topologically equivalent 2D representation of the skeleton that is
specified by a root joint position, lengths of skeleton bones and their
rotations in the ancestor bone’s reference frame. Since each layer
is attached to the template skeleton at specific joints, the stylized
position of those joints can be directly obtained from the position of
the corresponding attachment points on the deformed mesh. Pp (i )
is then computed as a difference between root joint positions, bone
lengths and their rotations: Pp (i ) = Sp (i ) ⊖ So (i ).

Finally, Pt (i ) is obtained by storing pixels from the hand-colored
artwork.

3.2 Style Transfer of Motion and Appearance to Target
Skeletal Animation

Synthesis of Motion. We use the extracted style-aware puppet
represented by the puppet template P and the per-frame tuples
[Pd , Pr , Pp , Pt ] to stylize new skeletal animations. We assume that
the target skeleton has the same topology as the source skeleton,
which is generally true for most MoCap systems.

The transfer of motion style is analogous to patch-based texture
synthesis [Kwatra et al. 2005; Wexler et al. 2007] which involves
two alternating steps: search and vote. In our context, instead of
texture patches, these steps operate on small sub-sequences of 2N+1
consecutive skeletal poses around each frame in the source and
target animations. The search step finds the closest matching sub-
sequence in the source exemplar for each frame in the target and
then the voting step averages the content over all intersecting sub-
sequences to obtain the final frame pose (see Fig. 5).

More formally, in the search step, we find the closest source sub-
sequence S (i ) = So[(i −N ) . . . (i +N )] for each target sub-sequence
T (k ) = To[(k − N ) . . . (k + N )] using the pose similarity metric of
Kovar et al. [2002], which exploits the sum of distances between
point clouds formed by the trajectories of corresponding skeleton
joints in each sub-sequence after removing global translation.

search step

vote step

S (i )

So

To

Ps i

T (k )

i

k

blend

kP̂s

Fig. 5. Obtaining a blended style-aware puppet P̂s for a target frame: for a
sub-sequence of the target skeletal animationT (k ), the closest sub-sequence
of the source skeletal animation S (i ) is found (search step) and then the
corresponding sub-sequence of style-aware puppets Ps (i ) is blended with
other intersecting sub-sequences (vote step).

Once we have found the best matching source sub-sequence for
each target frame, we are left with a set of overlapping source sub-
sequences (see Fig. 5). At this point, we perform the voting step to
blend over all the source frames (using the information encoded
in the associated style-aware tuples) that correspond to each out-
put target frame. This step results in a blended style-aware tuple
[P̂d , P̂r , P̂p , P̂t ] for each target frame which is obtained using an
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Removing Layered ARAP Deformation Removing Elastic Deformation

(a) (b) (c) (d) (e) (f)

Layered ARAP
Registration Elastic

Registration

Fig. 6. An example of capturing motion stylization: a layered template puppet (a) is first registered with the segmented version of the stylized animation
frame (b) with as-rigid-as-possible (ARAP) image registration [Sýkora et al. 2009] using a layered piecewise connected ARAP deformation model (c). Then, the
coarse deformation is removed (d) and the rectified animation frame is registered to the template (e) using the elastic registration method of Glocker et
al. [2008] resulting in a segmented stylized animation frame that has both the coarse deformation and the elastic deformation removed (f). Notice the subtle
difference in the shape of the hand and hair, which the coarse deformation alone was not able to capture.

N-way ARAP interpolation [Baxter et al. 2009] of the coarse part de-
formations Pd and a linear blend of the residual shape deformations
Pr [Lee et al. 1998] and skeletal pose differences Pp . The blended tex-
ture P̂t is obtained by first rectifying the textures Pt (i.e., removing
Pd as well as Pr ) and then linearly blending the pixel colors. Finally,
we apply the resulting blended skeletal pose difference P̂p (k ) to the
target skeleton To (k ) to obtain its stylized pose (see Fig. 7).

: :::

(a) (b) (c) (d)

Fig. 7. Style transfer to the target skeletal animation: differences in root
joint positions, bone lengths and their rotations between the source skeleton
pose (a) and its stylized counterpart (b) are transferred to the target skeleton
pose (c) to obtain its stylized pose (d).

Synthesis of Appearance. Once the stylized deformation of the
target frame is known, a straightforward way to transfer the stylized
appearance would be to deform the blended shapes using the new
skeleton joint locations on To (k ) and warp the blended textural
information accordingly. This straightforward solution, however,
gives rise to numerous artifacts. Linear blending often smooths away
visual details in the original hand-colored frames that are critical to
the style of the artwork (see Fig. 8 and the supplementary video for
comparison). This is caused mainly by the fact that high-frequency
details of individual blended frames are not perfectly aligned and

Fig. 8. When the pixel colors of textures of multiple example poses are
linearly blended, the result often smooths away subtle details from the
original textures (left). This is caused by the blending of slightly different
textural content stored in the exemplar frames. The richness of the original
textures may be preserved using guided texture synthesis (see the result on
the right). See also supplementary video for an animation.

thus simple averaging suppresses them. Moreover, in the case where
the artist specifies only the shape of the occluded layers in the style
exemplar frames, the stylized target may include regions that do not
contain textural information, which need to be filled as well. Finally,
blending and warping typically does not produce the same type of
temporal variation (i.e., “boiling”) that characterizes many hand-
colored animations. Ideally, we would like to support controllable
temporal flickering as in [Fišer et al. 2014].

To alleviate all these issues, we replace imagewarpingwith guided
texture synthesis [Fišer et al. 2017], which creates coherent, detailed
texture content and has the flexibility to fill-in newly visible regions.
For this technique to work properly, we need to prepare a set of
guiding channels that define how texture from the source stylized
frames should transfer to the deformed target frames.
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source guiding channels target guiding channelssource style synthesis result

Gs
seg Gs

app Gt
seg Gt

appPt

Fig. 9. An example of guiding channels produced by our method to constrain appearance style synthesis: segmentation Gseg and temporal appearance Gapp.
The StyLit algorithm [Fišer et al. 2016] is used to perform the actual synthesis using both guiding channels and style exemplar Pt to produce the final
animation frame. The amount of blur in the Gapp controls the amount of temporal flickering in the final animation.

Since the textures for various parts of the character are usually
distinct, we want to avoid texture transfer across different parts.
To this end, we introduce a segmentation-based guidance channel
Gseg that represents each segmented part using a separate color
label (see Fig. 9). Since the segmentation also contains important
semantic details like eyes, nose, and mouth, Gseg ensures that these
details will be preserved at the appropriate locations.

In addition, we would like to preserve temporal coherence in the
synthesized target textures in a controllable fashion. To do so, we
introduce a temporal appearance guide Gapp that influences how
consistently the texture is synthesized from one frame to the next.
We defineGapp as the original texture Pt for source frames, and the
blended texture P̂t for target frames. The details in these guiding
textures encourage frame-to-frame consistency by restricting a set
of matching exemplar patches. To control the amount of consis-
tency, we use a similar strategy as in [Fišer et al. 2017, 2014], we
smooth Pt and P̂t . However, contrary to Fišer et al. who uses simple
Gaussian blur, we employ the joint bilateral filter [Eisemann and
Durand 2004] with the joint domain Gseg, i.e., we avoid blurring
over part boundaries which allows to better preserve consistency
of individual segments. Increasing the amount of blur in Gapp re-
duces restrictions on the synthesis, thereby increasses the amount
of temporal flickering in the resulting synthesized target animation.

To generate the guides for the source animation, we simply render
the segmentation labels and texture (with the specified amount of
smoothing) for every stylized frame Ss (i ). For the target frames,
we apply the deformations P̂r and P̂d to the template puppet P and
warp the puppet to the stylized pose using the skeleton obtained in
the motion stylization step. We then render the segmentation labels
for Gseg and the smoothed texture P̂t for Gapp. Finally, we run the
synthesis using StyLit [Fišer et al. 2016] to produce the final stylized
target frames (see Fig. 9).

4 RESULTS
We implemented our approach using a combination of C++ and
CUDA. We set N = 4 in all our experiments. To smoothen the
texture using joint bilateral filter for the appearance guide Gapp,
we set σspace = 5 and σintensity = 1. For the appearance transfer,

the segmentation guide Gseg has weight 2 and Gapp is set to 1. For
the previously published methods utilized in our pipeline, we set
parameters according to recommendations in the corresponding
papers.

On a quad-core CPU (Core i7, 2.7 GHz, 16 GB RAM), the analysis
phase (namely the registration) takes on average 15 seconds per
frame (6 seconds for ARAP registration, 9 seconds for elastic regis-
tration). Synthesizing new target animation frames takes roughly 9
seconds per frame (1 second for the motion synthesis, 8 seconds for
the appearance transfer). The appearance transfer is parallelized on
the GPU (GeForce GTX 750 Ti) using CUDA. Moreover, every ani-
mation frame can be synthesized independently, i.e., the synthesis
process can be executed in parallel on a cluster.
To assess the effectiveness of our method, we asked an artist

to prepare a set of hand-drawn exemplars for different skeletal
motions selected from the CMU motion capture database1 (walking,
running, jumping, and window cleaning) using different artistic
media (watercolor, pencil, and chalk, see Fig. 10 and 14). Then we
selected a set of target sequences from the same motion capture
database that have similar overall types of movement as the source
animations, but different detailed characteristics. For instance, we
include slower, faster and “sneaky” walking motions, and sequences
that combine running and jumping motions. We also tested slow
motion versions of the source skeletal animations to demonstrate
that our technique can also be used for inbetweening. Figures 1,
12, 13, and 14 show static frames from some of our results, more
synthesized animations can be found in the supplementary video.
Overall, the results demonstrate that our method successfully

captures important aspects of the appearance and motion styliza-
tion from the different source examples. For example, the appear-
ance synthesis preserves important characteristics of used artistic
media including color variations in the water color style, the high-
frequency texture in the chalk renderings, and fine shading in the
pencil drawings. These characteristics persist throughout the tar-
get animations, even when the pose is significantly different from
any of the example frames. The artist also added several motion

1http://mocap.cs.cmu.edu/
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Fig. 10. An overview of exemplar animations created by an artist which we used for most results presented in this paper and in the supplementary video. In
each example, we show source skeletal animation (top) and its stylized hand-colored counterpart (bottom). Style exemplars: © Zuzana Studená

stylizations, such as the exaggerated arm swings and knee raises
in the walking motions, and the secondary effects (e.g., squash and
stretch) in the jumping and running animations. Our technique
transfers these characteristics to the new target motions, as shown,
e.g., in Fig. 1.

Our method has several components that together contribute to
the quality of the final synthesized animation. To demonstrate the
impact of these components, we generated comparison where we
add key steps in our pipeline (ARAP deformation, residual deforma-
tion, replacing static textures with blended textures, and appearance
synthesis) one-by-one, starting from a simple skeleton-based de-
formation of the source puppet as the baseline. We also generate
results with different amounts of temporal coherence by modifying
the strength of the joint bilateral blur in the guidance texture. Please
refer to our supplemental videos to see these comparisons.

5 LIMITATIONS AND FUTURE WORK
Our results demonstrate that the proposed method can effectively
transfer a range of stylizations to new target motions. However, the
technique as it stands does have some limitations.

Motion constraints. The current version of our method does not
enforce explicit constraints on the stylized target motion. As a result,
artifacts like foot slip or over-exaggerated bending of joints are
possible (see Fig. 11, left). It would be a relatively straightforward
extension to preserve such constraints by adjusting the stylized
target skeletal pose after we apply the per-frame pose deformation
P̂p (k ).

Sub-skeleton matching. When finding the closest matching source
sub-sequence to a given target sub-sequence, we currently incorpo-
rate all skeletal joints into the similarity metric. A possible extension
for future work would be to consider only partial matches, e.g., to
find separate sub-sequence matches for the upper and lower parts of
the skeleton. This could provide more flexibility in adapting existing
animation exemplars to a larger variety of target motions.

Out-of-plane motions. There are two challenges in handling out-
of-planemotions with ourmethod. First, since we project 3D skeletal
poses to 2D representations, out-of-plane motions can introduce am-
biguities in the search phase of the motion synthesis step (see Fig. 11,
right). For example, rotating an arm towards the camera may have
a similar 2D projection as rotating away from the camera, which
can make it hard to automatically select the appropriate source sub-
sequence to use for synthesis. To address this, we can extend our
approach to use the 3D skeletal information in the source and target
sequences. The second challenge involves out-of-plane motions that
do not preserve a consistent depth order across the layered parts
(e.g., a pirouette). Handling such motions is an interesting direction
for future work.

Reducing input requirements. Our approach enables artists to
leverage a relatively small set of hand-colored frames to synthe-
size many new target motions. However, there are opportunities

Fig. 11. Limitations: Our method does not enforce explicit constraints on
the stylized target motion which may produce over-exaggerated bending
of limbs (left). Combined with out-of-plane motions, the deformation may
become highly inconsistent and produce visible artifacts (right).
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Fig. 12. An example of animation synthesized using our method: target skeletal animation (top), resulting synthesis (bottom). See the original style exemplar
in Fig. 10.

to further reduce the input requirements. For example, rather than
stylizing every frame of the source skeletal motion, perhaps artists
could choose a few key frames to provide hand-colored examples.
To support this reduced input, the analysis phase of our framework
could potentially interpolate the intervening frames using a guided
synthesis method similar to what we currently use to generate
stylized target frames. In addition, we could try to augment our ex-
isting puppet registration method to avoid the need for a segmented
version of each stylized source frame.

Inconsistent motion or skeletal structure. In theory, an artist can
provide any pose stylization to the input sequence (e.g., mapping
a jump motion to a walking sequence or using artwork that has
notably different structure from the original skeleton). However, in
this situation the closest match is typically very different and thus
the algorithm may produce an N-way morph that is far from the
expected shape prescribed by the target skeletal pose (e.g., over-
exaggerated stretching). In such situations, the artist may need to
provide additional stylization frames that capture the desired pose.

6 CONCLUSION
In this paper, we presented ToonSynth, a novel method for synthe-
sizing hand-colored cartoon animations for target skeletal motions.
Our approach leverages artist-created exemplars drawn in reference
to source skeletal motions. We create a style-aware puppet that
encodes the artist-specific stylization into a skeletal pose, coarse as-
rigid-as-possible warp, fine elastic deformation, and texture. Using
this represetation we can transfer stylization to many new motions
by generating guiding channels that capture basic motion properties
as well as provide control over the amount temporal dynamics and
are used to produce the final appearance using guided patch-based

synthesis. This approach enables us to provide the look and feel of
hand-colored animation where each frame is drawn independently
from scratch.
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Chapter 7

Conclusion

This thesis has presented four novel approaches contributing to bridging the gap between
computer-generated and hand-drawn animation and advancing the current state-of-the-
art. These approaches allow for raw user input preprocessing and enable to significantly
reduce demands on the production of hand-drawn animation while retaining its essential
characteristics and also making it more appealing to the contemporary audience. In this
chapter, we summarize the contributions of our work, briefly discuss related concurrent
work and propose directions for future work.

7.1 Summary

In Chapter 3, we presented several methods for preprocessing of raw user input – a set of
efficient methods for reconstruction of a temporal creation history from a video capturing
the process of a digital or real-world artwork creation, and a technique for cleaning up
the video of unwanted real-world objects such as painter’s hand. We presented solutions
suitable for both digital and real-world artwork, which utilize the standard Porter-Duff
and physically motivated Kubelka-Munk blending operations, respectively. Our methods
are designed to extract translucent layers which increase utility for later applications.

Chapter 4 described our technique enabling reconstruction of part-based high-relief
models from a single hand-drawn image. We presented a unified formulation of the re-
construction problem that expresses inflation and depth positioning of individual parts
using single non-linear energy and enables seamlessly interconnected object parts. Fur-
thermore, we proposed a significantly faster approximate method yielding results of com-
parable quality.

In Chapter 5, we proposed an example-based approach for simplifying the production
of hand-drawn animations of colliding stylized rigid body objects. We introduced the
animation analogy concept which extends the established analogy approach for style
transfer between images to animations. From a few hand-drawn frames provided by an
artist, our approach successfully transfers both motion and appearance stylization to a
longer and more complex animation. In addition to this, we demonstrated an interactive
application which enables iterative work and refinement of the result on-the-fly.

Finally, Chapter 6 introduced ToonSynth, an example-based method for facilitating
the production of stylized hand-colored character animations, which proposes a way
of applying the animation analogy concept to character animation. We introduced a
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style-aware puppet that encodes motion and appearance characteristics and a technique
of its extraction from an input hand-drawn exemplar animation. We also proposed a
synthesis method that utilizes the extracted puppets. Compared to the technique for
the rigid body animation analogy, we simplified the parametric synthesis technique by
using more general fixed-length overlapping sub-sequences instead of ones defined around
events, and employed a non-parametric synthesis method to faithfully transfer the hand-
colored appearance of the input exemplars and to introduce a user-controllable amount
of temporal dynamics.

7.2 Concurrent and Future Work

Following up on our work, Tan et al. [2016] proposed a method for tackling the challenging
problem of reconstruction of layers, corresponding to a user-specified palette, from a
single image. Their approach has been recently extended to increase the reconstruction
efficiency significantly [Tan et al. 2018]. Even though this is an exciting direction of
research enabling impressive applications, in the future, we would like to focus more on
exploring applications of the spatiotemporal volume reconstructed from the time-lapse
paintings. The information about a shape or texture of hidden overlapping object-parts
that is present in the volume may serve as a valuable input for our 3D reconstruction
and animation synthesis techniques. The volume may also be informative about the
temporal behavior of physical media during the painting process. An interesting future
work would be to utilize such information for synthesis.

Entem et al. [2018] presented an automatic approach for recovering depth-ordered
structure in a contour drawing of an organic object. They allow for automatic extraction
of possibly occluded object-parts and their ordering in depth. Our high-relief reconstruc-
tion method could benefit from employing their approach to eliminate the need for the
additional user input which would decrease the number of user distractions even more.
Recently, Ramos et al. [2018] proposed a method for 3D reconstruction from side-view
sketches which follows-up on the work of Entem et al. [2015] to which we compared our
reconstruction method. Similar to our work, the technique of Ramos et al. [2018] allows
for more precise outline reproduction then [Entem et al. 2015], but unlike our approach,
theirs does not support seamless interconnections between object-parts.

Recently, artificial neural network approaches have been applied to various challenging
problems yielding impressive results. C. Li et al. [2018] proposed a single-view freeform
surface modeling method employing convolutional neural networks. Their technique
enables the user to incrementally explore the emerging shape by drawing intuitive and
sparse 2D sketches. To deform the shape in depth, they introduce depth strokes or
allow profile-view sketches which, however, requires viewing the shape from a different
viewpoint. Their method supports the creation of full 3D models. This process, however,
requires additional manual intervention in the 3D domain.

In the future, we plan to extend our high-relief reconstruction technique to allow for
full 3D model reconstruction. To obtain full 3D models, Feng et al. [2016] proposed a
simple extension of the semi-elliptical inflation method [Sýkora et al. 2014] that utilizes
mirroring. Reconstruction of full 3D models with seamless interconnections between
object-parts from a single image remains an unsolved problem.
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Another interesting direction for future work is an extension of our reconstruction
method to generate animation-ready models, or allowing for incremental modeling com-
bined with automatic rigging [Borosán et al. 2012] or modeling and animation interleaving
workflow [Jin et al. 2015].

Our hand-drawn animation synthesis methods make a few simplifying assumptions to
make the synthesis feasible. The methods, for instance, assume that one-to-one corre-
spondence between frames of source guidance and hand-drawn exemplar animations is
established, and that object’s motion stays in camera plane. Adapting our methods for
scenarios where these assumptions are not met would enable support for synthesis of
more types of animation.

Our synthesis techniques could be improved to require even less amount of user in-
put. Instead of a sequence of consecutive hand-drawn frames, the user could draw only
several keyframes, and the rest of the input sequence could be synthesized based on
the keyframes. To also reduce the number of fully hand-colored frames, the available
exemplars could be utilized to generate missing texture exemplars by applying geometric
transformations as in [Lukáč et al. 2013].

Approaches which employ convolutional neural networks for image synthesis have
proven to be able to generalize the input data very well. They could also be employed for
the hand-colored animation synthesis. These techniques, however, require an extensive
learning dataset. Manual acquisition of such dataset for hand-drawn animation would
be extremely labor intensive. Our synthesis methods could be employed for such a task,
i.e., to generate a large number of animation frames from a small amount of user input.



76 CHAPTER 7. CONCLUSION



REFERENCES 77

References

Amati, C. and Brostow, G. J. (2010). “Modeling 2.5D Plants from Ink Paintings”. In
Proceedings of Eurographics Symposium on Sketch-Based Interfaces and Modeling
Symposium, pp. 41–48.

Arora, R., Darolia, I., Namboodiri, V., Singh, K., and Bousseau, A. (2017). “Sketch-
Soup: Exploratory Ideation Using Design Sketches”. Computer Graphics Forum 36.8,
pp. 302–312.

Bai, Y., Kaufman, D. M., Liu, K., and Popović, J. (2016). “Artist-directed dynamics for
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Sýkora, D., Ben-Chen, M., Čad́ık, M., Whited, B., and Simmons, M. (2011). “TexToons:
Practical Texture Mapping for Hand-drawn Cartoon Animations”. In Proceedings of
International Symposium on Non-Photorealistic Animation and Rendering, pp. 75–
83.



84 REFERENCES
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Dvorožňák, M., Bénard, P., Barla, P., Wang, O., and Sýkora, D. [2017]. “Example-
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1 Kubelka-Munk Mixing Parameters

For a (homogeneous) mixture, the overall absorption and scattering
coefficients are the weighted sum of constituent materials’ coeffi-
cients. For an opaque mixture with constituent material proportions
ci and absorption and scattering coefficients Ki and Si, the overall
reflectance R is [Duncan 1940; Barbarić-Mikočević and Itrić 2011]:∑

ciKi∑
ciSi

= (1−R)2

2R
. K and S are both non-negative quantities with

no upper bound. The ci parameters must be non-negative, but need
not sum to one. (The use of ci in the numerator and denominator is
self-normalizing.) In our scenario, we can consider each pixel in the
time lapse reflectance images to be the result of mixing unknown
paint. Between frame Iti−1 and Iti , a new unknown paint may have
been added. Solutions for the new paint parameters ctiKti and
ctiSti that result in minimal modification of current parameters are
as follows.

Because R is expressed as a ratio of K and S, we can assume
(without loss of generality) that in the initial reflectance image It0 ,
either ct0Kt0 = 1 or ct0St0 = 1. Solving for the other is trivial.
(Note that for perfectly reflective or absorptive pixels, one of the two
must be zero.) In subsequent frames, we observe a new Rtn+1 and
wish to find ctn+1Ktn+1 and ctn+1Stn+1 such that

ctn+1Ktn+1 +
∑n

i=0 ctiKti

ctn+1Stn+1 +
∑n

i=0 ctiSti

=
∆K + K̄

∆S + S̄
=

(1−R)2

2R

where ∆K = ctn+1Ktn+1 , K̄ =
∑n

i=0 ctiKti , ∆S =

ctn+1Stn+1 , and S̄ =
∑n

i=0 ctiSti . There are infinitely many solu-
tions for ∆K and ∆S. To solve for the “smallest change” or “most
transparent” solution, we seek the solution which minimizes ∆K
and ∆S. (Recall that both must be non-negative.) The relationship
between ∆K and ∆S is linear with non-negative slope:

∆K + K̄ = (∆S + S̄)
(1−R)2

2R

Therefore, the minimizer of ∆K + ∆S is also the minimizer for
∆K and ∆S individually and occurs at either the y-intercept or
x-intercept (whichever is non-negative):

∆S = 0

∆K = S̄ (1−R)2

2R
− K̄

or
∆K = 0
∆S = K̄ 2R

(1−R)2
− S̄

There is no solution when R = 0 or R = 1, unless S̄ or K̄, respec-
tively, is already 0.

This additive mixing model can only approximate completely opaque
paint that hides all previous paint (via a very large c coefficient for
the new paint). A 100% reflective pixel can never become 0%
reflective and vice-versa. An undesirable threshold would be needed
to determine when a change is so large that previous frames’ K and
S parameters should be “forgotten.”
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CTU in Prague, FEE
Daniel Sýkora
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Figure 1: Examples of layers (bottom) reconstructed from a time lapse video (top) which was pre-processed using our pipeline (middle).
Individual layers were grouped into larger clusters to enhance their visibility. Time lapse video c© Marcello Barenghi.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 2: Image selection & editing using layers obtained from a digital time-lapse painting by our decomposition technique. Given a time
lapse recording of an image creation process (top row), layer decomposition is performed with which the user can quickly perform complex
spatio-temporal selections (a–d) by clicking on specific pixels located in space and time (red circles). To refine the selection in cluttered scenes,
the user can use the mouse wheel to scrub through important events in time to find a desired temporal value. When a range of layers is selected,
the user can perform a variety of edits, e.g.: change color (e), blur (f), add texture (g), or darken (h). It is also possible to erase strokes (i),
draw new strokes in time (j), move strokes in time (k), or clone strokes in space & time (l).
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