Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science

ASPECT-DRIVEN DEVELOPMENT
OF
ENTERPRISE INFORMATION SYSTEMS

KAREL CEMUS

A Dissertation Thesis Submitted for
the Degree of Doctor of Philosophy

PhD Programme: Electrical Engineering and Information Technology
Branch of Study: Information Science and Computer Engineering

February 2019

Thesis Supervisor:
Doc. Ing. Jiti Vokrinek, Ph.D.
Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague
Karlovo namésti 13, 121 35 Praha 2
Czech Republic

Thesis Co-Supervisor:
Ing. Tomés Cerny, Ph.D.
Department of Computer Science
School of Engineering and Computer Science
Baylor University
One Bear Place #97141
Waco, Texas, US, 76798

Abstract

Contemporary enterprise information systems put high demands on existing develop-
ment approaches. While these systems implement growing number of business pro-
cesses, they maintain consistency of persisted data, integrate remote services, and ex-
pose the domain to end users and other systems. Unfortunately, existing development
approaches usually do not recognize business rules as a significant concern, although
they are defined by a business domain and cross-cut throughout a whole system. Since
they participate in input validation in the user interface, in preconditions of business
processes, and in invariants in a persistent storage, there is no single focal point, which
makes them difficult to encapsulate. In addition, they tangle together with other con-
cerns participating in various components of a system. Since existing development
approaches often fail to separate concerns, developers must manually linearize this
multidimensional space into linear source code, which produces high amount of repeti-
tions and code duplication. Subsequent maintenance of a system is highly error prone
and requires significant efforts.

This thesis addresses the separation of concerns in enterprise information systems.
Utilizing existing approaches, this thesis introduces the aspect-driven development ap-
proach to design of information systems. The approach focuses on decomposition,
efficient representation, and context-aware runtime integration of concerns in order to
avoid manual repetitions, remove code duplication, and subsequently reduce develop-
ment and maintenance efforts. While utilization of domain-specific languages enables
involvement of domain experts into development, complexity of business rules defines
new requirements on their representation. Since the proposed approach is abstract
and agnostic to used technology and architecture, this thesis elaborates in depth its
implementation into design of common components of the layered architecture, and
demonstrates separation of concerns in distributed environments. Validity of the ap-
proach is evaluated and discussed in conducted case studies, which suggest its benefits
and limitations including its suitability for context-aware systems, easier system evo-

lution, and efficient business rules management.

Keywords: Enterprise Information Systems, Separation of Concerns, Aspect-oriented

Programming, Model-driven Development, Business Rules, Maintenance

Abstrakt

Vyvoj podnikovych informacnich systémi klade vysoké pozadavky na jejich navrh a
architekturu. Kromé implementace rostouciho po¢tu byznys procesi jsou tyto systémy
zodpovédné i za ukladani a konzistenci dat, integraci se vzdalenymi sluzbami a zpri-
stupnéni byznys procest koncovym uzivatelim a dal$im systémtm. Bohuzel, soucasny
pristup k navrhu a architekture systému obvykle nezohlednuje byznys pravidla, prestoze
jsou soucasti validace vstupu v uzivatelském rozhrani, definuji predpoklady jednotli-
vych krokiu byznys procesu, ale i invarianty v tlozisti dat. Jelikoz se byznys pravidla
prolinaji se celym systémem, soucasny navrh je nedokaze zapouzdrit na jednom misté.
Mimo to, ostatni zajmy a soucasti systému v riznych komponentach interaguji s byznys
pravidly, coz vede vyvojare k linearizaci vicerozmérného prostoru tvoreného vzajemné
nezavislymi zajmy a komponentami. Vysledkem této linearizace je velky pocet duplicit
ve zdrojovém koédu, coz vyrazné zvysuje chybovost a pracnost udrzby systému.

Tato dizerta¢ni prace se zabyva oddélenim a automatickym znovupouzitim ne-
zavislych zajmi a komponent informacnich systémi a klade diraz na reprezentaci a
kontextové znovupouziti byznys pravidel. S vyuzitim existujicich pristupt navrhuje
novy aspektové-rizeny vyvoj informacnich systémi zaméreny na dekompozici, efek-
tivni reprezentaci a kontextové znovupouziti zachycenych informaci. Dusledkem je sni-
zeni mnozstvi manualnich duplicit ve zdrojovém kodu, snizeni poc¢tu opakovani stejné
informace a zjednoduseni celkového vyvoje a udrzby systému. Ackoliv vyuziti domé-
nove specifickych jazyk umoznuje zapojeni doménovych expertii do vyvoje, komple-
xita byznys pravidel klade nové pozadavky na jejich reprezentaci. Dizertacni prace
demonstruje navrzeny pristup k navrhu informacnich systémi jeho implementaci do
designu trivrstvé architektury a diskutuje jeho vyuziti v distribuovaném prostredi, ac-
koliv samotny pristup je nezavisly na architektute i pouzitych technologiich. Vysledky
prezentované pripadové studie zhodnocuji validitu a vlastnosti pfistupu véetné jeho
vyhod a nevyhod, mezi které patii podpora kontextové specifickych systému, snazsi

udrzba a efektivnéjsi sprava byznys pravidel.

Klicova slova: informacni systémy, oddéleni zajmu, aspektové-orientované programo-

vani, modelem-fizeny vyvoj, byznys pravidla, idrzba systému

Acknowledgements

My sincere thanks and appreciation go to Tomas Cerny, who supervised me through
my masters and doctoral studies. This thesis would never be written without his
great support, constant encouragement, and mentoring. He made my life much richer,
connected me with great people, and provided me with numerous opportunities to
enjoy the research and get experience.

I would like to thank to Jeff Donahoo at Baylor University for his feedback, and
for pushing my research to right direction. His efforts and insight greatly contributed
to the quality and completeness of this thesis. I am grateful for the scholarship I was
awarded by the Czech Technical University in Prague, which enabled my visit and
studies at Baylor University in Waco, Texas.

[would like to express my gratitude to my supervisor Jiti Vokiinek for his patience
and support during my work on this thesis; and to my students Filip Klimes and Ondfej
Kratochvil for inspiring collaboration.

This research was supported by the Grant Agency of the Czech Technical Univer-
sity, grants No. SGS12/147/OHK3/2T /13 and No. SGS14/198/OHK3/3T/13.

Finally, my greatest thanks go to my family for support and endless patience.

Contents

I Problem Statement

1 Introduction

1.1
1.2
1.3
1.4

The Running Example
Problem Statement oL
Objectives of the Thesis,
Organization of the Thesis

2 Basic Notation

2.1
2.2
2.3
2.4
2.5

Terminology: Business Logic
Terminology: Concerns
Terminology: Code Quality
Terminology: Approaches and Architectures

Summary

3 State of the Art

3.1
3.2
3.3
3.4
3.5
3.6

Common Architectures of Information Systems.
Limitation of Conventional Development
Approaches to Separation of Concerns
Separation of Concerns in a Conventional EIS
Representation of Business Rules

Summary . .o ...

II Contribution

4 Aspect-driven Development

4.1
4.2
4.3
4.4
4.5
4.6

Background of the Approach
The Architecture
Definition in Terms of the AOP
Perspective of the Model-driven Development
Reuse of Concerns

Benefits, Limitations, and Summary

O O N

10

11
11
13
15
17
18

19
19
24
25
31
39
44

45

5 Representation of Business Rules

5.1 Analysis and Requirements
5.2 Use of Business Rules . . .

5.3 Example of a Language for Business Rules

54 Summary

6 Implementation of the Approach

6.1 Presentation Layer: User Interface.

6.2 Presentation Layer: Distributed User Interface

6.3 Domain Layer: Input Validation

6.4 Data Layer: Querying of a Persistent Storage

6.5 Service-oriented Arch.: Reuse of Concerns

6.6 Summary

IIT Results

7 Case Studies and Evaluation

7.1 User Interface: Proof of the Concept
7.2 Distributed User Interface: A Case Study

7.3 Comparison to Alternative Approaches

74 Summary

8 Conclusion
8.1 Contribution of the Thesis
8.2 Future work

Bibliography

List of Publications
Journals with Impact Factor
Other Refereed Journals

Conference Papers Excerpted in Web of Science

Conference Papers Excerpted in Scopus

Other Refereed Conference Papers
Citations

A List of Abbreviations

64
66
70
72
73

74
76
84
88
91
96
103

106

107
109
112
114
122

124
124
126

127

136
136
136
136
137
138

139

141

List of Figures

1.1
1.2
1.3
1.4

3.1

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6

Layered architecture: Conventional design 3
Example e-shop system: The class diagram 4
Example e-shop system: The architecture 5
Orthogonal concerns in the multidimensional space 7
Cross-cutting concerns in the layered architecture 25
Concern weaving into the Ul form 50
The layered architecture with the aspect-driven development 52
The contexts in the aspect-driven development 54
The AOP components in the Ul of the running example 58
Model transformation process with the ADD and the MDD 59
Concerns weaving processo 61
The process of product insertion in the running example 65
Business context composition in the running example 69
Request flow throughout an EIS and the life-cycle of the UL 75
Pointcuts of concerns in the UT 80
The layered architecture for the distributed UL 86
Example e-shop system in the service-oriented architecture 97
The layered architecture of a service with the ADD for the SOA 99

Life-cycle of a service and application of advices 101

List of Tables

6.1
6.2

7.1
7.2
7.3
7.4
7.5

Utilization of the ADD in the layered architecture 76
Context-aware pointcuts inthe UL 81
Representation of UI concerns in the multi-platform UI 113
SLOC comparison of the conventional approach to the ADD in the Ul . 114
SLOC efficiency of conventional approaches to EIS development 118
Occurrence of business rules in approaches to EIS development 119

McCabe cyclomatic complexity in the domain layer 121

List of Listings

3.1
3.2
5.1
5.2
6.1
7.1
7.2
7.3
7.4
7.5

Input validation in the Transaction Script design pattern 32
Annotated domain model with JSR 303: Bean Validation 33
Context reference in source code in the domain layer 67
Example of a language for business rules description with the ADD . . 72
JPQL queries into a relational database in the data layer 93
Two column layout template L. 110
Example of a UI widget for AspectFaces 110
Example of a business context: Report anissue 111
Use of AspectFaces to compose an input form at runtime 111

Mapping of data types of input fields to UI widgets 111

Part 1

Problem Statement

Objectives of the Thesis
State of the Art

Chapter 1
Introduction

Digitalization in IT and the expansion of the Internet make companies move their
business processes and data to Enterprise Information Systems (EISs) in order to open
their business to the world, make it available online, and improve efficiency of their
processes [26]. This results in high expectations for EISs. These systems have to
manage large volume of structured data, implement complex business processes, com-
municate with other systems, be efficient in both development and maintenance, highly
scalable, available 24 /7, robust, durable, fault tolerant, and reliable [48]. Although de-
signs, frameworks, and best practices have been under major development for past
decades, the overall complexity and permanent growth of requirements still produce
new questions and challenges as the contemporary approaches reach their limits [26].
Both new and existing systems! are subject to permanent improvement in reaction
to emerging requirements to adjust existing processes and implement new features.
Unfortunately, this permanent evolution and limits of conventional approaches tend to
disrupt the architecture and pollute the source code with repetitions and inconsisten-
cies, which eventually results in a barely maintainable system, where each update is
expensive and highly error-prone [43]. Fortunately, best-practices, design patterns, and
enterprise architectures can be used to reduce risks and ease the development process.
The layered architecture? is one of widely used conventional designs [42] and is
considered by several standards [28, 102]3. It usually divides the system into three

components shown in Figure 1.1. The lowest data/data source layer implements access

I Contemporary development teams apply agile software development, e.g., Scrum, Feature-driven
development, and Rational Unified Process to improve risk management, focus on product, costs
reduction, and rapid delivery [1]. Agile techniques are usually iterative and incremental, i.e., the team
goes through the whole software life-cycle with a small part of the system in a single iteration. Each
feature is analyzed, implemented, tested, delivered and the process starts over again. Thus also the
new systems are basically existing systems with intensive development.

2 The layered architecture is described in many sources often using slightly different terminology
nevertheless with the same core idea. This thesis uses Martin Fowler’s notation [42]. Alternative
notations recognize, e.g., persistence/data access, application/service/business, and web layers.

3 Although the Java EE specification does not directly mention any architecture, the terminology
and the structure of many Java Specification Requests (JSRs) closely follows layered architecture.

Presentation Layer

«server-side»
User Interface

«client-side»
User Interface

Domain Layer
[Service Layer
[Domain Model

Storage
Data Layer
ver 8
Data Access Objects] Services

Figure 1.1: Layered architecture: Conventional design

to a persistent storage and remote services, e.g., a database or a file system in case
of XML files. The middle domain layer encapsulates business logic, i.e., all business
processes and business rules®, in services inside this layer. Finally, the presentation
layer exposes the system. Usually, there is a user interface (UI) often implemented as
a web page and a programmatic API for communication with other systems.

The business processes implemented in the domain layer are divided into steps,
each implementing a single transaction, i.e., it is located in a method of service [42].
Each service encapsulates all operations related to a single business purpose, e.g., the
Order Service encapsulates methods related to the order creation, lookup, filtering,
and updating. Such code organization makes steps repeatable, encapsulates the logic,
and intuitively implements the business process flow.

Layered architecture, however, evinces some significant limitations with major
impact on development and maintenance efforts. Reduced ability to reuse informa-
tion already represented in source code could be considered among the greatest weak-
nesses [15]. There are two fundamental reasons. First, conventional, usually object-
oriented, programming languages suffer from the inability to efficiently encapsulate
cross-cutting concerns® [62]. Second, this architecture usually spreads through multi-
ple technologies. For example, the data layer usually relies on SQL or similar language

for querying relation databases or JSON for NoSQL databases. The domain layer

4 Definition and understanding of business rules is essential for this thesis and is further elaborated
on Chapter 2. For the purpose of this chapter, consider all constraints and rules attached to business
processes to be business rules. For example, validation rules are considered as operation assumptions.

5 Cross-cutting concerns are discussed in depth in Chapter 2. For the purpose of this chapter,
consider these concerns for functionality to be considered in multiple places and cross-cutting through
multiple components, methods, objects, and layers, e.g., logging or exception management.

Product User
+ name: String + name: String
+ price: Double < »{+ email: String
+ weight: Double ’ e phone: Option<String>
+ inStock: Integer . - + roles: List<Role>
+ validUntil: DateTime Qudey

+ orderld: Long

Shipping + address: String Invoice
+ name: String 1 ! o1l* invoiceld: Long
+ price: Double < »| + totalPrice: Double
+ maxWeight: Double + issuedAt: DateTime

Figure 1.2: Example e-shop system: The class diagram

uses some general-purpose language such as Java or C# and the presentation layer
often uses HTML, XML, or similar language. In consequence, with multiple languages
and technologies in use, it is challenging to separate and reuse concerns scattered and

spread throughout the whole system.

1.1 The Running Example

This work discusses the challenge of separation of concerns in multiple contexts, which
is exacting to understand. Therefore, this section introduces a running example reused
throughout the whole thesis for illustration purposes. It describes a simple information
system, which is referenced in multiple chapters to demonstrate problems and make
the discussion more readable and comprehensible.

A small e-commerce system will be used as an example®. Its data model is shown
in Figure 1.2. The system maintains Products for selling, and Users representing
customers and employees. The system receives new Orders through its web-based
graphical user interface and exposes its API for integration with other systems, e.g.,
an accounting system. Each Order maintains its internal list of ordered products, the
selected Shipping carrier and the Invoice. The system recognizes three access roles:
@) a client buying products and creating orders,) staff responsible for the stock
and the orders, and @) an administrator maintaining the list of users and the product
catalogue. Besides others, there are the following business rules:

(D the name of a Product is not empty and at most 200 characters long;
@ the price of a Product is positive;
@ the weight of a Product is not negative;

@ a Product can be created only by an administrator;

6 The example is simplified and such a system would not be sufficient for real use. It is only
intended to demonstrate and discuss particular challenges as a complex design would significantly
impair comprehensibility.

(N\
Presentation Layer
«server-side»
User Interface
RESTful API
«client-side»
User Interface
(. rJ\ J
s Q B
Domain Layer E
~ e e e e e e
«component» {I («component» {I\ 4 N
Emailer Customer Service + Note: Customer Service !
service ' component is a service |
[Emailing Service] T [ssomicer) (" arvic 1 torme o the Busnes
\ J Billing Shipping || ~ v--cooeeeiiieiooooe
N Service Service
«component» E T~ A «component» E
Users : d Stock
«service» —O)— [«co(;nzo&ga service»] - «service»
User Service raer Service Product Service
N\ J _ J
g P J
Database Q

Data Access Objects

Data Layer E
[«repository»]

Figure 1.3: Example e-shop system: The architecture

® a Product is available in the list of products (i.e. is not archived);

© the name of a User is not empty and at most 50 characters long;

(D the email of a User is required, must be valid, and at most 200 characters long;

the list of products in an Order cannot be empty;

© the invoiceld in an Inwvoice is unique.
The overall system architecture is shown in Figure 1.3. It follows the three-layered
architecture with data access objects in the data layer. The domain layer is organized
into four components, each responsible for a different part of the business. The most
complex OrderService depends on all services as it aggregates information and delegates
responsibilities. Finally, the presentation layer consists of a web-based graphical user
interface and the RESTful API [36] exposing data to other systems. The API also
makes the system ready for development of a mobile application.

This example illustrates the contemporary approach to design and development of
EISs. Although it follows the best practices, standards, and the conventional architec-
ture, there exist multiple challenges developers face to. In consequence, this example is
reused later in this work to elaborate on those challenges and to illustrate an alternative

approach addressing identified limitations of conventional development.

1.2 Problem Statement

Separation and representation of cross-cutting concerns is a significant challenge of
conventional development, since each system considers many concerns, for example:
a structure of the model, business rules such as validation rules, system localization,
security policy such as an access control list, layouts in a user interface, widgets in a user
interface, and others. While each concern has a representation and its scope is limited”,
existence of multiple concerns results in various problems. Usually, a representation
comes with a specific language or a technology, and most concerns cross-cut throughout
a system, its part, or with each other [A.3, 59, 105]. For example, while implementing a
user interface, a developer considers a domain model, validation rules, security policy,
a layout of the interface, and current localization. As a result, developers face to
problems emerging from amount, nature, characteristic of cross-cutting concerns since
conventional approaches lack the ability of separation of concerns. This inability results

in the following critical problems, which are all addressed by this thesis.

Problem 1: Concern tangling and information repetition. While concerns are
often orthogonal to each other and compose a multidimensional space, conventional
approaches are unable to separate them in the linear source code. Consequently, the
concerns are manually linearized, which results in significant information repetition
and concerns tangling (Figure 1.4). These repetitions entail a high risk of introducing
inconsistencies during maintenance, as it is easy to overlook some places to update,
when they are not easily spotted and are distributed through the whole code [32, 43].

Consider a Ul for a Product management from the example above, e.g., a view for
update of a product. In such a view, there have to be considered the Product entity, its
fields and data types, and validation constraints such as D,), and (@) attached to the
fields. Next, the view supports a layout for regular displays and an alternative layout
for small mobile devices. Each field is rendered with a proper widget based on the field
type, e.g., a string field uses a text, while a long text field uses a textarea element.
Finally, all messages and labels are localized. As is illustrated in Figure 1.4, all these
concerns are considered within a few lines of source code, which leads to significant

code tangling and information repetition.

Problem 2: Limited synchronization of concerns over multiple technologies.
Concerns cross-cut throughout the system and with each other, and are considered at
multiple places in multiple layers and components. Since information systems utilize
various programming languages and technologies, the concerns are not located in a
single point but distributed throughout them. Subsequently, manual synchronization

of the locations is highly error-prone, while automated reuse of concerns is limited.

7 For example, layouts and widgets are often represented in XML or HTML and used only within
the UI, but the rest of the presentation layer uses some general programming language such as Java.

Dimensions 1-3 Dimensions 4-6

Business Logic Localization

Domain Rules

’

K etc.

Linear implementation space

Business Logic
Localization Business R. Ul Widgets Domain R.

Figure 1.4: Orthogonal concerns in the multidimensional space

Consider a Product update scenario using the example above. There are validation

rules such as D, @), and Q). All of them are considered in the following places, which

results in multiple repetitions.

First, the rules are used in the Ul for client-side validation improving user ex-
perience, providing a modern user-friendly interface, and displaying proper user-
friendly error messages.

Second, the rules are considered for server-side validation inside the presentation
layer to double-check the input.

Third, the rules also apply in the RESTful API to properly validate the input
and return an error message if necessary.

Fourth, there is an input validation in the business operation in the domain layer,
which actually updates the product.

And finally, there are integrity constraints in the data layer protecting data con-

sistency from corruption.

There are four languages in use. First, there is a general programming language, e.g.,

Java,

implementing the domain layer and the server-side and RESTful API of the pre-

sentation layer. Second, there is a language such as SQL, JPQL, or HQL [6, 103] used

to query a persistent storage in the data layer. Third, the client-side of the presenta-

tion layer utilizes JavaScript, and finally, HTML implements the Ul and participates

in the input validation. In consequence, since automated concerns reuse is significantly

limited and considering the amount of repetitions (Problem 1), developers have to

maintain and synchronize concerns distributed over all the languages and technologies,

which significantly increases error-proneness and development efforts.

Problem 3: No centralization and no single point of truth. In general, de-
velopers intuitively encapsulate concerns and business logic in a single place. In case
of a domain model and business logic, the object-oriented paradigm [67] uses objects
to represent entities and to encapsulate the logic®. However, it fails to encapsulate
the cross-cutting concerns [62], since there is no single point to locate the information.
Such concerns are considered at many places within a system regardless the layer and
the technology, which prevents developers from finding a single central place [62]. Con-
sider the example from Problem 2. These business rules cross-cut the whole system
but there is no single point where to concentrate locate them.

Unfortunately, the absence of the single point of truth, which would always indicate
a desired behavior and configuration, significantly impacts evolution and maintenance
of a project. Since the iterative and incremental development process and long-term
project evolution require many changes in the system [1], project documentation often
becomes obsolete and outdated [39]. Then, considering the significant code tangling
(Problem 1) and multiple technologies in use (Problem 2), developers often face incon-
sistencies in the source code, which resulted from previous poor update. Furthermore,
when the places are out of synchronization and there is no valid documentation, deter-

mining the truth and performing a correct update is challenging and error-prone.

Problem 4: Limited context-aware decisions. Consider the example in Prob-
lem 2, both administrators and staff are eligible for maintaining the products (@),
but staff manages only current stock, while administrators maintain the whole prod-
uct catalogue. When updating a product, the current context must be verified in all
parts of the system (the UI, client-side validation, server-side validation, domain layer
input validation), whether the current user is an administrator ((C)) or only a staff
member () to properly secure the system and handle the request. Such a simple rule
introduces at least four switches into the code, and each of them restates the rule itself.

While some approaches and frameworks partially encapsulate and reuse context-
less business rules?, context-aware rules such as the rules from the example above are
beyond their limits. Such rules end up tangled and manually restated in the code even
when a partial support is available. This limitation arises from a common understand-
ing of conventional frameworks, which assumes contextless invocation, i.e., there is no

consideration of user’s context including his access role, geographical location, personal

8 There exist multiple design patterns to encapsulate the logic. For example, there is the Rich
Domain Model [42] encapsulating the logic inside a responsible object of the model. Contrary, the
opposite Anemic Domain Model [40] with Transaction Script pattern [42] uses simple objects as a
model, i.e., objects without any responsibility or functionality, and services implementing transactions,
i.e., operations over the model. The layered architecture is usually used with the Transaction Script
and the Anemic Domain Model.

9 For example, Java Bean Validation [8] enables reuse of contextless business rules within Java.
Nevertheless, exposure of the rules to other components and support of context-aware rules are missing.

settings, or the place of execution'®. With modern systems, context-awareness becomes
a significant requirement, which makes conventional approaches and frameworks are

inefficient as they do not address context-aware decisions and concerns reuse [5].

Problem 5: High development and maintenance efforts. Essentially, all the
problems defined above result in manual concerns tangling, information repetition, and
source code duplication [67, 105]. The need of keeping all places synchronized jeopar-
dizes the project because any inconsistency introduces a major security and business
threat into the system and endangers system stability [43]. Subsequently, development
process becomes demanding and requires thoroughness, efforts, extensive testing, and
documentation. This might significantly increase the costs of the project.

In conclusion, conventional approaches to development and design of EISs suffer
from limited support of cross-cutting concerns. High error-proneness, significant code
tangling, and high development and maintenance efforts are direct results of these
limitations. Therefore, this thesis addresses these limitations and proposes a novel
development approach, which modifies design of EISs and treats cross-cutting con-
cerns as first-class citizens of any system. Hence, it provides direct support for their

representation, separation, and reuse to overcome these identified problems.

1.3 Objectives of the Thesis

Conventional approaches to design of enterprise information systems suffer from multi-
ple problems identified and discussed in Section 1.2. Moreover, importance of business
rules in EISs is not acknowledged, despite the rules being a significant concern as these
systems implement number of business processes and maintain a business domain (Sec-
tion 2.1). In consequence, limited support of separation of cross-cutting concerns in
general results in their significant manual repetition in a system, and high development
and maintenance efforts. Therefore, this thesis addresses the challenge of separation of

concerns in enterprise information systems and sets the following objectives:

Objective 1: Define a novel approach addressing separation of concerns.
Since conventional development approaches provide limited support of separation of
concerns (Problem 2) and tend to manual concerns tangling and information repetition
(Problem 1), define a novel approach to design and development of EISs addressing

the above problems. Consider the layered architecture for illustration purposes.

10 While the rule is always the same, the context is different. Even though both RESTful API
and the client-side validate the input and produce a user-friendly error, the former uses server-side
language and possibly returns some JSON object and HTTP status, while the latter updates the Ul
to inform the user. Next, the server-side validation and the validation of the input of the domain layer
can throw an exception or stop the execution of request in some other way. Finally, the data layer
applies the rule in the SQL language as an integrity constrain in a database.

10

Objective 2: Propose a mechanism reusing business rules in a system. Con-
ventional representation of business rules lacks reusability. Propose a new mecha-
nism utilizing business rules to reduce their manual repetition and enable automated
transformation, distribution, and context-aware evaluation in a system (Problem 4).

Implementation of the evaluation algorithm is not in the scope of this thesis.

Objective 3: Evaluate the impact of the approach on system design. Imple-
ment the approach into design of common components and discuss its utilization in
a distributed environment. Evaluate its impact on separation of concerns, amount of
repetitions in source code (Problem 3), and maintenance efforts (Problem 5). Then,
evaluate efficiency of the approach, and discuss how the stated problems are addressed.

In conclusion, this thesis addresses the challenge of the separation of concerns
in enterprise information systems focusing on reuse of business rules to reduce error-
proneness, development and maintenance efforts, avoid problems described above, and

increase overall efficiency of the development process.

1.4 Organization of the Thesis

Since this thesis deals with separation of concerns in enterprise information systems,
the first part defines essential terms, approaches, and architectures in Chapter 2 to
avoid ambiguity and misunderstanding. Chapter 3 discusses state of the art related
to separation of concerns in EISs, more specifically, it elaborates both conventional
and alternative approaches to EIS design, and discusses existing techniques and frame-
works partially addressing the challenge. Since business rules belong among significant
concerns in EISs, Chapter 3 also addresses their existing representations and evaluates
their efficiency and suitability for the objectives of this thesis.

Second part contains the contribution of this thesis. Chapter 4 proposes the novel
aspect-driven development approach, which refines contemporary design and develop-
ment of information systems in order to address the objectives of this thesis. Follow-
ing Chapter 5 discusses representation of business rules since their complexity makes
separation of concerns more challenging. This chapter specifies requirements on the
representation to implement the proposed approach and enable separation and reuse
of business rules. Chapter 6 elaborates on the approach into design of multiple compo-
nents and architectures of information systems, and discusses its impact on separation
of concerns and subsequent maintenance.

Third part evaluates the proposed approach in Chapter 7, which discusses its effi-
ciency using a case study conducted in order to compare the proposed and conventional
approaches. The thesis concludes in Chapter 8, which highlights the contribution of
this work, its impact on design and development of information systems, and summa-

rizes challenges, set objectives, and how they were addressed.

11

Chapter 2

Basic Notation

This chapter clarifies and explains terminology used throughout this thesis to avoid
any ambiguity. It summarizes essential aspects of fundamental approaches to ensure
this work, its motivation, and contribution are easily comprehensible. All terms are

presented without their impact on the topic, which is discussed later in this work.

2.1 Terminology: Business Logic

Understanding business logic terminology is essential for this thesis, because it deals
with enterprise information systems and recognizes business rules as a significant con-
cern. Therefore, as the proposed approach focuses on business processes and their

operations, this section summarizes terms to avoid any misunderstanding.

Enterprise information systems (EISs) are enterprise applications tailored for
a particular business domain to automate its processes and facilitate data mainte-
nance [77, 106]. These systems often face various technological, design, and per-
formance challenges due to volume of maintained data and complexity of business
processes. Contemporary systems are often implemented as web applications, which
expose their content to end users in a graphical user interface, and to other systems

via web services or other communication protocols [67].

Business logic is part of a system encapsulating essential business processes defining
creation, transformation, and flow of data. The logic consists of processes, operations,
and procedures, is driven by business rules [77], and defines interactions among objects
in a domain model. Implementation of business logic is imperative and usually operates
on upper layers of a system as it considers the domain model, not the low-level concepts
such as a database, protocols, and remote services. With constant business evolution

and process optimization, business logic often changes [106].

A business process is a collection of coordinated activities and tasks to accomplish a

greater business objective [116]. The objective must have business value, i.e., it is worth

12

to a stakeholder. A business process consists of partial subtasks (business operations),
incoming and outgoing events, and transition guards (business rules). Processes may be
implemented both imperatively and declaratively, i.e., in a general-purpose language or
using a domain-specific language such as BPMN [20], respectively. A business process

is often visualized as a graph of activities together with its data flow.

Business rules are also known as domain rules' and define or constrain some aspects
of business [51, 77]. Subsequently, they dictate how a domain or business operate [94].
The rules relate to real-life policies and include, e.g., company policies, physical laws,
government laws, or domain rules, and pose as assumptions in a system [67]. Busi-
ness rules can be written declaratively and represent invariants, preconditions, and

postconditions based on the rule and the context of the execution [64, 73].

A business operation is a single step in a business process. It implements a subtask
in the chain of activities to accomplish a greater objective [116]. Each operation consists
of its preconditions, invariants, postconditions and a body. The body is the operation
itself. Preconditions are business rules to be satisfied before the operation execution.
When this assumption fails, the operation cannot be invoked. Invariants are business
rules, which validity is not changed by the operation. Postconditions are business rules
defining the result of the operation [64].

For example, consider the Authenticate operation taking a username and a pass-
word as its arguments. When these credentials are valid, the user is authenticated.
There are preconditions: 1) the username is not empty, 2) the password is not empty,
3) the combination of the username and the password are valid credentials, which be-
long to a user. The invariant is the system state, which does not change, e.g., a user’s
shopping cart remain unchanged. The postconditions are: 1) there is non-empty user
id in the context, 2) there is non-empty user’s name in the context. In the body of the
operation, the user is looked up by the username and assigned to the context [A.7].

This understanding of a business operation is often used with the event-driven rule-
based system, where each operation is defined independently and the system listens to
events. When an event occurs, preconditions of all operations are evaluated, and when
they are satisfied, the body of the operation is invoked [11, 52].

In conclusion, business logic describes a business domain and defines how it works.
Business processes describe activities and the data flow in the domain, and each process
consists of business operations, which are small tasks composed together to achieve a
greater objective. Each operation defines its assumptions and guaranties qualities of

its results, which this thesis refers to as preconditions and postconditions, respectively.

I The term “domain rules” stands only for the domain-specific rules, i.e., the subset of all rules,
which this thesis calls the “business rules”. Unfortunately, there exist non-business-related systems
such as military and weather-related, which are not supposed to have “business rules”. In this context,
“domain rules” are often understood as all rules regardless the ambiguity.

13

2.2 Terminology: Concerns

Conventional approaches to design and development of EISs usually suffer from limited
and inefficient concerns management, which results in significant challenges and inef-
ficiencies in project maintenance. This thesis proposes an approach recognizing some
concerns to be a first-class citizens of EIS design to reduce these inefficiencies and im-
prove quality of development. Therefore, it is essential to understand the terminology

of concerns and related issues as this thesis frequently refers to it.

A concern is any part of a system, which a stakeholder considers as a conceptual
unit [92]. Usually, a concern is identified on the basis of functionality and behavior.
The concern is well-defined at the requirements level and at some level of abstraction,
it stands either for a concrete behavior (a functional requirement) or a system-wide
characteristic (a non-functional requirement) [76]. However, the clear boundaries of
both these types of concerns fall apart at the code level. In source code, the concerns
usually overlap, and all types of code units (a routine, a method, a function, an object,
etc.) deal with multiple concerns at once [92]. Typical concerns in a software include

features, nonfunctional requirements, design idioms, and implementation mechanisms.

Concern tangling is a degree to which the implementation of a concern intertwined
with other concerns. It often raises from the difference in decomposition of require-
ments, models, and the code. While requirements are decomposed by a feature, the
model is decomposed by an object and a component, and the code is decomposed by
an object, a class, and an interface. Although concerns are originally isolated in the
requirements level [76], this difference compromises comprehension and evolution of
software and results in concerns tangling and manual code repetition [105].

The tangling has detrimental effect on the source code and arises from the poor
separation of concerns. It often introduces code repetition and reduced comprehension.
Modifying such code requires significant efforts and may produce a lot of defects [32,
43]. For example, implementation of a logging policy during the implementation of a

security policy results in code tangling.

Concern scattering is another issue originating from a poor separation of concerns.
A concern is scattered if it is referenced from multiple units instead of being isolated
in a single location. For example, considering a transaction management, when each
operation manages a transaction individually, then the concern and the related code
are scattered throughout all those operations. The scattering usually goes along with

concern tangling, code duplication, and loss of encapsulation and reusability [32, 105].

Cross-cutting concerns are concerns intertwining with other concerns. Usually,
they have system-wide impact and refer to secondary requirements and thus stand for

system-wide properties, while concerns representing a single and specific functionality

14

for primary requirements, i.e., functional requirements, are known as core concerns [76].
The cross-cutting concerns cut through core concerns, must be considered in many
modules and units of a system [62]. That makes them difficult to modularize and
encapsulate, and the source code with overlapping concerns is difficult to read and
maintain. Their cross-cutting nature often results in concern scattering and tangling
with other concerns at the code level [92]. Typical representatives of cross-cutting

concerns are logging and security policies.

Separation of concerns is well elaborated challenge connected to a decomposition
and backward composition of concerns [105]. The need for the decomposition raises
from the Single Responsibility Principle [70] and the Don’t Repeat Yourself (DRY)
principle [117]. The challenge lies in the nature of cross-cutting concerns, i.e., in their
wide impact [105] and the mutual orthogonality in the multi-dimensional space.

The separation and encapsulation of self-standing concerns allows to keep the re-
lated information together and increase its cohesion and maintainability. The separa-
tion of concerns fights the concern scattering, because it is difficult for developers to lo-
cate and understand the code implementing a concern, when it is spread throughout the
whole code base [92]. Although cross-cutting concerns cannot be clearly decomposed
from the rest of a system by conventional techniques, there exist methods enabling the
separation of cross-cutting concerns [62, 105] and their automated composition back
together. It reduces manual concern tangling, increases modularity, maintainability,
and subsequently reduces development costs and efforts.

Unfortunately, some concerns often cannot be decomposed and encapsulated [92].
This originates from an inadequate initial design, mutual concerns interaction in the
N-dimensional space, or limitations of programming languages and tools [83]. In con-

sequence, a full separation of concerns remains a challenge.

Single point of the truth sometimes referred to as a single focal point is a place
with a full description of a concern. Such concentration of information significantly
increases maintainability through highly cohesive information without any additionally
tangled concerns. A single point of the truth encapsulates the fundamental truth and
prevents ambiguity of inconsistencies. It also makes testing and concern validation
through a review easier as there is no need to browse the whole code base.

With a properly defined distribution mechanism, concern description is distributed
throughout the system without any need of manual information repetition, code du-
plication, or concern tangling. However, creation of such a point and a mechanism
is difficult if even possible with conventional techniques, because there exist concerns,
which are difficult to either encapsulate, or distribute, or both. Moreover, the idea of
the single focal point hits the limits of the object-oriented programming and requires

application of advanced approaches and methods [62, 105].

15

In conclusion, a concern is any part of a system considered as a unit by a stake-
holder. Usually, it refers to a behavior or a functionality. Unfortunately, many concerns
cross-cut throughout multiple layers, components, and technologies of a system, which
results in significant challenges such as concern tangling, scattering, and absence of
a single point of the truth as a multidimensional space collapses into linear source
code. In consequence, it is important to maintain concerns separately in order to avoid

inconsistencies and reduce maintenance efforts.

2.3 Terminology: Code Quality

Considering efficiency of development of an EIS, code quality is a significant aspect. It
impacts error-proneness and both development and maintenance efforts. The approach
proposed later in this thesis claims higher code quality delivered through the separation
of concerns and more efficient concerns management. Therefore, this thesis utilizes
code quality terminology and metrics to evaluate the approach and compare it to
conventional approaches. As a result, this section summarizes and clarifies the most

common terms in order to avoid any misunderstanding and unify the terminology.

Coupling is a metric indicating how elements are connected to, are aware of, and
depend on other elements [69]. Strong coupling means highly connected elements,
which results in difficult maintenance. Even a small change has a major impact and
requires significant amount of work to modify the code, and such modification is highly
error-prone due to its impact. Low coupling principle belongs among the cardinal rules
and applies in multiple aspects of software development. Reducing the coupling means
reducing the impact of a change, which includes reduction of time and efforts required
to modify the system. The best practices to reduce the coupling and keep it low include
design patterns [45], Demeter’s Law, and GRASP patterns [67].

Cohesion is another metric often used for quality assurance. It indicates how strongly
related and focused responsibilities of an element are. An element with strongly focused
and related responsibilities has high cohesion, while an element doing many unrelated
things or doing just too much of work has low cohesion and usually suffers from hard
comprehension and difficult reuse and maintenance. Usually, low coupling and high
cohesion go hand in hand and vice versa. There are various best practices to keep
cohesion high such as design patterns [45] and GRASP patterns [67].

Code readability is a quality-defining metric considering the efforts required to un-
derstand the code. It is a part of overall comprehension, but requires human judge-
ment, and thus belongs among subjective metrics. The best readability is achieved with
a simple, focused, and cohesive code, with clearly defined responsibilities of objects,

methods, and functions, and without unnecessary coupling among objects. Besides the

16

complexity and structure, it also considers a naming strategy, i.e., efforts required to
understand a purpose of a class, a method, and a variable [14]. There exist various
best practices to maintain readable code, e.g., Keep It Simple, Stupid (KISS) principle,
Don’t Repeat Yourself (DRY) principle [117], and SOLID principle [70].

Code reuse refers to the possibility to use the code again somewhere else to avoid its
duplication. This characteristic relates to the DRY principle, which suggests reusing
the code instead of repeating it. The code duplication belongs among the most signif-
icant code smell techniques highly increasing maintenance efforts [43]. Reusable code
is located in a single location, which minimizes maintenance efforts and helps avoid

potential inconsistencies that could arise if multiple locations had to be modified.

Maintainability belongs among fundamental quality-defining metrics considering ef-
forts required to maintain and modify the code. That includes both comprehension
and actual modification. High maintainability assumes good code readability to ease
its understanding, high cohesion to have clearly defined responsibilities, low coupling
to reduce the structural complexity, proper design, and the absence of code duplica-
tion. Such code can be easily modified with minimal risk of introducing a defect or an
inconsistency. Considering a project usually spends more than 70 % of its life-time in a
maintenance phase [14], and that most of the time developers evolve existing code [55],

then code maintainability significantly impacts overall costs of a project.

Error-proneness is a task quality metric indicating probability of making a defect.
In this thesis, the error-proneness is usually discussed in relation to code or concern
maintenance, which refers to its modification. Having code or a concern duplicated in
multiple places means its modification very likely introduces a defect through an incon-
sistency, skipping some occurrence, or misunderstanding. The probability of making
a mistake significantly raises with concern tangling and scattering. The best practices
such as DRY and KISS principles, design and GRASP patterns, and keeping the code

readable significantly reduce the likelihood of introducing a defect during maintenance.

Development and maintenance efforts encapsulate all tasks and activities per-
formed during development and maintenance of a project, respectively. That includes
analysis of requirements, their implementation, i.e., code understanding and evolution,
then testing and delivery [67]. Even a small simplification of a routine task has a ma-
jor impact on the overall efforts and costs considering the number of task executions.
Such potential savings or expenses embrace the optimization of a process because re-
peatedly doing routine tasks without adding any value to given project mean pointless
expenses. For example, maintenance of restated information, duplicated code, and ef-
forts required to understand complex and poorly structured code are reducible by code
refactoring to get better design and structure, and to get rid off code smell [43]. Use

of tools and frameworks easing routine tasks is a big help to a project.

17

In conclusion, code characteristics clarified in this section help to evaluate and
discuss quality of source code and subsequently compare quality of development ap-
proaches to design of a system. The terminology is utilized in Chapters 4 to 7 to discuss

code organization and its impact on overall development and maintenance efforts.

2.4 Terminology: Approaches and Architectures

This thesis evaluates conventional development approaches and proposes an alternative
approach to design of EISs. To prevent ambiguity, this section briefly summarizes

fundamental background, while it is elaborated in detail in Chapter 3.

Layered architecture is a conventional architecture of EISs considered by various
standards [28, 102], and this thesis uses the three-layered architecture for illustration
purposes (Figure 1.1). While layered architecture addresses issues related to the sepa-
ration of concerns and coupling and cohesion of business logic [42], the other concerns

are not addressed at all and remain manually repeated instead.

Domain-specific languages are tailored to a concrete domain, efficiently capture
its concerns, and store them aside runnable code [72]. The knowledge is usually man-
aged by domain experts and benefits from changes implemented without a source code
recompilation [41]. These languages appeared to be a valuable asset to enterprise
applications due to more efficient domain description, comparing to general-purpose
languages [54]. Correct deployment of a domain-specific language saves lots of efforts,

contributes to separation of concerns, and increases code quality.

Object-oriented programming dominates system design and is based on intuitive
mapping close to the real world. It recognizes objects with their attributes, templates
(classes), and operations (methods) [67]. This mapping eases modelling of a domain
and its subsequent transformation into a programming language. While it provides
beneficial techniques such as encapsulation, polymorphism, and inheritance to reduce
error-proneness and efforts [74], it suffers from inability to deal with cross-cutting

concerns [104], which results in code duplication and concern tangling.

Aspect-oriented programming is a complementary paradigm to the object-oriented
programming, evolved to encapsulate and reuse cross-cutting concerns [62]. It directly
focuses on separation of concerns and their efficient domain-specific description [66].
Automated composition (weaving) of aspects positively impacts overall design and code
qualities. It reduces coupling and increases cohesion through decomposition, while it

reduces manual code duplication and information restatement [105].

Model-driven development maintains concerns in various models on different levels

of abstraction, and applies transformation rules to produce more specific models and

18

final source code [63]. While this forward transformation process facilitates concerns
distribution and reuse, produced models must be manually refined and completed. In
consequence, forward transformation significantly limits efficiency of the development,
since each update of abstract models erases manual refinements in more specific models.

In conclusion, established understanding of these approaches helps communicate
the challenge and the proposed approach elaborated in this thesis. Although Chapter 3
discusses approaches in greater detail and highlights their benefits and limitations, this

general description is sufficient for understanding the rest of this thesis.

2.5 Summary

To avoid ambiguity and misunderstanding, this chapter briefly established terms con-
sidered throughout this thesis. It helps to fully grasp its contribution, and understand
its motivation arising from limited support of the separation of concerns in conven-
tional approaches. While business-related notation helps to communicate design and
flow of information systems, classification of concerns is essential for understanding
the motivation of this thesis. Then, summary of existing approaches defines necessary
background knowledge for understanding the contribution and the approach proposed
in Chapter 4. Finally, code quality notation enables discussion over quality of the
approach, which is delivered in Chapters 6 and 7. In conclusion, while Chapter 3 elab-
orates this background in detail, this is the essential minimum for comprehension of

the contribution of this thesis.

19

Chapter 3

State of the Art

Contemporary enterprise information systems deal with challenges arising from con-
stantly growing volume of data, complexity of requirements, and size of business do-
main. This pressure significantly urges research of novel approaches and technologies
as contemporary approaches reach their limits. This thesis addresses separation of
concerns in information systems, which significantly impacts development and main-
tenance efforts, and error-proneness of change requests. This chapter summarizes the
state of the art relevant for this thesis. Therefore, it introduces both conventional and
alternative approaches to development of EISs and also elaborates their common ar-
chitectures, which is further utilized in Chapter 4. Since business rules are a significant
concern of these systems, this chapter evaluates existing business rules representations,
which is later referred to in Chapter 5. Finally, this chapter discusses existing ap-
proaches to separation of concerns in common components of information systems,
which is considered later in Chapter 6.

The running example from Chapter 1 and discussion of its problems in Section 1.2
show the importance of processes in EISs [106]. Consequently, business rules are a
significant cross-cutting concern in a system [21, 62, 59], which has consequences such
as concerns scattering, tangling, and limited reuse. Unfortunately, information systems
also deal with other cross-cutting concerns, most of them is located in the UI [59]. In
consequence, business rules belong among various cross-cutting concerns in a system,
which often cause many problems (Problems 1 to 5). Therefore, this chapter elaborates
contemporary approaches to the problems and the following chapters propose a new

approach to design and development of information systems.

3.1 Common Architectures of Information Systems

Each software product including information systems has its own software architecture
defining number of significant decisions related to the overall organization of a sys-

tem [9]. The architecture has major impact on a project and determines efficiency of

20

conducted tasks, since it defines organization of source code into logical modules, com-
ponents, and layers [67]. While contemporary standards and mainstream technologies
such as Java Enterprise Edition (Java EE) and .NET platform build systems using the
layered architecture [28, 42, 67], alternative technologies often utilize the architectures
based on the Model-View Separation principle. Both these architectures assume dif-
ferent underlying principles. While the layered architecture is based on the Anemic
Domain Model [40, 85] and Transaction Script design pattern [42], architectures based
on the Model-View Separation principle use Rich Domain Model with significantly dif-
ferent qualities. However, both architectures and design patterns partially deal with

separation of cross-cutting concerns, which is discussed in this section.

3.1.1 Anemic vs. Rich Domain Model

Both conventional architectures differ mostly in the underlying domain models, which
impacts the structure and qualities of a system, and directly define responsibilities and
information distribution. The model represents a structure of a business domain, its
objects and relations, which makes it an essential component of a system. Although
any architecture can use any domain model, conventional designs mostly use specific
combinations. While this section discusses two major approaches to implementation
of a domain model, the next sections elaborate the architectures in detail.

First, the Rich Domain Model (RDM) [40] aligns the model with the structure of
given business domain. It implements its processes, and prefers model completeness to
avoid scattering and distribution of information outside the model [85]. Therefore, all
concerns are already captured in the model or its dependencies, usually through highly-
decorated classes and fields; e.g., business logic, database access, or field presentation
widgets. Basically, each class closely relates to a business object and carries information
on how to persist, validate, and render itself. Consequently, many fields and classes
share a lot of configuration and mechanisms via inheritance and complex field data
types to reduce the amount of source code, deliver clean and maintainable design, and
avoid code duplication and information restatement.

Contrary, the Anemic Domain Model (ADM) [40] does not invest much efforts into
development of a complex model. It replaces domain classes with data carriers, instead,
which leads to Fat Service Layer and Transaction Script [42] design patterns accumulat-
ing business logic and related business rules in facade classes (services) [85]. However,
this simplicity of the model fits to functional programming, which uses immutable data
structures, pipelines, and transformations to implement simple and testable business
logic [82]. Unfortunately, this distribution of concerns and responsibilities in informa-
tion systems tends to significant concern repetition.

In conclusion, migration of business logic, business rules, and other concerns out

of the domain model removes the single point of the truth and causes significant rep-

21

etitions and concerns scattering, which tend to inconsistencies [15]. Although, the
ADM leads to the Transaction Script pattern, which uses a less complex organization
of business logic into data pipelines and transformations at the cost of low information
encapsulation and high restatement. Contrary, the RDM deals with concerns through
rich data types, which are maintained in the model in order to avoid their entangling
into the rest of the system. Although, there exist context-specific concerns and con-
cerns cross-cutting multiple operations at once, which hits the limitations of the RDM.
It results in significantly increased complexity of the model as it does not provide any
mechanism to express and reuse cross-cutting concerns, therefore it falls back to their
repetition [85, 15]. To summarize the differences, while the ADM prefers simplicity
over complexity at the cost of repetitions and increased efforts, the RDM prefers com-
pleteness over concerns tangling at the cost of higher complexity [85]. However, both

approaches fail to address separation of concerns.

3.1.2 Layered Architecture

The layered architecture is one the of main architectures used in contemporary EISs [28,
102]. This use-case centric architecture focuses on organization of business logic and
addresses issues related to the separation of concerns [67]. It deals with coupling and
cohesion of application logic, its scattering throughout source code, and intertwining
with more general code or code of the user interface. These efforts get along the DRY
and KISS principles. Reduced complexity, increased reusability, and eased scalability
belong among its significant benefits. Unfortunately, the separation of concerns is
limited to application logic in the domain layer.

This architecture organizes the system into multiple layers, each encapsulating a
single high-level concern to ensure its high cohesion and reduced coupling [42, 67]. Al-
though the organization of the architecture may vary, it often consists of three layers
or their variations, as is suggested in Figure 1.1 [42]. Despite clear definition of respon-
sibilities of each layer, cross-cutting concerns cannot be encapsulated in any of them
because they live outside the object-oriented programming and cross-cut throughout
the whole system [62]. These concerns are considered in multiple locations and are
orthogonal to this linear architecture, which makes them difficult to be captured in
source code [105] as is elaborated in Section 3.3. For example, this includes auditing,
security policy, and exception management.

Enterprise information systems implemented on the layered architecture suffer from
two types of information repetition: horizontal and vertical [A.14]. The horizontal rep-
etition is defined as a repetition inside of a single layer or a component, and thus occurs
only inside a single technology and can be avoided by object-oriented principles such
as encapsulation [43]. For instance, an input widget for a single-line string in the UT is

repeated many times in a Ul description, which makes it horizontally repeated. Con-

22

trary, the vertical repetition impacts multiple layers and often various technologies. For
instance, consider the validation rules in the running example. They are considered in
the data layer to protect data consistency, in the domain layer to validate assumptions
of business operations, and in both the server-side and the client-side of the UI to
validate the input. In consequence, information has various representations and uses,
which makes reduction of vertical repetitions more challenging [A.14].

Another classification distinguishes repetition of semantics and references [A.14].
The repetition of semantics literally repeats the information itself, its meaning. For
instance, a business rule repeats its implementation and how to verify it. Second, the
repetition of references only duplicates addresses to another place with semantics defi-
nition. For instance of a business rule, there is repeated invocation of a validator, which
implements verification of the rule [15]. Repetition of references is weaker and causes
fewer issues as it decouples places of use from places of definition such as programming
against a contract [67, 95]. This usually leads to information definition being repeated
in less places, which results in better maintainability and easier to updating [43]. How-
ever, there still exists possibly high repetition of references depending on the used level
of abstraction.

High information repetition in a system is caused by the architecture itself. This
architecture usually comes with the Anemic Domain Model [85], which leads to use of
the Fat Service Layer and the Transaction Script design patterns [42]. Unfortunately,
while these patterns are suggested by several standards [28, 102], they break object-
oriented principles and cause significant issues [42]. Despite simple transaction-oriented
implementation of the domain layer, extraction of concerns out of a domain model leads
to their significant repetitions in the rest of a system, which results from the absence
of the single focal point. Consequently, the domain layer tends to highly coupled code
with tangled concerns, which impacts error-proneness and maintenance of a system.

In conclusion, this architecture prefers transaction-oriented implementation of the
domain layer with the Anemic Domain Model. It results in concerns scattered through-
out a system and highly tangled together, which prevents their automated reuse. In ad-
dition, vertical repetitions make concerns reuse more challenging, which usually results
in manual concerns repetition [A.3]. Unfortunately, none of mainstream technologies
or standards consider business rules, Ul widgets, or layouts as orthogonal concerns,
and let developers tangle the concerns into source code manually instead, which sig-
nificantly increases development costs and efforts [32, 43]. Consequently, the approach

introduced in Chapter 4 addresses the separation of concerns in information systems.

3.1.3 Model-View Separation Principle

The other common organization of informations systems builds on the Model-View

Separation principle [67]. This architecture assumes Rich Domain Model [40, 85] com-

23

pletely describes business domain and encapsulates its operations and related concerns.
Then, there exist various views indirectly manipulating the model' and displaying it
to users or exposing via APIs. Contemporary systems use many variants and imple-
mentations of this architecture; the Model-View-Controller [42], and the Model-View-
Presenter [87] belong among the most common implementations?. Although there exist
other architectures, assumption of the RDM makes this architecture a significant op-
posite of the layered architecture, which relies on the Anemic Domain Model [28, 40].
Therefore, this section elaborates qualities of this architecture and discusses its impact
on the overall code organization and distribution of concerns within a system.

The RDM motivates to separate the UI concern and builds a strong and cohesive
domain model maintaining logic and behavior. This allows execution and verification
of business rules from all parts of a system, which eliminates repetition of the concerns
and enables object-oriented decomposition techniques to keep design clean and simple.
This architecture emphasizes object-oriented design and encapsulation of concerns to
enable their reuse, which differs from the layered architecture. On the other hand,
this approach suffers from the limited separation of concerns and significant repetition
of business rules and possibly other concerns. Views usually use different technolo-
gies than a model, which prevents simple invocation and reuse of concerns. Then,
the model must either implement and tangle technology-specific representations or ex-
pose the concerns for further transformation. Unfortunately, a complex domain model
with encapsulated but tangled concerns significantly limits their automated inspection,
subsequent vertical transformation, and reuse, which results in manual repetition of
business rules and other cross-cutting concerns [A.10].

In conclusion, while the Model-View Separation principle evolved from the user
interface, it is applicable on the large-scale architectural level as well as in distributed
user interfaces. It is more costs-effective in long term projects compared to the layered
architecture, which suffers from the issues of the ADM [85]. Although there exists
a possible mapping of responsibilities between the Model-View Separation principle
and the layered architecture®, the reduced ability of the former architecture to inspect
the concerns significantly limits their further reuse. In consequence, although the
approach proposed in Chapter 4 is applicable to architectures based on the Model-
View Separation principle, its efficiency and benefits are not significant due to fewer

repetitions, and limited concerns inspection and automated transformation.

I Manipulation of the Model depends on an implementation of the separation principle. For
example, in Model-View-Controller the Controller manipulates the Model and the View displays it.

2 There exist various mutations implemented by contemporary web frameworks in many program-
ming languages. For example, Nette for PHP (nette.org), Django for Python (djangoproject.com),
Rails for Ruby (rubyonrails.org), and Play for Java/Scala (playframework.com).

3 The Model relates to the domain layer and the View to the user interface templates in the
presentation layer of the layered architecture [67].

https://nette.org/
https://djangoproject.com/
https://rubyonrails.org/
https://playframework.com/

24

3.2 Limitation of Conventional Development

This thesis is motivated by limited separation and reuse of cross-cutting concerns in
conventional development of EISs. These systems implement business processes and
maintain large volume of data to optimize a business domain. However, the domain,
its policy, and requirements continuously evolve in time, which puts high demands on
the maintenance process as these systems require continuous evolution [42, 43]. Since
contemporary standards and best practices in software engineering suggest incremen-
tal iterative development [56, 70], the development process consists of high number of
small iterations modifying the existing system, which is essentially equal to mainte-
nance requests. Consequently, the system is permanently maintained [55], and thus
it is essential to have optimal maintenance process. Therefore, this section highlights
limitations in maintenance of a conventional EIS to be addressed later in this thesis.

Each maintenance cycle consists of several steps including the analysis of re-
quirements, design of a solution, its implementation, testing, deployment, and eval-
uation [67]. The analysis addresses the requirements considering all kinds of concerns.
It includes non-functional requirements and user experience, but also use case scenar-
ios, access policy, and domain restrictions. During the analysis, the requirements are
usually decomposed into independent concerns [76]. For example, redesign of UT wid-
gets does not interfere with validation rules in a domain model on the requirements
level, which indicates that the concerns are separable [A.3, 105] and can be managed
by domain experts. For instance, user scenarios can be written by business experts, Ul
designed by UI designers, and the system architecture designed by system architects.

This separation of concerns at the requirements level arises from their mutual or-
thogonality [76]. Most concerns such as Ul widgets and the application model evolve
independently but some are related, e.g., the model and business rules [105]. How-
ever, consider the example in Figure 1.4. Each EIS represents a multidimensional
space where each captured concern, including the application state, is one dimension.
Unfortunately, the implementation space of source code is linear, which forces devel-
opers to linearize the multidimensional space into source code [83]. As a result, the
concerns get tangled together (Problem 1), which produces complex source code with
high amount of duplications (Problems 3 and 5). Furthermore, the complex code in a
general-purpose language excludes the experts from the development process.

In consequence, the concerns are duplicated through the whole system, all layers,
components, and multiple languages* as is discussed in Section 1.2. This limitation
of the architecture, which is illustrated in Figure 3.1, is responsible for its progressive
deterioration in time because of the difficulty to keep the design clean and all places

synchronized, especially in constantly evolving systems. Although there exist tools,

4 Each component may use different language to ease its maintenance. For example, data layer
often uses SQL or some of its derivates and a user interface often uses HTML or similar language.

25

«server-sider :

User Interface
«client-side»
User Interface

/ Servide Lay
Domain Layer
/ Domain Model /

Data Layer [Data Access Cbject

Presentation Layer

RARFT

Domain Business Business
Rules Rules Logic

Figure 3.1: Cross-cutting concerns in the layered architecture

patterns, and architectures to ease the transition from the multidimensional space at
the design level to the linear space of source code [42, 63, 98], conventional development

often fails to use them and developers maintain the duplications manually.

3.3 Approaches to Separation of Concerns

Enterprise information systems are complex applications implementing business pro-
cesses, maintaining large volume of data, communicating with other systems, and ex-
posing data and processes to end users. Consequently, many concerns within these
systems cross-cut together in multiple places. For example, the user interface presents
data from a domain model and enables their modification considering current business
rules. Data is presented via Ul widgets and organized into Ul layouts, and finally,
each message within the Ul is localized into the user’s language. In conclusion, even a
simple information system deals with significant amount of concerns. Although conven-
tional approaches often fail to separate concerns, alternative approaches and techniques
emphasize the concerns and focus on their representation and reuse.

The object-oriented programming (OOP) defines a set of principles to distribute
logic among objects [67, 74], which naturally maps most real-world cases. There are
plenty object-oriented (OO) best practices and techniques to handle growing struc-
tural and behavioral complexity [42, 45, 46, 88]. However, the challenge of separation
of concerns arises from their natural tendency to cross-cut multiple objects, layers,
components, or with each other, which makes them difficult to encapsulate in a single

component using object-oriented programming [62, 104]. Moreover, not only the OOP

26

suffers from concern tangling. Usually, a programming paradigm defines a dominant
concern, e.g., classes in the OOP or functions in functional programming, and the other
concerns become difficult to separate [83]. This results from a linear implementation
space, while the concerns are usually orthogonal to each other and thus compose a
multi-dimensional space [105]. In consequence, developers linearize the space as is il-
lustrated in Figure 1.4, which results in a significant amount of repetitions, concern
tangling, and error-prone maintenance as is discussed in Chapter 1. Fortunately, the
following approaches provide mechanisms for separation, encapsulation, and automated

integration of concerns in order to reduce development and maintenance efforts.

3.3.1 Model-driven Development

The model-driven development (MDD) maintains various models to capture, separate,
and model system concerns and reduce manual repetitions [63, 99]. Each model de-
scribes a system from a different perspective and on a different level of abstraction.
Then, models are semi-automatically evolved via forward transformation rules produc-
ing more specific models, which are manually refined and completed. In the end, source
code is the most specific model of a system. Obviously, the MDD is driven by forward
transformation, which is challenging. Once the system is deployed, it still requires
further evolution. Unfortunately, lack of support of backward transformation makes
propagation of modifications into more abstract models difficult, and thus regeneration
of specific models overwrites the manual modifications.

The MDD often uses UML [96] as a graphical modeling language to reduce mental
barrier and increase efficiency of a modelling process. However, case studies show that
use of UML is no faster than simple coding and the speed of development with UML
varies from -40 % to +15 % comparing to development without UML. For example,
a case study conducted in [31] shows insignificant 14 % decrease in performance in
exchange for 54 % greater functional correctness. Since standard UML is not descriptive
enough, the MDD often utilizes other languages such as the object-constraint language
(OCL) [81, 114] to represent business constraints. Alternative implementations of the
MDD separate the concerns via integration of the aspect-oriented programming [65]
and utilization of CASE Tools [77, 106]. Such approaches assume maintenance of
concerns on various levels of abstraction with automated forward transformation, which
is supposed to make maintenance easier and available to domain experts.

In conclusion, while the MDD aims on separation of concerns, it suffers from signif-
icant limitations of semi-automated forward transformation, and UML expressiveness.
Moreover, it usually follows object-oriented principles, which are unable to efficiently
separate and reuse cross-cutting concerns [62], and adopts their limitations [78]. There-
fore, the models still tangle concerns together, which results in manual repetitions and
difficult maintenance of a system.

27

3.3.2 Aspect-oriented Programming

The object-oriented programming proved to be unable to address concerns cross-cutting
via multiple methods, classes, objects, layers, or components [105]. Consequently, the
aspect-oriented programming (AOP) was designed to complement the OOP to directly
address the separation of cross-cutting concerns and to reduce software complexity [62].
It provides an alternative mechanism to modularize a system and isolate secondary and
supporting concerns from the main business logic.

While the OOP uses classes to structure and encapsulate logic, the AOP encap-
sulates the cross-cutting concerns in aspects. These are independently described con-
cerns in any convenient, usually domain-specific, language. The AOP identifies various
joinpoints, which are places in source code (static joinpoints) and an invocation flow
(dynamic joinpoints) available for concerns injection [112]. Then, there is mapping (the
pointcuts) selecting subset of joinpoints for concern injection. Finally, the concerns are
automatically weaved into the joinpoints and distributed throughout a system [62, 66].

There are two major approaches to aspect weaving. First, compile-time or load-
time weaving performs aspect integration during system compilation or initialization,
since the weaving process can be quite expensive and this approach executes it outside
the running system. On the other hand, the aspect weaver may consider only static
information, i.e., the result is contextless. For example, the AspectJ framework® accepts
aspects written in Java [66], it takes Java bytecode, and enriches it with compiled
aspects. The load-time weaving is applied by the Spring framework® as simplification
of a development process. It postpones compile-time weaving of AspectJ and provides
the modified classloader performing load-time weaving, instead. The other approach
considers dynamic joinpoints and weaves aspects at runtime [83, 104]. The weaver
accepts contextual information and thus the aspects cannot be weaved outside the
context [A.3]. Although this is expensive’, the resulting context-aware code delivers
desired behavior and enables more complex combinations of concerns, while source
code keeps concerns encapsulated, separated, and without any duplication.

In conclusion, while the AOP is a complement to the OOP, the provided bene-
fits significantly impact development and maintenance efficiency. Ability to separate
and then weave concerns reduces the amount and complexity of source code as well
as number of repetitions and thereby positively impacts source code quality [32, 43,
105]. Unfortunately, the requirement of an aspect weaver and convenient languages for
concerns description introduce a major initial barrier. However, the approach intro-
duced in the next chapter significantly utilizes the AOP in order to address separation

of concerns and problems identified in Chapter 1.

® Available at eclipse.org/aspect;.

6 Available at spring.io.

7 Web applications enable concerns distribution and caching, which moves aspect weaving to client
devices and significantly reduces server load [A.12].

https://www.eclipse.org/aspectj/
https://spring.io/projects/spring-framework

28

3.3.3 Domain-specific Languages

The aspect-oriented programming allows aspects to be described in any efficient lan-
guage if the weaver accepts it [62]. These kinds of languages are formalized as domain-
specific languages (DSLs) [41], which introduce wide range of advantages. Most sig-
nificant benefits are efficient domain description as the language is tailored exactly
for that domain, and possibility to delegate responsibilities to domain experts as the
language might be simple and easily understandable. This technique is intensively
utilized, although it is not often referenced as DSLs. For example, HTML, SQL, and
plenty configuration files of all sorts of software belong among these languages.
Although there are valuable benefits, DSLs face couple of challenges [41, 72]. Com-
plex design and implementation belong among the most significant challenges as the
process is difficult. It involves many issues including grammar specification and inter-
preter /compiler implementation. Furthermore, the more languages a user must know
the more difficult and inefficient it gets. Next, although easily describable domains
are great, when a new user starts using the system with multiple DSLs, there is very
steep learning curve significantly reducing those benefits. Nevertheless, DLSs proved
themselves to be an excellent tool for domain modeling and code generation and are

utilized in various approaches discussed later in this chapter [A.3, 58].

3.3.4 Domain-specific Modeling

The domain-specific modeling (DSM) is another approach to separation of concerns. It
assumes development of multiple systems within a same business domain, and then it
optimizes a development process via utilization of a DSL for domain description. The
language is tailored iteratively to deliver best possible performance and the model is
used for code generation, which brings significant reduction of development efforts [58].
The domain-specific modeling, separation of concerns, and automated code generation
increases overall efficiency and reduces the amount of manually maintained repetitions.

Comparing to the model-driven development, there exist two major differences.
First, while the MDD uses the UML with the OCL for constraints, the domain-specific
modeling deploys domain-specific languages to reach higher efficiency and ease descrip-
tion of domains. For example, it involves templates, special mark-up derivatives, and
even a graphical language to describe the domain. Another difference lies in the code
generation. While the MDD uses static forward transformation of the models, the
domain-specific modeling produces the code even at runtime considering the current
runtime context. This brings more dynamics into models, while it also removes the
limitation of forward transformation. With a powerful but complex code generator and
suitable DSLs, it is possible to avoid or significantly reduce manual code duplication

and achieve simple and easily modifiable source code [58].

29

In conclusion, while the domain-specific modeling provides an efficient mechanism
for domain modeling and code generation, it assumes production of multiple systems
within the same domain to meet claimed efficiency and utilize initial efforts. Unfor-
tunately, the first applications as well as the underlying domain-specific mechanism
are still manually developed in a general-purpose language and the domain-specific

modeling is derived later using gathered experience.

3.3.5 Generative Programming

Generative programming (GP) directly addresses the separation of concerns [25]. It
decomposes a system into components encapsulating separated concerns, and then the
parametrized build dictates the rules to construct the system from those components,
i.e., to integrate the concerns back together. However, GP does not address a runtime
context and constructs the system at compile time instead. Then, the build must
produce all combinations, which may occur at runtime. In consequence, although GP
separates the concerns, transforms templates into the resulting system, and reduces
development and maintenance efforts, the number of produced combinations grows
exponentially with the number of concerns and components, which makes it inefficient

for large information systems with a significant amount of context-aware executions.

3.3.6 Concern-driven Development

Concern-driven development (CDD) [2] is another approach addressing the separation
of the concerns and their automated reuse. This approach extends the model-driven
engineering [98] and describes each concern in a convenient concern-specific model in a
most generic project-agnostic form, and thus makes it reusable across various projects.
Having the concerns described in the models, the approach introduces the Concerns
Library, which is a toolbox of available concerns [2]. Then, implementation of a system
is only a combination of existing variances of concerns, and concern-specific work can
be left to domain-experts maintaining the model.

In order to separate the concerns into independent models, the approach utilizes
the aspect-oriented programming. It extends the aspects and uses aspect-oriented user
requirements and reusable aspect models, which implement concerns [68]. While the
idea of leaving concerns maintenance to domain experts is attractive, in fact, it is very
difficult to describe the concerns in such a generic form to be able to reuse them.
Usually, this generality comes with high complexity, which increases error-proneness
and makes maintenance tedious and challenging.

In conclusion, this approach separates the concerns into independent concern-
specific models, and then applies transformation rules to automatically transform the

models across various levels of abstraction to avoid manual duplication and enable

30

automated concerns reuse. Moreover, encapsulation of concerns in a toolbox reduces
complexity of system development and allows software engineers to work on a higher
level of abstraction, while it leaves concerns maintenance to domain experts, instead.
Unfortunately, the complexity of models and the approach itself significantly increases

its initial overhead and reduces overall efficiency [2].

3.3.7 Summary

Although there exist approaches addressing various aspects of separation of concerns,
it is still a challenging task. Unfortunately, there is no approach tailored for the domain
of enterprise information systems, which operates with a specific architecture and only
with some types of requirements. Therefore, contemporary information systems either
combine these approaches to the separation of concerns or use a naive implementation,
which results in significant code duplication, error-proneness, and increased efforts.

Despite the absence of a specific approach, some combinations of approaches de-
liver significant improvement of development process. For instance, the OOP and the
AQOP are implemented by the Spring framework and the OOP with the MDD are imple-
mented by various CASE and MDD tools [98]. Unfortunately, none of these recognizes
the importance of business rules within a system. Therefore, the following chapter
proposes the aspect-driven development approach to design of an enterprise informa-
tion system. The approach utilizes existing approaches and programming techniques
to address the separation of concerns in enterprise information systems and Problems 1
to 5 stated in Chapter 1. While this section summarizes the existing approaches, their
background, benefits, and limitations, their influence on this work and the adopted
principles are briefly suggested in Section 4.1. To complete the elaboration of the
approaches, consider their impact on the terminology in this thesis:

e The concern-driven development considers the concerns to be an important part
of the software. It operates with the term concerns, which is adopted by this work.
It considers the concerns and, comparing to the conventional understanding,
increases their importance in the scope of information systems.

e The model-driven development emphasizes the importance of the models and
uses several levels of abstraction. Then, it uses forward transformation to produce
more specific models, which is also adopted in this thesis in order to reuse concerns
in multiple components and technologies.

e The domain-specific modeling contributes to the background of the approach in-
troduced in the next chapter. It utilizes the DSLs to reduce the mental barrier,
involve domain experts, and increase overall efficiency. Similarly, the generative
programming also operates with the identical objective, considers the concerns,
and generates the code, but it uses a different mechanism, thus there is no sig-

nificant intersection with this thesis.

31

e Finally, the significant contribution is made by the aspect-oriented programming.
This approach is the underlying mechanism utilized in the next chapter. It defines
a major part of the used terminology. The aspects in the AOP are the concerns
within this thesis and thus the terminology around the aspects is fully adopted.
The aspect weavers are the components responsible for the concerns composition,
and the joinpoints, pointcuts, and advices are discussed later. Moreover, there is
defined formal mapping of the proposed approach into the AOP.

In conclusion, this thesis is influenced by several approaches. The concerns, their
separation, and runtime composition are the key concepts of the approach proposed
in the next chapter. Unfortunately, the term concern-driven development already ex-
ists [2]. Concerns are basically the aspects, therefore, naming the approach aspect-
oriented development would fit the idea but the aspect-oriented software development
also already exists [37]. Finally, the aspect-driven development® still fits the purpose

and is not in direct collision with the existing terminology.

3.4 Separation of Concerns in a Conventional EIS

While this thesis addresses the separation of concerns in enterprise information systems
to avoid concerns tangling via their separation and automated reuse, even existing con-
ventional information systems partially deal with these concerns. The previous section
discusses general approaches to the separation of concerns, this section elaborates ex-
isting approaches and techniques on a lower level of abstraction. It considers common
components of a conventional system, since the approaches and frameworks usually

focus on a single component instead of a whole system and its design.

3.4.1 Concerns in the Domain Layer

Although the domain layer is in the middle of the layered architecture, it implements
domain model, which drives an entire information system. It is defined by business
domain of a system and interacts with business processes. This layer implements
the processes and as such, it is the essential layer in a system. Other layers facilitate
persistence or provide access and manipulate data. Since this layer implements business
logic with all constraints, it is elaborated first as it impacts the rest of a system.
Business logic is difficult to describe and maintain [15]. Its efficient isolation and
subsequent reuse using pure object-oriented techniques is challenging even inside the
domain layer, since it belongs among the cross-cutting concerns [24, 73]. The issue

of business logic maintenance in the layered architecture is often connected to the

8 The papers publishing the research in this thesis reference the aspect-driven development as the
aspect-oriented design approach (AODA) and the aspect-driven design approach (ADDA). The name
evolved with the underlying idea and its connections to other existing approaches.

32

Listing 3.1: Input validation in the Transaction Script design pattern

1 public Product createProduct (Product product) throws Invalid {

2 // verify name of the product

3 if (product.name == null || product.name.length > 200) throw new
Invalid () ;

4 // verify price of the product

5 if (product.price <= 0) +throw new Invalid();

6 // verify ordering weight of the product

7 if (product.weight < 0) throw new Invalid();

8 // instance is valid, save and return the product

9 return em.persist(issue);

TV

Transaction Script design pattern [42], discussed above in Section 3.1. This pattern
encapsulates business logic together with business rules in use case-oriented separated
transactions representing business operations. Unfortunately, this tends to code tan-
gling and constraints repetition as is shown in Listing 3.1. Furthermore, it does not
allow any constraints reuse. The impact of the Transaction Script on business logic
tangling can be partially reduced by object-oriented principles. When there are two
transactions sharing the same logic, it can be refactored out into a separate object [43].
Such an approach allows partial reuse of code, although transactions usually still remain
hard to read and maintain. Capturing model-related validation rules independently as
a separated concern, and having other rules in validator objects eases reuse of business
rules within the layer [15], reduces code repetition and error-proneness.

Alternatively, Java standard JSR 303: Bean Validation [8] utilizes declarative
programming and meta-programming techniques to separate and reuse validation con-
straints. This standard introduces declarative constraints attached to model fields,
which is illustrated in Listing 3.2. These constraints are verifiable by constraints val-
idators®. Standard JSR 250 [75] introduces a new annotation @RolesAllowed anno-
tating business operations. This annotation declares accepted security roles to restrict
access to the operation and ease security implementation in the domain layer!®.

Unfortunately, although these declarative rules seem reusable, there are major
limitations. They are designed to annotate the model, i.e., capture there all invariant
constraints, which are always verified and conditions must be satisfied. In fact, pre-
conditions (input validation rules) of business operations vary. They are determined
by the position of the operation in the modeled domain and impacted by current exe-

cution context, i.e., the application state and user’s context, as is discussed earlier in

9 For example, Hibernate Validator implements JSR 303 standard and extends it by its own
annotations allowing constraining fields by additional common restrictions. (hibernate.org/validator/)

10 Tn the domain layer, Java EE uses Proxy and Chain of Responsibility design patterns to capture
invocations of methods and check for methods annotations to trigger attached behavior such as input
validation or access restriction [28, 45].

https://www.hibernate.org/validator/

33

Listing 3.2: Annotated domain model with JSR 303: Bean Validation

1 public class Product {

2 public Long id;

3 @NotBlank @Length(min = 10, max = 100) public String name;
4 ONotNull @Positive public Double price;

5 ONotNull @PositiveOrZero public Double weight;

6 ONotNull @PositiveOrZero public Integer inStock;

7 public LocalDateTime validUntil;

8 // constructor , getters and setters

9 7

this work. In conclusion, the extension is unable to express any of these rules, which
falls back to code tangling.

In conclusion, although there exist tools and approaches to efficiently encapsulate
and reuse business rules, their implementations suffer from significant limitations. In
consequence, although they claim more efficient development, it is either very complex
or fails to address most of business rules, which usually leads developers to manual
repetition and tangling of the rules into source code.

3.4.2 Concerns in the Data Layer

The data layer in the layered architecture facilitates persistence and provides abstrac-
tion over remote sources. Implementation of such functionality is usually straightfor-
ward and often partially automated, but often lacks some features as it does not ad-
dress the separation of concerns. First, although it should protect a persistent storage
and verify integrity constraints, they often absent or are manually repeated. Second,
although each operation has its context and there exist a set of preconditions and
postconditions, these constraints are usually manually repeated in the calls instead
of being automatically reused from the context of the operation. Consequently, this
section elaborates separation and reuse of these concerns in the data layer in order to
reduce manual code repetition and ease development and maintenance of a system.
Leading platforms for development of EISs such as Microsoft .NET and Java En-
terprise Edition use Object Relational Mapping (ORM) frameworks [3, 27] to map
a domain model into a relational database. This mapping simplifies use of a persis-
tent storage, e.g., a database by making an abstraction level above it. For example,
Hibernate [6] is an evolved ORM framework extending the Java Persistence API stan-
dard [27] by additional restriction declaration. It utilizes JSR 303: Bean validation
and transforms these constraints such as @Email or @NotBlank into database integrity
constraints, when it produces a database schema. Moreover, the constraints are usually
easily verifiable at the entrance of the data layer as it is usually implemented in the

same language as the domain layer.

34

On the other hand, there is no existing framework reusing business rules and con-
structing queries from a business context. Although Hibernate transforms annotations
of the Java Bean Validation [8], which supports a small part of business rules, into
integrity constraints, it does not support business contexts themselves, nor contextual
business rules. Instead of introducing a business context on a higher level of abstraction
and focusing on its system-wide transformation and reuse, existing tools and frame-
works remain in the data layer and focus on design and development of domain-specific
languages to ease manual definition of queries [27, 103]'!. Although this activity re-
duces efforts and error-proneness of development, manual repetition of concerns and
implementation of a DSL in Java or a similar language still maintain a significant
barrier for domain experts.

In conclusion, while there exist tools and generators accepting a domain model'?
or a protocol of a remote service’® and producing an implementation of the data layer,
they often fail to reuse business rules. Although Hibernate Validator is able to verify
JSR 303-based constraints and transform them into integrity constraints, it is unable
to construct a query from a business context. Other existing tools also focus more on
improving efficiency of development of the data layer instead of improving efficiency of

an entire information system.

3.4.3 Concerns in the User Interface

The presentation layer is the most complex layer of an enterprise information system
with the layered architecture. It exposes data and business processes to end users and
other systems, and thus provides various graphical and programmatic APIs. The APIs
reflect the structure of the domain model and business rules of business processes to
facilitate up-to-date interface, which validates input data, and provides a user-friendly
or a system-friendly error in case of violation of the rules. The UI considers additional
concerns such as layouts, widgets, and localization, which cross-cut throughout the
whole component [17]. Linearization of this multidimensional space into source code
significantly degrades design and introduces information repetition [105]. As such, this
section elaborates cross-cutting concerns and their separation in the UI, which is the
most complex component of the layer; it is often distributed among a server and one
or multiple clients, and implements multiple cross-cutting concerns tangled together.
The UI of enterprise information systems is a great challenge, since it consists mostly
of input forms to present data and enable users to manipulate them. In consequence,

this section discusses the separation of concerns in the UI with the focus on input forms

11 In addition, there exist many frameworks for various languages providing a query DSL. For
example Squeryl (squeryl.org) and Quill (getquill.io) for Scala, and Querydsl (querydsl.com) for Java.

12 For example, Data Access Object Code Generator for Java (titaniclinux.net/daogen).

13 For example, Apache CXF (cxf.apache.org) produces models and stubs of Data Access Objects
for remote services described in WSDL or WADL schema.

http://squeryl.org/
https://getquill.io/
http://www.querydsl.com/
http://titaniclinux.net/daogen/
http://cxf.apache.org/docs/wsdl-to-java.html

35

as they constitute the major and most complex part of the UI. The other components
of the presentation layer are usually much simpler, thus not considered here.

Conventional development approaches such as Java EE [28] lack the ability to sepa-
rate and reuse concerns in the UL Java standard JSR 303: Bean Validation [8] utilizing
declarative meta-programming enables limited reuse of business rules. The JBoss Rich-
Faces! extending JavaServer Faces [13] inspects a domain model and gathers declared
constraints. Then, it transforms them into the client-side of the UI, which delivers
better user experience without any additional efforts or maintenance issues. Com-
bination with the Hibernate Validator also facilitates server-side validation and fully
benefits from reusable model constraints. Therefore, despite limited expressiveness,
and absence of support of business operations, and context-dependent constraints, it
still significantly reduces business rules repetition [A.14]. Unfortunately, conventional
approaches do not address other concerns, and manually duplicate code and tangle
concerns, instead.

Metawidget!® is an alternative approach to input forms generation in the UL It
identifies concerns such as a model structure, validation rules, Ul widgets, and local-
ization [59], and assumes that all these concerns can be described in the domain model.
The approach relies on model inspection and conducts software mining [61]. The Ul
is constructed from the mined meta-model by pluggable processors such as widget and
layout builders [60]. Although the approach focuses on automated UI generation and
self-maintainable Uls, it does not strictly separate the concerns. It utilizes concern-
specific builders and inspectors but it hits significant limitations in their composition.
This approach does not consider runtime context such as user’s roles and a geographi-
cal location to perform additional Ul transformation, e.g., to show an additional input
box in an address form to select the state within the United States.

Alternative Rich Entity Aspect/Audit Design'® (READ) approach to input forms
generation combines the model-driven development, the aspect-oriented programming,
and the generative programming [A.3, 16]. Tt directly addresses the separation of
concerns in the Ul, and recognizes concerns such as a model structure, Ul layouts,
UI widgets, and localization, but does not address business rules nor input validation.
The approach separates the concerns as independent aspects [62], describes them in an
efficient DSL [41, 72], and weaves them together at runtime considering the runtime
context. Similarly to the Metawidget, the READ inspects an instance of a model
and constructs a meta-model enriched with contextual information. Then, the aspect
weaver accepts the concerns as a multidimensional space and a mapping (pointcuts)
considering runtime parameters. Finally, the resulting source code fragment is injected

into the UL. Regarding the efficiency, conducted studies show significant source code

14 Available online at richfaces.jboss.org.
15 Available online at metawidget.org.
16 Tts AspectFaces implementation is for Java EE applications is available online at aspectfaces.com.

https://richfaces.jboss.org/
http://metawidget.org/
http://www.aspectfaces.com/

36

reduction up to 32 % [A.3]. Unfortunately, limited support of business rules leads
developers to JSR 303 with all its benefits and limitations.

Contemporary EISs stress development of native mobile applications backed by an
API. While there are several target platforms, application logic and views are usually
same regardless the platform. Since the platforms differ significantly, it is difficult
to reuse configuration and code. The READ approach was extended for distributed
concerns delivery, which enables modern self-standing Uls with reuse of server-side con-
cerns description [18]. The server provides a meta-model of an instance including the
concerns to be rendered and the weaving is performed at the client’s side. Conducted
benchmarks show a significant performance improvement with distributed Uls [A.12].
It reduces server load and allows use of multiple native clients without any concerns
restatement or code duplication. For example, a single instance of a domain model
is transformed into a contextual meta-model and rendered as an input form in native
clients, which are implemented in JavaScript for web browsers, in Swift for iOS, and in
Java for Android. While the case studies show promising results, efficient development,
significant code reduction, and support for distributed Uls, limited support of business
rules still results in their manual repetition in code.

The model-driven approach to development of distributed Uls maintains models
on four levels of abstraction to reuse concerns and produce multiple Uls for different
platforms and contexts of use [108]. It describes those models in the UsiXML DSL
and supports both forward and reverse model transformation to eliminate previously
stated limitations of the MDD. Unfortunately, this technique prevents reuse of concerns
outside of the UL Similar model-driven technique is proposed in [22]. The framework
expects a system captured in UML diagrams, which are transformed into source code
for multiple platforms. However, this technique suffers from inability to efficiently
express runtime context and deliver context-aware Ul [5].

Although there exist approaches addressing generation of input forms in the Ul
via the separation of concerns, they significantly differ. While both the READ and the
Metawidget perform runtime inspection, the Metawidget has pluggable builders in a
native programming language, while the READ performs full concern decomposition
allowing their description in DSLs, which is more efficient. Contrary to the Metawidget,
the READ lacks the support of validation constraints and business rules. Alternative
approaches to development of distributed Uls are usually model-driven, but do not
address the problems outlined in Chapter 1. They either do not address business rules
as a concern, or the generation process is not context-aware. In consequence, although
the approach introduced in Chapter 4 provides a system-wide concerns reuse, it is

inspired by the READ, which already addresses multiple identified problems.

37

3.4.4 Concerns in the Service-oriented Architecture

Complexity and wide use of enterprise information systems emphasize their robustness
and scalability, thus the scope of a system often exceeds a single application. As a
result, application logic is decomposed into small, standalone, and loosely coupled!”
services, each encapsulating a part of the business domain. These services are then
composed together into composite services to deliver more complex functionality [84].
In total, they create a large distributed system in the service-oriented architecture
(SOA)'® [86]. Since the SOA suggests a system infrastructure following the struc-
ture of the real business [86], then considering the running example, the departments
responsible for the store (products and stock) and customer service (orders) are com-
ponents in the system [67, 84]. The internal design of these components may vary
based on their implementation, but the properly implemented SOA emphasizes scala-
bility and testability because it significantly reduces complexity of services comparing
to monolith applications [30]. On the other hand, it makes information reuse chal-
lenging, which usually leads to its manual repetition instead, which makes the SOA
prone to inconsistencies and expensive maintenance. Therefore, this section elaborates
common approaches to separation and reuse of concerns in the SOA, since Chapter 6

implements the approach from Chapter 4 into a distributed environment.

Definition 3.1 A service is a reusable, cohesive, managed, deployable,

and independent process interacting via messages [30, 84].

Definition 3.2 A composite service accesses and combines information

and functions from existing service providers [84).

Definition 3.3 The service-oriented architecture is a set of design prin-
ciples organizing software components (services) around business capabil-
ities and connecting them through standard interfaces and messaging pro-

tocols. Each component is self-contained, black box for consumers, and

exposes only its interface [44, 84].

Decomposition of a system into small units delivers simpler design, evolution, and
maintenance of units and the system itself [116]. Communication through a neutral
environment such as HT'TP protocol makes services independent of a particular tech-

nology, which enables development of each service in a different programming language

17 The services interact through a REST-like protocol or a messaging bus and use catalogs and
service locators for discovery [33, 36, 44, 91].

18 Contemporary systems often follow more evolved specializations such as Microservices [30, 44,
101] due to poor implementation of the original SOA and many failed projects in past. However, this
work considers the SOA itself and other architectures are left for future work.

38

and a technological stack. The natural decomposition by a business structure clearly
defines responsibilities of components, which supports agile programming [67], multi-
team development, and rapid delivery. Nevertheless, challenges to face still remain and
some of them are addressed in Chapter 6.

Loosely coupled services introduce a challenge of discovery of their dependencies.
Conventional systems are either orchestrated in a network with a director validating
and forwarding messages, or the services know their dependencies and look them up
themselves (choreography) [30]. Recent approaches to service composition utilize Arti-
ficial Intelligence due to increasing number of existing services and their complexity [91].
In addition, since there exist many implementations of service description, discovery!?,
and meta-data extraction techniques, it is very difficult to gather and reuse this infor-
mation. In consequence, although composite services are aware of existence of their
dependencies and consider a subset of their concerns, neither the organization of a
network nor the discovery process address reuse of concerns.

While decomposition brings clear design, a composite service must reuse informa-
tion from its dependencies. For example, Order composite service needs to know the
model structure and the business rules of the underlying services User and Product to
be able to validate incoming orders or even additionally transform and expose the rules
to web API, e.g., for client-side validation necessary for a user-friendly UI. However,
distributed environment and possibly different technologies basically prevent simple
sharing. The model description can be exposed through API schema?’, but reuse of
business rules is very difficult even in monolithic applications [15, A.8]. There exist
model-driven approaches for the SOA [90], but lack the support of business rules [57].
Another approach proposes an extension of the Business Process Execution Language
(BPEL) [4] to separate business rules from services, since it considers them to be a sub-
ject of change [93]. It emphasizes their separation and automated reuse, but the BPEL
is designed for a centric orchestration, while recent research and best practices suggest
decentralization through a choreography [30]. Finally, a framework for construction of
composite services introduced in [35] identifies a business context and reuses business
rules from dependencies; although it is not generic and requires higher amount of man-
ual work, since each dependency must be manually described in order to be reused. In
conclusion, existing work on reuse of business rules in the SOA is limited and requires
significant amount of manual work.

In conclusion, while the service-oriented architecture and its evolved variants de-
compose a system, enable parallel evolution of its components, and support multi-team

development, they introduce additional challenges. Considering the scope of this the-

19 For example, service are discovered through a service registry such as Universal Description,
Discovery, and Integration (UDDI) catalog, their addresses are hard-coded into source code, or the
configuration is provided by a central component [71].

20 There exists the SOAP with WSDL [19] or RESTful services optionally with WADL [50].

39

sis, especially technological diversity and encapsulation of services significantly impact
separation of concerns and their automated reuse, which results in Problems 1 to 5
identified in Chapter 1. The approach introduced in Chapter 4 for monolithic informa-
tion system is adjusted in Chapter 6 for distributed environments, and addresses the

outlined problems in order to reduce manual repetitions and maintenance efforts.

3.5 Representation of Business Rules

Since enterprise information systems implement business processes of a business do-
main, they deal with significant amount of business rules. These rules constrain the
processes, their tasks, and put constraints on a domain model. Unfortunately, since
EISs are tailored to maintain and manipulate data, the rules cross-cut throughout the
whole system. Therefore, separation, transformation, and automated reuse of business
rules is essential for efficient implementation and subsequent maintenance. However,
representation of business rules is a challenge itself and considering the scope of infor-
mation systems, various contexts and technologies, it becomes even more challenging.
Therefore, the approach introduced in Chapter 4 discusses representation and reuse of
business rules in detail in Chapter 5, and defines complex requirements on a language
for their representation. Consequently, this section briefly elaborates existing business
rules representations in order to evaluate their suitability for inspection, automated

transformation, and reuse to address the problems and objectives set in Chapter 1.

3.5.1 General-purpose Languages

Contemporary EISs often do not emphasize business rules and tangle them into source
code in a general-purpose language (GPL) together with business logic in the domain
layer. While GPLs efficiently describe behavior of an entire system [110] and are able to
implement any business rule, there exist significant limitations reducing their efficiency
for business domain description [A.11, A.7].

Complexity and maintenance of business logic represented in GPLs is discussed
in [15]. Together with analysis of layered EISs, the authors propose decoupling of
common aspects such as exception handling from the rest of the system to have logic
in a single place and to reduce maintenance effort. The proposed solution proceeds
from design patterns [45, 88], but suffers from some code duplication.

Considering suitability of GPLs for the novel approach and stated objectives, there
exist serious limitations preventing GPLs to be an efficient representation of business
rules despite their nearly unlimited expressiveness. First, GPLs tend to be complex,
difficult to learn, and require analytical thinking and advanced expertise. This com-

plexity prevents domain experts from maintaining the domain because they are experts

40

in their domain, not in programming languages. Second, GPLs used for implementa-
tion of EISs are usually imperative and intended to be executed but the rules are
declarative as a rule may have different implementations in various contexts, since
they are transformed into various layers of a system. Furthermore, GPLs are designed
to be compiled /interpreted but not inspected and transformed, which is essential for

automated distribution of the rules throughout a system.

3.5.2 Meta-programming

Unfortunately, object-oriented programming languages fail in implementation of cross-
cutting concerns and distribution of functionality repeated in a system [62]. In order to
deal with this limitation and avoid manual code repetition, the languages provide alter-
native mechanisms to create hooks and inject functionality such as meta-instructions.
For example, Java provides annotations [12] and interceptors.

Java EE comes with JSR 303: Bean Validation [8] and JSR 380: Bean Validation
2.0 [79] standards introducing annotations to put constraints on a domain model as is
illustrated in Listing 3.2 and elaborated in depth in Section 3.4.1. It deploys declarative
programming and meta-programming to separate and then reuse validation constraints
in a system [34]. Unfortunately, although the standard aims on constraints reuse, there
are no production-ready implementations for other layers of a system.

In conclusion, meta-instructions such as Java annotations are checked by a com-
piler, and inspect to extract business rules from source code, Unfortunately, they are
unable to represent complex conditions and whole spectre of business rules due to re-
duced expressiveness, which in combination with difficult extendibility and local scope
makes them unsuitable for representation of global rules applicable throughout all lay-
ers. Finally, presence of annotations in source code eliminates domain experts from

development and requires recompilation of a system for changes to take effect.

3.5.3 Expression Languages

Need for expressing conditions including business rules in various parts of a system
resulted in a proposal of Simplest Possible Fxpression Language, which is part of
JavaServer Pages (JSP). This scripting language provides a subset of instructions
of a GPL and brings dynamic evaluation of expressions at runtime. This language
evolved through an expression language (EL) for JSP 2.0 and an EL for JSF 1.1 into
standardized Unified Expression Language, which is a part of JSP 2.1 [23].

There exist many implementations of the language for many platforms, which meets
the need for transformation of business rules into various platforms and technologies.
Unfortunately, the language is not type-safe, which results in error-prone development.

Also its generality and complexity prevent involvement of domain experts into devel-

41

opment, and domain-specific syntax sugar does not exist , thus use of such a language
would be cumbersome. Although, the EL is able to define business rules and language
parsers can be used to enable their transformation [10, 23]. Unfortunately, it is un-
able to describe a business context of an operation, i.e., a set of preconditions and
postconditions. The complexity of such a context is beyond the expressiveness of the
language. Finally, the EL is often combined with meta-programming, especially with
Java annotations. Together, they attach additional reusable context-aware expressions
to various components in source code, in order to reduce impact of limited support
of cross-cutting concerns. In conclusion, although the EL provides some beneficial

aspects, it does not fit to the objectives set in this thesis.

3.5.4 Domain-specific Languages

While the previous languages and techniques suffer in involvement of domain experts
into development, the domain-specific languages (DSLs) overcome this limitation of
GPLs and are tailored for a particular domain [54]. This reduced set of instructions
focused on a single domain eases development and maintenance, while it preserves its
own comprehensibility, reusability, and expressiveness [41]. Although growing number
of languages within a system increases both mental and technical complexity. In ad-
dition, tailoring a language is a significant challenge itself, since the language must be
properly designed and several tools such as parsers, compilers/interpreters and others
must be implemented [72]. These are not trivial issues; however, once they are resolved,
the language with the tools can be reused among many projects.

Simplicity and efficiency of DSLs and extraction of domain description out of ap-
plication source code helps overcome both mental and technical barriers and let domain
experts involve into development to maintain a domain of their expertise [41]. Hav-
ing a DSL designed for a particular purpose in a platform-independent representation
allows its inspection, further transformation, and context-specific evaluation, which
are essential requirements for addressing the problems outlined in Chapter 1. On the
other hand, DSLs tend to silently grow and adopt new concepts to cover more edge
cases, which might significantly impact development in later phases. However, a case
study conducted in [A.14] concludes that DSLs are an efficient choice for business rules
representation, which is strongly confirmed by many rule-based systems [52] working
with hundreds of business contexts described in a DSL. Application of domain-specific
modeling, i.e., use of DSLs and specific generators, can increase the overall produc-
tivity by 500-1000 % [58]. Since there exist several major languages for business rules

representation, the following text discusses their suitability for this thesis.

42

JBoss Drools?! and similar languages for rule-based systems use business rule-
oriented conceptual modeling, which works with Event-Condition-Action rules [11, 64]
and utilizes all advantages of DLSs. Although these languages are comprehensive and
self-documenting, they still tangle business rules throughout multiple actions, as they
do not consider rules separation, encapsulation, and reuse. The rule-based systems
optimize rules evaluation in expense of inspection, which makes them difficult to trans-
form and reuse [38]. Finally, although these systems actually use a business context??,
they do not recognize it as a concept in terms of this thesis. Moreover, the comparison
of rules represented in rule-based systems and rules within EISs shows that the rules
in EISs are a subset of rules in the rule-based systems. In conclusion, although the
languages for rule-based systems are efficient, they are too complex for EISs and miss
some essential qualities arising from the definition of a business context.

Model-driven development (MDD) [63] uses domain-specific languages to describe
models of various domains on different levels of abstraction. The authors in [77, 106]
propose focusing on business rules and maintain them on various levels of abstraction
to be maintainable by both developers and domain experts. They suggest maintaining
the rules using CASE Tools and then referencing them from the code to allow their
automated transformation. The authors in [55] recommend the Don’t Repeat Yourself
principle suggesting to capture every piece of information in code just once. An exten-
sion of the MDD applies Object Constraint Language (OCL) [29] into UML modeling
and discusses its use within the MDD [81]. Although this approach overcomes several
limitations of the UML and it is often used in research papers for its formalism, it
results in complex UML models and thereby increases the barrier for domain experts.

Business process modeling uses Business Process Execution Language (BPEL) [4]
and its graphic notation Business Process Modeling Notation (BPMN) [20]. It effi-
ciently models the processes, possibly in a graphical language, however, it focuses on a
higher level of abstraction. It orchestrates web services, components, and shared mes-
sages, and defines communication protocols, instead of modeling business operations
and model constraints. An alternative modeling language for rule-based systems is
the Simple Rule Markup Language (SRML) [107], which is a standard suffering from
similar limitations as JBoss Drools. The ontology-based Semantic Web Rules [53] ef-
ficiently model business rules, but at the expense of required ontology definition, and
complex transformation, which significantly increases all initial, intellectual, and im-
plementation efforts. Furthermore, language complexity makes involvement of domain
experts and documentation derivation more difficult. Nevertheless, these languages

seem to deliver excellent business description when combined with BPMN [118].

21 Documentation is available online at drools.org, a reference guide is in [97].
22 A rule in rule-based systems follows the Event-Condition-Action pattern, where the Event, its
attributes, and the Condition is basically a business context in terms of this thesis.

http://www.drools.org/

43

Finally, loosen syntax of some GPLs such as Scala, Ruby, and Groovy is convenient
for design of a DSL [47]. A resulting language is comprehensive and easy to use, while
remains type safe, if the original language is. Power of a GPL enables easy implemen-
tation of various aspects of a language, while invocation of a DSL constructs a model,
which avoids the inspection. On the other hand, use of a GPL is platform-specific and
might be difficult to use with systems on other platforms. Need for compilation/inter-
pretation also increases a mental barrier for domain experts.

In conclusion, it shows that a DSL is an efficient approach for business context
description. It fits the needs of separation of concerns in return for high initial invest-
ment into language design and implementation of related tools. Unfortunately, none
of the existing languages addresses the specific requirements of this thesis, thus it is

necessary to design and develop a new DSL, as is discussed in detail in Chapter 5.

3.5.5 Summary

There exist multiple kinds of business rules representation, which differ in qualities,
intended use, and benefits, but also suffer from various limitations. While general-
purpose languages are powerful, they are difficult for domain experts and their trans-
formation is challenging. Meta-programming emphasizes declarative approach, which
corresponds to intentions of business rules, but its use is cumbersome for domain ex-
perts and it shares various limitations with GPLs in addition to reduced expressiveness.
While combination of an expression language and meta-programming delivers promis-
ing performance and efficiency, it is not statically checked. In addition, it is located in
source code, and the expression language is based on a GPL, which are aspects pre-
venting domain experts from maintenance of the concern. However, domain-specific
languages seem to be efficient in business rules management. Since these languages fit
a specific domain, they are friendly to domain experts, who may maintain it instead
of developers. Unfortunately, designing a new language is challenging and it requires
implementation of various supporting tools such as compilers and editors, which is a
significant initial barrier.

In conclusion, since the approach proposed in this thesis considers business rules
as a major concern of a system, evaluation of existing languages for business rules
representation and choice of a language is essential. Efficiency of the language signifi-
cantly impacts maintenance of the concern and subsequently overall development and
maintenance efforts. While this thesis aims on design of a development approach for
enterprise information systems, the challenge of designing a new language exceeds the
scope of this thesis. Therefore, although this section provides overview of existing ap-
proaches, and Chapter 5 discusses additional requirements essential for the language,

its design is left for future work.

44

3.6 Summary

Since enterprise information systems implement business processes in a domain, and
maintain large volume of data, it is essential to efficiently deal with cross-cutting con-
cerns. While conventional approaches such as the object-oriented programming are
unable to efficiently encapsulate and reuse the concerns, this chapter elaborated sev-
eral approaches, development models, and technologies addressing the separation of
concerns. Unfortunately, only a few recognize impact of business rules on a system.
Although the approaches are often specific to a single component, layer, or a technology;,
or only address some concerns, they determine structure of a system and organization
of source code. Subsequently, they reduce development efforts and remove some in-
consistencies and error-proneness from a system. Therefore, considering the scope of
enterprise systems, a development process may significantly benefit from utilization of
such approaches and tools, especially, when a system spends about to 65-90 % of its
lifetime in a maintenance phase [55, 80].

Benefits of separation of concerns are demonstrated and discussed in the rest of
this thesis. The following chapter introduces the aspect-driven development approach
to design of an information system. The approach recognizes cross-cutting concerns
as essential components of a system, adjusts its architecture, and proposes a mecha-
nism for efficient separation and automated reuse of concerns in order to address the
problems identified in Chapter 1. In addition, since extraction of concerns from an
existing system is challenging due to information repetition, possible inconsistencies,
and difficult truth resolution, Chapter 6 demonstrates utilization of the approach in

common components of a system.

Part 11

Contribution

Aspect-driven Development

46

Chapter 4

Aspect-driven Development

Design and development of contemporary enterprise information systems face various
challenges. The separation and efficient reuse of concerns [59, 105], are among the
most significant challenges developers deal with (Section 3.2). This chapter introduces
a novel aspect-driven development (ADD) approach to design and development of en-
terprise information systems. This high-level approach to design of a system addresses
problems identified in Chapter 1, and utilizes multiple existing approaches to combine
their benefits and deliver better concerns management (Objective 1). Subsequently, it
reduces manual code duplication, eases maintenance, and increases code quality [43],
especially, code complexity, readability, cohesion, and coupling. Implementation of
the approach into design of information systems and its evaluation and comparison to
conventional approaches is elaborated in Chapters 6 and 7, respectively.

Conventional development lacks the ability to separate and reuse cross-cutting con-
cerns, and tangles them throughout a whole system (Problems 1 and 5), instead. More-
over, as is discussed in Chapters 1 and 2, EISs are designed and developed to manage a
business domain implementing business processes, which are constrained by many busi-
ness rules. Unfortunately, the rules represent another significant cross-cutting concern,
which increases the importance of their efficient maintenance (Objective 2). Consid-
ering various technologies and programming languages used for implementation of a
system (Problem 2), concern reuse becomes difficult. While there exist attempts to
overcome this gap as is discussed in Section 3.4, there are no architectures, development
approaches, or frameworks providing an efficient mechanism for information systems.

The ADD is an abstract approach to design and development of EISs, and is not
bound to any particular language, platform, or architecture. All these are implemen-
tation details, which are to be determined later during the implementation of given
system. However, for illustration purposes, this work assumes use of the layered archi-
tecture and Java programming language since they represent mainstream technologies

in conventional development of information systems.

47

In conclusion, the aspect-driven development approach addresses the separation
and reuse of concerns and problems identified at the beginning of this thesis (Objec-
tive 1). In order to address the challenge, the approach modifies design and develop-
ment of a system, its architecture, and representation of concerns, which is elaborated
in Sections 4.1 and 4.2. Since the approach utilizes existing approaches (Section 3.3),
it is discussed from the perspective of the essential AOP and the MDD in Sections 4.3
and 4.4, respectively. Finally, the impact of the approach on separation and reuse of

concerns is discussed in Section 4.5, and evaluation is summarized in Section 4.6.

4.1 Background of the Approach

Since the aspect-driven development approach introduced in this chapter is abstract
and high-level, its formal definition might not reveal its broader motivation and context.
Therefore, this section provides informal introduction into the approach to emphasize
the context and ensure proper understanding of importance of concerns.

Each EIS is built in a business domain to implement its processes, maintain data,
and optimize efficiency of related business. Thus a use case (UC), and subsequently a
business operation as a step in a scenario, are fundamental elements of a system [67].
The layered architecture leads to the Service Layer and Transaction Script [42] design
patterns, which intuitively decompose the domain. Then, each class in the domain
layer implements a business process or its part, and each public method of such a class
represents a business operation within the process. In consequence, EISs built over
the layered architecture are use case centric [67]. Furthermore, the business rules are
the most significant, changing, repeated, and tangled concern in EISs, thus it is worth
optimizing their representation and management.

During the analytical phase of the development process, use case scenarios are
decomposed into business operations. For each operation, there exists a set of precon-
ditions and a set of postconditions defining its assumptions and the expected behav-
ior [67]. Unfortunately, these business rules have to be considered throughout a whole
system to deliver reliable and intended behavior. Consider the running example from

Chapter 1. There are two following use cases (UCs):

UC 1: Create a new product UC 2: List unavailable products
Preconditions: Preconditions:
- rule (D: product name is non empty - rule @: a current user is an administrator (role @)

- rule): product price is positive
- rule @): product weight is not negative

- rule @: a current user is an administrator (role @)

Postconditions: Postconditions:
- the product was created - inStock attribute of products is equal to 0

- rule ®): products are not excluded from the catalog

48

To implement these use cases, the preconditions must be checked in multiple places.
For example in the UI to enable or disable an operation, in the server-side of the
presentation layer to prevent illegal access and hijacking of the Ul, and finally at the
input of the domain layer to secure the system and ensure data consistency. This is
significant vertical repetition of these rules.

While the postcondition of the UC 1 only describes the expected behavior, the
postconditions of the UC 2 must be applied on the output of the domain layer. Al-
though the postconditions generally are not vertically repeated in a system, they are
often repeated horizontally due to their occurrence in multiple business operations.
Furthermore, they are usually transformed into a query language of the data layer,
e.g., SQL, to constrain data already in a persistent storage and reduce application
load. This transformation breaks the system architecture because the rules are moved
from the domain layer, where they semantically belong, into the data layer to deliver
better performance. In consequence, the rules get both horizontally and vertically
repeated plus scattered throughout all layers.

The ADD addresses separation of concerns and recognizes business rules as a signif-
icant cross-cutting concern due to the use case-centric nature of EISs. The underlying
idea of this approach lies in identification, separation, isolated description, and auto-
mated runtime transformation and distribution of cross-cutting concerns. Having the
concerns separated and inspectable enables their automated transformation and reuse
without the need of their manual restatement. It reduces both horizontal and vertical
repetition [A.7]. Moreover, untangling the concerns from a complex system structure
eases future evolution of a system and mitigates the risks of a human error [A.3].

This approach utilizes fundamental principles of several existing approaches to
tackle issues introduced by cross-cutting concerns. More specifically, to separate those
concerns, transform them, and then weave back together. For example, the MDD uti-
lizes several levels of abstraction to generate the code via forward transformation [63].
The AOP provides a mechanism to separate concerns within the OOP and introduces
the concern (aspect) weaving [62]. The CDD recognizes cross-cutting concerns as inde-
pendent first-class citizens of development, emphasizes their importance, and focuses
on their separation, efficient description, and reuse [68]. The DSM accelerates the
development through multiple DSLs tailored for a particular domain [58]. All these
principles significantly improve development and inspired the ADD.

Similarly like the CDD, the ADD perceives cross-cutting concerns as independent
reusable units and individual axes in a multidimensional space [A.8]. There exist both
static and dynamic concerns. Static concerns are immutable and stable, thus it is suf-
ficient to process these concerns just once, e.g., at compile time, because they do not
change over time. The domain model, its fields, and their types are examples of the

static concerns as well as Ul elements used for data visualization because they are de-

49

rived from the domain model. On the contrary, the dynamic concerns consider runtime
information such as a current user, an invoked business operation, current timestamp,
or an application state [A.7] and thus must be evaluated at runtime. Business rules
with validation constraints, integrity checks, and access control policy are examples of
a dynamic concern. In consequence, the ADD perceives execution of a business oper-
ation as a single point in the multidimensional space [A.8]. The point is determined
by the current execution context, which puts high demands on efficient processing,
runtime evaluation, and the final composition of concerns.

The repository is a novel concept introduced by the ADD and inspired by the MDD.
This component is an abstract model, possibly platform-independent, and responsible
for maintenance of all concerns. It represents a single point of truth, i.e., a single focal
point, in the application [A.8] (Problem 3). All concerns in the repository are described
in inspectable DSLs rather than in a general programming language, which follows the
domain-specific modeling. DSLs are more efficient in describing domain-specific logic,
and tailored for a particular domain, i.e., a concern, while relaxing stress on generality.
It significantly reduces development and maintenance efforts, increases readability, and
enables domain experts to directly participate in the system development [72] (Prob-
lem 5). Furthermore, with a proper design of a DSL, the concern representation is
both efficient and inspectable and ready for further transformation [A.7].

Having those concerns separated and described in the repository, the ADD uses
runtime weaving to compose cross-cutting concerns (Problem 4). The concerns weaving
mechanism is the aspect weaving from the AOP, which accepts decomposed concerns
in various languages. Then, it transforms them into the target platform (Problem 2)
and combines them together according to the composition rules [A.3] (Problem 1).

The layered architecture consists of several components and layers, each consid-
ering a different set of concerns, implementing different logic, and having different
responsibility. The ADD reflects this differences in providing multiple weavers, each
designed for a single component [A.13]. For example, there exists one concerns weaver
for the client-side of the Ul and another weaver for the data layer easing the querying
of a persistent storage. This focus on a purpose simplifies composition of concerns,
their intended use, and production of component-specific code.

The resulting code is always context-aware because weavers accept both static and
dynamic concerns together with an execution context [5, A.1]. In consequence, the
ADD produces only combinations of the concerns that are actually used, therefore it is
more flexible and fights the exponential growth of combinations, which is a significant
limitation of GP! [25]. Furthermore, runtime code generation enables more advanced

optimization of the code for a particular combination of concerns [62].

L A single combination of concerns is considered a state in terms of the GP. This relates to a single
execution in the ADD, which is a combination of static and dynamic concerns.

20

Data MobEeL

New Product

Nawme: STRING
Price: DousLe

WeicHT: DousLe (P — https://www.sample-application.io
Nawve
—n Price
Ul Lavouts WL N eW P I"Od u Ct
S
-
. N
BusiNEss
RuLes
DOG Price $
Ul Wibcets
Texr Weig ht 0 kg

Price
WEeiGHT

Figure 4.1: Concern weaving into the Ul form

To conclude the given example, consider implementation with the ADD. First, all
business rules are represented in the repository using suitable DSLs. Second, also other
concerns such as Ul layouts and UI widgets [A.3, A.5] are located in the repository.
Then, those concerns are only referenced, e.g., by a name, from places, where they
must be considered. Finally, runtime weavers inspect the repository and compose the
linked concerns to context-aware code including a persistent storage querying [A.7] and
the UI [A.1]. The difference between the conventional development and the ADD lies
in the automated transformation and distribution of concerns, which eliminates their
manual duplication. It also enables use of DSLs, which brings many benefits [72].

For better illustration, consider this implementation of the UC 1. The UI weaver
accepts the name of the rules D, @, @), a form layout, and a class as a typed model
of the input form. Then, it produces HTML with Javascript according to the fields
in the class as is illustrated in Figure 4.1. These fields are protected by Javascript
validators implementing the rules and the widgets are picked based on the composi-
tion rules matching the situation [A.3]. Next, the server-side Ul weaver accepts the
model of a form and validates it with the rules or their subset to avoid Ul hijacking.
Finally, the domain layer weaver accepts business rules and a method in the domain
layer implementing a business operation. On a request, the weaver validates the in-
coming Product instance and if is valid, then it invokes the internal method. The
implementation is further elaborated in Chapter 6.

In conclusion, the aspect-driven development approach recognizes and emphasizes
the role of cross-cutting concerns in EISs and modifies both design and development of
a system to provide more efficient mechanism for their representation and reuse (Ob-
jective 1). The approach describes concerns in domain-specific languages (Problem 2)

and maintains them separated (Problem 1) in the single point of truth (Problem 3),

51

which removes both manual repetitions and the need for manual synchronization of
multiple places (Problem 5). Instead, the ADD utilizes aspect weaving from the AOP
to compose those concerns back together at runtime, which enables context-aware cus-
tomization of a system (Problem 4).

4.2 The Architecture

The ADD decomposes a system into several additional components comparing to the
conventional development. While the background idea is informally described in the
previous section, this section provides more formal description, puts down important
definitions, and provides a schema of the modified layered architecture.

The separation of concerns is the essential concept of the ADD, and as a result,
the ADD identifies more concerns comparing to the convention development. Newly
recognized concerns include UI widgets, Ul layouts, and most importantly business
rules (Objective 2). The importance of business rules rises from the use case-centric
nature of EISs [67], where each use case scenario fulfills the purpose of a system. A
business operation?, which is a step in the scenario, defines assumptions to be valid
before its execution (the preconditions), and assumptions to be valid after its execution
(the postconditions). Let the ADD define a set of all business operation assumptions
to be a business context (Definition 4.1). Since use cases are derived from processes in

the business domain, the business context is also transitively defined by the domain.

Definition 4.1 A business context is a set of parameterized preconditions

and postconditions of an operation with a business value [A.7].

The separated concerns are described in suitable DSLs [62, 110]. The ADD intro-
duces a new component to store descriptions of the concerns, the Concern Repository
(Definition 4.2). This component is parallel to the existing architecture because it ag-
gregates cross-cutting concerns and thus is accessed by all other components and layers,
which is illustrated in Figure 4.2. The design, the structure, and the implementation
of the repository may differ based on the implementation of the ADD. However, the
repository must implement several responsibilities:

e store multiple concerns,

e support multiple different DSLs,

e provide a key-value storage for each concern,

e and support concern retrieval for the subsequent inspection and transformation.

Besides these essential requirements, the repository optionally provides additional

features such as a cache storage for preprocessed concerns or support for distributed

2 The business-related terminology explained in more detail in Section 2.1.

52

e N ([a
Presentation Layer E Concern
Repository
«concerns weaver» «concerns weaver»
) 4 N
«server-side»
User Interface
BusiNEss
«concerns weaver» API RuLes
«client-side»
User Interface S)
N rJ\ J
Q Domain
(1) RuLEs
Domain Layer E
«concerns weaver»
[Service Layer]
ul
. Lavour
[Domain Model] outs
) N ’
Data Layer E
Storage Y ul
«concerns weaver» WIDGETS
® Remote
) . Services
[Data Access Objects]
L J |\ J

Figure 4.2: The layered architecture with the aspect-driven development

platform-specific concerns [A.1], which is discussed in Chapter 6. However, these op-

tional improvements are implementation details and do not affect the overall concept.

Definition 4.2 The concern repository is a cross-cutting component rep-
resenting the single point of truth in a system. It is a key-value storage
accepting concerns in multiple DSLs for inspection, transformation, and

runtime distribution.

The separation of concerns results in number of independent concerns and the code
being enriched. In consequence, the source code is not actually executable and requires
further processing instead. To deliver executable code, the ADD utilizes the concern
weavers (Definition 4.3). The weaver is a component accepting the code to be enriched
and concerns to be applied, and producing executable code. To compose concerns and
the code, the weaver uses composition rules. For example, consider code of the user
interface in the presentation layer and code querying a persistent storage in the data

layer. Although both components consider business rules, the composition rules are

93

very distinct. There are differences in used programming languages, frameworks, and
intentions. To simplify the implementation of weavers, a weaver is designed for a single
component, accepts specific concerns, and composition rules, which fit requirements of
the intended use. As a result, each EIS deal with multiple weavers.

Definition 4.3 The concerns weaver is a component implementing aspect
weaving from the aspect-oriented programming to weave concerns and code

together at runtime and produce executable concern-aware code.

Note The concerns weaver accepts concerns in various DSLs as well as
GPLs, each concern described in the most suitable language, for greater
efficiency and quality of the resulting code. The weaver runs at runtime
to also accept dynamic concerns, and delivers context-aware executable
code. Usually, a single concerns weaver is designed for a single compo-
nent to inspect and transform only selected subset of DSLs and produce a

component-specific code.

The composition and the distribution of concerns are provided by the weavers at
runtime, which also makes the dynamic concerns available. There exist an instance of
a current user, the request, and the invoked business operation. Dynamic components
have significant impact on composition of concerns, thus the weaver is unable to prop-
erly compose the concerns at compile time. For example, user’s role or a geographical
location may significantly impact the validation or even available fields [17].

Concerns weavers are usually the interceptors. They wrap the original component
and its API and intercept all incoming invocations as is illustrated in Figure 4.2. When
invoked, the weaver collects all static and dynamic concerns, takes the underlying code
(if any®) and produces the executable code [A.8]. There are many possibilities of
what the concerns weaver may produce. For example, it may generate a form in the
UT [17, A.3, A.5], validate the input in the domain layer [A.15], or construct a query
into a persistent storage [A.7]. The actual code depends on the focus of the weaver
and responsibility of the wrapped component. Examples of possible weavers, their
execution, and resulting code are discussed and demonstrated in Chapter 6.

Majority of all concerns are dynamic concerns. The properties such as a current
user, a geographical location, a timestamp, or a used device optionally impact vali-
dation, available actions, a UI structure, or a Ul layout. While there exist various

dynamic concerns, the ADD groups them up into contexts?. Their structure is illus-

3 Incoming requests into the domain layer invoke a business operation, which is wrapped [A.15].
Considering the UI inside the presentation layer, there may not exist any code to be wrapped and the
concerns weaver may generate it from scratch, e.g., an input form [A.5].

4 Dynamic concerns vary for each request, operation, and in time, thus create a current context for
current code execution, which gives them the name.

o4

«context»
Execution

«context»
Request

«context»
User

«context»
Application

«context»
Business

Figure 4.3: The contexts in the aspect-driven development

trated in Figure 4.3. The execution context is a top-level context encapsulating all
other contexts and clarifying the terminology. It encapsulates all existing dynamic

concerns and is accepted by weavers as the runtime input component.

Definition 4.4 The execution context is a complex structure utilized dur-

ing concerns weaving and encapulating all dynamic concerns [A.7].

A current user is an important part of the execution context. The user affects
business rules through defined roles, and profile settings may impact other aspects of a
system. The ADD recognizes this concern to be the user context [A.7]. It encapsulates

all properties attached to a user including language preferences, roles, and privileges.

Definition 4.5 The user context defines a current user, his username,

access roles, privileges, and profile settings [A.7].

While a user must be authenticated in a system to determine the context and there
are many implementations of pairing a user with a request, the ADD is agnostic to the
implementation. However, the authentication defines a relation between the user and
the request. The request context encapsulates all properties defined by a single request
into a system. Besides the current user, the context usually includes an IP address, a

timestamp, a geographical zone, a protocol, a web browser, and a user’s device.

Definition 4.6 The request context encapsulates properties specific to a
current request including a timestamp, user’s IP address, a geographical

location, a user-agent, and a screen size [A.7].

95

Since EISs are use case-centric, each request targets a single business operation.
The operation and its preconditions and postconditions compose the business context
(Definition 4.1), another dynamic component in the execution context.

Finally, the last member of the execution context is the application context (Defi-
nition 4.7), which represents a state of given system, especially system-wide variables.
For example, an e-commerce system can be locked for changes due to upcoming main-
tenance and current VAT rate is also a system-wide variable. All these variables are
collected in the application context and considered as binding of variables in business

rules. See Chapter 5 for more details.

Definition 4.7 The application context encapsulates global system-wide

variables and their values at a given point in time [A.7].

In conclusion, the essential and the most important idea of the ADD is the ex-
tended understanding and the separation of both static and dynamic concerns. With
static concerns located in the repository and dynamic concerns provided at runtime,
weavers produce executable context-aware code specific to a particular component. Al-
though this sections discusses the ADD with the layered architecture, the approach is
agnostic to any implementation details and does not depend on any technology, lan-
guage, or architecture. The ADD itself extends any conventional architecture, adds the
additional component, wraps existing components, and extends understanding of cross-
cutting concerns. It is a general development approach applicable to any conventional

approach, although the benefits and limitations may significantly vary [A.10].

4.3 Definition in Terms of the AOP

While the ADD utilizes multiple existing approaches, the aspect-oriented program-
ming (AOP) is its essential component. The ADD recognizes cross-cutting concerns
as aspects and composes them together via aspect weaving. In consequence, there
exist tight coupling between the ADD and the AOP, which this section defines in a
formal specification. In addition, formal mapping into the AOP provides a hint to
implementation of the approach.

The AOP is a technique of automatic programming targeting the separation of
concerns, designed to decompose cross-cutting concerns, and then weave heterogeneous
sources together. It is a convenient way to process all descriptions of distinct concerns
and weave them into source code. These are perfect assumptions to fulfill Objective 1
of this work, therefore the ADD advances this underlying idea.

The concerns in EISs cross-cut both horizontally and vertically through all layers

and components. Each component is designed for a specific purpose and possibly

o6

uses different technologies. In consequence, there must exist an AOP specification for
each component as is further elaborated in Chapter 6. However, here follows a brief
introduction into the AOP specification. It clarifies the terminology and boundaries
of each term. For better illustration, the specification uses the running example and
more detailed examples and deployment of the ADD follow in the next chapters.

The AOP comes with multiple terms, which must be defined in order to properly
formalize the ADD in terms of the AOP. The mapping definition must include: aspects,

joinpoints, pointcuts, an advice, an aspect language and finally an aspect weaver.

The aspects overlap with the concerns in the ADD terminology. They involve both
static and dynamic cross-cutting concerns in the system, which tend to manual restate-
ment, but are separated, described independently, and located in the repository.

For example to implement the UC 1 from Section 4.1, there exists a Ul form il-
lustrated in Figure 4.1. Such a form reflects the structure of a model (class Product),
provides presentation for each of its fields (UI widgets), but also considers all dynamic
concerns including business rules to implement security, validate the input, and se-
lect layout according to a user’s device. All these concerns, which influence resulting

presentation and implementation of the form, are aspects in EISs in terms of the AOP.

The joinpoints in the ADD are locations in source code (static joinpoints) and ex-
ecution flow (dynamic joinpoints), where the concerns must be considered, i.e., the
code or the flow modified. The ADD defines several types of joinpoints depending on a
concern and a target component. They include entry points and exit points of business
operations, methods for data retrieval, Ul buttons, and a lifecycle of Ul forms.

For example, business rules may be applied in the domain layer as input validation
in business operations and thus the joinpoints are entry points of the operations. While
in the presentation layer, business rules are considered as input validation in forms,

and thus the joinpoints are inside the lifecycle of a form.

The advice transforms a concern into the target domain of a specific component and
technology. The kind of the transformation differs per component, because the use
of the concern may significantly vary. An advice optionally provides an integration
template expecting a transformed concern and defining new joinpoints for subsequent
concerns. These are then filled by the aspect weaver according to composition rules.
For example, consider input validation in the domain layer. The rules are trans-
formed into an executable form to be bound with the input and the execution context,
and then evaluated. On the contrary, in the Ul in the presentation layer, the rules are
decomposed and transformed into client-side, e.g., scripting, language and attached to
fields of a form and evaluated later when needed. One example of a complex advice is
a Ul layout. It defines a template in a language of the presentation layer and defines

new joinpoints to inject presentations of form fields and their labels.

o7

The pointcuts select a subset of joinpoints to indicate, where to apply an advice.
The advice contains a set of pointcuts defining places of use. Considering multiple
specialized advices matching a single static joinpoint, a pointcut can query an execution
context for runtime conditions, to match only the cases of intended use.

For example, consider business rules. Pointcuts for the advice implementing input
validation in the domain layer match only entry points of business operations. On
the contrary, consider an advice implementing a Ul widget with an input for weight
designed for small screens. Such pointcuts select places inside a Ul layout, where weight

is expected when an execution context contains the small screen size flag.

The aspect language is the language used for implementation of advices. Consid-
ering the underlying idea of the ADD and the benefits of the domain-specific model-
ing, there is no specific aspect language. As there exist multiple aspects, there also
exist multiple languages, each tailored for a particular domain, which is an efficient
approach [110]. Unfortunately, while DSLs introduce great benefits, they also have
significant limitations, which are discussed later in this thesis.

For example, while a Ul layout as well as Ul widgets in web-based EISs are ef-
ficiently describable in HTML [A.3], localization description is more efficient in some
key-value language such as YAML [7]. UML [96] and general-purpose languages such as
Java are well suited for classes, types, and attributes of a domain model, and business

rules are efficiently represented in a language such as JBoss Drools [11].

The aspect weaver can be considered as a concerns compositor. It is responsible
for weaving advices together according to composition rules, production of executable
code, and modification of the target location with new functionality. A weaver accepts
multiple advices in various DSLs and the target execution point, and then produces
component-specific code replacing the original functionality. It is essential that the
weaver is tailored for the intended use to support proper technologies, concerns, and
languages as there exist many different execution points, each component uses differ-
ent language, and there is no unified aspect language. In consequence, a single EIS
following the ADD can utilize multiple weavers, each tailored for a different component.

For example, an aspect weaver composing forms in a Ul accepts localization, a
form model, UI widgets, a Ul layout, and business rules and then produces a form to
be displayed in a web browser. With runtime context-aware composition, the layout
fits the screen size, the widgets are picked with respect to data types, localization, and
the screen size, and the validation rules consider user’s context and privileges.

Input validation in the domain layer is another example of the use of an aspect
weaver. The weaver accepts both business and execution contexts and the business
operation. Then it registers the validation code constructed from the rules in the busi-
ness context at the entry point of the operation. When invoked, the code either throws

an exception when the input is not valid or passes the execution into the operation.

o8

aspect language

Data Model “‘5 & New Product
ProductForm ﬁpie(:t weaving . 7 : ;
H ttps://www.sample.io
| name: String [ID P P
price: Price H
| weight: Weight i [i</aiv N o
................ - CTTTTTP TPV TTY TP TTITPITPPTIVTTIPees Ml W | New Product
. . D
Localization Business Rules
P @i rrs
s @i
@it ion s
equired: 50 :
positive: :50 | ke |;

pointcuts

Figure 4.4: The AOP components in the Ul of the running example

To summarize the specification, Figure 4.4 provides a complex example highlighting
all AOP components. The example shows the aspects participating in the construction
of the form from UC 1. Concerns from the example include a model of the form, the
business rules from the UC specification, the single column layout matching the screen
size, and the localization. All these concerns are also aspects in terms of the AOP. Ul
widgets are omitted in order to reduce the size of the figure. This example highlights
the advices, i.e., the concerns to be transformed, pointcuts addressing the joinpoints to
apply the advices, and jointpoints introduced by the upper-level advice (the layout).
These jointpoints are used in later iterations of the aspect weaver to inject the Ul
widgets. Notice that each aspect uses a different aspect language. Finally, the process
of concerns composition, i.e., aspect weaving, is implemented by an aspect weaver.
However, full implementation of UI composition is discussed in Chapter 6.

In conclusion, this section shows the importance and the role of the AOP within
the ADD. It is obvious that the ADD extends the AOP, while it adds several concepts
from other approaches. As examples suggest, there exist various components benefiting
from this novel approach. Chapter 6 focuses on the implementation of the ADD into
design of common components of the layered architecture and introduces further and
more detailed mapping between the ADD and the AOP.

4.4 Perspective of the Model-driven Development

Similarly, while the ADD extends the AOP to recognize concerns as aspects and com-
pose them together via aspect weaving, it is significantly inspired by the MDD. The
common idea lies in maintenance of various models on multiple levels of abstraction,
which is utilized during the aspect weaving. Therefore, this section discusses the ADD
approach from the perspective of the MDD to identify common concepts and differ-

ences, and help to comprehend the aspect-driven development in a broader context.

29

Aspect-driven Development Model-driven Development

PIM — PIS

@ transformation rules

PIM
@ (semi-automated)
PSM
@ code generation

. BusinEss
latform-independent
P D LocALizaTiON RuLes

e ul V]]
platform-specific W|DGETSIT LAVOUTSj

advices :>
(automated) J]7 J L

cource code ul ul oo o | Buswess
TEMPLATE WipGeTs Lavouts | CALIZATION ! RuLes
aspect weaver @ [_\ > [_\ > [_\ > [_\ > [_\ >

(automated)

@ rules

(semi-automated)

aspect weaving

Figure 4.5: Model transformation process with the ADD and the MDD

The MDD utilizes several models on different levels of abstraction to minimize the
manual information repetition and duplication. Then it uses model transformation as
a forward engineering method and code generation tool. However, the transformation
process produces more specific but incomplete models as those more abstract models
do not contain enough information. It leaves some efforts for developers to manually
fill in blank spaces in new more specific models [63]. This transformation process
usually occurs during development as it is necessary to fill in the gaps, i.e., the models
are transformed before compile time. Unfortunately, the MDD often fails when comes
to backward change propagation because the abstract models are unable to represent
more specific information. That means, when the more specific model is changed, then
regeneration of the specific model erases manual refinements from it.

On the contrary, while the ADD also uses models on several levels of abstraction®,
they are complete and do not leave any efforts to developers. The forward transforma-
tion process is fully automated and happens at both compile time and runtime®, which
is an important difference. In consequence, the produced models are not intended for
manual changes so there is no need for backward change propagation.

Another significant difference lies in the model transformation. The MDD accepts
abstract models and then sequentially performs vertical transformation to produce
more specific models such as platform-independent, platform-specific, and finally the
source code. Each level of models has more tangled concerns to address the require-
ments, which results in extensively tangled source code. This process is illustrated
in Figure 4.5. On the contrary, the ADD utilizes the vertical forward transforma-
tion to transform concerns into proper platforms and components (advices) and then

horizontally composes all concerns within a single component together via the aspect

5 The repository is a model of the concerns. However, there are possibly both platform-independent
and platform-specific concerns, which is discussed in the subsequent chapters. Code to be enriched
by the concerns is another model, often a model of business logic.

6 Some concerns can be transformed at compile time or during system initialization, but others
need the execution context and thus must be transformed at runtime.

60

weaver [A.7]. While the vertical transformation is responsible for concern transforma-
tion, the horizontal transformation deals with concern tangling. This distribution of
responsibilities reduces complexity of both transformation processes and eases their
automation. Furthermore, while the vertical transformation can be precomputed at
compile time or during system initialization, the horizontal transformation requires
the execution context to deliver context-aware code thus must run at runtime.
Consider the example in UC 1. There exist business rules and localization de-
scribed in platform-independent DSLs, and UI layouts and widgets described in a DSL
specific for web browsers, i.e., platform-specific. Then the rules and the localization
are transformed into technologies of the UI (vertical transformation). Finally, the Ul
template expecting the form and all these concerns are weaved together considering the
execution context (horizontal transformation). This process is illustrated in Figure 4.5.
Completeness of the model in the ADD approach is an essential benefit. In case
of model evolution, there is no need to manually update any subsequent models, they
are all refreshed in the next compilation/system initialization cycle. In conclusion,
while the ADD is inspired by the MDD and utilizes similar techniques and transforma-
tion rules, the model completeness and horizontal transformations make a significant

difference in the overall approach efficiency.

4.5 Reuse of Concerns

Since the approach addresses the separation of concerns, this section briefly discusses its
impact on concerns reuse. However, detailed implementation of the approach into de-
sign of common components and examples of concerns reuse are provided in Chapter 6.
While the ADD significantly modifies architecture and development of EISs, changes
in design mostly impact components, classes, and Uls instead, which greatly benefit
from reuse of concerns. Having these concerns isolated and described in the repository
opens possibilities of their automated mining, transformation, and integration to save

development and maintenance efforts.

Mining is an extraction of information from the concerns in the repository. There ex-
ist reverse engineering techniques extracting information from an EIS, getting overview
of a system, analyzing its structure and behavior, or just computing chosen statistics.
Having the concerns separated significantly reduces the mining complexity as the con-
cerns are not tangled but are represented in an inspection-friendly form instead. For
example, business rules can be validated by domain experts, or transformed into a
formal specification and verified against requirements. Similarly, generation of actual
documentation via reverse engineering of the structure, modules, classes, operations,
and business rules is usually a very complex task [100], but the ADD generates the

documentation through simple inspection and transformation of the concerns [A.2].

61

; ; Gathering of Transformation of Concerns Weaving ;
Interception of Construction of the : ; : Resuming of
[Execution FIow] > [Execution COmext] > [Copaiceled] > [Caleensie] > [jlofacauahie] > [Execution me]

Figure 4.6: Concerns weaving process

Transformation and integration is the other possibility of concerns reuse. As the
previous sections define, the ADD uses the forward transformation to transform the
concerns into other languages and technologies and to weave them together. That
enables automated reuse of information in multiple places without any need of manual
information duplication. The impact on maintenance efforts is obvious.

However, regardless of the component, the integration process follows a same pat-
tern, which is illustrated in Figure 4.6. First, consider the context of use. It defines
the execution context, i.e., a current user, a request, and a business operation. Second,
pass the flow to the aspect weaver with the target place and all parameters. Third,
considering the context, execute given advices to get the context-aware concerns in a
platform-specific format. Fourth, the aspect weaver weaves all concerns into the target
location, and finally, passes the flow to the generated code.

In conclusion, the separation of concerns and having concerns in an inspectable
form opens wide range of possibilities of their further reuse. Although, particular im-
plementation of the ADD and possible reuse or concerns significantly depend on the
used architecture and technologies because each comes with different components and
support of the AOP. For complete illustration, Chapter 6 presents several implemen-
tations of the ADD into design of an EIS with the layered architecture.

4.6 Benefits, Limitations, and Summary

The aspect-driven development emphasizes the separation of concerns, their indepen-
dence, efficient description, and automated transformation. It deploys the repository
as a new component parallel to the architecture to represent a single point of truth in
a system, and maintain the concerns described independently in DSLs. This section

sums up qualities, benefits, and limitations of the approach to conclude this chapter.

The main contribution lies in automatic concerns reuse, which includes runtime

weaving. While it significantly reduces manual information repetition, the concerns

62

are automatically distributed throughout the system by aspect weavers (Problem 1).
This leads to more efficient development and maintenance of a system, as well as it mit-
igates the risk of human error, comparing to manually repeated and tangled concerns
(Problem 5). Furthermore, the concern distribution can be carried out across different
platforms, which helps to use various technologies for individual modules (Problem 2),
while it preserves the single point of truth and concerns reuse (Problem 3). Design
of aspect weavers enables dynamic pointcuts and concerns. Both consider contextual
information such as user’s identity, privileges, IP address, current application state,
and server load, and use them to select proper joinpoints to weave in. However, it
requires runtime weaving and efficient concerns transformation (Problem 4).

Use of DSLs enables responsibility delegation to domain experts and subsequently
better work distribution in a team. Having the repository as a single point of truth eases
development and maintenance. Its design simplifies description of concerns, reduces
error-proneness via isolation of concerns, and simplifies their testability. Furthermore,
independent concern description allows their reuse among projects, for example, Ul
widgets, Ul layouts, and security policies are not project-specific.

Extraction of these concerns out of the code base is a major simplification of the
code. Usually, the code no longer needs to focus on preconditions, layouts, and other
concerns, and can focus on business logic and behavior instead. There is also major
code reduction via removal of duplicate code implementing the repeated concerns. As a
consequence, it reduces maintenance efforts and error-proneness as there are no longer

multiple places to update and the code base is reduced.

Disadvantages include approach complexity, which has the most significant impact
on overall efficiency. Although the idea is simple and straightforward, there are many
DSLs and multiple separated concerns, which increase mental complexity. Developers
must get used to the novel architecture and must learn the languages, and domain
experts must be trained as well. In consequence, there is a high mental barrier.
Besides the mental complexity, there exists significant initial overhead reducing
the approach efficiency on small projects. Although the languages and their com-
ponents are reusable among projects’, their initial implementation is a big challenge
and requires significant efforts. All these languages must be designed including their
compilers/interpreters and possibly editors. Next, there are complex aspect weavers
accepting all independent concerns in these DSLs and producing various context-aware
components such as the domain layer, and the UI [A.13, A.8]. Unfortunately, an aspect
weaver is specific to a tuple of input concerns, an output component, and a technol-
ogy, thus the number of weavers grows with the number of target components and

technologies. With runtime weaving, performance is critical and increases the efforts.

7 The DSLs for business rules, UI layouts, widgets, etc. are not project-specific and can be reused
in other project within the same domain and possibly also outside of it. The same stands for all
components including the weavers as long as the technologies are same.

63

Comparing to the existing approaches, the ADD suffers from the overall com-
plexity. On the other hand, contrary to the MDD, it does not suffer from the issue of
backward propagation of changes to more abstract models and is tailored to deal with
cross-cutting concerns. The benefits of concern-driven development and the ADD are
similar. Both approaches focus on the cross-cutting concerns and deal with them via
DSLs and automated transformation. The ADD also benefits from the context-aware
runtime weaving, while the CDD prefers composition of concerns during implementa-
tion of a system. Comparing to the AOP, the ADD is more focused and provides a
specific solution to EISs, while AOP is a general technique to deal with cross-cutting
concerns in software engineering. The benefits of the ADD over the domain-specific
modeling lie in more universal and possibly project-independent DSLs and other tools.
While the DSM always tailors languages for a particular domain and implements all
supporting tools, the ADD is more abstract and the DSLs do not have to be tailored
to a particular business domain, they are tailored for a concern instead, which makes
them more transferable across projects. Finally, the benefit of the ADD in comparison

to the GP lies in the runtime context-aware weaving in trade of more complex tools.

In summary, while conventional development approaches fail in addressing cross-
cutting concerns and tend to manual concerns repetition, the aspect-driven develop-
ment approach introduces an alternative design of enterprise information systems. The
approach is efficient for large enterprise applications, and all its benefits arise from
decomposition of the multidimensional space of the concerns, and their independent
description in efficient domain-specific languages (Objective 1). While the separation
of concerns is an essential part the approach, it recognizes business rules among the sig-
nificant concerns within a system (Objective 2). Considering a use case-centric system,
business processes and their operations are constrained by many business rules, which
cross-cut throughout the whole system. Although, recognition of this concern and its
separation into the repository puts high demands on a language for business rules de-
scription. Therefore, Chapter 5 discusses the impact of the ADD on the language, and
identifies requirements and potential benefits of having this concern separated.
Although the aspect-driven development approach is inspired by multiple existing
approaches and combines their benefits, it suffers from significant limitations. It deals
with cross-cutting concerns, efficiently addresses Objectives 1 and 2 and the problems
identified in Chapter 1, reduces error-proneness, and development and maintenance ef-
forts, but the initial overhead and complexity of supporting tools introduce a significant
initial barrier. In addition, the use of multiple domain-specific languages represents an-
other mental barrier. In conclusion, while the approach promises great benefits and
addresses significant issues, the limitations reduces its overall efficiency and reduces

the area of use to large long-running systems.

64

Chapter 5

Representation of Business Rules

The aspect-driven development approach introduced in Chapter 4 recognizes various
cross-cutting concerns as important components of EISs (Objective 1), and modifies de-
sign of a system to separate the concerns and enable their automated reuse. As is stated
in Chapters 1 and 2, EISs are use case-centric applications focused on implementation
of business processes consisting of business operations, which define preconditions, and
guarantee postconditions. In consequence, EISs are significantly constrained by various
business rules, which belong among cross-cutting concerns, since they are considered
throughout the whole system, from the data layer though the domain layer to the Ul
in the presentation layer. Furthermore, since EISs exist to implement business logic,
business rules are an essential concern. Therefore, their efficient representation is cru-
cial for development efficiency, as they tend to manual repetitions, which eventually
results in inconsistencies and errors in source code. While design and implementation
of efficient representation of business rules is a great challenge itself and is not in the
scope of this thesis, this chapter defines requirements for the representation of the rules
in the ADD to address Objective 2, provides overview of further utilization of already
maintained rules, and lays foundations for further research.

An EIS implements business processes! of a business domain to ease domain main-
tenance and achieve a greater objective. Each process consists of several steps, each
implementing a partial objective. The steps are linked into a graph with guarded
transitions, which correlates with stateful Event-Condition-Action systems [64]. For
example, a guard can check an output of a previous step, consider current time, or a
geographical zone of a user. The example of a business process implementing a creation
of a new product (UC 1) in the running example is illustrated in Figure 5.1. A step

with varying output can be the input from the user. Deeper elaboration and change of

I Both a business process and a use case describe same reality but differ in perspectives and level of
abstraction. While a process considers business area perspective and emphasizes a flow of activities,
a use case considers a technology and describes actor’s interaction with a system in a scenario [67].

65

Vs

Y

g Web Form

Is Data
Valid?

Receive a New
Product

Save the Product]—)@

@

(U

A4
Product

Report Errors

J

Figure 5.1: The process of product insertion in the running example

perspective transforms a business process into a use case. Consider this full description

UC 1 with a main successful scenario and also with alternative paths [67]:

Use Case Section

Description

Title

UC 1: Create a new product

Summary

This UC describes creation of a new product

Primary Actor

Administrator

Preconditions

An administrator is logged into a system

Main Flow (Successful Scenario)

O Tt W

Administrator opens a form for product creation

The system requests administrator to provide details
Administrator fills the form with the details
Administrator submits the form

The system validates the received data

The system creates the product

. The system notifies administrator about product creation

Alternate Flow

If the data validated at the step 5 of the main flow is
invalid then:
1. The system notifies administrator about invalid data
2. The UC resumes at the step 2 of the main flow

Exception Flow

If administrator requests to interrupt creation of a new
product at the step 3 of the main flow:

1. Administrator requests to cancel the process

2. The system cancels the process

3. The UC ends

Postconditions

Main flow: The new product is created
Exception flow: The process is canceled

From the main successful scenario it is obvious that each step has its own position

in the process and defines its own assumptions (preconditions) validating a context of

use and postconditions guaranteeing a result. In consequence, a step is defined through

its preconditions, invariants, and postcondition [67].

Consider the terminology used in this thesis (Chapter 2). Steps of a business

process are business operations and their context of use is the execution context (Def-

66

inition 4.4), which encapsulates all runtime concerns specific for current execution.
A business context is one of its components, determines a business operation, and
encapsulates a set of related preconditions and a set of related postconditions (Defi-
nition 4.1). The examples of such a context are the UCs 1 and 2 from the previous
chapter. The ADD emphasizes separation of concerns and considers business rules and
subsequently business context to be among the concerns to separate. In consequence,
it is essential for the ADD implementation to efficiently express a business context,
enable its inspection, transformation, and further reuse. Therefore, this chapter analy-
ses requirements for business context representation, and subsequent reuse of business
rules already represented in a system. Finally, considering the results from Section 3.5,
this chapter proposes an example of a potential domain-specific language for business

rules representation suitable for the aspect-driven development approach.

5.1 Analysis and Requirements

In order to separate business rules, and allow their efficient management, and auto-
mated reuse, the representation must address complex requirements defined by the role

of the rules in a system, and a mechanism of the aspect-driven development.

Language selection is the top level requirement. It affects maintenance as well as
inspection and transformation. Poorly selected language reduces efficiency and might
not address advanced requirements, therefore some languages do not even qualify for
the use with the ADD. Considering the separation of concerns, the model-driven devel-
opment, the concern-driven development, and the aspect-oriented programming, then
domain-specific languages are the first choice [47]. With focus narrowed to a busi-
ness domain, they enable involvement of domain experts into the development process,
while increase expressiveness and enable language customization to fit relevant needs.

In consequence, a DSL addressing these requirements must either exist or be tailored.

Use case-centric understanding of a system emphasizes the role of a business context.
Considering a business operation as a step within a process and as the target of each
request, then the context must be well described. The language addresses the context
as a top-level element consisting of a set of preconditions, and a set of postconditions.
The name of the context links it to the operation and enables its referencing in source
code. For example, consider the insertProduct operation from the UC 1 inserting a
new product. Use of this context in source code of the domain layer is illustrated in
Listing 5.1.

Conditions are fundamental elements of a context as they construct a set of precondi-
tions and a set of postconditions. Many existing approaches deal with both assumptions

and consecutive actions, which are executed when the assumptions are met. However,

67

Listing 5.1: Context reference in source code in the domain layer

1 G@BusinessContext("Insert a new product')

Product insertProduct (Product product, User actor) {

3 // the execution context including the product is already
validated

// insertion of the product into a persistent storage

)

~

5 }

the ADD understands business rules as preconditions, invariants, and postconditions
in use case scenarios. The subsequent actions are understood as business logic, which
differs according to the execution context. For example, in the domain layer, the logic
is actually implemented in a general-purpose language, but in the UI, it only enables
or disables a button to indicate that the operation is available. In consequence, the

rules in the ADD are only boolean expressions always evaluated to either true or false.

Variables and constants are further components supported by the language. The
variables are bound to the current execution context, which includes the current user,
the request, and privileges, but also parameters injected from source code. Consider
Listing 5.1, both parameters product and user are injected into the business context
to allow reasoning over them. It enables validation of actor’s privileges as well as
validation of the product instance.

Contrary, constants are immutable values configuring the environment. For exam-
ple, consider VAT rate in a system. This configuration value must be considered in
many places throughout the system including business rules. To enable its reuse and
avoid manual repetition, it is necessary to support definition of system-wide constants,

and make them available and reused in contexts.

Custom functions are an important requirement in case of a universal DSL for busi-
ness rules. Each domain, or even each system, operates with custom constraints often
encapsulated in functions. Furthermore, even same constraint may be implemented
differently. For example, consider authentication mechanism. Each system implements
a function isAuthenticated() slightly differently.

There exist two methods to enable this language extension. First, the language
is always adjusted to a current domain including a set of functions. This puts high
demands on evolution of the language and subsequent tools such as advices and aspect
weavers to be able to accept all components? of the language. Second, the language
supports dynamic functions, which are indirect references to a function dictionary,
which may vary per project or even per component. Then aspect weavers accept the

dictionary and look up a function. This indirection introduces several issues such as

2 For example, a function may have different implementation for the domain layer at the server
and for the client-side of the Ul in the presentation layer. Considering authentication, while the server
considers a proper mechanism, the client may use a different mechanism or just return a dummy value.

68

possibly slower performance, need for multiple implementations a function for different
technologies, and lack of static verification that all declared functions are defined in
all dictionaries. However, it significantly reduces efforts for continuous evolution of
the language and the tools, and reduces the mental barrier introduced by continuously

evolving language changing on a project basis.

Platform-independence is an essential requirement for the ADD. While source code
of this concern may be platform-specific?, there must exist a platform-independent rep-
resentation enabling communication of the rules. Considering the layered architecture,
there are various components implemented in different technologies. Moreover, having
the implementation of a system distributed over multiple servers, the rules must be
transmitted over the network. In consequence, although each component may consider
different technologies and be implemented in a different general purpose language, all
implementations accept the same representation of the rules, which requires existence
of the platform-independent format.

For illustration, consider Java language. Source code is plain text easily under-
standable to humans. It compiles into bytecode, which is a platform-independent set
of instructions and there exist many implementations of the instructions for various
environments. Business rules are in a similar situation. Their source code must be
easily understandable to domain experts but then must be transformed into some

platform-independent format implemented for various aspect weavers.

Context abstraction and composition aim on simplification of maintenance and
reduction of duplications. For example, consider user authorization as a subset of busi-
ness rules. A system recognizes several roles, and execution of each business operation
is restricted only to some of them. There exist three approaches to protection in the
ADD. First, authorization is implemented directly in a business operation, which is
discouraged by the ADD as it should be extracted and separated from business logic.
Second, each context of a protected operation defines the restriction rules verifying
actor’s roles. This leads to high duplication of identical rules across contexts with
the same authorization policy. And third, there exists an abstract context declaring
the authorization policy, which is included in all contexts sharing this policy. This
context composition and reuse allows reuse of business rules with positive impact on

maintenance efforts as it avoids rules duplication.

Definition 5.1 A business context is abstract, when is not linked to any
business operation, and cannot be referenced from application code as it

does not directly participate in any use case scenario.

3 There may exist a platform-specific editor, e.g., implemented in Java, managing the rules and
saving them in a convenient format suitable for the editor.

69

] «abstract» i
i Product Validation

] rules 1,2, 3 i
[]
«UC1 » «UC2» «UC3»
Create a New List Unavailable Update an Existing
Product Products Product
[JZ]
: «abstract » i

: Administrators Only

Figure 5.2: Business context composition in the running example

Definition 5.2 (Context Composition) A business context includes

0..N existing business contexts including constants, attributes, and rules.

For example, consider the UC 1 from the running example. The operation of
product insertion is available only to system administrators (rule @), i.e., users who
were granted role @ The business context of this operation then either protects the
method itself by declaring $actor isGrantedOf Role.Administrator, or includes
existing abstract context Administrators Only, which implements this rule. Figure 5.2
illustrates the optimized structure of contexts of several UCs from the example. The
abstract contexts encapsulate shared rules to avoid their duplication and the non-
abstract business contexts relate to actual operations in existing use cases. The impact
of context composition on maintenance efforts is obvious. Unfortunately, composition
of contexts introduces new level of challenges raised from the order of included contexts,

transitive inclusions, cycle detection, and collisions [110].

Inspection of business rules is a new challenge arising from having the rules ex-
tracted and encapsulated in the repository. While the separation of concerns simplifies
development and maintenance efforts, it puts high demands on the tools. They must
inspect the represented concerns, automatically transform them into target platforms,
and weave them into existing joinpoints.

Basically, there exist two approaches to inspection of the concern represented in
a DSL. The first and common approach relies on parsing of a textual representation
of a language into an abstract syntax tree (AST) [110]. Then the AST is transformed
into any other form optimal for its further processing. The other method comes from
the forward engineering and differentiates a presentation of a language and its repre-
sentation. While the presentation is what a user sees, the representation describes an
internal model [111]. This projection-based approach does not require parsing of plain

text as it directly manipulates the AST instead. While benefits of the first approach

70

lie in its simplicity and straightforward use, it requires implementation of a complex
parser decomposing relevant language into elements with high-quality error handling.
Contrary, the second approach requires implementation of a complex editor and def-
inition of presentation rules but language inspection is very straightforward as it is

already represented in a processing-friendly model.

Transformation and distribution are final two requirements defined by the ADD
on a DSL for business rules. It is obvious that the rules must be transformed into
various forms and languages to be reused throughout the whole system. Considering
the layers, it is likely that each of them uses different implementation language for
the rules. For example, while the data layer queries a persistent storage using a SQL-
like language, the domain layer considers the rules in a general-purpose language used
for implementation of this layer, and the presentation layer often contains a client-
side component running in a user’s browser, which is commonly implemented using a
JavaScript. In consequence, transformation of rules and their distribution in a system
is essential for successful implementation of the ADD.

Having an AST, the transformation is straightforward. FEach target component
defines its own mapping rules between AST nodes of the shared and the component-
specific trees. For example, some nodes may remain the same, implementation of
some predicates can change, and other predicates can be ignored. Then it transforms
the shared AST into the component-specific AST, which is finally serialized into a
component-specific language. This implementation implicates distribution of the rules
in a platform-independent format, which is discussed earlier in this chapter.

In conclusion, design of a novel language for business rules representation for the
ADD is a great challenge. Besides the conventional challenges in business rules rep-
resentation identified and discussed in Section 3.5, the requirements identified in this
section put additional demands on design of the language. On the other hand, having
this representation enables further reuse of the rules (Objective 2), which is discussed in
the next section. Therefore, the efforts devoted to design and maintenance of another

language are traded for additional reuse of captured information.

5.2 Use of Business Rules

Having efficient and inspectable representation of business rules makes wide range of
their reuse possible. Besides the obvious use within the ADD and their application in
architectonic components, it opens new areas significantly benefiting from inspection
of business rules. Some applications introduce new aspects and responsibilities into
software development, other just deal with issues introduced by the ADD. However,
this section briefly suggests new challenges and future research, which are out of the

scope of this thesis, but might greatly impact the development process.

71

Reuse within EISs is already briefly suggested in the previous chapters and is dis-
cussed in detail in Chapter 6. While this challenge is here only for completeness, reuse
of the rules from the repository in the components of the architecture brings significant
benefits, which include major reduction of source code, duplications, and efforts. In

consequence, the separation of concerns reduces error-proneness and eases testing.

Formal verification of requirements is a promising area of further research. Con-
sider the functional requirements decomposed and written in a formal language such
as the OCL. Then having business contexts decomposed and extracted from a system
enables their transformation into the same language. In consequence, it is possible
to reason over both contexts and requirements and, e.g., prove that the contexts im-
plement the requirements. Furthermore, using the ADD with other development and
engineering methods such as the model-driven engineering, it seems possible to model
the requirements in a formal language and then either automatically transform them

into the concern or run formal verification to ensure their consistency.

Context feasibility and cycle detection extend the idea of formal verification.
The decomposed contexts implementing UCs make new places for human errors. It
is easy to make a mistake during manual implementation of the contexts and thus
introduction of further testing is necessary in order to assure quality. As is suggested
above, transforming the contexts into a formal language enables reasoning over them,
and there exist several hypotheses to reason about.

For example, as a business context consists of many rules, it is easy to make a
mistake and create an unfeasible context, i.e., define the rules so that there does not
exist any combination of inputs evaluating the context to true. Automatic formal
verification of context feasibility would detect this kind of an issue.

In order to reuse rules among contexts, the ADD proposes context composition.
Unfortunately, having the rules scattered throughout multiple contexts may lead to
unfeasible contexts, which is discussed above, but also the context composition may
result in cycles in a hierarchy of context. Simple detection of cycles can detect this issue

in early stages of development, e.g., in compile time or using a static code analysis.

Validation of requirements by domain experts is the most simple but likely
most benefiting feature enabled by inspectable business contexts. Having the contexts
extracted and described in a human-friendly domain-specific language, domain experts
are able to review the contexts in their raw format or transformed into a summary
to validate the operations against the requirements. This validation does not assure
quality of implementation, i.e., not do the thing right, but it is a mechanism to assure
delivery of what should be delivered, i.e., do the right thing [67].

Business documentation provides an overview of a system, highlights a list of im-

plemented services, their operations, and business rules, which domain experts should

72

Listing 5.2: Example of a language for business rules description with the ADD

1 abstract context: product validation 1 context: UCl: Create a new product
2 inputs: 2 inputs:

3 product: Product 3 product: Product

4 preconditions: 4 include:

5 product .name not empty 5 administrators only

6 product.price is positive 6 product validation (product)

7 product.weight not negative 7

a: Abstract context of product validation b: Business context of UC1

validate against the requirements [67]. Unfortunately, although there exists techniques
such as a phrasal pattern matching [89], and construction of a call-graph and branching
detection [113], extraction of actual documentation is usually very challenging, since
manual maintenance of the documentation is tedious and semi-automated reverse en-
gineering techniques require significant efforts and are not accurate [100]. Fortunately,
utilization of the concerns maintained in the ADD enables generation of current busi-
ness documentation using automated forward engineering techniques [A.2, A.6], and
thus provides additional value to domain experts.

This list of the challenges is neither complete nor in the scope of this thesis, but
it is a subject of future research. Its objective is to provide insight to what could be
done with business rules and how their separation and transformation may improve
development, especially the aspect of quality assurance. In conclusion, having business
rules efficiently separated and ready for automated reuse opens new possibilities and
challenges for their further reuse, which balances the efforts required for design and

implementation of the representation itself.

5.3 Example of a Language for Business Rules

Considering existing languages discussed in Section 3.5 and the requirements defined by
the ADD in Section 5.1, there exists no language addressing them all. In consequence,
either an existing language must be customized or a new language must be tailored
to be used with the ADD. Unfortunately, design and implementation of a language is
a great challenge [72] and thus is left outside the scope of this thesis and saved for a
future work.

Nevertheless, for illustration purposes and the proof of the concept implementation
of the ADD, a language with a very limited set of instructions but fully addressing all
the ADD requirements was designed. Unfortunately, this language is not designed for
production use and thus its full specification is not included in this thesis.

For the sake of the following chapters discussing business contexts and illustrating
implementation of the ADD in various components of the architecture, consider the

example in Listing 5.2. It demonstrates all significant concepts of the language, while

73

it addresses the requirements. The name of the context is in the root of the context
followed by a list of input parameters, a set of included contexts, a set of preconditions,
and a set of postconditions. For the purpose of this thesis, the language is implemented
in JetBrains MPS?, which is a tool with a projectional editor easing implementation and
transformation of DSLs. Easy transformation provided by the MPS allows producing
a multiplatform representation of the contexts ready for further transformation, and
thus addresses the most significant requirements. In conclusion, although the example
presented in this section is not ready for production use, it is used in the examples in

Chapters 6 and 7 to demonstrate the ADD and captured business rules.

5.4 Summary

The previous chapter introduced the aspect-driven development approach addressing
the separation of concerns in enterprise information systems (Objective 1). The ap-
proach recognizes the importance of business rules in a system, considers them among
other concerns, and provides a mechanism for their separation and subsequent reuse
(Objective 2). Although, the complexity and the manner of utilization of business rules
in the ADD defines new requirements additionally constraining their representation.
Therefore, in order to fully address Objective 2, this chapter elaborated the require-
ments and design of business rules representation. Unfortunately, since there exists no
language or representation already addressing all these requirements, and tailoring a
new language is a major challenge requiring significant amount of work, design of such
a new language is not in the scope of this thesis and is left for future work. As a result,
this chapter further elaborated utilization of rules represented in an inspectable form,
which balances the efforts required for initial design and development of the language.

Fortunately, the ADD does not enforce any particular implementation of a DSL,
and it is agnostic to any implementation details. There exist major benefits of the ADD
being agnostic to a language. First, the language can be customized to a particular
domain of an EIS. While it introduces significant work in subsequent tools, the result-
ing efficiency might outweigh it. Second, the language can continuously evolve and
introduce new features such as support of error messages when a rule is not satisfied.

In consequence, while design of the DSL is not significant for this work, for illustra-
tion purposes, Section 5.3 briefly introduces an example of a novel language addressing
the requirements. The language is used in demos implementing the ADD later in this
work. Nevertheless, this incomplete language is neither developed with domain experts
nor tested, and thus it is not intended for production use or to be published with this

thesis. Design of such a production-ready language is left for future work.

4 Available online at https://www.jetbrains.com/mps/.

4

Chapter 6

Implementation of the Approach

The aspect-driven development approach focuses on the separation of concerns in EISs
via utilization of multiple existing approaches. It modifies an existing architecture,
while it remains agnostic to any implementation details. This chapter presents several
implementations of the approach into design of common components of the layered
architecture!, and discusses its utilization in a distributed environment of the service-
oriented architecture to address Objective 3 of this thesis. The examples are imple-
mented via formalization and mapping of the approach into the terms of the AOP,
which is the essential underlying approach. The examples suggest intended use of the
ADD and allow its further evaluation, which is discussed in the next chapter. However,
this chapter does neither show nor suggest any technologies or source code fragments,
as the development approach operates on a higher level of abstraction and affects de-
sign instead. Finally, the examples are not the only weak spots in EISs, there exist
more components potentially benefiting from the ADD utilization.

Consider an incoming request into a system fired by a user?. The flow of the request
throughout the system is suggested in Figure 6.1, which highlights all points considering
cross-cutting concerns and thus suffering from manual information repetition, concern
tangling, and high error-proneness. First, when a user fires an action in the UI, an
event is emitted and either handled by the Ul or directly or eventually® submitted to
the server. The server-side of the UI receives the request and validates the input to
avoid inconsistencies or hijacking of the UI. Then, the request is processed and the
response is served, which may involve invocation of the domain layer. Operations in
this layer are invoked from many places so it is easy to have some inconsistencies in
context validation procedures. In order to guarantee assumptions of an operation, each

business operation implements a checkpoint, which revalidates the execution context

1 Since the ADD is agnostic to implementation details, this thesis demonstrates it on the conven-
tional layered architecture [28], which usually consists of the presentation, domain, and data layers [42].

2 In case of B2B communication the Ul is replaced by some API, otherwise it is similar.

3 While a rich/thick client-side application submits data to server only if it is valid, a thin client-side
application submits data directly to the server without further delay.

5

5 ® ()
= | K
for each form /
q’ yr
58 v N v [Form Composition]
E .
X User Submits User Changes A
§= a Form a Value for each comp. /
T
¢ % client-side client-side .
D input validation) input validation —)‘ Component VISIbIlIty]
A
p Y
o Input Validation
G)E . server-_sid‘_a
gE § input validation Y,
oE v
3ol [)
@ Request Handler
= serves data
N J
A
Y
[™\
o Business Operation Assumptions Security Filter
>
% ® input and context validation drops fields
g2 X 4
x
(;é.a (* $ ™\
’ % Business Logic
a Execution
& J
A
I
o Y
:m B\
§7:' Synchronization with a Persistent Storage
g'f_ﬂ verification of integrity constraints
g data retrieval constraints (filter of instances)
ol & J
Legend: [Applies Concerns J [Blackbox]

Figure 6.1: Request flow throughout an EIS and the life-cycle of the Ul

including the input data. A business operation then usually queries a database or some
other persistent storage. Each query has to be context-aware, i.e., consider a current
execution context, to restrict a view to data and ensure that the user and the operation
are eligible to see it and operate with it so it often includes checking of permissions
and validity flags. When the operation exits, the output data are filtered to drop all
instances and erase all attributes the user is not eligible to see. Finally, the response
is eventually? sent to the client and the the Ul is constructed or updated.

While the invocation flow of a request displayed in Figure 6.1 is straightforward,
many points consider various cross-cutting concerns (Problem 1), which tend to cause
problems highlighted in Section 1.2. Furthermore, these points are distributed through-

out a whole system, i.e., throughout multiple layers and technologies (Problem 2),

4 While a rich/thick client-side application constructs forms and other components of the UT itself,
a thin client-side application already receives these elements constructed and only renders them.

76

Table 6.1: Utilization of the ADD in the layered architecture

Sec.

Intention

Concerns/Aspects

Use of the ADD / Weaving

6.1

composition of

the Ul

data model, business
rules, localization,
layouts, widgets

value change, form submission,
form composition, conditional
rendering, input validation

6.2 | composition of the | data model, business | value change, form submission,
distributed rules, localization, form composition, conditional
multi-platform Ul | platform-specific rendering, input validation

widgets, layouts

6.3 | input validation in | data model, protection of business logic as
the domain layer business rules input validation, security filter

6.4 | querying of a data model, storage querying and output
persistent storage | business rules restriction

6.5 | reuse of concerns data model, inter-service reuse of business

in the SOA

business rules

rules and a model structure

which significantly impacts identification, representation, and reuse of the concerns
(Problems 3 and 5). As such, this chapter elaborates all these points and proposes an
implementation of the ADD into design of impacted components to efficiently maintain
the concerns and address the problems. In addition, Table 6.1 summarizes implemen-
tations the ADD discussed in this chapter, their focus, and considered concerns, which
arise from the points in the flow. Therefore, Section 6.1 elaborates implementation of
the approach into design of a Ul component of the presentation layer, and Section 6.2
adjusts the design for a distributed multi-platform UI. Section 6.3 discusses design of
the domain layer to reuse the concerns to validate the input of business operations, and
Section 6.4 proposes modification of the design of the data layer to automate construc-
tion of queries into a persistent storage. Finally, Section 6.5 scales the approach into

the scope of the service-oriented architecture to enable cross-service concerns reuse.

6.1 Presentation Layer: User Interface

The Ul is an important but complex component of most EISs. It exposes a system
to users and lets them manipulate data through defined scenarios. The Ul component
consists of a server-side and a client-side as is illustrated in Figure 1.1. The server-
side accepts incoming requests, validates input data, and serves responses. Assignment
of responsibilities for UI composition and user experience (e.g., client-side validation)
varies based on implementation of the UI [18]. However, the UI composition and input
validation are complex tasks considering many cross-cutting concerns as defined in
Section 3.4.3. Since the concerns are tangled together, source code of the Ul tends to

suffer from problems discussed in Chapter 1. In consequence, this section demonstrates

7

simplification of the UI development through utilization of the ADD and the separation
of concerns. For illustration purposes, this section assumes a rich client implementing
client-side data validation as a thin client is only its simplification.

There exist many concerns in the UI, however, a data model, Ul widgets, Ul
layouts, localization, and business rules are the most significant, which is discussed in
Section 3.4.3 and Section 4.1. Consider Figure 6.1, which also displays a life-cycle of
the UI, although it is simplified for the purpose of this chapter. The diagram highlights
five points® in the UI, each restating a subset of these concerns. Unfortunately, each
of them applies the concerns differently, which is elaborated in the following text.

First, when a user changes a value of an input and there exists input data to be
processed, the client-side of the UI validates them against an execution context. It
applies a data model and business rules matching the context and evaluates them with
given parameters. If the rules are satisfied, the invocation of the action continues and
the Ul is updated, otherwise the Ul displays an error considering a localization concern.

Eventually, each form is supposed to be submitted or some other action is posted
to the server. Then the input is validated using a data model, business rules, and an
execution context, and then submitted to the server if all rules are satisfied. In case of
an error, a user is notified and the UI is updated.

When the server-side of the UI receives a request, it validates input data and an
execution context. This double check solves any inconsistencies between the server-side
and the client-side plus prevents the UI hijacking. Furthermore, server-side validation
may involve additional rules, which cannot be checked at the client-side for either
security or performance reasons. If all rules are satisfied, the response is preprepared.
It usually involves invocation of a business operation in the domain layer, which is a
black box in this scenario. In case of errors, the client is notified.

While validation at the client-side must produce user-friendly errors, the server-
side validation only aggregates them and passes them into the client-side for further
processing such as localization. However, both components must eventually produce
user-friendly errors as they likely occur. Contrary, the domain layer may assume only
valid inputs so it may fail with less user-friendly errors, if the assumptions are violated
because it indicates a bug or invalid use rather than user’s error.

When request handling ends, the Ul must be updated at either the server-side
or the client-side depending on implementation of the Ul It includes a) showing/hid-
ing conditionally rendered components, b) composition of input forms from their data
models, and c¢) final composition of Ul components. While the last step is straight-
forward and well implemented in many templating frameworks, the two other steps

involve several concerns and require their additional repetition.

5 These points are joinpoints in terms of the AOP, which is discussed later in this section.

78

A conditional component is rendered only when a condition is met. This condition
is usually a precondition of a business context of a related business operation, so it
considers a data model, a current execution context, and a business context of that
operation. While implementation of such a conditional component is easy, it quietly
pollutes source code with repeated concerns. Furthermore, due to high scattering of
these conditions, they tend to get obsolete during system maintenance.

While some concerns are significantly scattered and repeated in the previous ex-
amples, they all tangle together in input forms in the UI [59, A.3]. The forms (possibly
in a read-only mode) allow users to browse and fill data hence they are essential in a
system. A form consists of inputs mapped into the fields of a data model®, presented
via widgets, and organized into a layout. Every field and the model itself is constrained
by business rules depending on the execution context, i.e., set of rules attached to a
current business operation considering a user context, an application context, and a
request context. Finally, a label of each field is extracted from the model and localized.

In conclusion, there exist significant concerns repetition and tangling in the Ul
While localization, widgets, and layouts repeat only horizontally in the Ul i.e., across
multiple forms, business rules and a data model repeat both horizontally and vertically,
i.e., also in both sides of the UI and even outside the UI. As the concerns are significantly
scattered and tangled together, their linearization results in complex source code with

difficult and error-prone maintenance [A.3].

6.1.1 Utilization of the ADD

The aspect-driven development approach is focused on the separation of concerns,
which has major potential in the Ul as it is where many concerns are tangled to-
gether [17]. It recognizes these concerns as independent disjunct aspects and describes
them separately in convenient DSLs, which is suggested in Chapter 4. The decomposed
concerns are located in the repository as is hinted in Figure 4.2, and then weaved back
together at runtime by multiple aspect weavers specific to a context of use. The weavers
differ in their output as well as the injection points differ in their position in the flow.
Context-awareness allowing system customization for each invocation is the major ad-
vantage of runtime weaving. For example, system may behave differently for users from
the United States, e.g., it requires also a state when filling an address.

The AOP, which is significantly utilized by the ADD, recognizes several essential
elements (aspects, joinpoints, pointcuts, and advices) participating in the separation
of concerns and subsequent weaving. In order to apply the approach, the mapping
between the Ul and the elements of the AOP must be defined to establish understanding
of the domain (the Ul in this case) and hint implementation of the ADD.

6 The domain layer, a server-side, and a client-side of the UI usually operate with different models.

79

An aspect in the Ul is a concern in the U, which tends to tangling and scattering.
This thesis recognizes the following concerns as aspects in terms of the AOP:

(i) A data model, which is behind an input form,

(ii) Ul layouts, which define organization of input fields into forms,

(iii) UI widgets presenting model fields as input components in the Ul,

(iv) localization defining translations for labels and error messages,

(v) and business rules, which define constraints over form fields and a form itself.
Although this set of concerns is project-specific, the concerns are tangled and scattered
throughout the UI, which leads to major code repetition. The ability to extract them
and organize in the repository significantly eases their readability and maintenance. In

addition to other benefits mentioned in Chapter 4, the concerns are described in DSLs.

Advice in the UI is functionality to be weaved in varying for each concern, as each
concern represents a different domain. Considering the concerns, some of them cross-
cut throughout all layers of a system, while other are specific to the Ul In consequence,
while the latter concerns can be in a Ul-specific form, the former concerns are stored
in the repository in a generic form and must be further transformed before they can
be weaved into the UIL. The advices of the concerns are implemented as follows.

(a) As the model cross-cuts through both server-side and client-side of the UI, the
advice must be in a generic form acceptable by both sides. In consequence, the
model is inspected and serialized into a general format including a list of fields
and their names and types, and then passed into an aspect weaver.

(b) A layout advice is an integration template with placeholders [17], into which the
fields are injected. Concrete placeholders explicitly determine the order; implicit
placeholders consider weighted or alphabetical order of model fields.

(¢) A widget advice is a presentation template for a single field, possibly matching
only certain conditions. For example, a widget for a simple string is different than
a widget for a password, which is also a string. A widget template is described
in a DSL specific to a technology of the UI.

(d) A localization advice is a single record from a localization dictionary. The record
is a tuple of a unique convention-driven key and a textual value.

(e) Finally, advice of business rules is an implementation of verification of a single
condition from a related business context, i.e., a set of business rules [A.13].
First, the condition is transformed into runnable code specific to an invocation
platform (vertical transformation), and then passed into an aspect weaver for

further composition with other concerns (horizontal transformation).

Joinpoints in the Ul are injection points in the UT’s life-cycle (Figure 6.1), ready
for the concerns to be weaved in. The flow highlights five injection points:
(D A user interacts with a system by changing values of input fields. Change of a

value is an action performed by a user, when an input in a form is changed.

80

/ Form Submission /

/ Change of Value /

[Concern / Aspect]

/ Input Validation /
| Comp. Visibility /

/ Joinpoint /
O Injection Point

—— Joinpoints ——

/ Form Composition/

— Concerns / Aspects —

Figure 6.2: Pointcuts of concerns in the Ul

@ Each form is intended to be eventually submitted. Form submission joinpoint is
intended for submission of data to a server for its further processing.

@ Incoming data must be validated at the server to prevent UI hijacking and verify
assumptions. Input validation at the server-side verifies assumptions of an action.

@ During the UI composition, conditional components are shown /hidden according
to their conditions. Component visibility joinpoint is a step in the UI composition
process responsible for showing and hiding conditional components.

(® During the UI composition, input forms are constructed. Each form is a presenta-
tion of a data model composed of multiple concerns. Form composition joinpoint
is a step in the UI composition process considering all UI concerns and composing
them into a form backed by a data model.

Pointcuts in the UI select a subset of Ul joinpoints to apply a particular advice,
which is denoted in Figure 6.2. The pointcuts accept an execution context providing
runtime parameters to include dynamic joinpoints.

However, as an execution context is a complex structure encapsulating all existing
subcontexts as defined in Chapter 4, only some of them are actually considered by
each pointcut. Table 6.2 summarizes tuples of a concern, a pointcut, and contexts to
indicate, which contexts and concerns are considered by which joinpoint (a pointcut
selects multiple joinpoints). A data model is applied in all joinpoints, and the advice
is derived from a business context, e.g., which model class is being presented. UI
Layouts are applied in (5), an advice is selected according to the request context, which
provides runtime parameters such as user’s device and screen size. Ul Widgets are
also applied only in (5, but an advice selection is a complex expression considering all
runtime parameters in an execution context and also a type of a field. For example, a

business context determines if a field is read-only according to current timestamp and

81

Table 6.2: Context-aware pointcuts in the Ul

Concern Pointcut Considered contexts
Data Model DINISIONG)
UI Layouts ® ®

UI Widgets ® ®=00® 0
Localization DO ® @
Business Rules GINISIOY @ = @ @ @

@ Application context ® Execution context © User context
Business context ® Request context

geographical zone. Localization pointcut selects an advice for dynamic joinpoint D), @),
and (® based on request and user contexts, i.e., it considers user’s language preferences.
Business rules are applied in @), @), @), and @ and consider a full execution context
to support restrictions over all contextual variables [A.13]. In conclusion, although
an aspect weaver expects a whole execution context, its components are only used
selectively.

The important benefit of the ADD lies in the context-awareness and dynamic
joinpoints. Although there exist approaches addressing the separation of concerns
and automated composition, they do not recognize dynamic joinpoints, which support
runtime parameters as an execution context. To illustrate the benefit, consider different
widgets for desktops and mobile devices with much smaller screen. A pointcut is
resolved at runtime and therefore an alternative responsive variant of a web page does
not have to be prepared. A dynamic selection of joinpoints results in a more compact
layout and responsive variants of Ul widgets instead. Furthermore, some fields may be

added or hidden according to the user’s geographical location or a timestamp.

Aspect weaving in the Ul is runtime application of advices and construction of
output, which is either source code or directly executed behavior. An aspect weaver
accepts a set of aspects and each weaving invocation is parametrized by the execution
context, which includes a position in the execution flow or source code. The weaver
selects joinpoints using pointcuts, vertically transforms advices if needed, and combines
them into output, which differs per position in the Ul life-cycle and intended use.

To illustrate the weaving in the process captured in Figure 6.1, consider a user
interacting with the Ul of a system. First, a user changes a value of an input in a form,
which triggers a change event. The event handler invokes an aspect weaver instructing
it with the field, the data model of the form, and the execution context. The weaver
extracts applicable business rules from the execution context and applies them to the

field. In case of validation errors, the weaver applies localization advices to localize

82

the errors and returns the validation results to the handler, which resumes invocation.
Note that each form relates to a business context, which is used for input validation.

Eventually, a user submits a form or posts some other action, which triggers a
submission event. The event handler invokes an aspect weaver instructing it by a
data model of a form and an execution context. The weaver validates the model with
business rules in the execution context and returns the validation result to the handler,
which resumes the event handling.

The server-side of the Ul exposes multiple action handlers to be invoked by a form
submission or other action, each of them representing a business operation. In conse-
quence, a handler relates to a business context defining assumptions of that operation,
i.e., business rules constraining input data and a context. When an action handler
is invoked, an aspect weaver intercepts the invocation and validates the input and an
execution context with the related business context. This validation may also control
security preconditions to determine whether a user is eligible for the operation and for
reading/changing each field. When the validation is finished, the weaver passes the
validation results to the handler and resumes its invocation. Then, the handler usually
invokes some business operations in the domain layer, but this part of the process is
discussed later in this chapter. For the purpose of this section consider the domain
layer to be a blackbox. Finally, the handler serves a response to the client. In conse-
quence, for each action handler, developers define a reference to an existing business
context to be used for context-aware input validation.

In the end, each event handler updates the UI. First, conditional components, i.e.,
components to be rendered only when a condition is met, are reevaluated to show/hide
them considering the execution context. The condition in these components is usually
a precondition to some operation, i.e., it is a business context of that operation. In
consequence, each conditional component references an existing business context. Then
the aspect weaver intercepts the Ul composition to evaluate the business context using
parameters in the current execution context and either shows or hides the component.

Finally, the UI of EISs consists of many input forms. An input form is a presenta-
tion of its data model considering several other concerns. In consequence, the concerns
of an input form are decomposed using the ADD, and then each form is automatically
constructed using the aspect weaver. An input form references its data model defining
a list of fields, their names and types, a business context with validation rules. Then,
there exist Ul layouts and UI widgets with mappings defining their use. To construct
an input form, first, the layout advice is applied, interpreted, and processed into an
integration template [17]. Second, the weaver iterates over fields in the model, selects
the most appropriate widgets, localizes the keys, and weaves them into the layout. As
a result, the output of the weaver is source code of the form, which is then rendered

and prepared for interaction.

83

In conclusion, while decomposition of the concerns is straightforward and intuitive,
implementation of aspect weavers remains challenging. Dynamic joinpoints, parame-
ters in pointcuts, and diversity of DSLs significantly increase complexity of weavers.
Considering the request life-cycle, multiple different weavers accepting same aspects
but producing different output must exist. Finally, while the separation of concerns
is manageable, the initial overhead and complexity of implementation of the weavers
introduces a major barrier. On the other hand, choosing efficient technologies and hav-
ing generic implementation of the weavers results in project-agnostic weavers reusable

across multiple projects, which may significantly utilize the initial costs.

6.1.2 Summary

Since an EIS implements various business processes consisting of business operations,
its Ul is rich and complex as it consists of many input forms and exposes a lot of
actions. Implementation, maintenance, and keeping all models and business rules con-
straining the operations across all forms, client-side validators, and action handlers
consistent is challenging and error-prone as conventional approaches and technologies
tend to significant information repetition and scattering. Moreover, maintaining con-
cerns in multiple languages and technologies (one for server-side, other for client-side,
and another for the data layer) increases both expenses and mental barrier.

The separation of concerns in EISs implemented by the ADD significantly reduces
the complexity of the UI. The tangled concerns can be decomposed and described in-
dependently. Then, the aspect weavers reuse the concerns already used by lower layers
of a system and combine them with the Ul-specific concerns to deliver context-aware
UI without manual information repetition. This thesis recognizes five points in the
life-cycle of the UI considering the concerns and thus proposes utilization of five aspect
weavers, each tailored for a single point. The context-aware weavers weave concerns
together at runtime, which automatically transforms and distributes the concerns, and
subsequently saves efforts and removes error-proneness.

There exist two levels of the context-awareness in the Ul with the ADD. First, de-
clared business contexts accept any contextual information provided to a weaver [A.§],
e.g., user’s identity and security roles, and consider it in business rules. Second, the
pointcuts consider the execution context including the target location, which enables
advanced runtime selection of advices. For example, it picks a different Ul widget for
a small device or a different widget if a textual field is marked as a password.

Finally, although the ADD significantly reduces complexity of Ul maintenance, it
introduces significant initial overhead and both mental and technological barriers. To
fully implement the ADD in the UI, there must exist DSLs for each concern and all
five aspect weavers automatically reusing the concerns. Doing so for a single project

would be inefficient. Fortunately, neither the weavers nor DSLs depend on a project,

84

they depend only on technologies, so they are reusable across multiple projects, which

utilizes the initial efforts and increases the efficiency of the approach.

6.2 Presentation Layer: Distributed User Interface

Enterprise information systems expose their interface to users to let them browse and
manipulate data through various business processes. Unfortunately, the Ul consists
of significant amount of input forms and exposes many operations, which results in
tangling of multiple cross-cutting concerns. While the previous section utilizes the
ADD in the UI to reduce efforts and complexity of its development and maintenance,
contemporary systems tend to implement a distributed UI, which comes with addi-
tional challenges. While conventional systems usually support web browsers, modern
applications deliver native applications for mobile devices to increase user experience
and utilize potential of these platforms. Unfortunately, although provided functional-
ity is identical, there are limited possibilities to reuse concerns across mobile platforms
and web browsers due to diversity of technologies and programming languages. This
section introduces a modified version of the aspect-driven development to support a
distributed user interface and enable cross-platform reuse of cross-cutting concerns.

Contemporary EISs and web applications often use a rich client application to
implement the Ul i.e., a client-side standalone application backed by a server provid-
ing data via services. These client-side applications of the presentation layer usually
run in web browsers, and thus significantly increase user experience, reduce response
time, and deliver experience similar to desktop applications. Considering expansion
of mobile devices, many applications and EISs also target mobile devices besides web
browsers at desktops. However, as mobile devices have specific screen size as well as
lower performance, the systems often come with native mobile applications tailored for
a particular mobile platform [115]. It enables additional customization, use of specific
aspects of mobile devices and improves the user experience. Unfortunately, although
implementations for web browsers and all mobile devices are essentially identical, di-
versity of platforms” significantly increases development efforts as there exist limited
possibilities to reuse concerns and models across platforms.

Consider the request flow and the life-cycle of the Ul suggested in Figure 6.1.
Standalone client applications do not reload between requests, they communicate in
background and update the Ul according to received responses. However, although
the architecture of client-side applications is different comparing to thin clients and
they live much longer without reload, the essential communication schema is still valid

including all points considering the concerns. The client-side applications consider

7 Nowadays, there exist standardized web browsers and three major platforms for mobile devices:
Android, i0S, and Windows Mobile.

85

three platforms instead of one, nevertheless. While simple EISs provide only imple-
mentation for web browsers, contemporary systems often focus on mobile devices, and
besides a web application deliver also an application for Android and an application
for iOS. In consequence, there are three implementations of the UI instead of one,
and subsequently, there are also three-times more points considering the concerns in
the client-side of the Ul. For example, consider the composition of input forms. This
complex task assumes at least four significantly repeated and tangled concerns, as is
discussed in the previous section. In case of three different platforms, the concerns
are transformed into three technologies and the form composition is implemented for
each platform. Therefore, although each application follows same specification, limited

reuse of concerns significantly impacts development and maintenance efforts.

6.2.1 Utilization of the ADD

The the mapping of the Ul into the AOP defined in the previous section enables reuse
the concerns located in the concerns repository, and implementation of several aspect
weavers to make the Ul dynamically composed at runtime without any need for manual
concerns restatement. Unfortunately, this mapping does not address the distributed UlI,
since some concerns such as a data model and business rules are platform-independent
and get distributed, while other concerns such as Ul widgets are platform-specific.
Consider a platform-independent concern, e.g., business rules. The concern, in terms
of the AOP is an aspect consisting of advices. To have the concern separated and to
be able to weave it automatically back into source code, the pointcuts must be able to
identify, where to weave each advice. To do so, an advice has its own address, which is
the name of the business context in case of business rules. Then, this address is used

instead of manual repetition of advices.

Definition 6.1 A platform-independent concern consists of advices, which
are transformed via forward transformation rules into various target plat-
forms. FEach advice has its address to be used as a marker for aspect

weaving within source code.

However, this address is not a sufficient identifier for platform-specific concerns.
For example, a Ul widget for password is different for web browser and for Android.

As a solution, there exists a composite key consisting of an address and a platform.

Definition 6.2 A platform-specific concern consists of advices implement-
ing the concern for a single platform. FEach advice has a composite key

consisting of an address in the repository and a platform.

86

Mobile Device

Server

Mobile Operating System

Presentation Layer —O<i._ Native
A - [Application

e 9 9 |

Domain Layer '
y Platform- Platform- Y Desktop
A -independent -specific R
Q Concern Concern Y
Repository Repository ‘\ Web
Data Layer -/ [Application

Figure 6.3: The layered architecture for the distributed Ul

Considering the differences in platform-independent and platform-specific con-
cerns, there exists modified implementation of the ADD for distributed Uls [A.1]. While
the mapping into terms of the AOP, and identification and definition of joinpoints re-
main same, the architecture of the system is modified. Chapter 4 defines the repository
as a component parallel to any existing architecture and introducing a storage for all
separated concerns. The implementation of the ADD for the distributed multiplat-
form UI divides the repository to two parts: a) platform-independent concerns, and b)
platform-specific concerns, which is illustrated in Figure 6.3. While the repository for
platform-independent concerns follows the specification from Chapter 4, the repository
for platform-specific concerns maintains same concerns for various platforms. For ex-
ample, a data model, business rules, and localization are reused throughout a whole
system and thus are maintained in the platform-independent repository. Contrary, Ul
widgets are platform-specific, each technology implements them differently, thus the
platform-specific repository maintains these concerns for each platform.

Having platform-specific concerns maintained separately requires additional val-
idation to avoid inconsistencies. It is essential that for each defined address and all
platforms there exist an advice to avoid potential issues and undefined states. Consider
an input field for a password. While it might be defined for Android, it would cause a
fatal error if its implementation for web browsers was missing.

When the concerns are separated and defined for all platforms, then each native
application only performs aspect weaving and does not contain any concerns itself.
They are all fetched from the repository in background. In consequence, since the
aspect weavers are technology-specific but reusable across projects, there might exist
a generic native application interpreting and weaving the concerns fetched from a
server and presenting them to users. Essentially, it would be like a web browser for

custom languages. However, while this challenge will be addressed in a future work,

87

the implementation of the weavers delivering the Ul without any information packed
inside the application is covered in this thesis [A.1].

The benefits of the separation of concerns in a distributed UI are significant and
include reduced development and maintenance efforts, involvement of domain experts,
and reduction of error-proneness. Consider a scenario, where three native clients exist
and the application is continuously evolved. As a result, there are many versions
of the application for each platform. The concerns are not only scattered but also
versioned. Having the concerns separated and maintained in the repository significantly
reduces evolution efforts of native applications, since they deliver a version of a concern
provided by a server. On the other hand, having multiple platforms requires multiple
implementations of the aspect weavers, which introduces significant initial barrier and
efforts. Although with all DSLs and the repository already prepared, the benefits of

the weavers are significant comparing to the efforts of implementation of the weavers.

6.2.2 Summary

Contemporary EISs often aim on mobile devices due to better user experience. Be-
side web browsers, there exist multiple mobile platforms, which results in multiple
implementations of a client-side application. Unfortunately, the possibilities of cross-
platform source code reuse are limited, so developers repeat the concerns manually in
source code, which is expensive, error-prone, and tedious, especially when the imple-
mentations follow same specification.

The ADD focused on the separation of concerns in EISs saves maintenance efforts,
reduces error-proneness, and enables domain experts to be involved in development.
However, the original proposal of the ADD from Chapter 4 does not efficiently address
the issues of multi-platform applications in the distributed environment. The modi-
fication of the approach presented in this section addresses this issue through an ex-
tension of the architecture. The novel platform-specific concerns repository maintains
platform-specific concerns for various platforms, while platform-independent concerns
remain shared and reused within the platform-independent repository. This extension
of the approach preserves the separation of concerns, context-aware runtime weaving,
and involvement of domain experts into development, which are the most significant
benefits of the ADD. Unfortunately, design of the approach and utilization of the AOP
introduce major initial barrier and overhead. They require designing DSLs and imple-
menting of aspect weavers to be able to fully benefit from the ADD. On the other hand,
the weavers as well as DSLs are project-independent and therefore reusable across mul-
tiple projects, which means the initial efforts can be divided among several projects.

In conclusion, future work suggests a possibility of project-independent native ap-
plications, which do not contain any project-specific information. These server-driven

applications work like web browsers but for custom DSLs, and fetch all concerns and

88

configuration from a server. Their existence would remove the need for manual devel-
opment and maintenance of native applications, while they would still exist. However,
the gap between the solution proposed in this section and fully independent application
is still an open challenge, which lies especially in the UI, which does not consist only

of buttons and input forms, but also of other elements.

6.3 Domain Layer: Input Validation

The domain layer of an EIS implements business processes of a business domain, which
is defined in Chapter 2. Each process consists of steps implemented as business oper-
ations in this layer, and as an operation takes a precise position within a process, it
defines its assumptions (preconditions) and outputs (postconditions), which create a
business context as it is defined in Chapter 4. As the operations directly manipulate
data and expose them to users, it is essential to verify the assumptions before execu-
tion of an operation to protect business policy and data consistency. However, while
many business rules (i.e., both preconditions and postconditions) repeat across multi-
ple business operations, and their business contexts share common ancestors, there is a
tendency towards significant manual repetition of business rules and subsequent diffi-
cult and error-prone maintenance (Problems 1 and 5). In order address these problems,
this section utilizes the aspect-driven development approach in design of the domain
layer to reduce the repetitions and maintenance efforts.

Following the request flow in Figure 6.1, upper layers in the architecture invoke
operations in the domain layer from various locations. It is obvious that it is difficult to
verify the assumptions before invocation of an operation, as the rules would be signif-
icantly more restated, which would potentially lead to frequent inconsistencies across
locations. In consequence, each business operation must verify its own assumptions
itself before it actually executes business logic. However, considering relationships be-
tween business contexts (Definition 4.1), there are still significant repetitions across
operations. Unfortunately, although there exist approaches to efficient business rules
maintenance as is discussed in Section 3.5, they are limited in transformation and reuse
of the rules outside business operations, which is an essential requirement for separation
of concerns and their automated runtime transformation and weaving in EISs.

For example, consider the UC 1: Create a new product from the running example.
Although this operation is invoked only during product creation and thus there exists a
single source of invocation, the validation rules applied by this operation are shared with
the operation updating an existing product in UC' 3: Update an existing product, which
is illustrated in Figure 5.2. Although Section 3.5 discusses methods to reuse the rules
across operations, these often fail in their extraction and subsequent transformation

into the UI, to deliver the context-aware UI, as is proposed in Section 6.1.

89

6.3.1 Utilization of the ADD

Since the aspect-driven development addresses the separation of concerns, and intro-
duces the concerns repository to maintain them, the implementation of the approach
into the domain layer is straightforward. Having the contexts described in a DSL, each
business operation addresses its context in the repository, e.g., by a name. Finally,
an aspect weaver intercepts invocation of each business operation to fetch its context,
verify the assumptions, and either resume invocation of the operation or throw an ex-
ception. However, it is necessary to define a formal mapping between the concerns in

the domain layer and the AOP, which is an important mechanism of the ADD.

An aspect in the domain layer is a concern within this layer, which tends to
manual restatement, scattering, and tangling. This thesis recognizes business rules to
be a significant concern of an entire EIS, as they define business processes, which fulfill
the purpose of the system. In the domain layer, the rules validate input data and an
execution context, e.g., user’s roles, a current timestamp, and a geographical location.
Considering the domain layer, business rules are easy to separate and describe in a
DSL as well as to subsequently execute to validate data, which is already discussed
in Section 3.5. However, they are located in an independent DSL in the repository
to fully implement the ADD and enable their reuse also in other components of a
system. Besides the benefits of the separation of the concerns discussed in Chapter 1,
it brings reduction of source code complexity, because a business operation no longer
validates its input itself, but assumes that the input is valid instead. Furthermore,
having business contexts described separately in a domain expert-friendly DSL enables

easier extraction of current configuration and validation by domain experts.

Advice in the domain layer is business rules, which are weaved via business con-
texts. The contexts are divided into abstract and non-abstract as is defined in Chap-
ter 5, and the non-abstract contexts are transformed via a vertical transformation into
an executable form. Then, they are weaved into joinpoints, which is discussed later.
While the assumptions are valid if and only if they are all satisfied, depending on
implementation, there might be more fine-grained identification of rules to provide bet-
ter validation result in case of an error. However, these assumptions are not supposed
to be invalid. This validation only exists to protect data and business policy, and it is
not intended to provide user-friendly errors. That is responsibility of the presentation

layer, which conducts contextual validation and provides user-friendly errors.

Joinpoints in the domain layer are two injection points in the request flow (Fig-
ure 6.1), which accept the weaved concerns:
D An entrance of a business operation, is the part of the execution flow, when the

operation is called but not yet executed. It is when the business context is to

90

be verified to protect data and a business policy. Verification happens before
execution of business logic in order to prevent it in case of violated assumptions.
@) An exit of a business operation is a point in an execution flow, when the operation
execution is finished but before the flow continues in the caller. A security filter
at this point optionally erases some fields according to postconditions, if the user
is not eligible to see them. However, this use of the concern requires support in

the DSL for business rules, since it must contain the information.

Pointcuts in the domain layer select a subset of joinpoints for each aspect applying
a particular advice. Considering the domain layer and verification of business contexts,
each business operation has to reference its context. Then a pointcut matches the

reference to a context to be replaced with an advice, i.e., executable business rules.

Aspect weaving in the domain layer accepts a business operation and a business
context, and produces a wrapped operation performing input validation and output
filtering. The wrapper accepts an execution context to bind parameters in business
rules and then evaluates them. In case of violation of business rules, it throws an
exception, otherwise it calls the nested operation with the original input, but then
the operation can rely on satisfied assumptions. Similarly, the wrapper intercepts the
return values to clear fields of objects, if the DSL provides this information.

In conclusion, implementation of the aspect-driven development into the domain
layer is straightforward. The aspect weaver intercepts incoming calls to a business
operation and replaces it by a wrapper. The wrapper validates input data and an

execution context, and filters returned objects considering a related business context.

6.3.2 Summary

This thesis identifies business rules among significant concerns of EISs because they
control business processes, which fulfill the purpose of a system. Although implemen-
tation of business rules within the domain layer is straightforward since it implements
the processes, conventional approaches suffer from issues with scattering, tangling, and
repetition of the rules across a whole layer as is stated in Chapter 1. It arises from
relations between business contexts, which is discussed in Chapter 5.

The aspect-driven development focuses on the separation of the concerns and ef-
ficiently deals with repetition, scattering, and tangling of concerns as well as their
transformation and automated reuse. Its implementation into design of the domain
layer is intuitive and straightforward. Since violation of data consistency or violation
of business policy may have significant impact on business, execution of business logic
is very sensitive. In consequence, the ADD utilizes business rules to verify assumptions

(preconditions) of business operations to protect them. The aspect weaver utilized by

91

the ADD accepts a business operation and its context, and places a wrapper around
the operation to automatically verify the assumptions on each call.

Although the benefits of utilization of the ADD in the domain layer are not as
strong as in other layers, they are still significant. First, source code of business oper-
ations is less complex as an operation can assume both data and a context are valid.
Second, the ADD decouples business rules and a place of their use to avoid manual
repetition of business rules across multiple contexts, which is discussed in Chapter 5.
This enables reuse of the rules across multiple contexts and in many places throughout
a system. Third, utilization of the ADD in this layer enables full potential of the ap-
proach. Automated reuse of concerns throughout a whole system has major benefits,
which are elaborated in Chapter 4. And finally, there are obvious benefits such as lower
error-proneness, maintenance efforts, and involvement of domain experts in develop-
ment. On the other hand, implementation of the ADD brings significant initial efforts
and barrier. The need to implement DSLs and aspect weavers outweigh benefits in the
domain layer as there exists alternative approaches with similar objectives. Comparing
them to the ADD, they have much lower initial overhead and barrier. However, they

are often limited to the domain layer, are clumsy ,and have insufficient expressiveness.

6.4 Data Layer: Querying of a Persistent Storage

An EIS is a system designed to maintain large volumes of data via business pro-
cesses and expose it to users. Therefore, each EIS accesses a persistent storage, e.g.,
a database or a remote service, to be able to fulfill its purpose. In case of the lay-
ered architecture, which is used as an example in this thesis, the data layer, which
is illustrated in Figure 1.1 and discussed in [42], facilitates access to data via read
and write operations. The write operations directly manipulate data, and existing
approaches such as ORM [6, 42] and the Active record design pattern [42], simplify
their implementation. However, the read operations are the views meaning that they
return data matching a filter, where the filter consists of business rules. Considering
read operations within EISs, the filters or their parts significantly repeat across the
operations, which leads to high error-proneness and difficult maintenance. Therefore,
this section proposes utilization of the ADD to separate these repeated rules and have
them automatically distributed at runtime. This utilization of the ADD addresses the
problems stated in Chapter 1 and besides the common benefits discussed in Chapter 4,
it reduces the repetitions in the data layer.

There exist various persistent storages. For example, there are remote services,
files in a file system, NoSQL databases, and relational databases, which are the most

common. Therefore, this section works with an EIS with the layered architecture and

92

a relational database, but it seems that this utilization of the ADD is not specific to
relational databases and could also be migrated to other storages.

Consider the request flow in Figure 6.1. Usually, there are two communication
patterns between the domain and the data layers. First, the data layer implements
a view on data as an operation and exposes its to upper layers. Second, the data
layer exposes it internal API, usually encapsulated behind a facade [45], and lets the
domain layer construct a view itself. In the latter case, the domain layer constructs
a filter objects, which encapsulates the constraints, and passes it into the data layer.
It transforms the constraints into an executable form, e.g., an SQL, and queries the
storage, while in the former case, the filter object is hidden inside the data layer. Either
way, a filter object or its alternative constraints the view®.

Usually, the data layer facilitates various views on the same dataset and these views
differ only in insignificant nuances, so filter objects has a subset of rules in common.
Consider a Product entity from the running example defined in Section 1.1. There
exist following three use cases:

e UC 2: List unavailable products

e UC 4: List free products

e UC 5: List products with free shipping
First, the UC 2 operates with all valid products, which are not in the stock. This
operation is invoked by staff in order to restock unavailable products. Second, the
UC 4 considers all free products, which are usually not buyable but are services free
of charge automatically added into a buyer’s cart, when he meets some requirements.
Third, the UC 5 considers all products eligible to free shipping, i.e., products, which
are expensive enough.

Although it seems that the simple examples above have nothing in common, con-
sider the validUntil attribute indicating if a product is available or was already
deleted”. Implementation of queries executed within these use cases is illustrated in
Listing 6.1 using JPQL. Note the repeated constraint validUntil is NULL. Although
it seems like minor issue in this simple example, scale it to production-size EISs with
hundreds of queries and hundreds of entities. When the amount of repetitions becomes
significant, it is also common to forget to put some constraints into a query, and the
query tends to get obsolete due to errors in maintenance. In consequence, also this
repetition of business rules in the data layer may cause significant issues discussed in
Chapter 1. The rules are repeated, scattered, and must be synchronized with expecta-

tions in the domain layer, which put additional mental demands on developers.

8 For example, there exists Hibernate Criteria API, which enables type-safe construction of such
a filter object. Alternatively, when the data layer hides a filter, then a query is often manually
constructed in a query language such as the Java Persistence Query Language (JPQL) [6].

9 Production-ready EISs do not delete any data as it is the most valuable thing they have and
its removal might result in missing references or information loss. In consequence, there exists a flag
indicating whether an instance is deleted or not. This thesis uses the attribute validUntil.

93

Listing 6.1: JPQL queries into a relational database in the data layer

-- UC 2: List unavailable products
SELECT p FROM Product p WHERE p.inStock = 0 and p.validUntil is NULL;

-- UC 4: List free products
SELECT p FROM Product p WHERE p.price = 0 and p.validUntil is NULL;

-- UC 5: List products with free shipping
SELECT p FROM Product p WHERE p.price >= :1limit and p.validUntil is NULL;

0O Uk WN -

6.4.1 Utilization of the ADD

Since the data layer suffers from repetition and scattering of business rules, this section
implements the aspect-driven development approach into design of this layer to deal
with the issues raised from repeated concerns. First, there is established understanding
of the rules, and then defined mapping into the aspect-oriented programming, which
is an essential component of the approach.

Basically, a data retrieval is a business operation as it is possible to think about it
in terms of use cases. For example, consider the UC' 2: List unavailable products. The
business domain defines preconditions, which must be satisfied to access this data. For
example, a user must have a staff or an administrator role. The business domain also
defines postconditions, which are valid for its output and, as defined in Chapter 5, both
preconditions and postconditions create a business context, which is a description of
an operation from a business perspective. Therefore, the constraints for data retrieval
are postconditions in terms of the ADD.

Having a business context for each data retrieval operation in the data layer, the
ADD enables its extraction into the repository and description in a DSL, which is
elaborated in Chapter 5. Then, an aspect weaver intercepts a call of a data retrieval
operation in the data layer, extracts its business context, and constructs a query.
Next, the weaver passes the query to a provided executor to get data matching the
filter. Finally, it returns the data to the caller. Note, that the data retrieval operation
was not actually executed. The aspect weaver supplied the behavior instead [A.7].

However, the ADD is implemented into design of a component via formalization
of the component in terms of the AOP, which is the underlying mechanism in the
approach. Furthermore, the formalization provides guidance to actual implementation

in source code as all important components are discussed.

An aspect in the data layer is a set of business rules, which compose a significant
concern in an EIS, since it deals with multiple similar views over the same dataset. The
views are defined via a set of constraints, i.e., business rules. As the views are often
similar and share a significant part of the rules, they tend to be manually repeated

among data retrieval operations.

94

Advice in the data layer is a business context and the data layer applies both
preconditions and postconditions. While preconditions are optional as it might be safe
to assume implementation of security in the domain layer, postconditions constrain a
dataset and define a view. Therefore, there are two uses of business rules:

(a) When a business context referenced by a data retrieval operation defines its pre-
conditions, then it is input and context validation. It is identical to validation in
the domain layer, which is already defined in Section 6.3.

(b) Postconditions constrain a dataset and must be considered within a query into a
persistent storage, which is a relational database in this example. Therefore, an
advice in this concern is a constructed query into a storage. In case of a database,
it is a query with unbound parameters and binding is done later. In consequence,
assuming business contexts are immutable at runtime!?, the queries are safe to
be prepared in advance to increase performance when an operation is called. So,
for each context, postconditions are extracted and vertically transformed into a

query language, and later bound with an execution context.

A joinpoint in the data layer is a single injection point in the request flow:

(D The joinpoint around a data retrieval operation wraps a body of each data re-
trieval operation in the data layer, which links a business context in order to
replace it by an aspect weaver.

In case of a data retrieval operation, which only queries a persistent storage for data
matching a given filter, then this operation can be substituted by automatically gen-
erated implementation. Therefore, a body of such an operation is nested in a block,
which is the joinpoint and can be replaced by aspect weaving. Considering common
terminology, e.g., used by AspectJ [66], it expects the around advice, which controls

invocation of the wrapped body.

Pointcuts in the data layer apply a business context to each data retrieval operation

referencing it, in order to instrument the aspect weaver.

Aspect weaving in the data layer substitutes implementation of data retrieval
operations, which gather data from a persistent storage. When the operation links a
business contexts, which defines both preconditions and postconditions, then there al-
ready is a fully defined behavior and its further manual implementation is not needed.
Therefore, the aspect weaver extracts the business context of the operation, and con-
structs a query considering postconditions [A.7]. Then, when the operation is invoked,
it binds the query with parameters within an execution context and calls an available
executor, which is responsible for actual execution of the query. Finally, it returns
acquired data. Similarly, the aspect weaver intercepts a call to the operation and

validates its input, as already discussed in Section 6.3.

10 Tt is not necessary as discussed in Section 6.5. However, it is immutable most of time.

95

In conclusion, implementation of the ADD into design of the data layer saves
significant amount of code and efforts, since the aspect weaver replaces data retrieval
operations, and produces executable code by itself. Besides the benefits of the ADD
already discussed in Chapter 4, its utilization in the data layer is complementary to
other components of a system. Without additional efforts, another reuse of already

maintained business rules greatly increases overall efficiency.

6.4.2 Summary

The data layer of enterprise information systems silently suffers from scattering and
repetition of business rules, which results from manual construction of queries into a
persistent storage. Although it might not seem significant, scaling it into a large system
with hundreds of entities, views, and queries, the repetitions significantly pollute source
code. Eventually, their maintenance becomes very error-prone and tedious due to high
amount of scattered repetitions. The ADD recognizes business rules in the data layer
among cross-cutting concern, and utilization of this approach focused on the separation
of concerns significantly improves maintenance efforts of this layer.

Although conventional EISs often operate with complex queries aggregating data
over multiple resources, it is a best practice to store these complex queries in a database
or other storage as an optimized view. Then, a system produces only simple queries,
which can be automatically constructed by a framework, while complex or performance-
sensitive queries can be left for manual optimization. Therefore, considering a simple
operation for data retrieval, it is possible to define a business context of the operation
and put it down into the repository in a convenient DSL tailored for business rules.
Then, the source code of the operation is replaced by its signature and a reference to
that context to instrument an aspect weaver to generate the body of the operation.
The weaver extracts postconditions from the context and composes them into a query,
which is on demand bound with parameters from an execution context and executed.

Although utilization of the ADD increases the initial barrier and requires signifi-
cant amount of efforts to implement the weaver, its complementary benefits outweigh
these disadvantages when the ADD is also used in other components of a system. With
minimum additional efforts, the ADD reuses already maintained business rules in an-
other component, i.e., the data layer, and facilitates data retrieval. As a result, there
is no need to manually maintain repeated and scattered conditions in queries as well as
there is no need to manually compose them, if they are not complex or performance-
sensitive. In addition, it is possible to reuse the validation mechanism from the domain
layer to validate input of operations. In conclusion, although the ADD requires major
initial efforts, the tools such as the weaver and the DSL for business rules are not
project-specific, thus are reusable across multiple projects, which significantly utilizes

the initial investment.

96

6.5 Service-oriented Arch.: Reuse of Concerns

The previous paragraphs elaborate cross-cutting concerns in an EIS, and in order to
eliminate their significant scattering, tangling, and repetitions, and to reduce negative
impact of the concerns on development and maintenance of a system, several imple-
mentations of the ADD into design of existing components in the layered architecture
are proposed. The ADD is a high level approach tailored to deal with cross-cutting con-
cerns in EISs via the separation of the concerns. However, the number and complexity
of requirements of EISs grow beyond limits of a single system. Therefore, contem-
porary EISs often utilize service-oriented architectures (SOAs) or its derivations such
as Microservices'! to decompose a system into smaller maintainable components (ser-
vices). In consequence, an EIS is split up into multiple smaller but tangled systems.
This significantly limits reuse of cross-cutting concerns proposed by the ADD. In con-
clusion, despite utilization of the approach in a single system, there exists significant
repetition of concerns across multiple services. This section discusses implementation
of the ADD into design of services in the SOA in order to facilitate cross-service reuse
of cross-cutting concerns, especially but not limited to business rules.

Consider the example in Figure 1.3 in Section 1.1, which demonstrates a small e-
commerce system, scaled into a large production-size system maintaining large volume
of data and having hundreds of other services. Then, size of the system, and coupling
among services cause significant issues and impair further evolution of the system.
Therefore, such a system is often migrated into the SOA, where each component is
implemented as a standalone unit exposing its API and depending on other existing
services. Then, the Figure 6.4 illustrates the running example migrated into the SOA.
As the original components in the domain layer follow branches of business, then they
become services. However, besides this large-scale architecture, each service has its own
internal, possibly the layered architecture, which is used as the example throughout
this thesis. Moreover, while the services implement business logic, there exists a service
implementing a facade to internal API and exposing the Ul to end users.

The example above deals with two types of services. First, a standalone service,
which does not have any dependencies, and maintains its own data and exposes its
API. Second, a composite service, which implements business logic over one or mul-
tiple services it depends on. For example, User Service and Product Service are

standalone services because they maintain primary data and do not have any depen-

11 While the Microservices and other derivations also deal with scaling of distributed systems, they
have different assumptions. Considering the scope of this work, the most significant difference is
usually in orchestration versus choreography. This work is agnostic to both approaches, but delivers
better benefits with choreography, which is implemented by Microservices [30, 44]. Although the
proposed implementation of the aspect-driven development should also apply to other architectures,
since there exist other differences, this thesis leaves it for future work and focuses on the SOA instead.

97

N e ™ e .
«component» E «component» {I ' '
Emailer Customer Service ' Note: Customer Service
service ' component is a service |
« » . . '
o . —O in terms of the business. .
Emailing Service))_ ‘SBe“rl‘;'rfge’ ;?ﬁ:/;r?;; R '
N Service Service
«component» E N 7 «component» E
Users > ‘ Stock
. «composite service» ;
«service =) . — service
) .)_ [Order Service]) o
User Service L) Product Service
J

-

o

S Z Z

h ?
«component»
Web E

«facade»
Web API

Figure 6.4: Example e-shop system in the service-oriented architecture

dencies. Contrary, Order Service depends on both User Service and Product
Service because each order tracks a customer and a list of ordered products.

Considering business rules as a significant concern, implementation of a standalone
service is straightforward and may fully benefit from the ADD implementation. Un-
fortunately, a composite service faces the challenge of limited inspection of transitive
business contexts, i.e., limited reuse of business rules declared by services it depends
on. This limitation results from difficult concerns extraction because, in general, each
service can be implemented on a different platform using different technologies. Since
extraction of concerns from source code is challenging and limited as discussed in Chap-
ter 3, the ADD takes place to ease this extraction in addition to other benefits of the
separation of concerns. For example, consider a business operation for registration of
a new user implemented by User Service. It defines and maintains its own business
rules including validation rules itself. However, when a user is registered during cre-
ation of an order, which is a common use case, Order Service has to accept only
a valid input to be able to further process the registration request and delegate it to
User Service. Unfortunately, since Order Service is unable to reuse business rules
used by User Service using conventional development, it usually results in manual
repetition of business rules in order to facilitate this behavior.

In consequence, while the SOA efficiently deals with some issues of large-scale
systems, there exist some significant challenges. Considering composite services, cross-
service reuse of concerns is one of them. Fortunately, while the ADD efficiently deals
with the separation and automated reuse of concerns in a single EIS, this section
proposes its implementation into design of the SOA. Besides the common benefits of the
ADD, the proposed implementation enables automated cross-service reuse of concerns,

which positively impacts both communication in a development team and development

98

efforts. Furthermore, it opens new possibilities such as centralized management of

configuration and business rules without any centralization in the source code.

6.5.1 Utilization of the ADD

While the ADD is designed for a single EIS to separate the concerns and automatically
weave them back together at runtime, this section discusses implementation of the
ADD into design of services in the SOA. This section formalizes the domain of the
service-oriented architecture in terms of the AOP, which is significantly utilized by the
ADD, and concludes with new possibilities available with the ADD for the SOA.

The repository is the essential concept of the ADD, since is introduces the single
point of the truth. However, the SOA, Microservices, and other derivations focus on
decomposition of a business domain and an entire EIS into many smaller standalone
units, which prevents existence of such a place. Therefore, to overcome this limitation
and to benefit from the ADD, it is necessary to construct a virtual runtime repository,
which aggregates the concerns also from other services. In consequence, to fully benefit
from concerns reuse, all services in the SOA must implement the ADD to be able to
separate and expose their concerns.

Consider Order Service and the registration of a new user during order pro-
cessing, as discussed above. While each service implements the ADD and therefore
each business operation defines its business context, it is safe to assume there exists
an operation creating a new user within User Service, and subsequently a business
context of that operation. Therefore, Order Service assumes existence of this con-
text although it does not know its implementation at compile time. However, it may

consider it external and include this context via context composition at runtime.

Definition 6.3 An external business context is a business context defined

and maintained by another seruvice.

Fortunately, although the context is not known at compile time and a static single
place of the truth, i.e., a place in source code, cannot exist, it is possible to define
the repository at runtime because all concerns are immutable. Furthermore, it is not
necessary to create a single know-it-all repository encapsulating all concerns in the
entire SOA because the repository would be too complex and there is no need for
it. Instead, each service creates its own repository at runtime and fills in all external

concerns from other services, which replaces the static repository defined in Chapter 4.

99

(A . W
«service» E «service» E N
Service Composite Service
Presentation Layer Meta API T Repository
\l, \l/ Business Data
\ . ™\ Rules Model
Domain Layer Repository
)//
\l/ Business Data
Data L Rules Model
ata Layer
L e J)
\ Y

Figure 6.5: The layered architecture of a service with the ADD for the SOA

Definition 6.4 The runtime repository is a single point of the truth within
a service in the SOA and extends the static repository with implementation

of external concerns fetched from other services.

Finally, when a concern in a service includes another external concern, i.e., a
concern of another service, it is essential to expose the external concerns maintained
in the remote repository via API. However, a security aspect and encapsulation step
into the process and thus not all concerns are supposed to be exposed. Therefore, only
parts of concerns, which are supposed to be reused by other services, are published via
API of the repository. For example, only some business contexts are supposed to be
exposed to other services, while other are intended only for internal use. Consider a
registration of a user. While a business context of an operation in the domain layer is
used only within the service, a business context of an action handler in the presentation

layer is intended for communication with other services and thus is exposed.

Definition 6.5 A public concern in a part of a concern, which is exposed

via API of the repository for reuse by other services.

Although the runtime repository fully replaces the static repository from the ADD
definition in Chapter 4, the implementation of the ADD into design of a service is
similar to implementation of the ADD into design of a single standalone EIS. The
most significant change lies in the introduction of external concerns and the runtime
repository, which slightly modifies the architecture of given service, but it bridges the
gap between services and enables cross-service reuse of concerns. For example, consider
the conventional layered architecture [109] accommodated to needs of the ADD for the
SOA, which is illustrated in Figure 6.5. Just like with the conventional ADD, a service
separates its concerns and stores them in the repository, which helps to decompose the
system into smaller units with single responsibility. However, each service introduces

the meta API exposing public concerns or their parts for other services.

100

While it is not mandatory, it is beneficial when also other services implement the
ADD. For example, consider that although the implementation of an external context
is not known during implementation of a service, it is safe to assume that it exists.
But when the other service does not implement the ADD, it is not possible to reuse
the context or it might not even be defined. In conclusion, when some services do not
implement the ADD, the overall efficiency of the ADD in the SOA is reduced.

Although the previous text discusses limitations of the conventional ADD and its
migration into the SOA, it is important to formally define mapping of SOA components
into terms of the AOP. The mapping suggests implementation of the ADD, which
significantly utilizes the AOP, therefore, besides the formal definition of a viewpoint,

it also provides a guide for implementation.

An aspect in the SOA is a concern, which cross-cuts across multiple services and
tends to scattering, tangling, or repetition. Therefore, considering mutual indepen-
dence of services, varying platforms and technologies, and possibly even different de-
velopment teams, manual maintenance of such a concern is significantly error-prone,
tedious, and increases development and maintenance efforts and possibility of incon-
sistencies. In the SOA, this thesis recognizes two cross-cutting concerns:

(i) Business rules, more specifically a business context of a business operation, de-
fine preconditions, postconditions, and business domain configuration. Operations
of composite services often reference business contexts, or their subsets, of ser-
vices they depend on. Consider Order Service. Besides reuse of validation
rules, which is illustrated above, the service references configuration of Billing
service to reuse a constant defining VAT rate to properly compute the price.

(ii) Data model, which is a structure of the model in the protocol, is always considered
on both sides of the communication to serialize and deserialize the data. This
aspect can be used for verification that both communicating services expect the

same protocol structure and there are no inconsistencies.

Advice in the SOA is functionality to be weaved in. Although there are two aspects,
the ADD organizes business rules into business contexts, which have multiple parts and
thus multiple uses. Therefore, there are following advices:

(a) Business context preconditions advice is a set of assumptions to meet before a
business operation is executed, e.g., the user is logged in and has the required
privileges. The rules are transformed into a platform-specific executable form as
they are evaluated in the beginning of an operation.

(b) Business context postconditions are rules applied after execution of a business
operation, e.g., data filtering based on the user’s privileges or expected results.
The rules are transformed into a platform-specific executable form as they are

applied at the end of an operation.

101

Service
Initialization

application context 1 __]
initialized)

s

Shutdown Signal
[Received

Waiting for
the Business
Operation Request

Business Operation
Request Received

N\

Business Operation
Execution

: business context
i preconditions applied

Figure 6.6: Life-cycle of a service and application of advices

(¢) Business domain configuration is a part of the application context represented
by a key-value map of business domain-related constants used within a service,
i.e., during rules evaluation or business logic execution, e.g., the VAT rate.

(d) Data model advice contains information about the structure of public business
objects defined within each service, i.e., a name of objects and list of public fields
and their types. As this information is used for validation of a protocol, the

representation of a concern is not important.

Joinpoints in the SOA are places in the lifecycle of a service (dynamic joinpoints)
available for a concern to be weaved in, which is denoted in Figure 6.6. There exist
three following dynamic joinpoints:

(D First joinpoint triggers during initialization of a service, when the service es-
tablishes its application context. Since some business contexts may reference
external contexts, which are unknown at compile time, their implementation is
fetched at runtime before the service is up and running.

@) Before the execution of a business operation, it validates preconditions of the
addressed business context, which is already defined in Section 6.3.

@ After the execution of a business operation, it applies postconditions of the busi-

ness context, which is already defined in Section 6.4.

Pointcuts in the SOA select a subset of joinpoints for each aspect applying a par-
ticular advice. As Figure 6.6 suggests, the initialization of a service considers a data
model to validate protocols of remote services, and external business contexts to fetch

configuration of a business domain, which must be known before the service is run-

102

ning. Then, as defined in Sections 6.3 and 6.4, preconditions of a business context are
considered at the beginning of an operation, while postconditions are applied when

execution of the operation has finished.

Aspect weaving in the SOA combines all the advices into proper joinpoints at run-
time with the respect to a current execution context, which is conducted by platform-
specific aspect weavers. First, when a service starts, it initializes its application context
including environmental variables and all business contexts. In an environment with
shared business contexts such as the SOA, the service fetches external contexts from
services it depends on. For example, Order Service requires business contexts and
domain configuration defined by the Billing, Shipping, Product, and User services.
Therefore, the service discovers the other services'?, downloads the external contexts,
merges them into its application context, and exposes them in the repository. Finally,
it extracts metadata of its public model and stores them within the repository as a pub-
lic concern. Then, it verifies the structure of the communication protocol comparing
its own metadata to the metadata of its dependencies.

Second, once the service is initialized and running, it expects requests to execute
business operations. For each business operation, there is a business context defining
the preconditions and postconditions, and when execution of a business operation is
requested, the aspect weaver intercepts the call, checks the business context, and vali-
dates the applicable preconditions with the execution context. For example, it verifies
the user is logged in. If the validation fails, the execution ends and the service returns
an error. Similarly, when the execution of the operation finishes, the aspect weaver

intercepts the response and applies the postconditions to restrict the returned data.

6.5.2 Summary

There exist many opened challenges in the SOA. For example domain decomposition,
service discovery, composition, deployment, and evolution, inter-team communication,
and the separation and reuse of the concerns across services. Unfortunately, the cross-
cutting concerns impact both standalone EISs as well as distributed systems built on
the SOA. While the separation and reuse of concerns within a standalone EIS is the
same as within a single service, cross-service reuse is more challenging as each service
may use different platform, technologies, and be built by a different development team.

The ADD is an abstract approach designed for the separation and reuse of the
concerns in standalone EISs and is agnostic to implementation details. While it effi-
ciently deals with the cross-cutting concerns in an EIS, it reaches its limits when it is
deployed into the SOA. Therefore, the ADD for the SOA extends the original approach

12 There exist various approaches to link services, e.g., a Service catalogue or an Enterprise Service
Bus, but the ADD is agnostic to implementation details.

103

and introduces new elements such as public concerns, external contexts, and meta API,
in order to enable cross-service reuse of concerns. Then, a composite service is able
to automatically fetch and reuse external concerns from its dependencies at runtime,
which significantly eases composition of services. Besides the common benefits of the
approach, the ADD for the SOA also enables validation of a communication protocol,
and reuse of business domain configuration, which a part of a business context.

In conclusion, similarly to the conventional ADD, the ADD for the SOA deliv-
ers significant maintenance improvement, codebase reduction, and context-awareness
to services. It isolates cross-cutting concerns into the single point of the truth, and
weaves them back together at runtime with respect to a current execution context. Use
of DSLs enables involvement of domain experts in development. Automated distribu-
tion and reuse of the concerns at runtime remove the need for manual synchronization
of all places, which mitigates maintenance efforts and lowers the risk of a human er-
ror. On the other hand, the ADD itself introduces significant overhead, as it requires
design and implementation of DSLs, and platform-specific project-independent aspect
weavers. Since the SOA usually utilizes multiple programming languages and plat-
forms, it increases the number of required weavers. Therefore, development of the
technological stack requires major efforts. Furthermore, all services in the SOA have
to follow the ADD for the SOA, otherwise the reuse of concerns is limited.

This section introduces the ADD for the SOA. While its use opens new possibilities,
this thesis leaves them for future work. For example, having all metadata exposed via
API, it seems possible to maintain business rules for all services from a single place,
e.g., a maintenance application, while their source code remains distributed throughout
the services. Such an application can be managed by domain experts and furthermore,
the changes to business rules and subsequently business contexts can be streamed
throughout the SOA at runtime without any need of restart or even recompilation of any
service. Further, it is possible to visualize the relations between services and perform
some data mining and reverse engineering over available metadata. And finally, while
the SOA is a generic architecture of distributed information systems, more evolved
derivations exist such as Microservices and other architectures. While it seems that
they would also benefit from the separation and reuse of concerns and the ADD for
the SOA, the proof of this hypothesis is left for future work.

6.6 Summary

Contemporary EISs suffer from concerns tangling and scattering due to inability to
separate the concerns. High information repetition, which leads to inconsistencies in
source code, is among the most significant reasons behind highly error-prone and dif-

ficult maintenance of a system. The ADD, which is a high level approach proposed

104

in this thesis, emphasizes the separation of the concerns and utilizes various existing
approaches to introduce a single point of the truth and facilitate automated trans-
formation and distribution of the concerns throughout a whole system (Objective 1).
However, the ADD as an abstract approach does not enforce nor suggest any imple-
mentation details. It is generic and applicable into various environments. Therefore,
this chapter elaborated multiple implementations of the ADD into design of common
components, in order to demonstrate benefits of the approach comparing to conven-
tional development (Objective 3). Although to properly implement the ADD, each
implementation is formalized in terms of the AOP, since it is significantly utilized.
The aspect-driven development approach considers a domain model and business
rules as a significant concern, which arises from the purpose of a system (Objective 2).
And, as the ADD modifies an overall architecture of a system, there are various com-
ponents, which may benefit from it. Considering a layered architecture, which is an
example considered in this thesis, there are three basic layers: the data layer, the do-
main layer, and the presentation layer. This chapter demonstrated reuse of business
rules and the model in the data layer, where it facilitates automated input validation
and construction of queries into a persistent storage to provide filtered data match-
ing postconditions in a given business context. Next, the domain layer also benefits
from input validation in order to protect data and application logic. Contrary, the
UI as possible implementation of the presentation layer benefits from the ADD much
more. Since in the Ul many concerns tangle together including Ul layouts, Ul widgets,
and localization, implementation of the ADD into design of the UI is more complex
but brings greater benefits. This chapter showed composition of UI forms as well as
conditional rendering of a component based on a business context of another business
operation. Furthermore, this chapter discussed modification of the ADD to support
distributed multi-platform Uls with native applications, which use both shared and
platform-specific concerns. Since complexity of contemporary EISs grows behind lim-
itations of a single system, they are often decomposed into multiple services and or-
ganized into the service-oriented architecture or its evolved derivations. This chapter
presented implementation of the ADD into the SOA providing both intra-service and
inter-service reuse of the concerns, which enables central management of the concerns.
In conclusion, while the ADD is not specific to any architecture or environment,
this chapter presented various benefits raised from the separation of concerns (Objec-
tive 3). The examples illustrate implementation of the ADD into design of different
components of an EIS as well as different environments. However, the list of examples
is not exhaustive. Considering other components, architectures, and environments suf-
fering from concerns tangling and scattering, each may benefit from implementation of
the ADD. Therefore, this chapter demonstrates utilization of the ADD, and opens a

discussion over its additional use, in order to reduce tangling and scattering of the con-

105

cerns (Problem 1) over multiple technologies (Problem 2), remove inconsistencies and
repetitions (Problem 3), and ease maintenance of source code (Problem 5). Moreover,
since the approach supports context-aware decisions (Problem 4), it eases implemen-
tation of modern context-aware applications supporting various mobile devices and
runtime contexts. Unfortunately, although utilization of the approach introduces ma-
jor benefits, its deployment into an EIS carries significant initial overhead. While use
of multiple DSLs increases the mental barrier, the need for implementation of various
aspect weavers stands for a technological barrier. Fortunately, both domain-specific
languages and aspect weavers are not project-specific, therefore can be reused across

multiple projects, which significantly utilizes the efforts.

Part 111

Results

Evaluation of the Approach

Conclusion

107

Chapter 7
Case Studies and Evaluation

The aspect-driven development is an approach to design and development of EISs in-
troduced in previous chapters. While contemporary systems usually suffer from signif-
icant concerns tangling, scattering, and information repetition, the approach addresses
these issues via utilization of multiple existing approaches and the separation of con-
cerns (Objective 1). Complexity, abstractness, and claimed benefits of the ADD require
further work in order to demonstrate and evaluate the approach (Objective 3). The
evaluation can be divided into 3 steps:
1. Providing a proof of the concept to demonstrate the novel architecture and show-
ing that it works and delivers claimed benefits.
2. Evaluating the approach in contrast to alternative existing approaches and high-
lighting differences including benefits and limitations.
3. Conducting a large case study evaluating the approach in real production-size
system, measuring its efficiency, claimed benefits, and evaluating its limitations.
Therefore, complete evaluation of the approach is a challenge itself, and, unfortunately,
goes beyond the scope of this thesis. However, the first two steps are well covered in
published researched papers written together with this dissertation thesis. The papers
elaborate topics from the previous chapters in depth and always include either a case
study comparing a conventional approach to the implementation with the ADD, or a
proof of the concept, which illustrates use and benefits of this approach. Unfortunately,
conducting a large case study requires significant amount of work, production-ready
tools!, and cooperation with a business company that would provide access to a real
system, therefore it is left for future work. Although, for the sake of completeness of this
thesis, this chapter summarizes the most significant case studies conducted this thesis,
compares the approach to other existing alternatives, and illustrates implementation

of the ADD in a proof of the concept implementation of the UL

Tt includes design of all DSLs and implementation of all supporting tools such as parsers, edi-
tors, and development tools. It also requires implementation of aspect weavers for all components,
environments, and technologies, which might be a challenge itself.

108

While the ADD brings significant benefits, there are various limitations reducing its

efficiency. As it uses multiple DSLs to describe concerns and aspect weavers to weave

them together at runtime, there exist major initial overhead and both technological

and mental barrier. However, to demonstrate and evaluate the approach, its benefits,

and limitations, it is not necessary to have production-ready tools. Even stubs and

partial implementations show intended behavior and qualities. Therefore, each research

paper published together with this thesis includes its own case study. Unfortunately,

the papers were published before this thesis was written, therefore they do not use the

running example introduced in the first chapter of this work. Each paper describes its

case study to evaluate, instead. Even though, the ADD implementation discussed in

Chapter 6 is well covered by case studies:

(i)

(vi)

Concerns tangling in the UI, their decomposition, and automated runtime weav-
ing utilizing the AOP is discussed in [17, A.3]. Therefore, it is sufficient to extend
that research by business rules, which are a significant concern in an EIS and not
addressed in that papers. This extension and case study are in [A.13].
Implementation gets more complex considering the distributed multi-platform
UI, where multiple native applications participate backed by RESTful API. As
is stated in the previous chapter, the implementation of the UI is similar to
the previous case, although the concerns are exposed via the API. This research
introduced in [A.5] and extended in [A.1] also brings a case study comparing
conventional development to utilization of the ADD. Furthermore, server load
and benchmarks are evaluated in [A.12].

Reuse of concerns for input validation in the domain layer is presented in [A.15]
and formalized into the preliminary version of the ADD in [A.8], which shows a
comparison of the ADD in the domain layer and a conventional development.
Reuse of concerns in the data layer is elaborated in [A.7], which transforms busi-
ness rules into SQL queries, and evaluates a proof of the concept implementation.
The SOA deals with more challenging concerns tangling, scattering, and infor-
mation repetition. The research in [A.4] presents the adjusted ADD enabling
inter-service concerns reuse, as is elaborated in the previous chapter. The paper
demonstrates a conducted case study, which compares a conventional design of
services to services implementing the ADD.

Finally, transformation and reuse of the concerns into business documentation
is published in [A.6]. The paper also discusses parameters of a case study and

presents preliminary results illustrating intended use and output [A.2].

In conclusion, the first step of the evaluation is well covered in the published pa-

pers.

Furthermore, besides these focused case studies evaluating a specific component

of the architecture, along with this research, additional case studies there were con-

ducted comparing the ADD to alternative existing approaches [A.14, A.9, A.11]. These

109

case studies implement an identical system using various approaches, measure their ef-
ficiency, and discuss maintenance efforts. For the sake of completeness, the following
sections discuss the most significant results of these papers to summarize the evaluation

of the ADD. Although, for additional details proceed to reading the original papers.

7.1 User Interface: Proof of the Concept

A proof of the concept illustrates intended behavior, claimed benefits, and suggests
possible limitations. Its main purpose is to demonstrate that the idea is achievable.
Therefore, there are no requirements on production-level tools or implementation. Par-
tial implementations and stubs work fine, if they serve their purpose. Considering the
ADD and this thesis, the Ul is the most challenging component. Most concerns tangle
together in the Ul scatter throughout a whole component and even through lower lay-
ers of a system. It results from linearization of orthogonal concerns into source code,
as is discussed earlier in this work. The separation of concerns in the Ul is the easiest
to observe and delivers maximal benefits. In consequence, this section demonstrates
possible implementation of the ADD in the U, to suggest intended use and benefits.

Development of the UI suffers from various challenges, concerns tangling is one
of them. There exist various attempts to decompose the concerns to overcome this
challenge, which is elaborated in Section 3.4.3. The approach presented in [17] already
followed a similar idea, although it is not that general. However, it utilizes the AOP to
decompose most of the concerns and weave them back together at runtime, which was
extended and formalized in [A.3]. Unfortunately, it does not consider business rules.
In conclusion, it is sufficient to demonstrate reuse of business rules from the repository
together with the Ul constructed using a technique presented in [A.3].

Consider an issue tracking system as an example?. The repository maintains these
concerns: 1) Ul layouts, 2) UI widgets, 3) business rules, 4) localization, and 5) a data
model, which is not located in the repository but is extracted from source code instead.
Utilizing the research® from [A.3], representation of the concerns is straightforward.

(i) Listing 7.1 demonstrates a template for a two column form layout, i.e., form fields
are organized into two columns. The template is written in HTML extended with
a custom tag and expressions in the af namespace. The tag indicates repeatable
block, which is repeated until all form fields are rendered. The expressions are
placeholders to be replaced by form fields [A.3].

(ii) Listing 7.2 illustrates a simple template for presentation of a textual field, i.e., a
String field. The template is written in HTML for JavaServer Faces 2.0 [28] and

2 The case study was already published in [A.13] and uses a different example than this thesis.
3 The research in [A.3] is implemented in an open source framework AspectFaces, which extends
JavaServer Faces and facilitates runtime forms composition. It is available at aspectfaces.com.

http://www.aspectfaces.com/

110

W N O Uk W N

U W N =

(iii)

Listing 7.1: Two column layout template

<table class="two-column-layout">
<af:iteration-part>
<tr>
<td>$af :next$</td>
<td>$af:next$</td>
</tr>
</af:iteration-part>
</table>

Listing 7.2: Example of a Ul widget for AspectFaces

<jsf:inputText
id="#{prefix}r$field$"
label="#{text [‘$entity$.$field$ ‘13"
validate="$businessRules.toJS()$"
value="#{instance.$field$}" .../>

uses various meta-information provided within an execution context. While this
example is not complex, implementation of the AspectFaces provides additional
various configuration options [17].

Consider an operation to report a new issue. Then, Listing 7.3 shows a business
context* of this operation. It considers length of a title and a description, checks
priority range, and verifies that the issue defines its type. While the context
is maintained in the repository, it is reused in 1) the domain layer to validate
the input of the operation, 2) the server-side of the Ul to validate the input of
the action handler, and 3) the client-side of the UI, where it is used for input
validation directly in a UI form.

The localization is maintained as localized key-value pairs, where a key is an
internal codename and the value is its localized translation into a particular
language mutation. For example issue.title: Title.

Finally, a data model is a simple POJO Java bean, which backs the input form.
Each field has its name and type, and unless it is marked as it is supposed to be

ignored, it is extracted by the aspect weaver in order to compose the form.

Having the concerns represented in source code, then data visualization is trivial.

Listing 7.4 illustrates use of the aspect weaver in order to compose a form to report

a new issue. The af:ui component accepts a model of a form, a business context,

and

a layout to be used. While the model is a new issue and the context defines its

validation rules, the layout is extracted from an execution context, which contains a

suggested layout for user’s device. However, to properly render a form, input fields

must be mapped to Ul widgets, i.e., mapping of joinpoints and advices, which are

4 The case study in [A.13] uses JBoss Drools language. However, the example was migrated into
the language proposed in Chapter 5 in order to make it consistent in the thesis.

111

Listing 7.3: Example of a business context: Report an issue

1 context: Report an issue

2 inputs:

3 issue: Issue

4 preconditions:

5 issue.title not empty

6 length(issue.title) is greater than or equal to 15
7 length(issue.title) is less than or equal to 300
8 issue.title matches "“[a-zA-Z0-9]*§"

9 length (issue.description) is less than 1000

10 issue.priority is between 1 and 3

11 issue.type is required

Listing 7.4: Use of AspectFaces to compose an input form at runtime

1 <af:ui instance="#{issue}" layout="#{device.layout}" context="
Report an issue"/>

<!-- context-aware action -->

<jsf:button
value="Delete the issue
rendered="#{context (bean, ’deletelssue’,issue) .isSatisfied}"

/>

N O Ot e W N

pointcuts. FExample of the mapping is in Listing 7.5. For each data type, the map-
ping considers a default Ul widget and additional widgets, which are used if a given
condition is satisfied. For example, there exists different widget for a password, even
though it is also a String. The conditions expect certain implementation of a data
model inspector, which must inspect and publish all additional meta-information. For
example, a password is marked with @UiPassword, and the marker is exposed into the
mapping as a password variable.

Similarly, Listing 7.4 also demonstrates conditional rendering of a button to delete
an issue. It is rendered only if a business context of the operation deletelIssue is
satisfied, which might and should include security check to prevent unauthorized users
to invoke the operation. Reuse of a business context also within a button greatly
contributes to consistency of business constraints within an EIS.

In conclusion, the example presented in this section covers all aspects of the au-
tomated composition of input forms in the Ul. Having each concern described inde-
pendently in the most convenient, domain-specific language results in the best possible

performance and effortless maintenance [59]. Furthermore, automated reuse of busi-

Listing 7.5: Mapping of data types of input fields to UI widgets

<type>String</type>

<cond expr="${password==truel}t" tag="passwordTag.xhtml"/>
<cond expr="${link==true}" tag="linkTag.xhtml"/>

<cond expr="${maxlength>255}" tag="textAreaTg.xhtml"/>
<default tag="textTag.xhtml"/>

[O

112

ness rules throughout a whole system removes the need for their manual synchroniza-
tion, which avoids inconsistencies in source code and reduces maintenance efforts [A.3].
Considering the UI, there are no validation rules manually written in HTML or in
Javascript. They are fully provided by the server, transformed from the platform-
independent format into JavaScript, and bound to Ul events to deliver good user expe-
rience. Comparing the source code to the conventional alternative, there are a signifi-
cant code reduction and easier maintenance, which confirm what was expected [A.13].
Unfortunately, to have the ADD production-ready, it requires production-ready DLSs

and aspect weavers, which significantly increases initial overhead [A.8].

7.2 Distributed User Interface: A Case Study

In general, the objective of a case study is to compare various approaches, measure
their qualities, and formulate results. Considering the ADD, a case study is conducted
in order to compare this novel approach to existing alternatives. The study can focus
either on a specific part of a system or compare approaches in general. As general
comparison requires significant amount of work and production-ready tools, it is left
for future work. Case studies conducted within this theses focus on a part of an
architecture and evaluate approaches dealing with a specific challenge. Considering
the Ul from the previous section, decomposition of the concerns possibly significantly
reduces amount of source code, as it removes many manual repetitions. Furthermore,
maintenance of such code should be much easier, as each information is managed only
once and in a single place, therefore there is no need to search for all occurrences and
deal with inconsistencies. This section describes a case study conducted in order to
evaluate efficiency of the distributed UI, which is implemented for multiple platforms
and backed by a RESTful API at a server.

Implementation of the UI of an EIS is a challenge regardless of the target platform
as that is where many concerns tangle together. Although, considering the distributed
multi-platform UI, the number of concerns grows up for platform-specific concerns.
Therefore, there is more to consider as well as more to implement, as each view must
be implemented for each platform, which obviously requires significant amount of man-
ual code repetition. Fortunately, the ADD proposes a technique to reuse platform-
independent concerns and automate composition of input forms. In consequence, this
case study demonstrates reuse of both platform-independent and platform-specific con-
cerns streamed from a server into a client-side application implemented for two plat-
forms. The study compares the conventional approach to a system following the ADD.

Consider a small issue tracking from the previous section. There exist one server
application with RESTful API implemented in Java and two clients: a web application

as a JavaScript rich client, and a native mobile application in Swift for iOS platform.

113

Table 7.1: Representation of UI concerns in the multi-platform UI

Concern Platform DSL
Data model - Java
Bussiness rules - JBoss Drools DSLS
ipt HTML
UI Layouts JavaSerip
i0S JSON
i HTML
UI Widgets JavaScript
i0S JSON
Localization - properties in plain text

Then, consider the following scenarios: 1) a user reports an issue, 2) a developer
resolves the issue, and 3) an administrator creates a project. Each of these represents
a form-oriented context-aware view in both clients. In these scenarios, the case study
considers 15 business rules, e.g., description of the issue must be between 15 and 300
characters, 1 i0OS and 3 JavaScript layouts, and 6 Ul widgets for each platform.

The system is implemented twice, i.e., using both the conventional approach and
the ADD with the separation of concerns. There are several DSLs describing the
concerns, which is summarized in Table 7.1. Although involvement of multiple DSLs
introduces initial overhead, their efficiency significantly increases their expressiveness
and reduces SLOC®. Nevertheless, besides the business rules, common programming
and markup languages are used to reduce the overhead.

Having two implementations of a system enables comparison of source code effi-
ciency. Table 7.2 delivers SLOC comparison of the conventional approach to the ADD
implementation. The ADD separates 5 Ul concerns and the domain model in Java
overlaps with the conventional approach in lower layers of the system. The system
with the ADD describes the Ul for a web application in 197 lines of HTML, 256 lines
of localization statements, 94 lines of business rules in JBoss Drools, and 121 lines of
JSON configuration defining the UI the iOS native client. Besides these, it requires
271 lines of code in total to configure both clients. In consequence, it makes 939 SLOC
in total, which is 45 % SLOC reduction comparing to the conventional approach [A.1].
Next, consider the size of this case study and a low scenario overlap. Imagine, how the
reduction would scale up in much larger systems with multiple similar, more complex,
and context-aware views. The savings might be very significant.

Unfortunately, in addition to the application-specific SLOC, the ADD requires
implementation of reusable, project-independent, but platform-specific aspect weavers.

For this study, the weavers consist of 991 JavaScript lines and 726 lines of Swift code,

5Source Lines Of Code
6This research was published in [A.1] before this thesis was written. It uses JBoss Drools as a DSL
for business rules description instead of a language proposed in Chapter 5. It is available at drools.org.

http://www.drools.org

114

Table 7.2: SLOC comparison of the conventional approach to the ADD in the UI

Component / SLOC Conventional | ADD
Web Ul 1284 + 83 177
Mobile UI 336 94
Web Layout and widgets - 197
Mobile Layout and widgets - 121
Business rules - 94
Localization - 256
Web weaver - 921
Mobile weaver - 726

which is significant initial overhead comparing to the total SLOC. Furthermore, the
ADD also requires reusable server-side inspectors, which expose the concerns through
the API, e.g., a data model inspector and a business rules inspector. However, the
SLOC of the inspectors is not considered in this case study.

In conclusion, design of the Ul of an EIS is a challenge as such a system exposes
extensive amount of complex data and allows users maintain them within implemented
business processes. The Ul has to consider various concerns, which tangle together.
The case study presented in this section shows major code and information repetition
reduction with the ADD. Every concern identified by the ADD is cleanly separated
(Problem 1) and located in the single focal point (Problem 3), while it is automati-
cally reused and distributed over all platforms at runtime (Problem 2). Although the
runtime weaving (Problem 4) might seem inefficient, benchmarks show both memory
footprint and server CPU use reduction, as Ul construction is moved from the server to
clients [A.12]. Concerns maintenance no longer depends on size of a system or number
of platforms, as there is no manual repetition (Problem 5). Fortunately, while aspect
weavers introduce significant additional SLOC, they are reusable and their complexity
does not grow with a system scope. Unfortunately, there still remain some manual code
but not concern repetition, which is elaborated in detail in [A.1]. Nevertheless, mainte-
nance of such a system requires significantly less efforts comparing to the conventional

approach, as modification of each concern means changing only one place.

7.3 Comparison to Alternative Approaches

While proofs of a concept and case studies demonstrating efficiency of the approach
provide valuable results, they do not evaluate the approach in a wider context. To reach
conclusions about efficiency of the approach, it is necessary to consider existing alter-

native approaches and their solution for a given challenge. Therefore, to evaluate the

115

ADD, this section discusses its efficiency in contrast to alternative existing approaches.
Unfortunately, as this chapter states in its beginning, it takes major efforts to conduct
a valid case study. It requires production-ready implementation of aspect weavers and
tools, and access to a real large system to be able to consider real scenarios, and such a
task complexity exceeds the scope of this thesis and is left for future work. Therefore,
this section evaluates alternative basic approaches as is elaborated in [A.11].
Considering evaluation of the ADD, then representation of the concerns and their
manual repetition are essential qualities due to the scope and the focus of the approach.
Although, concerns tangling, scattering, and coupling as well as code cohesion can also
be taken into account because the ADD focuses on more efficient maintenance of the
concerns. Therefore, the conducted case study measures two qualities:
(i) manual repetition of information captured in source code because the ADD fo-
cuses on its removal
(ii) cyclomatic complexity in the domain and data layers because the ADD extracts
the rules implemented as if-statements and applies them via business contexts
It is essential to remember that the ADD is an abstract high-level approach focused
on reduction of manual repetition of the concerns in both horizontal and vertical di-
mensions. Besides easier maintenance, it aims on overall simplification of source code
resulting from untangling of the concerns and their centralized maintenance. In con-

sequence, the case study is designed to measure these claimed qualities.

7.3.1 Approaches to EIS Development

To evaluate the ADD, it is necessary to measure efficiency of the ADD comparing
to other existing alternative approaches. Therefore, the case study presented in this
section considers four approaches in total, the ADD and three alternatives [A.11].

1. Naive implementation of an EIS without any design patterns or frameworks.

2. Java EE implementation utilizing the specification and attached libraries.

3. Object-based implementation utilizing OOP techniques to reuse concerns.

4. The ADD itself in order to evaluate it.
It seems that the case study considers only naive approaches without advanced tech-
niques, which might threat validity of the case study. However, these are conventional
contemporary approaches to development of an EIS. Unfortunately, most existing sys-
tems do not utilize any of the advanced approaches to the separation of concerns and
fall back to these approaches instead; comparison to alternative and more sophisticated
approaches was left for future work, as it requires existence of high quality implemen-
tation of the ADD. In conclusion, the validity of results of this case study is limited to

naive and conventional approaches to design and development of EISs.

Naive implementation is a reference implementation standing for a worst case sce-

nario. It does not optimize representation or use of the concerns; it captures them in

116

a programming language directly in places of their use, instead. Unfortunately, while
this is inefficient, it is common practice in real-world development. In consequence,

the concerns are repeated both horizontally and vertically when they are applied.

Java EE implementation is another common approach to EIS development. Con-
temporary EISs often build on the top of the Java EE or .NET platforms, both with
similar underlying principles. While Java does not consider any concerns discussed in
this thesis, it provides basic support for business rules. JSR 303: Bean Validation [8]
uses meta-programming (annotations) as declarative programming to annotate model
fields and set additional constraints such as @Email for strings matching the email
pattern or @NotBlank for non-empty strings. In addition, JSR 205 [75] enables an-
notating business operations to restrict access to them and enforce a security policy.
For example, @RolesAllowed (ADMINISTRATOR) makes the operation available only to
administrators. Furthermore, RichFaces’ is a framework for the UI development. It
reads a subset of these annotations and automatically reuses the constraints in input
fields in UI forms. For example, a string field with @Email annotation is rendered in
a Ul form as an input field with client-side email validation.

Unfortunately, the constraints represented via annotations must be invariants, i.e.,
must be valid at all times, which only works for a few scenarios. Usually, constraints
change either with a business context or an execution context but the Java EE is
unable to deal with contextual rules. Therefore, it forces developers to tangle these
rules into the code as the naive implementation does. However, the approach to ex-
press constraints is generic, although its implementation is limited to model fields. To
overcome this limitation, for purpose of this case study, a Java EE extension enabling
the annotations over methods was introduced. In consequence, it eases declaration
of constraints and reduces their scope to business operations, although they are still
context-unaware. In conclusion, the implementation enables restriction of both model
fields and business operations by constraints. Moreover, domain model invariants are
located in a single place, but operation-specific constraints are manually repeated as
there is no mechanism to reuse them over multiple methods. Finally, the extension does

not affect the presentation layer; it remains limited to original behavior of RichFaces.

Object-oriented implementation uses OOP techniques such as design patterns,
encapsulation, and polymorphism to reuse concerns and minimize their manual repeti-
tion, as is suggested in [15]. This approach tends to declarative programming similar to
was described in the paragraph, and it benefits from its easier extendibility. As this ap-
proach utilizes, e.g., Prozy and Visitor design patterns, it is easier to implement custom
validators or group up some common constraints. On the other hand, implementation

of validators is less declarative and cannot be inspected through reflection.

Thttp://richfaces.jboss.org

117

For example, consider an Issue from this case study [A.11]. Its fields, such as
name or description, are restricted with length constraints. Every place validating
an Issue object invokes these validators to verify the constraints without actually du-
plicating the validation code. Although it restates the set and configuration of used
validators. Therefore, creation of IssueValidator encapsulates all validators related
to an Issue. Furthermore, context-aware validators, i.e., validators accepting a con-
text, overcome the limitation of Java EE annotations. On the other hand, consider
client-side validation in the UI or composition of queries in the data layer. While con-
straints are the same as in the domain layer, technologies differ. Unfortunately, as the
validators are not inspectable, it is not possible to have them automatically vertically
transformed into other technologies and languages. In consequence, all validators must

be transformed and kept synchronized manually instead.

Aspect-driven implementation follows the ADD approach [A.8] introduced and
elaborated in this thesis. Since it perceives concerns in EISs as significantly tangled,
scattered, and difficultly maintained, it focuses on their separation, automated transfor-
mation, and runtime distribution. It stores them independently in the repository, which
introduces a single point of the truth. Significant use of DSLs brings additional benefits
into development, such as more efficient maintenance of the concerns and involvement
of the domain experts into development. Unfortunately, the approach requires imple-
mentation of complex aspect weavers and existence of various DSLs, which significantly
increases initial overhead. Fortunately, the tools are reusable among projects, which
utilizes the efforts. Empirical studies show that aspect-oriented designs tend to higher
stability and lower impact of change requests [49].

Considering the impact of the approach, the most significant benefit is decoupling
of the concerns and places of their use, which eliminates repetition of definitions of the
concerns (Problem 1). It locates the concerns in the repository and defines composition
rules and references into the repository, instead (Problem 3). Then, utilization of the
AOP is responsible for runtime context-aware weaving (Problem 4). Furthermore, rep-
resented concerns are vertically transformed into various technologies and languages in
order to make them reusable in all components, layers, and environments (Problem 2).
As a result, the approach claims removal of both horizontal and vertical repetitions of

the concerns and saves a significant amount of source code (Problem 5).

7.3.2 Results of the Case Study

To compare the considered approaches and evaluate the ADD in the context of alter-
native conventional development approaches, consider a small issue tracking system.

The case study measures concerns repetition, maintenance efforts, and SLOCS. All

8Source Lines of Code

118

Table 7.3: SLOC efficiency of conventional approaches to EIS development

Component Naive Java EE (010) ADD
Domain Model* 198 225 198 193
Domain Layer 304 260 283 216
Presentation Layer® 207 224 207 207
Presentation Layer® 794 771 794 422
Other 0 89 209" 273F

A Including annotations. D Custom annotations.

B Only in Java files, i.e., backing beans. ¥ Validators implementing business rules.

€ Only in XML files, i.e., UI description. ¥ Business rules in a DSL.

four implemented approaches use Java EE 6 platform with JavaServer Faces 2.1 for
the Ul Next, Java EE implementation uses Rich Faces for implementation of the Ul,
which provides partial reuse of model constraints. The ADD implementation uses first
generation of a library partially implementing the approach with JBoss Drools 6 as a
DSL for business rules description. Unfortunately, the version of the library is neither
production-ready nor uses a DSL implementing all the requirements from Chapter 5.
However, this proof of the concept implementation is sufficient for the purpose of this
case study. In addition, the ADD uses extended implementation of AspectFaces?, which
implements the ADD composition of the Ul

The case study focuses on the domain layer and the presentation layer, as none
of the other approaches but the ADD provides any simplification of the data layer.
Furthermore, comparing to the original results published in [A.11], these results also
consider implementation of the UI using the ADD, which was delivered later after the
paper publication. Considering the issue tracking system, the case study identifies 33
business operations restricted by 116 constraints including model invariants, and with
14 different views implemented exposing all 33 business operations.

Table 7.3 shows differences among the approaches in the SLOC metric. While
the object-oriented implementation seems almost identical to the naive implementa-
tion, the numbers does not show qualitative differences. As the naive implementation
restates the concerns such as business rules, the object-oriented implementation encap-
sulates the concerns in objects (209 lines of code) and repeats only references to these
objects. Therefore, although SLOC analysis does not show any significant differences,
maintenance of the object-oriented implementation is significantly easier.

The Java EE implementation reduces the SLOC in the domain layer by 14,5 % in
trade off increased SLOC in the domain model by 13,5%. It results from movement of
business rules from executable code into declarative annotations over the model and

business operations. In consequence, while the total SLOC is similar, maintenance

9http:/ /aspectfaces.com

119

Table 7.4: Occurrence of business rules in approaches to EIS development

Constraints Naive Java EE 0]0) ADD
In model® 0 27 0 0

In SQL® 38 38 38 0

In business operations® 78 3/56P 62F 0/33F
In UT (Java)© 0 17 0 0/14%
In UI (XML)H 183 160 183 0/14%
Other 0 121 157 116/33K

A Annotations above fields and referenced validators.

B Constraints in SQL to retrieve data from the database.

© Constraints in bodies of business operations.

D If conditions/annotations over methods and parameters
E Including business rules in non-reusable validators.

F Constraints/annotations or tags referencing the context.
G Only in Java files, i.e., backing beans.

H Only in XML files, i.e., UI description.

I Reusable annotations representing constraints.

7 Reusable validators.

K Number of rules/contexts in domain-specific language.

of both approaches is different. The Java EE implementation does not repeat the
implementation of the concerns, e.g., does not repeat actual Java conditions in business
rules, but uses declarative programming to abstract over it. Consequently, while this
approach is slightly less error-prone due to hidden and reused implementation details,
the concerns are still manually restated. Similarly, in the UI, Rich Faces reuses only
some of model invariants, complex or contextual rules are not supported. Therefore,
they must be manually implemented, i.e., repeated. Finally, the SLOC and amount of
repetitions is similar, maintenance of source code is significantly different.

The most significant difference is among the aspect-driven implementation and
the other implementations. The ADD has the lowest SLOC in all considered com-
ponents. It indicates the reduction in the domain layer by 17,5 %, 14,6 %, and 13,9
% relative to the naive, Java EE, and object-oriented implementation, respectively.
While the absolute values are small as the domain model consists of only four classes,
scaling the results to much bigger models, and the reduction is significant. It results
from extraction of the concerns in to the separate files and the repository. Table 7.3
shows significant SLOC dedicated specifically to business rules, the other concerns
are included in the presentation layer. Furthermore, considering inefficiency of the
used Drools language and its significant overhead, the reduction would be even greater
having a more efficient language tailored for the ADD.

Unfortunately, the SLOC analysis does not show repetitions and occurrences of

the concerns in source code. Therefore, Table 7.4 provides summary of business rules

120

occurrence in the source code. First, it would be very difficult to count all concerns
because some of them might be difficult to measure. Second, while the ADD facilitates
the concerns separation and automated composition for all the concerns, the other
approaches mostly only support business rules. Therefore, counting also other concerns
would be inaccurate and strongly advantageous for the ADD. Instead, counting only
business rules is accurate and not biased as their representation is optimized by all
implementations but the naive.

Consider Table 7.4. The naive implementation is the worst case; there are no
efforts devoted to avoiding repetitions. The results show inconvenient distribution
of the concern throughout the all layers for all but the aspect-driven implementation.
Although, the Java EE implementation with the extension partially deals with business
rules, it still leaves many constraints uncovered and tangled into code base, especially
in the UI due to limited support of business rules reuse in Rich Faces.

The object-oriented implementation slightly improves the naive implementation as
it does not restate the constraint semantics, i.e., how to validate it, anymore. However,
it repeats invocation of validators, i.e., constraint references, which is still tedious and
error-prone as some occurrences are easy to overlook. Therefore, aggregated validators
encapsulate invocation of all partial validators in order to reduce repetitions of the
validators. However, it does not impact this case study much as it is too small for
this kind of optimization. Furthermore, this optimization of business rules is limited to
the domain layer because it is challenging to have the validators automatically trans-
formed into other technology. Therefore, considering validation in the UI, it results in
either redefinition of validators or manual repetition of business rules, which is more
convenient solution in this case study.

The results confirm that the aspect-driven implementation locates all business
rules in the repository as there are no repetitions throughout the system. Further-
more, it repeats neither the invocations nor the rules definitions; it only addresses
decoupled business contexts to denote rules to apply. Therefore, considering the ta-
ble, the contexts are referenced via annotations in Java and tag attributes in XML in
JavaServer Faces. Unfortunately, due to limited implementation of the requirements
from Chapter 5 in JBoss Drools language, there are significant repetitions in business
rules definitions. It results from limited context composition, which is one of the essen-
tial requirements for efficient representation of business rules. However, this limitation
and all repetitions can be avoided by using a DSL tailored specifically for the ADD. In
conclusion, it seems the ADD seems is efficient, although, there is no production-ready
implementation to confirm these claims in a large scale case study.

Finally, considering maintenance efforts, the important criteria are 1) high concerns
cohesion, 2) low or no manual repetition of concerns, 3) the fewest possible places

to edit, and 4) the simplest implementation of business logic without any additional

121

Table 7.5: McCabe cyclomatic complexity in the domain layer

Metric Naive Java EE (010) ADD
Average complexity 3.18 1.09 1 1
Highest complexity 12 2 1 1
Total complexity 105 36 33 33

context validations. Looking into the results in Table 7.4, the naive implementation is
very difficult to maintain. There is high concerns repetition as the code contains 299
business rules while the system domain declares only 116, i.e., increasing to 258 %.
Furthermore, business rules are tangled throughout multiple different technologies.
This correlates with the method complexity measurement reported in Table 7.5, which
shows that every method contains a sequence of if-statements.

The Java EE implementation slightly reduces repetitions, but the number of tech-
nologies is increased by Java annotations representing another place to consider. A
strong aspect of this approach lies in delegation of the rules semantics to a validation
processor scanning the annotations, which reduces error-proneness. Unfortunately, it
is quite difficult to implement a custom annotation, which may result in distribution
of business rules among annotations and method bodies, instead. This limitation is
visible in Table 7.5, which shows that there exist conditions captured inside of methods.

Although the measurement of concern repetitions in the object-oriented implemen-
tation suggests no improvement, Table 7.5 confirms a significant reduction of cyclomatic
complexity and encapsulation of constraints in singleton validators. All if-statements
related to input and context validation are moved into easily testable validator objects.
Basically, the idea is similar to Java EE annotations but the implementation is less
declarative and simpler to implement. To reduce maintenance efforts, the results of
the case study suggest combination the Java EE and object-oriented principles and use
of validators, where annotations are too difficult to implement.

Considering the results, the most efficient implementation seems to be the ADD,
as it reduces all repetitions, complexity, and the number of technologies with constraint
distribution. However, it tangles names of business contexts throughout source code,
i.e., references into the repository, to decouple definition and use of the concerns.

In conclusion, although the measurements confirm claimed benefits of the ADD and
show it to be the most effortless implementation with easy maintenance, all implemen-
tations introduce some overhead. In case of the extended Java EE implementation, it
is necessary to design custom annotations and their executors, the object-oriented im-
plementation uses custom validators, and the ADD is a large platform itself with a set
of DSLs and aspect weavers. Fortunately, although all these components are complex,
they are reusable across projects and the initial efforts can be utilized over multiple

projects. However, considering all qualities of the implementations, each of them will

122

perform the best in a different scenario. While the ADD fits large context-aware sys-
tems with a complex business domain, a large development team, and various domain
experts, the other implementations better fit needs of small and medium projects.
Although they do not deliver the top quality source code, overall efforts, i.e., initial
overhead plus development and maintenance efforts, are lower comparing to the high

initial overhead and complex structure of the ADD implementation.

7.4 Summary

While the aspect-driven development claims its qualities, they must be evaluated in
a wider context to confirm these claims, additional qualities, and overall efficiency.
Therefore, this chapter presented the most significant results gathered during the re-
search presented in this thesis. While complete and detailed results are elaborated in
the papers summarized at the beginning of this chapter, this chapter delivered a proof
of the concept demonstrating implementation of the ADD approach into design and
development of an Ul, compared efficiency of the approach to alternative conventional
approaches to software development, which fulfils Objective 3 of this thesis. The results
confirm claimed benefits such as efficient separation of concerns, and their automated
transformation and context-aware reuse. They show successful removal of manual rep-
etitions from source code as well as eased concerns maintenance focused into the single
point of the truth. However, the results also confirm significant initial overhead of the
approach and requirement of complex production-ready tools to be able to deploy the
ADD into a real production system.

The implementation of the approach into design of an UI demonstrates feasibil-
ity of the approach and allows conducting of expertise to evaluate its qualities. The
proof of the concept show efficient separation and description of the concerns, while
it emphasizes the need for complex tools and languages. It also suggests existence of
significant mental barrier as the ADD changes the architecture, code organization, and
possibly also the development process.

Quantitative evaluation of the approach shows significant code reduction and ef-
forts comparing to conventional development, which results from automated transfor-
mation and reuse of the concerns. However, the case study demonstrates high initial
efforts, which significantly reduces efficiency of the approach for small and medium
projects. Although the tools such as aspect weavers are reusable across projects.

Finally, the comparison of the aspect-driven implementation to conventional ap-
proaches to EIS design and development confirms assumptions make in this summary.
The results show overall efficiency of the ADD for large, complex, and long-running
projects with a complex business domain, but also demonstrate high initial overhead

and requirement of complex tools, which basically make the ADD unusable with small

123

and medium projects. On the other hand, the other approaches are more suitable to
small and medium systems, despite being less efficient. The optimization they perform
is sufficient and outweighed by lower overhead and easier use.

In conclusion, although the conducted case studies are small, they confirm both
claimed benefits and limitations of the ADD, evaluate its qualities, and fulfil Objective 3
of this thesis. The results show efficient separation of concerns and removal of both
vertical and horizontal repetitions, which are problems identified in Chapter 1 and
addressed by Objectives 1 and 2. Furthermore, while the ADD definition in Chapter 4
assumes the Anemic Domain Model, [A.9] discusses and evaluates deployment of the
approach into design of a system with the Rich Domain Model. Next, while the third
case study in this chapter only considers conventional approaches to development of
an EIS, there also exist advanced and more sophisticated approaches. Unfortunately,
conducting of a case study with these approaches puts higher demands on used tools
such as DSLs and aspect weavers, which are not ready yet. Therefore, such a case

study as well as a large production-size case study are left for future work.

124

Chapter 8
Conclusion

Conventional approaches to design and development of enterprise information systems
reach their limits, since the scale of systems, complexity of business processes, and
volume of maintained data continuously grow. Separation, representation, and auto-
mated reuse of cross-cutting concerns belong among major challenges in contemporary
systems. While the amount of maintained data and complexity of business processes
visibly grow with requirements, complexity and amount of business rules, organization
of layouts in a user interface, and the number of views in mobile and web applica-
tions grow silently since these cross-cutting concerns do not fulfill a prime objective
of a system. The concerns cross-cut throughout multiple system layers, components,
and technologies, are orthogonal to each other, and compose a multidimensional space,
which makes their separation and reuse difficult and challenging. Unfortunately, con-
ventional approaches force developers to manually linearize the multidimensional space,
which leads to significant code duplication and information restatement. Subsequently,
such code tends to inconsistencies, and its highly error-prone maintenance requires sig-
nificant efforts. As such, this thesis addressed the separation of concerns in enterprise
information systems, and proposed a novel approach to design and development of

these systems, which deals with this challenge.

8.1 Contribution of the Thesis

Chapter 1 identified problems arising from limited support of separation of concerns
in contemporary implementations. Code tangling, manual information repetition, and
absence of central maintenance of concerns in a system result in significant increase
of development and maintenance efforts. Considering the usual utilization of various
technologies, high error-proneness caused by significant tendency to inconsistencies is a
direct consequence of manual information repetition. Consequently, limited support of
separation of concerns significantly impacts such a system, degenerates its architecture,

and increases the costs of the entire system. This thesis introduced of a novel approach

125

to design and development of enterprise information systems addressing separation of
concerns and identified problems, which also emphasizes the role of business rules. In

order to evaluate contribution of this thesis, consider the objectives set in Section 1.3:

Objective 1: Define a novel approach addressing separation of concerns
The aspect-driven development approach defined in Chapter 4 introduces a new
component into system architecture in order to maintain models of cross-cutting con-
cerns in the single point of the truth (Problem 3). These usually platform-independent
models are described independently in domain-specific languages, which removes con-
cerns tangling (Problem 1), removes manual information repetition, and reduces de-
velopment and maintenance efforts since it enables involvement of domain experts
(Problem 5). Then, the concerns are transformed with forward transformation rules
into target technologies (Problem 2), and weaved together at runtime, which enables
context-aware decisions considering the execution context (Problem 4). Consequently,
while the approach is complex, it utilizes multiple existing approaches in order to

address the separation of concerns and identified problems.

Objective 2: Propose a mechanism reusing business rules in a system

The aspect-driven development approach recognizes business rules among cross-
cutting concerns in Chapter 4, which enables their separation and context-aware reuse
by design. Although, complexity of the concern makes its representation challenging.
Chapter 5 defined requirements for business rules representation in order to enable
their context-aware evaluation (Problem 4), and discussed options of the concern reuse
raised from its separation and efficient representation. A domain-specific language may
seem to be efficient representation of business rules, suitable for both development and
domain experts, however, there exists no language meeting the requirements. And
since designing a new language is a challenge itself and requires significant background
study and subsequent evaluation, it is left for future work. In consequence, Chapter 5

concluded with a brief example of a language used for evaluation of the approach.

Objective 3: Evaluate the impact of the approach on system design

While the aspect-driven development approach is generic and agnostic to an ar-
chitecture and a technology, Chapter 6 proposed its implementation into design of the
layered architecture, discussed its utilization in distributed environments with native
applications for mobile devices, and refined it for the distributed service-oriented ar-
chitecture. Provided examples demonstrate efficient separation and reuse of concerns,
which addresses Problems 1 to 5 and includes reuse of business rules. Chapter 7 pre-
sented conducted case studies and proofs of the concept in order to compare the impact
of the approach on a system design to conventional development. The results indicate
significantly reduced information repetitions (Problem 3), volume of source code, and

development and maintenance efforts (Problem 5). Unfortunately, the approach comes

126

with a significant initial barrier. The conduced case study showed that while less effi-
cient approaches are well suited for small projects, large projects significantly benefit
from the aspect-driven development and utilize the initial efforts.

In conclusion, this thesis contributes to the state of the art with the aspect-driven
development approach, which can be utilized in design of enterprise information sys-
tems. The approach addresses identified problems and set objectives of this thesis, and
provides an efficient mechanism for separation and context-aware reuse of cross-cutting
concerns in trade of a significant initial barrier. While utilization of component-specific
aspect weavers reduces efforts, and domain-specific languages are friendly to domain
experts, their implementation requires significant investment, which limits efficiency
of the approach in small projects. Fortunately, both languages and components are

project-agnostic, which makes them reusable and utilizes the efforts.

8.2 Future work

Although the design and evaluation of the approach suggest promising results, there
are left some challenges for future work. Design and implementation of a domain-
specific language for business rules representation is essential for further evaluation of
the approach as well as production-ready implementation of aspect-weavers for common
components, architectures, and technologies. Then, it is essential to conduct a large
case study and implement the approach into a real system in order to evaluate it in
production environment and confirm claimed benefits and limitations.

The separated concerns open wide range of options to their further reuse. Some
options are discussed at the end of Chapter 5, for example, reasoning over business
rules is beneficial testing activity, which detects cycles or infeasible business contexts.
Automated reasoning potentially leads to automated formal verification against a prod-
uct specification, since the context are transformable into a formal language. Existing
research already shows utilization of the concerns in generation of business documen-
tation, which let domain experts review current implementation of a system.

While this thesis discusses utilization of the approach in the service-oriented archi-
tecture, its evolved derivations such as Microservices deal with different assumptions
and qualities. The future work includes implementation of the approach into other
distributed architectures to determine the benefits and evaluate the efficiency.

Finally, while the approach is tailored for enterprise architectures and large infor-
mation systems, the Internet of Things also deals with large number of controllers, thus
suffer from similar challenges as the service-oriented architecture. While implementa-
tion of the approach must be efficient, its utilization can detect similar controllers, find

inconsistencies, and enable concerns reuse.

127

Bibliography

[1]

P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta. Agile Software Devel-
opment Methods: Review and Analysis. In Proceedings of ESPOO 2002. 2002,
pages 3-107.

O. Alam, J. Kienzle, and G. Mussbacher. Concern-oriented Software Design.
In International Conference on Model Driven Engineering Languages and Sys-

tems. Springer. 2013, pages 604—621.
S. W. Ambler. Mapping Objects to Relational Databases. AmbySoft, 2000.

T. Andrews, F. Curbera, H. Dholakia, Y. Goland, et al. Business Process
Execution Language for Web Services, 2003.

M. Baldauf, S. Dustdar, and F. Rosenberg. A Survey on Context-aware Sys-
tems. In International Journal of Ad Hoc and Ubiquitous Computing. Volume 2.
Number 4. Inderscience Publishers. 2007, pages 263-277.

C. Bauer and G. King. Hibernate in Action. Manning Publications Co., 2005.

O. Ben-Kiki, C. Evans, and B. Ingerson. Yaml Ain’t Markup Language YAMLT™
Version 1.1. Technical Report, 2005.

E. Bernard, S. Peterson, et al. JSR 303: Bean validation. Java Community
Process, 2009.

G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley, 1999.

M. Brock et al. MVEL Expression Language. Awvailable at http: / / moel.

document-node.com/, 2001.
P. Browne. JBoss Drools Business Rules. Packt Publishing Ltd., 2009.
A. Buckley et al. JSR 175: A Metadata Facility for the Java™ Programming

Language. Java Community Process, 2004.

E. Burns and R. Kitain. JSR 314: JavaServer Faces 2.0. Java Community
Process, 2010.

R. P. Buse and W. R. Weimer. Learning a Metric for Code Readability. In
IEEFE Transactions on Software Engineering. IEEE. 2010, pages 546-558.

http://mvel.document-node.com/
http://mvel.document-node.com/

128

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

T. Cerny and M. J. Donahoo. How to Reduce Costs of Business Logic Mainte-
nance. In Computer Science and Automation Engineering (CSAE). Volume 1.
IEEE. 2011, pages 77-82.

T. Cerny and M. J. Donahoo. On Separation of Platform-Independent Particles
in User Interfaces. In Cluster Computing. Springer. 2015, pages 1215-1228.

T. Cerny, M. J. Donahoo, and E. Song. Towards Effective Adaptive User Inter-
faces Design. In Proceedings of the 2013 Research in Adaptive and Convergent
Systems. ACM. 2013, pages 373—-380.

T. Cerny, M. Macik, M. J. Donahoo, and J. Janousek. On Distributed Con-
cern Delivery in User Interface Design. In Computer Science and Information
Systems. Volume 12. Number 2. 2015, pages 655-681.

R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana. Web Services De-
scription Language (WSDL) Version 2.0 Part 1: Core Language. W3C' Recom-
mendation, 26, 2007.

M. Chinosi and A. Trombetta. BPMN: An Introduction to the Standard.
In Computer Standards € Interfaces. Volume 34. Number 1. Elsevier. 2012,
pages 124-134.

[. Choi. A Study on Rule Separation Based on AOP for an Efficient Service
System. In Pacific Science Review A: Natural Science and Engineering. Vol-
ume 17. Number 2. Elsevier. 2015, pages 51-60.

Y. K. Choi, J. S. Yang, and J. Jeong. Application Framework for Multi Plat-
form Mobile Application Software Development. In Advanced Communication
Technology, 2009. ICACT 2009. 11th International Conference On. Volume 1.
IEEE. 2009, pages 208-213.

K. Chung et al. JSR 245: JavaServer™ Pages. Java Community Process, 2006.
M. A. Cibran, M. D’hondt, and V. Jonckers. Aspect-Oriented Programming for

Connecting Business Rules. In Proceedings of the 6th International Conference

on Business Information Systems. Volume 6. Number 7. 2003.

K. Czarnecki, U. W. Eisenecker, and K. Czarnecki. Generative Programming:
Methods, Tools, and Applications, volume 16. Addison-Wesley, 2000.

L. Da Xu. Enterprise Systems: State of the Art and Future Trends. In /[EEE
Transactions on Industrial Informatics. IEEE. 2011, pages 630-640.

L. DeMichiel. JSR 317: Java™ Persistence API, version 2.0. Java Community
Process, 2009.

L. DeMichiel, W. Shannon, et al. JSR 366: Java™ Platform, Enterprise Edition
8 (Java EE 8) Specification. Java Community Process, 2017.

129

[29]

[30]

[31]

[36]

[37]

[38]

[40]

[41]

B. Demuth, H. Huffimann, and S. Loecher. OCL as a Specification Language
for Business Rules in Database Applications. In International Conference on
the Unified Modeling Language. Springer. 2001, pages 104—117.

N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, et al. Microservices:
Yesterday, Today, and Tomorrow. In Present and Ulterior Software Engineer-

ing. Springer. 2017, pages 195-216.

W. J. Dzidek, E. Arisholm, and L. C. Briand. A Realistic Empirical Eval-
uation of the Costs and Benefits of UML in Software Maintenance. In IEEFE
Transactions on Software Engineering. Volume 34. IEEE. 2008, pages 407-432.

M. Eaddy, T. Zimmermann, K. D. Sherwood, V. Garg, et al. Do Crosscut-
ting Concerns Cause Defects? In IEEE Transactions on Software Engineering.
Volume 34. Number 4. IEEE. 2008, pages 497-515.

M. Endrei, J. Ang, A. Arsanjani, S. Chua, et al. Patterns: Service-Oriented
Architecture and Web Services. IBM Corporation, International Technical Sup-

port Organization, 2004.

H. Ferentschik, G. Morling, and G. Smet. Hibernate Validator 6 - JSR 380
Reference Implementation: Reference Guide. Red Hat Middleware, 2018.

J. I. Fernandez Villamor, C. A. Iglesias Fernandez, and M. Garijo Ayestaran.
Microservices: Lightweight Service Descriptions for REST Architectural Style.
In Proceedings of the International Conference on Agents and Artificial Intelli-
gence. INSTICC, Institute for Systems, Technologies of Information, Control,

and Communication. 2010.

R. T. Fielding. Architectural Styles and the Design of Network-Based Software
Architectures. PhD thesis, University of California, Irvine, 2000.

R. Filman, T. Elrad, S. Clarke, and M. Aksit. Aspect-Oriented Software De-
velopment. Addison-Wesley, 2004.

C. L. Forgy. Rete: A Fast Algorithm for the Many Pattern/Many Object Pat-
tern Match Problem. In Readings in Artificial Intelligence and Databases. El-
sevier. 1988, pages 547-559.

A. Forward and T. C. Lethbridge. The Relevance of Software Documentation,
Tools and Technologies: A Survey. In Proceedings of the 2002 ACM Symposium
on Document Engineering. ACM. 2002, pages 26-33.

M. Fowler. Anemic Domain Model. Awailable at https:// martinfowler.com/
bliki/ AnemicDomainModel.html, 2003. [Accessed on January 12, 2019].

M. Fowler. Domain-Specific Languages. Addison-Wesley, 2010.

https://martinfowler.com/bliki/AnemicDomainModel.html
https://martinfowler.com/bliki/AnemicDomainModel.html

130

[42]

[43]

[44]

[45]

[47]
[48]

[49]

[54]

[55]

[56]

[57]

M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley,
2002.

M. Fowler and K. Beck. Refactoring: Improving the Design of Fxisting Code.
Addison-Wesley, 1999.

M. Fowler and J. Lewis. Microservices. Awailable at hitps:// martinfowler.

com/ articles/microservices.html, 2014. [Accessed on January 12, 2019].

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1994.

D. Garlan and M. Shaw. An Introduction to Software Architecture. In Advances
in Software Engineering and Knowledge Engineering. World Scientific. 1993,
pages 1-39.

D. Ghosh. DSLs in Action. Manning Publications Co., 2010.

R. E. Giachetti. Design of Enterprise Systems: Theory, Architecture, and Meth-
ods. CRC Press, 2016.

P. Greenwood, T. Bartolomei, E. Figueiredo, et al. On the Impact of Aspec-
tual Decompositions on Design Stability: An Empirical Study. In European
Conference on Object-Oriented Programming. Springer. 2007, pages 176-200.

M. J. Hadley. Web Application Description Language (WADL), 2006.

D. Hay, K. A. Healy, J. Hall, et al. Defining Business Rules - What Are They
Really?, 2000.

F. Hayes-Roth. Rule-Based Systems. In Communications of the ACM. Vol-
ume 28. Number 9. ACM. 1985, pages 921-932.

I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, et al. SWRL: A Se-
mantic Web Rule Language Combining OWL and RuleML. In W3C'" Member

submission. Volume 21. 2004.

P. Hudak. Domain-Specific Languages. In Handbook of Programming Lan-
guages. Volume 3. Number 39-60. 1997.

A. Hunt and D. Thomas. The Pragmatic Programmer: From Journeyman to
Master. Addison-Wesley, 2000.

I. Jacobson, G. Booch, J. Rumbaugh, J. Rumbaugh, et al. The Unified Software
Development Process, volume 1. Addison-Wesley, 1999.

S. K. Johnson and A. W. Brown. A Model-Driven Development Approach to
Creating Service-Oriented Solutions. In International Conference on Service-

Oriented Computing. Springer. 2006, pages 624—636.

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

131

[60]

[61]

[62]

[63]

[64]

S. Kelly and J. P. Tolvanen. Domain-Specific Modeling: Enabling Full Code
Generation. John Wiley & Sons, 2008.

R. Kennard, E. Edmonds, and J. Leaney. Separation Anxiety: Stresses of De-
veloping a Modern Day Separable User Interface. In Human System Interac-
tions. HSI'09. 2nd Conference on. IEEE. 2009, pages 228-235.

R. Kennard and J. Leaney. Towards a General Purpose Architecture for Ul
Generation. In Journal of Systems and Software. Volume 83. Number 10. El-
sevier. 2010, pages 1896-1906.

R. Kennard and R. Steele. Application of Software Mining to Automatic User
Interface Generation. In International Conference on Software Methods and
Tools. 10S Press. 2008.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, et al. Aspect-Oriented
Programming. Springer, 1997.

A. G. Kleppe, J. B. Warmer, and W. Bast. MDA Ezplained, The Model Driven
Architecture: Practice and Promise. Addison-Wesley, 2003.

G. Knolmayer, R. Endl, and M. Pfahrer. Modeling Processes and Workflows by

Business Rules. In Business Process Management. Springer. 2000, pages 16-29.

V. Kulkarni and S. Reddy. Separation of Concerns in Model-Driven Develop-
ment. In IEEE Software. Volume 20. Number 5. IEEE. 2003, pages 64-69.

R. Laddad. AspectJ in Action: Enterprise AOP with Spring Applications. Man-
ning Publications Co., 2009.

C. Larman. Applying UML and Patterns: An Introduction to Object Oriented
Analysis and Design and Iterative Development. Prentice Hall, 2005.

S. Leblanc, G. Mussbacher, J. Kienzle, and D. Amyot. Narrowing the Gaps
in Concern-Driven Development. In Model-Driven Requirements Engineering
Workshop (MoDRE), 2012 IEEE. IEEE. 2012, pages 19-28.

M. Lorenz and J. Kidd. Object-Oriented Software Metrics: A Practical Guide.
Prentice Hall, 1994.

R. C. Martin. Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall, 2002.

E. Al-Masri and Q. H. Mahmoud. Discovering the Best Web Service. In Pro-
ceedings of the 16th International Conference on World Wide Web. ACM. 2007,
pages 1257-1258.

M. Mernik, J. Heering, and A. M. Sloane. When and How to Develop Domain-
Specific Languages. In ACM Computing Surveys (CSUR). Volume 37. Num-
ber 4. ACM. 2005, pages 316-344.

132

[73]

[31]

A. Mesbah and A. Van Deursen. Crosscutting Concerns in J2EE Applications.
In Proceedings of the Seventh IEEE International Symposium on Web Site
Evolution. IEEE. 2005, pages 14-21.

B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1988.

R. Mordani et al. JSR 250: Common Annotations for the Java™ Platform.

Java Community Process, 2006.

A. Moreira, A. Rashid, and J. Araujo. Multi-Dimensional Separation of Con-
cerns in Requirements Engineering. In Proceedings oF' 13th IEEE International
Conference on Requirements Engineering (RE’05). IEEE. 2005, pages 285-296.

T. Morgan. Business Rules and Information Systems: Aligning IT with Busi-
ness Goals. Addison-Wesley, 2002.

B. Morin, O. Barais, J. M. Jezequel, F. Fleurey, et al. Models at Runtime to
Support Dynamic Adaptation. In Computer. IEEE. 2009, pages 44-51.

G. Morling. JSR 380: Bean Validation 2.0. Java Community Process, 2017.

S. Muthanna, K. Kontogiannis, K. Ponnambalam, and B. Stacey. A Maintain-
ability Model for Industrial Software Systems Using Design Level Metrics. In
Proceedings Seventh Working Conference on Reverse Engineering. IEEE. 2000,
pages 248-256.

L. Nemuraite, L. Ceponiene, and G. Vedrickas. Representation of Business
Rules in UML&OCL Models for Developing Information Systems. In IFIP
Working Conference on The Practice of Enterprise Modeling. Springer. 2008,
pages 182-196.

M. Odersky, L. Spoon, and B. Venners. Programming in Scala. Artima, 2008.

H. Ossher and P. Tarr. Multi-Dimensional Separation of Concerns and the
Hyperspace Approach. In Software Architectures and Component Technology.
Springer, 2002, pages 293-323.

M. P. Papazoglou. Service-Oriented Computing: Concepts, Characteristics and
Directions. In Proceedings of the Fourth International Conference on Web In-
formation Systems Engineering. IEEE. 2003, pages 3—12.

S. Penchikala. Domain Driven Design and Development in Practice. Available
at hitps: // www. infoq. com / articles / ddd - in - practice, 2008. [Accessed on
January 12, 2019].

R. Perrey and M. Lycett. Service-Oriented Architecture. In Proceedings of
the 2003 Symposium on Applications and the Internet Workshops (SAINT 03
Workshops). IEEE. 2003, pages 116-119.

https://www.infoq.com/articles/ddd-in-practice

133

[87]

[38]

[89]

[92]

[93]

[94]

[95]

[96]

100]

[101]

M. Potel. MVP: Model-View-Presenter the Taligent Programming Model for
C++ and Java. Taligent Inc, 1996.

W. Pree. Design Patterns for Object-Oriented Software Development. Addison-
Wesley, 1994.

E. Putrycz and A. W. Kark. Connecting Legacy Code, Business Rules and
Documentation. In Rule Representation, Interchange and Reasoning on the
Web. Springer, 2008, pages 17-30.

A. Rahmani, V. Rafe, S. Sedighian, et al. An MDA-Based Modeling and De-
sign of Service Oriented Architecture. In Proceedings of the 6th International

Conference on Computational Science. Springer. 2006, pages 578-585.
J. Rao and X. Su. A Survey of Automated Web Service Composition Meth-

ods. In International Workshop on Semantic Web Services and Web Process

Composition. Springer. 2004, pages 43-54.

M. P. Robillard and G. C. Murphy. Representing Concerns in Source Code.
In ACM Transactions on Software Engineering and Methodology (TOSEM).
Volume 16. Number 1. ACM. 2007. por: 10.1145/1189748.1189751.

F. Rosenberg and S. Dustdar. Business Rules Integration in BPEL - A Service-
Oriented Approach. In Proceedings of the Seventh IEEE International Confer-
ence on E-Commerce Technology. IEEE. 2005, pages 476-479.

R. G. Ross. The Business Rule Book: Classifying, Defining and Modeling Rules.
Business Rule Solutions, 1997.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, et al. Object-Oriented Mod-
eling and Design. Prentice Hall, 1991.

J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual. Addison-Wesley, 2004.

M. Salatino, M. De Maio, and E. Aliverti. Mastering JBoss Drools 6. Packt
Publishing Ltd., 2016.

D. C. Schmidt. Model-Driven Engineering. In Computer. IEEE. 2006.

S. Sendall and W. Kozaczynski. Model Transformation: The Heart and Soul of
Model-Driven Software Development. In IEEE Software. Volume 20. Number 5.
[EEE. 2003, pages 42-45.

J. Shao and C. Pound. Extracting Business Rules from Information Systems.
In BT Technology Journal. Volume 17. Springer. 1999, pages 179-186.

A. Sill. The Design and Architecture of Microservices. In IEEE Cloud Com-
puting. Volume 3. Number 5. IEEE. 2016, pages 76-80.

https://doi.org/10.1145/1189748.1189751

134

[102]

103]

[104]

[105]

[106]

107]

[108]

[109]

[110]

[111]

112]

[113]

S. Smith et al. Common Web Application Architectures. Available at https:
/ / docs. microsoft. com / en-us / dotnet / standard / modern - web- apps - azure -

architecture / common-web- application- architectures, 2018. [Accessed on Jan-
uary 12, 2019].

D. Spiewak and T. Zhao. ScalaQL: Language-Integrated Database Queries for
Scala. In International Conference on Software Language Engineering. Springer.
2009, pages 154-163.

M. Stoerzer and S. Hanenberg. A Classification of Pointcut Language Con-
structs. In Workshop on Software-Engineering Properties of Languages and
Aspect Technologies. ACM. 2005.

P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton Jr. N Degrees of Sepa-
ration: Multi-Dimensional Separation of Concerns. In Proceedings of the 21st

International Conference on Software Engineering. ACM. 1999, pages 107-119.

B. Theodoulidis and A. Youdeowei. Business rules: Towards Effective Infor-
mation Systems Development. In Business Information Systems - Uncertain
Futures. 2000, pages 313-321.

M. Thorpe and C. Ke. Simple Rule Markup Language (SRML): A General
XML Rule Representation for Forward-Chaining Rules. In XML Coverpages.
2001.

J. Vanderdonckt. A MDA-Compliant Environment for Developing User Inter-
faces of Information Systems. In International Conference on Advanced Infor-

mation Systems Engineering. Springer. 2005, pages 16-31.

M. Villamizar, O. Garcés, H. Castro, M. Verano, et al. Evaluating the Mono-
lithic and the Microservice Architecture Pattern to Deploy Web Applications

in the Cloud. In Proceedings of the 10th Computing Colombian Conference.
IEEE. 2015, pages 583-590.

M. Voelter, S. Benz, C. Dietrich, et al. DSL Engineering: Designing, Imple-
menting and Using Domain-Specific Languages. Dslbook.org, 2013.

M. Voelter, J. Siegmund, T. Berger, and B. Kolb. Towards User-Friendly Pro-
jectional Editors. In International Conference on Software Language Engineer-
ing. Springer. 2014, pages 41-61.

M. Wand, G. Kiczales, and C. Dutchyn. A Semantics for Advice and Dynamic

Join Points in Aspect-Oriented Programming. In ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS). ACM. 2004, pages 890-910.

X. Wang, J. Sun, X. Yang, S. Maddineni, et al. Business Rules Extraction
from Large Legacy Systems. In Proceedings of the 8th European Conference on
Software Maintenance and Reengineering. IEEE. 2004, pages 249-258.

https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/common-web-application-architectures
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/common-web-application-architectures
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/common-web-application-architectures

135

[114]

[115]

[116]

[117]

[118]

J. Warmer and A. Kleppe. The Object Constraint Language: Getting Your
Models Ready for MDA. Addison-Wesley, 2003.

A. 1. Wasserman. Software Engineering Issues for Mobile Application Devel-
opment. In Proceedings of the FSE/SDP Workshop on Future of Software En-
gineering Research. ACM. 2010, pages 397-400.

M. Weske. Business Process Management Architectures. In Business Process

Management. Springer. 2012, pages 333-371.

G. Wilson, D. A. Aruliah, C. T. Brown, N. P. C. Hong, et al. Best Practices for
Scientific Computing. In PLoS Biology. Volume 12. Number 1. Public Library
of Science. 2014, €1001745. por: 10.1371 /journal.pbio.1001745.

M. Zur Muehlen and M. Indulska. Modeling Languages for Business Processes
and Business Rules: A Representational Analysis. In Information Systems.
Number 4. Elsevier. 2010, pages 379-390.

https://doi.org/10.1371/journal.pbio.1001745

136

List of Publications

Journals with Impact Factor

[A.1] K. Cemus (65 %), F. Klimes (15 %), O. Kratochvil (10 %), and T. Cerny (10 %).
Separation of Concerns for Distributed Cross-platform Context-aware User
Interfaces. In Cluster Computing. Springer. 2017, pages 2355-2362. DoI: 10.
1007/s10586-017-0794-7. (WoS, Scopus, IF=1.601 (Q2))

Other Refereed Journals

[A.2] K. Cemus (90 %) and T. Cerny (10 %). Automated Extraction of Business
Documentation in Enterprise Information Systems. In ACM SIGAPP Applied
Computing Review. Volume 16. Number 4. ACM. 2017, pages 5-13. DOI: 10.
1145/3040575.3040576. (WoS)

Cited in: [B.6]

[A.3] T. Cerny (25 %), K. Cemus (25 %), M. J. Donahoo (25 %), and E. Song (25 %).
Aspect-driven, Data-reflective and Context-aware User Interfaces Design. In
ACM SIGAPP Applied Computing Review. Volume 13. Number 4. ACM. 2013,
pages 53—66. DOI: 10.1145/2577554.2577561.

Cited in: [B.1, B.12, B.10, B.9, B.2] and 4 more

Conference Papers Excerpted in Web of Science

[A4] K. Cemus (60 %), F. Klimes (30 %), and T. Cerny (10 %). Aspect-driven
Context-aware Services. In Proceedings of the Federated Conference on Com-
puter Science and Information Systems. Volume 11. IEEE. 2017, pages 1307
1314. 1SBN: 978-8-3946-2537-5. DOI: 10.15439/2017F397. (WoS, Scopus)

https://doi.org/10.1007/s10586-017-0794-7
https://doi.org/10.1007/s10586-017-0794-7
https://doi.org/10.1145/3040575.3040576
https://doi.org/10.1145/3040575.3040576
https://doi.org/10.1145/2577554.2577561
https://doi.org/10.15439/2017F397

137

[A.5]

A.6]

[A7]

K. Cemus (50 %), F. Klimes (25 %), O. Kratochvil (15 %), and T. Cerny (10 %).
Distributed Multi-platform Context-aware User Interface for Information Sys-
tems. In Proceedings of the 6th International Conference on IT Convergence
and Security (ICITCS 2016). IEEE. 2016, pages 172-175. 1SBN: 978-1-5090-
3765-0. pot: 10.1109/ICITCS.2016.7740327. (WoS, Scopus)

K. Cemus (90 %) and T. Cerny (10 %). Business Documentation Derivation
from Aspect-driven Enterprise Information Systems. In Proceedings of the In-
ternational Conference on Research in Adaptive and Convergent Systems. 2016,
pages 153-158. 1SBN: 978-1-4503-4455-5. DOI: 10.1145/2987386.2987402. (WoS,

Scopus)
K. Cemus (85 %), T. Cerny (5 %), and M. J. Donahoo (10 %). Automated

Business Rules Transformation into a Persistence Layer. In Procedia Computer
Science. Volume 62. Elsevier. 2015, pages 312-318. DoI: 10.1016/j.procs.2015.
08.391. (WoS, Scopus)

Cited in: [B.5, B.8, B.3]
K. Cemus (75 %) and T. Cerny (25 %). Aspect-driven Design of Information
Systems. In International Conference on Current Trends in Theory and Prac-

tice of Informatics. Springer. 2014, pages 174-186. 1SBN: 978-3-319-04297-8.
DOI: 10.1007/978-3-319-04298-5_16. (WoS, Scopus, CORE B)

Cited in: [B.4, B.9]

Conference Papers Excerpted in Scopus

A.9]

[A.10]

K. Cemus (60 %), T. Cerny (20 %), L. Matl (10 %), and M. J. Donahoo (10 %).
Aspect, Rich, and Anemic Domain Models in Enterprise Information Sys-
tems. In International Conference on Current Trends in Theory and Practice
of Informatics. Springer. 2016, pages 445-456. 1SBN: 978-3-662-49191-1. DOTI:
10.1007/978-3-662-49192-8 36. (Scopus, CORE B)

Cited in: [B.7]

K. Cemus (75 %), T. Cerny (15 %), L. Matl (5 %), and M. J. Donahoo (5 %).
Enterprise Information Systems: Comparison of Aspect-driven and MVC-like
Approaches. In Proceedings of the 2015 Conference on Research in Adaptive
and Convergent Systems. ACM. 2015, pages 330-336. ISBN: 978-1-4503-3738-0.
DOI: 10.1145/2811411.2811477. (Scopus)

Cited in: [B.11]

https://doi.org/10.1109/ICITCS.2016.7740327
https://doi.org/10.1145/2987386.2987402
https://doi.org/10.1016/j.procs.2015.08.391
https://doi.org/10.1016/j.procs.2015.08.391
https://doi.org/10.1007/978-3-319-04298-5_16
https://doi.org/10.1007/978-3-662-49192-8_36
https://doi.org/10.1145/2811411.2811477

138

A.11]

[A.12]

K. Cemus (80 %), T. Cerny (15 %), and M. J. Donahoo (5 %). Evaluation of
Approaches to Business Rules Maintenance in Enterprise Information Systems.
In Proceedings of the 2015 Conference on Research in Adaptive and Convergent
Systems. ACM. 2015, pages 324-329. 1SBN: 978-1-4503-3738-0. por: 10.1145/
2811411.2811476. (Scopus)

T. Cerny (30 %), L. Matl (25 %), K. Cemus (25 %), and M. J. Donahoo (20 %).
Evaluation of Separated Concerns in Web-based Delivery of User Interfaces.
In Lecture Notes in Electrical Engineering - Information Science and Applica-
tions. Volume 339. Springer. 2015, pages 933-940. por: 10.1007 /978-3-662-
46578-3_111. (Scopus)

Other Refereed Conference Papers

[A.13]

[A.14]

[A.15]

K. Cemus (100 %). Context-aware Input Validation in Information Systems.
In POSTER 2016 - 20th International Student Conference on Electrical Engi-
neering. Czech Technical University. 2016, pages 1-5. 1ISBN: 978-80-01-05950-0.

K. Cemus (100 %). Evaluation of Business Rules Maintenance in Enterprise In-
formation Systems. In POSTER 2015 - 19th International Student Conference
on Electrical Engineering. Czech Technical University. 2015, pages 1-5. ISBN:
978-80-01-05499-4.

K. Cemus (95 %) and T. Cerny (5 %). Towards Effective Business Logic De-
sign. In POSTER 2013 - 17th International Student Conference on FElectrical
Engineering. Czech Technical University. 2013. ISBN: 978-80-01-05242-6.

https://doi.org/10.1145/2811411.2811476
https://doi.org/10.1145/2811411.2811476
https://doi.org/10.1007/978-3-662-46578-3_111
https://doi.org/10.1007/978-3-662-46578-3_111

139

Citations

Journals with Impact Factor and Patents

[B.1]

A. Abdyssalam Alhaag, G. Savic, G. Milosavljevic, M. Tima Segedinac, et al.
Executable Platform for Managing Customizable Metadata of Educational Re-
sources. In The Electronic Library. Volume 36. Number 6. Emerald Publishing
Limited. 2018, pages 962-978. por: 10.1108/EL-04-2017-0079. (WoS, Scopus,
IF=0.8 (Q3))

S. Yu and C. Chandra. Ul-driven Model Extensibility in Multi-tier Applica-
tions. In US Patent App. 10/073,604. Google Patents. 2018. (Patent)

G. Villarrubia, J. F. D. Paz, D. H. Iglesia, and J. Bajo. Combining Multi-
agent Systems and Wireless Sensor Networks for Monitoring Crop Irrigation. In
Sensors. Volume 17. Number 8. Multidisciplinary Digital Publishing Institute.
2017, page 1775. por: 10.3390/s17081775. (WoS, Scopus, [F=2.475 (Q2))

K. Santhi, G. Zayaraz, and V. Vijayalakshmi. Resolving Aspect Dependencies
for Composition of Aspects. In Arabian Journal for Science and Engineering.
Volume 40. Number 2. Springer. 2015, pages 475-486. DO1: 10.1007 /s13369-
014-1454-3. (WoS, Scopus, IF=1.092 (Q3))

Other Citations

[B.5]

[B.6]

B. Hnatkowska and T. Gaweda. Automatic Processing of Dynamic Business
Rules Written in a Controlled Natural Language. In Towards a Synergistic
Combination of Research and Practice in Software Engineering. Springer. 2018,

pages 91-103. (Scopus)
M. Muji and D. Bica. Qualitative Metrics For Development Technologies Fval-

uation In Database-driven Information Systems. In Scientific Bulletin of the
Petru Maior University of Targu Mures. Volume 15. Number 2. 2018.

https://doi.org/10.1108/EL-04-2017-0079
https://doi.org/10.3390/s17081775
https://doi.org/10.1007/s13369-014-1454-3
https://doi.org/10.1007/s13369-014-1454-3

140

B.7]

[B.8]

[B.9]

[B.10]

B.11]

B.12]

7. Mushtaq, G. Rasool, and B. Shahzad. Detection of J2EE Patterns Based
on Customizable Features. In International Journal of Advanced Computer
Science and Applications. Volume 8. Number 1. 2017, pages 361-376. (WoS)

S. Rodriguez, J. Camilo, et al. Automatizaciéon de Pruebas de Software Web

Basada en Reglas de Negocio, 2017.

D. Weber. A Constraint-Based Approach to Data Quality in Information Sys-
tems. PhD thesis, ETH Zurich, 2017.

I. Paliokas, S. Segkouli, D. Tzovaras, and C. Karagiannidis. A Dynamic Inter-
face Adaptation Approach for Accessible Immersive Environments. In 10th In-
ternational Conference on Interfaces and Human Computer Interaction, Mul-
ticonference on Computer Science and Information Systems (MCCSIS 2016).
2015. (Scopus)

J. E. Davis. Temporal Meta-model Framework for Enterprise Information Sys-
tems (EIS) Development. PhD thesis, Curtin University, 2014.

P. P. Dey, B. R. Sinha, G. W. Romney, M. Amin, et al. Innovative User
Interface Engineering. In International Conference on Innovative Engineering
Technologies. 2014.

141

Appendix A

List of Abbreviations

ADD
ADDA
ADM
Al
AOP
API
AST
BPEL
BPMN
CASE
CDD
CPU
DRY
DSL
DSM
EIS

EL

GP
GPL
GRASP
HTML
HTTP
IDE

1P

IT
Java EE
JSON
JSR

Aspect-driven Development
Aspect-driven Development Approach
Anemic Domain Model

Artificial Intelligence

Aspect-oriented Programming
Application Programming Interface
Abstract Syntax Tree

Business Process Execution Language
Business Process Model And Notation
Computer-aided Software Engineering
Concern-driven Development

Central Processing Unit

Don’t Repeat Yourself
Domain-specific Language
Domain-specific Modeling

Enterprise Information System
Expression Language

Generative Programming

General-purpose Language

General Responsibility Assignment Software Patterns

Hypertext Markup Language
Hypertext Transfer Protocol
Integrated Development Environment
Internet Protocol

Information Technology

Java Enterprise Edition

Javascript Object Notation

Java Specification Request

142

KISS
MDD
MPS
OCL
00
OOP
ORM
POJO
RDM
READ
SLOC
SOA
SOAP
SOLID
SQL
UC

UI
UML
VAT
WADL
WSDL
XML
XSLT

Keep It Simple, Stupid Principle
Model-driven Development
Meta-programming System
Object-contraint Language
Object-oriented

Object-oriented Programming
Object-relational Mapping

Plain Old Java Object

Rich Domain Model

Rich Entity Aspect/audit Design
Source Lines Of Code
Service-oriented Architecture
Simple Object Access Protocol
Set of Object-oriented Principles
Structured Query Language

Use Case

User Interface

Unified Modeling Language
Value-added Tax

Web Application Description Language

Web Services Description Language

Extensible Markup Language

Extensible Stylesheet Language Transformations

	I Problem Statement
	Introduction
	The Running Example
	Problem Statement
	Objectives of the Thesis
	Organization of the Thesis

	Basic Notation
	Terminology: Business Logic
	Terminology: Concerns
	Terminology: Code Quality
	Terminology: Approaches and Architectures
	Summary

	State of the Art
	Common Architectures of Information Systems
	Limitation of Conventional Development
	Approaches to Separation of Concerns
	Separation of Concerns in a Conventional EIS
	Representation of Business Rules
	Summary

	II Contribution
	Aspect-driven Development
	Background of the Approach
	The Architecture
	Definition in Terms of the AOP
	Perspective of the Model-driven Development
	Reuse of Concerns
	Benefits, Limitations, and Summary

	Representation of Business Rules
	Analysis and Requirements
	Use of Business Rules
	Example of a Language for Business Rules
	Summary

	Implementation of the Approach
	Presentation Layer: User Interface
	Presentation Layer: Distributed User Interface
	Domain Layer: Input Validation
	Data Layer: Querying of a Persistent Storage
	Service-oriented Arch.: Reuse of Concerns
	Summary

	III Results
	Case Studies and Evaluation
	User Interface: Proof of the Concept
	Distributed User Interface: A Case Study
	Comparison to Alternative Approaches
	Summary

	Conclusion
	Contribution of the Thesis
	Future work

	Bibliography
	List of Publications
	Journals with Impact Factor
	Other Refereed Journals
	Conference Papers Excerpted in Web of Science
	Conference Papers Excerpted in Scopus
	Other Refereed Conference Papers

	Citations
	List of Abbreviations

