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Abstract and Contributions

Trees are one of the fundamental data structures used in Computer Science. The disserta-
tion thesis contributions are best categorised as a part of arbology research [52]. Arbology
research is a counterpart of stringology research. Arbology research deals with trees rep-
resented in some linear notations, i.e. like strings with additional properties that encode
the tree structure. Many algorithms belonging to the stringology maybe, with some care,
adapted to handle trees represented as strings using some linear notation.

This dissertation thesis is focused on finding all occurrences of tree patterns and non-
linear tree patterns inside a subject tree. Two different general approaches of solving the
problem are explored in the dissertation thesis. The first approach is focused on prepro-
cessing of the subject tree and forming a complete index of the subject tree capable of
reporting the occurrences when queried with (nonlinear) tree patterns. The second ap-
proach is complementary to indexing and it is focused on preprocessing of the (nonlinear)
tree pattern and creation of a matching algorithm.

The results of the dissertation thesis are divided into two parts. The first, indexing, ap-
proach is covered by two different tree indexes. The second, matching, approach is covered
by a single tree pattern matching algorithm designed for various tree representations.

The first approach is represented by a nonlinear tree pattern pushdown automaton,
which can be used to locate occurrences of (nonlinear) tree patterns and a full and linear
index also capable of locating occurrences of tree patterns and in extended variant also of
nonlinear tree patterns.

The second approach is represented by a backward linearised tree pattern matching
algorithm, which is a variant on backward pattern matching algorithm known from the
area of strings. The algorithm is designed to work with many linear representations of
trees. An extension of this algorithm for nonlinear tree patterns is also presented.

Tree pattern is a representation of a subgraph of a tree, which is rooted in some node of
the tree and contains a wildcard symbol in leaves representing any subtree. The nonlinear
tree pattern additionally contains nonlinear variables in leaves which represent any subtree
again, however, the same nonlinear variables represent the same subtrees.

Given a tree with n nodes, the number of distinct tree patterns and nonlinear tree

iii



Abstract and Contributions

patterns can be at most 2n−1 + n− 1 and at most (2 + v)n−1 + n− 1, respectively, where
v is the number of nonlinear variables allowed in the nonlinear tree patterns.

Nonlinear tree pattern pushdown automaton

An acyclic pushdown automaton, the nonlinear tree pattern pushdown automaton, con-
structed for an ordered tree is presented. This automaton accepts all tree patterns and
nonlinear tree patterns, which match the tree the automaton was constructed for. It there-
fore and represents a full index of the tree for such patterns.

The nonlinear tree pattern pushdown automaton is presented in three variants with
decreasing space requirements, where the smallest version of the automaton has O(n2)
states. The automaton is nondeterministic, however, it is also so-called input–driven and
therefore, it can be determinised.

A full and linear index of a tree for tree patterns

Another method of indexing a tree for (nonlinear) tree patterns is presented. Given a
subject tree t with n nodes, the tree is preprocessed and an index, which consists of any
standard string index structure of size O(n) and a subtree jump table, is constructed. The
size of the index is then O(n).

The searching phase uses the index, reads a tree pattern p of size m and computes the
list of positions of all occurrences of the pattern p in the tree t. The searching is performed

in time O(m +
k

∑

i=1
|occ(pi)|)), where occ(pi) is the set of all occurrences of the longest tree

pattern parts pi in tree t, which do not contain the wildcard symbol.
The index is extended to support queries by nonlinear tree patterns when a subtree

repeats table is added to the index. The size of the index and query times remain the same
for the extended index.

Backward linearised tree pattern matching algorithm

A backward linearised tree pattern matching algorithm for ordered trees is presented.
The algorithm finds all occurrences of a single tree pattern. The algorithm is based on
backward string pattern matching algorithm that uses the bad character shift table. The
algorithm preserves the properties and advantages of this backward string pattern matching
algorithm. The number of symbol comparisons in the backward linearised tree pattern
matching can still be sublinear with respect to the size of the input tree. As in the case
of backward string pattern matching, the size of the bad character shift table used by the
algorithm is linear in the size of the alphabet.

The algorithm variants for different linear tree notations are presented in details. The
algorithm is modified to report occurrences of nonlinear tree patterns as well, again using
the subtree repeats table.
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Chapter 1

Introduction

1.1 Motivation

Trees are one of the fundamental data structures used in Computer Science and the theory
of formal tree languages has been extensively studied and developed since the 1960s [17, 33].
Tree pattern matching on node-labelled trees is an important algorithmic problem with
applications in many tasks such as compiler code selection, interpretation of nonprocedural
languages, implementation of rewriting systems, and processing XML or markup languages
in general. Tree patterns are trees whose leaves can be labelled by a special wildcard, the
wildcard symbol S, which serves as a placeholder for any subtree.

Since the linear notation of a subtree of a tree is a substring of the linear notation of that
tree, the subtree matching and tree pattern matching problems are in many ways similar
to the string pattern matching problem. However, linear notations of trees are generated
by context-free grammars while strings are generated by regular grammars. Furthermore,
we note that the tree pattern matching problem is more complex than the string matching
one because there can be at most n2 distinct substrings of a string of size n, whereas there
can be at most 2n−1 + n distinct tree patterns which match a tree of size n.

Nonlinear tree patterns can further contain leaves labelled by specific nonlinear variable
symbols X, Y , . . ., where each of these symbols represents a specific subtree. Given a tree
with n nodes, the numbers of distinct tree patterns and nonlinear tree patterns which
match the tree can be at most 2n−1 + n− 1 and at most (2 + v)n−1 + n − 1, respectively,
where v is the maximal number of distinct nonlinear variables allowed in nonlinear tree
patterns.

1.2 Problem statement

The (nonlinear) tree pattern matching problem is to locate occurrences of (nonlinear) tree
pattern p of size m in subject tree t of size n, i.e. positions of nodes of subject tree t rooting
a subtree of subject tree t which match (nonlinear) tree pattern p. The (nonlinear) tree
pattern can be either a tree itself, tree pattern, or nonlinear tree pattern and the problem is
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1. Introduction

referred to as subtree matching, tree pattern matching and nonlinear tree pattern matching,
respectively.

The first approach can be by preprocessing the subject tree resulting in an index that
can be queried with (nonlinear) tree patterns. The second approach can be by preprocessing
the (nonlinear) tree pattern resulting in a matcher that can be run on the subject tree.

An efficient algorithm of indexing trees for (nonlinear) tree pattern matching and an
efficient algorithm for (nonlinear) tree pattern matching is requested. The algorithms shall
be defined with a focus on simplicity on design either by a simple extension of existing
algorithms on strings or by designing the algorithm formally with use of automata.

1.3 Related work/previous results

The theory of formal tree languages have been extensively studied and developed since the
1960s and its main models of computation are various kinds of tree automata [33, 13, 17].
As mentioned, trees can be linearised into strings. Such a linear notation can be obtained
by a corresponding tree traversal. Moreover, every sequential algorithm on a tree traverses
its nodes in a sequential order, which corresponds to some linear notation. Such a linear
representation need not be built explicitly. It is proved that the deterministic pushdown
automaton (PDA) is an appropriate model of computation for labelled ordered trees in
linear notation [43] and that the trees in postfix notation acceptable by deterministic PDA
form a proper superclass of the class of regular tree languages [33], which are accepted by
finite tree automata. Recently, pushdown automata gain popularity in solving practical
problems of processing trees, for example in processing XML documents [32].

The theory of text indexing, which is a result of stringology research [19, 21, 22, 23, 51,
58], is very well-researched and uses many sophisticated data structures: suffix tree and
suffix array are most widely used structures for text indexing, providing efficient solutions
for a wide range of applications. The Directed Acyclic Word Graph [6], also known as suffix
(or factor) automaton [18], is another elegant structure. Compact suffix automaton repres-
ents the minimised and compacted version of suffix trees and suffix automata, respectively
[24]. Another text indexing structure, called position heap, was proposed recently [27].
Generally, the number of substrings in a text is quadratic to the size of the text, but the
size of the text index structure for substrings is typically linear to the size of the text. By
means of the suffix tree, the compact suffix automaton, or the position heap, the list of
positions of all occurrences of an input string pattern y of size m can be computed in time
O(m + |occ(y)|), where occ(y) is the set of all occurrences of y in the text [21].

A subtree pushdown automaton [41] which represents a complete index of an ordered
tree for subtrees is an example of an indexing structure in an area of trees.

The problem of matching string patterns with gaps has been explored in many methods.
The methods differ in the kinds of considered gaps, in the achieved complexity and in the
fact whether the method is based on indexing, where the subject text is preprocessed, or it
is based on the principle that a string pattern is preprocessed and the subject text is read as
the input of the searching phase. A method of indexing a text for string patterns with gaps
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is described in [4], where an index is constructed for matching with wildcards. A wildcard
matches any single character, which cannot be used for tree patterns in a linear notation.
In [49], an index is constructed for matching with variable length gaps. Unfortunately,
the searching time depends on the gaps sizes, which is not time efficient for matching tree
patterns, where the gaps can be of any size.

Many algorithms have been proposed for exact string matching [9, 23, 28, 58]. Among
the most efficient of them are those based on backward string pattern matching, represented
by the Boyer-Moore and Boyer-Moore-Horspool algorithms. Although backward string
pattern matching’s time complexity is generally O(n ∗m) (for text and pattern size n and
m respectively) in the worst case, due to such algorithms’ ability to skip text parts, they
often perform sublinearly in practice.

Many tree pattern matching algorithms exist as well [10, 13, 31, 36, 57] and many of
them use some kind of tree automata [13]. Cole et al. [15] use a subset matching approach,
but at the cost of large auxiliary data structures. For unrestricted tree pattern sets,
among the fastest algorithms in practice are algorithms based on deterministic frontier-
to-root (bottom-up) tree automata (DFRTAs) [10, 13, 36] and Hoffmann-O’Donnell-style
stringpath matchers [2, 36]. A few of these tree pattern matching algorithms use principles
of matching patterns backwards: Hoffmann and O’Donnell refer to work by Lang et al. [48]
that applies such an approach to leftmost stringpaths of trees which involves complications
when dealing with nodes of arity greater than 2. Another tree pattern matching algorithm
was introduced in [63], where symbols of a tree pattern and string paths of an input subject
tree are compared. The shifting is based on extension of Boyer-Moore style of shifting for
more patterns introduced in [16]. This algorithm can skip nodes of the subject tree when
it is known that no occurrence of the pattern is skipped.

There exist two basic approaches to pattern matching problems. The first basic ap-
proach is represented by the use of an indexing data structure constructed for the subject
in which the search can be implemented. In other words, the subject is preprocessed.
Given a tree pattern of size m, such an index can locate the tree pattern typically in time
linear in m. This approach is suitable especially for cases when multiple queries to find
occurrences of different input patterns in a given subject structure are performed. The
second approach is represented by the use of a pattern matcher which is constructed for
patterns. In other words, the patterns are preprocessed. Given a tree of size n, such tree
pattern matcher perform the search phase typically in time linear in n. This approach
is suitable for cases when the task is to look for occurrences of a given pattern in many
subject trees.

1.4 Contributions of the thesis

The thesis presents four following contributions:

1. The modification of tree pattern matching automata for nonlinear tree pattern match-
ing.
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2. A new efficient method of simulation of the nonlinear tree pattern pushdown auto-
mata as the next step in indexing of trees for nonlinear pattern matching.

3. A new and first algorithm of backward linearised tree pattern matching algorithm
for tree pattern matching.

4. The modification of backward tree pattern matching algorithm for nonlinear tree
pattern matching.

Representatives of the first approach are acyclic pushdown automata for an ordered
tree and a combination of compact suffix automaton with additional structure to efficiently
handle wildcard symbols in tree patterns.

The tree pattern pushdown automaton and the nonlinear tree pattern pushdown auto-
maton represent a complete index of the tree for tree patterns and nonlinear tree patterns,
respectively, and accept all tree patterns and nonlinear tree patterns, respectively, which
match the tree. The construction of nondeterministic (nonlinear) tree pattern pushdown
automata is shown and a discussion of their time and space complexities follow. The
presented nondeterministic pushdown automata are input–driven and therefore can be
determinised.

We note that the presented PDAs have only one pushdown symbol and therefore can
be easily transformed to counter automata, which are a weaker and simpler model of
computation than the PDA. We present the automata in this paper as PDAs because the
PDA is a more fundamental and more widely-used model of computation than the counter
automaton.

Since our pushdown automata accept finite languages, which correspond to finite sets
of connected subgraphs of the tree, a finite automaton could also be used instead of a
pushdown automaton. However, such a finite automaton would have significantly more
states than the PDA, in which the pushdown store efficiently processes the underlying tree
structure.

Tree pattern pushdown automaton represents a full index of a tree for tree patterns
but its size is not linear to the size of the subject tree [52]. Also, a finite tree automaton
accepting all tree patterns that match the tree can be constructed but its size is exponential
to the size of the subject tree [13, 17, 42].

In [5], a preprocessing of a pattern and subsequently a matching algorithm for variable
length gap matching problem was proposed. This solution is incompatible with the tree
pattern matching problem because of different interpretation of gaps. Moreover, this solu-
tion is not indexing but matching, when the pattern is preprocessed. By analogy for trees,
many tree pattern matching methods, which preprocess tree patterns and not the subject
tree, have been proposed [13, 36].

Another new and simple method of indexing a tree for tree patterns is presented as a
continuation of proposed (nonlinear) tree pattern pushdown automata. Given a subject
tree t with n nodes, the tree is preprocessed and an index, which consists of a standard
string compact suffix automaton and a subtree jump table, is constructed. We note that
any convenient text index can be used instead of the compact suffix automaton, which has
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been chosen here because of its good space and time complexities. Despite the fact that
the number of distinct tree patterns which match the tree is O(2n), the size of the index
presented in this paper is O(n).

The searching phase uses the index, reads a tree pattern p of size m and computes the
list of positions of all occurrences of the pattern p in the tree t. For a tree pattern p in
linear prefix notation pref(P ) = p1Sp2S . . . Spk, k ≥ 1, the searching is performed in time

O(m +
k

∑

i=1
|occ(pi)|)), where occ(pi) is the set of all occurrences of pi in pref(t). We are

not aware of any other known method of full and linear indexing a tree for tree patterns
with these time and space complexities.

A representative of the second approach (matching) is an algorithm that uses a linear
representation of the subject tree where random access to symbols/positions is possible
and it is based on Boyer-Moore-Horspool’s algorithm. While modifying backward string
pattern matching to backward subtree matching (searching for occurrences of given sub-
trees) is straightforward, this is not the case for backward tree pattern matching, where
complications arise due to the use of wildcard symbol S and matched subtrees being pos-
sibly recursively nested. A new backward tree pattern matching algorithm is presented.
The presented backward tree pattern matching algorithm preserves the properties and
the advantages of the standard backward string pattern matching: the number of symbol
comparisons in the backward tree pattern matching can be sublinear in n, the size of the
subject tree. Based on the Boyer-Moore-Horspool algorithm, a modified bad character
shift heuristic is used. As in the case of backward string pattern matching, the size of the
bad character shift table used by the algorithm is linear with the size of the alphabet. Our
experimental results confirm the properties of the algorithm and show that it outperforms
the DFRTAs and stringpath matchers mentioned above.

1.5 Structure of the thesis

The thesis is organised into six chapters as follows:

1. Introduction: Describes the motivation behind our efforts together with our goals.
There is also a list of contributions of this dissertation thesis.

2. Theoretical Background : Introduces the reader to the necessary theoretical back-
ground of strings, trees, automata, etc.

3. Previous Results and Related Work: Surveys the state-of-the-art the dissertation
thesisbuilds upon.

4. Main Results in Tree Indexing: Presents the results of the author in the area of
indexing trees. Two new indexes of trees are proposed and defined.

5. Main Results in Tree Pattern Matching: Presents the results of the author in the
area of tree pattern matching. One new tree pattern matching algorithm, including
its variants, is proposed and defined.
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6. Conclusions: Summarises the results of our research, suggests possible topics for
further research and concludes the thesis.
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Chapter 2

Theoretical Background

Basic notions including strings and trees, definitions of finite, finite tree, and pushdown
automata are given in this chapter. Example trees and tree patterns, including their
linearisations, used throughout the thesis are presented here as well.

This chapter also presents string indexing structures used as a backend for introduced
tree indexing structure.

2.1 Alphabet, string

An alphabet is a finite nonempty set of symbols. A ranked alphabet is a finite nonempty
set of symbols each of which has a unique nonnegative arity (or rank). Given a ranked
alphabet A, the arity of a symbol a ∈ A is denoted Arity(a). The set of symbols of arity
p is denoted by Ap. Elements of arity 0, 1, 2, . . . , p are called nullary (constants), unary,
binary, . . ., p-ary symbols, respectively. We assume that alphabet A contains at least one
constant. In the examples, we use numbers at the end of identifiers for a short declaration
of symbols with arity. For instance, a2 is a short declaration of a binary symbol a. We use
|A| notation for the size of set A.

A set Ap where p ≥ 0 is a ranked alphabet of symbols of arity p only.
A string x is a sequence of i symbols s1s2s3 . . . si from a given alphabet, where i is the

size of the string. A sequence of zero symbols is called the empty string. The empty string
is denoted by symbol ε.

2.2 Tree, tree pattern, linear notations and their proper-

ties

Based on concepts and notations from graph theory [3]:
A graph G is a pair (N, R), where N is a set of nodes and R is a set of edges such that

each element of R is of the form (f, g), where f, g ∈ N . This element will indicate that,
for node f , there is an edge between node f and node g.
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A directed graph G is a graph, where each element of R of the form (f, g) indicates
that, there is an edge leaving node f and entering node g. This edge is ordered from f to
g. An undirected graph G is a graph in which no such ordering of edges is given.

A sequence of nodes f0, f1, . . ., fn, n ≥ 1, is a path of length n from node f0 to node
fn if there is an edge which leaves node fi−1 and enters node fi for 1 ≤ i ≤ n. A labelling
of an ordered graph G = (N, R) is a mapping of N into a set of labels. In the examples,
we use af for a short declaration of node f labelled by symbol a.

A directed graph is connected if there exists a path from fu to fv for each pair of nodes
(fu, fv), u 6= v, of the graph.

A cycle is a path f0, f1, . . ., fn in which f0 = fn.
Given a node f of a directed graph, its out-degree is the number of distinct pairs

(f, g) ∈ R, where g ∈ N . By analogy, the in-degree of node f is the number of distinct
pairs (g, f) ∈ R, where g ∈ N .

A tree is a connected directed graph without any cycle. The tree is assumed to have at
least one node. A rooted tree t is a tree with a special node r ∈ N , called the root.

The rooted tree t can also be defined by following:

(1) r ∈ N (root) has the in-degree 0,
(2) all other nodes of t have the in-degree 1,
(3) there is just one path from the root r to every node f ∈ N , where f 6= r.

Nodes of a tree with the out-degree 0 are called leaves.
A labelled and rooted tree is a tree with the additional property: (4) every node f ∈ N

is labelled by a symbol a ∈ A, where A is an alphabet.
A node g is a direct descendant of node f if a pair (f, g) ∈ R.
An ordered, labelled and rooted tree is a labelled and rooted tree where direct descend-

ants of a node f are ordered.
An ordered, ranked, labelled and rooted tree is an ordered, labelled and rooted tree

labelled by symbols from a ranked alphabet and where the out-degree of a node f labelled
by symbol a ∈ A equals Arity(a). Nodes labelled by nullary symbols (constants) are
leaves.

Throughout the text, a shorthand ranked tree and unranked tree will be used in the
context of an ordered, ranked, labelled, and rooted tree and an ordered, labelled, and
rooted tree, respectively.

The prefix notation pref(t) of a ranked tree t is defined as follows:

1. pref(a) = a0 if a is a leaf,
2. pref(t) = an pref(b1) . . . pref(bn), where a is the root of tree t, n = Arity(a) and

b1, . . . bn are direct descendants of a.

The prefix bar notation pref_bar(t) of a unranked tree t is defined as follows:

1. pref_bar(a) = a ↑ if a is a leaf,
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a05

a03 a14 a07

a22 a16

a21

(a) Tree t1r from Example 2.2.1.

a5

a3 a4 a7

a2 a6

a1

(b) Tree t1u from Example 2.2.2.

Figure 2.1: Tree t1r over a ranked alphabet (left), and the same tree t1u over an unranked
alphabet (right) from Examples 2.2.1 and 2.2.2.

2. pref_bar(t) = a pref_bar(b1) . . . pref_bar(bn) ↑, where a is the root of tree t and
b1, . . . bn are direct descendants of a.

The postfix notation post(t) of a ranked tree t is defined as follows:

1. post(a) = a0 if a is a leaf,
2. post(t) = post(b1) . . . post(bn) an, where a is the root of tree t, n = Arity(a) and

b1, . . . bn are direct descendants of a.

The postfix bar notation post_bar(t) of a unranked tree t is defined as follows:

1. post_bar(a) = a ↑ if a is a leaf,
2. post_bar(t) = a post_bar(b1) . . . post_bar(bn) ↑, where a is the root of tree t and

b1, . . . bn are direct descendants of a.

Example 2.2.1. Consider a ranked alphabet A = {a2, a1, a0}. Consider an ordered,
ranked, labelled and rooted tree t1r = ({a21, a22, a03, a14, a05, a16, a07}, Rt1r) over al-
phabet A, where Rt1r = {(a21, a22), (a21, a16), (a22, a03), (a22, a14), (a14, a05), (a16, a07)}.
Tree t1r in the prefix notation is pref(t1r) = a2 a2 a0 a1 a0 a1 a0. Trees can be represented
graphically, as is done for tree t1r in Figure 2.1a. △

Example 2.2.2. Consider an unranked alphabet A = {a}. Consider an ordered, labelled
and rooted tree t1u = ({a1, a2, a3, a4, a5, a6, a7}, Rt1u) over an alphabet A, where Rt1u =
{(a1, a2), (a1, a6), (a2, a3), (a2, a4), (a4, a5), (a6, a7)}. Tree t1u in the prefix bar notation is
pref_bar(t1u) = a a a ↑ a a ↑ ↑ ↑ a a ↑ ↑ ↑. The tree t1u is illustrated in Figure 2.1b. △

Example 2.2.3. Consider tree t1r from Example 2.2.1 and its prefix, postfix, prefix bar,
and postfix bar notations. The linear notations of trees are all together illustrated in
Table 2.1. △

The symbols of the prefix and postfix notations of a tree correctly interleaved together
make up the prefix bar notation. Symbols of the prefix notation are in essence symbols of
the prefix bar notation and symbol of the postfix notation are mapped to bar symbols of
the prefix bar notation. The relation of the prefix and postfix notations to the postfix bar
notation is similar, with the exactly opposite correspondence of symbols.

9
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Table 2.1: Prefix, postfix, prefix bar, and postfix bar linear notations of subject tree t1r.

prefix_bar a a a ↑ a a ↑ ↑ ↑ a a ↑ ↑ ↑

postfix_bar ↑ ↑ ↑ a ↑ ↑ a a a ↑ ↑ a a a

prefix a2 a2 a0 a1 a0 a1 a0

postfix a0 a0 a1 a2 a0 a1 a2

a04 b05 a06 a07

a43 a08 b09 a010

a42 a011 a012 b013

a41

Figure 2.2: Tree t2r from Example 2.2.4.

Example 2.2.4. As another example; Consider a ranked alphabet A = {a4, a0, b0}. Con-
sider an ordered, ranked, labelled, rooted, and directed tree t2r = ({a41, a42, a43, a04, b05,

a06, a07, a08, b09, a010, a011, a012, b013}, Rt2r) over an alphabet A, where Rt2r is a set of the
following ordered pairs:

Rt2r = {(a41, a42), (a41, a011), (a41, a012), (a41, b013), (a42, a43), (a42, a08),
(a42, b09), (a42, a010), (a43, a04), (a43, b05), (a43, a06), (a43, a07)}.

The prefix notation of tree t2r is pref(t2r) = a4 a4 a4 a0 b0 a0 a0 a0 b0 a0 a0 a0 b0.
Tree t2r is illustrated in Figure 2.2. △

The height of tree t, denoted by Height(t), is defined as the length of the longest path
leading from the root of t to a leaf of t.

A subtree (a complete subtree) of tree t = (N, R) is any tree t′ = (N ′, R′) such that:

1. N ′ is an nonempty subset of N ,
2. R′ = (N ′ ×N ′) ∩R, and
3. No node of N \N ′ is a descendant of a node in N ′.

To define a tree pattern, we use a special wildcard symbol S 6∈ A, Arity(S) = 0, which
serves as a placeholder for any subtree. A tree pattern is defined as an ordered, ranked,
labelled and rooted tree over an alphabet A ∪ {S}. We will assume that the tree pattern
contains at least one node labelled by a symbol from A. A tree pattern containing at least
one symbol S will be called a tree template.

A tree pattern p with k ≥ 0 occurrences of the symbol S matches a subject tree t at
node n if there exist subtrees t1, t2, . . . , tk (not necessarily the same) of t such that the
tree p′, obtained from p by substituting the subtree ti for the i-th occurrence of S in p,
1 ≤ i ≤ k, is equal to the subtree of ts rooted at n. Tree ts is the matched subtree of tree t.

10
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a04

a02 a13

a21

(a) Subtree p1r from Ex-
ample 2.2.5.

S4

S2 a13

a21

(b) Tree pattern p2r from
Example 2.2.5.

X4

X2 a13

a21

(c) Nonlinear tree pattern
p3r from Example 2.2.5.

Figure 2.3: Subtree, tree pattern, and nonlinear tree pattern over ranked alphabet from
Example 2.2.5.

Let a tree pattern p match a subject tree t at node n and let m be the number of
nodes in the matched subtree ts. Let i be the index of node n in pref(t) = a1 a2 . . . ai

ai+1 . . . ai+m−1 ai+m . . . . An occurrence of tree pattern p in subject tree t is a pair (i, i+m).
The pair (i, i + m) is also an occurrence of substring pref(ts) in string pref(t).

The nonlinear tree pattern also uses another special wildcard symbols X, Y, . . ., not in
alphabet A, called nonlinear variables. These symbols serve as placeholders for specific
subtrees. Every occurrence of a symbol X, Y , . . . in a nonlinear tree pattern is matched
with the same subtree. A nonlinear tree pattern has to contain at least one symbol from
A. A nonlinear tree pattern which contains at least two equal nonlinear variables will be
called a nonlinear tree template.

A nonlinear tree pattern np with k ≥ 0 occurrences of a the symbol S and lx ≥ 0, ly ≥
0, . . . occurrences of nonlinear variable X, Y, . . . matches a subject tree t at node n if there
exist subtrees t1, t2, . . . , tk (not necessarily the same) of the tree t and a subtree tX , tY , . . .

of the tree t such that the tree np′, obtained from np by substituting the subtree ti for the
i-th occurrence of S in p, 1 ≤ i ≤ k and by substituting the subtree tX , tY , . . . for the i-th,
1 ≤ i ≤ lx, ly, . . . occurrences of X, Y, . . . in np, is equal to the subtree of t rooted at n.

Let X denote a set of nonlinear variables in the nonlinear tree pattern.

Example 2.2.5. Consider a ranked tree t1r = ({a21, a22, a03, a14, a05, a16, a07}, R1r)
from Example 2.2.1, which is illustrated in Figure 2.1a.

Consider a subtree p1r over alphabet A, p1r = ({a21, a02, a13, a04}, Rp1r). Subtree
p1r in the prefix notation is pref(p1r) = a2 a0 a1 a0 and Rp1r = {((a21, a02), (a21, a13)),
((a13, a04))}.

Consider a tree pattern p2r over alphabet A ∪ {S}, p2r = ({a21, S2, a13, S4}, Rp2r).
Tree pattern p2r in the prefix notation is pref(p2r) = a2 S a1 S and Rp2r = {(a21, S2),
(a21, a13), (a13, S4)}.

Consider a nonlinear tree pattern p3r over alphabet A ∪ {S, X}, p3r = ({a21, X2, a13,

X4}, Rp3r). Nonlinear tree pattern p3r in the prefix notation is pref(p3r) = a2 X a1 X

and Rp2r = {(a21, X2), (a21, a13), (a13, X4)}.
Tree patterns p1r, p2r and p3r are illustrated in Figure 2.3. Tree pattern p1r occurs once

in tree t1r — it matches at node 2 of t1r. Tree pattern p2r occurs twice in t1r — it matches
at nodes 1 and 2 of t1r. Tree pattern p3r occurs once in t1r — it matches at nodes 2 of
t1r. △

11
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a05a04b03a02

a41

(a) Subtree p4r from Ex-
ample 2.2.6.

S5S4a03S2

a41

(b) Tree pattern p5r from
Example 2.2.6.

X5X4a03S2

a41

(c) Nonlinear tree pattern
p6r from Example 2.2.6.

Figure 2.4: Subtree p4r (left), tree pattern p5r (center), and nonlinear tree pattern p6r

(right) from Example 2.2.6.

Example 2.2.6. As another example, consider tree t2r from Example 2.2.4.
Consider subtree p4r over alphabet A, p4r = ({a41, a02, b03, a04, a05}, Rp4r), pref(p4r) =

a4 b0 a0 a0 a0 and Rp4r = {(a41, a02), (a41, b03), (a41, a04), ((a41, b05)}.
Consider tree pattern p5r over an alphabet A ∪ {S}, p5r = ({a41, S2, a03, S4, S5},

Rp5r). Tree pattern p5r in the prefix notation is pref(p5r) = a4 S a0 S S and Rp5r =
{(a41, S2), (a41, a03), (a41, S4), (a41, S5)}.

Consider a nonlinear tree pattern p6r over an alphabet A ∪ {S, X}, p6r = ({a41, S2,

a03, X4, X5}, Rp6r). Tree pattern p6r in the prefix notation is pref(p6r) = a4 S a0 X X

and Rp6r = {(a41, S2), (a41, a03), (a41, X4), (a41, X5)}.
Tree patterns p4r, p5r, and p6r are illustrated in Figure 2.4. Tree pattern p4r has one

occurrence in tree t2r – it matches t2r at node 3. Tree pattern p5r has two occurrences
in tree t2r – it matches t2r at nodes 1 and 2. Tree pattern p6r has no occurrence in tree
t2r. △

2.3 Language, finite, tree and pushdown automata

We define notions from the theory of string and tree languages similarly as they are defined
in [3, 37, 13, 17, 33].

2.3.1 Language

A language over an alphabet A is a set of strings over A. The set of all strings over A is
denoted by A∗. Set A+ is defined as A+ = A∗ \ {ε}. The m-fold concatenation of x for
string x ∈ A∗ with x0 = ε is denoted xm, m ≥ 0. Set x∗ is defined as {xm : m ≥ 0}, x+ as
{xm : m ≥ 1} and x∗ = x+ ∪ {ε}.

2.3.2 Finite automata

A nondeterministic finite automaton (NFA) is a five-tuple FA = (Q,A, δ, q0, F ), where Q

is a finite set of states, A is an input alphabet, δ is a mapping from Q×A into a set of finite
subsets of Q, q0 ∈ Q is an initial state, and F ⊆ Q is the set of final (accepting) states. A
finite automaton FA is deterministic (DFA) if δ(q, a) has no more than one member for
any q ∈ Q and a ∈ A, hence the δ mapping of the deterministic finite automaton is usually

12
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simplified to a mapping from Q×A into q, where q ∈ Q. We note that the mapping δ is
often illustrated by its transition diagram.

Every NFA can be transformed to an equivalent DFA [3]. The transformation constructs
the states of the DFA as subsets of states of the NFA and selects only such accessible states
(i.e. subsets). These subsets are called d–subsets. Although d–subsets are standard sets,
they are often written in square brackets ([ ]) instead of in braces ({ }).

2.3.3 Tree automata

The set T (A) of ground terms over the ranked alphabet A is the smallest set inductively
defined in the following way:

1. A0 ⊆ T (A),
2. if p ≥ 1, f ∈ Ap and t1, . . . , tp ∈ T (A), then f(t1, . . . , tp) ∈ T (A).

Ground terms can be regarded as finite labelled ordered ranked trees in prefix notation,
where each symbol of f ∈ A represents a node with label f , and the arguments are its
children. Therefore, the notions of tree and ground term will be used interchangeably [43].

A nondeterministic finite frontier to root tree automaton (NFRTA) over a ranked al-
phabet A is a 4−tuple M = (Q,A, F, ∆), where Q is a finite set of states, F ⊆ Q is the
set of final states, and ∆ is a mapping from f(q1, q2, . . . , qn) into a set of finite subsets of
Q, where f ∈ An, n ≥ 0, and q1, q2, . . . , qn ∈ Q.

The finite frontier to root tree automaton is deterministic (DFRTA) if ∆(f , q1, q2, . . .,
qn) has no more than one member for any f ∈ An, n ≥ 0, and q1, q2, . . ., qn ∈ Q, hence
the ∆ mapping of a deterministic finite frontier to root tree automaton is simplified to a
mapping from f(q1, q2, . . . , qn) into q.

Example 2.3.1. An example of a DFRTA over an alphabet containing constants b0 and
c0, and binary symbol a2 is Mta1 = (Q,A, F, ∆), where Q = {1, 2, 3}, A = {a2, b0, c0},
F = {3}, and ∆ contains these transition rules:

b0→ 1
c0→ 2

a2(1, 1)→ 3
a2(1, 2)→ 3

The transition function of DFRTA can be depicted using a diagram. The automaton
Mta1 is depicted in Figure 2.5. The transition function diagram of a frontier to root tree
automaton is similar to the transition function diagram of a finite automaton. However,
transitions of frontier to root tree automaton can have no source state, single source state,
or even multiple source states. The order of source states is given by numbering the
respective edge. △

DFRTAs over a ranked alphabet A runs on ground terms, respectively trees, over A.
The computation of DFRTA starts at leaves and moves towards the root. The automaton
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1

2

3

b0

c0

a2

a2

1

2

1
2

Figure 2.5: Visualisation of the DFRTA Mta1 from Example 2.3.1.

b c

a

1 2

3

Figure 2.6: Tree t (left) and the run of DFRTA Mta1 from Example 2.3.1 on tree t (right).

maps each subterm, each subtree respectively, to a state, inductively. A run of an auto-
maton is defined as follows:

1. The leaves are mapped to states q given by the transition rules of the form a→ q ∈
∆, where a ∈ A0.

2. Given a node labelled with f ∈ An, n ≥ 1, and its children mapped to states q1, . . . , qn

then this node is mapped to q, where f(q1, q2, . . . , qn)→ q ∈ ∆.

A ground term, or tree respectively, is accepted by a finite frontier to root tree auto-
maton if there exists a run on the ground term, or tree, such that its root is mapped to a
final state.

The tree language L(A) recognised by a DFRTA M is the set of all ground terms,
or trees respectively, accepted by the DFRTA M. A tree language is recognizable if it is
recognised by some NFRTA. A tree language is recognisable if and only if it is a regular
tree language (see [13, 17, 33] for the definition of regular tree languages).

Two finite frontier to root tree automata, deterministic or nondeterministic, are equi-
valent if and only if they recognise the same language.

Every NFRTA can be transformed to an equivalent DFRTA [17].

Example 2.3.2. A tree language L(Mta1) = {a2(b0, b0), a2(b0, c0)} is recognised by the
DFRTA Mta1. The ground term t = a2(b0, c0) and the run of DFRTA Mta1 on ground
term t are illustrated in Figure 2.6. △

Note that the tree automata can also traverse the tree staring at root in the direction to
leaves. Such a tree automaton is called nondeterministic root to frontier finite tree automata
(NRFTA) and deterministic top-down finite tree automata (DRFTA), respectively.

In contrast to NFRTA, some NRFTAs are not possible to transform to an equivalent
deterministic DRFTA. The NRFTA is strictly more powerful computation model than
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DRFTA. On the other hand, the NRFTA, NFRTA, are DFRTA are all equally powerful
computation models.

2.3.4 Pushdown automata

A nondeterministic pushdown automaton (nondeterministic PDA) is a seven-tuple M =
(Q,A, G, δ, q0, Z0, F ), where Q is a finite set of states, A is an input alphabet, G is a
pushdown store alphabet, δ is a mapping from Q× (A∪{ε})×G into a set of finite subsets
of Q × G∗, q0 ∈ Q is an initial state, Z0 ∈ G is the initial pushdown store symbol, and
F ⊆ Q is the set of final (accepting) states.

Triple (q, w, x) ∈ Q×A∗×G∗ denotes the configuration of a pushdown automaton. We
will write the top of the pushdown store x on its left hand side. The initial configuration
of a pushdown automaton is a triple (q0, w, Z0) for the input string w ∈ A∗. The relation
⊢M⊂ (Q×A∗×G∗)× (Q×A∗×G∗) is a transition of a pushdown automaton M . It holds
that (q, aw, αβ) ⊢M (p, w, γβ) if (p, γ) ∈ δ(q, a, α). The k-th power, transitive closure, and
transitive and reflexive closure of the relation ⊢M is denoted ⊢k

M , ⊢+
M , ⊢∗

M , respectively.
A pushdown automaton is input–driven if each of its pushdown operations is determined

only by the input symbol.
A language L accepted by a pushdown automaton M is defined in two distinct ways:

1. Accepting by final state: L(M) = {x : (q0, x, Z0) ⊢∗
M (q, ε, γ)∧ x ∈ A∗ ∧ γ ∈ G∗ ∧ q ∈

F}.

2. Accepting by empty pushdown store: Lε(M) = {x : (q0, x, Z0) ⊢∗
M (q, ε, ε) ∧ x ∈

A∗ ∧ q ∈ Q}.

If the pushdown automaton accepts the language by empty pushdown store, then the set
F of final states is empty.

Unreachable states of automaton M = (Q, A, G, δ, q0, Z0, F ) are states p ∈ Q which
are not reachable from the initial state with no sequence of transitions from the initial state
to that particular state p. Formally, there are no transitions that allow (q0, kw, Z0) ⊢

+
M

(p, w, γ).
Pushdown automaton M = (Q,A, G, δ, q0, Z0, F ) is acyclic if it does not contain trans-

itions (q, x1, γ1) ⊢
+
M (q, x2, γ2), where xx2 = x1, x 6= ε and q ∈ Q.

2.4 (Compact) string suffix and factor automata

String suffix and factor automata are finite automata that were introduced in [6, 18] as a
mechanism for eliminating redundancy in string suffix trees [19, 23, 51, 58]. Given a string
s ∈ A∗, the suffix and factor automaton constructed for the string s represents an index of
the string s capable of locating occurrences of its suffixes and substrings. The time needed
to locate these occurrences of suffixes and substrings, of the string s, respectively, is linear
with respect to the length of the located suffix and substring, respectively and the actual
number of occurrences. The time does not depend on the length of the indexed string s.
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0 1 2 3 4 5 6 7
a2 a2 a0 a1 a0 a1 a0

Figure 2.7: A transition diagram of the backbone of nondeterministic suffix automaton
FAb(pref(t1r)) for prefix notation pref(t1r) = a2 a2 a0 a1 a0 a1 a0 of tree t1r from
Example 2.2.1.

In [19, 23, 58], the suffix and factor automata are defined as minimal deterministic finite
automata accepting the language of all suffixes and substrings of string s, respectively. In
[53, 51], their basic nondeterministic versions are also presented. In some literature, the
deterministic suffix automaton is also called the directed acyclic word graph (DAWG).

In order to construct a nondeterministic suffix and factor automaton for the string s

a backbone of the nondeterministic suffix or factor automaton shall be constructed. The
backbone of the suffix or factor automaton accepts a single string s. The automaton is a
sequence of states connected by transitions each reading a symbol of the string s. The first
state of the sequence is an initial state, and the last state is a final state.

Example 2.4.1. Given a string pref(t1r) = a2 a2 a0 a1 a0 a1 a0, which is the prefix
notation of tree t1r from Example 2.2.1, the corresponding backbone of the suffix automaton
is FAb(pref(t1r)) = ({0, 1, 2, 3, 4, 5, 6, 7},A, δn, 0, {7}), where its transition diagram is
illustrated in Figure 2.7. △

The extension from the backbone of the suffix automaton for the string s is in addition
of epsilon transitions from an initial state to all other states. The extension from the suffix
automaton to factor is in change of all non-final states of the suffix automaton to final
states.

The epsilon transitions need to be removed from the automaton by epsilon transitions
removal algorithm, or direct construction of the automaton resulting from the epsilon
transitions removal can be designed. The epsilon transitions removal is in this concrete
case straightforward as the epsilon transitions do not form a sequence. For the formal
construction of the nondeterministic suffix and factor automaton, see [53, 51].

Example 2.4.2. Given a string pref(t1r) = a2 a2 a0 a1 a0 a1 a0, which is the prefix nota-
tion of tree t1r from Example 2.2.1, the corresponding nondeterministic suffix automaton
(without epsilon transitions) is FAnsuf(pref(t1r)) = ({0, 1, 2, 3, 4, 5, 6, 7}, A, δn, 0, {7}),
where its transition diagram is illustrated in Figure 2.8. △

It is possible to compactise transitions as described in [21] to create a space-efficient
version of the suffix automaton.

A compact suffix automaton [21] for a text is a finite automaton that accepts all suffixes
of the text. The outgoing transitions of each state of the compact suffix automaton are la-
belled by some substring of the indexed string encoded by two indexes to the indexed string

16



2.4. (Compact) string suffix and factor automata

0 1 2 3 4 5 6 7
a2 a2 a0 a1 a0 a1 a0

a2
a0 a1 a0 a1 a0

Figure 2.8: A transition diagram of nondeterministic suffix automaton FAnsuf (pref(t1r))
for prefix notation pref(t1r) = a2 a2 a0 a1 a0 a1 a0 of tree t1r from Example 2.2.1.

0 1 2

3

4

5

6

7
a4 a4

a4 a0 b0 a0 a0 a0 b0 a0 a0 a0 b0

a0 b0 a0 a0 a0 b0 a0 a0 a0 b0

a0 b0 a0 a0 a0 b0 a0 a0 a0 b0

a0

b0

b0

a0
b0

a0 b0

a0 a0 a0 b0

a0 a0 a0 b0

Figure 2.9: A transition diagram of compact suffix automaton FAcsuf(pref(t2r)) for tree
t2r from Example 2.2.4. The long edge labels can be represented by pairs of beginning and
ending indices into pref(t2r), see [21].

(start, end). All substring labels of outgoing transitions of individual states of the compact
suffix automaton differ by their first symbol. Hence the automaton is deterministic.

An explicit state of the compact suffix automaton is a state that is represented in the
automaton. An implicit state of the compact suffix automaton is a state not represented
in the automaton that is between every two symbols on each transition.

By means of the compact suffix automaton, the list of positions of all occurrences of an
input string pattern y of size m can be computed in time O(m + |occ(y)|), where occ(y) is
the set of all occurrences of y in the text.

A compact suffix automaton can also be constructed directly by a linear time algorithm
presented in [25] and by a linear time online algorithm presented in [39].

Example 2.4.3. Given a string pref(t2r) = a4 a4 a4 a0 b0 a0 a0 a0 b0 a0 a0 a0 b0, which
is the prefix notation of tree t2r from Example 2.2.4, the corresponding compact suffix
automaton FAcsuf(pref(t2r)) is illustrated in Figure 2.9. △

Algorithm 1 (FindOccurrences) can be used to query the compact suffix automaton.
The accepting run of the automaton with a string pattern can end in an explicit state
or an implicit state (between two states). The explicit state itself or the target state of
the transition where the run ended is reached after processing the string pattern by the
automaton.
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For the future use of Algorithm 1 (FindOccurrences) is designed to return pairs of
indexes representing the begin and end of each occurrence.

Name: FindOccurrences
Input: Compact suffix automaton M constructed for a subject string S of length

n

Input: Pattern string p of length m

Result: Occurrences occS(P )
1 begin
2 Let q be the state of the automaton M reached after processing p;
3 Find all paths from state q that lead to a final state of M ;
4 For each path of length length from state q to a final state, add occurrence

(n− length−m, n− length) of the string pattern p to occS(P );
5 return occS(P );
6 end

Algorithm 1: Finding Occurrence of Patterns [21].

2.5 Position heap

A position heap is a tree-like structure introduced in [27]. Position heap itself is based
on another structure – sequence tree [14]. Given a subject string s ∈ A∗ of size n, the
position heap constructed for the string s has size O(n). The position heap queried with
pattern string p ∈ A∗ of size m reports all occurrences of the pattern p in the string s

in O(m + k) time, where k is the number of occurrences of pattern p. To achieve this
query time complexities the position heap needs to be augmented (see [27] for details).
The time bounds are the same as those of the compact suffix automaton and many other
string indexing structures. Later in [47], another on-line construction algorithm of position
heap was introduced. The on-line constructed position heap has the same size and allows
queries to run in the same asymptotic time.

The naive construction algorithm presented in [27] iteratively adds all suffixes of the
subject string shortest to longest to the created position heap. Adding each suffix intro-
duces exactly one new node to the position heap. The new node represents an index to
the subject uniquely identifying the respective suffix.

The linear time construction algorithm uses a separate dual-heap structure. The dual-
heap structure stores the same string as the position heap however reversed. The dual-heap
and position heap together help each other locate the parent node of the newly inserted
node representing the new longer suffix.

Example 2.5.1. Given a string pref(t2r) = a4 a4 a4 a0 b0 a0 a0 a0 b0 a0 a0 a0 b0,
which is the prefix notation of tree t2r from Example 2.2.4, the corresponding position
heap P H(pref(t2r)) and its dual-heap DH(pref(t2r)) are illustrated in Figure 2.10. The
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(a) A position heap PH(pref(t2r)) for tree
t2r from Example 2.2.4.
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(b) A dual heap DH(pref(t2r)) used in con-
struction of the position heap for tree t2r

from Example 2.2.4.

Figure 2.10: A position heap P H(pref(t2r)) (left) and dual heap DH(pref(t2r)) (right)
constructed as indexes of tree t2r from Example 2.2.4.

Table 2.2: Order of suffixes of subject tree t2r in prefix notation as inserted to position
heap P H(pref(t2r)).

order 13 12 11 10 9 8 7 6 5 4 3 2 1

pref(t2r) a4 a4 a4 a0 b0 a0 a0 a0 b0 a0 a0 a0 b0

suffixes of pref(t2r) are inserted to the position heap P H(pref(t2r)) in reversed order as
illustrated in Table 2.2. △

Linear time queries require the position heap additionally augmented with maximal-
reach pointers and discovery and finishing times of all nodes based on depth-first traversal of
the position heap. Using the dual-heap the maximal reach pointers can also be constructed
in O(n) time.

The query algorithm uses the position heap to find pattern string p either by reaching
node representing the pattern or by reaching a node representing the longest prefix of the
pattern.

In the first case, the reached node and all its descendant nodes are occurrences of the
pattern. Ancestor nodes need to be tested in O(1) time whether they are occurrences as
well using maximum reach pointers.

In the second case, the occurrences of the prefix of the pattern are computed by testing
the reached node and its ancestor nodes similarly. However, the position heap is used
again to find occurrences of the longest prefix of the remaining suffix of the pattern from
the previous query. Resulting occurrences from the second query are used to filter out
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Table 2.3: Subject tree t2r from Example 2.2.4 in its prefix notation pref(t2r), the suffix
array and the longest prefix array constructed for subject tree t2r in the prefix notation.

suffix array index 1 2 3 4 5 6 7 8 9 10 11 12 13 14

pref(t2r) a4 a4 a4 a0 b0 a0 a0 a0 b0 a0 a0 a0 b0 $

suffix array SA(pref(t2r) 14 10 6 11 7 12 8 4 3 2 1 13 9 5

longest common prefix array LCP (pref(t2r)) - 0 4 2 3 1 2 6 0 1 2 0 1 5

occurrences from the first query. This querying and filtering is both repeated until some
node of the position heap represent the complete remaining suffix of the pattern.

2.6 Suffix array

A suffix array is a linear structure introduced in [50]. Suffix array stores indexes to the
indexed string lexicographically sorted to allow fast querying. Given a subject string
s ∈ A∗ of size n, the suffix array constructed for the string s has size O(n). The suffix
array was originally proposed to be constructed in O(n log(n)) time, however, the expected
construction time is shown to be O(n) [46, 44, 54]. The suffix array queried with pattern
string p ∈ A∗ of size m reports all occurrences of the the pattern p in the string s in
O(m log(n)) time as proposed originally. The query time can be improved to O(m+log(n))
utilising an additional longest common prefix structures.

An extra terminating symbol $ is placed at the end of strings indexed by suffix arrays.
The symbol is lexicographically smaller than any other and it is not used elsewhere in the
string.

Example 2.6.1. Given a string pref(t2r) = a4 a4 a4 a0 b0 a0 a0 a0 b0 a0 a0 a0 b0,
which is the prefix notation of tree t2r from Example 2.2.4, the corresponding suffix ar-
ray SA(pref(t2r)) and its longest common prefix array LCP (pref(t2r)) are illustrated in
Table 2.3. △

Many other construction algorithms and representations of suffix arrays were presented.
Construction algorithms were improved to be at worst truly linear with respect to the size
of the indexed string. The representation of suffix arrays can be improved up to 5n bytes.
For more details see [56].

Combining the suffix array and the longest prefix array with a child table, the querying
time can be further improved to the optimal O(m) as shown in [1]. The additional child
table allows navigating in the suffix array as if it were a suffix tree. Such a possibility
effectively allows any computation on suffix tree to be directly translated to computation
on suffix array instead.
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TEXT

PATTERN ✲ shift of the pattern
✛ comparison of symbols

Figure 2.11: Graphical outline of Algorithm 2 (BasicBackwardPatternMatchingAl-
gorithm).

2.7 Backward string pattern matching algorithm

The basic backward (string) pattern matching algorithm featuring only the different direc-
tion of symbol comparison and pattern shift is presented as Algorithm 2 (BasicBackward-
PatternMatchingAlgorithm). No preprocessing of the pattern or subject is needed. The
matching time with the basic backward pattern matching algorithm is O(m ∗ n), where
m is the size of the pattern and n is the size of the subject. The basic backward pattern
matching algorithm is a common base for many modifications, which make it more efficient
in practice.

Name: BasicBackwardPatternMatchingAlgorithm
Input: A string text of size n and a string pattern of size m

Result: Locations of the pattern in the text

1 begin
2 i := 0;
3 while i < n−m do
4 j := m;
5 while j > 0 and pattern[j] = text[i + j] do
6 j := j − 1;
7 end
8 if j = 0 then yield i + 1;
9 i := i + 1; {Length of the shift.}

10 end

11 end
Algorithm 2: Basic backward string pattern matching algorithm.

Instead of a shift by 1 (as per line 9 of Algorithm 2 (BasicBackwardPatternMatchin-
gAlgorithm)), longer shifts can be made.

The first algorithm from the category of backward (string) pattern matching algorithms
was introduced in [7] (nowadays known as the Boyer-Moore algorithm) to further decrease
the number of comparisons of symbols of the pattern and subject. The number of com-
parisons is expected to be sublinear in contrast to the state-of-the-art algorithms of that
time such as [45] with at best feature linear number of comparisons. Given a string s ∈ A∗

referred to as subject or text and a string p ∈ A∗ referred to as a pattern, the occurrences
of the pattern p in the text s are located by comparing the symbols of the pattern and the
text in the opposite direction to the shifting of the pattern.
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Another algorithm from the category of backward pattern matching algorithms is the
Boyer-Moore-Horspool algorithm [38]. The shift table of the Boyer-Moore-Horspool al-
gorithm is represented by a bad character shift table. The Boyer-Moore-Horspool algorithm
is the evolution of the Boyer-Moore algorithm. It computes the length of the shift based
on one symbol aligned to the end of the pattern. This shift has turned out to perform
very well in practice despite being a simplification of the heuristics used by the original
Boyer-Moore algorithm.

Definition 2.7.1. Let pattern[1..m] be a pattern of size m over an alphabet A. The bad
character shift table BCS(pattern[1..m] is defined for each a ∈ A as follows:

BCS(pattern[1..m])[a] = min({m} ∪ {j : pattern[m− j] = a and m > j > 0})

The definition is an adaptation from [20]. The definition is adapted to reflect indexing
of strings from one to their length, respectively.

Example 2.7.2. Consider a string pref(p1r) = a2 a0 a1 a0 over an alphabet A = {a3,
a2, a1, a0}, which is a prefix notation of a tree pattern p1r depicted in Figure 2.3. The
BCS(pref(p1r)) abbreviated as BCS contains the following items: △

BCS[a3] = min({4} ∪ ∅) = 4 BCS[a2] = min({4} ∪ {3}) = 3
BCS[a1] = min({4} ∪ {1}) = 1 BCS[a0] = min({4} ∪ {2}) = 2
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Chapter 3

Previous Results and Related Work

In this chapter, algorithms and theorems regarding tree pattern pushdown automata for
trees in the prefix notation are given, and the tree pattern PDAs and their construction are
demonstrated on an example. A tree pattern can be either a subtree or a tree template,
which contains at least one wildcard symbol S representing a subtree. Tree pattern PDAs
are an extension of subtree PDAs, introduced in [41]. A subtree PDA is analogous to the
string suffix automaton and it accepts a linear notation of all subtrees of a given tree. The
pushdown operations are used to process the tree structure. New states and transitions,
which are used for processing the wildcard symbols S in tree templates, are additionally
present in the tree pattern PDA. The pushdown operations are the same. The tree pattern
pushdown automata are introduced in [51, 52].

3.1 Indexing trees for subtree matching

A subtree pushdown automata are designed as a structure for indexing trees for fast search-
ing of subtree locations in the indexed tree. The structure was introduced in [41].

Definition 3.1.1. Let t and pref(t) be a tree and its prefix notation, respectively. A
subtree pushdown automaton for pref(t) accepts all subtrees in the prefix notation which
match tree t.

Given a subject tree t first an automaton accepting single string pref(t) shall be con-
structed. This automaton represents a backbone of the subtree pushdown automaton. The
automaton can be constructed by Algorithm 3 (ConstructSubtreePDABackbone). The
correctness Algorithm 3 (ConstructSubtreePDABackbone) is proved by Theorem 3.1.3.

The backbone of subtree PDA is by itself a deterministic pushdown automaton.

Example 3.1.2. Consider tree t1r in prefix notation pref(t1r) = a2 a2 a0 a1 a0 a1 a0
from Example 2.2.1, which is illustrated in Figure 2.1a. The deterministic backbone of the
subtree PDA, constructed by Algorithm 3 (ConstructSubtreePDABackbone) is determin-
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Name: ConstructSubtreePDABackbone
Input: A tree t over a ranked alphabet A in prefix notation pref(t) = a1a2 . . . an,

n ≥ 1
Result: Backbone of subtree PDA Mp(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, ∅)

1 begin
2 Create Mp(t) as an automaton with initial state 0 and states 0 ≤ i ≤ n;
3 foreach state i, where 1 ≤ i ≤ n do
4 Add a new transition δ(i− 1, ai, S) = (i, SArity(ai)), where S0 = ε to

automaton Mp(t);
5 end
6 return Mp(t);
7 end
Algorithm 3: Construction of a backbone of the subtree PDA Mp(t) for a tree t in
prefix notation pref(t).

0 1 2 3 4 5 6 7
a2|S 7→ SS a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

Figure 3.1: A transition diagram of deterministic backbone of subtree PDA Mp (t1r) for
tree t1r in prefix notation pref(t1r) = a2 a2 a0 a1 a0 a1 a0 from Example 3.1.2.

istic PDA Mp(t1r) = ({0, 1, 2, 3, 4, 5, 6, 7}, A, {S}, δp, 0, S, ∅), where mapping δp is a
set of the following transitions:

δp(0, a2, S) = (1, SS) δp(1, a2, S) = (2, SS)
δp(2, a0, S) = (3, ε) δp(3, a1, S) = (4, S)
δp(4, a0, S) = (5, ε) δp(5, a1, S) = (6, S)
δp(6, a0, S) = (7, ε)

Note that the pushdown automaton accepts a string by an empty pushdown store.
The transition diagram of deterministic backbone of subtree PDA Mp(t1r) is illustrated

in Figure 3.1. For each transition δ(p, a, α) = (q, β) from δ the edge leading from state p

to state q is labelled by the triple of the form a|α 7→ β. △

Theorem 3.1.3. Given a tree t and its prefix notation pref(t), the PDA Mp(t) constructed
by Algorithm 3 (ConstructSubtreePDABackbone) accepts only a single string pref(t).

Proof. The automaton omitting the pushdown store operations is a simple finite auto-
maton, which starting in its initial state can only read string pref(t). The original push-
down automaton accepts by emptying the pushdown store and the pushdown store oper-
ations created by the Algorithm 3 (ConstructSubtreePDABackbone) operates the height
of the pushdown store so that it effectively simulates the computation of arity checksum.
Since the sequence of transitions represented by the automaton was constructed for a com-
plete tree, the only state where the pushdown store is empty is the last one. Therefore
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the automaton can only accept when reaching the last state by reading the whole string
pref(t).

The pushdown store operations seem unnecessary, however that are necessary for more
complex variants of pushdown automata accepting subtrees, tree pattern, and nonlinear
tree patterns.

Similarly as the backbone of the nondeterministic suffix automaton for string s is ex-
tended to nondeterministic suffix automaton, the backbone of the subtree PDA can be
extended with transitions from initial state to every other state. The label on these new
transitions is shared with already existent transitions on the backbone where the target
state of the new transition and a transition from the backbone is the same. Note that the
label includes the pushdown store manipulation. The resulting pushdown automaton ac-
cepts a string by an empty pushdown store so there are no final states added. The following
algorithm formally describes the construction of the subtree pushdown automaton.

Name: ConstructSubtreePDA
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an,

n ≥ 1
Result: Nondeterministic subtree PDA Mnps(t) = ({0, 1, 2, . . . , n},A∪ {S},
{S}, δ, 0, S, ∅)

1 begin
2 Create Mnps(t) as Mp(t) by Algorithm 3 (ConstructSubtreePDABackbone);
3 foreach state i, where 2 ≤ i ≤ n do
4 create a new transition δ(0, ai, S) = (i, SArity(ai)), where S0 = ε in

automaton Mnps(t);
5 end
6 return Mnps(t);
7 end
Algorithm 4: Construction of a nondeterministic subtree PDA for a tree t in prefix
notation pref(t).

Example 3.1.4. Consider tree t1r in prefix notation pref(t1r) = a2 a2 a0 a1 a0 a1 a0 from
Example 2.2.1, which is illustrated in Figure 2.1a. The nondeterministic subtree PDA ac-
cepting all subtrees of tree t1r, which has been constructed by Algorithm 4 (ConstructSub-
treePDA), is nondeterministic PDA Mnps(t1r) = ({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ2, 0, S, ∅),
where mapping δ2 is a set of the following transitions:

δ2(0, a2, S) = (1, SS)
δ2(1, a2, S) = (2, SS) δ2(0, a2, S) = (2, SS)
δ2(2, a0, S) = (3, ε) δ2(0, a0, S) = (3, ε)
δ2(3, a1, S) = (4, S) δ2(0, a1, S) = (4, S)
δ2(4, a0, S) = (5, ε) δ2(0, a0, S) = (5, ε)
δ2(5, a1, S) = (6, S) δ2(0, a1, S) = (6, S)
δ2(6, a0, S) = (7, ε) δ2(0, a0, S) = (7, ε)
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0 1 2 3 4 5 6 7
a2|S 7→ SS a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

Figure 3.2: A transition diagram of nondeterministic subtree pushdown automaton Mnps

(t1r) from Example 3.1.4 for tree t1r in prefix notation pref(t1r) = a2 a2 a0 a1 a0 a1 a0
from Example 2.2.1.

[0] [1, 2] [2] [3] [4] [5] [6] [7]

[3, 5, 7]

[4, 6] [5, 7]

a2|S 7→ SS a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a0|S 7→ ε

a0|S 7→ ε

a0|S 7→ ε

a1|S 7→ S

Figure 3.3: A transition diagram of deterministic subtree pushdown automaton Mdps (t1r)
from Example 3.1.4 for tree t1r in prefix notation pref(t1r) = a2 a2 a0 a1 a0 a1 a0 from
Example 2.2.1.

The transition diagram of nondeterministic subtree PDA Mnps(t1r) is illustrated in
Figure 3.2. Again, for each transition δ(p, a, α) = (q, β) from δ the edge leading from state
p to state q is labelled by the triple of the form a|α 7→ β.

The deterministic subtree pushdown automaton constructed from nondeterministic sub-
tree pushdown automaton Mnps(pref(t1r)), is deterministic pushdown automaton Mdps

(pref(t1r)) = ({[0], [1, 2], [2], [3], [4], [5], [6], [7], [3, 5, 7], [4, 6], [5, 7]}, A, {S}, δ3, [0], S,
∅). Its transition diagram is illustrated in Figure 3.3.

Some states of deterministic subtree automaton always have an empty pushdown store
when active in any run of the automaton. In this such states are [3, 5, 7] and [5, 7]. Therefore
transitions leading from these states can be omitted. It means that the deterministic
subtree pushdown automaton Mdps(t1r) shown in Figure 3.3 has fewer transitions than the
deterministic string suffix automaton constructed for pref(t1r) [19, 51, 58]. △

Theorem 3.1.5. Given a tree t and its prefix notation pref(t), the PDA Mnps(t) con-
structed by Algorithm 4 (ConstructSubtreePDA) accepts all subtrees of the tree t in the
prefix notation.

Proof. The automaton omitting the pushdown store operations and with all states final
is a nondeterministic factor automaton, which starting in its initial state can read all
factors of the string pref(t). The original pushdown automaton accepts by emptying the
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pushdown store and the pushdown store operations created by the Algorithm 4 (Construct-
SubtreePDA) operates the height of the pushdown store so that it effectively simulates the
computation of arity checksum. Subtrees of a tree represent complete trees themselves.
The pushdown store of the subtree pushdown automaton is therefore emptied after read-
ing a complete tree. Hence the automaton can only accept after reading a complete tree
and after reading a factor of the prefix notation of a tree. The combination of conditions
exactly corresponds to the subtrees of the tree.

3.2 Indexing trees for tree pattern matching

A tree pattern pushdown automata are designed as a structure for indexing trees for fast
searching of a tree pattern locations in the indexed tree. The structure was introduced in
[51, 52].

Definition 3.2.1. Let t and pref(t) be a tree and its prefix notation, respectively. A tree
pattern pushdown automaton for pref(t) accepts all tree patterns in the prefix notation
which match the tree t.

Given a subject tree in the prefix notation, first, so-called deterministic treetop PDA is
constructed for this tree. The treetop PDA accepts all tree patterns that match the subject
tree and contain the root of the subject tree. The deterministic treetop PDA is defined
by the following definition. States and transitions of the treetop pushdown automaton are
computed by Algorithm 5 (ConstructTreetopPDA). Finally, the correctness Algorithm 5
(ConstructTreetopPDA) is proved by Theorem 3.2.4.

Definition 3.2.2. Let t, r and pref(t) be a tree, its root and its prefix notation, respect-
ively. A treetop pushdown automaton Mpt(t) = (0, 1, 2, . . . , n, A∪S, S, δ, 0, S, ∅) for pref(t)
accepts all tree patterns in the prefix notation which contain the root r and match the tree
t.

The construction of the treetop PDA is described by the following algorithm. The
treetop PDA is deterministic.

Note that the abbreviation srms stands for Subtree Right Most States.
The treetop PDA is similar to the prefix string finite automaton or the backbone of the

suffix or factor automaton. Moreover, there exist additional transitions reading symbol S,
which represent subtrees. These transitions skip over parts of the prefix notation of the
subject tree which are its subtrees. The automaton uses the pushdown store for computing
a checksum so that the input would be a valid prefix notation of a tree.

The construction of treetop PDA by Algorithm 5 (ConstructTreetopPDA) is illustrated
in the following example.

Example 3.2.3. Consider tree t1r in prefix notation pref(t1r) = a2 a2 a0 a1 a0 a1 a0
from Example 2.2.1, which is illustrated in Figure 2.1a. The deterministic treetop PDA,
constructed by Algorithm 5 (ConstructTreetopPDA), is deterministic PDA Mpt(t1r) =
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Name: ConstructTreetopPDA
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an,

n ≥ 1
Result: Treetop PDA Mpt(t) = ({0, 1, 2, . . . , n},A∪ {S}, {S}, δ, 0, S, ∅)

1 begin
2 Create Mpt(t) as Mp(t) by Algorithm 3 (ConstructSubtreePDABackbone);
3 Create a set srms = { i : 1 ≤ i ≤ n, δ(i− 1, a, S) = (i, ε), a ∈ A0};
4 for state i = n− 1 downto 1, where δ(i, a, S) = (i + 1, Sp), a ∈ Ap do
5 if p = 0 then
6 Create a new transition δ(i, S, S) = (i + 1, ε);
7 else
8 Create a new transition δ(i, S, S) = (l, ε), where l is the p-th smallest

integer such that l ∈ srms and l > i;
9 Remove all j, where j ∈ srms, and i < j < l, from srms;

10 end

11 end
12 return Mpt(t);
13 end
Algorithm 5: Construction of a treetop PDA for a tree t in prefix notation pref(t).

({0, 1, 2, 3, 4, 5, 6, 7}, A ∪ {S}, {S}, δ1, 0, S, ∅), where mapping δ1 is a set of the following
transitions:

δ1(0, a2, S) = (1, SS)
δ1(1, a2, S) = (2, SS) δ1(1, S, S) = (5, ε)
δ1(2, a0, S) = (3, ε) δ1(2, S, S) = (3, ε)
δ1(3, a1, S) = (4, S) δ1(3, S, S) = (5, ε)
δ1(4, a0, S) = (5, ε) δ1(4, S, S) = (5, ε)
δ1(5, a1, S) = (6, S) δ1(5, S, S) = (6, ε)
δ1(6, a0, S) = (7, ε) δ1(6, S, S) = (7, ε)

The transition diagram of deterministic treetop PDA Mpt(t1r) is illustrated in Fig-
ure 3.4. Again, for each transition δ(p, a, α) = (q, β) from δ the edge leading from state p

to state q is labelled by the triple of the form a|α 7→ β.
Deterministic treetop PDA Mpt(t1r) has been constructed by Algorithm 5 (Construct-

TreetopPDA) manipulating the srms as follows. The srms is initially set to {3, 5, 7}. Then,
new transitions, which read symbol S, are created using the set srms in the following order:

δ4(6, S, S) = (7, ε), δ4(5, S, S) = (7, ε), δ4(4, S, S) = (5, ε),
δ4(3, S, S) = (5, ε), δ4(2, S, S) = (3, ε), and δ4(1, S, S) = (5, ε)

The srms set is modified by removal of value 3 resulting in srms = {5, 7} when the
transition δ4(1, S, S) = (5, ε) is created. This corresponds to a finalisation of computation
inside the subtree represented by transitions on the backbone of the automaton between
states 1 and 5. △
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0 1 2 3 4 5 6 7
a2|S 7→ SS a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε
S|S 7→ ε

Figure 3.4: A transition diagram of deterministic treetop PDA Mpt (t1r) from Example
3.2.3 for tree t1r in prefix notation pref(t1r) = a2 a2 a0 a1 a0 a1 a0 from Example 2.2.1.

Theorem 3.2.4. Given a tree t and its prefix notation pref(t), the PDA Mpt(t) constructed
by Algorithm 5 (ConstructTreetopPDA) is a treetop PDA for pref(t).

Proof. Let r be the root of t. The PDA Mpt(t) is a simple extension of the PDA, which is
constructed on line 1 of Algorithm 5 (ConstructTreetopPDA) and accepts the tree t in its
prefix notation. New transitions, which read the wildcard symbol S that are added in the
loop on lines 4 to 11 of Algorithm 5 (ConstructTreetopPDA). For these new transitions
it holds that δ(q1, S, S) = (q2, ε) if and only if (q1, w, S) ⊢+

Mpt(t) (q2, ε, ε) and q1 is not the
initial state 0. This means that the new added transitions reading S correspond just to
subtrees not containing the root r. Thus, the PDA Mpt(t) accepts all tree patterns in the
prefix notation which contain the root r and match the tree t.

The nondeterministic tree pattern PDA for trees in the prefix notation is constructed
as an extension of the deterministic treetop PDA. The extension is so that for each state
of the treetop PDA with an incoming transition which reads a symbol a ∈ A we duplicate
the transition and redirect it from the starting state to that state. This construction is
described by the following algorithm.

Name: ConstructNTPPDA
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an,

n ≥ 1
Result: Nondeterministic tree pattern PDA Mnpt(t) = ({0, 1, 2, . . . , n}, A∪ {S},

{S}, δ, 0, S, ∅)
1 begin
2 Create Mnpt(t) as Mpt(t) by Algorithm 5 (ConstructTreetopPDA);
3 foreach state i, where 2 ≤ i ≤ n do
4 Create a new transition δ(0, ai, S) = (i, SArity(ai)), where S0 = ε in

automaton Mnpt(t);
5 end
6 return Mnpt(t);
7 end
Algorithm 6: Construction of a nondeterministic tree pattern PDA for a tree t in
prefix notation pref(t).
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0 1 2 3 4 5 6 7
a2|S 7→ SS a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε
S|S 7→ ε

Figure 3.5: A transition diagram of nondeterministic tree pattern pushdown automaton
Mnpt (t1r) from Example 3.2.5 for tree t1r from Example 2.2.1 in prefix notation pref(t1r) =
a2 a2 a0 a1 a0 a1 a0.

The tree pattern PDA is similar to the string factor finite automaton. Its construction
is based on the treetop PDA and the extension is that the tree pattern rooted by the
automaton can be matched on any node of the tree. For this reason, additional transitions
are created.

Example 3.2.5. Consider tree t1r in prefix notation pref(t1r) = a2 a2 a0 a1 a0 a1 a0 from
Example 2.2.1, which is illustrated in Figure 2.1a. The nondeterministic tree pattern PDA
accepting all tree patterns matching tree t1r, which has been constructed by Algorithm 6
(ConstructNTPPDA), is nondeterministic PDA Mnpt(t1r) = ({0, 1, 2, 3, 4, 5, 6, 7}, A, {S},
δ2, 0, S, ∅), where mapping δ2 is a set of the following transitions:

δ2(0, a2, S) = (1, SS)
δ2(1, a2, S) = (2, SS) δ2(1, S, S) = (5, ε) δ2(0, a2, S) = (2, SS)
δ2(2, a0, S) = (3, ε) δ3(2, S, S) = (3, ε) δ2(0, a0, S) = (3, ε)
δ2(3, a1, S) = (4, S) δ2(3, S, S) = (5, ε) δ2(0, a1, S) = (4, S)
δ2(4, a0, S) = (5, ε) δ2(4, S, S) = (5, ε) δ2(0, a0, S) = (5, ε)
δ2(5, a1, S) = (6, S) δ2(5, S, S) = (6, ε) δ2(0, a1, S) = (6, S)
δ2(6, a0, S) = (7, ε) δ2(6, S, S) = (7, ε) δ2(0, a0, S) = (7, ε)

The transition diagram of nondeterministic tree pattern PDA Mnpt(t1r) is illustrated
in Figure 3.5. Again, for each transition δ(p, a, α) = (q, β) from δ the edge leading from
state p to state q is labelled by the triple of the form a|α 7→ β.

The deterministic tree pattern PDA Mdpt(t1r) = ({[0], [1, 2], [2], [3], [4], [5], [6], [7],
[3, 5, 7], [3, 5], [4, 6], [5, 7]},A, {S}, δ6, [0], S,∅). Its transition diagram is illustrated in
Figure 3.6.

Some states of the deterministic subtree automaton always have an empty pushdown
store, therefore, some transitions can be omitted due to the pushdown operation.

The states where the pushdown store is always empty are states [3, 5, 7] and [5, 7],
therefore, all transitions leading from them can be omitted. △

In the following theorem we prove the correctness of the constructed tree pattern PDA.
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0 [1, 2] 2 3 4 5 6 7

[3, 5, 7]

[3, 5]

[4, 6] [5, 7]

a2|S 7→ SS a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε S|S 7→ ε

a0|S 7→ ε S|S 7→ ε S|S 7→ ε

S|S 7→ ε

a0|S 7→ ε
a0|S 7→ ε

a1|S 7→ S

S|S 7→ ε

a1|S 7→ S

S|S 7→ ε

Figure 3.6: A transition diagram of deterministic tree pattern pushdown automaton Mdpt

(t1r) from Example 3.2.5 for tree t1r from Example 2.2.1 in prefix notation pref(t1r) =
a2 a2 a0 a1 a0 a1 a0.

Theorem 3.2.6. Given a tree t and its prefix notation pref(t), the PDA Mnpt(t) con-
structed by Algorithm 6 (ConstructNTPPDA) is a tree pattern PDA for pref(t).

Proof. The PDA Mnpt(t) is a simple extension of the PDA Mpt(t). The PDA Mpt(t) is
constructed by Algorithm 5 (ConstructTreetopPDA) and accepts all tree patterns in the
prefix notation which contain the root r of the tree t and match the tree t by an empty
pushdown store. The PDA Mnpt(t) contains newly added transitions of the form δ(0, ai, S)
= (i, SArity(ai)). These transitions correspond just to the possibility that the first symbol
of a tree pattern to be accepted can be any node of the tree t. Thus, the PDA Mnpt(t)
accepts all tree patterns in the prefix notation which match the tree t.

Lemma 3.2.7. Given a tree t with n nodes, the number of distinct tree patterns which
match the tree t can be at most 2n−1 + n− 1.

Proof. First, subtrees of any subtree of the tree t can be replaced by the wildcard symbol
S and the tree template resulting from such a replacement is a tree pattern which matches
the tree. Given a tree with n nodes, the maximal number of subsets of subtrees that can
be replaced by the wildcard symbol S occurs for the case of a tree t3r whose structure is
given by the prefix notation pref(t3r) = a(n− 1) a0 a0 . . . a0, where n ≥ 2. Such a tree is
illustrated in Figure 3.7. In this tree, each of the n− 1 nullary symbols a0 can be replaced
by wildcard symbol S, and therefore we can create 2n−1 distinct tree templates which are
tree patterns matching the tree t3r.

Second, the subtrees of tree t are tree patterns which match the tree, which gives n− 1
other distinct tree patterns (provided all the subtrees are unique).
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a(n− 1)1

a02 a03 a0n
. . .

pref(t3r) = a(n− 1) a0 a0 . . . a0

Figure 3.7: A tree t3r with 2n−1 + n distinct tree patterns matching the tree t3r and its
prefix notation.

Thus, the total number of distinct tree patterns matching the tree t can be at most
2n−1 + n− 1.

Lemma 3.2.8. Given a tree t in prefix notation pref(t), the number of states of a non-
deterministic tree pattern pushdown automaton Mnpt(t) is m + 1, where m is the number
of nodes of a subject tree.

Proof. There is one state for each symbol in pref(t) plus the initial state. Thus, the
number of states is m + 1.

Lemma 3.2.9. Given a tree t in prefix notation pref(t), the number of transitions of a
nondeterministic tree pattern pushdown automaton Mnpt(t) is 3m − 2, where m is the
number of nodes of a subject tree.

Proof. There is one transition for each symbol in pref(t), which forms the backbone of
the automaton. There are exactly m − 1 transitions from the initial state to every other
state. Finally, there is one transition for symbol S leading from every state except the
initial state. Thus, the number of transitions is then 3m− 2.

3.3 Tree pattern matching with tree automata

In this section, algorithms and theorems regarding tree pattern matching finite tree auto-
mata for trees are given. The tree pattern matching, finite tree automata and its construc-
tion are demonstrated on an example. NFRTAs accepting a tree pattern were introduced
in [36] and used in [35, 34, 10, 29]. A taxonomy of tree pattern matching is given in [13].

A tree pattern matching NFRTA is similar to the string pattern matching NFA. It can
implement various types of matching of trees or tree patterns. It can be constructed to
accept all trees that match the tree pattern at the root. The tree automaton can also
be constructed to locate all nodes rooting a subtree of a given tree that match given tree
pattern. A tree pattern can be either a subtree or a tree template, which contains at least
one special wildcard symbol S representing any subtree.
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Figure 3.8: Visualisation of the tree pattern matching FTA Mta2(p2r) from Example 3.3.1.

Given a tree pattern p, the pattern matching on tree t can be reduced to assigning a
set of subtrees of p to each node q of tree t. The assigned sets represent subtrees of p that
match subtree of t rooted at node q. The number of such sets is finite and therefore can
be precomputed.

The states of a deterministic finite frontier to root tree automaton constructed for
tree pattern matching are equivalent to these sets and the transition function ∆ of the
automaton is given by all possible reductions of sets q1, q2, . . . , qn, assigned to nodes
s1, s2, . . . , sn, to set qf assigned to node f , where f(s1, s2, . . . , sn) is a node of t and
s1, s2, . . . , sn are the children of f . The final states of the automaton are those equivalent
to a set containing the complete pattern p.

The same result can be obtained by constructing a nondeterministic frontier to root
tree automaton with subsequent determinisation.

The states of a nondeterministic finite frontier to root tree automaton are equivalent
to subtrees of the pattern and ∆ function of the automaton given by the structure of the
pattern. The final state of the automaton is the one equivalent to the complete pattern p.
The wildcard present in the pattern can be represented by a state of the automaton able
to accept any tree over the alphabet of the subject tree.

Example 3.3.1. Given a tree pattern p2r from Example 2.2.5 and nondeterministic frontier
to root tree automaton Mta(p2r) constructed as the tree pattern matching automaton
Mta2(p2r) = (Q,A, F, ∆), where Q = {1, 2, 3}, A = {a2, a1, a0}, F = {3}, and ∆ contains
these transition rules:

a0→ 1
a1(1)→ 1

a2(1, 1)→ 1
a1(1)→ 2

a2(1, 2)→ 3

The automaton Mta2(p2r) is depicted in Figure 3.8. △

3.4 Computing subtree repetitions

Enumerating all subtree repeats and fast identification of the same subtrees within a tree is
important, therefore many algorithms were designed to compute all subtree repeats. Two
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Table 3.1: Subtree repeats table for the prefix notation SRT_post(t4r) of tree t4r.

node id 1 2 3 4 5 6 7

post(t4r) a2 a2 a0 a0 a2 a0 a0

repeat id 2 1 0 0 1 0 0

notable approaches shall be presented. The first is based on automata approach, and the
second is based on dynamic programming.

The representation of repeats for use in this thesis was chosen to be close to the linear
representation of the tree itself, which is different from the representation used by both
presented state-of-the-art algorithms.

Definition 3.4.1. Let t and pref(t) be a tree and its prefix notation, respectively. A
subtree repeats table for pref(t) denoted by SRT_pref(t) is an array of integers, where
non-repeated (unique) subtree of t rooted on position i in the prefix notation pref(t) is
represented by unique integer value on position i and repeated subtrees on positions j, k,
. . . are represented by the same but otherwise unique integer value on positions j, k, . . . in
the SRT_pref(t).

Example 3.4.2. Consider a tree t4r in the prefix notation pref (t4r) = a2 a2 a0 a0 a2 a0 a0
over alphabet A = {a3, a2, a1, a0}. Table 3.1 shows the SRT_pref(t4r) constructed for
the tree t4r. △

Similar definitions for linear notations of trees other than the prefix notation are a
straightforward modification of the Definition 3.4.1.

3.4.1 Automata approach to compute all subtree repeats

Subtree pushdown automata can be used to find all repetitions of subtrees. The approach
using the postfix bar notation was presented in [30], however, similar result can be obtained
using any other linear notation. The algorithm to compute all subtrees of a given tree
requires a construction of the deterministic subtree pushdown automaton which was already
discussed in Section 3.1.

The algorithm follows traces of accepting all subtrees with the subtree pushdown auto-
maton. When the pushdown automaton would accept a subtree, the state, where the trace
of transitions ended is investigated. States with non-singleton d-subset represent repetition
of some subtree and a state with singleton d-subset represent subtree that is unique inside
the processed tree. The original paper focuses only on repeated subtrees however both the
repeats of subtrees and unique subtrees are important.

The resulting structure of subtree repeats as proposed in [30] is presented in form of a
table with a row for each repeating subtree. Each row of the table contains positions where
the subtree ends, representation of the subtree in postfix bar notation, and the type of the

34



3.4. Computing subtree repetitions

repetition. Listed types can represent F for the first occurrence, S for a square repetition,
and G for a repetition with a gap between previous and the next subtree repeat.

To retrieve all subtree repetitions and all unique subtrees of a tree t in prefix notation
pref(t) from the Mdps(pref(t)) in a form of a table SRT_pref(t) as proposed in Defini-
tion 3.4.1, one can use the Algorithm 7 (RepeatsFromSubtreePushdownAutomaton) which
is a variation on the algorithm presented in [30].

Name: RepeatsFromSubtreePushdownAutomaton
Input: Subtree pushdown automaton Mdps(pref(t)) = (Q,A, G, δ, q0, Z0, F ) for

tree pref(t) of size n

Output: Array SRT_pref(t) initialised to array of size n representing the result
Input: state the processed state initialised to q0

Input: size the length of linear representation of the subtree repeat initialised to 0
Input: ac the arity checksum initialised to 1

1 begin
2 if ac = 0 then
3 let subset = r1, r2, . . . , r|state| such that ri > rr−1;
4 foreach ri ∈ subset do
5 SRT_pref(t)[ri − size] := r0 − size;
6 end

7 end
8 else
9 foreach ai ∈ A do

10 for (next_state, SArity(ai))) ∈ δ(state, ai, S) in transitions of automaton
Mdps(pref(t)) do

11 RepeatsFromSubtreePushdownAutomaton(Mdps(pref(t)),
SRT_pref(t), next_state, size + 1, ac− 1 + Arity(ai));

12 end

13 end

14 end

15 end
Algorithm 7: Algorithm of subtree repeats table construction from subtree pushdown
automaton.

The algorithm is designed for the deterministic subtree pushdown automaton construc-
ted for a tree in the prefix notation. Other notations can be used to construct the subtree
pushdown automaton and later similar algorithm to the Algorithm 7 (RepeatsFromSub-
treePushdownAutomaton) can be designed as well.

Given the subtree pushdown automaton Mdps(pref(t)), the running time to obtain the
subtree repeats table SRT_pref(t) is linear with the sum of sizes of all subtrees of the tree
t since it traces all transitions accepting subtrees of the tree t in the automaton symbol at
a time.
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3.4.2 Dynamic programming approach to compute all subtree repeats

A dynamic programming approach to find all subtree repeats was presented in [11]. The
algorithm is designed to work on the tree in its postfix notation post(t) of size n.

The algorithm internally processes triplets consisting of parts named S, l, ac. These
triplets represent the same factors of the postfix representation of the tree post(t). Starting
positions of the factors are stored in the triplet part called S, the length of the factor is
named l and the arity checksum value of the factor is named ac. Intuitively, the only
interesting triplets are those with arity checksum ac equal to 0, they represent subtrees
of the original tree. The algorithm eventually outputs these triplets. Each triplet (S, lac)
that represents a subtree repeat is outputted exactly once, which allows aggregating the
subtree repeats by an array SRT_post(t). The SRT_post(t)[i] = S[0] + l, for all i ∈ S.

To use the information about repeats with some other linear notation, like prefix, or
bar notation, the same array of repeats needs to be obtained. The result of the aforemen-
tioned algorithm can be transformed to correspond to the prefix notation by the following
algorithm.

Name: PostfixToPrefixRepeats
Input: A tree T in postfix notation post(t) of length n

Input: Array of subtree repeats SRT_post(t) constructed for postfix notation
Output: Array SRT_pref(t) initialised to array of size n representing the result
Input/Output: read_position is an index to the post(t) initialised to n

Input/Output: write_position is an index to the post(t) initialised to n

1 begin
2 rootIndex := read_position;
3 read_position := read_position - 1;
4 for i := 1 to Arity(pref(T )[rootIndex]) do
5 PostfixToPrefixRepeats ( post(T ), SRT_post(T ), SRT_pref(T ),

read_position, write_position );
6 end
7 SRT_pref(T )[write_position] := SRT_post(T ) [ rootIndex ];
8 write_position := write_position - 1;
9 end
Algorithm 8: Transformation algorithm of subtree repeats array from postfix to prefix.

Theorem 3.4.3. Given a tree t of size n, the algorithm to compute all subtree repeats
presented in [11] with its result post-processed by Algorithm 8 (PostfixToPrefixRepeats)
correctly produces the subtree repeats table for the prefix notation SRT_pref(t).

Proof. The algorithm to compute all subtree repeats presented in [11] is proven to be
correct in [11]. Capturing its result in an array representing SRT_post(t) is straightforward
processing of its input.
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Given a tree consisting of only a root node, hence node labelled by a nullary symbol,
the algorithm does not recurse and the node is simply copied to the output.

Given a tree rooted by a node labelled by non-nullary symbol, the algorithm first
recursively processes the sequence of the children of the root in the right to left order,
while it remembers the results in a result array filled from right to left. Finally, the root
node is outputted to the resulting array.

The algorithm therefore correctly transforms the SRT_post to SRT_pref .

Theorem 3.4.4. Given a tree t of size n, the algorithm to compute all subtree repeats
presented in [11] with its result post-processed by Algorithm 8 (PostfixToPrefixRepeats)
runs in time linear with respect to the size of the tree t.

Proof. The running time of the algorithm to compute all subtree repeats is shown to be
linear with respect to the size of the processed tree in [11].

The transformation from SRT_post(t) to SRT_pref(t) constructed for a tree t of size
n is linear with the size of the tree t since it reads from each position in the SRT_post(t)
and writes to each position of the SRT_pref(t) exactly once and both the SRT_post(t)
and the SRT_pref(t) are of size n.

A similar algorithm of a transformation of SRT_post to SRT_pref_bar is presented
as well. Other transformation algorithms are not shown.

Name: PostfixToPrefixBarRepeats
Input: A tree T in postfix notation post(t) of length n

Input: Array of subtree repeats SRT_post(t) constructed for postfix notation
Output: Array SRT_pref_bar(t) initialised to array of size 2n representing the

result
Input/Output: read_position is an index to the post(t) initialised to n

Input/Output: write_position is an index to the pref_bar(t) initialised to 2n

1 begin
2 rootIndex := read_position;
3 read_position := read_position - 1;
4 SRT_pref_bar(T )[write_position] := ↑;
5 write_position := write_position - 1;
6 for i := 1 to Arity(pref(T )[rootIndex]) do
7 PostfixToPrefixRepeats ( post(T ), SRT_post(T ), SRT_pref_bar(T ),

read_position, write_position );
8 end
9 SRT_pref_bar(T )[write_position] := SRT_post(T ) [ rootIndex ];

10 write_position := write_position - 1;
11 end

Algorithm 9: Transformation algorithm of subtree repeats array from postfix to prefix.
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Theorem 3.4.5. Given a tree t of size n, the algorithm to compute all subtree repeats
presented in [11] with its result post-processed by Algorithm 9 (PostfixToPrefixBarRepeats)
correctly produces the subtree repeats table for the prefix notation SRT_pref_bar(t).

Proof. The proof is similar to the proof of Theorem 3.4.3. The only difference in the
Algorithm 9 (PostfixToPrefixBarRepeats) compared to Algorithm 8 (PostfixToPrefixRe-
peats) is an additional output of the bar symbol ↑. The order of non-bar symbols in the
output SRT_pref_bar(t) is the same as in the SRT_pref(t). Therefore only the correct-
ness of positions of ↑ symbol in the output is needed to prove.

The bar symbol ↑ is always outputted first of the symbols forming a subtree of the
tree, i.e. on the position with the highest index of the symbols forming the tree. That is
in contrast with the non-bar symbols that are outputted last, i.e. with the lowest index
of the symbols forming the tree. Therefore the non-bar symbol and the bar symbol are
together forming the left and right parenthesis wrapping exactly the representations of the
child nodes.

The algorithm therefore correctly transforms the SRT_post to SRT_pref_bar.

Theorem 3.4.6. Given a tree t of size n, the algorithm to compute all subtree repeats
presented in [11] with its result post-processed by Algorithm 9 (PostfixToPrefixBarRepeats)
runs in time linear with respect to the size of the tree t.

Proof. The proof is similar to the proof of Theorem 3.4.4. Again, the running time of the
algorithm to compute all subtree repeats is shown to be linear with respect to the size of
the processed tree in [11].

The transformation from SRT_post(t) to SRT_pref_bar(t) constructed for a tree t of
size n is linear with the size of the tree t since it reads from each position in the SRT_post(t)
and writes to each position of the SRT_pref_bar(t) exactly once and the SRT_post(t) is
of size n and the SRT_pref_bar(t) is of size 2n.
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Chapter 4

Main Results in Tree Indexing

Tree indexing is covered by two approaches both covered in this chapter. The chapter
summary and experimental results is presented to conclude the tree indexing topic of this
thesis.

4.1 Basic nonlinear tree pattern pushdown automaton

This section contains base results from an individual work presented as a conference pa-
per [62] and as well as a journal paper [60].

Definition 4.1.1. Let t and pref(t) be a tree and its prefix notation, respectively. A
nonlinear tree pattern pushdown automaton for pref(t) accepts all nonlinear tree patterns
in prefix notation which has at most one nonlinear variable and match the tree t.

The nonlinear tree pattern pushdown automaton is based on the tree pattern pushdown
automaton. Copies of parts of the tree pattern pushdown automaton called tails are
added to construct the nonlinear tree pattern pushdown automaton from the tree pattern
pushdown automaton. These tails represent parts of the automaton after reading a subtree
wildcard.

Definition 4.1.2. Given a tree pattern pushdown automaton M = (Q,A, G, δ, q0, Z0, F )
and a state qt ∈ Q, the tail(M, qt) = (Qt,A, G, δt, qt, S, F ). Qt = Q r Qus, Qus is a set
of unreachable states from qt, δt = δ r δus, δus are transitions leading from or to state
qn ∈ Qus.

Example 4.1.3. Consider a tree t1r from Example 2.2.1 and its index, a tree pattern push-
down automaton Mnpt(t1r) from Example 3.2.5, which is depicted in Figure 3.5. The tail
of automaton Mnpt(t1r) with initial state qt = 3 is tail(Mnpt(t1r), qt) = ({3, 4, 5, 6, 7},A∪
{S}, {S}, δ, 3, S,∅). The corresponding transition diagram is illustrated in Figure 4.1. △
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3 4 5 6 7
a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε

Figure 4.1: A tail tail(Mnpt(t1r), 3) of the tree pattern pushdown automaton Mnpt(t1r) from
Example 4.1.3.

We note that every node of a tree t is a root of just one subtree, which is represented
by symbol S. The prefix notation of such subtree is a factor of pref(t1r). These factors
are in the tree pushdown automaton "skipped" by transitions for wildcard symbol S.

Definition 4.1.4. Given a tree pattern pushdown automaton Mnpt(t) = (Q,A, G, δ, q0,
Z0, F ) and a state q ∈ Q, the subtree skipped by transition sst(q) = b1b2 . . . bm, where
b1, b2, . . . , bm ∈ A r {S}, is given by a labelled path b1, b2, . . . , bm in the PDA Mnpt(t)
between states q and qt, where (qt, ε) ∈ δ(q, S, S).

Informally, the sst(q) is the prefix notation of the subtree which is skipped by transition
reading S leading from the state q. The sst(q) is used in Algorithm 10 (ConstructTail) to
determine which subtree of the subject tree was "assigned" to a particular automaton tail.

Example 4.1.5. Consider a tree t1r from Example 2.2.1 and a tree pattern pushdown
automaton Mnpt(t1r) from Example 3.2.5, which is an index of t1r. The subtree skipped
by transition sst(1) = a2 a0 a1 a0. △

The construction of basic nonlinear tree pattern PDA consists of two algorithms. Al-
gorithm 10 (ConstructTail) constructs tails from the original tree pattern pushdown auto-
maton. Algorithm 11 (ConstructBasicNTPPDA) recursively connects these created tails
to the pushdown automaton being created.

The Algorithm 10 (ConstructTail) is similar to the Algorithm 11 (ConstructBasicNTP-
PDA). The difference between them is that Algorithm 10 (ConstructTail) calls itself only
when processing transition for symbol S leading from state q, where the sst(q) equals
its subtree parameter. On the other hand, Algorithm 11 (ConstructBasicNTPPDA) calls
Algorithm 10 (ConstructTail) for each transition for symbol S.

Example 4.1.6. Given a string pref(t1r) = a2 a2 a0 a1 a0 a1 a0, which is a prefix
notation of tree t1r from Example 2.2.1, the corresponding basic nondeterministic nonlinear
tree pattern pushdown automaton is Mb(t1r) = (Q,A ∪ {S, X}, {S}, δ, 0, S,∅), where its
transition diagram is illustrated in Figure 4.2.

The basic nondeterministic nonlinear tree pattern pushdown automaton Mb(t1r) consist
of eleven tails and one original tree pattern pushdown automaton. To distinguish the tails,
the states forming it are indexed by 1 to 11.

Tails with states indexed by numbers 1, 3, 4, 7, 8, 9, and 10 are the tails, where
nonlinear variable X stands for a subtree represented in prefix notation as a0. Tails with
states indexed by numbers 1, 4, and 8 represent the tails in which the nonlinear variable X
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Name: ConstructTail
Input: Tail of nondeterministic tree pattern pushdown automaton Mtnpt

Input: String representing subtree skipped by transition x

Result: Recursively created tail (Mtnpt, x)
1 begin
2 foreach transition (qt, ε) ∈ δ(q, S, S) in automaton Mtnpt where the sst(q) = x

do
3 Create (Mtmp, x) = ConstructTail(tail(Mtnpt, qt), x) using Algorithm 10

(ConstructTail);
4 Add new state qid to Mtnpt where qid is copy of state qt;
5 Add new transition (qid, ε) ∈ δ(q, X, S) to Mtnpt;
6 Add Mtmp to Mtnpt and merge initial state of Mtmp with qid;
7 end
8 return (Mtnpt, x);
9 end
Algorithm 10: Recursive construction of tail of nondeterministic basic nonlinear tree
pattern automaton.

Name: ConstructBasicNTPPDA
Input: Nondeterministic tree pattern pushdown automaton Mnpt(t)
Result: Basic nondeterministic nonlinear tree pattern pushdown automaton Mb(t)

1 begin
2 foreach transition (qt, ε) ∈ δ(q, S, S) in automaton Mnpt(t) do
3 Create (Mtmp, sst(q)) = ConstructTail(tail(Mnpt(t), qt), sst(q)) using

Algorithm 10 (ConstructTail);
4 Add new state qid to Mnpt(t) where qid is copy of state qt;
5 Add new transition (qid, ε) ∈ δ(q, X, S) to Mnpt(t);
6 Add Mtmp to Mnpt(t) and merge initial state of Mtmp with qid;
7 end
8 Mb(t) = Mnpt(t);
9 return Mb(t);

10 end
Algorithm 11: Construction of basic nondeterministic nonlinear tree pattern push-
down automaton.
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is read once. Tails with states indexed by numbers 3, 7, and 10 represent the tails in which
the nonlinear variable X is read twice. A tail with state indexed by number 9 represents
the tail in which the nonlinear variable X is read three times.

Tails with states indexed by numbers 2, 5, and 6 are the tails, where nonlinear variable
X stands for subtree represented in prefix notation as a1 a0. Tails with states indexed by
numbers 2 and 6 represent the tails in which the nonlinear variable X is read once. A tail
with state indexed by number 5 represents the tail in which the nonlinear variable X is
read twice.

A tail with state indexed by numbers 11 is the tail in which the nonlinear variable X is
read once and where nonlinear variable X stands for subtree represented in prefix notation
as a2 a0 a1 a0.

The corresponding basic deterministic nonlinear tree pattern pushdown automaton is
Mdb(t1r) = (Q,A∪{S, X}, δ, 0,∅), where its transition diagram is illustrated in Figure 4.3.

△

4.2 Nonlinear tree pattern pushdown automaton

Some states of the basic nondeterministic nonlinear tree pattern pushdown automaton
constructed by Algorithm 11 (ConstructBasicNTPPDA) can be merged so that states
in nondeterministic nonlinear tree pattern pushdown automaton Mnnpt(t) = (Q, A ∪
{S, X}, {S}, δ, 0, S, ∅) for a subject tree t would still track both assigned subtree and
the same number of nonlinear variables read from the pattern. Merged states are those
from tails with the same assigned subtree, and the same number of nonlinear variables
read.

Definition 4.2.1. Let Mb(t) = (Q,A∪{S, X}, {S}, δ, q0, S,∅) be a basic nondeterministic
nonlinear tree pattern PDA constructed by Algorithm 11 (ConstructBasicNTPPDA). Let
q ∈ Q and x be the longest string over alphabet Ar {S, X}, where (q, x, α) ⊢∗

Mb (qf , ε, β).
The tree node state label tnsl(q) is defined tnsl(q) = |pref(t)| − |x|.

Informally, the tnsl(q) is a function that erases the index from the state label q in
sample automata tails.

Example 4.2.2. Given a basic nondeterministic nonlinear tree pattern pushdown auto-
maton is Mb(t1r) = (Q,A ∪ {S, X}, {S}, δ, 0, S,∅), its transition diagram is shown in
Figure 4.2.

Then, tnsl(3) = 3, tnsl(54) = 5, tnsl(711) = 7, tnsl(79) = 7. △

Definition 4.2.3. Given a basic nondeterministic nonlinear tree pattern pushdown auto-
maton Mb(t) = (Q,A ∪ {S, X}, {S}, δ, 0, S,∅) created by Algorithm 11 (Construct-
BasicNTPPDA), the number of nonlinear variable transitions nnv(q, X) is the number
of transitions reading nonlinear variable X on the path from the initial state q0 to state q,
where q and q0 ∈ Q.
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4.2. Nonlinear tree pattern pushdown automaton

0 1 2 3 4 5 6 7

a2|S 7→ SS

a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε
S|S 7→ ε 71

X|S 7→ ε

72

X|S 7→ ε

56 66 76

a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

X|S 7→ ε

75

X|S 7→ ε

54 64 74

a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

X|S 7→ ε

73

X|S 7→ ε

38 48 58 68 78

a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε

X|S 7→ ε

77

X|S 7→ ε

510 610 710

a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

X|S 7→ ε

79

X|S 7→ ε

511 611 711

a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

X|S 7→ ε

Figure 4.2: Basic nondeterministic nonlinear tree pattern pushdown automaton Mb(t1r)
from Example 4.1.6 constructed for tree t1r shown in Figure 2.1a.
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[0] [1, 2] [2] [3] [4] [5] [6] [7]

a2|S 7→ SS a2|S 7→ SS

a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε

[3, 5, 7]

a0|S 7→ ε
[3, 5]

[4, 6] [5, 7]

[54, 71]

[56, 72]

S|S 7→ ε

X|S 7→ ε

a1|S 7→ S

a1|S 7→ S

X|S 7→ ε

S|S 7→ ε

a0|S 7→ ε

S|S 7→ ε

[38, 511] [48, 611] [58, 711]

[510]
X|S 7→ ε

a1|S 7→ S

S|S 7→ ε

a0|S 7→ ε

S|S 7→ ε
X|S 7→ ε

[38] [48] [58] [68] [78]

X|S 7→ ε

a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε

[510] [610] [710]
a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

X|S 7→ ε

[77]
X|S 7→ ε

[79]
X|S 7→ ε

[56] [66] [76]

X|S 7→ ε

a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

[75]
X|S 7→ ε

[54] [64] [74]

X|S 7→ ε

a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

[73]X|S 7→ ε

[72]

X|S 7→ ε

[71]
X|S 7→ ε

Figure 4.3: Basic deterministic nonlinear tree pattern pushdown automaton Mdb(t1r) from
Example 4.1.6 constructed for subject tree t1r shown in Figure 2.1a.
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4.2. Nonlinear tree pattern pushdown automaton

Name: ComputeTreeNodeStateLabel
Input: Basic nondeterministic nonlinear tree pattern pushdown automaton Mb(t)
Input: State q for which the tnsl is counted
Result: Number representing tnsl

1 begin
2 n = 0;
3 initial is the starting state of Mb(t);
4 loop
5 if exists transition (q, Sarity(a)) ∈ δ(qprev, a, S) where a ∈ Ar {S, X} and

qpref 6= initial then
6 n = n + 1, q = qprev;
7 else if exists transition (q, ε) ∈ δ(qprev, X, S) where X is nonlinear variable

then
8 n = n + |tnst(qprev)|, q = qprev;
9 else

10 return n + 1;
11 end

12 end

13 end
Algorithm 12: Algorithm for counting the tnsl.

Name: ComputeTheNumberOfNonlinearVariables
Input: Basic nondeterministic nonlinear tree pattern pushdown automaton Mb(t)
Input: State q for which the nnv is counted
Result: Number representing nnv

1 begin
2 n = 0;
3 initial is the starting state of Mb(t);
4 loop
5 if exists transition (q, Sarity(a)) ∈ δ(qprev, a, S) where a ∈ A an

qpref 6= initial then
6 q = qprev;
7 else if exists transition (q, ε) ∈ δ(qprev, X, S) where X is nonlinear variable

then
8 n = n + 1;
9 q = qprev;

10 else
11 return n;
12 end

13 end

14 end
Algorithm 13: Algorithm for counting the nnv.
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Definition 4.2.4. Given a state r, where nnv(r) ≥ 1 of the basic nondeterministic non-
linear tree pattern pushdown automaton Mb(t), that state r is inside the automaton in
some tail. The denoting state of the tail containing r the tds(r) is state s of the automaton
Mb(t) that satisfies (s, XΩ, SΓ) ⊢∗

Mb(t) (r, Ω, Γ), where Ω = Ar {S, X} and Γ ∈ S∗.

Definition 4.2.5. Given a basic nondeterministic nonlinear tree pattern pushdown auto-
maton Mb(t) created by Algorithm 11 (ConstructBasicNTPPDA), the mergeable states
ms(Mb(t)) is a mapping of tuple (tnst, nnv, tnsl) to set of states mss. The set mss is a
set of states {s1, s2, . . . : nnv(s1, X) = nnv(s2, X) and tnst(tds(s1)) = tnst(tds(s2)) and
tnsl(s1) = tnsl(s2); s1, s2 ∈ Q}.

Informally, the states q of mss have the same number of transitions reading nonlinear
variable X on the path from the initial state of the automaton to them, are part of a tail
assigned with the same subtree, and have the same tree node state label.

Each set from the collection of sets of mergeable states ms(Mb(t)) defines states of basic
nondeterministic nonlinear tree pattern pushdown automaton Mb(t) that can be merged.
When the states are merged, the resulting automaton is called nondeterministic nonlinear
tree pattern pushdown automaton Mnnpt(t).

Example 4.2.6. Given a string pref(t1r) = a2 a2 a0 a1 a0 a1 a0, which is the prefix
notation of tree t1r from Example 2.2.1. The corresponding basic nondeterministic nonlin-
ear tree pattern pushdown automaton is Mb(t1r) = (Q,A ∪ {S, X}, {S}, δ, 0, S,∅), where
its transition diagram and states are illustrated in Figure 4.2.

ms(Mb(t1r)) =
{

(a0, 1, 5) 7→ {54, 58}, (a0, 1, 6) 7→ {64, 68}, (a0, 1, 7) 7→ {71, 74, 78},
(a0, 2, 7) 7→ {73, 77, 710}, (a1 a0, 1, 7) 7→ {72, 76}, . . .

}

The entries of ms(Mb(t1r)) where the size of the mapped set mss is 1 are omitted. △

Example 4.2.7. Given a string pref(t1r) = a2 a2 a0 a1 a0 a1 a0, which is the prefix
notation of tree t1r from Example 2.2.1, the corresponding nondeterministic nonlinear
tree pattern pushdown automaton is Mnnpt(t1r) = (Q,A ∪ {S, X}, {S}, δ, 0, S,∅), where
merged states are in Example 4.2.6 and its transition diagram and states are illustrated in
Figure 4.4.

Deterministic version of the pushdown automaton the deterministic nonlinear tree pat-
tern pushdown automaton Mdnpt(t1r) created from automaton Mnnpt(t1r) by standard de-
terminisation is shown in Figure 4.5. △

4.2.1 Time and space complexity analysis

Lemma 4.2.8. The time complexity of accepting the nonlinear tree template by auto-
maton created by Algorithm 14 (ConstructNTPPDA) is O(

∑

K ki), where K is the set of
all prefixes except ε, and ki is the number of distinct sequences of transitions in automaton
Mnnpt(t) for ki ∈ K which ends in a state of automaton Mnnpt.
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4.2. Nonlinear tree pattern pushdown automaton

0 1 2 3 4 5 6 7

a2|S 7→ SS

a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε
S|S 7→ ε

38 48 58,4 68,4 78,4,1

a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε

510 610 710,7,3

a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

79

56 66 76,2

a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

75

511 611 711

a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

X|S 7→ ε X|S 7→ ε X|S 7→ ε

X|S 7→ ε

X|S 7→ ε

X|S 7→ ε

X|S 7→ ε

X|S 7→ ε X|S 7→ ε

X|S 7→ ε

Figure 4.4: Nondeterministic nonlinear tree pattern pushdown automaton Mnnpt(t1r) from
Example 4.2.7 constructed by Algorithm 14 (ConstructNTPPDA) for subject tree t1r shown
in Figure 2.1a.
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[0] [1, 2] [2] [3] [4] [5] [6] [7]

a2|S 7→ SS a2|S 7→ SS

a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε

[3, 5, 7]

a0|S 7→ ε

[3, 5]

[4, 6] [5, 7]

[53, 73]

[51, 71]

S|S 7→ ε

X|S 7→ ε

a1|S 7→ S

a1|S 7→ S

X|S 7→ ε

a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

[33, 56] [43, 66] [53, 76]

[54]

X|S 7→ ε

a1|S 7→ S

S|S 7→ ε

a0|S 7→ ε

S|S 7→ ε

X|S 7→ ε

[33] [43] [53] [63] [73]

X|S 7→ ε X|S 7→ ε
X|S 7→ ε

a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε

[54] [64] [74]
a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

X|S 7→ ε X|S 7→ ε

[75]

X|S 7→ ε

[51] [61] [71]

X|S 7→ ε

X|S 7→ ε

a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

[72]

X|S 7→ ε

Figure 4.5: Deterministic nonlinear tree pattern pushdown automaton Mdnpt(t1r) from
Example 4.2.7 constructed by Algorithm 14 (ConstructNTPPDA) for subject tree t1r shown
in Figure 2.1a.
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4.2. Nonlinear tree pattern pushdown automaton

Name: ConstructNTPPDA
Input: Basic nondeterministic nonlinear tree pattern pushdown automaton Mb(t)
Result: Nondeterministic nonlinear tree pattern pushdown automaton Mnnpt(t)

1 begin
2 foreach transitions (s, S(Arity(a)) ∈ δ(q, a, S) do
3 if nnv(s, X) 6= 0 then
4 if the key (tnst(tds(s)), nnv(s, X), tnsl(s)) is undefined in mapping

ms(Mb(t)) then
5 create an empty set on that key;
6 end
7 Add s to the collection ms(Mb(t)) to the set on the key (tnst(tds(s)),

nnv(s, X), tnsl(s));
8 end

9 end
10 foreach mapped set in the collection ms(Mb(t)) do
11 Merge all states in this set in state Mb(t) to produce Mnnpt(t);
12 end
13 return Mnnpt(t);
14 end

Algorithm 14: Construction of the nondeterministic nonlinear tree pattern pushdown
automaton.

Proof. Automata have to try all possible sequences of transitions according to tree template
which occurs in the nondeterministic nonlinear tree pattern automaton. Sequences of
symbols of these transitions form a prefix of tree template. The prefix of the size of one
symbol from tree template is handled by exactly n steps, where n is the number of all
possible sequences of transitions in the automaton for that prefix. Prefix of the size of
two symbols is handled by n + m steps, where m is the number of all possible sequences
of transitions in the automaton for that prefix. Note that handling two symbols prefix
requires two transitions to be processed, however the first transition is already accounted
by the prefix of a size of one symbol.

Exact time complexity is then the sum of all possible sequences of transitions in the
automaton for all prefixes of nonlinear tree template, which is O(

∑

S rsi).

Lemma 4.2.9. The number of states of nondeterministic nonlinear tree pattern pushdown
automaton Mnnpt(t) created by Algorithm 14 (ConstructNTPPDA) is O(n(

∑s
i=0 ri)) =

O(n2), where n is the number of nodes of the subject tree, s is the number of distinct
subtrees, and ri is the number of repetitions of each subtree.

Proof. An occurrence of each unique subtree in a tree increments the number of automaton
tails, which are created for this subtree. The exact number of tails created for particular
subtree is then ri, where ri is the number of repetitions of that subtree. Then the total
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4. Main Results in Tree Indexing

number of tails for one nonlinear variable in automaton is the number of tails created for
each unique subtree of the indexed tree which is

∑s
i=0 ri.

The total number of tails does not count the original automaton. The exact number of
states of the automaton for one nonlinear variable is O(n(

∑s
i=0 ri+1)) = O(n(

∑s
i=0 ri)).

Lemma 4.2.10. The number of transitions of nondeterministic nonlinear tree pattern
pushdown automaton Mnnpt(t) created by Algorithm 14 (ConstructNTPPDA) is O(n2 +

n+
∑s

i=0( r2

i
+ri

2
)) = O(n2), where n is the number of nodes of a subject tree, s is the number

of distinct subtrees and ri is the number of repetitions of each unique subtree.

Proof. For all tails used to construct the nondeterministic nonlinear tree pattern PDA,
there are transitions reading nonlinear variable X between these tails. There is one trans-
ition heading to the last tail. There are two transitions heading to the previous tail, and
so on. The number of transitions reading nonlinear variable X is

∑s
i=0(

r2

i
+ri

2
).

Using Lemma 4.2.9 the number of transitions for symbol S is O(n2) as all states are a
source of a subtree skipping transition.

The number of transitions for symbol a ∈ A is O(n2 + n) as all states are a source of
a tree node reading transition, except for the initial state which is a source of n tree node
reading transitions.

The number of transitions then is O(n2 + n +
∑s

i=0( r2

i
+ri

2
)).

Lemma 4.2.11. Given a tree t with n nodes, the number of distinct nonlinear tree patterns
which match the tree t can be at most 3n−1 + n− 1.

Proof. First, subtrees of any subtree of the tree t can be replaced by wildcard S and the
tree template resulting from such a replacement is a tree pattern which matches the tree.

Second, same subtrees of any subtree of the tree t can be replaced by nonlinear variable
X and the nonlinear tree template resulting from such replacement is a nonlinear tree
pattern which matches the tree.

Given a tree with n nodes, the maximal number of subsets of subtrees that can be
replaced by wildcard S or nonlinear variable X occurs for the case of a tree t3r whose
structure is given by the prefix notation pref(t3r) = a(n − 1) a0 a0 . . . a0, where n ≥ 2.
Such a tree is illustrated in Figure 3.7. In this tree, each of the n − 1 nullary symbols a0
can be replaced by the wildcard symbol S or nonlinear variable X, and therefore we can
create 3n−1 distinct tree templates which are tree patterns matching the tree t3r.

Third, the subtrees of the tree t are themselves valid nonlinear tree patterns. These
give n− 1 other distinct nonlinear tree patterns (provided that all subtrees are unique).

Thus, the total number of distinct tree patterns matching the tree t can be at most
3n−1 + n− 1.

4.3 Simple nonlinear tree pattern matching

The nondeterministic nonlinear tree pattern pushdown automaton can be even more min-
imised by omitting the nnv(q, X) part of the key of the mapping ms(Mb(t)). The resulting
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4.3. Simple nonlinear tree pattern matching

automaton would represent an index of the subject tree for nonlinear tree pattern match-
ing but would not be able to say how many nonlinear variables have been read during
processing the nonlinear tree pattern.

The basic nondeterministic nonlinear tree pattern pushdown automaton Mb(t) or non-
deterministic nonlinear tree pattern pushdown automaton Mnnpt(t) is too complex for
simple nonlinear tree pattern matching. The simple nondeterministic nonlinear tree pat-
tern pushdown automaton Ms(t) merges states that differ only by the nnv(q, X), thus it
is smaller, but it is unable to track the number of nonlinear variables. Merged states are
those from tales with the same assigned subtree.

Definition 4.3.1. Given a basic nondeterministic nonlinear tree pattern pushdown auto-
maton Mb(t) created by Algorithm 11 (ConstructBasicNTPPDA), the simple mergeable
states sms(Mb(t)) is a mapping of tuple (tnst, nnv, tnsl) to set of states smss. The
set smss is a set of states {s1, s2, . . . : tnst(tds(s1)) = tnst(tds(s2)) and tnsl(s1) =
tnsl(s2); s1, s2 ∈ Q}.

Informally, the states q of smss are part of a tail assigned with the same subtree, and
have the same tree node state label.

Each set from the collection of sets of simple mergeable states sms(Mb(t)) defines
states of basic nondeterministic nonlinear tree pattern pushdown automaton Mb(t) that
can be merged. When the states are merged, the resulting automaton is called simple
nondeterministic nonlinear tree pattern pushdown automaton Ms(t).

Example 4.3.2. Given a string pref(t1r) = a2 a2 a0 a1 a0 a1 a0, which is the prefix
notation of tree t1r from Example 2.2.1. The corresponding basic nondeterministic nonlin-
ear tree pattern pushdown automaton is Mb(t1r) = (Q,A ∪ {S, X}, {S}, δ, 0, S,∅), where
its transition diagram and states are illustrated in Figure 4.2.

sms(Mb(t1r)) =
{

(a0, 5) 7→ {54, 58, 510}, (a0, 6) 7→ {64, 68, 610},
(a0, 7) 7→ {71, 74, 78, 73, 77, 710, 79}, (a1 a0, 7) 7→ {72, 75, 76}, . . .

}

The entries of sms(Mb(t1r)) where the size of the mapped set smss is 1 are omitted. △

The Algorithm 15 (ConstructSimpleNTPPDA) is very similar to Algorithm 14 (Con-
structNTPPDA). It also computes a mapping with set of states smss but the key for each
set consists only from tnst and tnsl fields. The nnv is omitted because the desired auto-
maton will not track the number of nonlinear variables read. The checking for nnv 6= 0 of
the target state of transitions is essential, the automaton would merge states that are from
the original basic nondeterministic nonlinear tree pattern pushdown automaton Mb(t) with
states from tails handling the nonlinear variable.

Example 4.3.3. Given a string pref(t1r) = a2 a2 a0 a1 a0 a1 a0, which is a prefix notation
of tree t1r from Example 2.2.1, the corresponding simple nondeterministic nonlinear tree
pattern pushdown automaton is Ms(t1r) = (Q,A ∪ {S, X}, δ, 0,∅), where its transition
diagram and states are illustrated in Figure 4.6.
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Name: ConstructSimpleNTPPDA
Input: Basic nondeterministic nonlinear tree pattern pushdown automaton Mb(t)
Result: Simple nondeterministic nonlinear tree pattern pushdown automaton

Ms(t)
1 begin
2 foreach transitions (s, S(Arity(a)) ∈ δ(q, a, S) do
3 if nnv(s, X) 6= 0 then
4 if the key (tnst(tds(s)), tnsl(s)) is undefined in mapping sms(Mb(t))

then
5 create an empty set on that key;
6 end
7 Add s to the collection sms(Mb(t)) to the set on the key (tnst(tds(s)),

tnsl(s));
8 end

9 end
10 foreach mapped set in the collection sms(Mb(t)) do
11 Merge all states in this set in state Mb(t) to produce Ms(t);
12 end
13 return Ms(t);
14 end

Algorithm 15: Construction of simple nondeterministic nonlinear tree pattern push-
down automaton.

Deterministic version of the pushdown automaton the simple deterministic nonlinear
tree pattern pushdown automaton Mds(t1r) created from automaton Ms(t1r) by standard
determinisation is shown in Figure 4.7. △

4.3.1 Time and space complexity analysis

The time complexity of accepting a nonlinear tree pattern by the automaton Ms(t) con-
structed for a subject tree t is the same as stated in Lemma 4.2.8.

Lemma 4.3.4. The number of states of simple nondeterministic nonlinear tree pattern
pushdown automaton Ms (space complexity) created by Algorithm 15 (ConstructSim-
pleNTPPDA) is O(sn), where n is the number of nodes of a subject tree and s is the
number of distinct subtrees.

Proof. The proof is constructed similarly to Lemma 4.2.9.
One tail is created for each unique subtree. Then the total number of tails for one

nonlinear variable in pushdown automaton is the sum of tails created for each unique
subtree of the indexed tree which is s the number of unique subtrees. The total number
of tails does not count the original automaton. The exact space complexity of the simple
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4.3. Simple nonlinear tree pattern matching

0 1 2 3 4 5 6 7

a2|S 7→ SS

a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε
S|S 7→ ε

32 42 52 62 72

a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε

51 61 71

a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

53 63 73

a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

X|S 7→ ε
X|S 7→ ε

X|S 7→ ε

X|S 7→ ε X|S 7→ ε
X|S 7→ ε

X|S 7→ ε

X|S 7→ ε

X|S 7→ ε

Figure 4.6: Simple nondeterministic nonlinear tree pattern pushdown automaton Ms(t1r)
from Example 4.3.3 constructed from Example subject tree t1r shown in Figure 2.1a.

nondeterministic nonlinear tree pattern pushdown automaton for one nonlinear variable is
O(sn).

Note that the complexity is also n, for no nonlinear variable, which means the original
automaton and no other tails.

Note that if there is no repeating subtree in the subject tree, one new tail of original
automaton is constructed for each node of the subject tree. The space complexity is
therefore 1

2
n2 ∈ O(n2) = O(ns).

Lemma 4.3.5. The number of transitions of simple nondeterministic nonlinear tree pat-
tern pushdown automaton Ms (space complexity) created by Algorithm 15 (ConstructSim-
pleNTPPDA) is O(

∑s
i=0(ri) + n2), where n is the number of nodes of a subject tree, s is

the number of distinct subtrees and ri is the number of repetitions of each unique subtree.

Proof. The proof is constructed similarly to the proof of Lemma 4.2.10.
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[0] [1, 2] [2] [3] [4] [5] [6] [7]

a2|S 7→ SS

a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε

[3, 5, 7]

a0|S 7→ ε

[3, 5]

[4, 6]

[5, 7]

[52, 72]

[51, 71]

S|S 7→ ε
X|S 7→ ε

a1|S 7→ S
a1|S 7→ S

X|S 7→ ε

a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

[32, 53] [42, 63] [52, 73]

X|S 7→ ε

a1|S 7→ S

S|S 7→ ε

a0|S 7→ ε

S|S 7→ ε

[32] [42] [52] [62] [72]

X|S 7→ ε

X|S 7→ ε

a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

X|S 7→ ε
X|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε

X|S 7→ ε X|S 7→ ε

[51] [61] [71]

X|S 7→ ε

X|S 7→ ε

a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

X|S 7→ ε

Figure 4.7: Simple deterministic nonlinear tree pattern pushdown automaton Mds(t1r) from
Example 4.3.3 constructed from Example subject tree t1r shown in Figure 2.1a.
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4.4. Processing more nonlinear variables

Given the number of repetitions of each unique subtree of subject tree ri the number
of transitions for nonlinear variable X is

∑s
i=0(2ri − 1).

Using Lemma 4.3.4 the number of transitions for symbol S is O(sn) as all states are a
source of a subtree skipping transition.

The number of transitions for symbol a ∈ A is O(sn + n) as all states are a source of
a tree node reading transition, except for the initial state which is a source of n tree node
reading transitions.

The number of transitions then is O(
∑s

i=0(2ri − 1) + sn + n).
Note that there is at maximum three transitions for each state in basic nondeterministic

nonlinear tree pattern pushdown automaton plus one transition for each state of the original
nondeterministic tree pattern pushdown automaton. The number of transitions then is
3sn + n ∈ O(sn) = O(

∑s
i=0(2ri − 1) + sn + n).

4.4 Processing more nonlinear variables in nonlinear tree

patterns

This section contains an extension of results from the previous section, originally presented
as an individual work in the journal paper [60].

Indexing for nonlinear tree pattern matching with more than one nonlinear variable can
be done by a pushdown automaton created as a pushdown automaton for the intersection
of languages. Automaton for two nonlinear variables would be constructed on the basis of
two automata – each of them for one nonlinear variable. The disadvantage of this approach
would be increasing space complexity.

Another approach is represented by a nondeterministic nonlinear tree pattern push-
down automaton Mnnpt(t) for one nonlinear variable that can be used as an indexing data
structure also for nonlinear tree patterns with more variables. The idea is to compare
which transitions of more runs of this single automaton were used to match the nonlinear
tree pattern. The nonlinear tree pattern needs to be modified because it contains sym-
bols representing the nonlinear variables that the nondeterministic nonlinear tree pattern
pushdown automaton can’t handle.

Example 4.4.1. Consider a ranked alphabet A = {a4, a3, a2, a1, a0}. Consider a nonlin-
ear tree template p7r over A ∪ {S, Y, Z} p7r = ({a41, X2, X3, Y4, Y5}, Rp4) over A, where
Rp4 is a set of the following ordered pairs:

Rp4 = {(a41, X2), (a41, X3), (a41, Y4), (a41, Y5)}.

Nonlinear tree template p7r is illustrated in Figure 4.8.
Nonlinear tree template p7r can be decomposed to nonlinear tree templates each for one

of the nonlinear variables. These nonlinear tree templates will be over alphabet A∪{S, X}
and are illustrated in Figure 4.9. △
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a41

Z2 Z3 Y4 Y5

Figure 4.8: Nonlinear tree template p7r from Example 4.4.1.

a41

X2 X3 S4 S5

a41

S2 S3 X4 X5

Figure 4.9: Decomposition of nonlinear tree template p7r from Example 4.4.1.

In the beginning, the algorithm decomposes a given nonlinear tree template to nonlinear
tree templates of one nonlinear variable. Then, the accepting sequences of transitions are
computed using nondeterministic nonlinear tree pattern pushdown automaton Mnnpt(t)
and each decomposed nonlinear tree pattern. These accepting sequences of transitions can
be used for filtering real occurrences out of the original tree template with more nonlinear
variables.

4.4.1 Time and Space Complexity Analysis

Lemma 4.4.2. Time complexity of accepting the nonlinear tree template with more
nonlinear variables by nondeterministic nonlinear tree pattern pushdown automaton is
O(v ×m +

∑

run(pd) +
∑

Occpd), where v is the number of nonlinear variables, m is the
size of the nonlinear template, run(pd) is the time of locating all accepting transition se-
quences of each of decomposed nonlinear templates pd in automaton Mnnpt(t) and Occpd is
the size of occurrences of decomposed template pd. The run(pd) is given by Lemma 4.2.8.

Proof. The nonlinear tree template needs to be decomposed to nonlinear tree templates
for one nonlinear variable. This takes v ×m time.

Occurrences of each nonlinear tree template from decomposed nonlinear tree template
p are computed in time

∑

run(pd).
Composition of partial occurrences Occpd to Occ can be done in

∑

Occpd time.

Lemma 4.4.3. Given a tree t with n nodes, the number of distinct nonlinear tree patterns
(with more nonlinear variables) which match the tree t can be at most (2 + v)n−1 + n− 1.

Proof. First, subtrees of any subtree of the tree t can be replaced by the wildcard symbol
S and the tree template resulting from such a replacement is a tree pattern which matches
the tree.

Second, same subtrees of any subtree of the tree t can be replaced by any, however
same, nonlinear variable and the nonlinear tree template resulting from such replacement
is a nonlinear tree pattern which matches the tree.

Given a tree with n nodes, the maximal number of subsets of subtrees that can be
replaced by the wildcard or the nonlinear variables occurs for the case of a tree t3r whose
structure is given by the prefix notation pref(t3r) = a(n − 1) a0 a0 . . . a0, where n ≥ 2.
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4.5. Linear space index of a tree for tree patterns

Name: QueryNTPPDAByNonlinearTreePatternWithMoreVariables
Input: Nondeterministic nonlinear tree pattern pushdown automaton Mnnpt(t)
Input: Nonlinear tree pattern with more variables p

Input: Set vars of variables used in the template p

Result: Occurrences of the pattern
1 begin
2 Collection of nonlinear templates for one variable po is an empty collection;
3 foreach variable var in vars do
4 pd is a clone of nonlinear tree template p;
5 Change a symbol in leaf nodes to wildcard symbol S, where node label

l ∈ (vars \ var);
6 Change a symbol in leaf nodes to nonlinear variable X, where node label

l = var;
7 Add pd to po;
8 end
9 Set Occ contains {0, 1, . . . , n} where n is the size of the tree t;

10 foreach nonlinear tree template pd in po do
11 Determine accepting sequences of transitions ts of tree template t using

Mnnpt(t);
12 Compute a set Occpd as set of tnsl(q), where q is a target state of the first

transition from all ts;
13 Remove all items in Occ which are not in Occpd;
14 end
15 return Occ;
16 end

Algorithm 16: Algorithm of nonlinear tree pattern matching with more nonlinear
variables using nondeterministic nonlinear tree pattern pushdown automaton Mnnpt(t).

Such a tree is illustrated in Figure 3.7. In this tree, each of the n − 1 nullary symbols
a0, a0, . . . , a0 can be replaced by wildcard symbol S or any nonlinear variable and therefore
we can create (2 + v)n−1 distinct tree templates which are tree patterns matching the tree
t3r.

Third, the subtrees of the tree t are themselves valid nonlinear tree patterns. These
give n− 1 other distinct nonlinear tree patterns (provided that all subtrees are unique).

Thus, the total number of distinct tree patterns matching the tree t can be at most
(2 + v)n−1 + n− 1.

4.5 Linear space index of a tree for tree patterns

This section contains main results from joint work with Martin Poliak and Radomír Polách
presented as a conference paper [40]. The original author of most parts of the algorithm is
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Martin Poliak, however, the idea has been generalised in use of arbitrary indexing structure
for strings. This section is included to summarise the results of tree indexing for tree
patterns and present it for later extension.

4.5.1 Creation of an indexing structure

The section deals with the preprocessing phase, in which an index of a subject tree t is
constructed. The index consists of two parts:

◦ An arbitrary indexing structure constructed for the pref(t), by which occurrences of
all substrings of pref(t) can be located. See Chapter 2 for examples. We note that
not all substrings of pref(t) are subtrees in the prefix notation.

◦ A subtree jump table for prefix notation, a linear-size structure needed for finding po-
sitions of ends of subtrees represented by wildcard symbols S and nonlinear variables
X, Y , . . . .

Definition 4.5.1. Let t and pref(t) = a1a2 . . . an, n ≥ 1, be a tree and its prefix notation,
respectively. A subtree jump table for prefix notation SJT_pref(t) is defined as a mapping
from a set {1..n} into a set {2..n + 1}. If aiai+1 . . . aj−1 is the prefix notation of a subtree
of tree t, then SJT_pref(t)[i] = j, 1 ≤ i < j ≤ n + 1.

Name: ConstructSJT_pref
Input: Tree t in prefix notation pref(t) of size n

Input: Index of current node rootIndex initialised to 1
Input/Output: Subtree jump table for prefix notation SJT_pref(t) initialised

to empty array of size n

Result: Index exitIndex

1 begin
2 index = rootIndex + 1;
3 for i = 1 to Arity(pref(t)[rootIndex]) do
4 index = ConstructSJT_pref(pref(t), index, SJT_pref(t));
5 end
6 SJT_pref(t)[rootIndex] = index;
7 return index;
8 end

Algorithm 17: Construction of subtree jump table for prefix notation.

Lemma 4.5.2. Given tree t in prefix notation pref(t) and initial value of rootIndex equal
to 1, Algorithm 17 (ConstructSJT_pref) constructs subtree jump table for prefix notation
SJT_pref(t).
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4.5. Linear space index of a tree for tree patterns

Table 4.1: Subtree jump table for prefix notation for tree t2r from Example 2.2.4.

node id 1 2 3 4 5 6 7 8 9 10 11 12 13

SJT_pref(t2r) 14 11 8 5 6 7 8 9 10 11 12 13 14

Table 4.2: Array Rev13
{(1,11),(2,8),(3,5)} from Example 4.5.5.

node id 1 2 3 4 5 6 7 8 9 10 11 12 13

Rev13
{(1,11),(2,8),(3,5)} -1 -1 -1 -1 3 -1 -1 2 -1 -1 1 -1 -1

Informally, the subtree jump table contains an entry for each subtree r of tree t. The
entry for subtree r is at the position of its root in the pref(t) notation of the tree t. The
entry stores an index one after the last symbol of the subtree r in pref(t) notation of the
tree t as a value. This structure has the same size as the prefix notation of the tree t.

Example 4.5.3. Consider tree t2r over A from Example 2.2.4, pref(t2r) = a4 a4 a4 a0 b0
a0 a0 a0 b0 a0 a0 a0 b0. With the indexing structure for locating substring of pref(t2r)
being a compact suffix automaton, the string index FAcsuf(pref(t2r)) [21] is illustrated
in Figure 2.9. Subtree jump table for prefix notation SJT_pref(t2r), constructed by Al-
gorithm 17 (ConstructSJT_pref), is in Table 4.1. △

Furthermore, the array Revn
S serves as a working data structure for the main matching

algorithm (Algorithm 20 (MatchPattern)) during the searching phase and its initial value,
denoted Revn

{}, is to be set once and constructed during the preprocessing phase.

Definition 4.5.4. Let S = {(first1, last1), . . . (firstk, lastk)} be a set of pairs of positive
integers such that lasti 6= lastj if i 6= j, 1 ≤ i ≤ k, 1 ≤ j ≤ k. Array Revn

S is an array of
integers such that Revn

S [lasth] = firsth for all 1 ≤ h ≤ k. For all other values 1 ≤ v ≤ n,
Revn

S [v] = −1.

Example 4.5.5. Array Rev13
{(1,11),(2,8),(3,5)}, which represents occurrences of a prefix a4S of

tree pattern p5r from Example 2.2.6 in tree t2r from Example 2.2.4, is illustrated in Table
4.2. △

4.5.2 Computing positions of all occurrences of a tree pattern

The section describes the searching phase using the index. Algorithm 20 (MatchPattern)
computes the list of all occurrences of tree pattern p in the tree t. This main algorithm
uses three algorithms, which are presented before Algorithm 20 (MatchPattern):

◦ Algorithm 18 (VerifyArityChecksum) [52] computes the arity checksum of tree pat-
tern in prefix notation pref(p) so that it would be verified that pref(p) is a valid
prefix notation of a tree pattern.
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◦ A string index query algorithm corresponding to the selected string index. See
Chapter 2 for examples.

◦ Algorithm 19 (MergeOccurrences) is an algorithm that merges two sets of occurrences
in linear time. A linear time merging algorithm would be simple if the sets of occur-
rences (first, last) were in the form of lists sorted by index first or by index last.
Such a principle is used in related work [5]. Sorted list of occurrences of substrings
cannot be obtained from the string index query algorithm in a linear time in general.
Therefore, we have avoided such sorting completely, reaching the linear time with a
special merge operation, which uses the working data structure Revn

S introduced in
the previous section.

Definition 4.5.6. Let pref(p) = p1Sp2S . . . Spk be the prefix notation of a tree pattern p

over an alphabet A ∪ {S}, where no substring pi, 1 ≤ i ≤ k, contains any symbol S. The
substring pi is called a subpattern of p at index i.

Example 4.5.7. Consider pref(p5r) = a4Sa0SS, the prefix notation of tree pattern p5r

from Example 2.2.6. Tree pattern p5r has four subpatterns, pref(p5r) = p1Sp2Sp3Sp4,
where p1 = a4, p2 = a0, p3 = ε and p4 = ε. △

Definition 4.5.8. Let pref(t) = a1a2 . . . an be the prefix notation of a tree t. Let
pref(p) = p1Sp2S . . . pk be the prefix notation of a tree pattern p. An occurrence of
subpattern pi in pref(t) is a pair (first, last), where:

◦ if pi = ε, 1 < first = last ≤ n + 1,

◦ if pi 6= ε, 1 ≤ first < last ≤ n + 1 and afirstafirst+1 . . . alast−1 = pi.

The set of all occurrences of subpattern pi in pref(t) is denoted by occt(pi). If tree t is
obvious from the context, the set can be denoted by occ(pi).

Example 4.5.9. Consider subpattern p2 = a0 of tree pattern p5r from Example 2.2.6.
Subpattern p2 has seven occurrences in tree t2r from Example 2.2.4: occt2r(p2) = { (4, 5),
(6, 7), (7, 8), (8, 9), (10, 11), (11, 12), (12, 13) }. △

Definition 4.5.10. Let pref(p) = p1Sp2S . . . Spk be the prefix notation of a tree pattern
p. Then any string p1Sp2S . . . Spk′, k′ ≤ k, or p1Sp2S . . . Spk′′S, k′′ < k, is called a tree
pattern prefix of tree pattern p, abbreviated TP P (p).

Example 4.5.11. Consider tree pattern p5r and its prefix notation pref(p5r) = a4Sa0SS,
from Example 2.2.6. Then {a4, a4S, a4Sa0, a4Sa0S, a4Sa0SS} is a set of tree pattern
prefixes of tree pattern p5r. △

Definition 4.5.12. Let p be a tree pattern and t be a tree. An occurrence of tree pattern
prefix TP P (p) = p1Sp2S . . . Spk in tree t is a pair (first, last), where (first, last1) is an
occurrence of subpattern p1 in pref(t), pair (SJT_pref(t)[last1], last2) is an occurrence
of subpattern p2 in pref(t), . . . , and pair (SJT_pref(t)[lastk−1], last) is an occurrence of
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4.5. Linear space index of a tree for tree patterns

subpattern pk in pref(t). The set of all occurrences of a tree pattern prefix TP P (p) in
pref(t) is denoted by occt(TP P (p)). If tree t is obvious from the context, the set can be
denoted by occ(TP P (p)).

Example 4.5.13. Consider tree pattern prefix TP P1(p5r) = a4S of tree pattern p5r

from Example 2.2.6. Consider tree t2r from Example 2.2.4. Then occt2r (TP P1(p5r)) =
{(1, 11), (2, 8), (3, 5)}. △

Lemma 4.5.14. Let (first, last) be an occurrence of a tree pattern prefix pref(p) in a
tree t, pref(p) = p1Sp2 . . . Spk, pref(t) = a1a2 . . . afirstafirst+1 . . . alast−1alast . . . an. Then
pattern p matches tree t at node afirst. Node alast−1 is the rightmost leaf of the subtree
rooted at node afirst.

We note that an occurrence of tree pattern p in tree t is an occurrence of tree pattern
prefix pref(p) in pref(t).

Example 4.5.15. Consider tree pattern p5r from Example 2.2.6. Tree pattern p5r has
two occurrences in tree t2r: occt2r(p5r) = {(1, 14), (2, 11)}. △

Lemma 4.5.16. Let t be a tree and p be a tree pattern. Let pairs (firstA, lastA)
and (firstB, lastB), firstA 6= firstB, be occurrences of tree pattern prefix TP P (p) =
p1Sp2S . . . in tree t. If TP P (p) 6= pref(p), then lastA 6= lastB .

Name: VerifyArityChecksum
Input: String over a ranked alphabet str = a1a2 . . . an, n ≥ 1
Result: Decision whether str = pref(t) for a tree t

1 begin
2 Set ac(t) := 1;
3 for i := 1 to n do
4 ac(str) := ac(str) + Arity(ai)− 1;
5 if i < n and ac(str) = 0 then
6 return false;
7 end
8 return ac(str) = 0 ? true : false;
9 end

Algorithm 18: Verification with the use of arity checksum [52].

Theorem 4.5.17. Let TP P ′(p) = p1Sp2S . . . Spk−1Spk be a tree pattern prefix of a tree
pattern p. Let prevOcc = occt(TP P (p)) be a set of occurrences of a tree pattern prefix
TP P (p) = p1Sp2S . . . Spk−1S; let subOcc = occt(pk) be a set of occurrences of a subpattern
pk. Given prevOcc and subOcc on input, Algorithm 19 (MergeOccurrences) computes
occurrences mergedOcc = occt(TP P ′(p)) of tree pattern prefix TP P ′(p).
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Name: MergeOccurrences
Input: A set prevOcc = occt(TP P (p)), a set subOcc = occt(pk)
Input: Temporary array Rev

|pref(t)|
S

Result: A set mergedOcc = occt(TP P (p)pk)
1 begin
2 mergedOcc := {};
3 foreach (first, last) in prevOcc do

4 Rev
|pref(t)|
S∪(first,last)[last] := first;

5 end
6 foreach (first′, last′) in subOcc do

7 if Rev
|pref(t)|
prevOcc [first′] 6= −1 then

8 mergedOcc := mergedOcc ∪ {(Rev
|pref(t)|
prevOcc [first′], last′)};

9 end

10 end
11 foreach (first, last) in prevOcc do

12 Rev
|pref(t)|
S\(first,last)[last] := −1;

13 end
14 return mergedOcc;
15 end

Algorithm 19: Merging Occurrences.

Example 4.5.18. Consider the prefix notation pref(p5r) = a4Sa0SS of tree pattern p5r,
illustrated in Figure 2.4. Tree pattern p5r can be rewritten as pref(p5r) = p1Sp2Sp3Sp4,
where p1 = a4, p2 = a0 and p3 = p4 = ε.

We consider the run of Algorithm 20 (MatchPattern) using tree pattern p5r, with
the underlying string index used in the example chosen to be compact suffix automaton
FAcsuf(pref(t2r)), Algorithm 1 (FindOccurrences) as the string index query algorithm,
and subtree jump table for prefix notation SJT_pref(t2r):

Algorithm 18 (VerifyArityChecksum) returns true for tree pattern p5r because p5r is a
valid tree pattern (if you replaced S symbols with a0 symbols in the prefix notation of the
pattern, you would get a prefix notation of a tree).

At i = 1, after Algorithm 1 (FindOccurrences) is executed, prevOcc = {(1, 2), (2, 3),
(3, 4)}. Using subtree jump table for prefix notation SJT_pref(t2r), prevOcc is then
rewritten to prevOcc = {(1, 11), (2, 8), (3, 5)}.

At i = 2, after Algorithm 1 (FindOccurrences) is executed, occ = {((4, 5), (6, 7),
(7, 8), (8, 9), (10, 11), (11, 12), (12, 13)}. Using Algorithm 19 (MergeOccurences), prevOcc

is rewritten to {(1, 12), (2, 9)}. Using SJT_pref(t2r), prevOcc is then rewritten to
prevOcc = {(1, 13), (2, 10)}.

At i = 3, algorithm uses SJT_pref(t2r) to rewrite prevOcc to prevOcc = {(1, 14),
(2, 11)}.

At i = 4, prevOcc is not modified because subpattern p4 is the empty string and the
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Name: MatchPattern
Input: Tree pattern pref(p) = p1Sp2S . . . pk

Input: String index SI(pref(t))
Input: String index query algorithm IndexQuery accepting string index

SI(pref(t)) and string pattern f

Input: Subtree jump table for prefix notation SJT_pref(t)
Input: Array Rev

|pref(t)|
S

Result: List of occurrences of tree pattern p

1 begin
2 if not VerifyArityChecksum(p) then
3 return ERROR – invalid pattern;
4 end
5 prevOcc := {};
6 for i := 1 to k do
7 if pi 6= ε then
8 occ := IndexQuery(SI(pref(t)), pi);
9 if i = 1 then prevOcc := occ;

10 else prevOcc := MergeOccurrences(prevOcc, occ, Rev
|pref(t)|
S );

11 end
12 if i 6= k then
13 foreach occurrence (first, last) in prevOcc do
14 (first, last) := (first, SJT_pref(t)[last]);
15 end

16 end

17 end
18 return prevOcc;
19 end

Algorithm 20: Searching for occurrences of a tree pattern.

algorithm returns set of occurrences {(1, 14), (2, 11)}.
Algorithm 20 (MatchPattern) has found two occurrences of tree pattern p5r: the first

one starting at position 1 (ending at position 14) and the second one at position 2 (ending
at position 11) in pref(t2r). △

Theorem 4.5.19. Algorithm 20 (MatchPattern) finds all occurrences occt(p) of tree pat-
tern p = p1Sp2S . . . Spk in tree t.

4.5.3 Time and space complexities

Lemma 4.5.20. Algorithm 17 (ConstructSJT_pref) runs in O(n) time, where n is the
number of nodes of the subject tree t. Size of subtree jump table for prefix notation is n.
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Proof. The algorithm is based on a depth-first search traversal of the subject tree, where
at each node only a constant amount work is performed (line 7). Thus, its running time is
bound by the number of nodes n. Counting assignment operations, the running time is at
worst 7n.

Theorem 4.5.21. Construction of the index takes time O(n) time and produces the index
of O(n) size.

Proof. The creation of the index structure depend on the creation time and size of the string
index used within. Considering the O(n) time and space needed to construct the selected
string index (like compact suffix automaton [21]) this requirement is met. Algorithm 17
(ConstructSJT_pref) that creates the subtree jump table for prefix notation is proved to
be linear in time and space in Lemma 4.5.20. The array RevS is created in time O(n).

Lemma 4.5.22. Algorithm 19 (MergeOccurrences) runs in O(|prevOcc| + |occ|) time,
where |prevOcc|+ |occ| is the number of occurrences in both input sets.

Proof. The algorithm uses array RevS of size n prepared during the indexing phase. This
array is used for the fast lookup. The algorithm runs in three loops whose lengths are
determined by |prevOcc| + |occ| and at each iteration in each loop, the amount of work
is constant. Thus, the total running time holds. Counting assignment operations, the
running time is at most 1 + 2|prevOcc|+ min(|occ|, |prevOcc|).

Theorem 4.5.23. Let pref(p) = p1Sp2S . . . Spk of length m be the prefix notation of a

tree pattern p. Algorithm 20 (MatchPattern) runs in O(m +
k

∑

i=1
|occ′(pi)|)) time, where

occ′(pi) = occ(pi) if pi 6= ε; otherwise, occ′(pi) = occ′(pi−1).

Proof. Verification of the arity checksum for the pattern takes O(m) time. Finding the oc-
currences of subpattern pi 6= ε takes time O(|pi|+ |occ(pi)|). Summing over all subpatterns

yields total time O(m +
k

∑

i=1,pi 6=ε
|occ(pi)|).

The merging time will be the sum of running times of all calls of Algorithm 19 (MergeOc-
currences) with input size O(|occ(pi)|), pi 6= ε. Algorithm 19 (MergeOccurrences) outputs
a list whose size is less than or equal to the minimum of the sizes of the two provided lists
of occurrences. Thus, remembering that merging is not performed for pi = ε, it must hold
that the running time of all calls of Algorithm 19 (MergeOccurrences) will be less than or

equal to O(
k

∑

i=1,pi 6=ε

(2 ∗ |occ(pi)|)) = O(
k

∑

i=1
|occ′(pi)|).

4.6 Linear space index of a tree for nonlinear patterns

This section contains an original extension of the linear space index of a tree and the
querying algorithm from the previous section to handle nonlinear tree templates as queries
as well. The content is novel and not presented in any publication.
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Table 4.3: Subtree repeats table for prefix notation for tree t2r from Example 2.2.4.

node id 1 2 3 4 5 6 7 8 9 10 11 12 13

SRT_pref(t2r) 5 4 3 1 2 1 1 1 2 1 1 1 2

4.6.1 Index modifications

The index additionally contains a table representing the subtree repeats to extend the abil-
ity of the aforementioned linear space index of a tree for tree patterns to answer nonlinear
tree pattern queries. This table can be obtained by algorithm presented in [11] extended
with an Algorithm 8 (PostfixToPrefixRepeats) presented in Section 3.4.

The summary of the index components consists of three parts, where the third is newly
added:

◦ An arbitrary indexing structure constructed for the pref(t), by which occurrences of
all substrings of pref(t) can be located. See Chapter 2 for examples.

◦ A subtree jump table for prefix notation, a linear-size structure needed for finding
positions of ends of subtrees represented by special symbols S.

◦ A subtree repeats table, a linear-size structure for easy checking of subtree equivalence.

Example 4.6.1. Consider tree t2r over A from Example 2.2.4, in prefix notation pref(t2r)
= a4 a4 a4 a0 b0 a0 a0 a0 b0 a0 a0 a0 b0. With the indexing structure for locating sub-
string of pref(t2r) being a compact suffix automaton, the string index FAcsuf(pref(t2r))
[21] is illustrated in Figure 2.9. Subtree jump table for prefix notation SJT_pref(t2r),
constructed by Algorithm 17 (ConstructSJT_pref), is unchanged in Table 4.1 in the pre-
vious section. Subtree repeats table for prefix notation, SRT_pref(t2r) constructed by
Algorithm 8 (PostfixToPrefixRepeats), is in Table 4.3. △

Furthermore, the array Revn
S is still used as a working data structure for the main

matching algorithm. Additionally, some other arrays need to be used to maintain a fast
search phase. Given the set of nonlinear variables X, Y, Z, . . ., that can occur in the pattern,
arrays denoted Assignn

X ,Y ,Z,... are prepared to store information about subtree repeats. The
initial value of these arrays is set again once in the preprocessing phase.

4.6.2 Querying algorithm modifications

The alphabet of the nonlinear tree pattern additionally contains some nonlinear variables
X, Y, Z, . . .. Therefore the definitions of subpattern need to be changed for nonlinear tree
patterns.

Definition 4.6.2. Let pref(p) = p1V1p2V2 . . . Vk−1pk be the prefix notation of a nonlinear
tree pattern p over an alphabet A∪ {S} ∪ {X, Y, Z, . . .}, where no substring pi, 1 ≤ i ≤ k,
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contains any symbol S, X, Y , Z, . . . . The substring pi is called a subpattern of p at index
i. And where Vi, 1 ≤ i ≤ k − 1 is one of S, X, Y , Z, . . . . The symbol Vi is called a
separator.

Example 4.6.3. Consider pref(p6r) = a4Sa0XX, the prefix notation of tree pattern
p6r from Example 2.2.6. Tree pattern p6r has four subpatterns and three separators,
pref(p6r) = p1V1p2V2p3V3p4, where p1 = a4, p2 = a0, p3 = ε, p4 = ε and V1 = S,
V2 = X, V3 = X. △

The support algorithms (Algorithm 18 (VerifyArityChecksum) and Algorithm 19 (Mer-
geOccurrences) ) can remain without changes, however the main matching algorithm from
the previous section (Algorithm 20 (MatchPattern)) needs to be augmented to correctly
handle the nonlinear tree patterns as Algorithm 21 (MatchNonlinearPattern).

The modification is present in a section of the algorithm where subtree skipping is per-
formed. Nonlinear variables represent a complete subtrees, which are skipped the same way
as in the previous case. However, the check for consistency of nonlinear variables setting in
a particular occurrence needs to be present. Such a check is implemented using the array
Assign

|pref(t)|
X,Y,Z,.... The algorithm remembers a unique identifier of a subtree as represented in

subtree repeats table SRT_pref(t) when a subtree is skipped by the first occurrence of a
nonlinear variable. The algorithm later compares the subtree repeat identifier of a subtree
skipped by next occurrences of the nonlinear variable with the remembered subtree repeat
identifier.

The algorithm ensures the array Assign
|pref(t)|
X,Y,Z,... is cleared after each algorithm run sim-

ilarly as the array Rev
|pref(t)|
S is cleared.

Example 4.6.4. Consider the prefix notation pref(p6r) = a4Sa0XX of tree pattern p6r,
illustrated in Figure 2.4. Tree pattern p6r can be rewritten as pref(p6r) = p1V1p2V2p3V3p4,
where p1 = a4, p2 = a0, p3 = p4 = ε and V1 = S, V2 = V3 = X.

We consider the run of Algorithm 21 (MatchNonlinearPattern) using tree pattern p6r,
with compact suffix automaton FAcsuf(pref(t2r)) chosen to be the underlying string in-
dex, Algorithm 1 (FindOccurrences) as the string index query algorithm, subtree jump
table for prefix notation SJT_pref(t2r), and subtree repeats table SRT_pref(t) computed
by algorithm presented in [11] with its result post-processed by Algorithm 8 (PostfixTo-
PrefixRepeats):

Algorithm 18 (VerifyArityChecksum) returns true for tree pattern p6r because p6r is a
valid tree pattern (if you replaced S and X symbols with a0 symbols in the prefix notation
of the pattern, you would get a prefix notation of a tree).

At i = 1, after Algorithm 1 (FindOccurrences) is executed, prevOcc = {(1, 2), (2, 3),
(3, 4)}. Using subtree jump table for prefix notation SJT_pref(t2r), prevOcc is then
rewritten to prevOcc = {(1, 11), (2, 8), (3, 5)}.

At i = 2, after Algorithm 1 (FindOccurrences) is executed, occ = {((4, 5), (6, 7),
(7, 8), (8, 9), (10, 11), (11, 12), (12, 13)}. Using Algorithm 19 (MergeOccurences), prevOcc

is rewritten to {(1, 12), (2, 9)}. To represent the current setting of nonlinear variable
X, the array Array13

X is modified as follows: Array13
X [1] is set to SRT_pref(t2r)[12] and
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Name: MatchNonlinearPattern
Input: Tree pattern pref(p) = p1V1p2V2 . . . Vk−1pk

Input: String index SI(pref(t))
Input: String index query algorithm IndexQuery accepting string index

SI(pref(t)) and string pattern f

Input: Subtree jump table for prefix notation SJT_pref(t)
Input: Subtree repeats table SRT_pref(t)
Input: Array Rev

|pref(t)|
S

Input: Array Assign
|pref(t)|
X ,Y ,Z,...

Result: List of occurrences of tree pattern p

1 begin
2 if not VerifyArityChecksum(p) then
3 return ERROR – invalid pattern;
4 end
5 prevOcc := {};
6 for i := 1 to k do
7 if pi 6= ε then
8 occ := IndexQuery(SI(pref(t)), pi);
9 if i = 1 then prevOcc := occ;

10 else prevOcc := MergeOccurrences(prevOcc,occ,Rev
|pref(t)|
S );

11 end
12 if i 6= k then
13 foreach occurrence (first, last) in prevOcc do

14 if Vi 6= S and Assign
|pref(t)|
Vi

[first] 6∈ {SRT_pref(T )[last],−1} then
15 (first, last) := (−1, last);

16 Assign
|pref(t)|
X,Y,Z,...[first] := −1;

17 else if Vi 6= S and AssignVi
[first] = −1 then

18 Assign
|pref(t)|
Vi

[first] := SRT_pref(T )[last];
19 end
20 (first, last) := (first, SJT_pref(t)[last]);
21 end
22 prevOcc := {occ : occ ∈ prevOcc and occ.first 6= −1};
23 end

24 end
25 foreach occurrence (first, last) in prevOcc do

26 Assign
|pref(t)|
X,Y,Z,...[first] := −1;

27 end
28 return prevOcc;
29 end

Algorithm 21: Searching for occurrences of a nonlinear tree pattern.
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Array13
X [2] is set to SRT_pref(t2r)[9]. Using SJT_pref(t2r), prevOcc is then rewritten to

prevOcc = {(1, 13), (2, 10)}.
At i = 3, algorithm checks the equality of Array13

X [1] with SRT_pref(t2r)[13] and
Array13

X [2] with SRT_pref(t2r)[10] concluding both differ. This is remembered by chan-
ging prevOcc to prevOcc = {(−1, 13), (−1, 10)}. Again SJT_pref(t2r) is used to change
prevOcc to prevOcc = {(−1, 14), (−1, 11)}. And next the occurrences starting at position
-1 are filtered out leaving prevOcc = {}.

At i = 4, prevOcc is not modified because subpattern p4 is the empty string and the
algorithm returns empty set as a result.

Algorithm 21 (MatchNonlinearPattern) has correctly found no occurrence of tree pat-
tern p6r in t2r. △

Theorem 4.6.5. Algorithm 21 (MatchNonlinearPattern) finds all occurrences occt(p) of
nonlinear tree pattern p = p1Sp2S . . . Spk in tree t.

4.6.3 Time and space complexities

Theorem 4.6.6. Construction of the augmented index takes time O(n) time and produces
index of O(n) size.

Proof. The augmented index is based on the index from the previous chapter of O(n) size
which takes O(n) time to construct. It additionally contains a structure representing in-
formation about subtree repeats. The structure is an array of size O(n). Its construction
time depends on the running time of the algorithm presented in [11] and possibly the trans-
formation time of the subtree repeats table for postfix notation to a subtree repeats table
for a different linear notation of a tree. Both the algorithm from [11] and the subtree re-
peats table transformation algorithm takeO(n) time (see Theorem 3.4.4 or Theorem 3.4.6).
Last the augmented index contains an array Assignn

X,Y,Z,... of size O(n × |{X, Y, Z, . . .}|)
= O(n), where |{X, Y, Z, . . .}| is the number of nonlinear variables.

Theorem 4.6.7. Let pref(p) = p1V1p2V2 . . . Vk−1pk of length m be the prefix notation of

a tree pattern p. Algorithm 21 (MatchNonlinearPattern) runs in O(m+
k

∑

i=1
|occ′(pi)|) time,

where occ′(pi) = occ(pi) if pi 6= ε; otherwise, occ′(pi) = occ′(pi−1).

Proof. The algorithm additionally performs the checking of nonlinear variable settings
consistency. The check is performed along with prolonging the actual occurrence set
with SJT_pref(t) table. The check for individual occurrence takes additional O(|{X,
Y , Z, . . .}|) = O(1) time and is performed at maximum occ′(pi) times for each subpat-
tern pi. Altogether the running time of the Algorithm 21 (MatchNonlinearPattern) is still

O(
k

∑

i=1
|occ′(pi)|).
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4.7 Some empirical results

We have implemented our (nonlinear) tree indexing algorithms, ones based on the (non-
linear) full and linear index with three backends (position heap, suffix array, and com-
pact suffix automaton) and pure automata based called (nonlinear) tree pattern pushdown
automaton using C++ programming language. We compared our algorithms’ performances
against each other, by the running times of their construction and querying.

The comparison was done using a pattern set previously used for benchmarking Forest
FIRE toolkit [12, 59]. This pattern set was obtained by taking the Mono project’s X86
instruction set grammar and, for each grammar production, taking the tree in the pro-
duction’s right-hand side, and replacing any nonterminal occurrences by wildcard symbol
occurrences or nonlinear variable symbol, obtaining a tree template and nonlinear tree
template from each grammar production. The resulting two pattern sets, each, consists
of 460 tree patterns of varying sizes (a mix of subtrees and tree templates and a mix of
subtrees and nonlinear tree templates, respectively).

We indexed each subject tree from two sets of subject trees twice: a set of 150 trees
of approximately 500 nodes each, and a set of 500 trees of approximately 150 nodes each.
First, to answer queries including nonlinear tree templates and second to answer queries
including tree templates. Resulting two sets of indexes were queried with all patterns from
respective sets of patterns sequentially. Benchmarking was conducted on a 2 GHz Intel
Core i7 with 16 GB of RAM running OpenSUSE GNU/Linux version Leap 15.0 using GCC
version 7.3.1.

(Nonlinear) full and linear indexes are linear in size with respect to the indexed lin-
earised versions of the subject trees, however, the automata-based index is exponential.
Indexes are usually constructed to answer queries as fast as possible with less concern
about their size. Because of that, the actual memory representation size was not meas-
ured.

Figures 4.10, 4.11, 4.12, and 4.13 show the query times to indexes for tree patterns (for
two different subject tree sets) and query times to indexes for nonlinear tree patterns as
boxplots (again for two different subject sets).

The measurements (note the logarithmic scale) clearly show that on average, the full
and linear index with suffix array backend is the best among the backends of the full and
linear indexes, and the (nonlinear) tree pattern automaton index despite its size (in its
deterministic version) is the overall fastest answering index from the measured algorithms.

Figures 4.14, 4.15, 4.16, and 4.17 show the construction times of indexes for tree patterns
(for two different subject tree sets) and construction times of indexes for nonlinear tree
patterns (again for two different subject sets).

The measurements (again in the logarithmic scale) clearly show that on average, the full
and linear index with suffix array backend is the fastest constructed among the backends
of all indexes. The automata-based index is the slowest constructed, which corresponds to
its theoretical size.
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Figure 4.10: Distributions of querying times to tree pattern indexes on 150 trees of ca. 500
nodes each.

70



4.7. Some empirical results

fu
ll a

n
d
 lin

e
a
r (c

o
m

p
a
c
t s

u
ffix

 a
u
to

a
m

to
n
)

fu
ll a

n
d
 lin

e
a
r (p

o
s
itio

n
 h

e
a
p
)

fu
ll a

n
d
 lin

e
a
r (s

u
ffix

 a
rra

y
)

tre
e
 p

a
tte

rn
 p

d
a

1e−03 1e−02 1e−01 1e+00 1e+01

Time (ms)

Figure 4.11: Distributions of querying times to tree pattern indexes on 500 trees of ca. 150
nodes each.
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Figure 4.12: Distributions of querying times to nonlinear tree pattern indexes on 150 trees
of ca. 500 nodes each.
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Figure 4.13: Distributions of querying times to nonlinear tree pattern indexes on 500 trees
of ca. 150 nodes each.
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Figure 4.14: Distributions of index creation times of the tree pattern indexes on 150 trees
of ca. 500 nodes each.
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Figure 4.15: Distributions of index creation times of the tree pattern indexes on 500 trees
of ca. 150 nodes each.
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Figure 4.16: Distributions of index creation times of the nonlinear tree pattern indexes on
150 trees of ca. 500 nodes each.
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Figure 4.17: Distributions of index creation times of nonlinear tree pattern indexes on 500
trees of ca. 150 nodes each.
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4.8 Conclusion of the tree indexing

We have presented the nonlinear tree pattern pushdown automaton, a new kind of push-
down automaton, which represents a complete index of a given tree for nonlinear tree
patterns. Since the presented pushdown automaton is input–driven, it can be determin-
ised.

Additionally, a new method of a full and linear index of a tree for tree patterns and
nonlinear tree patterns has been presented. The presented algorithms can also be modified
for unranked trees, however, such extension is not presented as it would only consist of an
exchange of the used linear tree representation for prefix bar linear notation of the tree
[52] instead of the prefix notation, or any other notation suitable for unranked trees.

We have discussed the time and space complexities of presented indexes. Based on
experiments, the timings of our implementations of all presented indexes (deterministic
version of the (nonlinear) tree pattern pushdown automata, full and linear index for (non-
linear) tree patterns with suffix array, compact suffix automaton, and position heap as
string index backends) were shown.

For the future work, we would like to implement the full and linear index with more
string index backends and provide a complete description of the full and linear family of
indexes.
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Chapter 5

Main Results in Tree Pattern Matching

Tree pattern matching is covered by a family of algorithms designed for variety of tree
linear notations. The chapter summary and experimental results is presented to conclude
the tree pattern matching topic of this thesis.

5.1 Backward subtree matching

This section contains some supplementary results on subtree matching related to the topic
of tree pattern matching. This section is included to make the results of tree pattern
matching complete.

Subtrees of tree t are substrings of the tree t in all linear notations defined in this thesis
and many others. Therefore any string pattern matching algorithm can be used to locate
occurrences of subtrees inside a subject tree without changes. However, not all substrings
of tree t in these linear notations are subtrees of the tree t. The linear notations of trees are
strings with additional properties that can still be used to improve existing string pattern
matching algorithms.

Theorem 5.1.1. Given the prefix notation pref(t) of a tree t, the borders of the pref(t)
are ε and pref(t) only.

Proof. pref(t) is the prefix notation of a subtree of t, if and only if arity checksum ac(w) =
0. Let w1 be a prefix of w, where w1 6= w and w1 6= ε. The ac(w1) ≥ 1. Let w2 be a suffix
of w, where w2 6= w and w2 6= ε. Given the ac(w) = 0, the ac(w2) = ac(w)− ac(w1) ≤ 0
for each w2, where w = w1w2. Border is a prefix that is also a suffix. Clearly no prefix
w1, where w1 6= ε and w1 6= pref(t), with ac(w1) ≥ 1 can also be a suffix w2 with
ac(w2) ≤ 0.

The same theorem also holds for bar notation of a tree pref_bar(t) and notations
defined further in the thesis.
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Even though trees are in general generated by context-free grammars (or tree gram-
mars), finite automata can be used to locate the occurrences of a subtree inside a subject
tree.

String pattern matching algorithms based on shifting of the pattern and skipping some
comparisons of symbols, like the Boyer-Moore or Boyer-Moore-Horspool algorithms, can’t
check whether their input is, in fact, a tree in linear notation (if such a check is required).
The check would need to be done explicitly with the arity checksum execution either
before, after, or together with the pattern matching algorithm. The pattern matching
algorithms themselves may achieve sublinear complexity with respect to the size of the
subject string. Executing the arity checksum is, however, linear with respect to the size of
the tree. Therefore the overall complexity would not be better than linear with respect to
the size of the subject tree.

5.2 Backward linearised tree pattern matching algorithm

This section contains base results from an individual work presented as a conference pa-
per [61].

The problem of tree pattern matching can be seen as matching of connected subgraphs
in trees. Tree patterns in a linear notation are represented by substrings of trees in the
linear notation but they can contain gaps given by wildcards S, which serve as placeholders
for any subtree. The gaps are of variable length but always contain a complete subtree.
A variant of the subtree jump table introduced in the previous chapter will be used to
efficiently skip these gaps.

The basic idea of backward linearised tree pattern matching for tree patterns is the
same as in the string case: shift the pattern in one direction and match symbols of the
tree pattern and the subject tree in the opposite direction. Wildcard S occurrences must
be handled specially. First we present the algorithm using a prefix ranked bar notation of
the subject tree and the tree pattern.

Definition 5.2.1. The prefix ranked bar notation pref_ranked_bar(t) of a tree t is defined
as follows:

1. pref_ranked_bar(S) = S ↑S

2. pref_ranked_bar(a) = a0 ↑0 if a is a leaf,
3. pref_ranked_bar(t) = an pref_ranked_bar(b1) . . . pref_ranked_bar(bn) ↑n, where

a is the root of the tree t, n = Arity(a) and b1, . . . bn are direct descendants of a.

Prefix ranked bar notation is a combination of the prefix notation and the bar notation.
The prefix ranked bar notation has a following useful property inherited from the bar
notation: both the beginning and the end of occurrence of each subtree in the tree has
its unique representation. The beginning is represented by a non-bar symbol and the
end is represented by a bar symbol. The arity inherited from the prefix notation extends
the alphabet which in turn extend the shifts. The size of the prefix ranked bar notation
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Table 5.1: Prefix, postfix, prefix bar, postfix bar, and prefix ranked bar linear notations of
tree t1r.

prefix_bar a a a ↑ a a ↑ ↑ ↑ a a ↑ ↑ ↑

postfix_bar ↑ ↑ ↑ a ↑ ↑ a a a ↑ ↑ a a a

prefix a2 a2 a0 a1 a0 a1 a0

postfix a0 a0 a1 a2 a0 a1 a2

prefix_ranked_bar a2 a2 a0 ↑0 a1 a0 ↑0 ↑1 ↑2 a1 a0 ↑0 ↑1 ↑2

is exactly 2 ∗ n, where n is the size of the tree, which on the other hand makes the
representation of the tree longer.

Example 5.2.2. Consider tree t1r from Example 2.2.1 and its prefix, postfix, prefix bar,
postfix bar, and prefix ranked bar notations. The linear notations of tree t1r are all together
illustrated in Table 5.1. Table 5.1 is an extension of Table 2.1 from Example 2.2.3. △

Definition 5.2.3. Let ↑n, where n ≥ 0 be bar symbols of arity n. The bar set A↑ is the
set of all bar symbol ↑n.

Note that every subtree in the prefix ranked bar notation ends with some symbol from
↑n, where n ≥ 0 and starts with a symbol that is not in set ↑n.

5.2.1 Construction of bad character shift table

Definition 5.2.4. Let pattern[1..m] be a pref_ranked_bar notation of tree pattern p over
alphabet A. The bad character shift table BCS_pref_ranked_bar(p) for the backward
linearised tree pattern matching is defined for each a ∈ A.

BCS_pref_ranked_bar(p)[a] =

min















{m} ∪ {j : pattern[m− j] = a and m > j > 0} ∪
{j + Arity(a) ∗ 2 : pattern[m− j] = S and m > j > 0 and a 6∈ A↑} ∪

{j − 1 : pattern[m− j] = S and m > j > 0 and a ∈ A↑ and pattern 6= S ↑S} ∪

{1 : a ∈ A↑ and pattern = S ↑S}















Note that there is no value for wildcard S in the bad character shift table. Wildcard S

cannot occur in the subject tree, therefore the value for it does not need to be in the bad
character shift table.

Items of the bad character shift table are computed as the minimum value from four
formulas, see Definition 5.2.4 where the formulas are separated by the union operation.
The first formula makes sure that the shift is not longer than the size of pattern m. In
this case, the size of a subtree corresponding to wildcard S is considered to be the smallest
possible one, i.e. 2 (the size of subtree consisting of one nullary symbol a0 ↑0). The second
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formula defines the minimal safe shift for symbols that occur in the pattern. The minimal
safe shift for symbol a is the distance j of the closest occurrence of symbol a from the
end of the pattern. Nullary symbol S is considered to correspond to the smallest possible
subtree again.

The third and fourth formulas define the shift for cases when symbol a is expected to
be inside subtree te that corresponds to wildcard S. The location of the last wildcard S

from the end of the pattern is used to define the base shift length j and this shift can be
prolonged by some number depending on the arity of symbol a, see the second part of the
union in the definition. The smallest subtree te that contains symbol a is rooted by a and
its direct descendants are nullary symbols b0. For each symbol b0 in subtree te there is also
one symbol ↑0. The base shift j is then prolonged by 2∗Arity(a). Any symbol from set A↑

can occur as the last symbol of subtree te, i.e. it can be matched with ↑S. Therefore, the
base shift of each bar is shortened by 1, see the fourth part of the union in the definition.
The definition is extended to handle the S ↑S, which, despite not being allowed, is handled
correctly by the fourth and fifth part of the union in the definition.

Name: ConstructBCS_pref_ranked_bar
Input: Tree pattern in the prefix ranked bar notation pref_ranked_bar(pattern)

of size m over alphabet A of the subject tree
Result: The bad character shift table BCS_pref_ranked_bar(pattern)

1 begin
2 s := m;
3 for i := 1 to m do
4 if pref _ranked_bar(pattern)[i] = S then s = m− i;
5 end
6 foreach x ∈ A do BCS_pref _ranked_bar(pattern)[x] = m;
7 foreach x ∈ A do
8 if x 6∈ A↑ then shift := s + Arity(x) ∗ 2;
9 else if s >= 2 then shift := s− 1;

10 else shift := s;
11 if BCS_pref _ranked_bar(pattern)[x] > shift then

BCS_pref _ranked_bar(pattern)[x] := shift;
12 end
13 for i := 1 to m− 1 do
14 if pref _ranked_bar(pattern)[i] 6∈ {S, ↑S} and

BCS_pref _ranked_bar(pattern)[pref_ranked_bar(pattern)[i]] > (m− i)
then
BCS_pref _ranked_bar(pattern)[pref_ranked_bar(pattern)[i]] := m− i;

15 end
16 return BCS_pref _ranked_bar(pattern);
17 end

Algorithm 22: Construction of the bad character shift table.
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a05S3

a14a12

a21

Figure 5.1: Tree pattern p8r from Example 5.2.5.

S2

a11

Figure 5.2: Tree pattern p9r from Example 5.2.6.

Firstly, Algorithm 22 (ConstructBCS_pref_ranked_bar) for the construction of the bad
character shift table finds the location of the last wildcard S. Then, the bad character shift
table entries are initialised to the size of the pattern for all symbols of the alphabet. The
length of the shift for all symbols of the alphabet is possibly shortened with the use of the
information on the position of the last wildcard S in the pattern. The arity of symbols is
used to make this part of the shift function longer according to Definition 5.2.4. Finally,
the length of the shift is again possibly shortened by the actual positions of symbols in the
pattern.

Example 5.2.5. Consider a tree pattern p8r, depicted in Figure 5.1, in the prefix ranked
bar notation pref_ranked_bar(p8r) = a2 a1 S ↑S ↑1 a1 a0 ↑0 ↑1 ↑2 over an alphabet
A = {a3, a2, a1, a0, S, ↑3, ↑2, ↑1, ↑0, ↑S}. Algorithm 22 (ConstructBCS_pref_ranked_bar)
constructs the following items of the bad character shift table BCS_pref_ranked_bar(p8r)
abbreviated as BCS. △

BCS[a3] = min({10} ∪ ∅ ∪ {13}) = 10 BCS[a2] = min({10} ∪ {9} ∪ {11}) = 9
BCS[a1] = min({10} ∪ {4, 8} ∪ {9}) = 4 BCS[a0] = min({10} ∪ {3} ∪ {7}) = 3
BCS[↑3] = min({10} ∪ ∅ ∪ {6}) = 6 BCS[↑2] = min({10} ∪ ∅ ∪ {6}) = 6
BCS[↑1] = min({10} ∪ {1, 5} ∪ {6}) = 1 BCS[↑0] = min({10} ∪ {2} ∪ {6}) = 2

Example 5.2.6. Consider tree pattern p9r in linear notation pref_ranked_bar(p9r) =
a1 S ↑S ↑1 over an alphabetA = {a3, a2, a1, a0, S, ↑3, ↑2, ↑1, ↑0, ↑S} depicted in Figure 5.2.
Shifts for wildcard symbol S are described in Figure 5.3. The case of the shift for ↑0 is
1, because ↑0 is aligned to symbol ↑S. Other cases of shifts for symbols not in A↑ are
lengthened by their arity. △

5.2.2 Construction of subtree jump table for bar notation

The backward linearised tree pattern matching algorithm uses an additional structure
subtree jump table for bar notation (SJT_bar) to efficiently skip subtrees corresponding
to S. The subtree jump table for bar notation is similar to the subtree jump table for
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TEXT
PATTERN
S-SHIFT

TEXT
PATTERN
S-SHIFT

a1a1a1a3a0↑0a0↑0a0↑0↑3↑1↑1↑1
a1 S ↑S↑1

a1S → ← S ↑1

a1a1a1a2a0↑0a0↑0↑2↑1↑1↑1
a1 S ↑S↑1

a1S → ← S↑1

a1a1a1a1a0↑0↑1↑1↑1↑1
a1 S ↑S↑1

a1S →← S ↑1

a1a1a1a0↑0↑1↑1↑1
a1 S ↑S↑1

a1 S ↑S↑1

a1a1a0↑0↑1↑1
a1 S ↑S↑1

a1S ↑S↑1

Figure 5.3: Subtree shifts for tree pattern p9r from Example 5.2.6.

prefix notation introduced in Definition 4.5.1. The subtree jump table for bar notation
allows jumping over subtrees in both directions. There is a jump before the subtrees on
positions corresponding to bar symbols and after the subtree on positions corresponding to
non-bar symbols. Therefore the subtree jump table SJT_bar encodes jumps over subtrees
for both prefix and postfix bar notations, or any other notation that share the structure of
the notation, like prefix ranked bar notation.

Definition 5.2.7. Let t and pref_ranked_bar(t) of length n be a tree and its prefix ranked
bar notation, respectively. A subtree jump table for bar notation denoted as SJT_bar(t)
is defined as a mapping from a set of integers {1..n} into a set of integers {0..n + 1}. If
pref_ranked_bar(t) [i..j] is the pref_ranked_bar(s) notation of a subtree s of a tree t,
then the SJT_bar(t)[i] = j + 1 and SJT_bar(t) [j] = i− 1, 1 ≤ i < j ≤ n.

Informally, this variant of subtree jump table contains two entries for each subtree
r of tree t. The first entry is at the position of the first symbol of the subtree r in
pref_ranked_bar(r) notation in the pref_ranked_bar(t) notation of the tree t, and it
stores an index one after the last symbol of the subtree r in pref_ranked_bar(r) notation
as a value. The second entry is at the position of the last symbol of the subtree r in
pref_ranked_bar(r) notation in the pref_ranked_bar(t) notation of the tree t and it stores
an index one before the first symbol of the subtree r in pref_ranked_bar(r) notation as a
value. This structure has the same size as the pref_ranked_bar notation of the tree t and
it can be construction by Algorithm 23 (ConstructSJT_bar).

Lemma 5.2.8. Given tree t in prefix ranked bar notation pref_ranked_bar(t) and initial
value of rootIndex equal to 1, Algorithm 23 (ConstructSJT_bar) constructs subtree jump
table for bar notation SJT_bar(t).

Example 5.2.9. Consider a tree t4r in the prefix ranked bar notation pref_ranked_bar

(t4r) = a2 a2 a0 ↑0 a0 ↑0 ↑2 a2 a0 ↑0 a0 ↑0 ↑2 ↑2 over alphabet A = {a3, a2, a1, a0,

↑3, ↑2, ↑1, ↑0}. Table 5.2 shows the SJT_bar(t4r). △
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Name: ConstructSJT_bar
Input: Tree t in prefix notation pref_ranked_bar(t) of length n

Input: Index of current node rootIndex initialised to 1
Input/Output: Subtree jump table for bar notation SJT_bar(t) initialised to

empty array of size n

Result: Index exitIndex

1 begin
2 index := rootIndex + 1;
3 for i = 1 to Arity(pref_ranked_bar(t)[rootIndex]) do
4 index := ConstructSJT_bar(pref_ranked_bar(t), index, SJT_bar(t));
5 end
6 index := index + 1;
7 SJT_bar(t)[rootIndex] = index;
8 SJT_bar(t)[index− 1] = rootIndex− 1;
9 return index;

10 end
Algorithm 23: Construction of subtree jump table for bar notation.

Table 5.2: Subtree jump table for bar notation SJT_bar(t4r) of tree t4r.

node id 1 2 3 4 5 6 7 8 9 10 11 12 13 14

pref(t4r) a2 a2 a0 ↑0 a0 ↑0 ↑2 a2 a0 ↑0 a0 ↑0 ↑2 ↑2

SJT_bar(t4r) 15 8 5 2 7 4 1 14 11 8 13 10 7 0

5.2.3 The backward tree pattern matching algorithm

Our backward linearised tree pattern matching algorithm, presented as Algorithm 24
(BackwardLTPM), is an extension of the string backward pattern matching algorithm,
presented as Algorithm 2 (BasicBackwardPatternMatchingAlgorithm).

The modification of the string backward matching algorithm is based on the principle
that the algorithm also performs tests for wildcards S in the pattern. The modification
is on lines 9 to 11 of Algorithm 24 (BackwardLTPM), where a part of the subject tree
representing a subtree is skipped when a wildcard S, represented as S ↑S, is processed.
Also, two indexes, one to the pattern and the other one to the text, are needed because
subtrees (which need to be skipped) are often longer than two symbols.

Theorem 5.2.10. Given tree pattern p in the prefix ranked bar notation and bad character
shift table BCS_pref_ranked_bar(p) constructed for the tree pattern p by Algorithm 22
(ConstructBCS_pref_ranked_bar), Algorithm 24 (BackwardLTPM) correctly computes the
locations of all occurrences of tree pattern p in subject tree t.

Proof. The backward linearised tree pattern matching algorithm for prefix ranked bar nota-
tion is an extension of the backward string pattern matching algorithm. It is to be proved
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Name: BackwardLTPM
Input: The subject tree in pref_ranked_bar(subject) notation of size n

Input: The tree pattern in pref_ranked_bar(pattern) notation of size m

Input: The subtree jump table SJT_bar(subject)
Input: The bad character shift table BCS_pref_ranked_bar(pattern)
Result: Locations of occurrences of tree pattern pattern in subject tree subject

1 begin
2 i := 0;
3 while i <= (n−m) do
4 j := m;
5 position := i + j;
6 while j > 0 and position > 0 do
7 if pref _ranked_bar(subject)[position] = pref _ranked_bar(pattern)[j]

then
8 position := position − 1;
9 else if pref _ranked_bar(pattern)[j] = ↑S and

pref _ranked_bar(subject)[position] ∈ A↑ then
10 position := SJT_bar(subject)[position];
11 j = j − 1; {Subtree skip}
12 else break;
13 j := j − 1;
14 end
15 if j = 0 then yield position + 1;
16 i := i + BCS_pref _ranked_bar(pattern)[subject[i + m]];
17 end

18 end
Algorithm 24: Backward linearised tree pattern matching algorithm.

that shifting using the BCS_pref_ranked_bar(p) cannot skip any occurrence of the tree
pattern p. Let there be a symbol c = pref_ranked_bar(t)[i], where i is the position of
current match attempt and c ∈ A. Assume that there is an occurrence of p located at
position i + shift, 0 < shift < BCS_pref_ranked_bar(p)[c]. A symbol c must then be
located at some position shift either directly or as a part of a subtree that corresponds
to a wildcard S. According to Definition 5.2.4, the BCS_pref_ranked_bar(p)[c] is de-
rived from the last occurrence of symbol c in the prefix ranked bar notation of the pattern
pref_ranked_bar(p), hence we get a contradiction. The shift is also derived from the last
occurrence of symbol S and its bar ↑S in the prefix ranked bar notation of the pattern
pref_ranked_bar(p). If the symbol c is located in the subtree that corresponds to a wild-
card S and its bar ↑S, then the shift is already computed from the smallest possible subtree
containing the symbol c. Hence, pattern p cannot occur at position shift. Therefore, no
occurrence of p can be skipped by the algorithm.

The algorithm also checks individual positions inside the subject tree for occurrences.
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S2 S3

a21

Figure 5.4: Tree pattern p10r from Example 5.2.11.

Table 5.3: A trace of the run of Algorithm 24 (BackwardLTPM) for subject tree t4r and
tree pattern p10r.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a2 a2 a0 ↑0 a0 ↑0 ↑2 a2 a0 ↑0 a0 ↑0 ↑2 ↑2 pref_ranked_bar(t4r)

15 8 5 2 7 4 1 14 11 8 13 10 7 0 subtree_jumps(t4r)

↑2 ↑0 6= ↑2, shift = 1

a2 S→←↑S S→←↑S ↑2 match, shift = 1

↑2 a2 6= ↑0, shift = 5

a2 S→←↑S S→←↑S ↑2 match, shift = 1

a2 S→ ←↑S S→ ←↑S ↑2 match, shift = 1

The check is an extension of the same check performed by the backward string pattern
matching algorithm. Individual symbols of the pattern tree other than the wildcard S and
its bar ↑S are compared with the subject tree in the same manner as the string version of
the algorithm does. Wildcard S and its bar ↑S are handled using table SJT_bar(t) which
allows skipping subtrees of pref_ranked_bar(t).

Example 5.2.11. Consider tree pattern p10r in the prefix ranked bar notation pref

_ranked_bar(p10r) = a2 S ↑S S ↑S ↑2 over an alphabet A = {a3, a2, a1, a0, S, ↑3,

↑2, ↑1, ↑0, ↑S} depicted in Figure 5.4 and a tree t4r in the prefix ranked bar notation
pref_ranked_bar (t4r) = a2 a2 a0 ↑0 a0 ↑0 ↑2 a2 a0 ↑0 a0 ↑0 ↑2 ↑2 over an alphabet A
= {a3, a2, a1, a0, ↑3, ↑2, ↑1, ↑0}.

The BCS_pref_ranked_bar(p10r) abbreviated as BCS contains the following items:
BCS[a3] = 6, BCS[a2] = 5, BCS[a1] = 4, BCS[a0] = 2, BCS[↑3] = 1, BCS[↑2] = 1,
BCS[↑1] = 1, BCS[↑0] = 1.

A trace of the run of Algorithm 24 (BackwardLTPM) is depicted in Table 5.3. Longer
subtrees in place of wildcards S are denoted by S→ ←↑S △.

The trace of the run of the Algorithm 24 (BackwardLTPM) from Example 5.2.11 starts
with a pattern aligned as close to the left of the subject as possible, hence at position 6 of
the pref_ranked_bar(t4r). Mismatch of ↑2 and ↑0 results in a subsequent shift by 1 symbol
to align ↑0 with the position of the end of the last wildcard S in the pref_ranked_bar(p8r).
The algorithm recognises pattern match on positions 2 to 7 and shifts is by 1 symbol to
align ↑2 again with the end of the last wildcard S in pref_ranked_bar(p8r). Mismatch
of ↑2 and a2 results in a shift by 5 symbols where a2 from the pattern is aligned with a2
from the subject. Another match is recognised and the shift is by 1 symbol is performed,
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where another and last occurrence is recognised and the subsequent shift is to the outside
of the pref_ranked_bar(t4r) resulting in the termination of the run of the Algorithm 24
(BackwardLTPM) and return of the set of occurrences.

Lengths of shifts strongly depend on the position of the symbol S in the pattern. Shifts
are longer with increasing the distance of the symbol S from the end of the pattern.

The bad character shift table is the only precomputed data structure from the pattern
needed for the backward linearised tree pattern algorithm and its size is Θ(|A|), where |A|
is the alphabet size. The preprocessing time is O(m + |A|), where m is the pattern length
and |A| is the alphabet size.

Backward string pattern matching is known to perform the sublinear number of com-
parisons of symbols on average. The modification to backward linearised tree pattern
matching requires the subject tree to be read in the prefix ranked bar notation. However,
the algorithm still performs Ω( n

m
) comparisons of symbols, where n is the size of the subject

tree and m is the size of the given tree pattern and O(n ∗m) comparisons of symbols as
in the case of the backward string pattern matching. The lengths of the shifts depend on
the position of the last wildcard S in pattern p – the closer to the end of the pattern the
last occurrence of symbol S is, the longer shifts are performed.

5.3 Reversed variant

The obvious relation between the length of the shift and the last occurrence of symbol S

may be addressed in some special case with the introduction of a reversed variant of the
backward linearised tree pattern matching algorithm. The reverse is in the meaning of
reversing the shifting of the pattern and simultaneously reversing the direction of symbol
comparison in the match attempt. The prefix ranked bar notation from Definition 5.2.1 is
used and the subtree jump table for bar notation from Definition 5.2.7 is also used without
changes. The definition of bad character shift must be changed accordingly to represent
shifts in other direction. The content of this section is novel and not presented in any
publication.

Definition 5.3.1. Let pattern[1..m] be a pref_ranked_bar notation of a tree pattern p

over an alphabet A. The reversed bad character shift table RBCS_pref_ranked_bar(p)
for backward linearised tree pattern matching is defined for each a ∈ A.

RBCS_pref_ranked_bar(p)[a] =

min















{m} ∪ {j − 1 : pattern[j] = a and m ≥ j > 1} ∪
{j − 1 + Arity(a) ∗ 2 : pattern[j] = ↑S and m ≥ j > 1 and a ∈ A↑} ∪

{j − 2 : pattern[j] = ↑S and m ≥ j > 1 and a 6∈ A↑ and pattern 6= S ↑S} ∪

{1 : a 6∈ A↑ and pattern = S ↑S}















The idea behind Definition 5.3.1 is similar to one behind Definition 5.2.4. The third,
fourth and fifth part of the union in the definition is changed to reflect a change in the
direction of the shift. The change in the direction of the shift corresponds to a change in
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the direction of processing symbols of the prefix ranked bar representation of the pattern.
The change in the direction of processing symbols of the representation of the pattern
causes the change in the order of visits of bar symbols and non-bar symbols of individual
subtrees. The same change happens for symbols S and ↑S. This symmetry is translated
to the third, fourth and fifth part of the union in the definition so that the ↑S is searched
to prolong the shift for bar symbol by their arity.

Name: ConstructRBCS
Input: The tree pattern in the prefix ranked bar notation

pref_ranked_bar(pattern) of size m over an alphabet A of the subject

tree
Result: The bad character shift table RBCS_pref_ranked_bar(pattern)

1 begin
2 s := m;
3 for i := m downto 1 do
4 if pref _ranked_bar(pattern)[i] = ↑S then s := i− 1;
5 end
6 foreach x ∈ A do RBCS_pref _ranked_bar(pattern)[x] := m;
7 foreach x ∈ A do
8 if x ∈ A↑ then shift := s + Arity(x) ∗ 2;
9 else if s >= 2 then shift := s− 1;

10 else shift := s;
11 if RBCS_pref _ranked_bar(pattern)[x] > shift then
12 RBCS_pref _ranked_bar(pattern)[x] := shift;
13 end

14 end
15 for i := m downto 2 do
16 if pref _ranked_bar(pattern)[i] 6∈ {S, ↑S} and

RBCS_pref _ranked_bar(pattern)[pref_ranked_bar(pattern)[i]] > (i− 1)
then

17 RBCS_pref_ranked_bar(pattern)[pref_ranked_bar(pattern)[i]] :=
i− 1;

18 end

19 end
20 return RBCS_pref_ranked_bar(pattern);
21 end

Algorithm 25: Construction of RBCS table.

Algorithm 25 (ConstructRBCS) for construction of RBCS(pref_ranked_bar(pattern))
for reversed backward linearised tree pattern matching has been modified in the same way
as the Definition 5.3.1 of reversed bad character shift table.
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S5a03

a14a12

a21

Figure 5.5: Tree pattern p11r from Example 5.3.3.

Example 5.3.2. Consider tree pattern p8r, depicted in Figure 5.1, in the prefix ranked
bar notation pref_ranked_bar(p8r) = a2 a1 S ↑S ↑1 a1 a0 ↑0 ↑1 ↑2 over an alphabet
A = {a3, a2, a1, a0, S, ↑3, ↑2, ↑1, ↑0, ↑S}. Algorithm 25 (ConstructRBCS) constructs the
following items of the reversed bad character shift table RBCS_pref_ranked_bar(p8r)
abbreviated as RBCS. △

RBCS[a3] = min({10} ∪ ∅ ∪ {2}) = 2 RBCS[a2] = min({10} ∪ ∅ ∪ {2}) = 2
RBCS[a1] = min({10} ∪ {1, 5} ∪ {2}) = 1 RBCS[a0] = min({10} ∪ {6} ∪ {2}) = 2
RBCS[↑3] = min({10} ∪ ∅ ∪ {9}) = 9 RBCS[↑2] = min({10} ∪ {9} ∪ {7}) = 7
RBCS[↑1] = min({10} ∪ {4, 8} ∪ {5}) = 4 RBCS[↑0] = min({10} ∪ {7} ∪ {3}) = 3

Tree pattern p8r used in Example 5.3.2 is the same as in Example 5.2.5 and the lengths
of shifts are shorter which is purely caused by the particular selection of the pattern.

Example 5.3.3. However, consider tree pattern p11r, depicted in Figure 5.5, in the prefix
ranked bar notation pref_ranked_bar(p11r) = a2 a1 a0 ↑0 ↑1 a1 S ↑S ↑1 ↑2 over alphabet
A = {a3, a2, a1, a0, S, ↑3, ↑2, ↑1, ↑0, ↑S}. Algorithm 22 (ConstructBCS_pref_ranked_bar)
constructs the following items of the bad character shift table BCS_pref_ranked_bar(p11r)
abbreviated as BCS.

BCS[a3] = min({10} ∪ ∅ ∪ {9}) = 9 BCS[a2] = min({10} ∪ {9} ∪ {7}) = 7
BCS[a1] = min({10} ∪ {4, 8} ∪ {5}) = 4 BCS[a0] = min({10} ∪ {7} ∪ {3}) = 3
BCS[↑3] = min({10} ∪ ∅ ∪ {2}) = 2 BCS[↑2] = min({10} ∪ ∅ ∪ {2}) = 2
BCS[↑1] = min({10} ∪ {1, 5} ∪ {2}) = 1 BCS[↑0] = min({10} ∪ {6} ∪ {2}) = 2

And Algorithm 25 (ConstructRBCS) constructs the following items of the reversed bad
character shift table RBCS_pref_ranked_bar(p11r) abbreviated as RBCS. △

RBCS[a3] = min({10} ∪ ∅ ∪ {6}) = 6 RBCS[a2] = min({10} ∪ ∅ ∪ {6}) = 6
RBCS[a1] = min({10} ∪ {1, 5} ∪ {6}) = 1 RBCS[a0] = min({10} ∪ {2} ∪ {6}) = 2
RBCS[↑3] = min({10} ∪ ∅ ∪ {13}) = 10 RBCS[↑2] = min({10} ∪ {9} ∪ {11}) = 9
RBCS[↑1] = min({10} ∪ {4, 8} ∪ {9}) = 4 RBCS[↑0] = min({10} ∪ {3} ∪ {7}) = 3

Tree pattern p11r is chosen to show the property of the reversed bad character shift
table in Example 5.3.3. The shifts by the reversed bad character shift table are longer
than by the bad character shift table for this particular pattern.
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Name: ReversedBackwardLTPM
Input: The subject tree in the prefix ranked bar notation

pref_ranked_bar(subject) of size n

Input: The subtree jump table for bar notation SJT_bar(subject)
Input: The tree pattern in the prefix ranked bar notation

pref_ranked_bar(pattern) of size m

Input: The reversed bad character shift table RBCS_pref_ranked_bar(pattern)
Result: Locations of occurrences of tree pattern pattern in subject tree subject

1 begin
2 i := n−m + 1;
3 while i >= 1 do
4 j = 1;
5 position = i;
6 while j <= m and position <= n do
7 if pref _ranked_bar(subject)[position] = pref _ranked_bar(pattern)[j]

then
8 position := position + 1;
9 else if pref _ranked_bar(pattern)[j] = S and

pref _ranked_bar(subject)[position] 6∈ A↑ then
10 position := SJT_bar(subject)[position];
11 j := j + 1;
12 else break;
13 j := j + 1;
14 end
15 if j = m + 1 then yield i;
16 i := i− RBCS_pref _ranked_bar [pref _ranked_bar(subject)[i]];
17 end

18 end
Algorithm 26: Reversed backward linearised tree pattern matching algorithm.

Algorithm 26 (ReversedBackwardLTPM) is similar to Algorithm 24 (BackwardLTPM).
The algorithm is modified to work in reverse when compared to Algorithm 24 (Back-
wardLTPM) introduced in the previous section. It starts searching with the pattern (in
the prefix ranked bar notation) aligned to the right end of the subject tree (also in the
prefix ranked bar notation). The pattern is shifted towards the beginning of the subject.
Symbols of the pattern and the subject on a particular position are compared from right
to left.

Theorem 5.3.4. Given tree pattern p in the prefix ranked bar notation and reversed
bad character shift table RBCS_pref_ranked_bar(p) constructed for the tree pattern
p by Algorithm 25 (ConstructRBCS), Algorithm 26 (ReversedBackwardLTPM) correctly
computes the locations of all occurrences of tree pattern p in subject tree t.
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Table 5.4: A trace of the run of Algorithm 26 (ReversedBackwardLTPM) for subject tree
t4r and tree pattern p10r.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a2 a2 a0 ↑0 a0 ↑0 ↑2 a2 a0 ↑0 a0 ↑0 ↑2 ↑2 pref_ranked_bar(t4r)

15 8 5 2 7 4 1 14 11 8 13 10 7 0 subtree_jumps(t4r)

a2 a0 6= a2, shift = 1

a2 S→←S↑ S→←S↑ ↑2 match, shift = 1

a2 ↑2 6= a2, shift = 5

a2 S→←S↑ S→←S↑ ↑2 match, shift = 1

a2 S→ ←S↑ S→ ←S↑ ↑2 match, shift = 1

Proof. The proof is similar to the proof of Theorem 5.2.10 and it is presented in an appendix
as proof of Theorem A.1.1.

Example 5.3.5. Consider tree pattern p10r in the prefix ranked bar notation pref_ranked

_bar(p10r) = a2 S ↑S S ↑S ↑2 over an alphabet A = {a3, a2, a1, a0, S, ↑3, ↑2, ↑1, ↑0, ↑S}
depicted in Figure 5.4 and a tree t4r in the prefix ranked bar notation pref_ranked_bar

(t4r) = a2 a2 a0 ↑0 a0 ↑0 ↑2 a2 a0 ↑0 a0 ↑0 ↑2 ↑2 over an alphabet A = {a3, a2, a1, a0,

↑3, ↑2, ↑1, ↑0}.
The RBCS_pref_ranked_bar(p10r) abbreviated as RBCS contains the following items:

RBCS[a3] = 1, RBCS[a2] = 1, RBCS[a1] = 1, RBCS[a0] = 1, RBCS[↑3] = 6,
RBCS[↑2] = 5, RBCS[↑1] = 4, RBCS[↑0] = 2.

A trace of the run of Algorithm 26 (ReversedBackwardLTPM) is depicted in Table 5.4.
Longer subtrees in place of wildcards S are denoted by S→ ←↑S. △

The trace of the run of Algorithm 26 (ReversedBackwardLTPM) from Example 5.3.5 is
symmetric to the trace of the run of Algorithm 24 (BackwardLTPM) from Example 5.2.11.
The symmetricity is caused by the symmetricity of both the pattern tree and the subject
tree. The length of the shift depends on the position of the symbol S in the pattern. Shifts
are longer with the distance of the symbol S to the beginning of the pattern.

Since the modification is only in the direction of shifting and symbol comparison, the
algorithm properties stay the same. The space complexity of the algorithm Θ(|A|) is given
by the size of the reversed bad character shift table. The preprocessing time is O(m+ |A|),
where m is the pattern length and |A| is the alphabet size.

The two so far presented variants of the algorithm expect the tree in prefix ranked
bar notation. An observation on the structure of the tree represented in prefix ranked
bar notations is that the diversity of bars depend solely on the number of different arities,
whereas two non-bar symbols can differ additionally by their label. It is expected that
the actual execution performance will depend not only on the lengths of shifts but also on
the ability to early detect failed occurrence check of a given tree pattern on some concrete
position within the subject tree. This ability leads to an expectation that the reversed
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Table 5.5: Prefix, postfix, prefix bar, postfix bar, prefix ranked bar, and postfix ranked bar
linear notations of tree t1r.

prefix_bar a a a ↑ a a ↑ ↑ ↑ a a ↑ ↑ ↑

postfix_bar ↑ ↑ ↑ a ↑ ↑ a a a ↑ ↑ a a a

prefix a2 a2 a0 a1 a0 a1 a0

postfix a0 a0 a1 a2 a0 a1 a2

prefix_ranked_bar a2 a2 a0 ↑0 a1 a0 ↑0 ↑1 ↑2 a1 a0 ↑0 ↑1 ↑2

postfix_ranked_bar ↑2 ↑2 ↑0 a0 ↑1 ↑0 a0 a1 a2 ↑1 ↑0 a0 a1 a2

variant of the algorithm should benefit from the prefix ranked bar notation as non-bar
symbols are tested sooner than bar symbols.

5.4 Postfix variant

The selection of the prefix ranked bar notation for the backward linearised tree pattern
matching algorithm is not strict. One can choose a postfix ranked bar notation and modify
the backward linearised tree pattern matching algorithm to work with it. The definition
of the bad character shift must be changed for the postfix ranked bar notation as well.
However, the subtree jump table for bar notation from Definition 5.2.7 can be used without
changes. The content of this section is novel and not presented in any publication.

Definition 5.4.1. The postfix ranked bar notation post_ranked_bar(t) of a tree t is defined
as follows:

1. post_ranked_bar(S) = ↑S S

2. post_ranked_bar(a) = ↑0 a0 if a is a leaf,
3. post_ranked_bar(t) = ↑n post_ranked_bar(b1) . . . post_ranked_bar(bn) an, where a

is the root of the tree t, n = Arity(a) and b1, . . . bn are direct descendants of a.

The postfix ranked bar notation is a combination of postfix notation and postfix bar
notation similarly as in case of prefix ranked bar notation defined in Definition 5.2.1. The
properties of postfix ranked bar notation is the same as properties of prefix ranked bar
notation.

Example 5.4.2. Consider tree t1r and its prefix, postfix, prefix bar, postfix bar, prefix
ranked bar, and postfix ranked bar notations. The linear notations of tree t1r are all
together illustrated in Table 5.5. Table 5.5 is an extension of Table 5.1 from Example 5.2.2.

△

The base variant of backward linearised tree pattern matching algorithm working on
postfix ranked bar notation will shift the pattern from right to left. Hence the algorithms
and definitions are going to be similar to the ones defined in Section 5.3.
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5. Main Results in Tree Pattern Matching

Definition 5.4.3. Let pattern[1..m] be a post_ranked_bar notation of tree pattern p

over alphabet A. The postfix bad character shift table BCS_post_ranked_bar(p) for the
backward linearised tree pattern matching is defined for each a ∈ A.

BCS_post_ranked_bar(p)[a] =

min















{m} ∪ {j − 1 : pattern[j] = a and m ≥ j > 1} ∪
{j − 1 + Arity(a) ∗ 2 : pattern[j] = S and m ≥ j > 1 and a 6∈ A↑} ∪

{j − 2 : pattern[j] = S and m ≥ j > 1 and a ∈ A↑ and pattern 6= ↑S S} ∪

{1 : a ∈ A↑ and pattern = ↑S S}















Definition 5.4.3 is similar to Definition 5.3.1. The direction of shifts the same, however,
the definition is changed to reflect change in the used notation – S is searched instead
of ↑S and the length of shifts for non-bar symbols considered to be inside the ↑S S are
prolonged.. The computation of shifts is otherwise the same.

Algorithm 27 (ConstructPBCS) for construction of BCS_post_ranked_bar(pattern)
for the postfix backward linearised tree pattern matching has been modified in the same
way as the definition of postfix bad character shift table from Definition 5.4.3.

Example 5.4.4. Consider tree pattern p8r, depicted in Figure 5.1, in the postfix ranked
bar notation post_ranked_bar(p8r) = ↑2 ↑1 ↑S S a1 ↑1 ↑0 a0 a1 a2 over an alphabet
A = {a3, a2, a1, a0, S, ↑3, ↑2, ↑1, ↑0, ↑S}. Algorithm 27 (ConstructPBCS) constructs the
following items of the postfix bad character shift table BCS_post_ranked_bar(p8r) abbre-
viated as P BCS. △

P BCS[a3] = min({10} ∪ ∅ ∪ {9}) = 9 P BCS[a2] = min({10} ∪ {9} ∪ {7}) = 7
P BCS[a1] = min({10} ∪ {4, 8} ∪ {5}) = 4 P BCS[a0] = min({10} ∪ {7} ∪ {3}) = 3
P BCS[↑3] = min({10} ∪ ∅ ∪ {2}) = 2 P BCS[↑2] = min({10} ∪ ∅ ∪ {2}) = 2
P BCS[↑1] = min({10} ∪ {1, 5} ∪ {2}) = 1 P BCS[↑0] = min({10} ∪ {6} ∪ {2}) = 2

Tree pattern p8r used in Example 5.4.4 is the same as in Example 5.3.2 and the lengths
of shifts for bar symbols and terminal symbols are swapped. This is obvious when Defini-
tion 5.2.1 is compared with Definition 5.4.1. Basically bar symbols and non-bar symbols
are swapped in the prefix ranked bar notation and postfix ranked bar notation.

Algorithm 28 (PostfixBackwardLTPM) is similar to Algorithm 26 (ReversedBackward-
LTPM). It is modified to work with the postfix ranked bar notation of a tree. The direction
of shifting of the pattern and the direction of symbol comparison is borrowed from the re-
versed backward linearised tree pattern matching algorithm. Therefore, it starts searching
with pattern (in the postfix ranked bar notation) aligned to the right end of the subject
tree (also in the postfix ranked bar notation), and pattern is shifted towards the beginning
of the subject whereas the symbols of the pattern and the subject on a particular position
are compared from left to right.
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5.4. Postfix variant

Name: ConstructPBCS
Input: The tree pattern in the postfix ranked bar notation

post_ranked_bar(pattern) of size m over an alphabet A of the subject tree
Result: The bad character shift table BCS_post_ranked_bar(pattern)

1 begin
2 s := m;
3 for i := m downto 1 do
4 if post_ranked_bar(pattern)[i] = S then s := i− 1;
5 end
6 foreach x ∈ A do BCS_post_ranked_bar(pattern)[x] := m;
7 foreach x ∈ A do
8 if x 6∈ A↑ then shift := s + Arity(x) ∗ 2;
9 else if s >= 2 then shift := s− 1;

10 else shift := s;
11 if BCS_post_ranked_bar(pattern)[x] > shift then
12 BCS_post_ranked_bar(pattern)[x] := shift;
13 end

14 end
15 for i := m downto 2 do
16 if post_ranked_bar(pattern)[i] 6∈ {S, ↑S} and

BCS_post_ranked_bar(pattern)[post_ranked_bar(pattern)[i]] > (i− 1)
then

17 BCS_post_ranked_bar(pattern)[post_ranked_bar(pattern)[i]] := i− 1;
18 end

19 end
20 return BCS_post_ranked_bar(pattern);
21 end

Algorithm 27: Construction of BCS_post_ranked_bar table.

Theorem 5.4.5. Given tree pattern p in the postfix ranked bar notation and postfix bad
character shift table BCS_post_ranked_bar(p) constructed for the tree pattern p by Al-
gorithm 27 (ConstructPBCS), Algorithm 28 (PostfixBackwardLTPM) correctly computes
the locations of all occurrences of tree pattern p in subject tree t.

Proof. The proof is similar to the proof of Theorem 5.2.10 and it is presented in an appendix
as proof of Theorem A.1.2.

Example 5.4.6. Consider tree pattern p10r in the postfix ranked bar notation post_ranked

_bar(p10r) = ↑2 ↑S S ↑S S a2 over an alphabet A = {a3, a2, a1, a0, S, ↑3, ↑2, ↑1, ↑0, ↑S}
depicted in Figure 5.4 and a tree t4r in the postfix ranked bar notation post_ranked_bar

(t4r) = ↑2 ↑2 ↑0 a0 ↑0 a0 a2 ↑2 ↑0 a0 ↑0 a0 a2 a2 over an alphabet A = {a3, a2, a1, a0,

↑3, ↑2, ↑1, ↑0}.
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5. Main Results in Tree Pattern Matching

Name: PostfixBackwardLTPM
Input: The subject tree in the postfix ranked bar notation

post_ranked_bar(subject) of size n

Input: The subtree jump table for bar notation SJT_bar(subject)
Input: The tree pattern in the postfix ranked bar notation

post_ranked_bar(pattern) of size m

Input: The bad character shift table BCS_post_ranked_bar(pattern)
Result: Locations of occurrences of tree pattern pattern in subject tree subject

1 begin
2 i := n−m + 1;
3 while i >= 1 do
4 j = 1;
5 position = i;
6 while j <= m and position <= n do
7 if post_ranked_bar(subject)[position] = post_ranked_bar(pattern)[j]

then
8 position := position + 1;
9 else if post_ranked_bar(pattern)[j] = ↑S and

post_ranked_bar(subject)[position] ∈ A↑ then
10 position := SJT_bar(subject)[position];
11 j := j + 1;
12 else break;
13 j := j + 1;
14 end
15 if j = m + 1 then yield i;
16 i := i− BCS_post_ranked_bar(pattern)[post_ranked_bar(subject)[i]];
17 end

18 end
Algorithm 28: Postfix backward linearised tree pattern matching algorithm.

The BCS_post_ranked_bar(p10r) abbreviated as P BCS contains the following items:
P BCS[a3] = 6, P BCS[a2] = 5, P BCS[a1] = 4, P BCS[a0] = 2, P BCS[↑3] = 1,
P BCS[↑2] = 1, P BCS[↑1] = 1, P BCS[↑0] = 1.

A trace of the run of the Algorithm 28 (PostfixBackwardLTPM) is depicted in Table 5.6.
Longer subtrees in place of wildcards S are denoted by ↑S→ ←S. △

The trace of the run of Algorithm 28 (PostfixBackwardLTPM) from Example 5.4.6
is similar to the trace of the run of Algorithm 26 (ReversedBackwardLTPM) from Ex-
ample 5.3.5. The similarity is caused by the similarity in the notations used – prefix and
postfix ranked bar notations. The length of the shift depends on the position of the symbol
S in the pattern in the same way as in case of the reversed backward linearised tree pattern
matching algorithm.
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5.5. Reversed postfix variant

Table 5.6: A trace of the run of Algorithm 28 (PostfixBackwardLTPM) for subject tree t4r

and tree pattern p10r.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

↑2 ↑2 ↑0 a0 ↑0 a0 a2 ↑2 ↑0 a0 ↑0 a0 a2 a2 post_ranked_bar(t4r)

15 8 5 2 7 4 1 14 11 8 13 10 7 0 subtree_jumps(t4r)

↑2 ↑0 6= ↑2, shift = 1

↑2 ↑S→←S ↑S→←S a2 match, shift = 1

↑2 a2 6= ↑2, shift = 5

↑2 ↑S→←S ↑S→←S a2 match, shift = 1

↑2 ↑S→ ←S ↑S→ ←S a2 match, shift = 1

Since the modification is only in the used ranked bar notation the algorithm properties
stay the same. The space complexity of the algorithm Θ(|A|) is given by the size of the
postfix bad character shift table. The preprocessing time is O(m + |A|), where m is the
pattern length and |A| is the alphabet size.

5.5 Reversed postfix variant

It is possible to introduce a postfix reversed variant of linearised tree pattern matching
algorithm similarly as a reversed variant of backward linearised tree pattern matching was
introduced in Section 5.3. Hence the directions of shifting and symbol comparison used in
the postfix variant can be reversed. The postfix ranked bar notation from Definition 5.4.1
and the subtree jump table for bar notation from Definition 5.2.7 can be used without
changes. However, the definition of bad character shift must be changed. The content of
this section is novel and not presented in any publication.

Definition 5.5.1. Let pattern[1..m] be a postfix ranked bar notation of tree pattern p over
alphabet A. The postfix reversed bad character shift table RBCS_post_ranked_bar(p) for
the backward linearised tree pattern matching is defined for each a ∈ A.

RBCS_post_ranked_bar(p)[a] =

min















{m} ∪ {j : pattern[m− j] = a and m > j > 0} ∪
{j + Arity(a) ∗ 2 : pattern[m− j] = ↑S and m > j > 0 and a ∈ A↑} ∪

{j − 1 : pattern[m− j] = ↑S and m > j > 0 and a 6∈ A↑ and pattern 6= ↑S S} ∪

{1 : a 6∈ A↑ and pattern = ↑S S}















Definition 5.5.1 is similar to Definition 5.2.4. The direction of shifts the same, however,
the definition is changed to reflect the change in the used notation – ↑S is searched instead
of S and the length of shifts for bar symbols considered to be inside the ↑S S are prolonged.
The computation of shifts is otherwise the same.

97



5. Main Results in Tree Pattern Matching

Name: ConstructPRBCS
Input: Tree pattern in the postfix ranked bar notation post_ranked_bar(pattern)

of size m over alphabet A of the subject tree
Result: The postfix reversed bad character shift table

RBCS_post_ranked_bar(pattern)
1 begin
2 s := m;
3 for i := 1 to m do
4 if post_ranked_bar(pattern)[i] = ↑S then s = m− i;
5 end
6 foreach x ∈ A do RBCS_post_ranked_bar(pattern)[x] = m;
7 foreach x ∈ A do
8 if x ∈ A↑ then shift := s + Arity(x) ∗ 2;
9 else if s >= 2 then shift := s− 1;

10 else shift := s;
11 if RBCS_post_ranked_bar(pattern)[x] > shift then
12 RBCS_post_ranked_bar(pattern)[x] := shift;
13 end

14 end
15 for i := 1 to m− 1 do
16 if post_ranked_bar(pattern)[i] 6∈ {S, ↑S} and

RBCS_post_ranked_bar(pattern)[post_ranked_bar(pattern)[i]] > (m− i)
then

17 RBCS_post_ranked_bar(pattern)[post_ranked_bar(pattern)[i]] := m− i;
18 end

19 end
20 return RBCS_post_ranked_bar(pattern);
21 end

Algorithm 29: Construction of RBCS_post_ranked_bar table.

Algorithm 29 (ConstructPRBCS) of construction of RBCS_post_ranked_bar(pattern)
for postfix reversed backward linearised tree pattern matching has been modified in the
same way as the definition of the postfix reversed bad character shift table 5.4.3.

Example 5.5.2. Consider tree pattern p8r, depicted in Figure 5.1, in the postfix ranked
bar notation post_ranked_bar(p8r) = ↑2 ↑1 ↑S S a1 ↑1 ↑0 a0 a1 a2 over an alphabet A =
{a3, a2, a1, a0, S, ↑3, ↑2, ↑1, ↑0, ↑S}. Algorithm 29 (ConstructPRBCS) constructs the fol-
lowing items of the postfix reversed bad character shift table RBCS_post_ranked_bar(p8r)
abbreviated as RBCS. △
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5.5. Reversed postfix variant

RBCS[a3] = min({10} ∪ ∅ ∪ {6}) = 6 RBCS[a2] = min({10} ∪ ∅ ∪ {6}) = 6
RBCS[a1] = min({10} ∪ {1, 5} ∪ {6}) = 1 RBCS[a0] = min({10} ∪ {2} ∪ {6}) = 2
RBCS[↑3] = min({10} ∪ ∅ ∪ {13}) = 10 RBCS[↑2] = min({10} ∪ {9} ∪ {11}) = 9
RBCS[↑1] = min({10} ∪ {4, 8} ∪ {9}) = 4 RBCS[↑0] = min({10} ∪ {3} ∪ {7}) = 3

Tree pattern p8r used in Example 5.5.2 is the same as in Example 5.2.5. The lengths
of shifts for bar symbols and terminal symbols are swapped similarly as in Example 5.4.4.

Name: PostfixReversedBackwardLTPM
Input: The subject tree in the postfix ranked bar notation

post_ranked_bar(subject) of size n

Input: The subtree jump table for bar notation SJT_bar(subject)
Input: The tree pattern in the postfix ranked bar notation

post_ranked_bar(pattern) of size m

Input: The postfix reversed bad character shift table
RBCS_post_ranked_bar(pattern)

Result: Locations of occurrences of tree pattern pattern in subject tree subject

1 begin
2 i := 0;
3 while i <= (n−m) do
4 j := m;
5 position := i + j;
6 while j > 0 and position > 0 do
7 if post_ranked_bar(subject)[position] = post_ranked_bar(pattern)[j]

then
8 position := position − 1;
9 else if post_ranked_bar(pattern)[j] = S and

post_ranked_bar(subject)[position] 6∈ A↑ then
10 position := SJT_bar(subject)[position];
11 j = j − 1; {Subtree skip}
12 else break;
13 j := j − 1;
14 end
15 if j = 0 then yield position + 1;
16 i := i + RBCS_post_ranked_bar(pattern)[post_ranked_bar(subject)[i + m]];
17 end

18 end
Algorithm 30: Postfix reversed backward linearised tree pattern matching algorithm.

Algorithm 30 (PostfixReversedBackwardLTPM) is similar to Algorithm 28 (Postfix-
BackwardLTPM). The algorithm is modified to work in reverse when compared to Al-
gorithm 28 (PostfixBackwardLTPM) introduced in the previous section. But it is also
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5. Main Results in Tree Pattern Matching

Table 5.7: A trace of the run of Algorithm 30 (PostfixReversedBackwardLTPM) for subject
tree t4r and tree pattern p10r.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

↑2 ↑2 ↑0 a0 ↑0 a0 a2 ↑2 ↑0 a0 ↑0 a0 a2 a2 post_ranked_bar(t4r)

15 8 5 2 7 4 1 14 11 8 13 10 7 0 subtree_jumps(t4r)

a2 a0 6= a2, shift = 1

↑2 ↑S→←S ↑S→←S a2 match, shift = 1

a2 ↑2 6= a2, shift = 5

↑2 ↑S→←S ↑S→←S a2 match, shift = 1

↑2 ↑S→ ←S ↑S→ ←S a2 match, shift = 1

similar to Algorithm 24 (BackwardLTPM) where the complementarity of bar and non-bar
symbols in prefix and postfix ranked bar notations is the cause of the similarity of Al-
gorithm 30 (PostfixReversedBackwardLTPM) and Algorithm 24 (BackwardLTPM). The
direction of shifting of the pattern and the direction of symbol comparison is borrowed
from the linearised tree pattern matching algorithm. It starts searching with the pattern
(in the prefix ranked bar notation) aligned to the left end of the subject tree (also in the
prefix ranked bar notation). The pattern is shifted towards the end of the subject. Symbols
of the pattern and the subject on a particular position are compared from right to left.

Theorem 5.5.3. Given tree pattern p in the postfix ranked bar notation and the postfix
reversed bad character shift table RBCS_post_ranked_bar(p) constructed for the tree
pattern p by Algorithm 29 (ConstructPRBCS), Algorithm 30 (PostfixReversedBackward-
LTPM) correctly computes the locations of all occurrences of tree pattern p in subject tree
t.

Proof. The proof is similar to the proof of Theorem 5.2.10 and it is presented in an appendix
as proof of Theorem A.1.3.

Example 5.5.4. Consider tree pattern p10r in the postfix ranked bar notation post_ranked

_bar(p10r) = ↑2 ↑S S ↑S S a2 over an alphabet A = {a3, a2, a1, a0, S, ↑3, ↑2, ↑1, ↑0, ↑S}
depicted in Figure 5.4 and a tree t4r in the postfix ranked bar notation post_ranked_bar

(t4r) = ↑2 ↑2 ↑0 a0 ↑0 a0 a2 ↑2 ↑0 a0 ↑0 a0 a2 a2 over an alphabet A = {a3, a2, a1, a0,

↑3, ↑2, ↑1, ↑0}.
The RBCS_post_ranked_bar(p10r) abbreviated as RBCS contains the following items:

RBCS[a3] = 1, RBCS[a2] = 1, RBCS[a1] = 1, RBCS[a0] = 1, RBCS[↑3] = 6,
RBCS[↑2] = 5, RBCS[↑1] = 4, RBCS[↑0] = 2.

A trace of the run of the Algorithm 30 (PostfixReversedBackwardLTPM) is depicted
in Table 5.7. Longer subtrees in place of wildcards S are denoted by ↑S→ ←S. △

The trace of the run of Algorithm 30 (PostfixReversedBackwardLTPM) from Ex-
ample 5.5.4 is similar to the trace of the run of Algorithm 24 (BackwardLTPM) from
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5.6. On ranked notations

Example 5.2.11. The similarity is caused by the similarity in the notations used – prefix
and postfix ranked bar notations. The length of the shift clearly depends on the position
of the symbol S in the pattern in the same way as in case of the backward linearised tree
pattern matching algorithm.

Algorithm properties stay the same again. The space complexity of the algorithm
Θ(|A|) is given by the size of the postfix reversed bad character shift table. The pre-
processing time is O(m + |A|), where m is the pattern length and |A| is the alphabet
size.

Similarly to the situation with prefix ranked bar notation, the expectation with postfix
ranked bar notation is that again the reversed variant of the algorithm should be more
efficient. The benefit of the reversed variant comes from the fact that non-bar symbols are
compared sooner than bar symbols.

5.6 Backward linearised tree pattern matching on ranked

notations

Bar symbols in the prefix (postfix) ranked bar notation are redundant. The information
about tree structure is encoded in both the ranks and bar symbols. It is possible to apply
principles of the backward linearised tree pattern matching introduced in Section 5.3 and
Section 5.5 to design a similar algorithm that works with the prefix (postfix) notation. The
content of this section is novel and not presented in any publication.

Considering the principles of construction prefix (postfix) notations of trees, it is prac-
tical to consider one direction of symbol comparison while checking particular position
within the subject for occurrence only. The practical direction of symbol comparison is
left to right for prefix notation and right to left for postfix notation, respectively. The
prefix notation is not practical in case of the right to left symbol comparison because while
skipping a subtree in place of the wildcard symbol, there can be more subtrees ending
exactly at such a position. Similarly for postfix notation and symbol comparison from
left to right. In other words, mapping from the position of the root of the subtree to the
subtree’s ending position in the prefix (postfix) ranked notation is a function but mapping
from subtree’s ending position to position of the root is not a function.

Example 5.6.1. Consider a ranked alphabet A = {a2, a1, a0}. Consider an ordered,
ranked, labelled, rooted, and directed tree t4r in prefix notation pref(t4r) = a2 a2 a0 a0
a2 a0 a0 over an alphabet A.

Consider a tree pattern p10r over an alphabet A ∪ {S} in prefix notation pref(p10r)
= a2 S S. Tree pattern p10r is illustrated in Figure 5.6b.

Two possible sizes of subtrees that correspond to wildcard S and two occurrences of
the pattern p10r ending on single position are represented in Table 5.8. It can be seen that
when comparing symbols from right to left, the tree pattern matching algorithm would
have to try all possible subtree sizes in order not to miss any occurrence. △
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5. Main Results in Tree Pattern Matching

Table 5.8: Representation of two possible occurrences of tree pattern p10r ending on position
7 in tree t4r.

subtree node id 1 2 3 4 5 6 7

pref(p10r) a2 a2 a0 a0 a2 a0 a0

first occurrence a2 S→ ←S S→ ←S

second occurrence a2 S S

a07a06a04a03

a25 a22

a21

(a) Tree t4r from Example 5.6.1.

S2 S3

a21

(b) Tree pattern p10r from Example 5.6.1.

Figure 5.6: Tree t4r (left) and tree pattern p10r (right) from Example 5.6.1.

Hence it is possible to apply the principles from the backward linearised tree pattern
matching variants introduced in Section 5.3 and Section 5.5 to work on prefix and postfix
notation, respectively. However, not the algorithms from Section 5.2 and Section 5.5.
Those algorithms would require more complicated occurrence checks on the prefix (postfix)
notation in practice, as shown in Example 5.6.1.

5.6.1 Prefix notation

The backward linearised tree pattern matching for prefix notation can be defined similarly
to the reversed variant of backward linearised tree pattern matching for prefix ranked bar
notation.

Definition 5.6.2. Let pattern[1..m] be a prefix notation of a tree pattern p over an alpha-
bet A. The bad character shift table for prefix notation BCS_pref(p) for the backward
linearised tree pattern matching on the prefix notation is defined for each a ∈ A.

BCS_pref(p)[a] = min





{m} ∪ {j − 1 : pattern[j] = a and m ≥ j > 1} ∪
{j − 1 : pattern[j] = S and m ≥ j > 1}





Definition 5.6.2 is similar to Definition 5.3.1. There are no bar symbols in the prefix
notation, therefore, the definition of shift concerning the wildcard symbol S is simpler.
However, all symbols can be the root of a subtree in place of the wildcard symbol S.
Meaning, the maximal length of the shift is directly limited by the first occurrence of the
wildcard symbol S in the prefix notation of the tree.
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5.6. On ranked notations

Name: ConstructBCS_pref
Input: The tree pattern in the prefix notation pref(pattern) of size m over an

alphabet A of the subject tree
Result: The bad character shift table BCS_pref(pattern)

1 begin
2 s := m;
3 for i := m downto 1 do
4 if pref (pattern)[i] = S then s := i− 1;
5 end
6 if s = 0 then s := 1;
7 foreach x ∈ A do
8 if BCS_pref (pattern)[x] > s then
9 BCS_pref (pattern)[x] := s;

10 end

11 end
12 for i := m downto 2 do
13 if pref (pattern)[i] 6= S and BCS_pref (pattern)[pref (pattern)[i]] > (i− 1)

then
14 BCS_pref(pattern)[pref (pattern)[i]] := i− 1;
15 end

16 end
17 return BCS_pref(pattern);
18 end

Algorithm 31: Construction of bad character shift table for prefix notation.

Algorithm 31 (ConstructBCS_pref) of construction of BCS_pref(pattern) for the back-
ward linearised tree pattern matching on the prefix notation first searches for the firstly
occurrence of wildcard symbol S. Secondly, it limits the shift by the position of first wild-
card symbol S (and by the length of the pattern m), and finally it limits the shift for
individual symbols by their minimal distance from the beginning of the pattern if they are
used in the pattern.

Example 5.6.3. Consider a tree pattern p8r, depicted in Figure 5.1, in the prefix notation
pref(p8r) = a2 a1 S a1 a0 over an alphabetA = {a3, a2, a1, a0, S}. The bad character shift
table for prefix notation BCS_pref(p8r) abbreviated as BCS constructed by Algorithm 31
(ConstructBCS_pref) contains the following items. △

BCS[a3] = min({5} ∪ ∅ ∪ {2}) = 2 BCS[a2] = min({5} ∪ ∅ ∪ {2}) = 2
BCS[a1] = min({5} ∪ {1, 3} ∪ {2}) = 1 BCS[a0] = min({5} ∪ {4} ∪ {2}) = 2

The tree pattern p8r used in Example 5.6.3 is the same as in Example 5.2.5. The length
of the shift is limited by the occurrence of the first wildcard symbol S. Any symbol can
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5. Main Results in Tree Pattern Matching

Table 5.9: Subtree jump table for prefix notation SJT_pref(t4r) of tree t4r.

node id 1 2 3 4 5 6 7

pref(t4r) a2 a2 a0 a0 a2 a0 a0

SJT_pref(t4r) 8 5 4 5 8 7 8

be a root of a subtree matched to wildcard symbol S, hence the lengths of shifts can’t be
extended further.

A subtree jump table for prefix notation (SJT_pref) is used by the matching algorithm.
Similarly as with previously defined subtree jump tables, the SJT_pref stores a position
where to continue matching when a subtree is skipped. The definition of the subtree jump
table for prefix notation (SJT_pref) is in Definition 4.5.1.

Example 5.6.4. Consider a tree t4r in the prefix notation pref (t4r) = a2 a2 a0 a0 a2 a0 a0
over alphabet A = {a3, a2, a1, a0}. Table 5.9 shows the SJT_pref(t4r). △

Name: PrefixRankedBackwardLTPM
Input: The subject tree in the prefix notation pref(subject) of size n

Input: The subtree jump table for prefix notation SJT_pref(subject)
Input: The tree pattern in the prefix notation pref(pattern) of size m

Input: The bad character shift table BCS_pref(pattern)
Result: Locations of occurrences of tree pattern pattern in subject tree subject

1 begin
2 i := n−m + 1;
3 while i >= 1 do
4 j = 1;
5 position = i;
6 while j <= m and position <= n do
7 if pref (subject)[position] = pref (pattern)[j] then
8 position := position + 1;
9 else if pref (pattern)[j] = S then

10 position := SJT_pref (subject)[position];
11 else break;
12 j := j + 1;
13 end
14 if j = m + 1 then yield i;
15 i := i− BCS_pref (pattern)[pref (subject)[i]];
16 end

17 end
Algorithm 32: Backward linearised tree pattern matching algorithm on prefix nota-
tion.
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Table 5.10: A trace of the run of Algorithm 32 (PrefixRankedBackwardLTPM) for subject
tree t4r and tree pattern p10r.

1 2 3 4 5 6 7

a2 a2 a0 a0 a2 a0 a0 pref(t4r)

8 5 4 5 8 7 8 subtree_jumps(t4r)

a2 S S match, shift = 1

a2 a0 6= a2, shift = 1

a2 a0 6= a2, shift = 1

a2 S S match, shift = 1

a2 S→ ←S S→ ←S match, shift = 1

Algorithm 32 (PrefixRankedBackwardLTPM) is similar to Algorithm 26 (Reversed-
BackwardLTPM). The subtree jump table and bad character shift table are exchanged for
SJT_pref and BCS_pref , respectively, for the algorithm to work, and since the length of
the representation of wildcard symbol S in prefix notation is 1, the extra decrementation
of variable j is removed from handling subtree skips.

Theorem 5.6.5. Given a tree pattern p in the prefix notation and shift table BCS_pref

(p) constructed for the tree pattern p by Algorithm 31 (ConstructBCS_pref), Algorithm 32
(PrefixRankedBackwardLTPM) correctly computes the locations of all occurrences of tree
pattern p in subject tree t.

Proof. The proof is similar to the proof of Theorem 5.2.10 and it is presented in an appendix
as proof of Theorem A.1.4.

Example 5.6.6. Consider a tree pattern p10r in the prefix notation pref(p10r) = a2 S S

over an alphabet A = {a3, a2, a1, a0, S} and a tree t4r in the prefix notation pref (t4r) =
a2 a2 a0 a0 a2 a0 a0 over an alphabet A = {a3, a2, a1, a0}.

The BCS_pref(p10r) abbreviated as BCS contains the following items: BCS[a3] = 1,
BCS[a2] = 1, BCS[a1] = 1, BCS[a0] = 1.

A trace of the run of Algorithm 32 (PrefixRankedBackwardLTPM) is depicted in
Table 5.10. Longer subtrees in place of wildcards S are denoted by S→ ←S. △

The run of Algorithm 32 (PrefixRankedBackwardLTPM) from Example 5.6.6 is sim-
ilar to the run of Algorithm 26 (ReversedBackwardLTPM) from Example 5.3.5. Shift
direction and symbol comparison direction are the same as in Algorithm 26 (Reversed-
BackwardLTPM). Bar symbols are omitted in the prefix notation of a tree. Hence the
prefix notation is shorter than prefix ranked bar notation, which is beneficial for the al-
gorithm as the amount of data that needs to be processed is smaller. Shift lengths, on
the other hand, are shorter as well since they are limited exactly by the position of the
first wildcard symbol. These two properties work against each other. Moreover they are
expected to cancel each other out.
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Properties of the algorithm stay the same. The space complexity of the algorithm
Θ(|A|) is given by the size of the bad character shift table for prefix notation. The pre-
processing time is O(m + |A|), where m is the pattern length and |A| is the alphabet
size.

5.6.2 Postfix notation

The backward linearised tree pattern matching for postfix notation can be defined similarly,
however, taking the reversed variant of the backward linearised tree pattern matching for
postfix ranked bar notation as the base variant of the approach.

Definition 5.6.7. Let pattern[1..m] be a post notation of a tree pattern p over an alphabet
A. The bad character shift table for postfix notation BCS_post(p) for backward linearised
tree pattern matching on postfix notation is defined for each a ∈ A.

BCS_post(p)[a] = min





{m} ∪ {j : pattern[m− j] = a and m > j > 0} ∪
{j : pattern[m− j] = S and m > j > 0}





Definition 5.6.7 is similar to Definition 5.5.1. Similarly as Definition 5.6.2 was modified,
any symbol can be the root of a subtree in place of the wildcard symbol, therefore the
maximal length of the shift is similarly limited directly by the last occurrence of the
wildcard symbol in the postfix notation of the tree. There are no bar symbols in the
postfix notation again, hence the definition of shift concerning the wildcard symbol S is
simpler, resulting, however, in shorter shifts.

Algorithm 33 (ConstructBCS_post) of construction for BCS_post(pattern) for the
backward linearised tree pattern matching on the postfix notation firstly searches for the
last occurrence of wildcard symbol S. Secondly it limits the shift by the position of last
wildcard symbol S (and by the length of the pattern m), and finally it limits the shift for
individual symbols by their minimal distance from the end of the pattern if they are used
in the pattern.

Example 5.6.8. Consider a tree pattern p8r, depicted in Figure 5.1, in the postfix notation
post(p8r) = S a1 a0 a1 a2 over an alphabet A = {a3, a2, a1, a0, S}. The bad character shift
table for postfix notation BCS_post(p8r) abbreviated as BCS constructed by Algorithm 33
(ConstructBCS_post) contains the following items. △

BCS[a3] = min({5} ∪ ∅ ∪ {4}) = 4 BCS[a2] = min({5} ∪ ∅ ∪ {4}) = 4
BCS[a1] = min({5} ∪ {1, 3} ∪ {4}) = 1 BCS[a0] = min({5} ∪ {2} ∪ {4}) = 2

The tree pattern p8r used in Example 5.6.8 is the same as in Example 5.2.5. The length
of the shift is limited by the occurrence of the last wildcard symbol S and any symbol can
be a root of a subtree matched to the wildcard symbol S, hence the lengths of shifts can’t
be extended further.
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Name: ConstructBCS_post
Input: The tree pattern in the postfix notation post(pattern) of size m over an

alphabet A of the subject tree
Result: The bad character shift table BCS_post(pattern)

1 begin
2 s := m;
3 for i := 1 to m do
4 if post(pattern)[i] = S then s := m− i;
5 end
6 if s = 0 then s := 1;
7 foreach x ∈ A do
8 if BCS_post(pattern)[x] > s then
9 BCS_post(pattern)[x] := s;

10 end

11 end
12 for i := 1 to m− 1 do
13 if post(pattern)[i] 6= S and BCS_post(pattern)[post(pattern)[i]] > (m− i)

then
14 BCS_post(pattern)[post(pattern)[i]] := m− i;
15 end

16 end
17 return BCS_post(pattern);
18 end

Algorithm 33: Construction of bad character shift table for postfix notation.

A subtree jump table for postfix notation (SJT_post) is used by the matching al-
gorithm. Similarly as with previously defined subtree jump tables, the SJT_post stores a
position where to continue matching when a subtree is skipped.

Definition 5.6.9. Let t and post(t) of length n be a tree and its postfix notation, respect-
ively. A subtree jump table for postfix notation denoted as SJT_post(t) is defined as a
mapping from set of integers {1..n} into a set of integers {0..n− 1}. If post(t) [i..j] is the
post notation of a subtree of tree t, then SJT_post(t)[j] = i− 1, 1 ≤ i < j ≤ n.

The subtree jump table for postfix notation is similar to the subtree jump table defined
for the prefix notation in Definition 4.5.1. The subtree jump table for postfix notation
allows to jump only from a position of a root of a subtree t to a closest position after the
beginning of the linear representation of the subtree t.

Lemma 5.6.10. Given tree t in postfix notation post(t) and initial value of rootIndex

equal to n, Algorithm 34 (ConstructSJT_post) constructs subtree jump table for postfix
notation SJT_post(t).
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Name: ConstructSJT_post
Input: Tree t in postfix notation post(t) of size n

Input: Index of current node rootIndex initialised to n

Input/Output: Subtree jump table for postfix notation SJT_post(t) initialised
to empty array of length n

Result: Index exitIndex

1 begin
2 index := rootIndex− 1;
3 for i = 1 to Arity(post(t)[rootIndex]) do
4 index := ConstructSJT_post(post(t), index, SJT_post(t));
5 end
6 SJT_post(t)[rootIndex] = index;
7 return index;
8 end

Algorithm 34: Construction of subtree jump table for postfix notation.

Table 5.11: Subtree jump table for postfix notation SJT_post(t4r) of tree t4r.

node id 1 2 3 4 5 6 7

post(t4r) a0 a0 a2 a0 a0 a2 a2

SJT_post(t4r) 0 1 0 3 4 3 0

Example 5.6.11. Consider a tree t4r in the postfix notation post (t4r) = a0 a0 a2 a0
a0 a2 a2 over alphabet A = {a3, a2, a1, a0}. Table 5.11 shows the SJT_post(t4r). △

Algorithm 35 (PostfixRankedBackwardLTPM) is similar to Algorithm 30 (PostfixRe-
versedBackwardLTPM). The subtree jump table and the bad character shift table are
exchanged for SJT_post and BCS_post, respectively. Since the length of the representa-
tion of wildcard symbol S in postfix notation is 1, the extra decrementation of variable j

is removed from handling subtree skips, again.

Theorem 5.6.12. Given a tree pattern p in the postfix notation and the shift table
BCS_post(p) constructed for the tree pattern p by Algorithm 33 (ConstructBCS_post),
Algorithm 35 (PostfixRankedBackwardLTPM) correctly computes the locations of all oc-
currences of tree pattern p in subject tree t.

Proof. The proof is similar to the proof of Theorem 5.2.10 and it is presented in an appendix
as proof of Theorem A.1.5.

Example 5.6.13. Consider a tree pattern p10r in the postfix notation post(p10r) = S S a2
over an alphabet A = {a3, a2, a1, a0, S} and a tree t4r in the postfix notation post (t4r) =
a0 a0 a2 a0 a0 a2 a2 over an alphabet A = {a3, a2, a1, a0}.
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Name: PostfixRankedBackwardLTPM
Input: The subject tree in the postfix notation post(subject) of size n

Input: The subtree jump table for postfix notation SJT_post(subject)
Input: The tree pattern in the postfix notation post(pattern) of size m

Input: The bad character shift table BCS_post(pattern)
Result: Locations of occurrences of the pattern pattern in the tree subject

1 begin
2 i := 0;
3 while i <= (n−m) do
4 j := m;
5 position := i + j;
6 while j > 0 and position > 0 do
7 if post(subject)[position] = post(pattern)[j] then
8 position := position − 1;
9 else if post(pattern)[j] = S then

10 position := SJT_post(subject)[position];
11 else break;
12 j := j − 1;
13 end
14 if j = 0 then yield position + 1;
15 i := i + BCS_post(pattern)[post(subject)[i + m]];
16 end

17 end
Algorithm 35: Backward linearised tree pattern matching algorithm on postfix nota-
tion.

The BCS_post(p10r) abbreviated as BCS contains the following items: BCS[a3] = 1,
BCS[a2] = 1, BCS[a1] = 1, BCS[a0] = 1.

A trace of the run of Algorithm 35 (PostfixRankedBackwardLTPM) is depicted in
Table 5.12. Longer subtrees in place of wildcards S are denoted by S→ ←S. △

The run of Algorithm 35 (PostfixRankedBackwardLTPM) from Example 5.6.13 is sim-
ilar to the run of Algorithm 30 (PostfixReversedBackwardLTPM) from Example 5.5.4.
Shift direction and symbol comparison direction stay the same as in Algorithm 30 (Post-
fixReversedBackwardLTPM). Bar symbols are omitted in the postfix notation. Hence the
postfix notation is shorter than the postfix ranked bar notation, which is beneficial for the
algorithm as the amount of data that needs to be processed is smaller. As in the case of
prefix notation, the shift lengths, on the other hand, are shorter as well since they are still
limited exactly by the position of the last wildcard symbol. These two properties again
work against each other and they are still expected to cancel each other out.

The algorithm properties stay the same. The space complexity of the algorithm Θ(|A|)
is given by the size of the bad character shift table for postfix notation. The preprocessing
time is O(m + |A|), where m is the pattern length and |A| is the alphabet size.
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Table 5.12: A trace of the run of Algorithm 35 (PostfixRankedBackwardLTPM) for subject
tree t4r and tree pattern p10r.

1 2 3 4 5 6 7

a0 a0 a2 a0 a0 a2 a2 post(t4r)

0 1 0 3 4 3 0 subtree_jumps(t4r)

S S a2 match, shift = 1

a2 a0 6= a2, shift = 1

a2 a2 a0 6= a2, shift = 1

S S a2 match, shift = 1

S→ ←S S→ ←S a2 match, shift = 1

5.7 Nonlinear backward linearised tree pattern matching

This section contains an original extension of the backward linearised tree pattern matching
algorithm from the previous sections to handle nonlinear tree templates as queries as well.
The content is novel and not presented in any publication.

As in the case of methods for indexing trees, the nonlinear tree templates are con-
sidered as input for a pattern matching algorithm. A modification of presented backward
linearised tree pattern matching algorithms adapted for locating occurrences of nonlinear
tree templates is presented in this chapter as Nonlinear backward linearised tree pattern
matching algorithm. The algorithm requires a modification of the bad character shift table
construction algorithm, which is also presented.

The basic idea of the nonlinear backward linearised tree pattern matching algorithm
is the same as the idea of backward linearised tree pattern matching algorithm. However,
in addition to the wildcard S, there are nonlinear variables X, Y, . . . present in the tree
pattern. The same nonlinear variable is, in an occurrence, located in place of the same
subtrees of the subject. The backward linearised tree pattern matching algorithm modi-
fied for locating nonlinear tree patterns additionally requires a subtree repeats table. This
table can be obtained by algorithm presented in [11] extended with Algorithm 8 (Postfix-
ToPrefixRepeats), Algorithm 9 (PostfixToPrefixBarRepeats) presented in Section 3.4, or
any other subtree repeats table transformation algorithm, given the used linear notation
of a tree.

The presented nonlinear backward linearised tree pattern algorithm modification uses
the prefix ranked bar notation, but other previously presented modifications of the back-
ward linearised tree pattern matching algorithm can be modified in the same manner as is
presented in this chapter. Hence the selection of linear tree notation is not important and
the nonlinear backward linearised tree pattern matching algorithm is working with all of
them.

Definition 5.7.1. Let pattern[1..m] be a pref_ranked_bar notation of tree pattern p over
alphabet A. The nonlinear bad character shift table NonlinearBCS_pref_ranked_bar(p)
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for the nonlinear backward linearised tree pattern matching is defined for each a ∈ A. Let
T ∈ {S} ∪ X .

NonlinearBCS_pref_ranked_bar(p)[a] =

min















{m} ∪ {j : pattern[m− j] = a and m > j > 0} ∪
{j + Arity(a) ∗ 2 : pattern[m− j] = T and m > j > 0 and a 6∈ A↑} ∪

{j − 1 : pattern[m− j] = T and m > j > 0 and a ∈ A↑ and pattern 6= T ↑T} ∪

{1 : a ∈ A↑ and pattern = T ↑T}















Name: ConstructNonlinearBCS_pref_ranked_bar
Input: Nonlinear tree pattern in the prefix ranked bar notation

pref_ranked_bar(pattern) of size m over alphabet A of the subject tree
Result: The bad character shift table NonlinearBCS_pref_ranked_bar(pattern)

1 begin
2 s := m;
3 for i := 1 to m do
4 if pref _ranked_bar(pattern)[i] ∈ ({S} ∪ X ) then s = m− i;
5 end
6 foreach x ∈ A do NonlinearBCS_pref _ranked_bar(pattern)[x] = m;
7 foreach x ∈ A do
8 if x 6∈ A↑ then shift := s + Arity(x) ∗ 2;
9 else if s >= 2 then shift := s− 1;

10 else shift := s;
11 if NonlinearBCS_pref _ranked_bar(pattern)[x] > shift then
12 NonlinearBCS_pref _ranked_bar(pattern)[x] := shift;
13 end

14 end
15 for i := 1 to m− 1 do
16 if pref _ranked_bar(pattern)[i] 6∈ ({S, ↑S} ∪ X ) and

NonlinearBCS_pref _ranked_bar(pattern)[pref _ranked_bar(pattern)[i]] >

(m− i) then
17 NonlinearBCS_pref _ranked_bar(pattern)[pref _ranked_bar(pattern)[i]] :=

m− i;
18 end

19 end
20 return NonlinearBCS_pref _ranked_bar(pattern);
21 end

Algorithm 36: Construction of the nonlinear bad character shift table.

The nonlinear variables, in essence, behave similarly as the wildcard. They can be
treated the same way in the construction of bad character shift table. There can be
nothing known about the subtree matched to the nonlinear variable as well except for its

111



5. Main Results in Tree Pattern Matching

minimal size. Considering this modification of the construction of bad character shift table
for nonlinear tree templates is straightforward. Wherever a wildcard is used in a condition
a set of nonlinear variables is also used.

The modification of the backward linearised tree pattern matching for nonlinear tree
templates is utilising the same idea of nonlinear variables being similar to the wildcard.
Nonlinear variables are matched to a subtree of the subject which shall be skipped using the
subtree jump table. However, due to the nature of nonlinear variables where all occurrences
of the same nonlinear variable in one particular match must correspond to the same subtree,
an additional check must be done in the algorithm. In each match attempt, a map of the
current setting for all nonlinear variable is maintained. This setting can only be initialised
when the nonlinear variables are processed first; later it is only compared for consistency.

Note that the subtree repeats table SRT parameter of the Algorithm 37 (Nonlinear-
BackwardLTPM) is correctly its variant for the prefix bar notation. The prefix bar notation
and the prefix ranked bar notation share structure. Hence the prefix bar notation variant
of the subtree repeats table is correct.

Theorem 5.7.2. Given nonlinear tree pattern p in the prefix ranked bar notation and
bad character shift table BCS_pref_ranked_bar(p) constructed for the tree pattern p by
Algorithm 36 (ConstructNonlinearBCS_pref_ranked_bar), Algorithm 37 (NonlinearBack-
wardLTPM) correctly computes the locations of all occurrences of nonlinear tree pattern
p in subject tree t.

Proof. The nonlinear backward linearised tree pattern matching algorithm for prefix ranked
bar notation is an extension of the backward linearised tree pattern matching algorithm.
The shifting of the pattern based on BCS_pref_ranked_bar(p) is unchanged. The checks
of individual positions inside the subject tree for occurrences are additionally extended
with consistency checks of nonlinear variables X, Y, . . . using a mapping variables from
a nonlinear variable to a subtree repeat identifier. The consistency check of nonlinear
variables is performed when a subtree corresponding to nonlinear variable X↑X, Y ↑Y , . . .

is skipped. Subtree repeats table SRT_pref_bar(t) stores the same identifiers at start
positions of the same subtrees. At each occurrence check, these identifiers are used at each
skip of a subtree corresponding to any nonlinear variable and the mapping variables can
only be set once for each nonlinear variable. Later the mapping variables can only be read
to test the consistency of skipped subtrees by individual nonlinear variables. Hence the
consistency check can detect a mismatch between the tree pattern and a subtree of the
subject tree at any position resulting even from an inconsistency of subtrees skipped by
nonlinear variables.

Example 5.7.3. Consider a nonlinear tree pattern p12r in the prefix ranked bar notation
pref_ranked_bar(p12r) = a2 X ↑X X ↑X ↑2 over an alphabet A = {a3, a2, a1, a0, S,
X, ↑3, ↑2, ↑1, ↑0, ↑S, ↑X} depicted in Figure 5.7 and a tree t5r in the prefix ranked bar
notation pref_ranked_bar (t5r) = a2 a2 b0 ↑0 a0 ↑0 ↑2 a2 a0 ↑0 a0 ↑0 ↑2 ↑2 over an
alphabet A = {a3, a2, a1, a0, b0, ↑3, ↑2, ↑1, ↑0}.
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Name: NonlinearBackwardLTPM
Input: The subject tree in pref_ranked_bar(subject) notation of size n

Input: The tree pattern in pref_ranked_bar(pattern) notation of size m

Input: The subtree jump table SJT_bar(subject)
Input: The bad character shift table NonlinearBCS_pref_ranked_bar(pattern)
Input: The SRT_pref_bar(subject) representation of repetitions in the subject

Result: Locations of occurrences of the pattern pattern in the tree subject

1 begin
2 i := 0;
3 while i <= (n−m) do
4 j := m;
5 position := i + j;
6 variables := empty mapping from nonlinear variable to subtree repeat

identifier;
7 while j > 0 and position > 0 do
8 if pref _ranked_bar(subject)[position] = pref _ranked_bar(pattern)[j]

then
9 position := position − 1;

10 else if pref _ranked_bar(pattern)[j] = ↑S and
pref _ranked_bar(subject)[position] ∈ A↑ then

11 position := SJT_bar(subject)[position];
12 j = j − 1; {Subtree skip} if pref _ranked_bar(pattern)[j] ∈ X then
13 {Check nonlinear variable}
14 if is not set variables[pref_ranked_bar(pattern)[j]] then
15 variables[pref_ranked_bar(pattern)[j]] =

SRT_pref_bar(subject)[position + 1];
16 else if variables[pref_ranked_bar(pattern)[position + 1]] 6=

SRT_pref_bar(subject)[position + 1] then
17 break;
18 else break;
19 j := j − 1;
20 end
21 if j = 0 then yield position + 1;
22 i := i +

NonlinearBCS_pref _ranked_bar(pattern)[pref _ranked_bar(subject)[i+m]];
23 end

24 end
Algorithm 37: Nonlinear backward linearised tree pattern matching algorithm.
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X2 X3

a21

Figure 5.7: Nonlinear tree pattern p12r from Example 5.7.3.

Table 5.13: A trace of the run of Algorithm 37 (NonlinearBackwardLTPM) for subject tree
t5r and tree pattern p12r.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a2 a2 b0 ↑0 a0 ↑0 ↑2 a2 a0 ↑0 a0 ↑0 ↑2 ↑2 pref_ranked_bar(t5r)

14 6 2 2 2 2 6 6 2 2 2 2 6 14 subtree_jumps(t5r)

↑2 ↑0 6= ↑2, shift = 1

X→←↑X X→←X↑ ↑2 inconsistent, shift = 1

↑2 a2 6= ↑0, shift = 5

a2 X→←↑X X→←↑X ↑2 match, shift = 1

X→ ←↑X X→ ←↑X ↑2 inconsistent, shift = 1

The NonlinearBCS_pref_ranked_bar(p12r) abbreviated as BCS contains the follow-
ing items: BCS[a3] = 6, BCS[a2] = 5, BCS[a1] = 4, BCS[a0] = 2, BCS[b0] = 2,
BCS[↑3] = 1, BCS[↑2] = 1, BCS[↑1] = 1, BCS[↑0] = 1.

A trace of the run of Algorithm 37 (NonlinearBackwardLTPM) is depicted in Table 5.13.
Longer subtrees in place of nonlinear variables X are denoted by X→ ←↑X. △

The trace of the run of Algorithm 37 (NonlinearBackwardLTPM) presented in Ex-
ample 5.7.3 shows how the algorithm locates all occurrences of the nonlinear tree pattern
p12r inside the subject tree t5r. The trace of the run of Algorithm 37 (NonlinearBack-
wardLTPM) is almost identical to the trace of the run of Algorithm 24 (BackwardLTPM)
because both, the nonlinear tree pattern p12r and the subject tree t5r used as an input of
Algorithm 37 (NonlinearBackwardLTPM) are structurally similar when compared to tree
pattern p10r and subject tree t4r used as an input of Algorithm 24 (BackwardLTPM). The
difference of the two traces of runs is related to the exchange of the wildcard symbol S of
the pattern for nonlinear variable X and one of the leaves a0 of the subject tree for a leaf
b0.

A match attempt can in the case of Algorithm 37 (NonlinearBackwardLTPM) report
a mismatch in a new situation (referred to as inconsistent in the trace of the run table).
The situation is related to a nonlinear variable, more precisely when the subtrees they are
substituting would not be the same.

The nonlinear backward linearised tree pattern matching algorithm keeps properties of
the backward linearised tree pattern matching algorithm, most importantly the running
time complexity. The algorithm can still perform a sublinear number of comparisons given
it is provided with subtree repeats table SRT_pref_bar.

114



5.8. Some empirical results

5.8 Some empirical results

We have implemented our tree pattern matching algorithms by extending the existing
Forest FIRE toolkit and accompanying FIRE Wood graphical user interface [12, 59]. This
toolkit already implemented many tree pattern matching algorithms and constructions
of automata used in them, but no algorithms based on linearisations of both pattern
tree(s) and subject tree(s). Constructions included in Forest FIRE include ones described
in [2, 10, 13, 36] and others. We compared our algorithms’ performances to some of
the best-performing ones in Forest FIRE, according to the results in [13]. We compared
the running times of the search phase of the following algorithms: 1) the new backward
linearised tree pattern matching algorithms based on various linearisations of pattern and
subject tree; 2) an algorithm based on the use of a deterministic frontier-to-root (bottom-
up) tree automaton (DFRTA) constructed for the pattern; and 3) an algorithm based on
the use of a Aho-Corasick automaton constructed for the pattern’s stringpath set.

The comparison was made again using pattern sets previously used for benchmarking
Forest FIRE as mentioned in Section 4.7.

Since our pattern matching algorithms are single-pattern ones, we ran each of the
algorithms for each pattern individually, and sequentially ran it over each subject tree
from two sets of subject trees: a set of 150 trees of approximately 500 nodes each and a
set of 500 trees of approximately 150 nodes each. Both of these sets had previously been
used for benchmarking Forest FIRE. Benchmarking was conducted on a 2 GHz Intel Core
i7 with 16 GB of RAM running OpenSUSE GNU/Linux version 13.1 using Java SE 7.

Another run of the testing of our algorithms based on the tree linearisation was con-
ducted using pattern sets with the subtree wildcard changed to a nonlinear variable, hence
on nonlinear pattern sets. Algorithms originally implemented in Forest FIRE are unable to
find occurrences of nonlinear tree patterns directly, and therefore they were not executed
in the second phase of testing.

Linearised versions of the (nonlinear) tree patterns and subject trees were constructed
from the in-memory tree representations, using additional memory. However, this repres-
entation is linear in the size of the tree representations, while the shift tables used will
typically be much smaller than the automata used in the other algorithms. Because of this
and because search time was our primary concern, we do not consider memory use. Fig-
ures 5.8 and 5.9 show the search times of patterns from the tree pattern sets as boxplots,
showing that on average, our new algorithms considerably outperform existing ones for the
single-pattern case (note the logarithmic scale).

The second run of testing of backward linearised tree pattern matching algorithms is
shown in Figures 5.10 and 5.11. Figures show search times of nonlinear tree patterns from
nonlinear pattern sets. The overall behaviour of algorithms modified for nonlinear tree pat-
terns is similar to the original backward linearised tree pattern matching algorithms. The
overall slowdown, i.e. a ratio of the running time of the nonlinear and original algorithm,
introduced by nonlinear variables handling is plotted in Figures 5.12 and 5.13. The average
slowdown is about 10 %–20 % (ratio 1.1–1.2), however sometimes the experimental evalu-
ation of the nonlinear variant of the backward linearised tree pattern matching algorithms
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shows the ratio values smaller than 1, actually meaning a speedup. Such a speedup is
caused by the detection of a mismatch in a match attempt caused by inconsistent setting
of nonlinear variables.

Note that the computation of subtree repeats is not included in the search time.

5.9 Conclusion of the tree pattern matching

We have presented general approaches of linearised backward linearised tree pattern match-
ing designed for the prefix and postfix ranked bar notation. The algorithms may perform
a sublinear number of comparisons of symbols (labels) with respect to the size of the sub-
ject tree and perform well in practice. The algorithms can also work in reverse where the
direction of shifting and symbol comparison are swapped.

Reversed and nonreversed approaches are symmetric, however, the reversed variants
perform better for the given dataset. There are two possible causes. First, the patterns
might be better suited for reversed backward linearised tree pattern matching because of
the locations of variables and overall longer shifts. Second, the reversed variant starts
every match attempt of a pattern within a subject on symbols rather than on bars. All
symbols of given arity have the same corresponding bar of the same arity, therefore the
number of different bar symbols is smaller or equal to the number of non-bar symbols.
The reversed backward linearised pattern matching algorithm will detect mismatch sooner
then non-reversed variants of backward linearised tree pattern matching algorithm.

We also adapted the backward linearised tree pattern matching algorithms to prefix
and postfix notations. These variants only allow one of the shift and symbol comparison
directions in practice and benefit from the shorter representation. On the other hand, the
shifts are shorter. As testing shows both these properties cancel each other and the overall
performance of algorithms working on prefix or postfix ranked bar notations and on prefix
or postfix notations are comparable.

All of these backward linearised tree pattern matching algorithms can also be modi-
fied to locate occurrences of nonlinear tree patterns. Properties of the pattern matching
algorithms modified for nonlinear tree patterns do not change. They can still perform a
sublinear number of comparisons of symbols. According to the measurements, the addi-
tional handling of nonlinear variables adds on average 10 %–20 % of the running time. A
sooner detection of a mismatch and in overall fewer occurrences can also make the nonlinear
variant of backward linearised tree pattern matching algorithm run faster.
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Figure 5.8: Distributions of pattern matching times for the respective algorithms on 150
trees of ca. 500 nodes each.
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Figure 5.9: Distributions of pattern matching times for the respective algorithms on 500
trees of ca. 150 nodes each.
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Figure 5.10: Distributions of nonlinear pattern matching times for the respective algorithms
on 150 trees of ca. 500 nodes each.
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Figure 5.11: Distributions of nonlinear pattern matching times for the respective algorithms
on 500 trees of ca. 150 nodes each.
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Figure 5.12: Relative slowdown of nonlinear pattern matching algorithm with respect to
the pattern matching algorithm on 150 trees of ca. 500 nodes each.
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Figure 5.13: Relative slowdown of nonlinear pattern matching algorithm with respect to
the pattern matching algorithm on 500 trees of ca. 150 nodes each.
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Chapter 6

Conclusions

There are two main goals of the thesis, both related to (nonlinear) tree patterns. The first
goal is to explore possibilities of indexing trees for (nonlinear) tree pattern matching. The
second goal is related to (nonlinear) tree pattern matching.

6.1 Tree indexing conclusion

As the fulfilment of the first goal, the thesis introduces a pushdown automata approach to
indexing trees for nonlinear tree pattern matching. The automata based index is presented
in three variants, where the first is a basic approach, and second and third are space
improved variants of the index. The thesis also presents a joint work on the linear space
tree index as an alternative to indexing trees for tree pattern matching. The linear space
tree index is extended so that it can report occurrences of nonlinear tree patterns as well.
The presented indexes were implemented and experimentally evaluated.

A more detailed conclusion of tree indexing is presented as a last section of the respective
tree indexing chapter.

The content of the tree indexing chapter was presented as a conference paper [62], as a
journal paper [60], and as a conference paper [40].

6.2 Tree pattern matching conclusion

As the fulfilment of the second goal, the thesis introduces a backward linearised tree pattern
matching algorithm. The backward linearised tree pattern matching algorithm is presented
in more variants for various linear notations of trees, and its modification for nonlinear tree
patterns is also presented. The presented tree pattern matching algorithm variants were
implemented and experimentally evaluated.

A more detailed conclusion of tree pattern matching is presented as a last section of
the respective tree indexing chapter.
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6. Conclusions

The content of the tree pattern matching chapter was presented as a conference pa-
per [61].

6.3 Future work suggestions

For the future work the following topics extending the presented results may be explored:

◦ Investigating possible compaction of tree pattern pushdown automata and its non-
linear extension to reduce the space complexity of the index they represent.

◦ Using a similar approach to the one used in the linear space tree index, i.e. splitting
of the pattern at wildcard positions and connecting occurrences of these tree pattern
parts, in the tree pattern matching. Instead of a string index, use a string pattern
matching algorithm and again connect occurrences of the tree pattern parts.

◦ Creating a taxonomy of linearised tree pattern matching algorithms covering back-
ward and forward approaches based on the results from this thesis, the results of
adaptation of other shift heuristics for the backward pattern matching [8, 26] and
results of adaptation of Knuth-Morris and dead-zone algorithms for linearised tree
pattern matching [55].

◦ Investigating properties of trees, how they change properties of string pattern match-
ing algorithms when used for searching for occurrences of subtrees in a subject tree.
Design improvements of string pattern matching algorithms based on identified prop-
erties so that searching for subtrees is more efficient.
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Appendix A

Proofs Omitted from the Main Text

This apendix chapter is present to provide proofs omitted from the main text.

A.1 Proofs of Tree Pattern Matching Variants

Theorem A.1.1. Consider Theorem 5.3.4: Given tree pattern p in the prefix ranked bar
notation and reversed bad character shift table RBCS_pref_ranked_bar(p) constructed
by Algorithm 25 (ConstructRBCS), Algorithm 26 (ReversedBackwardLTPM) correctly
computes the locations of all occurrences of pattern p in input tree t.

Proof. The reversed backward linearised tree pattern matching algorithm for prefix ranked
bar notation is a reverse of the backward linearised tree pattern matching algorithm for
ranked bar notation. It is to be proved that shifting using the RBCS_pref_ranked_bar(p)
cannot skip any occurrence of the tree pattern p. Let there be a symbol c = pref_ranked

_bar(t)[i], where i is the position of current match attempt and c ∈ A. Assume that there is
an occurrence of p located at position i−shift, 0 < shift < RBCS_pref_ranked_bar(p)[c].
A symbol c must then be located at some position shift either directly or as a part of a
subtree that corresponds to a wildcard S. According to Definition 5.3.1, the RBCS_pref

_ranked_bar(p)[c] is derived from the first occurrence of symbol c in the prefix ranked bar
notation of the pattern pref_ranked_bar(p), hence we get a contradiction. The shift is
also derived from the first occurrence of symbol ↑S and its counterpart S in the prefix
ranked bar notation of the pattern pref_ranked_bar(p). If the symbol c is located in the
subtree that corresponds to a wildcard S and its bar ↑S, then the shift is already computed
from the smallest possible subtree containing the symbol c. Hence, pattern p cannot occur
at position shift. Therefore, no occurrence of p can be skipped by the algorithm.

The algorithm also checks individual positions inside the subject tree for occurrences.
The check is an extension of the same check performed by the backward string pattern
matching algorithm. Individual symbols of the pattern tree other than the wildcard S and
its bar ↑S are compared with the subject tree in the same manner as the string version of
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the algorithm does. Wildcard S and its bar ↑S are handled using table SJT_bar(t) which
allows skipping subtrees of pref_ranked_bar(t).

Theorem A.1.2. Consider Theorem 5.4.5: Given tree pattern p in the postfix ranked
bar notation and postfix bad character shift table BCS_post_ranked_bar(p) constructed
by Algorithm 27 (ConstructPBCS), Algorithm 28 (PostfixBackwardLTPM) correctly com-
putes the locations of all occurrences of pattern p in subject tree t.

Proof. The backward linearised tree pattern matching algorithm for postfix ranked bar
notation is similar to the reversed backward linearised tree pattern matching algorithm for
prefix ranked bar notation. It is to be proved that shifting using the BCS_post_ranked

_bar(p) cannot skip any occurrence of the tree pattern p. Let there be a symbol c =
post_ranked_bar(t)[i], where i is the position of current match attempt and c ∈ A.
Assume that there is an occurrence of p located at position i − shift, 0 < shift <

BCS_post_ranked_bar(p)[c]. A symbol c must then be located at some position shift

either directly or as a part of a subtree that corresponds to a wildcard S. According to
Definition 5.4.3, the BCS_post_ranked_bar(p)[c] is derived from the first occurrence of
symbol c in the postfix ranked bar notation of the pattern post_ranked_bar(p), hence we
get a contradiction. The shift is also derived from the first occurrence of symbol S and
its bar ↑S in the postfix ranked bar notation of the pattern post_ranked_bar(p). If the
symbol c is located in the subtree that corresponds to a wildcard S and its bar ↑S, then
the shift is already computed from the smallest possible subtree containing the symbol c.
Hence, pattern p cannot occur at position shift. Therefore, no occurrence of p can be
skipped by the algorithm.

The algorithm also checks individual positions inside the subject tree for occurrences.
The check is an extension of the same check performed by the backward string pattern
matching algorithm. Individual symbols of the pattern tree other than the wildcard S and
its bar ↑S are compared with the subject tree in the same manner as the string version of
the algorithm does. Wildcard S and its bar ↑S are handled using table SJT_bar(t) which
allows skipping subtrees of post_ranked_bar(t).

Theorem A.1.3. Consider Theorem 5.5.3: Given tree pattern p in the postfix ranked
bar notation and reversed postfix bad character shift table RBCS_post_ranked_bar(p)
constructed by Algorithm 29 (ConstructPRBCS), Algorithm 30 (PostfixReversedBack-
wardLTPM) correctly computes the locations of all occurrences of pattern p in input tree
t.

Proof. The reversed backward linearised tree pattern matching algorithm for postfix ranked
bar notation is a reverse of the backward linearised tree pattern matching algorithm for
postfix ranked notation. It is to be proved that shifting using the RBCS_post_ranked

_bar(p) cannot skip any occurrence of the tree pattern p. Let there be a symbol c =
post_ranked_bar(t)[i], where i is the position of current match attempt and c ∈ A.
Assume that there is an occurrence of p located at position i + shift, 0 < shift <

RBCS_post_ranked_bar(p)[c]. A symbol c must then be located at some position shift
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either directly or as a part of a subtree that corresponds to a wildcard S. According to
Definition 5.5.1, the RBCS_post_ranked_bar(p)[c] is derived from the last occurrence of
symbol c in the postfix ranked bar notation of the pattern post_ranked_bar(p), hence we
get a contradiction. The shift is also derived from the last occurrence of symbol ↑S and its
counterpart S in the postfix ranked bar notation of the pattern post_ranked_bar(p). If the
symbol c is located in the subtree that corresponds to a wildcard S and its bar ↑S, then
the shift is already computed from the smallest possible subtree containing the symbol c.
Hence, pattern p cannot occur at position shift. Therefore, no occurrence of p can be
skipped by the algorithm.

The algorithm also checks individual positions inside the subject tree for occurrences.
The check is an extension of the same check performed by the backward string pattern
matching algorithm. Individual symbols of the pattern tree other than the wildcard S and
its bar ↑S are compared with the subject tree in the same manner as the string version of
the algorithm does. Wildcard S and its bar ↑S are handled using table SJT_bar(t) which
allows skipping subtrees of post_ranked_bar(t).

Theorem A.1.4. Consider Theorem 5.6.5: Given a tree pattern p in the prefix nota-
tion and shift table BCS_pref (p) constructed by Algorithm 31 (ConstructBCS_pref),
Algorithm 32 (PrefixRankedBackwardLTPM) correctly computes the locations of all oc-
currences of pattern p in subject tree t.

Proof. The backward linearised tree pattern matching algorithm for prefix notation is based
on the reversed backward linearised tree pattern matching algorithm for prefix notation.
It is to be proved that shifting using the BCS_pref(p) cannot skip any occurrence of the
tree pattern p. Let there be a symbol c = pref(t)[i], where i is the position of current
match attempt and c ∈ A. Assume that there is an occurrence of p located at position
i−shift, 0 < shift < BCS_pref(p)[c]. A symbol c must then be located at some position
shift either directly or as a part of a subtree that corresponds to a wildcard S. According
to Definition 5.6.2, the BCS_pref(p)[c] is derived from the first occurrence of symbol c in
the prefix notation of the pattern pref(p), hence we get a contradiction. The shift is also
derived from the first occurrence of symbol S in the prefix notation of the pattern pref(p)
if the symbol c is located in the subtree that corresponds to a wildcard S. Hence, pattern
p cannot occur at position shift. Therefore, no occurrence of p can be skipped by the
algorithm.

The algorithm also checks individual positions inside the subject tree for occurrences.
The check is an extension of the same check performed by the backward string pattern
matching algorithm. Individual symbols of the pattern tree other than the wildcard S are
compared with the subject tree in the same manner as the string version of the algorithm
does. Wildcard S is handled using table SJT_pref(t) which allows skipping subtrees of
pref(t).

Theorem A.1.5. Consider Theorem 5.6.12: Given a tree pattern p in the postfix nota-
tion and the shift table BCS_post(p) constructed by Algorithm 33 (ConstructBCS_post),
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Algorithm 35 (PostfixRankedBackwardLTPM) correctly computes the locations of all oc-
currences of pattern p in subject tree t.

Proof. The backward linearised tree pattern matching algorithm for postfix notation is
based on the reversed backward linearised tree pattern matching algorithm for postfix
ranked notation. It is to be proved that shifting using the BCS_post(p) cannot skip any
occurrence of the tree pattern p. Let there be a symbol c = post(t)[i], where i is the
position of current match attempt and c ∈ A. Assume that there is an occurrence of p

located at position i + shift, 0 < shift < BCS_post(p)[c]. A symbol c must then be
located at some position shift either directly or as a part of a subtree that corresponds
to a wildcard S. According to Definition 5.6.7, the BCS_post(p)[c] is derived from the
last occurrence of symbol c in the postfix notation of the pattern post(p), hence we get a
contradiction. The shift is also derived from the last occurrence of symbol S in the postfix
notation of the pattern post(p). If the symbol c is located in the subtree that corresponds
to a wildcard S. Hence, pattern p cannot occur at position shift. Therefore, no occurrence
of p can be skipped by the algorithm.

The algorithm also checks individual positions inside the subject tree for occurrences.
The check is an extension of the same check performed by the backward string pattern
matching algorithm. Individual symbols of the pattern tree other than the wildcard S are
compared with the subject tree in the same manner as the string version of the algorithm
does. Wildcard S is handled using table SJT_post(t) which allows skipping subtrees of
post(t).
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