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SUMMARY

Anisotropic elastic materials, such as homogenized model of fiber-reinforced matrix, can display near
rigidity under certain applied stress– the resulting strains are small compared to the strains that would
occur for other stresses of comparable magnitude. The anisotropic material could be rigid under hydrostatic
pressure if the material were incompressible, as in isotropic elasticity, but also for other stresses.
Some commonly used finite element techniques are effective in dealing with incompressibility, but are ill-
equipped to handle anisotropic material that lock under stress states that are not mostly hydrostatic (e.g.
uniformly reduced serendipity and Q1/Q0 B-bar hexahedra). The failure of the classic B-bar method is
attributed to the assumption that the mode of deformation to be relieved is one of near incompressibility.
The remedy proposed here is based on the spectral decomposition of the compliance matrix of the material.
The spectrum can be interpreted to separate nearly-rigid and flexible modes of stress and strain which leads
naturally to a generalized selective reduced integration. Furthermore, the spectral decomposition also enables
a three-field elasticity formulation that results in a B-bar method that is effective for general anisotropic
materials with an arbitrary nearly-rigid mode of deformation. Copyright c⃝ 2013 John Wiley & Sons, Ltd.

Received . . .
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INTRODUCTION

Selective Reduced Integration (SRI), a method first attributed to the efforts of Doherty et al. [1],
has long been considered an effective repair of finite elements that lock under certain modes
of deformation. The technique has been given special consideration, for its ability to handle
isotropic nearly incompressible elastic solids, where so-called volumetric locking represents a
serious difficulty. Hughes [1] describes a formulation based on Lamé parameters, however, an
analogous approach based on the split of the deformation energy into terms of bulk and shear moduli
yields an alternative [2].
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A key to the successful implementation of the SRI technique lies in the separation of volumetric
and deviatoric energy. As such a split is not clear for solids with anisotropic material responses,
traditional SRI is awkward or inapplicable for materials such as fiber-reinforced composites.

This difficulty motivated widespread use of the now familiar B-bar method. In [3], the original B-
bar method proposed to treat anisotropic materials, but the separation of volumetric and deviatoric
energy as adopted for isotropic materials remained at the heart of this formulation. However, it
stands to reason that the nearly-rigid deformation modes can go well beyond the case of vanishing
compressibility and the claim that B-bar methods are effective for anisotropic materials has to our
knowledge never been tested.

In brief, we separate the mechanical response of anisotropic materials into constrained and
unconstrained deformations which are expressed in terms of strain, stress, and energy. Our proposals
rest upon the spectral decomposition of the compliance matrix of the material. We rephrase the
formulation of Felippa and Oñate [4], and then apply it as an improvement on existing finite element
techniques.

The present work is outlined as follows. Section 1 presents a succinct motivation example. In
Section 2, the spectral decomposition of the compliance matrix is introduced to separate constrained
and unconstrained responses. These results are then used in Section 3 where a discussion of the
principal features of the first enhancement technique are given. Since the proposed approach relies
on selecting quadrature rules for the generalized split of the material stiffness matrix, it is coined
Generalized Selective Reduced Integration (GSRI).

In order to improve the capabilities of the B-bar method as applied to anisotropic elastic solids, in
Section 4 we take up a three-field variational elasticity formulation [2] and rephrase it in terms of
effective stress and strain. In Section 4, we also strengthen connections to the classical variational
formulations revealed by Key [5] and Taylor et al. [6]. Minor modifications to the B-bar technique
as developed in Zienkiewicz and Taylor’s treatise [2] for isotropic (nearly) incompressible solids
are summarized in Section 5, and the resulting corrected B-bar finite element formulation is shown
to be an effective remedy for rigidtropic locking in anisotropic solids such as composites with uni-
directional reinforcement. Several case studies are provided to assess the ability of the discussed
methods to handle materials that are prone to locking in Section 6. Finally, the findings are discussed
and conclusions are drawn.

1. MOTIVATION

Consider materials that consist of a soft matrix reinforced with aligned stiff fibers. The system
of locally parallel fibers is typically represented macroscopically using material models that have
transversely isotropic homogenized properties. We can deduce that for very stiff fibers the material
is effectively rigid when loaded in the direction of the fibers. This usually results in underestimated
deformations.

By way of motivation, we consider a fiber-reinforced cantilevered beam. The example is discussed
in detail in Section 6, but here it suffices to say that the beam is clamped at one end and loaded by a
transverse shear force at the free end. The fibers are oriented at an angle with respect to the beam’s
longitudinal axis given by an orientation vector with components in the Cartesian coordinate system.

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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Figure 1. Fiber-reinforced cantilever beam, a) Fiber aligned with [
√
2/2,−

√
2/2, 0], b) Fiber aligned

with [
√
2/2, 0,−

√
2/2]. Failure of some common elements to converge satisfactorily (T10 – quadratic

tetrahedron. H8 – linear hexahedron, H20 – the uniformly reduced integration quadratic serendipity
hexahedron, H8-Bbar – B-bar Q1/Q0 hexahedron as in Hughes [1]).

The x-axis is parallel to the beam’s axis, the z−axis is vertically transverse. The beam is subject to
a distributed shear force at the free end and its structural response, in terms of the normalized true
error of the maximum deflection, is shown for a few common finite elements (quadratic tetrahedron
T10, linear hexahedron H8, and the uniformly reduced integration quadratic serendipity hexahedron
H20 as described in Hughes [1]) in Fig. (1).

It is somewhat surprising that these elements fail to converge satisfactorily. The quadratic
tetrahedron does not represent stress well for incompressible elasticity, but at least in displacement
converges reasonably well. Not so for this anisotropic model. The serendipity hexahedron
normally performs very well for almost incompressible isotropic materials, as has been thoroughly
documented [1]. However, it clearly does not properly address locking due to the presence of stiff
fibers as demonstrated here. Furthermore, we show that the original B-bar Q1/Q0 formulation [1]
leads to no improvement whatsoever with regard to the plain isoparametric hexahedron. Finally, we
should note that also the absolute accuracy of all the elements depends strongly upon the orientation
of the fiber. For the orientation in Fig. (1)b all the elements are considerably less accurate than for
the orientation in Fig. (1)a.

2. SPLIT OF CONSTITUTIVE EQUATION

The idea to use spectral decomposition to represent the strain, stress, and the constitutive relation in
linear elasticity goes back a long time. As skillfully reviewed by Helbig [7], these ideas originated
with Kelvin’s 1856 publication. Another version of this article reappeared in 1878, however not
a single citation of this original work can be found until 1984 when Rychlewski [8] formulated
an entire theory of constitutive relations based on the spectral decomposition. Quickly thereafter,
theoretical publications by Mehrabadi and Cowin [9] and Theocaris [10] followed. These powerful
ideas were, to our knowledge, never used in computations.

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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Here we draw on the recent paper of Felippa and Oñate [4], who make no mention of the prior
publications mentioned above. They discuss stress and strain decomposition appropriate to linearly
elastic anisotropic materials with volumetric constraints using the spectral decomposition of the
compliance matrix. In doing so, they introduce the so-called rigidtropic materials, which develop no
strains under a stress pattern that follows a null eigenvector of the compliance matrix. Such models
include, as a special case, isotropic incompressible materials, for which the eigenvector corresponds
to the hydrostatic stress. The main finding contended in [4] is that in anisotropic material models
the quantities corresponding to pressure and volumetric strain in incompressible isotropic materials
need to be redefined in terms of effective quantities †.

Thus the compliance matrix recast in terms of the spectral decomposition reads

D−1 =
1

3

6∑
i=1

γiviv
T
i , (1)

where γi and vi are the principal value and principal direction of the compliance matrix (eigenvalue
and eigenvector), which are assumed to be ordered γ1 ≤ . . . ≤ γ6, and normalized to length

√
3

through the definition
vT
j vi = 3δji , (2)

in order to simplify linkages to isotropic incompressible elasticity. With respect to the
decomposition in Eq. (1), a material is called rigidtropic when γ1 → 0 [4]. This means the strain
becomes vanishingly small in the direction of v1. To simplify the exposition, we will consider the
case of a single principal compliance approaching zero at first and focus on a material with two or
more rigidtropic modes in the sequel to this work.

Using the above decomposition, the compliance matrix may be split into the constrained (rigid)
and the unconstrained (flexible) parts, respectively, as

D−1 =
1

3
γ1v1v

T
1 +

1

3

6∑
i=2

γiviv
T
i . (3)

It may be shown, as in Reference [4], that for isotropic incompressible materials

v1 = [1, 1, 1, 0, 0, 0]T ,

and we obtain as the constrained/unconstrained split the volumetric/deviatoric partitioning of the
constitutive equation.

†A material is called “effectively” rigid when it undergoes zero strains under a stress pattern proportional to the
eigenvector associated with a zero principal compliance. Here, the term “effective” has no relation to its meaning in
homogenization theory.

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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3. GENERALIZED SELECTIVE REDUCED INTEGRATION

The SRI scheme is a venerable technique for treatment of isotropic incompressible materials with
standard finite elements (see [3, 1] for relevant background). In this section we briefly introduce a
generalization that facilitates the method’s handling of constrained anisotropic media.

Consider, as a starting point, the total potential energy of an infinitesimal deformable elastic body
in the form

U =
1

2
ϵTDϵ , (4)

where ϵ = [ϵ11, ϵ22, ϵ33, 2ϵ32, 2ϵ31, 2ϵ12]
T is the Voigt-Mandel representation of the second order

strain tensor and the material stiffness matrix D follows from Eq. (1) as

D =

6∑
i=1

1

3γi
viv

T
i . (5)

The quantity

Ki =
1

3γi
, (6)

is referred to as the effective stiffness (designated the “effective bulk modulus” in Reference [4]).
By analogy to Eq. (1), the material stiffness can be recast as

D = Dr +Df , (7)

where for the rigid and flexible contributions, respectively, we have

Dr = K1v1v
T
1 , Df =

6∑
i=2

Kiviv
T
i . (8)

Substituting Eq. (7) into Eq. (4) leads to what can be viewed as an additive split of the constrained
and unconstrained energy contributions. Applying carefully chosen integration rules to each of these
energies–full integration to the flexible part and reduced integration to its nearly rigid counter part–
leads to the GSRI technique. A variant of the B-bar formulation will be presented as an alternative
to the GSRI method in Section 5.

4. THREE-FIELD FORMULATION OF ANISOTROPIC ELASTICITY

Introducing two simple relations, to be used in a mixed approximation, provides a novel treatment
for rigidtropic materials. First define the effective constrained stress as

p =
1

3
mTσ , (9)

and the effective constrained strain in the form

ϵv = mT ϵ . (10)

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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Here, the strain field is derived from the displacement vector as ϵ = Bu. For a clear backward
compatibility with isotropic nearly incompressible elasticity we keep the notation p (i.e. pressure)
and ϵv (i.e. volumetric strain). For isotropic materials the vector m reads as

m = [1, 1, 1, 0, 0, 0]T . (11)

In this study, we take
m = v1 , (12)

which allows to write the constitutive relation between the effective pressure and the volumetric
strain in the form

p = K1ϵv . (13)

Next, the unconstrained stress (i.e. the deviatoric stress in isotropic elasticity) is linked to the
unconstrained strain as

σd = Ddϵ , (14)

where we use Dd = Df . Again, for backward compatibility we use the notation Dd, which for
isotropic materials refers to the deviatoric part of the material stiffness matrix. The total stress then
becomes

σ = σd + pm .

Therefore, the principle of virtual work is rendered as∫
Ω

δϵT (σd + pm) dΩ−
∫
Ω

δuT b dΩ−
∫
Γt

δuT t dΓ = 0 , (15)

or, introducing Eq. (14),∫
Ω

δϵTDdBudΩ +

∫
Ω

δϵT pmdΩ−
∫
Ω

δuT b dΩ−
∫
Γt

δuT t dΓ = 0 . (16)

Note, that in the above equlibrium/static relations the vector b stands for the generalized forces in
a body Ω, and t represents the Neumann boundary conditions on the traction boundary Γt. Next,
Eq. (16) is supplemented with the weakly enforced kinematics in Eq. (10)∫

Ω

δp
(
mTBu− ϵv

)
dΩ = 0 , (17)

where B is the standard symmetric gradient operator [2] and with the weak form of the constitutive
equation (13) ∫

Ω

δϵv (K1ϵv − p) dΩ = 0 . (18)

Equations (16), (17) and (18) constitute together with Eq. (12), the three-field u− p− ϵv

formulation of anisotropic elasticity. For isotropic elastic materials the above formulation is
identical to that described in the literature, see e.g. [2].

Similar variational formulation was developed by Key [5]. Key considers incompressible
materials and develops a modified Reissner-Hellinger principle that includes pressure as an

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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independent variable. The possibility of replacing pressure with “extensional stress variable” is also
mentioned in passing.

Furthermore, Taylor et al. [6] have developed a formulation based on additional pressure and
dilatation variables. The projection vector defined in equation (11) of the treatise [6] denotes the
direction of hydrostatic stress, which the authors observe to be appropriate for both isotropic and
anisotropic elastic materials with (nearly) zero dilatation.

As this choice is the same one made in the original formulation of the B-bar technique [3], it is
largely ineffective in dealing with fiber-reinforced materials where the rigidity constraints are other
than volumetric. As such, it is not suited to deal with specific anisotropic materials whose rigidity
differs from the condition of near incompressiblity.

5. B-BAR VARIANT FORMULATION

To treat Eqs. (16, 17) and (18) with the finite element method the following approximations are
adopted (we use the notation of [2])

u ≈ Nuũ, p ≈ Npp̃, ϵv ≈ Nv ϵ̃v . (19)

Moreover, it is assumed that Nv equals Np, for reasons discussed in [2]. We also appeal to the
“discontinuous pressure/condensation” formulation so that the p and ϵv variables can be eliminated
locally on the element basis. The mixed approximation is thus obtained in the form A C 0

CT 0 −E

0 −ET H




ũ

p̃

ϵ̃v

 =


f1

0

0

 . (20)

The matrices above are defined as [2]

Id = I− 1

3
mmT , A =

∫
Ω

BTDdBdΩ, E =

∫
Ω

NT
v Np dΩ,

H =

∫
Ω

NT
v K1Nv dΩ, C =

∫
Ω

BTmNp dΩ . (21)

Eliminating the effective strain from the second equation yields

ϵ̃v = E−1CT ũ = Wũ , (22)

where we introduce W = E−1CT , so that substitution into the third term in Eq. (20) gives

p̃ = E−THϵ̃v = E−THWũ . (23)

Finally we obtain the linear system in terms of the displacements only

Āũ = f1 , (24)

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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where
Ā = A+WTHW , (25)

by making use of the first row in Eq. (20). It follows from Eq. (16), Eq. (18) and approximations in
Eq. (19), that we can write Eq. (26) as

Ā =

∫
Ω

BTDdBdΩ +

∫
Ω

WTNT
v K1NvW dΩ . (26)

Noting the relations for the effective stiffness

Dd = IdDId , K1 =
1

3
mTD

1

3
m , (27)

allows recasting Eq. (26) as

Ā =

∫
Ω

BT IdDIdBdΩ +

∫
Ω

WT 1

3
NT

v m
TD

1

3
mNvW dΩ . (28)

Finally, Eq. (28) combines to form

∫
Ω

[(
IdB+

1

3
mNvW

)T

D

(
IdB+

1

3
mNvW

)]
dΩ =

∫
Ω

B̄TDB̄dΩ , (29)

where the assumed-strain B-bar matrix reads

B̄ = IdB+
1

3
mNvW . (30)

Note that the W matrix is calculated from the three-field coupling terms E and C, which could be
integrated with a different, lower, quadrature rule than that used for the remaining portion of the
element stiffness matrix (29). We have discovered no cases where there is an advantage to be gained
by integrating the constituents of the W matrix with the same quadrature rule as that employed for
the stiffness matrix itself. Therefore we use a reduced rule for this purpose. The computed maximum
displacements and strain energies for runs with the fully integrated and reduced-order integrated W

matrix agree with one another to several decimal places for all of the examples investigated. The
two methods, the GSRI and the B-bar method, consequently use a pair of Gauss quadrature rules
each: the integration rule pairs are denoted (1,2) for the linear elements and (2,3) for the quadratic
elements. The first number of the rule indicates the number of Gauss points per dimension for the
stiffness matrix corresponding to the nearly-rigid modes of deformation (GSRI) or the W matrix
(B-bar), and the second number indicates the number of Gauss points per dimension stiffness matrix
corresponding to the flexible modes of deformation (GSRI) or the stiffness matrix (B-bar).

Note that the discrete formulation in this section exactly mirrors that of Reference [2]. The
only difference is the use of effective strain, stress, and moduli stemming from the spectral
decomposition of the compliance (or stiffness) matrix of the material. For isotropic materials the
present formulation is identical to that based on the volumetric/deviatoric split.

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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6. EXAMPLES

We introduce three examples based on simple cantilevered structures. The rigidtropic materials have
a single dominant fiber direction that can be applied at any angle determined by local coordinate
rotations. The chosen loading results in significant locking behavior for all elements that are not
treated by use of the spectral decomposition of the anisotropic elastic constitutive relation. Although
this behavior can be verified with similar results in other elements, such as tetrahedra, we focus our
attention on linear and quadratic hexahedral “brick” elements.

Each example is one of two geometric configurations with similar boundary conditions: a slender
cantilevered beam or a cantilevered plate. The beam’s dimensions are: W = 6.5 cm, L = 5.81 cm,
and t = 1.29 cm. Here L is the length, W is the width, and t is the thickness. The plate’s dimensions
are the same except W = 6.45 cm.

The domain Ω of sought finite element solutions are given by x ∈ [0, L], y ∈ [0,W ], and z ∈ [0, t].
The Dirichlet boundary conditions on Γu at x = 0, Fig. (2)a, are

ux = uy = uz = 0 . (31)

The Neumann boundary conditions are prescribed on Γt at x = L as

σ · n̂ = τxz = −689 kPa. (32)

Note that Γ = Γt ∪ Γu and Γt ∩ Γu = ∅. The boundary conditions remain the same throughout the
examples.

The convergence of the treated elements is demonstrated for each example and calculated
errors are referenced with respect to the limit of the quadratic refinement for the respective
models, as determined by Richardson’s extrapolation [11]. The refinement was carried out with
a progressively increasing Number of Degrees-Of-Freedom (NDOF ). For the linear, eight node,
hexahedral elements (H8) NDOF = [216, 1134, 3240, 7020, 12960, 21546, 33264, 48600], and
for quadratic, 27 node, hexahedral elements (H27) NDOF = [1134, 7020, 21546, 48600]. The
strain energy errors are reported graphically and are defined by the error expression as

Ψ =
U
Uξ

− 1 , (33)

where Ψ is the error, U is the computed strain energy, and Uξ is the limit value arising from
Richardson’s extrapolation.

In these examples, the maximum deflection at the free ends of the beam and plate, as well
as the strain energy error, are plotted with four different element treatments. The first two, in
subsequent figures denoted as “GSRI*” and “B-bar*,” ignore the principal compliance and take
the rigid component to be constructed by means of m = [1, 1, 1, 0, 0, 0]T . This blindly treats the
anisotropic material as one might with simple selective reduced integration tailored for volumetric
locking in nearly incompressible isotropic materials. By contrast, this demonstrates the effectiveness
of “unlocking” the rigid modes through the proposed spectral decomposition.

The second, suggested, two treatments are denoted “GSRI” and “B-bar”, and they use the
principal compliance’s first mode v1 to identify the nearly rigid component.

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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Figure 2. The linear hexahedral element with the corrected B-bar formulation: deflection with 12960
degrees-of-freedom is shown. Displacement values are scaled up by a factor of 50 and the von-Mises stresses

are viewed as a color-field. The maximum displacement realized at the free end is umax = 0.329 mm.

The first example was described as a motivation of this paper and is reviewed here in greater detail.
In Figs. (2–4) we demonstrate the results for a simple beam model with a stiff fiber reinforcement
along the vector [

√
2/2, 0,−

√
2/2] (compare with Figure 1b).

The elastic modulus along the stiff fiber is 20,000 times higher than in the transverse directions,
and the shear terms comparatively very small in magnitude. The anisotropic elastic properties are

E1 = 137895 GPa, E2 = E3 = 6.895 GPa, G12 = G13 = 3.45 GPa, G23 = 1.38 GPa, and
ν12 = ν13 = ν23 = 0.25.

The spectral decomposition reveals that as the ridigity of the fibers increase without bound, the
nearly-zero strains are directed along

v1 =
√
3[1, 0, 0, 0, 0, 0]T (34)

in the local (fiber-aligned) coordinates. Figure 2 shows the deformed shape color-coded with
von Mises stress for the corrected B-bar formulation with linear hexahedra. The effect of the
reinforcing fibers that leads to a strong variation of the stress along the fibers anchored in the
clamped face is clearly visible. Figure 3 clearly illustrates that satisfactory convergence in energy
can not be expected from finite elements that use the ineffective formulation for the isotropic
nearly-incompressible materials (i.e. the standard B-bar technique); the corrected GSRI and B-
bar formulations deliver identical solutions that converge well. Figure 4 shows the convergence
in energy for the quadratic hexahedron. While the elements converge better than the linear ones for
the incorrect formulation, the corrected techniques are clearly superior.

Next, in Figs. (5–7) we illustrate the performance for a cantilevered plate reinforced
with stiff fibers oriented in parallel alignment with the arbitrarily chosen unit vector
n = [0.933012701892219, 0.258819045102521,−0.250000000000000]T . The anisotropic material
properties are as in the previous example.

In Figure 5 we show the deflected shape of the fiber-reinforced cantilevered plate. The von-Mises
stress is again indicated by color. Figure 6 illustrates the slow convergence of the elements without
the improvement, and the robust performance of the corrected method. Figure 7 shows again that

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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Figure 3. For the fiber-reinforced cantilevered beam, untreated H8 elements fail to converge satisfactorily.
a) The maximum displacement at free end versus discretization density. b) The strain energy error versus

discretization density.

0 1 2 3 4 5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

NDOF

u m
ax

  (
m

m
)

 

 

H27 GSRI*
H27 B−bar*
H27 GSRI
H27 B−bar
Limit

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

h

Ψ

 

 

H27 GSRI*
H27 B−bar*
H27 GSRI
H27 B−bar

(a) (b)

Figure 4. For the single-fiber cantilevered beam with H27 elements, the treated elements show improved
convergence. a) The maximum displacement at free end versus discretization density, converge to umax =

0.3272 mm. b) The strain energy error versus discretization density.

the convergence can be improved by using a higher-order element, but without the correction the
convergence will not be satisfactory.

Finally, we demonstrate with Figs. (8–10), the performance capabilities when the mesh is
subjected to significant distortion. The solutions with the distorted meshes match the maximum
displacement and strain energy values of the well-proportioned uniform meshes, showing that the
treatments remain robust even when the discretization is far from ideal. The maximum deflection
of the plate converges to umax = 0.085291 mm with a uniform mesh and to umax = 0.085197 mm

with a distorted mesh.
The spectral analyses of single element stiffness matrices for three different element treatments

are compared in Fig. (11) For both linear and quadratic hexahedra (H8 and H27 respectively) we
compare the GSRI formulation with B-bar formulations for different quadrature rules. We use
either the quadrature rule pairs (1,2) for the linear elements and (2,3) for the quadratic elements
(the “reduced” rules), or the quadrature rule pairs (2,2) for the linear elements and (3,3) for the
quadratic elements (the “full” rules). The full-quadrature B-bar treatment is labeled “B-bar1,” and
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Figure 5. The linear hexahedral element B-bar solution of a fiber-reinforced cantilevered plate with 30690
degrees-of-freedom is shown. Displacement values are scaled up by a factor of 200 and the von-Mises

stresses are viewed as a color-field. The maximum displacement at the free end is umax = 0.0901 mm.
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Figure 6. For the fiber-reinforced cantilevered plate, untreated H8 elements fail to converge satisfactorily.
a) The maximum displacement at free end versus discretization density. b) The strain energy error versus

discretization density.
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Figure 7. For the single-fiber cantilevered plate with H27 elements, the treated elements show improved
convergence. a) The maximum displacement at free end versus discretization density. b) The strain energy

error versus discretization density.
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Figure 8. The linear hexahedral element B-bar solution of a fiber-reinforced cantilevered plate with a
severely distorted mesh. The model with 30690 degrees-of-freedom is shown. Displacement values are
scaled up by a factor of 200 and the von-Mises stresses are viewed as a color-field. The maximum

displacement realized at the free end is umax = 0.0886 mm.
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Figure 9. For the fiber-reinforced cantilevered plate with mesh distortion, untreated H8 elements fail to
converge satisfactorily. a) The maximum displacement at free end versus discretization density. b) The strain

energy error versus discretization density..
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Figure 10. For the distorted single-fiber cantilevered plate with H27 elements, the treated elements show
improved convergence. a) The maximum displacement at free end versus discretization density. b) The

strain energy error versus discretization density.
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Figure 11. The spectral analysis of the a single element stiffness matrix including the six rigid body modes.
a) The eigenvalues for proposed linear hexahedra. b) The eigenvalues for proposed quadratic hexahedra.
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Figure 12. The ratio of the seventh to sixth eigenvalues for a single element stiffness matrix is an indicator of
stability; values much greater than one indicate element stability. a) The ratio λ7/λ6 for treated H8 elements.

b) The ratio λ7/λ6 for treated H27 elements.

it is included to show that using the reduced-rule the B-bar variant does not affect the resulting
stability of the elements.

The ranks of the H8 elements and H27 elements show a deficiency of six, one for each rigid body
mode. Moreover, it can be seen in Fig. (12) that the eigenvalues of the 7th mode are several orders
of magnitude greater than the first six, which are numerically equivalent to zero eigenvalues for the
respective element stiffness matrices. This demonstrates that the proposed elements have a full rank
with either the reduced rule or with the full rule and are therefore stable.

CONCLUSIONS

The treatments of anisotropic elasticity with nearly-rigid locking through a partitioning of the strain,
stress, and the constitutive equation by both generalized selective reduced integration (GSRI) and
the corrected B-bar formulations are found to be robust and effective. The performance of the

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
Prepared using nmeauth.cls DOI: 10.1002/nme

Page 14 of 15

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



Peer Review
 O

nly

GENERALIZED SELECTIVE REDUCED INTEGRATION AND B-BAR 15

two proposed methods are nearly identical. The corrected B-bar method is moreover attractive due
to its generality for potential application to nonlinear materials. The correction is inexpensive: the
treated methods do not require any special computations except for the spectral decomposition of the
compliance matrix. As such, a computation is only required once for each material (in the material-
aligned coordinate system); such a cost is likely to be negligible.

Extension of the proposed techniques to treatment of materials with multiple nearly-rigid
deformation modes is currently under investigation.
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