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ABSTRACT 

 

Human arteries provide an example of anisotropic, nonlinearly elastic, incompressible tubes. It is known 

that they operate in situ with significant axial prestretching. In ageing, this prestretching is successively 

relaxed due to arteriosclerosis. Ex vivo inflation-extension experiments have shown that axial 

prestretching is advantageous from the mechanical point of view, because it reduces the extent of the 

axial stress and strain that is experienced by arteries during the heart cycle. It has also recently been 

found that axial prestretch enhances circumferential deformations. Highly prestretched arteries exhibit 

higher circumferential stretches than their weakly prestretched counterparts, and this is advantageous 

when blood is transported to the periphery. However, this effect of axial prestretch on the mechanical 

response of a tube has until now been overlooked in the scientific literature. The objective of our study 

is to elucidate the physical cause of this phenomenon. An analytical model of an incompressible thin-

walled closed tube was used to simulate the mechanical response of an initially prestretched tube to 

internal pressure. Four different situations were considered: (I) a hyperelastic material with a large strain 

stiffening property, (II) a neo-Hookean material, (III) a neo-Hookean material with small strains but 

large displacements (second order linear elasticity), and (IV) a neo-Hookean material with small strains 

and small displacements (first order linear elasticity). The results have shown that the positive effect of 

axial prestretch is not a property exclusively related to anisotropy. It has been proved that nonlinear 

effects are crucial. Nonlinear constitutive models depending on more than one parameter can both 

enhance and suppress the circumferential distensibility of the tube due to prestretching. However, a one-

parameter neo-Hookean model showed only increased circumferential distensibility. A reduction in 

second order linear elasticity led to mechanical responses that exhibited only a slight effect of being 

prestretched. Total linearization proved that axial prestretch has a positive effect only to the point where 

deformed configuration and reference configuration are distinguished.  

   

Keywords: axial prestrain; hyperelasticity; incompressibility; linearization; thin-walled tube; 

pressurization. 
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1. INTRODUCTION 

 

An analytical model of a thin-walled tube based on the Laplace law is frequently used in physics and in 

the engineering sciences to obtain an elementary picture of a mechanical state. In biomechanics, 

nonlinearly elastic incompressible tubes are used to model arteries, veins, the oesophagus and other 

tubular organs (Fung 1990, 1997; Humphrey 2002; Taber 2004). The solutions that are obtained are 

usually considered to be first-order approximations, because the imposed assumptions of the model (the 

thickness-to-radius ratio, the residual stress and strain, the geometrical non-uniformity etc.; Holzapfel 

et al., 2000; Holzapfel and Ogden 2010; Horný et al., 2014b) are imperfectly satisfied.  The simplicity 

of the thin-walled tube model might induce the impression that our knowledge of its mechanical 

response is exhaustive. In this study, however, we will show an example of a phenomenon that has been 

overlooked until now: the enhanced circumferential distensibility of a pressurized tube due to initial 

axial prestretching.  

Human arteries in situ are significantly prestretched in the axial direction (this was probably first 

reported in the context of biomechanics by Fuchs in 1900, as mentioned by Bergel (1961)). This 

prestretching is observed during an autopsy as a retraction of the excised arterial segment (Horný et al, 

2011, 2012, 2013, 2014a), and the prestretch zZ
ini is defined as the ratio of the in situ-to-ex situ length 

of the segment. Ex vivo inflation-extension experiments have shown that axial prestretching is 

advantageous from the mechanical point of view, because it reduces the extent of the axial stress and 

strain that is experienced by arteries during the heart cycle (Dobrin and Doyle, 1970). In the optimal 

case of a young and healthy individual, there is a certain prestretch value at which the artery can be 

pressurized without a significant change to its length, so it can transmit a pressure pulse wave with 

negligible axial deformation (Van Loon et al., 1977; Schulze-Bauer et al., 2003; Sommer et al., 2010). 

However, recent studies by Horný et al. (2011, 2012, 2013, 2014b) have shown that ageing of the 

cardiovascular system is, besides general stiffening of elastic arteries, also manifested by a reduction of 

axial prestretch. Nevertheless, a detailed analysis of the constitutive behaviour of 17 human aortas 

suggested that aged aortas, although weakly prestretched, still can benefit from the remaining prestretch 

(Horný et al., 2014b). The decreasing of the prestretch is individual process similarly to (perhaps better 

to say as a consequence of) the progress of human ageing. A statistical variability reported in Horny et 

al. (2014b) implies that, for example, a 60-year-old man has the expected axial prestretch zZ
ini = 1.08 

with a 95% confidence interval for a prediction zZ
ini ∈ [1.00;1.16]. An analytical simulation of the 

inflation-extension response showed that, depending on the initial prestretch, the abdominal aorta of a 

60-year-old man sustains the following changes in axial stretch zZ(PSYSTOLE) – zZ(PDIASTOLE) = 0.016, 

0.003, and 0.025 for   zZ
ini = 1.08, 1.16, and 1.00, respectively (Horný et al., 2014b). The corresponding 

normalized changes in the axial Cauchy stress (zz(PSYSTOLE) – zz(PDIASTOLE))/zz(PSYSTOLE) were 0.604 

for expected prestretch zZ
ini = 1.08, 0.426 for the upper confidence limit of the prestretchzZ

ini = 1.16 , 

and 0.769 for the lower limit zZ
ini = 1.00. This clearly demonstrates that, although axial prestretch 

declines (the expected prestretch of the abdominal aorta for a 20-year-old man is 1.34, with a 95% 

confidence interval for the prediction [1.24;1.43]), remaining prestretch still retains its biomechanical 

role: to minimize the axial stretch and stress variation. 
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Horný et al. (2014b) have moreover shown that axial prestretching also has a significant effect on 

the circumferential stretch variation (PSYSTOLE) – (PDIASTOLE) exhibited during pressurization.  

Unlike the axial stretch and stress variations, which are minimized by prestretching, circumferential 

stretch variations were found to be increased by prestretching. For the same example as before of a 60-

year-old man, the circumferential stretch variation (PSYSTOLE) – (PDIASTOLE), which we will refer 

to here as distensibility, was computed to be  0.059 for zZ
ini = 1.08; 0.067 for zZ

ini = 1.16; and 0.056 

for zZ
ini = 1.00. The study conducted by Horný et al. (2014b) revealed this phenomenon for all 17 

investigated aortas. Higher axial prestretching induced inflation responses exhibiting higher 

circumferential distensibility of the tubes. This implies that the arterial physiology benefits in two ways 

from prestretching. The first way is from minimization of the axial stress and strain variation during the 

heart cycle, and the second way is from maximization of the circumferential distensibility during the 

cycle. Since arteries are conduits for the flowing blood, the higher distensibility of prestretched arteries 

means that they can accommodate a greater volume of blood at the same pressure than their non-

prestretched counterparts. This leads us to regard the effect of axial prestretching as positive. To the best 

of our knowledge, this is the first time that such a conclusion on the effect on circumferential 

distensibility described in Horný et al. (2014b) has been presented in the literature.  

In the authors’ opinion, the positive effect of axial prestretching on circumferential distensibility is 

rather contra-intuitive at first sight, because we might expect a nonlinearly elastic tube to reach a stiffer 

state when pretension is applied. In their study, Horný et al. (2014b) hypothesized that anisotropy may 

be responsible for this phenomenon, because the elastic artery wall is reinforced by helically aligned 

collagen fibres (Holzapfel et al., 2000; Gasser et al. 2006; Horný et al., 2009, 2010) and Horný et al. 

(2014b) did indeed use an anisotropic constitutive model. However, they did not compare their results 

with the mechanical response of isotropic tubes, and anisotropy as a cause of the phenomenon remained 

only a hypothesis.  

An objective of our paper is to show what physical mechanism is responsible for the enhancement 

the circumferential distensibility of an inflated tube. A bottom-up approach will be used to demonstrate 

what happens. The model of an incompressible nonlinearly elastic thin-walled tube will be simplified 

step-by-step from a material with exponential elastic potential at large strains to a linearly elastic 

material at small strains, and the cause of the enhanced circumferential distensibility will be made clear. 

We can state in advance that a problem formulated with large displacements but small strains for a linear 

material (second order linear elasticity) exhibits enhanced circumferential distensibility, and in the 

elementary linear elasticity of small displacements the model shows no positive effect of axial 

prestretch.  

         

2. METHODS 

 

Two different analytical models were used in Horný et al. (2014b). These were the thick-walled 

computational model, which is capable of accounting for residual strains, and the thin-walled model, 

which operates with averaged stresses acting on mid-surface of the tube. As is documented in that paper, 

the two models, although they differ numerically, give the same qualitative result – axial prestrain 

enhances circumferential distensibility. Since the effect of prestretching is captured by both models, in 
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what follows, for the sake of simplicity and for clear and easy interpretation of the results, only the thin-

walled model will be of our interest.  

Consider a long thin-walled cylindrical tube with closed ends that, in the reference configuration, 

has middle radius R, thickness H, and length L. Assume that, during pressurization, the motion of the 

material particle located originally at (R, , Z), which is sufficiently distant from ends, is described by 

the equations summarized in (1).  

,     ,     ,     
rR zZ

r R h z Z

   


            (1) 

Here r denotes the deformed middle radius and h denotes thickness. Equations (1) express the fact 

that the tube inflates and extends (or shortens) uniformly, and that it does not twist. The stretches  

kK (k = r, , z; K = R, , Z) are the components of the deformation gradient F, F = diag[rR,,zZ]. 

The right Cauchy-Green strain tensor C and Green-Lagrange strain tensor E can be computed as C = 

FTF and E = ½(C – I), where I is a second-order unit tensor. The material of the tube is considered to 

be incompressible, so the volume ratio J, J = det(F), gives equation (2) expressing J = 1. 


  


 1

zZ rR
           (2) 

The equilibrium equations of a thin-walled tube with closed ends initially prestretched by axial force  

Fred and loaded by internal pressure P can be written in the form (3). Here rr, , and zz denote the 

radial, circumferential and axial component, respectively, of the Cauchy stress tensor .  

,     ,     
2 2 2

red
rr zz

FP Pr Pr

h h rh
  


            (3) 

The material of the tube is considered to be hyperelastic, described by the strain energy density 

function (elastic potential) W defined per unit reference volume. In this case, the constitutive equation 

relating components of the stress and strain tensor can be written in the form of (4). Here p denotes a 

Lagrangean multiplier reflecting the hydrostatic stress contribution (not captured in W, due to 

incompressibility) which has to be determined from the force boundary condition.   

,     ,     
rr rR zz zZ

rR zZ

W W W
p p p 



     
  



  
     

  
    (5) 

Equations governing the inflation and extension of the thin-walled tube are obtained after 

substituting (5) into (3). The system is given explicitly in (6). 

,     ,     
2 2 2 2

red
rR zZ

rR zZ

FW P W Pr W Pr
p p p

h h rh



  
   



  
       

  
   (6) 

For the material behaviour, Horný et al. (2014b) modelled the artery as an anisotropic material 

described by the Fung-type elastic potential WGMW (7), which was introduced in Guccione et al. (1991). 

Here c0 is a stress-like material parameter. c1 and c2 are dimensionless parameters which govern the 

anisotropy of the material. EKK (K = R, , Z) are components of the Green-Lagrange strain tensor 

expressed in the cylindrical coordinate system. 
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      
 

2 2 2
1 20 1

2

ZZ RRc E c E E

GMW

c
W e         (7) 

In what follows, four different cases will be investigated. They are: (I) an isotropic nonlinearly 

elastic thin-walled tube described by the strain energy density function exhibiting large strain stiffening 

studied at finite strains; (II) a neo-Hookean tube at finite strains; (III) a linearized neo-Hookean tube 

studied at small strains but large displacements (second order linear elasticity); and (IV) a linearized 

neo-Hookean tube studied at small strains and small displacements (first order linear elasticity).  

 

 

2.1 ISOTROPIC LARGE STRAIN STIFFENING MODEL 

 

Since Horný et al. (2014b) documented the positive effect of axial prestretching in an anisotropic 

material, we will now show whether it is preserved when the problem is reduced to isotropy. The 

potential (7) belongs to the class of so-called Fung-type models (Humphrey 2002). This is a family of 

elastic potentials based on the exponential function, which has been proved to be very successful in 

describing the mechanical behaviour of soft tissues (arteries, veins, myocardium, skin, tendons, and 

ligaments), which generally exhibit large strain stiffening attributed to gradual load-bearing engagement 

of collagen fibres (Holzapfel et al., 2000; Holzapfel and Ogden, 2010). The first representative of this 

family was introduced by Y.C. Fung; Fung (1967), and Fung et al. (1979). The simplest isotropic 

representative of this family is the Fung-Demiray model WFD (8), which was proposed in Demiray 

(1972). 

  




 1 3

1
2

I

FD
W e          (8)   

Here  is a stress-like parameter which at infinitesimal strains corresponds to the shear modulus.  

is a dimensionless parameter modulating the rate of strain stiffening. I1 is the first principal invariant of 

C and is expressed in (9). In the cylindrical coordinate system and under the kinematics adopted for an 

inflated-extended thin-walled tube in (1), equations (6) with substituted (8) and (9) have the form of 

(10-12).  


  


  2 2 2

1 rR zZ
I           (9) 

    
   

  
2 2 2 32

2

rR zZ

rR

P
e p          (10) 

    


   


 

2 2 2 32 rR zZ rP
e p

h
         (11) 

    



  

  
2 2 2 32

2 2

rR zZ red
zZ

F rP
e p

rh h
        (12) 
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The Lagrangean multiplier p, which accounts for the hydrostatic stress contribution, is determined 

from (10). This is substituted into (11) and (12). The incompressibility condition (2) and geometric 

equations (1) are subsequently used to obtain the final form of the governing equations (13-14). 





  
 

 



   
 





 
   
 
 

 



 
    

 

2 2

2 2

1
3

2 2

2 2

1

2

zZ

zZ

zZ

zZ

P RP
e

H
      (13) 





  
 





    
 





 
   
 
 





 
     

 

2 2

2 2

1
3

2 2

2 2

1

2 2

zZ

zZ red
zZ zZ zZ

zZ

FP RP
e

H RH
    (14) 

Before we proceed to solve (13-14), the equations will be converted to dimensionless form by (a) 

dividing by , (b) introducing the aspect ratio  = H/R, and (c) introducing the dimensionless pressure 

P = P/ and the dimensionless force F = Fred/(R2). The system that is obtained is given in (15) and 

(16). 





  
   

 



  
 





 
   
 
 

 



 
    

 

2 2

2 2

1
3

2 2

2 2

1

2

zZ

zZ

zZ

zZ

P P
e       (15) 





  
    





   
  





 
   
 
 





 
     

 

2 2

2 2

1
3

2 2

2 2

1

2 2

zZ

zZ

zZ zZ zZ

zZ

P F P
e      (16) 

It is clear that P and F can easily be resolved from (15-16) as P = P(,zZ) and  

F = F(,zZ). However, when circumferential distensibility is treated, we are much more interested 

in  = (P,F) andzZ =zZ(P,F). Since (15-16) is nonlinear in  andzZ, we will continue with 

a numerical solution. This was conducted in Maple 18, using the fsolve command, choosing axial 

prestretchingzZini ∈ {0.1(i – 1) + 1}i = 1
n = 11, computing F and ini at P = 0, and finally solving (15-

16) at a given F and    ∈ {0.001(i – 1) + ini}i = 1
n = 1500 for unknown P and zZ.  In the representative 

example,  = 1 was prescribed. 

 

2.2 NEO-HOOKEAN MODEL AT FINITE STRAINS 

 

Strain energy density models (7) and (8) are exponential functions of deformation, and they exhibit rapid 

large strain stiffening (Kanner and Horgan, 2007; Horgan and Saccomandi, 2003; Horgan, 2015; Ogden 

and Saccomandi, 2007; Horný et al., 2014c). Depending on specific values of the material parameters, 

the materials described by these potentials are characterized by progressively increasing stress-strain 

relationships, which is typical for soft biological tissues. As the second case, rapid strain stiffening will 

be suppressed, and the procedure will be repeated with the simplest invariant-based nonlinear material 

model (17). This is the so-called neo-Hooke strain energy density function which, under moderate 

strains, creates a link between the phenomenological theory and the statistical theory of macromolecular 

materials (Holzapfel, 2000). 
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 


 
1

3
2nH

W I           (17) 

Here  is a stress-like material parameter which at infinitesimal strains corresponds to the shear 

modulus. The mutual relationship between WnH and WFD is given by (18).  

    



 






  1 3

1
0

1 3
2 2

I
lim e I         (18) 

The constitutive equations obtained by substituting (17) into (5) are listed in (19). It can be observed 

that the material nonlinearity (strain stiffening) is lacking here, because kK
2 (k = r, , z; K = R, , Z) 

represents geometrical nonlinearity.  

 
     


     2 2 2              

rr rR zz zZ
p p p      (19) 

(19) is substituted into the equilibrium equations (3) in (20-22). (20) determines p.  

   2

2rR

P
p           (20) 





 2 rP
p

h
           (21) 




  2

2 2
red

zz

F rP
p

rh h
         (22) 

Substituting p and applying geometrical equations (1), the system (23-24) governing the inflation-

extension response of the thin-walled tube is obtained. 

 



   
  



 
    

 

2 2

2 2

1

2 zZ

zZ

P PR

H
        (23) 





    
  



 
     

 

2 2

2 2

1

2 2 2
red

zZ zZ zZ

zZ

FP PR

RH H
      (24) 

Finally, the aspect ratio  = H/R, dimensionless pressure P = P/, and dimensionless force  

F = Fred/(R2)/ are again introduced in (25-26).    

 

 



  
  



  2 2

2 2

1

2 zZ

zZ

P P
        (25) 

  





   
   



   2 2

2 2

1

2 2 2zZ zZ zZ

zZ

P F P
       (26) 

We observe that equations (25-26) differ from (15-16) only by the absence of the exponential term, 

which is in accordance with (18). Since (25-26) are again nonlinear with respect to  and zZ, the same 

approach as in the case of the exponential model will be employed to obtain the extension-inflation 

behaviour of a neo-Hookean cylindrical tube. 
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2.3 SECOND ORDER LINEAR ELASTICITY (SMALL STRAINS BUT LARGE DISPLACEMENTS) 

 

In this section, nonlinear effects will be attenuated by a transition from finite strain theory to linearized 

elasticity at infinitesimal strains. First, let us reconsider the constitutive equations implied by the neo-

Hooke material model (19). Note that the left sides of (23-24) express  and zz after p is substituted 

from the radial equilibrium. Similarly, / and zz/ are given by the left sides in (25-26). They are 

repeated in (27-28). It is clear that incompressibility at finite strains is manifested in the constitutive 

equations by “– 1/(2zZ2) – P/2.” 









  



  2

2 2

1

2
zZ

P
         (27) 








  


  2

2 2

1

2
zz

zZ

zZ

P
         (28) 

We will now start from (19), which will be linearized. As the first step, the stretches kK in (19) are 

interchanged by components of the Green-Lagrange strain tensor EKK = ½(kK
2 – 1), (29).     

     2 1 ,     2 1 ,     2 1
rr RR zz ZZ

E p E p E p     


           (29) 

At this point, a description by the infinitesimal (engineering) strain tensor  is introduced into (29). 

Since E and  are approximately equal in the range of infinitesimal theory, we simply interchange EKK 

and kk, obtaining (30) from (29).  

                      2 1        2 1        2 1
rr rr zz zz

p p p    (30) 

It is clear from (30a) that (31) holds. 

    2 1
2rr

P
p           (31) 

We also need to express geometric equations (1) by means of . This is done in system (32). 

            1            1            1
rr zz

h H r R z Z      (32) 

The incompressibility condition for infinitesimal strains can be written in the form  

rr +  + zz = 0. Hence, the radial component of the engineering strain tensor can be substituted by 

(33).  


    
rr zz

          (33) 

Substituting (31) into (30b) and (30c), applying (32) and substituting all into the equilibrium 

equations, system (34-35) is obtained. 
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   
 

 


 




    

 


     

 

1
2 1 1 2 2

2 1zz

zz

RPP

H
     (34) 

   
  

 
 





  


    

    


      

    

11
2 1 1 2 2

2 21 1 2 1
red

zz zz

zz zz

RPFP

RH H
(35) 

Equations (34-35) govern the inflation-extension response of a thin-walled incompressible linearly 

elastic tube in so-called second order linear elasticity theory. This means that although the components 

of the small strain tensor are present in the equations, we still distinguish between the deformed 

configuration and the reference configuration. Thus equations (34-35) express the equality between the 

Cauchy stresses computed from the constitutive equations (left sides) and the Cauchy stresses computed 

from the geometry and the loads (right sides). The situation is similar to the way in which the buckling 

of a compressed column is treated. To obtain the critical force from a discussion of the boundary 

conditions, one has to substitute the expression for the bending moment into the equation for the 

deflection of the beam (Euler-Bernoulli) from the internal reaction forces determined in the deformed 

configuration. In other words, small strains with large displacements are considered here.  

Applying the same normalization procedure as in the previous cases, system (34-35) is transformed 

into dimensionless form (36-37). 

   





 

  


  

 

1
2 2

2 1zz

zz

P P
        (36) 

 
  

  


 


 

     


   

   

11
2 2

2 2 1 21 1zz

zzzz

P F P
    (37) 

The final equations (36-37) remain nonlinear, because rational expressions occur here. The 

nonlinearity, however, comes solely from the large displacements (the rational expressions are on the 

right sides of the equations). The results will again be obtained numerically.  

It is interesting to see how the equations are expressed by means of the components the Green-

Lagrange strain tensor and finite strain theory. The finite strain counterparts of (36-37) are obtained 

from (25-26) by transforming kK into EKK. They are given in (38) and (39). 

  
  

 



     
 

1
2 1 2 1 2 1

22 1 2 1 ZZ

ZZ

P P
E E E

E E
    (38) 

  
   

  



       
 

1
2 1 2 1 2 1 2 1

2 2 22 1 2 1ZZ ZZ ZZ

ZZ

P F P
E E E E

E E
 (39) 

The left sides of (38-39) give equations for / and zz/ when p has been eliminated. In (40-42), 

these equations are rewritten into the form of constitutive equations. Note that incompressibility 

necessitates loads to enter into the equations. Hence equations (40-42) are not general but they are valid 

only for the pressurization of a thin-walled tube. 
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   
2rr

P
           (40) 

 
  


 





   
 

2 1
22 1 2 1

ZZ

P
E

E E
      (41) 

  
  


 



   
 

2 1
22 1 2 1zz ZZ

ZZ

P
E

E E
      (42) 

It is clear that “/(2E+   1)/(2EZZ + 1) – ½P” arises from incompressibility. We can compare 

(40-42) with (43-45). (43-45) are again constitutive equations obtained from the left sides of (34-35), 

which are valid for the specific case of a linearly elastic incompressible thin-walled tube with rr 

determined from the external load. It is clear that a correct description using finite strains generates 

nonlinearity in (41-42) via the incompressibility condition, which is lacking in the description based on 

the infinitesimal strain tensor (44-45); “/(2E+ 1)/(2EZZ + 1)”  vs. “(1 – 2 – 2zz)”.   

  
2rr

P
           (43) 

     
          2 1 1 2 2

2zz

P
       (44) 

   
          2 1 1 2 2

2zz zz zz

P
       (45) 

 

2.4 FIRST ORDER LINEAR ELASTICITY (SMALL STRAINS AND DISPLACEMENTS) 

 

Total linearization involves (a) introducing the small strain tensor, (b) linearizing the constitutive 

equations, and (c) taking into consideration small displacements, which justifies substituting the nominal 

stress tensor (the current force per reference cross-section) into the equilibrium equations. The 

constitutive equations are the same as in the previous section, given by (30). Equation (31) is again used 

to determine the contribution of the hydrostatic stress p. Thus the equilibrium equations are given by 

(34-35), but the right sides are modified according to the assumption of small displacements. The 

resulting equations are (46-47).  

 
    2 2

2zz

P RP

H
         (46) 

 
  


   2 2

2 2 2
red

zz

FP RP

RH H
        (47) 
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The dimensionless counterparts of (46-47) are equations (48-49).  

   

 


  2 2  
2zz

P P
         (48) 

 2 2
2 2 2zz

P F P
  

 
 

            (49) 

The first order linear elasticity gives the linear system of the equations of the problem (48-49), and 

at this moment the explicit dependence of  and zz on pressure and force is finally found (50). 

    



 
 

 

  
 

3 21 1
                  

12 12zz

P F P F
     (50) 

Since axial prestrain zzini is applied before the pressurization, i.e. at P = 0, (50b) gives (51). 

Computed F is constant in the subsequent pressurization. Substituting from (51) into (50a), the explicit 

dependence of the circumferential strain  on the initial axial prestrain zzini is obtained (52). 





6

ini

zz

F
           (51) 

1 3 1

12 2
ini

zz
P

 


 




           (52) 

Equation (52) implies that the axial prestrain will cause nothing more than a shift of the line that 

represents the –P dependence. However, the slope of the lines is constant during pressurization; from 

(52), the slope is ( + 3)/(12). In contrast to previous cases, the first order linear elasticity immediately 

shows that in this theory axial prestretching does not affect the character of the pressurization of a thin-

walled incompressible tube. It only changes initial conditions of the pressurization.  
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3. NUMERICAL SIMULATIONS, AND A DISCUSSION OF THE RESULTS 

 

The analytical computational models used in deriving the equations governing the inflation-extension 

of a closed incompressible thin-walled tube revealed that for (I), the exponential elastic potential 

(nonlinear model with rapid strain stiffening) – equations (15-16), for (II), a neo-Hookean material at 

finite strains (nonlinear model with moderate material nonlinearity) – equations (25-26), and for (III), a 

linearized neo-Hookean material considered at small strains but large displacements – equations (36-

37), the problem does not lead to systems of equations from which the explicit analytical dependence of 

the circumferential stretch on the initial axial prestretching can be found. In these cases, numerical 

simulations were conducted to demonstrate the mechanical behaviour predicted by the models. They 

were performed in Maple 18, using the fsolve command according to the following scheme: 

 

(I) and (II) 

(a) zZini ∈ {1 + 0.1(i – 1)}i = 1
n = 11 

(b) the prestretching axial force F and the initial circumferential stretch ini were computed for P = 

0 and the chosen prestretch zZini  

(c) P and zZ are computed for F determined in (b) and  ∈ {ini + 0.001(i – 1)}i = 1
m where m = 

1200; 

 

(III) 

(a) zzini ∈ {0.02(i – 1)}i = 1
n = 11 

(b) the prestretching axial force F and the initial circumferential strain ini were computed for P = 0 

and chosen prestretch zzini  

(c) P and zz are computed for F determined in (b) and  ∈ {ini + 0.001(i – 1)}i = 1
m where m = 1200. 

 

A thickness-to-radius ratio of  = 0.1 was applied in all the simulations. Parameter, modulating the 

rate of stiffening in (8), was prescribed to be  = 1. 

 

3.1 RESULTS FOR THE ISOTROPIC LARGE STRAIN STIFFENING MODEL 

 

Figure 1 depicts the results of the simulation of the inflation-extension behaviour of an incompressible 

thin-walled tube with isotropic exponential elastic potential (8). Panels A and B show the initial 

conditions of the inflation, i.e. the dependence of the prestretching force F and the initial 

circumferential compression ini on the applied axial prestretch. The colours used to distinguish the 

individual prestretches are same in all figures and are chosen from HTML colour specification (in 

ascending order, they are: Black, Maroon, Red, DarkOrange, Gold, Yellow, GreenYellow, Cyan, 

DodgerBlue, Fuchsia, and DeepPink). 
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The inflation-extension responses predicted by the system of equations (15-16) are depicted in C 

and D of Figure 1. It is clear that the circumferential distensibility, understood as (P2) – (P1) for 

some fixed zZini (where P1 < P2), depends strongly on the chosen axial prestretch zZini. Consider e.g. 

the deep pink (zZini = 2) and black (zZini = 1) curves in panel C. It is clear that if P2 = 1 and P1 = 0.5, 

a greater stretch difference (P2) – (P1) is obtained for greater prestretch.  

This property is better documented in panels E and F. In E, the contours of the constant pressure  

P = k, where k ∈ {0.1(i – 1)}i=1
n=11, are added to the graph showing the inflation-extension responses 

as traces in the –zZ plane. Choosing again zZini = 1 and 2 (black and deep pink solid curves), and 

for example P2 = 0.2 and P1 = 0.1 (red and maroon dashed curves), one can see that higher 

circumferential distensibility (P2) – (P1) is obtained for  zZini = 1 (black solid). This 

demonstrates that the circumferential distensibility of the tube, (P2) – (P1) (where P1 < P2), is 

not monotonic with respect to the applied zZini in the model based on (8).  

Panel F displays this for pressures P2 = P and P1 = 0. In other words, panel F shows the difference 

between the circumferential stretch achieved at some pressure P and the initial circumferential stretch 

that is ordinarily attained at P = 0. It can be concluded that weakly prestretched tubes show mechanical 

responses with high circumferential distensibility at low pressures (consider e.g. the maroon ~ zZini = 

1.1, red ~ zZini = 1.2, and dark orange ~ zZini = 1.3 curves) in contrast to highly prestretched tubes. 

However, at higher pressures, the curves corresponding to higher prestretches exceed the curves 

obtained for less prestretched tubes (consider e.g. the curves in dodger blue ~ zZini = 1.8, fuchsia ~ zZini 

= 1.9, and deep pink ~ zZini = 2).  

This implies that  – ini is not monotonous in its first derivatives with respect to P for a given 

zZini. A consequence of this is the existence of inflection points where tangents to  – ini will have 

extremal slopes (see Figure 1 F). Such a property, theoretically, allows tubes to be programmed to 

operate in an optimal working range (to optimize either the pressure difference for a given 

distensibilityor the distensibility at some chosen pressure difference). We will not go into further details 

here. We have already found what we had been looking for: the positive effect of the axial prestretch is 

not restricted to anisotropy, as had been hypothesized in Horný et al. (2014b). 

 

3.2 RESULTS FOR A NEO-HOOKEAN TUBE AT FINITE STRAINS 

 

Figure 2 depicts the mechanical responses obtained for an incompressible neo-Hookean thin-walled tube 

at finite strains. The responses are governed by equations (25-26), and numerical simulation is again the 

only way to make a theoretical investigation of the effect of the prestretch. Figure 2 is fashioned in a 

similar way as Figure 1. Panels A and B show the initial conditions for inflation, C and D show the 

dimensionless pressure and the achieved stretches, and E and F again document the circumferential 

distensibility as such. 
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In comparison with Figure 1, there is one substantial difference, which is indicated by the dotted 

parts of the curves. The dotted curves correspond to a loss of deformation stability. This phenomenon is 

well known to anyone who has ever inflated a party balloon (Chater and Hutchinson 1984; Gent 2005; 

Kanner and Horgan 2007; Gonçalves et al., 2008; Rodriguez and Merodio, 2011; Mao et al., 2014; 

Horný et al., 2015). The inflation instability is exhibited as a non-monotonic dependence of the inflation 

pressure on the circumferential stretch. At the point where stability is lost, increments in circumferential 

stretch are accompanied by decrements in applied pressure. This is exactly what happens with a party 

balloon - after some initial loading its response becomes unstable.   

Since the onset of loss of stability is accompanied by buckling, which in the case of a cylindrical 

tube may appear as a bulge propagated in the axial direction, or as bending (resembling the deflection 

of a beam), or a bulge propagated in the radial direction, the assumptions contained in the geometrical 

equations (1) are violated in the subsequent inflation. In the absence of serious post-buckling analysis, 

results related to the post-buckling behaviour therefore have to be considered uncertain. However, this 

is beyond the scope of our present study. We will limit ourselves to the stable elastic response, which is 

indicated by the solid parts of the curves. 

Panel C in Figure 2 shows that the applied axial prestretch (a) decreases the maximum pressure 

achievable in the deformation, and (b) also makes the tube more distensible in the circumferential 

direction. This is clear, when one considers the slopes of the tangents made to the pressure–stretch curves 

at any fixed pressure (Panel C). In other words, the pressure–circumferential stretch dependences in 

panel C form concave curves (under elastically stable deformations).   

The same conclusion is obtained for panels E and F. Especially F, which, similarly to Figure 1, 

shows the difference between the circumferential stretch achieved by some pressure P and the initial 

circumferential stretch obtained at P = 0, clearly demonstrates that the higher the axial prestretch, the 

higher the circumferential distensibility at a given pressure.  

Unlike for the strain-stiffening model (8), there is no violation of monotony. Considering equation 

(18), we see that both models have topredict the same mechanical behaviour whe  

 → 0. Thisis also clear when the governing equations (15-16) and (25-26) are compared. Now we see 

that the existence of the non-monotonic effect of the axial prestretch (increased vs. decreased 

circumferential distensibility) in the Fung-Demiray model (8) is a consequence of the presence of 

material parameter .  contributes to the system by one additional degree of freedom, and allows a 

switch between the positive effect (enhancing the distensibility) and the negative effect (suppressing the 

distensibility) of prestretching that is exhibited by a tube while it is being inflated.  
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3.3 SECOND ORDER LINEAR ELASTICITY 

 

Figure 3 shows the results obtained for a linearized neo-Hookean material with the deformation 

described using the engineering strain tensor (36-37). It is depicted with solid curves and filled circles. 

The panels are again arranged in the same way as in Figures 1 and 2. However, for the sake of easy 

comparison, the results predicted using the finite strain neo-Hooke model are also displayed here; 

equations (38-39). They are indicated by dotted curves and empty circles. For the finite strain model, 

the results depicted in the figure were transformed from the original Green-Lagrange deformations to 

engineering strains according to the equation kk = √(1 + 2EKK) – 1, where k = , z, and K = , Z. Thus 

the two models are displayed in the same quantities, which helps when comparing them, because the 

nonlinear effects are immediately clear when the results are displayed over coordinate axes scaled in 

infinitesimal strains. 

The same axial prestrain sequences were applied in the linearized model (III) and in the in the finite 

strain model (II); {zzinij}j=1
11 = {0.02(j – 1)}j=1

11. On the basis of the conclusion obtained using the totally 

linearized model (IV, equations 50-52), we know that in this case the system of governing equations 

gives linear pressure–deformation relationships. Hence, if the solid curves in Figure 3 deflect from 

(imaginary) straight lines, this is the effect of large displacements sustained by linear material. When 

the dotted curves are deflected from the solid curves, this is the effect of the incompressibility formulated 

in the finite strain description; compare equations (36-37) and (38-39).  

The nonlinearity of the P–  relationship is clear from Figure 3 (panel C), and occurs in both 

models. In contrast with panel C, where both finite strain neo-Hooke and also linearized neo-Hooke 

with infinitesimal strains but large displacements show clear nonlinearity, P–zz  relationships for the 

linearized model with the small strains but large displacements (solid curves) presented in panel D 

exhibit only limited deviations from straightness. Moreover, nonlinearity occurs where there are strains 

say 0.1 < zz. In this region, the results obtained with  used in the description have to be considered as 

estimates of reality, rather than as facts. However, the finite strain model displayed over the axis scaled 

in zz clearly deflects from straightness. 

It is hard to draw conclusions about the circumferential distensibility on the basis of panel C of 

Figure 3. The effect of the prestretch is less clearly visible than in Figures 1 and 2. The stretch variation 

| – ini| is therefore depicted separately in Figure 4. In panel A, we observe that the curves are convex. 

This indicates that distensibility increases with increasing pressure. The effect of the prestretch is 

positive; that is the greater the prestretch, the greater the distensibility. This is found by comparing the 

mutual positions of the curves (panel B). However, in the range of linear elasticity, this effect is almost 

negligible. 
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3.4 FIRST ORDER LINEAR ELASTICITY 

 

Total linearization (small strains and displacements) is the only case where conclusions can be drawn 

immediately on the basis of the equations (50-52). There is no effect of the axial prestrain on the 

mechanical response of an incompressible linearly elastic thin-walled tube apart from the shift of the 

linear P–  relationship. There is no enhancement or suppression of circumferential distensibility, as 

is documented in Figure 5.  

However, from a different point of view, insensitivity of the circumferential distensibility in the first 

order linear elasticity to the axial prestrain elucidates a source of the phenomenon under discussion here. 

The difference between first order and second order linear elasticity consists in the form of the right side 

in the equilibrium equations (48-49) vs. (36-37); i.e. in the nominal stress tensor (current force per 

reference cross-section, 48-49) vs. the Cauchy stress tensor (current force per deformed cross-section, 

36-37). In other words, the reason for the enhanced distensibility in the second order linear theory lies 

in the large displacements. However, the comparison in Figure 3 shows that a finite strain formulation 

of the incompressibility moves the effect of the prestretch from a rather abstract mathematical 

phenomenon to a fact measurable by engineering methods.          

 

4. CONCLUSION 

  

The study published by Horný et al. (2014b) showed that nonlinear incompressible anisotropic thin-

walled tubes exhibit higher circumferential distensibility when they are axially prestretched than non-

prestretched tubes with the same constitutive properties and geometry. From a physiological point of 

view, this effect is positive because aortas, which were investigated in Horný et al. (2014b), serve as 

conduits for flowing blood. Thus the greater the distension that they are capable of achieving at some 

pressure, the larger is the volume of the blood that they can accommodate. Horný et al. (2014b) 

hypothesized that this effect, which had not been described previously in the literature, could be a 

consequence of arterial anisotropy.   

In the present study, we have tried to show the true physical cause of the increased distensibility of 

axially prestretched tubes. The approach that has been adopted is based on a mutual comparison of four 

computational models. To be more specific, our study has investigated the mechanical response of a 

thin-walled incompressible tube (I) with a material based on the exponential strain energy density 

function, (II) with a neo-Hooke material, (III) with a linearly elastic material sustaining small strains but 

large displacements, and (IV) a tube with a totally linearized material. All the material models were 

isotropic.  

The simulations showed that the positive effect of axial prestretching is not a property exclusively 

related to anisotropy, because the results obtained in (I) showed that axially prestretched tubes can 

distend more than non-prestretched tubes. The Fung-Demiray constitutive model used in case (I) is a 

direct isotropic restriction of the model used by Horný et al. (2014b).   
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It has been proved that nonlinear effects are crucial for the positive role of axial prestretching in 

pressurization. Nonlinear constitutive models depending on more than one parameter (exemplified here 

by the Fung-Demiray model in I) can exhibit both enhancement and suppression of the circumferential 

distensibility of the tube, due to prestretching. This implies that the effect of prestretching in two or 

more parametrical nonlinear constitutive models can be positive (higher circumferential distensibility) 

or negative (lower distensibility relative to the response of a non-prestretched tube), and the specific 

result depends on the constitutive model and the pressure that is applied. By contrast, the one-parameter 

nonlinear model (II, neo-Hooke) showed only increased distensibility when axial prestretching had been 

applied.  

A reduction of the computational model to second order linear elasticity (III, small strains but large 

displacements) led to mechanical responses that exhibited only a slight effect of prestretching in 

comparison with previous nonlinear models. However, from the purely mathematical point of view, the 

positive effect of prestretching on circumferential distensibility is still present. In case (III), highly 

prestretched tubes showed higher distensibility than weakly prestretched tubes.  

Finally, total linearization (IV) proved that the significant effect is present only to the point at which 

the deformed configuration and the reference configuration are considered to be different. In other 

words, first order linear elasticity (IV), which does not distinguish between the two configurations when 

the stresses are computed from the loads applied to a structure, showed no other effect of prestretching 

apart from a change in the initial conditions of the pressurization. Neither enhancement nor suppression 

of the circumferential distensibility was found. 

To the best of our knowledge, this is the first study that has made a systematic evaluation  of the 

effect of prestretching on the mechanical response of pressurized nonlinear tubes. However, this does 

not mean that there have been no previous papers documenting our results. As is shown in Horný et al. 

(2014b), there have been studies documenting experimentally that arteries pressurized ex vivo exhibit 

higher circumferential distensibility when they are axially prestretched (cf. Figure 4 in Schulze-Bauer 

et al., 2003; Figure 5 in Sommer et al., 2010; Figure 4 in Sommer and Holzapfel 2012; Figure 6 in Avril 

et al., 2013). However, a detailed discussion of this phenomenon was not an objective of these papers. 

Details of the physiological and mechanobiological role of prestretching can be found in Humphrey et 

al. (2009) and Cardamone et al. (2009).      

Finally it should be noted explicitly that first order linear theory is a limit of all nonlinear theories. 

Hence, irrespective of the formalism (nonlinear theory, a linear material for finite strains, a linear 

material under large displacements but small strains), if the displacements and strains are sufficiently 

small, the results obtained with first order linear elasticity will also hold for other formalisms. In other 

words, one when chooses some small positive epsilon as the error between linear and nonlinear 

predictions, there will always be some delta bordering a subset in the space of deformations where the 

errors between linear and nonlinear theory will be smaller than the chosen epsilon. In engineering 

practice, epsilon depends on the sensitivity and the confidence of our experimental methods. 
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Figure 1. Fung-Demiray inflation-extension response. A – initial prestretch and dimensionless force.  

B – mutual dependence of initial prestretches (zZini – ini). C and D – dimensionless pressure vs. 

stretch. E – traces of the inflation-extension responses in the phase space of the deformation (solid 

curves) and contour curves for dimensionless pressure P = k (dashed curves). F – stretch difference  

– ini achieved by loading a tube with pressure P. 
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Figure 2. Neo-Hookean inflation-extension response. A – initial prestretches and dimensionless force. 

B – mutual dependence of the initial prestretches (zZini – ini). C and D – dimensionless pressure vs. 

stretch. E – traces of the inflation-extension responses in the phase space of the deformation (solid 

curves) and contour curves for dimensionless pressure P = k (dashed curves). F – stretch difference  

– ini achieved by loading a tube with pressure P. Dotted curves indicate a loss of deformation 

stability. 
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Figure 3. The neo-Hookean and linearized inflation-extension response at small strains but large 

displacements. A – prestrains and dimensionless force. B – mutual dependence of initial prestrains.  

C and D – dimensionless pressure vs. infinitesimal strain. E – traces of inflation-extension responses. 

The solid circles and continuous curves correspond to second order linear theory. The dotted curves and 

empty circles correspond to nonlinear theory applied to a neo-Hookean material, but the results are 

displayed over infinitesimal strain coordinates according to kk = √(1 + 2EKK) – 1.  
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Figure 4. Circumferential distensibility of the Neo-Hookean model and the linearized model in the 

inflation-extension response at small strains but large displacements. A – overall dependences. B – 

detail. 

 

Figure 5. Inflation-extension responses in the first order linear elasticity. A – circumferential responses. 

B – longitudinal responses. 

 


