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Abstract— Fault tolerance is a key factor of industrial computing 
systems design. But in practical terms, these systems, like every 
commercial product, are under great financial constraints and 
they have to remain in operational state as long as possible due to 
their commercial attractiveness. This work provides an analysis 
of the instantaneous failure rate of these systems at the end of 
their life-time period. On the basis of this analysis, we determine 
the effect of a critical increase in the system failure rate and the 
basic condition of its existence. The next step determines the 
maintenance scheduling which can help to avoid this effect and to 
extend the system life-time in fault-tolerant mode.   
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I. INTRODUCTION 
Nowadays, manufacturing companies are seeking to 

continuously improve efficiency and drive down costs for 
existing facilities and processes. The key to achieving these 
goals is uninterrupted access to information. With a constant 
flow of data (including real-time technological processes), 
manufacturers can develop more efficient ways to connect 
globally with suppliers, employees and partners, and to more 
effectively meet the needs of their customers. As a 
consequence, in addition to the technical specifications 
(performance, interoperability, functionality, etc.), industrial 
computing systems face the following additional challenges: 

• reliability – solutions must support the operational
availability of the manufacturing facility;

• cost – capital comes at a premium, and additional costs
(or costlier components) must add clear value that is
understood by the financial management;

• flexibility – solutions have to rely on commercial off-
the-shelf (COTS) equipment, provided by a number of
vendors.

Operational availability is the critical feature of industrial 
computing systems. For this reason the design of these 
systems is based on the concepts of fault tolerance – in 
practical terms, they are able to keep working to a level of 
satisfaction in the presence of technical and/or organizational 
problems, including [1]: 

• hardware-related faults;
• software bugs and errors;
• physical damage or other flaws introduced into the

system from the environment;

• operator errors, such as erroneous keystrokes, bad
command sequences, or installing unexpected software.

The key factor of the fault tolerant design is preventing 
failures due to system components and it addresses the 
fundamental characteristic of fault tolerance in two ways 
[2][3]: 

• replication – providing multiple identical instances of
the same component and choosing the correct result on
the basis of a quorum (voting);

• redundancy – providing multiple identical instances of
the same component and switching to one of the
remaining instances in case of a failure (failover).

On the other hand, it is well known that the effectiveness of 
computing systems depend on both the quality of its design as 
well as the proper maintenance actions to prevent it from 
failing. In fact, the choice of scheduled maintenance policies 
which are optimum from an economic point of view 
constitutes a predominating approach in reliability theory [4]. 

Our main goal is finding the simplest and cheapest solution 
to keep fault tolerant industrial computing systems in 
operational state as long as possible due to their commercial 
attractiveness. Thus, to accomplish such a goal we need: (1) to 
identify a typical (commercial) configuration of these systems; 
and (2) to analyse systems behaviour at the end of the useful 
period and at the wear-out period of the systems life-time. 

  The rest of this paper is structured as follows. Section 2 
introduces the related work. Section 3 presents analysis of the 
instantaneous failure rate of commercial computing systems at 
the end of their life-time period. On the basis of this analysis, 
we determine the “Red zone” (a critical increase in the system 
failure rate) and the basic condition of its existence. Section 4 
introduces the maintenance scheduling which can help to 
avoid this effect. Finally, conclusion remarks and future 
research directions are given in Section 5. 

II. BACKGROUND

In the past several decades, maintenance and replacement 
problems have been extensively studied in the literature. The 
most recent systematic survey of maintenance policies for the 
last 50 years is presented by Sarkar et al. [5]. Based on this 
survey, maintenance models can be roughly classified into 
following categories: age replacement policy, block 
replacement policy, periodic preventive maintenance policy, 
failure limit policy, sequential preventive maintenance policy, 
repair cost limit policy, repair time limit policy, repair number 
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counting policy, reference time policy, mixed age policy, 
group maintenance policy, opportunistic maintenance policy, 
etc. Each kind of policy has different characteristics, 
advantages and disadvantages. In this context, this work lies 
in the area of periodic preventive maintenance policy. 

Fig. 1  Bathtub curve for electronic devices. 

On the other hand, when dealing with maintenance models 
the analysis of the failure rate play a primary role. Generally, 
we can define the instantaneous failure rate as: 

h(t)system = h(t)hardware + h(t)software + h(t)operate 

h(t)hardware is hardware failure rate (defined by vendors). This 
is a typical bathtub curve for electronic devices (see Fig. 1) 
[6][7][8][9]. In this case the failure rate can be represented by 
the Weibull transformed distribution [7]: 

h(t)hardware = λβtβ-1 

if t ∈ Th1 (Burn-in Life-Time Phase)    then 0 < β < 1 
if t ∈ Th2 (Useful Life-Time Phase)      then β = 1 
if t ∈ Th3 (Wear-Out Life-Time Phase) then β > 1 

We should mention here environmental influences – 
temperature, humidity, EMI and other [6]. These factors exert 
influence not only on components/units on-the-job, but on 
spare components/units on-the-shelf. Bad storage conditions 
can directly affect hardware failure rates (the stress effect in a 
typical bathtub curve [7]) or even lead to unexpected failure of 
spare components/units in the worst case. 

And based on this representation, we can define the 
“Decision point” (DP) – the critical point of every commercial 
telecommunication project – where the IT department has to 
decide between: 

• starting a new project (buying a new system),
• buying additional spare components/units,
• finishing the current project.

h(t)software is embedded software failure rate (defined by 
vendors). The total failure rate for the software can be 
represented as: 

h(t)software = h(t)update + h(t)upgrade 

where h(t)update is reliability improvement failure rate; and 
h(t)upgrade is upgrade failure rate. 

The reliability improvement or bug fix software 
modification process occurs as part of regularly scheduled 
software updates. As a consequence, the reliability 
improvement failure rate is closely related to early failures in 
hardware [6][8]. In contrast to the bug fix software 
modifications, vendors are continuously changing embedded 
software to both improve existing functionality and add new 
capabilities. As the software grows and changes, the upgrade 
failure rate will inherently increase due to the increased code 
size and complexity. Thereafter, we have two basic options: 

• Minor code changes (current software release update).
In this case, the upgrade failure rate affects the total
(aggregate) failure rate like the stress effect [8].

• Global code changes (upgrade to new software release).
This case leads the total (aggregate) failure rate to the
beginning of another burn-in period [6][8].

An important note – even the total failure rate tends to zero 
value as time becomes large, the processes of code changing 
and code size growth lead computing systems to settle on a 
steady-state (nonzero software failure rate) [8]. 

h(t)operate is operator failure rate – erroneous keystrokes, bad 
command sequences, or installing unexpected software [1]. 

III. ANALYSIS OF SYSTEM BEHAVIOUR

When talking about fault tolerant industrial computing 
systems, we usually mean redundant commercial computing 
systems (we need to state here – specific areas like the 
military, nuclear or aerospace industries are beyond the scope 
this work). In practice these industrial systems are under great 
financial constraint – the main challenge is how to combine a 
real fault tolerance and commercial attractiveness. As a 
consequence, nowadays these systems have modular and/or 
distributed architectures with critical components duplication 
(usually controller/processor and power supply units). 
Additional reliability is provided by the availability of spare 
components or units. The number and composition are defined 
by the project’s budget. The architectural diagram of these 
systems (based on the von Neumann machine representation 
[10]) is shown in Fig. 2. Of course, some vendors provide, 
within extended technical support, operative replacement of 
failure components, but this service has disadvantages: 

• additional expenses – it is very difficult to find strong
arguments for financial management;

• response time (especially in developing countries) is
always longer than having a spare component on-the-
shelf.

Thus, as the object for analysis we have a system with two 
controller units on-the-job and one spare controller unit on-
the-shelf (see Fig. 2). Controller/processor units are usually 
the most expensive part of every computing systems and it is 
usually impossible to persuade the financial management to 
buy more than one spare unit. 
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Fig. 2  Architectural diagram of redundant commercial computing systems. 

The analysis covers the end of the useful period and the 
wear-out period of the system life-time. In order to simplify 
the analysis, let us make the following assumptions: 

• All three controller units are identical.
Components/units instantaneous failure rate is:

h(t)controller1 = h(t)controller2 = h(t)controller3 = h(t)controller

• Two main controllers units on-the-job are used during
their entire life-time periods. The spare controller unit is
used only if one of the two main controllers fails
(Interaction Type_1 – see Section 4 “System
maintenance scheduling”).

• This standby redundant system has perfect sensing and
switching subsystems.

• The IT department is staffed by qualified personnel and
the system is stable and does not usually require
operator interventions:

h(t)operate << h(t)hardware 

At the end of the useful period industrial computing 
systems generally use “stable” software releases. In this case 
[8]: 

h(t)software << h(t)hardware 

Thus, the reliability function is dominated by hardware 
failures and the impact of software failures is minor with 
respect to the system failure rate: 

h(t)hardware ≈ h(t)controller 

In turn, the components/units life-time period can be 
described by the lognormal distribution [7]. The parameters of 
the distribution: 

• a mean μ – a mean value of components/units life-time;
• a standard deviation δ – spread of components/units

life-time
Therefor the system instantaneous failure rate can be 

represented as: 

h(t)system = F(h(t)controller1, h(t)controller2) 
h(t)controller1 ≈ h(t)hardware = f(t) 

h(t)controller1 ≈ h(t)hardware = f(t + δ) 
f(t) = λβtβ-1 

Fig. 3  Fault-tolerant system behaviour – an arbitrary component/unit failure. 

Fig. 4  Fault-tolerant system behaviour – two components/units simultaneous 
failure 

The following two options describe various scenarios of the 
fault-tolerant system behaviour. 

A. Option 1 – system behaviour in the case of δ >> 0 
In practical terms, this option is the current practice (failed 

components/units replacement) and there is nothing new here 
[7][8][9] – see Fig. 3. 

B. Option 2 – system behaviour in the case of δ → 0 
1. If t < T0 (see Fig. 4), then:

• The first controller unit (Controller_1) is in the Useful
Life-Time Phase.

• The second controller unit (Controller_2) is in the
Useful Life-Time Phase.

• The third (spare) controller unit (Controller_3) is not
present.

Thus 
h(t)controller1 = h(t)controller2 = λ,  β = 1 

And 
h(t)system = F(h(t)controller1, h(t)controller2) = λ/2 
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Fig. 5  Time diagram of controllers’ life-time usages – Interaction Type_1. 

2. If T0 < t < T1 (see Fig. 4), then:
• The first controller unit (Controller_1) is in the Wear-

Out Life-Time Phase.
• The second controller unit (Controller_2) is in the

Wear-Out Life-Time Phase.
• The third (spare) controller unit (Controller_3) is not

present.
Thus 

h(t)controller1 = λβtβ-1,           β > 1 
h(t)controller2 = λβ(t + δ)β-1,  β > 1 

And 
h(t)system = F(h(t)controller1, h(t)controller2) 

3. If T1 < t < T2 (see Fig. 4), then:
• The first controller unit (Controller_1) is not present.
• The second controller unit (Controller_2) is not present.
• The third (spare) controller unit (Controller_3) is in the

Burn-in Life-Time Phase.
We need to state here: the well-known practice is to burn-in 
components in the lab before putting them on-the-shelf – it 
can help to avoid the worst effect of the Burn-in Life-Time 
Phase. But these lab tests usually last one or two weeks (up to 
four in the best case) while a typical Burn-in Life-Time Phase 
is about 20 weeks [9]. Therefore we cannot completely 
eliminate this period from the analysis. 
Thus 

h(t)controller3 = λβtβ-1,  0 < β < 1 
And 

h(t)system = F(h(t)controller3) 

4. If t > T2 (see Fig. 4), then:
• The first controller unit (Controller_1) is not present.
• The second controller unit (Controller_2) is not present.
• The third (spare) controller unit (Controller_3) is in the

Useful Life-Time Phase.
Thus 

h(t)controller3 = λ,  β = 1 
And 

h(t)system = F(h(t)controller3) = λ 

Modern industrial technologies provide an effective 
improvement in the stability of production processes. In turn, 
this fact leads to the repeatability of the technical 
characteristic (at least within the same production lot).  And as 
a consequence, we have components/units with a very small 
spread in the components/units life-time (δ → 0). Thus, both 
main controllers units on-the-job come up to Wear-out Life-
Time Phase almost simultaneously (with a very small spread). 
But at the same time a spare controller unit on-the-shelf is still 
in Burn-in Life-Time Phase. Therefore, we have a critical 
increase in the system failure probability – the “Red zone” – 
Fig. 3. The basic condition of the “Red zone” existence is the 
parameter ratio: 

δ < Th3 

where δ is the spread of components/units life-time; and Th3 
is the duration of Wear-Out Life-Time Phase (see Fig. 4). 
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Fig. 6  Time diagram of controllers’ life-time usages – Interaction Type_2. 

This effect can cause considerable problems for IT 
departments. And in this case the fault tolerant (redundant) 
design only cannot protect against it. 

IV. SYSTEM MAINTENANCE SCHEDULING

The previous section presents the formal description of the 
effect of a critical increase in the system failure rate. And now 
our main goal is finding the simplest and cheapest solution to 
avoid this effect for existing systems. It is obvious, being 
under continuous financial constraints, that managerial 
procedures (maintenance policy) are the most appropriate way. 

Again our system has two controller units on-the-job and 
one spare controller unit on-the-shelf (see Fig. 2). Fig. 5 and 6 
show the time diagrams of controller units’ life-time usages. 

A. Interaction Type_1 
Fig. 5 presents the “classical” approach – two main 

controller units on-the-job are used for the whole of their life-
time periods. The spare controller unit is used iff one of the 
two main controllers fails.  

Interaction Type_1 characteristic features: 
• In this case we have the potential condition for the “Red

zone” existence.
• It is very difficult to determine DP correctly – we can

use only vendors’ statistics (MTBF) and in the real
world statistics very often lie. But a mistake in DP

determination carries reputation risks for IT department 
personnel: 
• too early assessment – in this case an IT department

will very probably have problems from  financial
management (unnecessary investment);

• too late assessment – in this case it is highly probably
that the system will reach the wear-out period (the
“Red zone” in the worst case) and only the IT-
department (not financial management) takes full
responsibility for the consequences.

• In this case it is very difficult to convince financial
management of the need for investment in IT
infrastructure – the system has been working well since
installation and there are spare critical components/units
on-the shelf.

But we need to state here – the real advantage of this case is 
the minimal IT department interference in error-free system 
operations. 

B. Interaction Type_2 
Fig. 6 presents the possible solution based on periodic 

replacement of one of two main controller units and a spare 
controller unit. 

Interaction Type_2 characteristic features: 
• In this case we do not have the potential condition for

the practical “Red zone”.
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• It is very easy to determine DP – the system is still in
fault-tolerant mode but there are no longer any spare
critical components/units (see Fig. 6). And it is obvious
that in this case we have a lot of time for the decision
realization (starting a new project or buying additional
spare components/units).

• In this case there is the strong argument for financial
management – there is nothing on-the-shelf.

And we need to state here – in this case the system life-time in 
fault-tolerant (redundant) mode is up to 50% longer than the 
system life-time in the first case (Interaction Type_1). 
Potentially it can be used for saving investments in IT 
infrastructures. 

V. CONCLUSIONS 
When talking about fault tolerant industrial computing 

systems, we usually mean redundant commercial computing 
systems (specific areas like the military, nuclear or aerospace 
industries are beyond the scope this work). In practice these 
industrial systems are under great financial constraint. As a 
consequence, they have to remain in operational state as long 
as possible due to their commercial attractiveness. 

In this work we provided the analysis of the instantaneous 
failure rate of commercial redundant computing systems at the 
end of their life-time period. Under certain circumstances the 
repeatability of the technical characteristic can cause a critical 
increase in the system failure rate for redundant systems at 
that time. The fault tolerant (redundant) design cannot protect 
against this challenge (in contrast to The Useful Life-Time 
Phase). In this case, the significant impact on operational 
availability characteristics can be provided by the 
maintenance scheduling. On the basis of the analysis we 
determined the maintenance scheduling which can help (1) to 

avoid this effect; and, as a consequence, (2) to extend the 
system life-time in fault-tolerant (redundant) mode. 
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