
International Journal of Computer Trends and Technology (IJCTT) – volume 21 Issue 1 – Mar 2015

Industrial Computing Systems:
A Case Study of Fault Tolerance Analysis

Andrey A. Shchurov
Department of Telecommunications Engineering, Faculty of Electrical Engineering,

Czech Technical University in Prague, The Czech Republic

Abstract— Fault tolerance is a key factor of industrial computing
systems design. But in practical terms, these systems, like every
commercial product, are under great financial constraints and
they have to remain in operational state as long as possible due to
their commercial attractiveness. This work provides an analysis
of the instantaneous failure rate of these systems at the end of
their life-time period. On the basis of this analysis, we determine
the effect of a critical increase in the system failure rate and the
basic condition of its existence. The next step determines the
maintenance scheduling which can help to avoid this effect and to
extend the system life-time in fault-tolerant mode.

Keywords— reliable computing system, fault tolerance,
maintenance scheduling.

I. INTRODUCTION
Nowadays, manufacturing companies are seeking to

continuously improve efficiency and drive down costs for
existing facilities and processes. The key to achieving these
goals is uninterrupted access to information. With a constant
flow of data (including real-time technological processes),
manufacturers can develop more efficient ways to connect
globally with suppliers, employees and partners, and to more
effectively meet the needs of their customers. As a
consequence, in addition to the technical specifications
(performance, interoperability, functionality, etc.), industrial
computing systems face the following additional challenges:

• reliability – solutions must support the operational
availability of the manufacturing facility;

• cost – capital comes at a premium, and additional costs
(or costlier components) must add clear value that is
understood by the financial management;

• flexibility – solutions have to rely on commercial off-
the-shelf (COTS) equipment, provided by a number of
vendors.

Operational availability is the critical feature of industrial
computing systems. For this reason the design of these
systems is based on the concepts of fault tolerance – in
practical terms, they are able to keep working to a level of
satisfaction in the presence of technical and/or organizational
problems, including [1]:

• hardware-related faults;
• software bugs and errors;
• physical damage or other flaws introduced into the

system from the environment;

• operator errors, such as erroneous keystrokes, bad
command sequences, or installing unexpected software.

The key factor of the fault tolerant design is preventing
failures due to system components and it addresses the
fundamental characteristic of fault tolerance in two ways
[2][3]:

• replication – providing multiple identical instances of
the same component and choosing the correct result on
the basis of a quorum (voting);

• redundancy – providing multiple identical instances of
the same component and switching to one of the
remaining instances in case of a failure (failover).

On the other hand, it is well known that the effectiveness of
computing systems depend on both the quality of its design as
well as the proper maintenance actions to prevent it from
failing. In fact, the choice of scheduled maintenance policies
which are optimum from an economic point of view
constitutes a predominating approach in reliability theory [4].

Our main goal is finding the simplest and cheapest solution
to keep fault tolerant industrial computing systems in
operational state as long as possible due to their commercial
attractiveness. Thus, to accomplish such a goal we need: (1) to
identify a typical (commercial) configuration of these systems;
and (2) to analyse systems behaviour at the end of the useful
period and at the wear-out period of the systems life-time.

 The rest of this paper is structured as follows. Section 2
introduces the related work. Section 3 presents analysis of the
instantaneous failure rate of commercial computing systems at
the end of their life-time period. On the basis of this analysis,
we determine the “Red zone” (a critical increase in the system
failure rate) and the basic condition of its existence. Section 4
introduces the maintenance scheduling which can help to
avoid this effect. Finally, conclusion remarks and future
research directions are given in Section 5.

II. BACKGROUND

In the past several decades, maintenance and replacement
problems have been extensively studied in the literature. The
most recent systematic survey of maintenance policies for the
last 50 years is presented by Sarkar et al. [5]. Based on this
survey, maintenance models can be roughly classified into
following categories: age replacement policy, block
replacement policy, periodic preventive maintenance policy,
failure limit policy, sequential preventive maintenance policy,
repair cost limit policy, repair time limit policy, repair number

ISSN: 2231-2803 http://www.ijcttjournal.org Page 50

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 21 Issue 1 – Mar 2015

counting policy, reference time policy, mixed age policy,
group maintenance policy, opportunistic maintenance policy,
etc. Each kind of policy has different characteristics,
advantages and disadvantages. In this context, this work lies
in the area of periodic preventive maintenance policy.

Fig. 1 Bathtub curve for electronic devices.

On the other hand, when dealing with maintenance models
the analysis of the failure rate play a primary role. Generally,
we can define the instantaneous failure rate as:

h(t)system = h(t)hardware + h(t)software + h(t)operate

h(t)hardware is hardware failure rate (defined by vendors). This
is a typical bathtub curve for electronic devices (see Fig. 1)
[6][7][8][9]. In this case the failure rate can be represented by
the Weibull transformed distribution [7]:

h(t)hardware = λβtβ-1

if t ∈ Th1 (Burn-in Life-Time Phase) then 0 < β < 1
if t ∈ Th2 (Useful Life-Time Phase) then β = 1
if t ∈ Th3 (Wear-Out Life-Time Phase) then β > 1

We should mention here environmental influences –
temperature, humidity, EMI and other [6]. These factors exert
influence not only on components/units on-the-job, but on
spare components/units on-the-shelf. Bad storage conditions
can directly affect hardware failure rates (the stress effect in a
typical bathtub curve [7]) or even lead to unexpected failure of
spare components/units in the worst case.

And based on this representation, we can define the
“Decision point” (DP) – the critical point of every commercial
telecommunication project – where the IT department has to
decide between:

• starting a new project (buying a new system),
• buying additional spare components/units,
• finishing the current project.

h(t)software is embedded software failure rate (defined by
vendors). The total failure rate for the software can be
represented as:

h(t)software = h(t)update + h(t)upgrade

where h(t)update is reliability improvement failure rate; and
h(t)upgrade is upgrade failure rate.

The reliability improvement or bug fix software
modification process occurs as part of regularly scheduled
software updates. As a consequence, the reliability
improvement failure rate is closely related to early failures in
hardware [6][8]. In contrast to the bug fix software
modifications, vendors are continuously changing embedded
software to both improve existing functionality and add new
capabilities. As the software grows and changes, the upgrade
failure rate will inherently increase due to the increased code
size and complexity. Thereafter, we have two basic options:

• Minor code changes (current software release update).
In this case, the upgrade failure rate affects the total
(aggregate) failure rate like the stress effect [8].

• Global code changes (upgrade to new software release).
This case leads the total (aggregate) failure rate to the
beginning of another burn-in period [6][8].

An important note – even the total failure rate tends to zero
value as time becomes large, the processes of code changing
and code size growth lead computing systems to settle on a
steady-state (nonzero software failure rate) [8].

h(t)operate is operator failure rate – erroneous keystrokes, bad
command sequences, or installing unexpected software [1].

III. ANALYSIS OF SYSTEM BEHAVIOUR

When talking about fault tolerant industrial computing
systems, we usually mean redundant commercial computing
systems (we need to state here – specific areas like the
military, nuclear or aerospace industries are beyond the scope
this work). In practice these industrial systems are under great
financial constraint – the main challenge is how to combine a
real fault tolerance and commercial attractiveness. As a
consequence, nowadays these systems have modular and/or
distributed architectures with critical components duplication
(usually controller/processor and power supply units).
Additional reliability is provided by the availability of spare
components or units. The number and composition are defined
by the project’s budget. The architectural diagram of these
systems (based on the von Neumann machine representation
[10]) is shown in Fig. 2. Of course, some vendors provide,
within extended technical support, operative replacement of
failure components, but this service has disadvantages:

• additional expenses – it is very difficult to find strong
arguments for financial management;

• response time (especially in developing countries) is
always longer than having a spare component on-the-
shelf.

Thus, as the object for analysis we have a system with two
controller units on-the-job and one spare controller unit on-
the-shelf (see Fig. 2). Controller/processor units are usually
the most expensive part of every computing systems and it is
usually impossible to persuade the financial management to
buy more than one spare unit.

ISSN: 2231-2803 http://www.ijcttjournal.org Page 51

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 21 Issue 1 – Mar 2015

Fig. 2 Architectural diagram of redundant commercial computing systems.

The analysis covers the end of the useful period and the
wear-out period of the system life-time. In order to simplify
the analysis, let us make the following assumptions:

• All three controller units are identical.
Components/units instantaneous failure rate is:

h(t)controller1 = h(t)controller2 = h(t)controller3 = h(t)controller

• Two main controllers units on-the-job are used during
their entire life-time periods. The spare controller unit is
used only if one of the two main controllers fails
(Interaction Type_1 – see Section 4 “System
maintenance scheduling”).

• This standby redundant system has perfect sensing and
switching subsystems.

• The IT department is staffed by qualified personnel and
the system is stable and does not usually require
operator interventions:

h(t)operate << h(t)hardware

At the end of the useful period industrial computing
systems generally use “stable” software releases. In this case
[8]:

h(t)software << h(t)hardware

Thus, the reliability function is dominated by hardware
failures and the impact of software failures is minor with
respect to the system failure rate:

h(t)hardware ≈ h(t)controller

In turn, the components/units life-time period can be
described by the lognormal distribution [7]. The parameters of
the distribution:

• a mean μ – a mean value of components/units life-time;
• a standard deviation δ – spread of components/units

life-time
Therefor the system instantaneous failure rate can be

represented as:

h(t)system = F(h(t)controller1, h(t)controller2)
h(t)controller1 ≈ h(t)hardware = f(t)

h(t)controller1 ≈ h(t)hardware = f(t + δ)
f(t) = λβtβ-1

Fig. 3 Fault-tolerant system behaviour – an arbitrary component/unit failure.

Fig. 4 Fault-tolerant system behaviour – two components/units simultaneous
failure

The following two options describe various scenarios of the
fault-tolerant system behaviour.

A. Option 1 – system behaviour in the case of δ >> 0
In practical terms, this option is the current practice (failed

components/units replacement) and there is nothing new here
[7][8][9] – see Fig. 3.

B. Option 2 – system behaviour in the case of δ → 0
1. If t < T0 (see Fig. 4), then:

• The first controller unit (Controller_1) is in the Useful
Life-Time Phase.

• The second controller unit (Controller_2) is in the
Useful Life-Time Phase.

• The third (spare) controller unit (Controller_3) is not
present.

Thus
h(t)controller1 = h(t)controller2 = λ, β = 1

And
h(t)system = F(h(t)controller1, h(t)controller2) = λ/2

ISSN: 2231-2803 http://www.ijcttjournal.org Page 52

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 21 Issue 1 – Mar 2015

Fig. 5 Time diagram of controllers’ life-time usages – Interaction Type_1.

2. If T0 < t < T1 (see Fig. 4), then:
• The first controller unit (Controller_1) is in the Wear-

Out Life-Time Phase.
• The second controller unit (Controller_2) is in the

Wear-Out Life-Time Phase.
• The third (spare) controller unit (Controller_3) is not

present.
Thus

h(t)controller1 = λβtβ-1, β > 1
h(t)controller2 = λβ(t + δ)β-1, β > 1

And
h(t)system = F(h(t)controller1, h(t)controller2)

3. If T1 < t < T2 (see Fig. 4), then:
• The first controller unit (Controller_1) is not present.
• The second controller unit (Controller_2) is not present.
• The third (spare) controller unit (Controller_3) is in the

Burn-in Life-Time Phase.
We need to state here: the well-known practice is to burn-in
components in the lab before putting them on-the-shelf – it
can help to avoid the worst effect of the Burn-in Life-Time
Phase. But these lab tests usually last one or two weeks (up to
four in the best case) while a typical Burn-in Life-Time Phase
is about 20 weeks [9]. Therefore we cannot completely
eliminate this period from the analysis.
Thus

h(t)controller3 = λβtβ-1, 0 < β < 1
And

h(t)system = F(h(t)controller3)

4. If t > T2 (see Fig. 4), then:
• The first controller unit (Controller_1) is not present.
• The second controller unit (Controller_2) is not present.
• The third (spare) controller unit (Controller_3) is in the

Useful Life-Time Phase.
Thus

h(t)controller3 = λ, β = 1
And

h(t)system = F(h(t)controller3) = λ

Modern industrial technologies provide an effective
improvement in the stability of production processes. In turn,
this fact leads to the repeatability of the technical
characteristic (at least within the same production lot). And as
a consequence, we have components/units with a very small
spread in the components/units life-time (δ → 0). Thus, both
main controllers units on-the-job come up to Wear-out Life-
Time Phase almost simultaneously (with a very small spread).
But at the same time a spare controller unit on-the-shelf is still
in Burn-in Life-Time Phase. Therefore, we have a critical
increase in the system failure probability – the “Red zone” –
Fig. 3. The basic condition of the “Red zone” existence is the
parameter ratio:

δ < Th3

where δ is the spread of components/units life-time; and Th3
is the duration of Wear-Out Life-Time Phase (see Fig. 4).

ISSN: 2231-2803 http://www.ijcttjournal.org Page 53

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 21 Issue 1 – Mar 2015

Fig. 6 Time diagram of controllers’ life-time usages – Interaction Type_2.

This effect can cause considerable problems for IT
departments. And in this case the fault tolerant (redundant)
design only cannot protect against it.

IV. SYSTEM MAINTENANCE SCHEDULING

The previous section presents the formal description of the
effect of a critical increase in the system failure rate. And now
our main goal is finding the simplest and cheapest solution to
avoid this effect for existing systems. It is obvious, being
under continuous financial constraints, that managerial
procedures (maintenance policy) are the most appropriate way.

Again our system has two controller units on-the-job and
one spare controller unit on-the-shelf (see Fig. 2). Fig. 5 and 6
show the time diagrams of controller units’ life-time usages.

A. Interaction Type_1
Fig. 5 presents the “classical” approach – two main

controller units on-the-job are used for the whole of their life-
time periods. The spare controller unit is used iff one of the
two main controllers fails.

Interaction Type_1 characteristic features:
• In this case we have the potential condition for the “Red

zone” existence.
• It is very difficult to determine DP correctly – we can

use only vendors’ statistics (MTBF) and in the real
world statistics very often lie. But a mistake in DP

determination carries reputation risks for IT department
personnel:
• too early assessment – in this case an IT department

will very probably have problems from financial
management (unnecessary investment);

• too late assessment – in this case it is highly probably
that the system will reach the wear-out period (the
“Red zone” in the worst case) and only the IT-
department (not financial management) takes full
responsibility for the consequences.

• In this case it is very difficult to convince financial
management of the need for investment in IT
infrastructure – the system has been working well since
installation and there are spare critical components/units
on-the shelf.

But we need to state here – the real advantage of this case is
the minimal IT department interference in error-free system
operations.

B. Interaction Type_2
Fig. 6 presents the possible solution based on periodic

replacement of one of two main controller units and a spare
controller unit.

Interaction Type_2 characteristic features:
• In this case we do not have the potential condition for

the practical “Red zone”.

ISSN: 2231-2803 http://www.ijcttjournal.org Page 54

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 21 Issue 1 – Mar 2015

• It is very easy to determine DP – the system is still in
fault-tolerant mode but there are no longer any spare
critical components/units (see Fig. 6). And it is obvious
that in this case we have a lot of time for the decision
realization (starting a new project or buying additional
spare components/units).

• In this case there is the strong argument for financial
management – there is nothing on-the-shelf.

And we need to state here – in this case the system life-time in
fault-tolerant (redundant) mode is up to 50% longer than the
system life-time in the first case (Interaction Type_1).
Potentially it can be used for saving investments in IT
infrastructures.

V. CONCLUSIONS
When talking about fault tolerant industrial computing

systems, we usually mean redundant commercial computing
systems (specific areas like the military, nuclear or aerospace
industries are beyond the scope this work). In practice these
industrial systems are under great financial constraint. As a
consequence, they have to remain in operational state as long
as possible due to their commercial attractiveness.

In this work we provided the analysis of the instantaneous
failure rate of commercial redundant computing systems at the
end of their life-time period. Under certain circumstances the
repeatability of the technical characteristic can cause a critical
increase in the system failure rate for redundant systems at
that time. The fault tolerant (redundant) design cannot protect
against this challenge (in contrast to The Useful Life-Time
Phase). In this case, the significant impact on operational
availability characteristics can be provided by the
maintenance scheduling. On the basis of the analysis we
determined the maintenance scheduling which can help (1) to

avoid this effect; and, as a consequence, (2) to extend the
system life-time in fault-tolerant (redundant) mode.

ACKNOWLEDGMENT
This research has been performed within the scientific

activities at the Department of Telecommunication
Engineering of the Czech Technical University in Prague,
Faculty of Electrical Engineering.

REFERENCES
[1] D. K. Pradhan, Ed., Fault-tolerant computer system design, Prentice-

Hall, 1996.
[2] H. Langmaack, W.-P. d. Roever and J. Vytopil, Eds., Formal Techniques

in Real-Time and Fault-Tolerant Systems: Third International
Symposium Organized Jointly with the Working Group Provably
Correct Systems, ProCoS, Lubeck, Germany, September 19-23, 1994
Proceedings, Springer-Verlag, 1994.

[3] N. G. Leveson, Engineering a Safer World: Systems Thinking Applied
to Safety (Engineering Systems), The MIT Press, 2012.

[4] I. Gertsbakh, Reliability Theory With Applications to Preventive
Maintenance, Springer, 2006.

[5] A. Sarkar, S. C. Panja and B. Sarkar, "Survey of maintenance policies
for the Last 50 Years," International Journal of Software Engineering &
Applications, vol. 03, no. 2, pp. 130-148, 2011.

[6] N. G. Leveson, Safeware: system safety and computers, ACM, 1995.
[7] M. Modarres, M. Kaminskiy and V. Krivtsov, Reliability Engineering

And Risk Analysis: A Practical Guide, 2nd ed., CRC Press, 2010.
[8] M. L. Ayers, Telecommunications System Reliability Engineering,

Theory, and Practice, 1st ed., Wiley-IEEE Press, 2012.
[9] D. P. Siewiorek and R. S. Swarz, Reliable computer systems: design and

evaluation, 3rd ed., A. K. Peters, Ltd., 1998.
[10] A. S. Tanenbaum and T. Austin, Structured Computer Organization, 6th

ed., Prentice Hall Press, 2012.

ISSN: 2231-2803 http://www.ijcttjournal.org Page 55

http://www.ijcttjournal.org/

