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Abstract—This paper presents a new long-range full 3D 

magnetic tracking system for horizontal directional drilling 
(HDD), and describes its performance. The system is able to 
determine the full 3D mutual position of the receiver with respect 
to the transmitter. The system presented here belongs to the 
category of hybrid trackers using an active magnetic ranger, an 
optical gyro and three micro-machined inclinometers. The gyro is 
used for dead-reckoning navigation over long distances (up to 2 
km), and the magnetic tracking system, consisting of a coil 
magnetic transmitter and a magnetometer receiver, is used when 
two drill heads are approaching each other beneath the surface at 
the assumed meeting point. The functionality of the system was 
verified for the maximum range of 17m with 1,2m RMS 
accuracy, and with 0,34m RMS accuracy for the range below 
10m.  
 

Index Terms—magnetic tracking, magnetic sensors 
 

I. INTRODUCTION 
Trackers generally evaluate the position and the orientation 

of a cooperating target. Optical trackers are first-choice 
devices, but they cannot be used underground. The same 
applies for differential GPS and similar systems that use radio 
signals. The tracking systems used for Horizontal Directional 
Drilling (HDD) usually operate using one of the following 
principles: 

Inertial navigation, using dead reckoning for position estimation 
[1]  

Magnetic compasses (with dead reckoning) [1] 
Magnetic trackers (with an artificial magnetic source)[12] 
Hybrid systems (combinations of various methods)[7] 

 
A dead-reckoning system uses angular rate sensors as well as 
highly accurate accelerometers. The position is integrated in 
known distance steps. This principle suffers from the limited 
accuracy of angular rate sensors and accelerometers.  
Extremely accurate and expensive sensors are necessary for 
long distance guidance. 
Systems with a magnetic compass suffer from the permanent 
fields created by magnetized objects. Magnetic sensors alone 
evaluate only orientation, not position. This is because the 
Earth’s magnetic field changes only slowly with position.  
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Magnetic position trackers estimate the spatial position and 
the orientation of an object, using an artificial magnetic field. 
Conventional tracking systems use tri-axial source coils, 
which are excited either by three sine wave currents of 
different frequencies, or by a sequence of pulses. Tri-axial 
magnetic sensors (usually induction coils, AMR sensors or 
fluxgates) are attached to the tracked object, and they measure 
the magnetic field from the source. Trackers are used in virtual 
reality, entertainment, and biomechanical studies. They are 
also used in the drilling and mining industry since they can 
operate below the surface [1] 

Another class of position sensing devices uses passive LC 
resonant markers. [2]. One excitation coil and multiple 
detection coils are usually used. The system is able to localize 
multiple targets that have different resonant frequencies with 
accuracy below 1 mm for a distance of 100 mm between the 
marker and the sensor array.  

Other systems use two magnetic sources to estimate the 
position of the drill bit, using a permanent rotary magnet and a 
single wire flowing by with AC current [4]. These approaches 
also have limited range and accuracy.  

A system consisting of one transmitter coil and an array of 
receiving coils on the surface was used for navigating the 
tunneling robot up to 5 m below the ground. Resolution of 1,5 
cm was achieved for a 75 m long drill [5]. However, a system 
of this kind is impractical, as it cannot be used when drilling 
under lakes or in an urban environment.  

Localization of the single ideal magnetic dipole is the most 
simple inversion problem in magnetometry. The solution is 
analytical if we know the three components of the magnetic 
field and the six components of the field gradient at a single 
point (the gradient tensor is symmetrical, as long as curlB is 
zero) [6]. Another approach is the STAR method, recently 
reviewed in[7]. 

If the source coil is small compared to the distance, it can be 
considered as a dipole. Its magnetic field decreases with 1/r3 , 
and this is the fundamental problem for long-range trackers.  

The hybrid system described in [8] fuses data from an inertial 
navigation system and a magnetic tracker. This approach has 
high potential. However, the micro-machined angular rate 
sensors used in [8] have a large bias drift and random walk, 
and this limits the performance of the whole device for a short 
operational time.  

In [9], we described an implantable magnetic distance 
measurement system for stomach volume estimation. The 
system is based on 2 mm diameter transmission and detection 
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coils, and it works at 3 kHz frequency. The basic accuracy was 
1 mm at 5 cm distance and 5 mm at 10 cm distance. We used a 
tri-axial detection coil to measure the distance for an arbitrary 
position, [8]. A similar system using AMR sensors is 
described in [11].  

A 3-D fully magnetic tracker with 1 m range was developed to 
measure distance in any position [12]. The uncertainty caused 
by noise and interference is below 1 mm, even in a noisy 
environment. Systematic errors of ±1 cm can be corrected by 
using a calibration model.  

The system uses a compact tri-axial field source and a tri-
axial field sensor. The instrument should work in the vicinity 
of large metal objects that are highly conductive. In order to 
avoid field distortion due to eddy currents we had to use an 
excitation frequency less than10 Hz. It is not practical to use a 
DC field (e.g. from a permanent magnet), as it cannot be 
distinguished from the Earth’s field. For very low frequencies, 
an induction coil does not have sufficient sensitivity – AMR 
magneto resistors or fluxgate sensors are necessary. In 
comparison with the high precision achieved for distance 
measurements, the uncertainty for the angular parameters (2 
position angles and 3 orientation angles) was too high.  

This paper is focused on a hybrid guiding system which 
uses a dead-reckoning method to navigate the drill head over a 
large distance, and a magnetic position tracker for a precise 
final approach. The system is used in situations where there 
are two drill heads approaching from opposite directions, and 
they should meet at a defined location. The dead-reckoning 
system fuses data from gyros and inclinometers, while the 
magnetic tracking system includes an artificial magnetic 
source and a magnetometer.  

II. HYBRID TRACKER 
System description 

The system presented here was developed for precise 
horizontal underground drilling guidance. When the drilling 
path is too long (3km and more), drilling is often done from 
both sides due to limitations of the drill rig torque. The aim is 
to meet in the middle of the drill trajectory at a defined 
location. It is a challenging task to steer both drilling heads to 
the same point and to stop them safely before contact is made 
(Fig. 1).  
 

 
 

Figure 1.  Two approaching drilling heads. Drilling has to be securely 
stopped before the heads touch 

Since the shape and the dimensions are strictly limited in the 
drilling business by the dimension of the drilling aperture, it 
was necessary to optimize the shape and also the dimensions 
of the coil to fit into the HDD drill head.  
The dead-reckoning method is used to steer the drilling system 
over a long distance in the first phase (e.g. 2.5km) to reach the 
approximate meeting point. DRILLGUIDE GST guiding 
software uses precise orientation data from accelerometers and 
angular rate sensors, together with a drill-string distance 
measurement, to perform this task. This information is used by 
the dead-reckoning algorithm to calculate the position of the 
drill-head in WGS84 coordinates. The accuracy (3 sigma) of 
the angular rate sensors used in DRILLGUIDE GST is 0,04 
degrees for the azimuth and 0,02 degrees for the pitch. The 
dead-reckoning system generally suffers from integral error. 
The maximum position error for a drilling distance of 1000 
meter is theoretically less than 69 cm. So, when drilling from 
two sides for a total product pipe length of 2000 m, the drill 
heads may pass each other at a maximum distance of 1.38 m at 
the desired meeting position. For longer total product pipe 
lengths, the passing distance will increase proportionally (e.g. 
for 3000 m the maximum passing distance will be 2,07 m). 

Due to the limited accuracy of dead reckoning over long 
distances, precise guidance is taken over by a magnetic tracker 
when the expected meeting point is reached. The magnetic 
tracking system estimates the mutual position between the two 
drill heads – coordinates X,Y,Z (see Figure 2. ). The drill path 
can then be corrected (taking into account the minimum 
allowed product pipe bending radius) in order to penetrate the 
drill precisely from the opposite direction. The whole system 
consists of a coil excitation unit in one drill head, which acts 
as an artificial magnetic field source. Magnetic sensors are 
placed in the second drill head – i.e. the magnetometer unit.  

 

 
Figure 2.  Mutual position of the systems (x,y,z) 

 
Figure 3.  Transmission and sensing units in the drilling pipes. The shiny 

pieces are made of AISI 316 non-magnetic alloy. 
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The coil unit consists of two identical axial coils (1000 turns, 
10 cm average loop diameter, 12 cm coil length, max current 
of 30Ap-p). The coil axis is identical with the drill head axis. 
The coils are excited consecutively with a rectangular shape 
current (see Figure 6. ). The coil excitation unit also contains 
the control electronics and batteries to provide sufficient 
excitation power. The distance between the coils is set to 1m 
in order to have two different magnetic field source locations 
for each measurement point (Figure 8. ). A separate coil 
driving circuit for each coil allows full excitation current 
pattern settings (duration as well as amplitude). 

 

Figure 4.  Sketch of the coil unit, two axial excitation coils. 

The magnetometer unit uses two Billingsley TFM100G2 tri-
axial fluxgate sensors with noise of 10 pT/√Hz@1Hz 
(approximately 100 times better than AMR sensors). The 
distance between the magnetometers is also set to 1m. Six 
analog outputs from the magnetometers are processed by 24-
bit ADC electronics. The magnetometer unit is also equipped 
with accelerometer sensors. Good alignment of the magnetic 
sensors to the accelerometers is necessary, and a special 
calibration routine was developed for this purpose. The 
alignment error after calibration is better than 0.1 deg.  

 

Figure 5.  Magnetomter unit sketch, two TFM100G2 magnetometers. 

 

Operation principle 
The dead-reckoning algorithm guides the two units to the 
approximate meeting point at a given location. At this 
position, the system is switched to magnetic localization 
mode. In this mode, the two units remain stable, and the  
precise orientation with respect to the geographical frame is 
measured. The orientation is described using three angles: 
azimuth ψ, pitch θ, and roll φ. The precise azimuth value is 
taken from the optical gyro within the system (the accuracy is 
better than 0,04deg), the roll and the pitch are taken from the 
internal accelerometer (accuracy 0,2 deg, after the calibration 
procedure [13]). 

The two downhole units are connected via powerline 
communication to the uphole receiver. The uphole receiver 
sends commands to the magnetometer unit to switch to 
listening mode (to activate the magnetometers) and to the coil 
unit to apply the excitation sequence to the coils. The 
excitation sequence is known in terms of the number of 
excitation pulses, the amplitude and duration, including the 
synchronization pulse, see Figure 6. The currents for both 
coils are continuously measured for both current polarities and 
for both coils. These measured values are communicated to 
the uphole receiver, and are used to determine the precise 
magnetic moment difference ∆M between positive I1,

+,and 
negative I1,

-current polarity for both coils (equation ( 1)), where 
N is the number of turns and S is the average area of the turns. 
The magnetic moment ∆M that is created is used to update the 
dipole model.  

 
 

( 1) 

The magnetometer unit is switched to listening mode when it 
continuously evaluates the measured signals from all six 
active axes and searches for the known synchronization pulse 
pattern in the magnetic data – the mutual correlation principle 
is used to evaluate the data. The coils are excited by the 
known and well-defined dual polarity excitation sequence. 
The pulse duration and also the pulse count are known for 
each coil. The coils are excited consecutively, one after the 
other, in order to obtain four independent results. A high 
current synchronization pulse is sent at the beginning of the 
excitation sequence. This pulse is used for time 
synchronization of the two units.  

 

 

 

Figure 6.  Coil excitation sequence. 

The embedded software is able to evaluate the magnetometer 
signal in real-time for the presence of a synchronization pulse, 
and can accurately trigger (jitter less than 30ms) the data 
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sampling procedure. Due to the time synchronization of the 
units, the magnetic signal data that corresponds to the rising 
and falling edges of the coil excitation current is skipped in 
order to avoid any transition effects which might result in 
inaccurate results. Since the coil excitation current timing 
pattern is also known on the magnetometer side, the data 
samples are taken in phase with the excitation pattern. 
Synchronous detection is therefore then available on the 
magnetometer side.  

Data processing 
Both excitation coils are approximated by a dipole with 
magnetic moment M and its difference ∆M when a dual 
polarity current is used, equation ( 1). The magnetic field 
generated by a dipole in 3D space is described by equation ( 2), 
see Figure 7. The radial and tangential components can be 
described in spherical coordinates using equations ( 3),( 4) 
where r is the space point vector, φ is the angle between the 
magnetic moment and vector r, and M is the coil moment 
caused by current I. The data samples belonging to each 
positive current amplitude pulse and also to any negative 
current pulse are evaluated separately to get average values of 
B-

n and B+
n.. 

Due to the dual polarity excitation current and ∆B processing, 
the effect of the ambient static magnetic field caused by hard 
iron in the close vicinity of the magnetometers, the Earth’s 
magnetic field and also the sensors offsets is suppressed and 
will not affect the results.  

The output value from the magnetometer system is the 
difference of the measured magnetic field (equation ( 5)) 
caused by a positive current pulse and the measured magnetic 
field caused by the negative current pulse for each 
magnetometer axis and for both excitation periods, i.e. a total 
of 12 values (three axes in both magnetometers evaluated for 
both excitation sequences for coils 1 and 2). These 12 values 
are communicated to the uphole receiver. 

B

Br

B

M

 

Figure 7.  External magnetic field of the dipole. 

 

 
 ( 2) 

 
 

( 3) 

 
 

( 4) 

 
 

( 5) 

 The available information from both systems is: 

Coil unit 
‐ ΨC  coil unit yaw 
‐ θC  coil unit pitch 
‐ φC  coil unit roll 
‐ ΔM1  ffirst coil excitation moment 
‐ ΔM2   second coil excitation moment 

Magnetometer unit 
‐ ΨM magnetometer unit yaw 
‐ θM magnetometer unit pitch  
‐ φM magnetometer unit roll  
‐ ΔB1‐1  Magnetic  field  vector  of  the  differences 

measured  by  Magnetometer  1  for  the    first  coil 
excitation period [nTp‐p] 

‐ ΔB1‐2  Magnetic  field  vector  of  the  differences 
measured  by Magnetometer  1  for  the  second  coil 
excitation period [nTp‐p] 

‐ ΔB2‐1  Magnetic  field  vector  of  the  differences 
measured  by  Magnetometer  2  for  the  first  coil 
excitation period [nTp‐p] 

‐ ΔB2‐2  Magnetic  field  vector  of  the  differences 
measured  by Magnetometer  2  for  the  second  coil 
excitation period [nTp‐p] 

The key for data processing is to express all magnetic data in 
coordinates that are related to the coil reference frame. In the 
coil reference frame we can use equation ( 2) to describe the 
magnetic field of the coil. The magnetometer data is 
transformed to the coil reference frame using matrix equation ( 
6). 

 ( 6) 

where A,B,D are the rotational matrixes for rotation in 
azimuth, pitch and roll[13]. Index C stands for a vector in the 
coil system reference, and index M stands for a vector in the 
magnetometer system reference. 
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