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Abstract. This work deals with the numerical solution of viscous and viscoelastic fluids
flow. The governing system of equations is based on the system of balance laws for mass
and momentum for incompressible laminar fluids. Different models for the stress tensor are
considered. For viscous fluids flow Newtonian model is used. For the describing of the behaviour
of the mixture of viscous and viscoelastic fluids Oldroyd-B model is used. Numerical solution
of the described models is based on cell-centered finite volume method in conjunction with
artificial compressibility method. For time integration an explicit multistage Runge–Kutta
scheme is used. In the case of unsteady computation dual-time stepping method is considered.
The principle of dual-time stepping method is following. The artificial time is introduced and
the artificial compressibility method in the artificial time is applied.

1. Mathematical model
The governing system of equations is the system of balance laws of mass and momentum for
incompressible fluids. This system is completed by the equation for a viscoelastic part of stress
tensor, [1]:

div u = 0 (1)

ρ
∂u

∂t
+ ρ(u.∇)u = −∇P + div Ts + div Te (2)

∂Te

∂t
+ (u.∇)Te =

2µe

λ1
D− 1

λ1
Te + (WTe − TeW) + (DTe + TeD) (3)

where P is the pressure, ρ is the constant density, u is the velocity vector. The symbols Ts and
Te represent the Newtonian and viscoelastic parts of the stress tensor and

Ts = 2µsD, Te + λ1
δTe

δt
= 2µeD (4)

where D is symmetric part of the velocity gradient D = 1
2(∇u+∇uT ) and W is antisymmetric

part of the velocity gradient W = 1
2(∇u−∇uT ).



Both models could be generalized. In this case the viscosity µ is defined by viscosity function
according to the cross model (for more details see [8])

µ(γ̇) = µ∞ +
µ0 − µ∞

(1 + (λγ̇)b)a
, γ̇ = 2

√
1

2
tr D2 (5)

where µ0 = 1.6 · 10−1Pa.s, µ∞ = 3.6 · 10−3Pa.s, a = 1.23, b = 0.64, λ = 8.2s.

2. Numerical solution
2.1. Steady case
Numerical solution of the described models is based on cell-centered finite volume method using
explicit Runge–Kutta time integration. Steady state solution is achieved for t → ∞. In this
case the artificial compressibility method can be applied. It means that the continuity equation
is completed by the time derivative of the pressure (for more details see e.g. [2], [3], [7]). The
system of equations (including the modified continuity equation) could be rewritten in the vector
form.

R̃βWt + F c
x +Gc

y = F v
x +Gv

y, R̃β = diag(
1

β2
, 1, 1), β ∈ R+ (6)

where W is vector of unknowns, F c, Gc are inviscid fluxes and F v, Gv are viscous fluxes.
Eq. 6 is discretized in space by the finite volume method and the arising system of ODEs is

integrated in time by the explicit multistage Runge-Kutta scheme [5], [6].

Steady boundary conditions The flow is modelled in a bounded computational domain where
a boundary is divided into three mutually disjoint parts: an inlet, an outlet and a solid wall.
At the inlet Dirichlet boundary condition for velocity vector is used. At the outlet the pressure
value is given. The homogeneous Dirichlet boundary condition for the velocity vector is used on
the wall.

2.2. Unsteady case
For the unsteady computation the dual-time stepping method is used. The principle of dual-time
stepping method is following. The artificial time τ is introduced and the artificial compressibility
method in the artificial time is applied. The system of Navier-Stokes equations is extended to
unsteady flows by adding artificial time derivatives ∂W/∂τ to all equations, for more details see
[4]

R̃βWτ + R̃Wt + F c
x +Gc

y = F v
x +Gv

y, R̃ = diag(0, 1, 1), R̃β = diag(
1

β2
, 1, 1). (7)

The derivatives with respect to the real time t are discretized using a three-point backward
formula, it defines the form of unsteady residual

R̃β
W l+1 −W l

∆τ
= −R̃

3W l+1 − 4Wn +Wn−1

2∆t
− Res(W )l = −Res(W )l+1, (8)

where ∆t = tn+1− tn and Res(W ) is the steady residual. The symbol Res(W ) denotes unsteady
residual.

Unsteady boundary condition In the inlet, in the solid wall and in one of the outlet part
the steady boundary conditions are prescribed. In the branch going up the pressure value
is prescribed by the function

pout =
1

4

(
1 +

1

2
sin(ωt)

)
, (9)

where ω is the angular velocity defined as ω = 2πf , where f is the frequency.



3. Numerical results
3.1. Steady numerical results
In this section the steady numerical results of two dimensional incompressible laminar viscous
and viscoelastic flows for generalized Newtonian and Oldroyd-B fluids flow are presented. The
following model parameters are used: µe = 0.001Pa.s, µs = 0.009Pa.s, λ1 = 0.06s, U0 =
0.1m.s−1, L0 = 0.01m, ρ = 1000kg.m−3.

In Fig. 1 velocity isolines for tested fluids cases are presented.
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Figure 1. Velocity isolines of steady flows for generalized Newtonian and Oldroyd-B fluids.

3.2. Unsteady numerical results
The used method is the the dual-time stepping method with artificial compressibility coefficient
β = 1.0m.s−1. The frequency f = 2H is used. In Figs. 2 and 3 graphs of velocity as the function
of time and the velocity distribution are shown. First pictures show graphs of velocity as the
function of the time. The square symbols mark positions in time of the snapshots shown in next
three pictures during one period. As initial data the numerical solution of steady fully developed
flow of generalized Newtonian fluid was used (see Figs. 1).

4. Conclusions
In this paper a finite volume solver for incompressible laminar viscous flows in the branching
channel for two dimmensional case was described. Newtonian model was generalized for
generalized Newtonian fluids flow. Power-law model with different values of power-law index
were used. Three different values of this coefficient for corresponding Newtonian, shear
thickening and shear thinning fluids flow were tested. The explicit Runge-Kutta method was
considered for time integrating. The convergence history confirms robustness of the applied
method. The numerical results obtained by this method were presented and compared.

Two unsteady approaches were considered, the artificial compressibility method and the dual-
time stepping method. Both methods were applied for generalized Newtonian fluids with initial
data obtained by steady numerical computation. In this computations two different values of
frequency were used.
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Figure 2. The graphs of the velocity as the function of time and velocity isolines of unsteady
flow for Newtonian and generalized Newtonian fluids.
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Figure 3. The graphs of the velocity as the function of time and velocity isolines of unsteady
flow for Oldroyd-B and generalized Oldroyd-B fluids.
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