Oponentní posudek disertační práce

"Aplikace plasmové úpravy pro vláknové kompozity s termoplastovou matricí"

Autor: Ing. Vojtěch Nováček

1. Dosažení v disertaci stanovených cílů

Cíle disertační práce byly shrnuty do čtyř základních bodů. Student měl vyvinout metodu pro kvantifikaci adhezních účinků plasmové modifikace práškové matrice, aplikovat plazmatem modifikovaný polyetylen na skelnou výztuž včetně optimalizace procesu a nakonec srovnat dosažené výsledky s průmyslově využívanými chemickými modifikátory (maleinanyhydríd, silan). Experimenty během studia provedené a shrnuté v disertaci podvádějí jednoznačný důkaz, že cíl bylo dosaženo. Navíc lze říct, že práce může najít i své průmyslové využití, což je jistě pro absolventa technického oboru ten největší úspěch.

2. Úroveň rozboru současného stavu v disertaci řešené problematiky


3. Teoretický a praktický přínos disertační práce

Z teoretického hlediska práce přináší spustu otázek, které jsou částečně v disertační práci řešeny z hlediska popisu adheze vláken k matrice, povrchových energií materiálů, jejich specifického povrchu, "stárnutí" povrchové úpravy, atd. Modifikace PE ve formě prášku, který je dále využíván jako matrice pro kompozit se skelnými vlákny, je taktéž studována z hlediska chemického složení povrchu (XPS). V této oblasti by bylo dobré udelat detailnější studii funkčních skupin a stárnutí chemického složení povrchu. V budoucnu by bylo jistě zajímavé se také zabývat změnami v molekulové hmotnosti plazmatem modifikovaného PE a s tím související výsledky taveniny. Největší přínos práce spolu s je jasným těsnějším a zjevně bezpochybně přesnějším způsobem zlepšení adheze mezi vlákny a matricí, který je technicky, ekologicky i procesně velmi výhodný.
4. Vhodnost použitých metod řešení a způsob jejich aplikace

Obecně se jeví práce jako dobře koncipovaná z hlediska použitých metod. Nicméně bych v této oblasti měl výhradu ke zpracování výsledků z hlediska statistiky. Není nikde řečeno, jaké testy byly aplikovány při vyhodnocování výsledků a občas chybí počet vzorků (opakování), které byly použity pro stanovení hodnot veličin a jejich směrodatných odchylek, atd. Domnívám se, že z teoretického hlediska by bylo zajímavé změřit povrchové napětí nebo alespoň kontaktní úhly s vodou u modifikovaných prášků.

5. Formální úroveň práce

Práce bohužel obsahuje řadu stylistických chyb a překlepů, což zbytečně snižuje její úroveň. Řada obrázků by v práci zasoužila překreslit a ne je pouze převzit z literatury. Za všechny hovoří například obrázek 10, kde naznačení měření kontaktního úhlu rozhodně neodpovídá skutečnosti. Dále některé obrázky z rastrovací elektronové mikroskopie by mohly být trochu pečlivěji nasnímané a při srovnávání jednotlivých snímků by mělo být dodrženo jednotné měřítko (str. 69).

6. Otázky

1) Pokud byste se rozhodl měřit povrchovou energii nebo kontaktní úhel práškového PE, jakou metodu byste u tenziometrií zvolil?

2) Nikde jsem v práci nenašel, jaké byly výkony použitého reaktoru při úpravě prášků v plazmatu. Byl použit maximální výkon, který je uveden u přístroje? Je možné, že docházelo ke změně molekulové hmotnosti PE?

7. Závěr


doc. Mgr. Aleš Mráček, Ph.D.,
Ústav fyziky a materiálové inženýrství
Fakulta technologická,
Univerzita Tomáše Bati ve Zlíně