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Chapter 1

Introduction

C ontinuum models of plasticity are considered to be one of the most successful
phenomenological constitutive models of solids [123]. Although comprehen-

sive theories that describe the mechanical behavior of materials at the microscale
have been developed, it is still not common to employ these theories to predict
a behavior of materials at the macroscale. Instead, phenomenological models of
plasticity are used, and, for now, seem to keep their essential role in engineer-
ing design. There are several reasons the phenomenological models are successful
at competing the microscale approach: less computational complexity, straight-
forward interpretation of internal variables and parameters, easier calibration, etc.

In general, the phenomenological modeling can be characterized as a predicting
behavior based on correlations between physical quantities, where the empirical re-
lationship is based on experimental observation, but not necessarily supported by
any theory. It should be emphasized that the phenomenological approach is not lim-
ited to the constitutive modeling of materials, but it comprises numerous branches
of science as well, including astronomy [138], biology [139], metallurgy [141], and
others. Below is a brief historical overview of experimental and theoretical research
in metal plasticity.

A Historical Overview of Experiments in Plasticity

As inherent to phenomenological modeling in general, an experimental research
has played a fundamental role in the evolution of the phenomenological theory of
plasticity. Early attempts at experimental research in plasticity can be traced back
to the turn of the 18th and 19th century [38, 128]. In 1784, Coulomb published
his paper on experiments of a torsional loading of an iron wire [1]. In these ex-
periments, he recognized an increasing plastic strain manifested by an increasing
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Chapter 1. Introduction

total strain. In 1831, Gerstner published his work on a piano wire loading [2, 3].
He has observed increasing plastic strain due to increasing load and presented his
results in form of stress–strain curves. Some of his results are shown in Tab. 1.1
and plotted in Fig. 1.1. Starting in 1864, Tresca published several papers on ex-
periments of metal forming [5]. In these papers, he tested punching, extrusion and
compression of various metals and focused on metal flow, rather than yielding. An
important experimental observation was published in 1885 by Bauschinger, who
employed a 100-ton axial load capacity testing machine and a highly precise mirror
extensometer of his own construction, which allowed him to carry out highly pre-
cise strain measurement of the order of 10−6 [9,11,38]. Bauschinger experimentally
studied the change of the yield point under reversal uniaxial loading, i.e., when the
specimen is first loaded in tension and subsequently loaded in compression, or vice
versa. He observed that yielding in one direction decreases a yield strength in the
opposite direction and this behavior is now referred to as the Bauschinger effect.
Further, experimental results under more complex test conditions were published
in 1900 by Guest [12]. He carried out experiments under multiaxial stress states
achieved with a combination of axial and torsional load, and internal pressure ap-
plied to thin-walled tubular specimens.

Without a doubt, the 20th century is a golden age of experimental research of
metal plasticity [71, 72, 87]. This period is characterized by rapid development
of experimental techniques, testing devices, and an increasing number of research
groups. In addition, the 20th century can be divided into several eras according to
the research topics typical for each era.

During the time period 1900–1925, investigators mainly concentrated on valida-
tion of initial yield criteria [15, 16, 18, 19]. This research was motivated by the
design of structures, as the region of elastic behavior needed to be determined for
constructions. From 1925 to 1940, however, research went beyond the elastic do-
main boundary and into the plastic range. Thus, yield curves of different materials
were investigated and researchers studied the plastic flow of materials [21, 23, 24].
As uniform stress states were necessary for the experiments to correlate with the
behavior at a material point, two different experimental techniques became preva-
lent. The first one uses thin-walled tubular specimens simultaneously loaded by
axial stress and internal pressure, e.g., the work of Lode published in 1926 [21]. The
second also uses thin-walled tubular specimens, however, the specimens are loaded
by combined axial load and torque, e.g., the work of Taylor and Quinney published
in 1932 [23]. It should be noted that, later on, many researchers combined both
methods in order to achieve more general stress states. In the years between 1940
and 1950, as the industry grew, so did demand for experimental data, and the num-
ber of materials being investigated increased. In this time, a proof stress definition
based on the 0.2 % offset strain threshold was adopted as a standard [72].

From 1950, an enormous effort in experimental research was devoted to validation
of the slip theory of plasticity. This theory predicted an existence of the corner
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on subsequent yield surfaces. In 1972 Hecker published a paper on experimental
investigation of these corners [62]. In the summary, he refers to 7 papers that
supported the existence of corners, and to 7 papers that rejected the existence of
corners. Hence, a complexity of experimental investigation revealed by ambivalence
in results may be seen. While experimental proofs for a size change and translation
of subsequent yield surfaces can be traced back to Bauschinger [11], observations
from the late 1950s indicate that subsequent yield surfaces become even distorted
due to plastic prestraining [42]. This behavior is now referred to as the Directional
Distortional Hardening (DDH).

Over the last several decades, experiments in plasticity mainly concern yield sur-
faces detection with results being used to develop new phenomenological descrip-
tions. Further, a brief overview of some outstanding experimental papers is given.
In all these papers, the yield surface detection was aimed, and the distortion was
observed. Phillips et al. in 1972 studied distortion of yield surfaces at elevated
temperatures and used the proportional limit to define yielding [63]. Phillips and
Lu in 1984 used both the stress and the strain paths to detect distorted yield sur-
faces [82]. Again, they used a proportional limit to define yielding. Wu and Yeh
in 1991 discussed factors affecting yield surfaces detection, e.g., the elastic moduli
variation, the zero offset strain, and the strain rate of probing [96]. They used the
offset strain of 5με as the yield definition (1με = 10−6 m/m). Wu et al. in 1995
addressed large prestrains reaching up to 20 % [100]. To define yielding, they used
a strain offset of 5με. Ishikawa in 1997 applied radial loading paths to detect yield
surfaces [104]. The offset strain used for the yielding definition was 50με. In the
yield surfaces detection experiment, Sung et al. in 2011 employed an autonomous
testing system controlled by a script instead of a dedicated GUI-designed appli-
cation with limited functionalities [132]. Moreover, they described an advanced
method used to suppress the data scattering.

A Historical Overview of Plasticity Theories

As experimental methods in plasticity evolved, so did plasticity theories and mod-
els. However, the phenomenological approach does not necessarily imply that the
theory and models strictly follow the experiments. Rather, there are numerous ex-
amples of the opposite, i.e., when theoretical predictions precede and are validated
by experiments.

At first, theoretical plasticity was part of the study of the strength of materials and
focused on developing criteria to avoid a failure of constructed structures. Later,
these criteria evolved in a general relation referred to as the yield condition, which
is an essential component of most of the modern theories of plasticity. Beginning
in 1864, Tresca published several papers on experiments of metal forming [5]. Al-
though he addressed the flow of material rather than the condition of when the flow
initiates, he concluded that the material flows under a constant maximum shear
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Chapter 1. Introduction

Tab. 1.1: An experimental data of stress–strain curve of a piano wire with un-
loading sequences published by von Gerstner in 1831 [2, 3]. 1 Line ≈ 2.195 mm,
1 Austrian Pfund ≈ 0.56 kg.

Test Residual Loading Weight (Austrian Pfund)
No. Elongation 4 8 12 16 20 24 28 32 36 40 44 48 52

(1/54Line) Actual Elongation (1/54Line)

0 0
1 0 14
2 1 14 28
3 2 15 29 43
4 3 17 30 44 58
5 6 20 33 47 60 74
6 9 23 37 50 63 77 90.5
7 13 26 40 54 67 81 94 108
8 18 32 45 59 72 86 100 113 127
9 24 38 51 65 78 92 105 119 133 146

10 32 45 59 72 86 100 113 126 140 154 167
11 41 54 68 82 95 108 122 136 150 163 177 190
12 52 66 79 93 107 120 133 147 161 175 188 202 215
13 67 81 94 108 121 135 148 162 176 189 203 216 230 244
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Fig. 1.1: The stress–strain curve plotted from data given in Tab. 1.1.
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stress and listed particular values for several materials. A fundamental break-
through in theoretical plasticity was contributed by Saint-Venant, who followed up
Tresca’s research and in 1871 published a paper with three postulates founding
the theoretical plasticity [8]. The postulates are as follows: (i) the plastic strain
is isovolumetric, (ii) the directions of principal strains coincide with the directions
of principal stresses, and (iii) the maximum shear stress remains fixed during the
plastic deformation. Despite the fact that two last postulates are no longer con-
sidered valid, Saint-Venant’s contribution to the concept of the theory of plasticity
is doubtless. Moreover, the third postulate evolved in a condition now referred to
as Tresca yield criterion. In 1882, Mohr published a graphical representation of
the stress at a material point [10]. He considered a two-dimensional stress state
given by principal stresses σ1 and σ2, a cut through the point by a plain given by
the angle φ, and the normal and shear stress components σ and τ , respectively.
He found out that the stress components σ and τ form a circle parameterized by
the angle 2φ and described some basic properties of this circle. Further, based on
his graphical representation, he proposed a fracture criterion later on referred by
plasticity theories to as Mohr–Coulomb yield criterion.

The most influential yield condition developed thus far is that based on maximum
distortion energy. Named after scientists contributed to its development, this cri-
terion is referred to as Maxwell–Huber–Hencky–von Mises yield condition. In his
letter to Kelvin from 1856, Maxwell has resolved the strain energy density into
volumetric and deviatoric parts, and consequently strongly suspected that when
the later one reaches a certain limit, then “the element will begin to give way” [4].
Unfortunately, he has never come back to this topic nor published it. In 1904, Hu-
ber published the same criterion, however, his work did not become broadly known
because it was written in the Polish language [13,14,116]. In 1913, von Mises pub-
lished the very same criterion [17], and finally, Hencky obtained the same result
independently from his predecessors publishing it in 1924 and citing Huber and
von Mises [20].

Subsequently, the yield condition usually referred to as Drucker–Prager yield cri-
terion was published in 1952 [37]. This criterion encloses the group of four conser-
vative yield criteria described in here, namely, Tresca, Mohr–Coulomb, Maxwell–
Huber–Hencky–von Mises, and Drucker–Prager yield criteria [123]. In addition,
there have been other yield criteria developed, some of which are reported in [112].

Besides the question of yielding initiation, a rule to relate the stress and the strain
under plastic deformation was needed. The coincidence of directions of principal
stresses with those of principal strains postulated by Saint-Venant in 1871 is now
known as the total strain theory [8]. As soon as 1872, however, Lévy, Saint-Venant’s
student, published his work where the increments of plastic strain components
are pronounced to be proportional to deviatoric stress components [6, 7]. Once
again, von Mises formulates the same relation in 1913 [17]. The relation is now
referred to as the Lévy–Mises equation and later on evolved in the flow plasticity
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Chapter 1. Introduction

theory. We know today that co-axiality (same eigenvectors) between the stress
and plastic strain increment tensors is not satisfied in general at the presence of
anisotropy and its expression by means of tensor-valued internal variables; these
variables contribute together with the stress in defining the plastic strain increment
direction based on experiments and modern representation theorems of tensor-
valued functions.

Experimental results showed that initial yield surfaces given by initial yield criteria
evolve due to plastic straining. This phenomenon known as the strain hardening
has motivated authors to establish internal variables responsible for particular har-
dening effects. The most simple effect manifested by an expansion of yield surfaces
is referred to as the isotropic hardening and first theories aiming to model this
phenomenon can be traced back to Nádai and Prager in 1937 [29, 30]. Further,
Bauschinger’s observation [9] was generalized as a translation of yield surfaces and
referred to as the kinematic hardening. The first models of kinematic hardening
were proposed by Melan in 1938 [31], Ishlinskii in 1954 [39], and Prager in 1955
and 1956 [40,41]. Prager’s hardening rule was modified by Ziegler in 1959 [43].

Following the aforementioned first proposition, there have been many hardening
rules suggested. The overview provided here is a very basic and does not aim to
cover all proposed hardening rules and developments in plasticity theory. Some
other important findings and improvements in phenomenological plasticity that
are relevant to this thesis or historically important are briefly described.

In 1926, Schmid did some early attempts on crystal plasticity [22]. In 1934, the
dislocation theory of slip was initiated by works of Orowan, Polanyi, and Taylor [25,
26,27]. Hill in 1950 published models of the plasticity of anisotropic materials [35].
Armstrong and Frederick in 1966 proposed a nonlinear kinematic hardening rule
[52]. Mróz in 1967 suggested using a multi-yield-surface model capable to capture
both the isotropic and kinematic hardening [54]. Valanis in 1971 developed a theory
of viscoplasticity without a yield surface [59,60]. Dafalias and Popov between 1975
and 1977 and Krieg in 1975 proposed a two-surface theory that according to the
first authors was called bounding surface plasticity theory, and included a model
of zero elastic range, i.e., model with no yield surface [68, 69, 70, 73]. Lemaitre
and Chaboche in 1990 generalized the Armstrong–Frederick model of kinematic
hardening by superposition of several independent kinematic variables [93]. In
regards to numerical implementation, Simo and Taylor in 1985 and Runesson et
al. in 1986 proposed a concept of the consistent tangent operator [85, 88].

Structure of the Thesis

The dissertation is organized as follows. After the introduction in Chapter 1, a state
of the art of distortional hardening is placed in Chapter 2, where a detailed overview
of last achievements and actual problems in modeling of distortional hardening is
stated, including experimental evidence, early attempts, and advanced models of

6



distortional hardening. The aims of the thesis are listed in Chapter 3. Chapter 4
presents the methods used to achieve the specified aims of the thesis. Chapters 5
and 6 are the essential parts of the thesis, where the results for monotonic and cyclic
loading, respectively, are presented, including analytical integration of a particular
directional distortional hardening model, equations for the stabilized hysteresis
loops and the cyclic stress–strain curves inherent to the model, two calibration
algorithms for model’s parameters, and sensitivity analysis of these algorithms.
Finally, Chapter 7 presents conclusions from the results achieved.
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Chapter 2

State of the Art of
Distortional Hardening

D istortion of yield surfaces due to strain hardening has been observed in nu-
merous experiments on various types of metals, including but not limited

to [42, 44, 67, 96, 98, 104, 105]. In stress space, the subsequent yield surfaces ex-
hibit distorted ellipses, being highly curved in the direction of loading—often with
a sharp apex—and flattened in the opposite direction. Some examples of exper-
imental data of distorted yield surfaces are given in Figs. 2.1–2.8. Although the
terminology has been evolving and may vary among the authors, nowadays, this
phenomenon is commonly referred to as the Directional Distortional Hardening
(DDH). The word “directional” was added to distinguish from cases of simple dis-
tortional hardening, where distortion changes only the ratio of elliptical axes while
maintaining the elliptical shape. The term DDH was firstly coined in Feigenbaum
and Dafalias [118]. Several complex mathematical models of DDH were introduced
in the last decades, some of which are reported in [79, 81, 90, 94, 101,109,114, 131].
Basically DDH expresses a form of deformation induced anisotropy, and often in
this thesis the word anisotropy will be used in this context. In this chapter, the
state of the art of DDH is given, covering an experimental evidence of DDH, devel-
opment of experimental methods for investigation of DDH, early attempts in mod-
eling, models involving higher-order tensors, and some advanced models of DDH.

2.1 Experimental Evidence

Directional distortional hardening is inherent to various types metals, e.g., steels,
aluminum and its alloys, copper, brass, titanium and its alloys, and nickel alloys.
Thus, it covers materials with various crystal stuctures, e.g., body-centered cubic
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Chapter 2. State of the Art of Distortional Hardening

(bcc), face-centered cubic (fcc), and hexagonal close-packed (hcp). Besides metals,
there has been observed some anisotropy in plastic behavior of polymers and soils
as well. Although this anisotropy does not strictly match and/or correspond to
the definition of DDH, it has some key features in common, namely, complex or
distorted shapes of yield surfaces.

Wu & Yeh (1991) carried out experiments on specimens made of type 304 stainless
steel [96]. They probed the yield surface of a virgin material and found out, that
results are in good agreement with von Mises theory, i.e., that the initial yield
surface in σ–

√
3τ space is circular. Further, they subjected the same specimen

to axial total strain of 0.2 %, which gave rise the axial plastic strain of 540με.
After this prestrain, they used the same method to detected the yield surface as
in case of the virgin material. Unlike the test on virgin material, the test on
strained steel revealed distortion of the circular shape of the yield surface. They
went on the testing on the same specimen with increasing prestrains. The higher
prestrain applied, the higher distortion observed. In Fig. 2.1, the second subsequent
yield surface is shown. Lissenden et al. (1997) investigated specimens made of
type 316 stainless steel [105]. They used a biaxial stress loading trajectory to
prestrain a virgin material. The distortion observed is shown in Fig. 2.2. Hu et
al. (1997) observed distortion in type 45 steel in normalized condition [134], as
shown in Fig. 2.3. Some other results for various types of steels may be seen
in [66,78,80,100,104].

Also, DDH occurs in pure aluminum and its alloys. Phillips and Tang (1972)
studied an effect of loading path on the yield surface of pure aluminum at elevated
temperatures [64]. They concluded that increasing temperature shrinks the size
of yield surafces, while the distortion is not essentially affected by temperature
rise. An example of the distorted yield surface determined at room temperature
is given in Fig. 2.4. Khan et al. (2009) investigated Al6061-T6511 aluminum alloy
[125]. They prestrained specimens by biaxial stress in σ–

√
3τ space, which caused

distorion shown in Fig. 2.5. More results from investigation on aluminum alloys
may be seen in [63,82,86,113,115].

Besides the investigations on steels and aluminum alloys, DDH was reported by
Helling et al. (1986) in experiments on 70:30 brass [87]. In Fig. 2.6, a yield surface
obtained in this testing and distorted by shear prestraining is depicted. Dietrich
and Kowalewski (1997) detected distortion of yield surfaces in experiments on pure
copper [103]. An example of their results is given in Fig. 2.7. Nixon et al. (2010)
carried out experiments on pure α-titanium [127]. Although they used a different
method to detect yield surface than other authors mentioned above, they observed
distortion too, as shown in Fig. 2.8. Some experiments on nickel-base superalloy
Inconel 718 are reported in [107]. Some more experiments on other metals except
steel and aluminum may be seen in [65, 84, 97, 120, 135, 136]. Also, distorted yield
surfaces and yield surfaces with complex shapes, not necessarily evolved due to
strain hardening, may be seen in polymers [117] and soils [108,124,137].
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Fig. 2.2: DDH in experiments on type
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Fig. 2.6: DDH in experiments on 70:30
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2.2 Yield Point Definition

In plasticity theories, yielding is defined when plastic strain increment is induced
either as a result of a stress increment in rate independent plasticity or under the
existing stress in rate dependent viscoplasticity. The current stress at yielding
lies on the yield surface in stress space. In experimental plasticity, however, the
yielding definition is not so straight-forward, because of the difficulty to identify
an appropriate plastic strain increment (not too small, not too large). There are
several definitions that, in general, vary in particular assumptions. Moreover, these
definitions together with their assumptions are often affected by plasticity theories
or enforced by testing methods. In particular many definitions of the yield point
rely on linear behavior of material in elastic domain [78,89,96]. Further, there are
some definitions that adopt von Mises effective strain formula to evaluate multiaxial
strain states [92, 95, 97]. Also, there are some definitions based on assumptions
imposed by particular testing methods [47,51,76]. An overview of various methods
of how to define the yield point in experimental plasticity may be seen in [71, 77].
Here, only the definitions suitable for monotonically hardening stress–strain curves,
i.e., curves with no plateau effect at the yielding, are discussed.

In their experiments, many researchers defined yielding by the proportionality limit
A, as shown in Fig. 2.9 [45, 63, 64]. Although this method seems to be quite
simple and has an explicit physical interpretation, there are two main drawbacks
related. At first, the method assumes linear elastic behavior, which may disqualify
this definition for materials with nonlinear behavior in the elastic domain [71].
Further, no universal definition is given of when the proportionality is corrupted,
which led authors to adopt the lowest deviation from linearity distinguished by their
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experimental setup. Due to this, the yield point strongly depends on the sensitivity
of the measurement and the method does not provide consistent results [71].

Because some materials may undergo pure elastic deformation of non-linear type
beyond the proportionality limit, it is reasonable to define the yield point by the
elastic limit B shown in Fig. 2.9. The elastic limit B is the highest stress that does
not cause any permanent deformation when the specimen completely unloaded.
With no doubts, this definition fits best an intuitive understanding of the plastic
deformation as the permanent deformation. Despite its clear physical interpreta-
tion, this definition brings two substantial problems. The first is in common with
the proportional definition given above. Namely, no universal threshold is given by
this method to distinguish between the neglectable residual strain and the perma-
nent plastic strain. Further, it is quite cumbersome to keep switching between the
loaded and unloaded configuration in order to determine the permanent strain.

In experiments of yield surfaces detection, the most frequently used definition of
the yield point is that of the proof stress [47, 87, 96]. In Fig. 2.9, the particular
yield point that represents this method is denoted by C. During loading, the offset
stress is given by the difference of the total strain measured from the experiment
and the elastic strain computed from the Hooke’s law. If this offset strain reaches
prescribed threshold, yielding is consiered to have occured. The threshold offset
strains vary among authors, usually lying in the range of 10–200με. For recent
papers, the lower values are typical. Note that the proof stress definition of the
yield point in engineering is standardized and adopts the threshold of 0.2 % of total
strain. This point is denoted by D in Fig. 2.9.

Several other definitions of the yield point may be found in literature. Some authors
used the elastic modulus fraction to define the yield point [71]. This is represented
by the point E in Fig. 2.9. Another way is to project the slope of the stress–strain
curve to the zero plastic strain, as shown in Fig. 2.9 and denoted by F [49]. Also,
some authors projected the slope of the stress–strain curve to the zero total strain,
which is represented by the point G in Fig. 2.9 [23,48].

2.3 Experimental Methods in Distortional
Hardening

Some early experiments that revealed the distortion of yield surfaces due to plastic
straining induced on purpose during these experiments may be traced back to late
1950s [42, 44, 45, 47, 48]. Note, the distortion of yield surfaces of metals due to
manufacture process was observed even in late 1930s [28,34]. There have been de-
veloped several experimental techniques suitable to detect yield surfaces distorted
by straining, of which the most frequently employed ones are described below.

In general, there are two main challenges concerning capabilities of experimental
techniques. The first challenge is to achieve uniform stress states in the material.
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This is crucial since the uniform stress states induce uniform strain effects in the
bulk, which makes these effects easier to be observed. The second main challenge
is to achieve probing in the general direction relatively to the loading direction
of prestraining, i.e., relatively to the loading that induced distortion of the yield
surface. This requirement is fundamental to detect distortion.

The simplest method to detect the distortion of yield surfaces is based on the
uniaxial testing of the specimens cut off from a single plate or sheet of prestrained
material. This method was used by a few authors, e.g., Klingler and Sachs in
1948 [34], Szczepiński in 1963 [47], Ascione et al. in 1982 [76], and Nixon et al. in
2010 [127], and it brings several adventages. In particular, it is sufficient to test the
specimens in uniaxial loading mode, which permits to design a simple geometry of
specimens, and keeps the testing methodology quite simple too. On the other hand,
this method requires a high-capacity device to prestrain the plates. Moreover, it
is necessary to unload the plates completly before the specimens are cut off. This
may bring some discrepancy, because, when compared to the other testing methods,
several authors reported the plastic straining even during unloading [64, 96, 125].
Thus, this method disqualifies to observe such an effect.

Theocaris and Hazell in 1965 used a moiré method to detect yield surfaces [51]. This
method is based on the measurement of deflexions of square and rhomboid plates.
The plates are illuminated by a collimated light beam, which causes an oblique
moiré pattern on the surface of plates. From the moiré pattern, the relative deflec-
tion of plates is computed. To relate the stress and displacement fields in loaded
specimens, Theocaris and Hazell used the theory of plates. The main challange in
experiments was to induce various stress ratios in specimens so that the distorted
surfaces would be determined in all quadrants of the respective space. For this
an advanced experimental method was developed, employing several sofisticated
techniques. In particular, square- and rhomboid-shaped specimens were used, sev-
eral loading and supporting configurations were exploited, and some stress states
were even achieved virtually using a superposition of two real states. The major
advantage of this method is that any stress ratio may be addressed. Note, some
other experimental methods described here may suffer from the loss of structural
stability of specimens when particular loading modes are to be achieved. The main
disadvantage of this method is that distorted yield surfaceses are plotted in the
two-dimensional bending moment space. Thus, this method does not provide ab-
solute values of yield stresses of tested material, but rather a relative shape of yield
surfaces is obtained.

Lode in 1926 [21], Hecker in 1972 [62], and Khan et al. in 2010 [126], among the
other authors, used thin-walled tubular specimens loaded by a combined axial load
and internal pressure. As the specimens are thin-walled, internal pressurizing in-
duce neglectable radial stress and substantial hoop stress. Thus, using this type of
loading, the biaxial membrane stress state in specimens is well approximated. The
major advantage of this method is that principal directions are fixed and aligned

15



Chapter 2. State of the Art of Distortional Hardening

with axial, radial, and tangential directions of specimens’ geometry. The major dis-
advantage is in lower structural stability of specimens in compressive loading cases.

Taylor and Quinney in 1931 [23], Naghdi et al. in 1958 [42], and Wu and Yeh in
1991 [96], among the other authors, used thin-walled specimens loaded by a com-
bined axial load and torque. This testing method requires more sofisticated biaxial
testing machine. As the specimens are thin-walled, torque induce quite uniform
shear stress in specimens’ wall. Again, the biaxial stress state is achieved, how-
ever, the principal directions do not remain fixed nor aligned with any directions
within the testing, but rather they depend on particular ratios of torque and axial
load. This is the major difference with the method of combined axial load and
internal pressurizing described above. The variation of principal directions may
bring some discrepancies when the specimens show high plastic anisotropy [57].
Another disadvantage—lower structural stability of specimens in compressive test-
ing cases—is in common with the method of combined axial load and internal
pressurizing described above.

The most advanced testing method developed thus far combines the both methods
that make use of thin-walled specimens and are described above. Thus, the speci-
mens are loaded by a combination of axial load, torque, and internal pressure. This
method was emloyed by several authors, e.g., Shiratori et al. in 1973 [65], Phillips
and Das in 1985 [84], and Sung et al. in 2011 [132], and allows to achieve biaxial
stress states by a variation of components of the stress tensor in three-dimensional
space of axial, shear, and hoop stress. In general, the methods of yield surfaces
detection emloying thin-walled tubular specimens are quite time consuming, since
they usually require one probing trajectory to determine particular point located
on the yiled surface. To make the methodology consistent and effective, Sung et
al. [132] developed a computer code to control the testing machine, which allows
to make the testing fully automated. Moreover, from their results they concluded
that initial yield surfaces determined in three-dimensional stress space do not fully
match von Mises criterion. Also, they have observed some more complex strain
hardening effects manifested by yield surfaces rotation.

2.4 Early Attempts in Modeling

The early attempts to model the distortion of yield surfaces may be traced back
to Hill in 1948 [33]. Motivated by observation of plastic anisotropy in compo-
nents manufactured by forming process, he has extended von Mises criterion to the
orthotropic plasticity case. The proposed yield function is given by

2f = F (σy−σz)2+G(σz−σx)2+H(σx−σy)2+2Lτ2yz+2Mτ2zx+2Nτ2xy−1, (2.1)

where σα and ταβ are the stress tensor components, and F , G, H, L, M , and N
are material parameters. Note, the model inherits pressure insensitivity after von
Mises criterion. Later on, Hill proposed hardening laws for model’s parameters [35].
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Williams and Svensson in 1971 [61] and Lee and Zaverl in 1978 and 1979 [74, 75]
developed a model based on the yield function given by

3f = Mij (si − αi) (sj − αj)− k2, (2.2)

where Mij are the components of the distortional tensor, si and αi are the de-
viatoric stress and back-stress components, respectively, and k is the isotropic
hardening variable. The model extends Hill’s criterion [33], and incorporates the
isotropic, kinematic, and distortional hardening. The strain rate equation was for-
mulated in terms of the equivalent plastic strain rate, the equivalent stress, and
the plastic strain potential. The equivalent plastic strain rate was expressed in
terms of an equivalent stress, a scalar-valued plastic shear resistance, and tem-
perature. In general, it was formulated so that it is capable to model different
micromechanical processes of deformation.

Ortiz and Popov in 1983 [79] proposed a model of the yield surface distortion that
involves a scalar-valued multiplier expressed in terms of a Fourier series. The yield
function is given by

f =
√

(sij − αij) (sij − αij)− k
(

1 +

+∞∑
2

ρn cosnθn

)
, (2.3)

where sij and αij are the deviatoric stress and back-stress tensor components,
respectively, k is the isotropic hardening variable, and ρn and θn, n = 2, 3, . . .,
are scalar-valued parameters. Thus, the multiplier of isotropic hardening variable
k is responsible for the distortion in this model. This is quite a unique concept,
since the yield surface distortion is often modeled via a general quadratic form in
variable (sβ − αβ), e.g., Eqs. (2.2), (2.4), and (2.12), where sβ and αβ stands for
the stress and backstress components, respectively.

Kurtyka and Życzkowski in 1996 [101] published a general model capable to capture
proportional expansion, translation, affine deformation, rotation, and distortion of
the yield surface. The yield criterion emloyed in this model is given by

f = (σi − ai)QjiDjkQkl (σl − al)− 1, (2.4)

where σi are the deviatoric stress vector elements, ai are the back-stress vector
elements, Qij are the rotation matrix elements, Djk are the diagonal functional
matrix elements, and i, j, k, l = 1, . . . , 5; the elements of vectors are expressed in
terms of Ilyushin’s five-dimensional stress space. The authors used purely geometric
description of transformations of the yield surface, and, later on, they proposed the
evolution equations for model’s internal variables.

François in 2001 [109] proposed a model with the yield criterion given by

f =
√(

Sd
ij −Xij

)(
Sd
ij −Xij

)
−R− σy, (2.5)
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where Sd
ij are the distorted stress tensor components, Xij are the back-stress

tensor components, R is the isotropic hardening function, and σy is the initial
yield stress. The distorted stress tensor components are given by Sd

ij = Sij +
Xij (So

klS
o
kl) / (2X1(R+ σy)), where (So

kl) is an orthogonal part of the deviatoric
stress tensor (Sij) given by So

ij = Sij−SXij , and where
(
SXij
)

is the collinear part of
the deviatoric stress tensor (Sij) with respect to the back-stress tensor (Xij) given
by SXij = Xij(SklXkl)/(XmnXmn). Thus, this yield criterion implements the yield
surface distortion via distorted stress tensor, which is another concept of how to
capture DDH effect. Some other plasticity models with the yield criterion capable
to capture the distortion of yield surfaces may be seen in [50,89,99,102,114].

2.5 Higher Order Evolving Tensor Approach

The early attempts to employ the higher order tensors in constitutive modeling of
mechanical behavior of materials may be traced back to Mālmeisters in 1966 [53,55].
Mālmeisters has proposed the strength criterion in the form

f = Πijσij + Πijklσijσkl + Πijklmnσijσklσmn + . . .− 1, (2.6)

where σij are the stress tensor components, and Πij... are components of the even
order tensor-valued parameters that represent material properties.

Rees in 1984 [83] developed a plasticity model with the yield criterion given by

f = fs (F1, F2, F3)− 1, (2.7)

where
F1 = (Cij −Aij) (sij − αij) , (2.8)

F2 =
1

2
(Cijkl −Aijkl) (sij − αij) (skl − αkl) , (2.9)

F3 =
1

3
(Cijklmn −Aijklmn) (sij − αij) (skl − αkl) (smn − αmn) , (2.10)

and where Cij... are the components of isotropic tensors, Aij... are the components
of tensors responsible for the plastic anisotropy, sij are the deviatoric stress com-
ponents, αij are the back-stress components, and where three different expressions
for fs were used, namely, fs = F1 + F2, fs = F2 + F3, and fs = F1 + F2 + F3.

Following the work by Mālmeisters in 1966 [53] and by Goľdenblat and Kopnov in
1968 [55], Grewolls and Kreißig in 2001 [110,131] truncated the general polynomial
expression after the cubic degree, which gives the yield criterion in the form

f = K0

(
εpeq
)

+Kijσij +Kijklσijσkl +Kijklmnσijσklσmn, (2.11)

where Kij... are components of material tensors of 2nd, 4th, and 6th degree, and
K0 is a scalar-valued material parameter that depends on the equivalent plastic
strain εpeq. They used an approach by Danilov [58] to formulate evolution equations.
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2.6 Advanced Directional Distortional Models

Feigenbaum and Dafalias in 2007 [118,121,122] proposed a family of four different
DDH models referred to as the A-model, the r-model, the alpha-model, and the
alpha-model with fixed distortional parameter. These models have several distin-
guishing features, which make them suitable for engineering application.

In particular, the yield criteria of these models extend von Mises yield criterion via
a distortional variable. This variable is tensor-valued in case of the A-model and
the r-model, and it is scalar-valued in case of α-models. Moreover, this extension is
as simple as possible since just a single variable was added to capture the distorion.

Next, the evolution laws for models’ internal variables are proposed so that the
plastic straining would preserve the second law of thermodynamics equivalently
expressed via the Clausius–Duhem inequality. Henceforth, this property is referred
to as the thermodynamical consistency, and allows to keep the model consistent
from the physical point of view.

For the stability of the numerical integration algorithms, the convexity of yield
functions is crucial. Plešek et al. in 2010 [129] addressed this topic and discussed the
convexity of yield functions of models from Feigenbaum–Dafalias’ family. Although
the convexity of yield functions is not inherent to these models, some necessary and
sufficient conditions imposed on models’ parameters were found, so that the yield
function convexity would be preserved.

In this thesis, the simplest model from the family reffered to as the α-model with
fixed distortional parameter will be employed. Its yield function f is based on the
J2-invariant, which is subsequently modified by a directional multiplier as

f (σ) =
3

2
[1− c (nr:α)] (s−α) : (s−α)− k2 = 0, (2.12)

where σ is the stress tensor, s is the deviatoric stress tensor, α is the deviatoric
backstress tensor acting as the “center” of the yield surface, c is a positive distor-
tional parameter, and k is a scalar internal variable responsible for the isotropic
hardening. The double dot symbol represents the inner product of two tensors
as in a:b = aij bij , and ‖·‖ denotes the Euclidean norm of a second order tensor.
Further,

nr =
s−α
‖s−α‖

(2.13)

is the deviatoric unit norm tensor along the radius (s−α). Hence, it is the inner
product nr:α which is responsible for the directional distorsion of the yield surface.

The model’s internal variables are governed by standard evanescent memory type
equations. The kinematic hardening rule is Armstrong–Frederick’s type defined
according to

α̇ = a1 (ε̇p − a2 ‖ε̇p‖α) , (2.14)
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and the isotropic hardening is defined by

k̇ = λκ1k (1− κ2k) , (2.15)

where λ is the loading index or plastic multiplier defined as usual in terms of stress
or strain rate. Both of these evolution equations can be shown [121] to be sufficient
to satisfy the second law of thermodynamics. Plastic strain rate is obtained by
an associated flow rule

ε̇p = λ
∂f

∂σ
. (2.16)

The initial values are defined for unstrained material as εp = 0, α = 0 and k = k0,
that is, k0 is the initial yield stress. Thus the model features six positive parameters
a1, a2, κ1, κ2, k0, and c. Details of this constitutive model are explained in [121].

In order to simplify governing equations, one can explicitly calculate the yield
function gradient

∂f

∂σ
=

3

2
‖s−α‖ [2nr − c (nr:α)nr − cα] (2.17)

and its magnitude as∥∥∥∥ ∂f∂σ
∥∥∥∥ =

3

2
‖s−α‖

√
[2− c (nr:α)] [2− 3c (nr:α)] + c2α:α. (2.18)

It was proved in [121] and [129] that the necessary and sufficient condition, which
keeps dissipation positive and simultaneously preserves strict convexity for all
times, yields

‖cα‖ < 1. (2.19)

Substitution of Eq. (2.14) into Eq. (2.15) yields

α̇ = a1λ

∥∥∥∥ ∂f∂σ
∥∥∥∥ (n− a2α) . (2.20)

For monotonic loading the saturated state is reached when α̇ = 0, thus, Eq. (2.20)
yields

n− a2α = 0. (2.21)

Since α starts from zero and the magnitude of the limit backstress, 1/a2, is inde-
pendent of the loading direction, one may write

‖α‖ ≤ 1/a2. (2.22)

Hence the left-hand side of inequality (2.19) may be bounded by c/a2, which yields

c < a2. (2.23)
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This is the only constraint to be observed in the present constitutive modeling.

To illustrate the behavior of the discussed model, material parameters after [121],
and given in Tab. 2.1 were used. Yield surfaces of the model are shown in Figs. 2.10,
2.11, and 2.12. The evolution of subsequent yield surfaces under uniaxial tension
is shown in two stress subspaces in Fig. 2.13. Observe that all three kinds of
hardening, namely isotropic, kinematic and directional distortional, contribute to
the plotted shapes of the yield surface. The stress–strain curves and the evolution
of other internal variables are plotted in Fig. 2.14.

Tab. 2.1: Model’s parameters k0, κ1, κ2, a1, a2 and c taken from [121]. Initial
condition for α11 represents a virgin material. The plastic prestrain εp11 was set
up to be sufficient to develop distortion. Values from this table are used to plot
Figs. 2.10–2.14.

k0 κ1 κ2 a1 a2 c α11,0 εp11
(MPa) (MPa) (MPa−1) (MPa) (MPa−1) (MPa−1) (MPa) (%)

128 6 000 0.006 10 500 0.02 0.019 0 1.0
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Chapter 3

Aims of the Thesis

T he directional distortional hardening (DDH) phenomenon, i.e., the asymmetric
distortion of yield surfaces due to plastic straining, has been experimentally

proved on a wide variety of metals, and nowadays might be considered a common
feature in experimental plasticity of metals. Despite this, there seems to be no pre-
ferred model for DDH nor paradigm being employed and widespread in industrial
applications. Thus, DDH models might be considered occupying a death valley
from an engineering application point of view.

The general aim of this thesis is to identify problems preventing the application of
DDH models and to bring answers, solutions, and explanations of these problems
via analysis of distinguishing features of DDH models. Thereby bridging the death
valley and making engineering use of DDH possible.

In general, there may be several reasons why DDH models are rarely utilized and
not widespread in engineering application. First, these models are most useful in
multiaxial stress states with non-proportional loading trajectories, which is an ex-
perimental challenge. Although multiaxial stress states can be easily reached, the
commercial testing systems do not provide nor support any standard operating pro-
cedures suitable for advanced multiaxial testing. In fact, because control systems
for multiaxial test equipment still rely on GUI forms instead of script based archi-
tecture, it is still quite hard to assemble a testing setup for calibration experiments
with well-arranged modular and parametrized control.

In addition to the issues with experiments for calibration, it should be emphasized
that there is little systematic theoretical effort to introduce calibration algorithms.
Such calibration algorithms ideally would exploit the closed-form solutions and
available experimental methodologies. Thus, this thesis suggests schemes and algo-
rithms for calibration of a particular DDH model. While the focus is on a particular
model, the algorithms can be generalized for any similar model.
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Chapter 3. Aims of the Thesis

In order to keep the thesis consistent, the general aim is split into four particular
aims that have solidified during the analysis of the problem. Each of four aims
defines a compact problem and each of these compact problems is solved separately,
though some may exploit results of others. To meet a general aim of the thesis,
a DDH model by Feigenbaum and Dafalias referred to as alpha-model with fixed
distortional parameter is used as a representative of DDH models [121,122].

3.1 Aim #1—Finding Closed Form Solutions for
Monotonic Loading

In general, stress fields seen in structural applications are too complicated and
therefore are beyond the possibility of an analytical solution. Since the stress
field is an essential ingredient in plasticity theories, the same holds for plasticity
problems. However, there are often individual problems when quite uniform stress
field occurs and when the exact or analytical solution might be possible and useful.
This uniform stress fields may occur in applications due to the symmetry of the
loading and structure, e.g., tubes, trusses, membranes; or in the laboratory due
to testing for model calibration, e.g., uniaxial tensile testing, axial load–torque
testing, membranes pressurizing; or in simulations, e.g., debugging FE solvers.

Aim #1 of this thesis is to find a closed form analytical solution for general mono-
tonic proportional loading case of Feigenbaum–Dafalias α-model with fixed distor-
tional parameter. This aim requires simplifying equations used to describe a par-
ticular loading case, integrating all internal variables of the plasticity model, and
expressing the stress field according to the plastic strain field, or vice versa.

3.2 Aim #2—Locating Limit Envelope for Cyclic
Loading

There are two well-known curves suitable to capture and analyze the plastic be-
havior of a material under cyclic loading—a stabilized hysteresis loop and a cyclic
stress–strain curve. While both these curves are commonly determined experimen-
tally, an analytical representation inherent to a particular DDH model would be
desired as well. The reason is that analytical expressions of both these curves can
be used to relate experimental data with internal parameters of particular DDH
model and therefore can be employed to calibrate model’s parameters. Moreover,
due to the cyclic character of loading, some of the internal variables of the model
may saturate which may simplify expressions and reduce the number of active
parameters.

Thus, Aim #2 of this thesis is to find those analytical expressions of a stabilized
hysteresis loop and a cyclic stress–strain curve, that are inherent to Feigenbaum–
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Dafalias α-model with fixed distortional parameter in case of general proportional
cyclic loading. This aim requires to derive an expression for monotonic stress–strain
curve described in aim #1, to express a limit state for a series of concatenated
monotonic curves, and to express the stress amplitudes according to the plastic
strain amplitudes, or vice versa.

3.3 Aim #3—Developement of Analytical Cali-
bration Algorithms

For successful engineering application of any model, a robust calibration algorithm
is needed. This crucial point is often omitted and limits the application of many
models. Modern DDH theories are usually designed to reflect several different phe-
nomena, e.g., yield surface convexity, thermodynamic consistency, and isotropic
and kinematic hardening. This trend means that modern models involve a higher
number of parameters and become highly nonlinear. The higher number of pa-
rameters, the higher dimension of the calibration problem, which imposes higher
demands on calibration procedures and increases numerical complexity. The higher
nonlinearity, the higher sensitivity of the calibration algorithm to the initial esti-
mation of parameters.

Aim #3 of this thesis is to propose calibration algorithms of Feigenbaum–Dafalias
α-model with fixed distortional parameter. The algorithms will be based on results
obtained from the aims #1 and #2, i.e., on analytical solutions for the stress–strain
curve, the stabilized hysteresis loop, and the cyclic stress–strain curve. These al-
gorithms should be suitable for initial estimation of parameters in a numerical
calibration scheme or to fully identify parameters analytically. Moreover, the cali-
bration algorithms should match the curves of monotonic and cyclic loading cases
with the monotonic and cyclic experimental data, respectively.

3.4 Aim #4—Sensitivity Analysis of Calibration
Algorithms

In general, the sensitivity of nonlinear systems with respect to their parameters
varies among the parameters and the states of the system, i.e., the values of these
parameters. This variation may reach even several orders, which often brings some
inconveniences in numerical procedures used for modeling. The calibration al-
gorithms announced in the aim #3 relate internal parameters of DDH model to
experimental data. As these algorithms are expected to be highly nonlinear, there
is a call for sensitivity analysis.

Aim #4 of this thesis is to carry out and evaluate a sensitivity analysis of cal-
ibration algorithms developed within the aim #3. At first, this aim requires to
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Chapter 3. Aims of the Thesis

express internal parameters of the Feigenbaum–Dafalias α-model with fixed dis-
tortional parameter with respect to the experimental data. Then, derivatives of
these internal parameters with respect to the experimental parameters need to be
expressed. Next, some suitable set of parameters is required and will be chosen
in order to present the sensitivity for particular material and experiment. Finally,
some general conclusions based on the analysis will be given in order to localize
potentially problematic relations between particular parameters. This analysis is
crucial to formulate limitations of the calibration algorithms as well as the model.
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Chapter 4

Methods Used

I n this thesis, several classical methods and theoretical concepts are employed
to develop the methodology and procedures to support an application and de-

velopment of DDH models, i.e., to meet the aims of the thesis. In particular,
the developed methodology comprises the analytical integration of particular DDH
model, the verification of integrated model by the numerical integration, the de-
velopment of analytical and numerical calibration procedures, etc. Therefore, this
chapter summaries the theory related to the methods as follows: the integration by
substitution, the numerical integration of ordinary differential equations, the cubic
equation solving, and the least squares method fitting. For the sake of clarity, the
topics are briefly outlined and only reflect aspects needed later in the thesis.

4.1 Integration by Substitution

The integration by substitution is a method of finding integrals [36]. It is an impor-
tant tool in calculus, and like the integration by parts, it is crucial to find integrals
and solve differential equations. While the integration by parts is related to the
product rule of differentiation, the integration by substitution is related to the
chain rule. The method is based on the theorem that follows.

Theorem (Integration by Substitution). Let a < b. For a < x < b, let∫
f(x) dx

exist. Let

x = g(z)
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Chapter 4. Methods Used

be continuous in the z-interval [α, β], let g′(z) always be > 0 or always < 0, for
α < z < β, and let

g(α) = a, g(β) = b, g(α) = b, g(β) = a,

respectively. Then ∫
f
(
g(z)

)
g′(z) dz

exists for α < z < β, and∫
f(x) dx =

∫
f
(
g(z)

)
g′(z) dz.

The integration by substitution is employed in Section 5.1 to solve Eq. (5.11).

4.2 Numerical Integration of ODEs

There are numerous methods for numerical solving of ordinary differential equa-
tions (ODEs), from which the methods of Runge–Kutta family are the most widely
known ones. This family belongs to the class of iterative methods and includes both
the implicit and explicit methods. Later in this thesis, the Bogacki–Shampine me-
thod [91] from the Runge–Kutta family is employed and, therefore, it is described
in detail here. Suppose that the initial value problem is given by

y′(t) = ϕ
(
t, y(t)

)
, (4.1)

and
y0 = y(t0), (4.2)

where y is an unknown function of time t, and y0 is the value of y at the initial
time t0. Suppose that yn is the numerical solution at time tn, and hn is the step
size given by hn = tn+1 − tn. Then, in general, the step of the Bogacki–Shampine
method is given by

k1 = ϕ(tn, yn), (4.3)

k2 = ϕ(tn + 1
2hn, yn + 1

2hnk1), (4.4)

k3 = ϕ(tn + 3
4hn, yn + 3

4hnk2), (4.5)

y
(3)
n+1 = yn + 2

9hnk1 + 1
3hnk2 + 4

9hnk3, (4.6)

k4 = ϕ(tn + hn, y
(3)
n+1), (4.7)

y
(2)
n+1 = yn + 7

24hnk1 + 1
4hnk2 + 1

3hnk3 + 1
8hnk4, (4.8)

where y(3)n+1 and y
(2)
n+1 are the third and the second order approximations, respec-

tively. Note that this pair may be used to adapt the step size. Furthermore, due
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to “first same as last” property, the k4 parameter in one step equals the k1 param-
eter in the next step, and, therefore, only three function evaluations are necessary
per one step. This explicit method is implemented in several software products,
e.g., Matlab [106], GNU Octave [140]. Some details on stability, accuracy, and step
adaptibility of the method may be seen in [91,106]. The Bogacki–Shampine method
of numerical integration is employed in Section 5.1 to solve Eqs. (5.10) and (5.11).

4.3 Solving Cubic Equation

A general form of the cubic equation with real coefficients reads

ax3 + bx2 + cx+ d = 0, (4.9)

where a, b, c, and d are real numbers, a 6= 0, and x is the unknown [56]. This
equation has at least one real root. In general, this is true for all odd degree
polynomial equations. The numbers of real and complex roots are determined by
the discriminant of Eq. (4.9), which reads

∆ = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2. (4.10)

If ∆ > 0, then Eq. (4.9) has three distinct real roots. If ∆ = 0, then Eq. (4.9) has
a multiple root and all the roots are real. If ∆ < 0, then Eq. (4.9) has one real
root and two non-real complex conjugate roots [56].

All of the roots of Eq. (4.9) can be found algebraically. There are numerous meth-
ods for finding roots of Eq. (4.9), e.g., Cardano’s method, Vieta’s substitution,
trigonometric method. Note that different methods for solving cubic equation are
suitable for different cases of cubic equations. In particular, these cases may be
distinguished by the sign of the discriminant ∆. For example, the Cardano’s me-
thod is not suitable for the cases with ∆ ≥ 0, which is typical for the eigenvalues
problem of the second order tensors.

Later in this thesis, the cubic equation with negative discriminant is solved, and,
therefore, this case is discussed in detail. If ∆ < 0, then the only real root of
Eq. (4.9) may be expressed in the closed form by

x1 = − b

3a
− 1

3a
3

√
1

2

[
2b3 − 9abc+ 27a2d+

√
−27a2∆

]
− 1

3a
3

√
1

2

[
2b3 − 9abc+ 27a2d−

√
−27a2∆

]
. (4.11)

As can be seen from Eq. (4.11), if ∆ < 0, the term “−27a2∆” is positive, all
operations in Eq. (4.11) can be done, and the root may be expressed by a single
real number. To the contrary, if ∆ > 0, the term “

√
−27a2∆ ” is an imaginary

number which cannot be eliminated from the formula. Such a case is referred to
as the casus irreducibilis [56]. The theory of solving cubic equations is employed
in Section 5.2 to solve Eq. (5.39).
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4.4 Nonlinear Least Squares Method

Many models involve parameters that make the models nonlinear with respect
to these parameters. Then, the least square analysis used to fit the models to
experimental data yields a system of nonlinear equations. The sum of squares of
the deviations may be expressed in the form

S(β) =

n∑
i=1

[
yi − f(xi,β)

]2
, (4.12)

where (xi, yi), i = 1, . . . , n, is a set of pairs of experimental data, β denotes model’s
parameters, and f is the model to be fitted [46]. The problem of fitting of the model
f may be now formulated in terms of minimization of the sum S given by Eq. (4.12).

In this thesis, the Levenberg–Marquardt algorithm (LMA) is used to minimize
Eq. (4.12) [32,46]. The LMA is an iterative minimization algorithm with a dumping
parameter. It finds only a local minimum, which, in general, may differ from the
global one. The LMA requires an initial estimation of the parameter β. Within one
step, a new estimation β+ δ is assigned from the current estimation β. Assuming
the linearization of the model f with respect to the parameter β, one obtains

f(xi,β + δ) ≈ f(xi,β) + Jiδ, (4.13)

where

Ji =
∂f(xi,β)

∂β
. (4.14)

By substituting Eq. (4.13) into Eq. (4.12), one obtains

S(β + δ) ≈
∥∥y − f(β)− Jδ

∥∥2, (4.15)

which, taking the derivative with respect to δ and setting the result to zero, yields

(JᵀJ)δ = Jᵀ
[
y − f(β)

]
. (4.16)

Finally, Levenberg [32] added a damping factor to Eq. (4.17), which yields a system
of linear equations in the form

(JᵀJ + λI)δ = Jᵀ
[
y − f(β)

]
, (4.17)

where J is the Jacobian matrix, whose i-th row equals Ji, λ is the dumping factor,
δ is the unknown, and y and f are vectors with i-th component yi and f(xi,β),
respectively. Further details, e.g., the choise of damping parameter λ, may be seen
in [46]. This method is implemented in several software products, e.g., Matlab [106],
GNU Octave [140], and is employed in Chapter 6 to fit the cyclic stress–strain curve
model given by Eq. (6.8).
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Chapter 5

Results for Monotonic
Loading

T here have been developed many models suitable to describe plasticity of met-
als and capable to capture the directional distortional hardening (DDH) phe-

nomenon, some of which were referred to in previous chapters. Although many
of these models employ advanced theoretical concepts—e.g., the yield surface con-
vexity, thermodynamical consistency, combined hardening—their industrial appli-
cation is still limited, namely due to the lack of analysis and understanding of
models’ properties and behavior from an application point of view.

In this chapter, the DDH model proposed by Feigenbaum and Dafalias [121, 122]
and referred to as the alpha-model with fixed distorional parameter is choosen as
a representative one. For this particular model, a set of tools for its analysis and
application is developed. Although these tools are related to this particular model,
they may be extended for other DDH models as well. Note that this extension
is not straightforward, but in can be done for any model that can be integrated
analytically for some simple loading modes as the uniaxial or proportional loading.

At first, the Feigenbaum–Dafalias α-model with fixed distorional parameter is in-
tegrated in the case of proportional monotonic loading. This integration results
in the closed form solutions for the isotropic hardening variable and the kinematic
hardening variable, the later one known as the back-stress. The distortional har-
dening variable remains fixed and stands as the parameter of the model. The
solutions are expressed in terms of the norm of the plastic strain tensor, which is
proportional to the von Mises effective plastic strain. As the norm of the deviatoric
stress can be expressed from the yield condition in terms of hardening variables,
and as it is proportional to the von Mises effective stress, a closed form equation
for the effective stress–effective strain curve is obtained.

35



Chapter 5. Results for Monotonic Loading

Based on this result, the calibration algorithm employing the data of the monotonic
loading experiments is proposed. The algorithm makes use of the experimental
data of the stress–strain curve, the distorted yield surface, and two reversals in
tensile testing. Some experimental techniques may be seen in [A17]. Comparison
of the experimental data with the parametrized models of particular curves yields
a system of nonlinear equations for unknown parameters. This system is analyt-
ically solved, by which means the model’s parameters are calibrated. Next, some
calibration examples are given in order to test the robustness of the algorithm.
Finally, the sensitivity of the algorithm is analyzed in particular point given by
a set of parameters. Note that, besides the calibration algorithm development, the
analytical solutions obtained in this section may be used to verify and analyze FE
implementation of α-model with fixed distortional parameter [A2,A3,A4,A8,A9].

5.1 Solution for Proportional Loading/Unloading

The tensile testing of materials is one of the most widely used testing methods in
engineering. In the six-dimensional stress space, this testing can be represented
by a linear one-dimensional loading trajectory along the 11-axis. Here, more gen-
eral loading case referred to as the proportional loading is adopted to integrate
the model and develop the methodology. Like the tensile loading, the proportional
loading is also represented by a linear one-dimensional trajectory which passes
through the origin of the coordinate system of the same space. However, unlike
the tensile loading, its trajectory has a general direction given by the second order
tensor. In this section, the α-model with fixed distortional parameter by Feigen-
baum and Dafalias is analytically integrated along the proportional trajectory. In
general, the integrated model represents the effective stress–effective strain curve
and includes the uniaxial stress–strain curve as a special case [A5,A7].

5.1.1 Integration of Model

The α-model with fixed distortional parameter is defined by Eqs. (2.12)–(2.16) in
Section 2.6. Assuming the proportional loading mode in the six-dimensional stress
space, the loading trajectory can be written in the form

σ = σd, (5.1)

where σ is the stress tensor, σ is the norm of the stress tensor σ, and d is the
unit norm tensor that defines the direction of proportional loading and remains
fixed during the loading. In the five-dimensional deviatoric stress space, the same
loading trajectory reads

s = sdd, (5.2)
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where s is the deviatoric stress tensor, s is the norm of the deviatoric stress tensor s,
and dd is the deviatoric unit norm tensor that defines the direction of proportional
loading and remains fixed during the loading. From the definition of the deviatoric
stress tensor by sij = σij − δijσkk/3, one can express the relation between the
trajectories in the form

sdd
ij = σ

(
dij −

dkk
3
δij

)
, (5.3)

which yields the relation between the norms σ and s in the form

s = σ

√
1− 1

3
(dkk)

2
. (5.4)

As can be seen from Eqs. (2.13), (2.14), (2.16), and (2.17), during the plastic
straining, all the tensorsα, n, nr, and εp remain in the linear span of the directional
deviatoric tensor dd. Therefore, one can set

α = αdd, (5.5)

εp = εpdd, (5.6)

where α is the norm of the deviatoric back-stress tensor α, and εp is the norm
of the plastic strain tensor εp. Note that in the case of proportional monotonic
loading, one can write εpef =

√
2/3 εp, i.e., the von Mises effective plastic strain

is proportional to the plastic strain tensor norm. Similarly, one can write σef =√
3/2 s, i.e., the von Mises effective stress is proportional to the deviatoric stress

tensor norm. Making use of Eqs. (2.12), (2.13), (2.16), and (2.17), Eqs. (2.14) and
(2.15) for evolution of internal variables α and k, respectively, may be rewritten
[133,A5,A6,A7,A28] as

α̇ = a1ε̇
p (1− a2α sgn (s− α)) , (5.7)

k̇ =
1

2
κ1 (1− κ2k)

ε̇p sgn (s− α)√
1− cα sgn (s− α)

. (5.8)

Henceforth, the term sgn (s− α) will be denoted as m. Using the transformation

dg

dt
=

dg

dεp
dεp

dt
, (5.9)

Eqs. (5.7) and (5.8) emerge to their final form as

α′ = a1 (1−ma2α) , (5.10)

k′ =
1

2

mκ1 (1− κ2k)√
1−mcα

, (5.11)
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Chapter 5. Results for Monotonic Loading

where (.)
′ operator is defined by (.)

′ ≡ d (.) /dεp. A general initial condition for
Eq. (5.10) can be written as

α (εp0 ) = α0 (5.12)

and for Eq. (5.11) as
k (εp0 ) = k0. (5.13)

It should be emphasized that not every initial condition {εp0 , α0 , k0 } is admissible
[A28]. An initial condition for the variable α should fulfill inequality (2.22), and
for the variable k similar restriction can be established.

The differential equation (5.10) and the initial condition (5.12) yield a Cauchy
problem in the variable α. The solution can be obtained [A14, A19, A28] in the
form

α =
1

ma2

[
1− (1−ma2α0) · exp

(
−ma1a2 (εp − εp0 )

)]
. (5.14)

The differential equation (5.11) and the initial condition (5.13) yield a Cauchy
problem in the variable k. Making use the method of separation of variables to
solve this problem, one obtains the integral∫

m dεp√
1−mcα

. (5.15)

To find this integral, substitutions mcα = ϕ,
√

1− ϕ = p, and
√

a2
a2 − c

p = q may

be used. Finaly, the solution can be obtained [A14,A19,A28] in the form

k =
1

κ2

[
1− (1− κ2k0) exp ξ

]
, (5.16)

where

ξ = − κ1κ2

a1
√
a2 (a2 − c)

(
artanh (1/p)− artanh (1/p0)

)
,

p (εp) =

√
1 +

c

a2 − c
(1−ma2α0) exp

(
−ma1a2 (εp − εp0 )

)
,

p0 = p (εp0 ) =

√
1 +

c

a2 − c
(1−ma2α0).

Note the artanh function is defined as

artanhx =
1

2
ln

(
1 + x

1− x

)
. (5.17)
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Thus, relations (5.14) and (5.16) express the evolution of α and k respectively. The
norm of the deviatoric stress tensor s can be expressed from Eqs. (2.12) and (5.3)
in the form

s =
mk√

3

2
(1−mcα)

+ α, (5.18)

where α and k are given by Eqs. (5.14) and (5.16), respectively. Finally, making
use Eqs. (5.1), (5.4), and (5.6), one obtains relation between the stress and the
plastic strain tensors for the general monotonic proportional loading.

5.1.2 Summary of Uniaxial Loading/Unloading

The most routinely used method of testing of materials is the tensile testing, which
is characterized by the uniaxial stress state. Since the closed form solution for the
uniaxial stress state is exploited later in this thesis, a relation for uniaxial loading
curve is derived from the general relation given by Eq. (5.18). For the uniaxial
stress loading, the directional tensor d is given by

d =

 1 0 0
0 0 0
0 0 0

 , (5.19)

and the directional deviatoric tensor dd is given by

dd =

√
2

3

 1 0 0
0 −1/2 0
0 0 −1/2

 . (5.20)

From Eq. (5.14), the evoluton equation for the axial component of kinematic har-
dening variable α may be rewritten as

α11 =

√
2

3

1

ma2

[
1−

(
1−m

√
3

2
a2α11,0

)
· exp

(
−m

√
3

2
a1a2

(
εp11 − ε

p
11,0

))]
,

(5.21)
where the index “11” denotes the axial component of respective tensor-valued vari-
ables, and the initial condition reads

α11,0 = α11

(
εp11,0

)
. (5.22)

From Eq. (5.16), the evoluton equation for the isotropic hardening variable k may
be rewritten as

k =
1

κ2

[
1− (1− κ2k0) exp ξ

]
, (5.23)
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where

ξ = −
√

2

3

κ1κ2

a1
√
a2 (a2 − c)

(
artanh (1/p)− artanh (1/p0)

)
,

p (εp11) =

√√√√1 +
c

a2 − c

(
1−m

√
3

2
a2α11,0

)
exp

(
−m

√
3

2
a1a2

(
εp11 − ε

p
11,0

))
,

p0 = p
(
εp11,0

)
=

√√√√1 +
c

a2 − c

(
1−m

√
3

2
a2α11,0

)
,

where the index “11” denotes the axial component of respective tensor-valued vari-
ables, and the initial condition reads

k0 = k
(
εp11,0

)
. (5.24)

Finally, the axial component of the stress tensor σ may be rewritten from Eqs. (5.3)
and (5.18) as

σ11 =
mk√

1−m
√

3

2
c α11

+
3

2
α11. (5.25)

Thus, the equations above describe any curve that match a general uniaxial loading
case, e.g., stress–strain curve, hysteresis loop branches, reversed loading. In partic-
ular the uniaxial stress–strain curve may be derived from Eqs. (5.21)–(5.25) by set-
ting the variable m = 1 and the initial conditions α11

(
εp11,0

)
= 0 and k

(
εp11,0

)
= k0

for εp11,0 = 0.

In order to verify an analytical solution for internal variables α and k given by
Eqs. (5.14) and (5.16), respectively, differential equations (5.10) and (5.11) were in-
tegrated numerically by the third-order Bogacki–Shampine method [106] described
in Chapter 4. The integration step size hn = 10−6 was used, and both equations
were integrated on the interval [0, 0.05]. The comparison of analytical and numer-
ical solutions for variables α and k may be seen in Figs. 5.1 and 5.2, respectively.
To compare the solutions, model’s parameters from Tab. 2.1 were used. For the
particular model’s parameters and on the particular inteval, both the analytical
and numerical solutions match exactly.

Once the virgin material is uniaxially prestrained, the yield condition Eq. (2.12)
under subsequent biaxial stress loading becomes
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f(σ11, σ12) =

1− c
3
(σ11

3
− α11

2

)
α11√

6
(σ11

3
− α11

2

)2
+

2

3

(√
3σ12

)2
 ·

[
6
(σ11

3
− α11

2

)2
+

2

3

(√
3σ12

)2]
− 2

3
k2 = 0, (5.26)

where α11 and k are values of internal variables evolved by uniaxial prestraining
and given by Eqs. (5.21) and (5.23), respectively, and σ11 and σ12 are the stress
tensor components defining the biaxial stress state [A15,A28].

5.2 Calibration for Monotonic Loading

In Section 5.1, the α-model with fixed distortional parameter by Feigenbaum and
Dafalias [121,122] was analytically integrated. As the result, a closed form solution
for the stress–strain curve given by Eq. (5.25) and an implicit equation of the
distorted yield surface given by Eq. (5.26) were obtained. In this section, the
both solutions are exploited to develop an algorithm for the calibration of model’s
parameters [A6,A14,A19,A20,A28].

5.2.1 Calibration Algorithm Derivation

In general, the proposed calibration procedure requires 10 experimental inputs that
are shown in the Figs. 5.3–5.6 and denoted A1, . . . , D3 [A6, A14, A19, A20, A28].
These experimental inputs can be expressed as a function of model’s parameters
in the form {A1, . . . , D3} = F (k0, κ1, κ2, a1, a2, c). A closed form analytical in-
version of this system is shown and model’s parameters are formally expressed by
{k0, κ1, κ2, a1, a2, c} = F−1 (A1, . . . , D3).

In particular, the calibration procedure is based on parametric approximation of 4
experimental curves, which serve as inputs [A19,A28]. The first experimental curve
is set to be the stress–strain curve as shown in Fig. 5.3. This experimental input
is referred to as the A experiment. The second experimental curve is set to be the
stress–strain curve with a reversal of loading at some level εp11,B of plastic strain.
The curve is shown in Fig. 5.4, and the respective experiment is referred to as the
B experiment. The third experimental curve is set to be the stress–strain curve
with a reversal of loading at some different level εp11,C of plastic strain. This curve
is shown in Fig. 5.5, and the experiment is referred to as the C experiment. The
difference between the B and C experiments is in the plastic strain levels. Further in
this text, it is shown that strain levels εp11,B and εp11,C denoting the loading reversal
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have to satisfy the specific condition εp11,C/ε
p
11,B = 2 to provide a closed form

calibration. The fourth experimental curve is set to be the distorted yield surface
in σ11–

√
3σ12 subspace obtained for arbitrary uniaxial plastic prestrain. This curve

is shown in Fig. 5.6 and is referred to as the D experiment. Although tracing
of distorted surfaces is quite complex and rather expensive, it is quite common
in experimental research of plasticity as can be seen in [96, 104], among others.
Moreover, there are modern testing systems that are able to do this experiment
autonomously as reported in [132]. Thus, four experiments denoted A, B, C and D
will be used for calibration of aforementioned six parameters k0, κ1, κ2, a1, a2, and
c. Note that it is possible to cover experiments A, B, C and even D on a single
specimen. This can be done if the reversals at plastic strain levels εp11,B and εp11,C
in experiments B and C and the probing of the yield surface in experiment D do not
cause significant plastic strain or mutually influence the individual experiments.

The starting point of plastic part of stress–strain curve is determined by the relation

A1 = σ11
(
εp11
)∣∣
εp11=0

= σy = k0. (5.27)

At the start of the plastic part of the stress–strain curve the slope can be expressed
as

A2 =
∂σ11
∂εp11

(
εp11
)∣∣
εp11=0

=
1

2
κ1
(
1− κ2k0

)
+

1

2

√
3

2
k0a1c+

3

2
a1. (5.28)

If plastic deformation εp11 is fully developed, one can suppose that the limit state
is reached, i.e.,

A3 = lim
εp11→+∞

σ11
(
εp11
)

=
1

κ2

1√
1− c

a2

+

√
3

2

1

a2
. (5.29)

From Eq. (5.25), it follows that the yield stress in tensile direction (⊕) at some(
εp11,B

)
level of plastic deformation can be expressed as

B1 = σ11
(
εp11,B

)⊕
=

k
(
εp11,B

)√
1−

√
3

2
α11

(
εp11,B

)
c

+
3

2
α11

(
εp11,B

)
. (5.30)

The yield stress in opposite direction (	) at the same
(
εp11,B

)
level of plastic de-

formation can be expressed as

B2 = σ11
(
εp11,B

)	
= −

k
(
εp11,B

)√
1 +

√
3

2
α11

(
εp11,B

)
c

+
3

2
α11

(
εp11,B

)
. (5.31)
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The parametric expression of the C experiment is the same as in the previous case,

C1 = σ11
(
εp11,C

)⊕
=

k
(
εp11,C

)√
1−

√
3

2
α11

(
εp11,C

)
c

+
3

2
α11

(
εp11,C

)
, (5.32)

C2 = σ11
(
εp11,C

)	
= −

k
(
εp11,C

)√
1 +

√
3

2
α11

(
εp11,C

)
c

+
3

2
α11

(
εp11,C

)
. (5.33)

Regarding the parametric description of the D experiment, the distorted yield
surface in σ11–

√
3σ12 space is shown on the Fig. 5.6. As significant points, the left,

the right and the upper peak are choosen. This distorted surface is determined
by Eq. (5.26). Analysing Eq. (5.26) the left and right peak of the distorted yield
surface in σ11–

√
3σ12 space can be expressed as

D1 =
k
(
εp11,D

)√
1−

√
3

2
α11

(
εp11,D

)
c

+
3

2
α11

(
εp11,D

)
, (5.34)
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3

2
α11

(
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)
c

+
3

2
α11

(
εp11,D

)
. (5.35)

This expression is possible if one declare
√

3τ = 0 in Eq. (5.26). Further, the upper
peak can be expressed in the form

D3 =
√

2k
(
εp11,D

)
√

1−
√

1− 3

2
α2
11

(
εp11,D

)
c2√

3

2
α11

(
εp11,D

)
c

(5.36)

The identification algorithm needs to determine six parameters of the model that
depend on experimentally determined parameters A1, A2, A3, B1, B2, B3, C1, C2,
C3, D1, D2 and D3 [A19,A28]. Parameters that must be identified are k0, a1, a2,
κ1, κ2 and c. The system of equations can be formulated for the determination of
these parameters. The identification algorithm may then be summarized as follows.

The k0 parameter results form Eq. (5.27). One can write

k0 = A1. (5.37)
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The c parameter arises form Eqs. (5.34), (5.35), and (5.36). This system can be
solved analytically [A28], the solution for the variable c may be expressed as

c =

√
6 (D1 −D2) (D1 −D2 − 2D3)

(D1 −D2 −D3)
[
D1 +D2 −

√
(D1 −D2) (D1 −D2 − 2D3)

] . (5.38)

The a2 parameter can be determined from the B and the C experiments [A28]. At
first, if one knows two values of the backstress α11 in Eq. (5.21), e.g., α11

(
εp11,B

)
and α11

(
εp11,C

)
, apparently the a2 parameter can be determined. Two values of

the backstress α11

(
εp11,B

)
and α11

(
εp11,C

)
may be expressed from Eqs. (5.30)–(5.33).

The system (5.30) and (5.31) yields the cubic equation in the form

Kα3
11,B + Lα2

11,B +Mα11,B +N = 0, (5.39)

where

K =
9

2

√
3

2
c , L = − 3

√
3

2
c (B1 +B2) , (5.40)

M =

√
3

2
c
(
B2

1 +B2
2

)
+ 3 (B1 −B2) , N = −

(
B2

1 −B2
2

)
. (5.41)

For this cubic equation, the discriminant can be written in the form

∆ = 18KLMN − 4L3N + L2M2 − 4KM3 − 27K2N2. (5.42)

It can be easily shown that for B2 < 0, i.e., when the plastic deformation in reversed
direction occurs in the compressive state rather than in the tensile one, ∆ < 0, and
the cubic equation (5.39) has the one real root and two non-real complex conjugate
roots. Furthermore, the real root can be expressed in the form

α11,B = − L

3K
− 1

3K
3

√
1

2

[
2L3 − 9KLM + 27K2N +

√
−27K2∆

]
− 1

3K
3

√
1

2

[
2L3 − 9KLM + 27K2N −

√
−27K2∆

]
, (5.43)

where no negative arguments occour in square roots. The α11,C backstress can be
expressed from Eqs. (5.32)–(5.33) in the same way. Now, Eqs. (5.21) with initial
condition α11,0 = 0 may be rewritten in the form

a1 = −
√

2

3

1

a2ε
p
11,B

ln

(
1−

√
3

2
α11,Ba2

)
(5.44)

for the εp11,B level at reversion, and in the form

a1 = −
√

2

3

1

a2ε
p
11,C

ln

(
1−

√
3

2
α11,Ca2

)
(5.45)
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for the εp11,C level at reversion. These two equations formulate a system that yields(
1−

√
3

2
α11,Ba2

)εp11,C/εp11,B
+

√
3

2
α11,Ca2 − 1 = 0. (5.46)

If the εp11,C/ε
p
11,B term equals 2, previous relation is a quadratic equation [A28]

and its solution is

a2 =

√
2

3

2α11,B − α11,C

α2
11,B

. (5.47)

Now the a1 parameter is given by Eq. (5.44) [A28]. The κ2 parameter may be
expressed [A28] from Eq. (5.29) as

κ2 =
1√

1− c

a2

(
A3 −

√
3

2

1

a2

) . (5.48)

Finally, the κ1 parameter can be expressed [A28] form Eq. (5.28) as

κ1 =
2A2 −

√
3

2
k0a1c− 3a1

1− κ2k0
. (5.49)

Thus all parameters are determined.

5.2.2 Calibration Algorithm Summary

The calibration procedure proposed is suited to calibrate parameters based on
monotonic loading data for corresponding monotonic loading simulations [A28].
The procedure reflects distortion of the yield surface, stress–strain diagram, and
some reversals in loading and uses this experimental data as an input. Moreover,
the calibration procedure allows one to determinate model’s parameters by ana-
lytical solution of a system of several nonlinear equations. Having experimentally
determined 10 input parameters A1, A2, A3, B1, B2, C1, C2, D1, D2, and D3, the
parameters of model can be obtained as follows.

The k0 parameter results form the A experiment and can be expressed as

k0 = A1. (5.50)

The c parameter, which is associated with the yield surface distortion arises form
the D experiment and may be expressed as

c =

√
6 (D1 −D2) (D1 −D2 − 2D3)

(D1 −D2 −D3)
[
D1 +D2 −

√
(D1 −D2) (D1 −D2 − 2D3)

] . (5.51)
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As can be seen from Fig. 5.6, the term D1 − D2 − 2D3 in Eq. (5.51) represents
the difference between the length and the width of the evolved yield surface at the
experiment D. Since the term under the square root in Eq. (5.51) must be positive,
Eq. (5.51) implies that the length of the yield surface at the D experiment must
be larger than the width of this surface. It should be empasized that Eq. (5.51)
expresses an inherent property of the DDH model itself and thus has a significant
impact on the model properties. In general, the equation implies that for any value
of model’s parameter c the yield surface elongates in the straining direction and
shrinks in the transverse direction, which contradicts various experimental results,
e.g., [67], [96], and [104]. Because this property of the model contradicts some
experimental findings, it is undesirable, but cannot be eliminated in the current
model. Some attempts to suppress this behavior by developing more sophisticated
models may be seen in [A22, A23, A24, A26]. Note that some attempts are also
motivated by requirements to capture the complex ratcheting behavior [A25,A27].
Furthermore, the square root at the denominator of Eq. (5.51) implies that experi-
mental parameters are also constrained by the relation D3 ≥ −2D1D2/ (D1 −D2).

The a2 parameter can be determined on the basis of the B and C experiments.
First, the backstress values α11,B and α11,C on two levels of plastic deformation
εp11,B and εp11,C , respectively, need to be expressed. The backstress α11

(
εp11,B

)
on

some level of plastic deformation εp11,B can be expressed as

α11,B = − L

3K
− 1

3K
3

√
1

2

[
2L3 − 9KLM + 27K2N +

√
−27K2∆

]
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√
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]
, (5.52)

where ∆ is defined as

∆ = 18KLMN − 4L3N + L2M2 − 4KM3 − 27K2N2, (5.53)

where
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√
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2
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√
3
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)
+ 3 (B1 −B2) , N = −

(
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2

)
. (5.55)

It should be noted that Eq. (5.52) is valid if the condition B2 < 0 is satisfied.

The α11,C backstress can be expressed in the same way substituting for the B
experiment parameters the C experiment parameters. Finally, the a2 parameter
can be expressed as

a2 =

√
2

3

2α11,B − α11,C

α2
11,B

. (5.56)
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Note that this equation assumes that εp11,C/ε
p
11,B = 2.

Having the a2 parameter, the a1 parameter can be written in the form

a1 = −
√

2

3

1

a2ε
p
11,B

ln

(
1−

√
3

2
α11,Ba2

)
. (5.57)

Further, the κ2 parameter may be expressed as

κ2 =
1√

1− c

a2
·

(
A3 −

√
3

2

1

a2

) . (5.58)

Finally, the κ1 parameter can be written in the form

κ1 =
2A2 −

√
3

2
k0a1c− 3a1

1− κ2k0
. (5.59)

Thus, all material parameters are calibrated [A28].

5.3 Examples for Monotonic Loading

In order to present a calibration example, an experimental data is necessary. How-
ever, no suitable experimental data is available and data in the literature generally
do not include all necessary experiments for calibration. Moreover, experiments in
the literature, e.g., [67,96,104], show shortening of the yield surface in the direction
of loading, while this model requires elongation in the direction of loading. Thus,
the calibration example in this work utilizes data generated by the model itself.

The material parameters from Tab. 5.1 [A28] were used to generate the 4 “experi-
mental” plots similar to that plotted in Figs. 5.3–5.6. From these plots, experimen-
tal parameters were read of and summarized in Tab. 5.4. Thus, Tab. 5.4 should be
thought of as a simulation of experiments. Then, using the identification algorithm
in Eqs. (5.50)–(5.59), the experimental parameters from Tab. 5.4 give the model
parameters in Tab. 5.2.

Figs. 5.7–5.20 compare the original stress–strain curves and yield surfaces obtained
with the assumed parameters in Tab. 5.1 to those obtained for identified parameters
in Tab. 5.2. The original and identified stress–strain curves as well as the original
and identified yield surfaces show good agreement. Furthermore, the parameters in
Tab. 5.4 and Tab. 5.5 are “close each other,” as can be seen from the comparison of
parameters given in Tab. 5.6. All of this suggest that the identification algorithm
in Eqs. (5.50)–(5.59) provides sufficient accuracy.
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In order to test a robustness of the calibration algorithm, some intentional errors
in reading from generated experimental data were introduced. Thus, there is about
5 % difference in the data in Tab. 5.4 and exact values gained from parameters in
Tab. 5.1. As can be seen in Figs. 5.7–5.20, these intentional errors do not evoke an
essential deviation between the original and calibrated model in terms of generated
curves. On the other hand, as can be seen from Tabs. 5.1, 5.2, and 5.3, there can be
an essential deviation between the original and calibrated internal parameters of the
model. This property of the calibration algorithm is supposed to be related to the
sensitivity of model’s parameters relatively to experimental data. Therefore, the
sensitivity analysis of calibration algorithm has been carried out and is described
in Section 5.4. If no intentional errors are involved and exact reading is performed,
calibration algorithm fully recovers original parameters and graphs match exactly.

5.4 Sensitivity Analysis for Monotonic Loading

In order to understand relations between inputs and outputs of the calibration pro-
cedure and to test robustness of the procedure, its sensitivity analysis was carried
out. The approach is to consider the derivative ∂pint/∂Pinp of a model interal pa-
rameter pint with respect to an input data Pinp, and pre-multiply it by Pinp/pint for
normalization. In general, since inputs of calibration algorithms are experimentally
determined and can be represented as mechanical properties of modeled material,
the sensitivity analysis of calibration procedures reveals sensitivity of model’s pa-
rameters to some basic mechanical properties of modeled material, e.g., the yield
strength and the ultimate tensile strength.

For the sensitivity analysis of monotonic calibration algorithm given by Eqs. (5.50)–
(5.59), parameters from Tab. 5.1 were used. The sensitivity matrix is given by
Eq. (5.60) on Page 61. This analysis reveals higher sensitivity of the internal
rate parameter κ1 to experimental parameters A1, . . . , D3, while other internal
parameters have rather lower sensitivity [A28].
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Tab. 5.1: Set up model’s parameters used to generate the experimental parameters
in Tab. 5.4.

parameters k0 κ1 κ2 a1 a2 c εp11,B
set (MPa) (MPa) (MPa−1) (MPa) (MPa−1) (MPa−1) (%)

set #1 128 6 000 0.006 10 500 0.02 0.019 1.0
set #2 400 10 000 0.004 4 000 0.01 0.009 2.5
set #3 400 20 000 0.004 4 000 0.01 0.005 1.0
set #4 400 12 000 0.003 5 5 000 0.007 0.005 2.5
set #5 400 3 000 0.005 5 5 000 0.004 0.003 6 4.0
set #6 400 35 000 0.003 2 7 000 0.006 4 0.005 2 2.5
set #7 400 20 000 0.006 15 000 0.011 0.010 5 1.0

Tab. 5.2: Calibrated model’s parameters used to generate experimental parame-
ters in Tab. 5.5.

parameters k0 κ1 κ2 a1 a2 c εp11,B
set (MPa) (MPa) (MPa−1) (MPa) (MPa−1) (MPa−1) (%)

set #1 129 14 467 0.005 64 11 044 0.017 59 0.016 47 1.0
set #2 389 4 323 0.004 93 3 619 0.010 98 0.010 23 2.5
set #3 413 15 934 0.004 18 3 373 0.011 77 0.006 81 1.0
set #4 403 10 021 0.003 98 4 727 0.007 65 0.005 91 2.5
set #5 414 862 0.012 90 4 588 0.004 10 0.004 04 4.0
set #6 383 55 819 0.003 18 7 914 0.006 14 0.004 82 2.5
set #7 383 14 600 0.007 03 14 379 0.011 42 0.011 02 1.0

Tab. 5.3: Relative errors in model’s parameters from Tabs. 5.1 and 5.2.

parameters ∆k0 ∆κ1 ∆κ2 ∆a1 ∆a2 ∆c εp11,B
set (%)

set #1 0.8 141.1 −6.0 5.2 −12.0 −13.3 –
set #2 −2.8 −56.8 23.3 −9.5 9.8 13.6 –
set #3 3.2 −20.3 4.5 −15.7 17.7 36.2 –
set #4 0.8 −16.5 13.7 −5.5 9.3 18.2 –
set #5 3.5 −71.3 134.5 −8.2 2.5 12.2 –
set #6 −4.2 59.5 −0.6 13.1 −4.1 −7.3 –
set #7 −4.2 −27.0 17.2 −4.1 3.9 4.9 –
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Tab. 5.4: Experimental parameters used to calibrate model’s parameters in
Tab. 5.2.

set A1 A2 A3 B1 B2 C1 C2 D1 D2 D3 εp11,B
(MPa) (%)

#1 129 32 903 772 439 −44 681 −49 677 −47 195 1.0
#2 389 12 258 884 621 −169 781 −92 771 −91 299 2.5
#3 413 5 065 472 444 −282 430 −186 448 −195 310 1.0
#4 403 10 965 687 595 −168 679 −88 651 −94 319 2.5
#5 414 9 710 918 672 −69 847 +69 832 +69 276 4.0
#6 383 14 716 878 692 −111 829 −55 791 −59 347 2.5
#7 383 46 379 862 717 −94 854 −18 821 −19 211 1.0

Tab. 5.5: Experimental parameters obtained from plots generated using model’s
parameters in Tab. 5.2.

set A1 A2 A3 B1 B2 C1 C2 D1 D2 D3 εp11,B
(MPa) (%)

#1 129 32 906 772 459 −50 708 −54 708 −54 206 1.0
#2 389 12 260 885 647 −181 815 −102 815 −102 317 2.5
#3 413 5 080 472 450 −286 466 −211 466 −211 327 1.0
#4 403 10 960 687 588 −164 658 −79 658 −79 310 2.5
#5 414 9 708 919 699 −83 835 +73 835 +73 274 4.0
#6 383 14 737 878 663 −97 813 −49 813 −49 345 2.5
#7 383 46 367 861 698 −88 800 −9 800 −9 197 1.0

Tab. 5.6: Relative errors in experimental parameters from Tabs. 5.4 and 5.5.

set ∆A1 ∆A2 ∆A3 ∆B1 ∆B2 ∆C1 ∆C2 ∆D1 ∆D2 ∆D3 εp11,B
(%) (%)

#1 0.0 0.0 0.0 4.6 13.6 4.0 10.2 4.6 14.9 5.6 –
#2 0.0 0.0 0.1 4.2 7.1 4.4 10.9 5.7 12.1 6.0 –
#3 0.0 0.3 0.0 1.4 1.4 8.4 13.4 4.0 8.2 5.5 –
#4 0.0 0.0 0.0 −1.2 −2.4 −3.1 −10.2 1.1 −16.0 −2.8 –
#5 0.0 0.0 0.1 4.0 20.3 −1.4 5.8 0.4 5.8 −0.7 –
#6 0.0 0.1 0.0 −4.2 −12.6 −1.9 −10.9 2.8 −16.9 −0.6 –
#7 0.0 0.0 −0.1 −2.6 −6.4 −6.3 −50.0 −2.6 −52.6 −6.6 –
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Fig. 5.7: Original and identified stress–strain curves comparison—set #1.
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Fig. 5.8: Comparison of distorted yield surfaces of the original and identified
model—set #1.
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Fig. 5.9: Original and identified stress–strain curves comparison—set #2.
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Fig. 5.10: Comparison of distorted yield surfaces of the original and identified
model—set #2.
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Fig. 5.11: Original and identified stress–strain curves comparison—set #3.
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Fig. 5.12: Comparison of distorted yield surfaces of the original and identified
model—set #3.
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Fig. 5.13: Original and identified stress–strain curves comparison—set #4.
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Fig. 5.14: Comparison of distorted yield surfaces of the original and identified
model—set #4.
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Fig. 5.15: Original and identified stress–strain curves comparison—set #5.
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Fig. 5.16: Comparison of distorted yield surfaces of the original and identified
model—set #5.
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Fig. 5.17: Original and identified stress–strain curves comparison—set #6.
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Fig. 5.18: Comparison of distorted yield surfaces of the original and identified
model—set #6.
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Fig. 5.19: Original and identified stress–strain curves comparison—set #7.
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Fig. 5.20: Comparison of distorted yield surfaces of the original and identified
model—set #7.
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Chapter 6

Results for Cyclic Loading

T he closed form solution for the general monotonic uniaxial loading was derived
in previous chapter. In this chapter, the solution is used to model the plastic

behavior of materials that are subjected to more complex cyclic loading modes,
which are also quite common in engineering application. Although the plastic be-
havior of materials under cyclic loading modes might be considered too complex and
beyond the possibility of analytical description, the opposite is true. In particular,
many plasticity models involve internal variables that saturate due to cyclic load-
ing [93,A1]. Then, as the limit state of a particular variable is reached, the system
of equations may even simplify therefore allowing closed form analytical solution.

There are two well known characteristics of the plastic behavior of materials under
the cyclic loading—the hysteresis loop and the cyclic stress–strain curve (CSSC).
In this chapter, an equation of the stabilized hysteresis loop is derived from the
equation of the general uniaxial stress–strain curve given in the previous chapter.
Next, from the equation of the hysteresis loop, an equation of the cyclic stress–strain
curve is derived. Both relations are analyzed and their properties are discussed,
including the convergence rates and geometrical properties. Note that due to the
saturation of isotropic hardening variable under the cyclic loading, the number of
parameters of the α-model with fixed distortional parameter reduces from 6 to 4.

As the monotonic loading curves are useful in developing the calibration algorithms,
so are the cyclic curves. Thus, the equation of CSSC is used to develop a calibra-
tion algorithm. By comparing the experimental data with the parametrized model
of CSSC, a system of nonlinear equations for unknown model’s parameters is ob-
tained. Although the analytical solution of the system was not found, the system
was reduced to a single nonlinear equation in a single variable. This equation can
be effectively solved by numerical methods, e.g., the bisection method. Besides, the
existence and uniqness of the solution is discussed, and the proposed calibration al-
gorithm is compared to the calibration based on the nonlinear least squares method.
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Chapter 6. Results for Cyclic Loading

Next, in order to test the robustness of the algorithm, some calibration examples
are given, making use of the two sets of experimental data of carbon and stainless
steels [111, 130]. Finally, the sensitivity analysis of the calibration algorithm is
carried out, which helps understand the relation between the experimental data
and model’s parameters. Note that, besides the calibration algorithm development,
the analytical solutions obtained in this chapter may be used to verify and analyze
FE implementation of α-model with fixed distortional parameter [A10, A13, A15,
A16,A21].

6.1 Solution for Cyclic Loading

The cyclic stress–strain curve is a locus of vertices of the stabilized stress–strain
hysteresis loops generated by strain controlled cyclic loading and obtained for dif-
ferent amplitudes of strain, as shown in Fig. 6.3. Henceforth, without loss of
generality, just uniaxial cyclic loading mode is addressed. The reason for this is
that the uniaxial stress–strain loading is the most widely used in experiments, and
the experimental data used later in this chapter to give a calibration example are
also obtained from uniaxial testing. To derive an equation of the cyclic stress–
strain curve, the same technique as in [93, A1] is used. Note, however, before an
equation of the CSSC can be derived, it must be first shown that the back-stress
forms a closed symmetric hysteresis loop due to cyclic loading [133,A11,A18,A28].

Let us suppose that a uniaxial symmetric cyclic strain loading with the plastic
strain amplitude εp11,a occurs. A back-stress response to such a loading can be seen
in Fig. 6.1. Eq. (5.21) implies that after the k-th loading step—let us suppose that
this loading step is compressive—the back-stress amplitude is given by

αk11,a = −
√

2

3

1

a2

[
1−

(
1 +

√
3

2
a2α

k−1
11,a

)
· exp

(
−
√

3

2
a1a2

(
2εp11,a

))]
, (6.1)

where αk−111,a is an initial condition from the previous loading step. After the subse-
quent (k + 1) step—which is tensile—the back-stress amplitude is given by

αk+1
11,a =

√
2

3

1

a2

[
1−

(
1−

√
3

2
a2α

k
11,a

)
· exp

(
−
√

3

2
a1a2

(
2εp11,a

))]
, (6.2)

where αk11,a is an initial condition from the previous loading step. Denoting ∆k+1 =

αk+1
11,a + αk11,a, one obtains

∆k+1 = exp

(
−
√

3

2
a1a2

(
2εp11,a

)) (
αk11,a + αk−111,a

)
= exp

(
−
√

3

2
a1a2

(
2εp11,a

))
∆k .

(6.3)
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Since exp
(
−
√

3
2a1a2

(
2εp11,a

))
< 1, the sequence ∆k is a convergent geometric

sequence and limk→+∞∆k = 0. Thus, limit value αk−111,a + αk11,a
k→+∞

= 0 implies

that αk−111,a
k→+∞

= −αk11,a and therefore the vertices of hysteresis loop are symmetric.

Moreover, it can be easily shown that relation αk−111,a
k→+∞

= αk+1
11,a also holds and

therefore the hysteresis loop is closed, eventually as shown in Fig. 6.2 [A28].

It follows from Eq. (5.23) that the isotropic hardening variable k monotonically
evolves along any plastic straining path and approaches its saturation value klim =
1/κ2. Therefore, in the case of the uniaxial cyclic loading, the isotropic hardening is
saturated after several cycles and does not evolve anymore. Thus, the back-stress α
remains the only evolving internal variable of the model, and a closed stabilized
stress–strain hysteresis loop is conditioned by a closed stabilized hysteresis loop for
the back-stress component α11. Following an approach by [93, 133], it is assumed
that the back-stress component α11 forms a closed symmetric hysteresis loop, and,
therefore, its vertices must meet the conditions

L =
(
−εp11,a, −α11,a

)
, (6.4)

U =
(

εp11,a, α11,a

)
, (6.5)

where L and U are the lower and upper vertices of the loop, respectively, εp11,a is
the plastic strain amplitude, and α11,a is the back-stress amplitude, as shown in
Fig. 6.2. Since the back-stress evolves from the L vertex to the U vertex, Eq. (5.21)
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yields

α11,a =

√
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3

1

a2

[
1−

(
1 +

√
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a2α11,a
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· exp
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−
√
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. (6.6)

From this equation, the back-stress amplitute α11,a can be easily expressed as

α11,a =

√
2

3

1

a2
tanh

(√
3

2
a1a2ε

p
11,a

)
, (6.7)

where εp11,a is the plastic strain amplitude [A28]. Thus, Eqs. (5.21) and (6.7)
describe the closed symmetric hysteresis loops for the back-stress α11. The cyclic
stress–strain curve then can be obtained from Eqs. (5.25) and (6.7) in the form

σ11,a =
1/κ2√√√√1− c

a2
tanh

(√
3

2
a1a2ε

p
11,a

) +

√
3

2

1

a2
tanh

(√
3

2
a1a2ε

p
11,a

)
, (6.8)

where σ11,a is the axial stress amplitude evoked by the axial plastic strain amplitude
εp11,a. Specifically how CSSC is found from stabilized stress–strain hysteresis loops
is shown Fig. 6.3. Since the isotropic hardening variable k is saturated, the initial
parameter k0 and the rate parameter κ1 do not figure in Eq. (6.8), and the set of
model’s parameters describing the CSSC is reduced to 4 independent considerable
parameters κ2, a1, a2, and c [A28]. Note the stabilized stress–strain hysteresis loop
is given by Eqs. (5.21), (5.25), and (6.7).

6.2 Calibration for Cyclic Loading

In previous chapter, the calibration algorithm for model’s parameters was proposed.
The algorithm was based on experimental data of monotonic loading curves. In
this section, the second calibration algorithm is developed. This algorithm employs
the equation of cyclic stress–strain curve and appropriate experimental data.

Several experimental parameters can be determined from experimental cyclic stress–
strain curve (CSSC) [A11,A18,A28]. Referring to Fig. 6.4, the P parameter denotes
an initial size of the elastic domain. The R parameter denotes the limit size of the
elastic domain. Finally, the Q parameter denotes the stress amplitude for arbi-
trary plastic strain amplitude εp11,a,Q. As can be seen from Eq. (6.8), the stress
amplitude increases as the strain amplitude increases, and therefore P < Q < R.
For practical application, the experimental parameter P can be determined as the
minimal stress amplitude of the experimental CSSC, the parameter R can be de-
termined as the maximum stress amplitude of the experimental CSSC, and the
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parameter Q can be determined as the stress amplitude at plastic strain amplitude
εp11,a,Q, where εp11,a,Q is any plastic strain amplitude of the experimental CSSC.
Note better results are obtained if Q is selected near the middle between P and
R in terms of stress. Using Eq. (6.8), parameters P , Q, and R can be related to
the model’s parameters. The P parameter can be expressed by setting εp11,a = 0 in
Eq. (6.8) as

P = σ11,a
(
εp11,a → 0+

)
=

1

κ2
. (6.9)

The stress amplitude Q at some level of plastic strain amplitude εp11,a,Q can be
expressed as

Q = σ11,a

(
εp11,a,Q

)
=

1/κ2√√√√1− c

a2
tanh

(√
3

2
a1a2ε

p
11,a,Q

) +

+

√
3

2

1

a2
tanh

(√
3

2
a1a2ε

p
11,a,Q

)
. (6.10)

Further, the limit value R of function (6.8) can be expressed by setting εp11,a → +∞
in Eq. (6.8) as

R = σ11,a
(
εp11,a → +∞

)
=

1

κ2

1√
1− c

a2

+

√
3

2

1

a2
. (6.11)

The ratio of the c and the a2 parameters can be denoted r, i.e.,

r =
c

a2
. (6.12)

In Eqs. (6.9)–(6.12), parameters P , Q and R can be determined from experimental
data. Due to the restrictions 0 ≤ c < a2, which can be seen in [121,122], Eqs. (6.9),
(6.11), and (6.12) yield

R = P
1√

1− r
+

√
3

2

1

a2
> P

1√
1− r

. (6.13)

The inequality (6.13) imposes an restriction on the r parameter which reads

0 ≤ r < 1−
(
P

R

)2

. (6.14)

Sensitivity analysis of the DDH model with respect to the c parameter shows that
higher values of the r parameter are necessary to make the c parameter significant
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in terms of CSSC influence. Different CSSCs for different values of the r parameter
and fixed parameters P , Q and R can bee seen in Fig. 6.5. In this figure, the fixed
parameters P , Q and R cause that all depicted curves have a common original
point, a cross point and a limit value, respectively. Note that influence of r is
small. Thus, the r parameter can be estimated, and in this work it is assumed that
Thus, the r parameter can be estimated as 90 % of the upper limit value given by
Eq. (6.14). This estimation yields

r = 0.9
(

1− (P/R)
2
)
. (6.15)

Once the left hand sides of Eqs. (6.9)–(6.12) are determined, a system of four
nonlinear equations for four parameters is formulated. The solution of this system
gives the initial estimation for material parameters a1, a2, κ2, and c [A18,A28].

Although the system of Eqs. (6.9)–(6.12) is nonlinear, some equations can be solved
in analytical way. Thus, Eq. (6.9) yields

κ2 =
1

P
, (6.16)

Eq. (6.11) yields

a2 =

√
3

2

R− P√
1− r

(6.17)

and Eq. (6.12) yields
c = ra2. (6.18)

Further, substituting solutions (6.16), (6.17), and (6.18) into Eq. (6.10), one obtains
relation

f (a1) = 0, (6.19)

where

f (a1) =
P√√√√√√√1− r tanh


3

2
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R− P√
1− r
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+
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(
R− P√

1− r

)
tanh


3

2
εp11,a,Q

R− P√
1− r

a1

−Q. (6.20)
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Fig. 6.4: Geometrical representation of experimental parameters P , Q and R.
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Eq. (6.19) involves only one unknown variable a1 and can be solved very effectively
by numerical means.

In order to show the existence and uniquness of the solution, the function in
Eq. (6.20) has been analyzed. The only restriction for the a1 parameter is a1 ≥ 0,
as can be seen in [121,122]. It can be easily shown that

f (a1)
∣∣
0

= P −Q < 0, (6.21)

and
lim

a1→+∞
f (a1) = R−Q > 0, (6.22)

that guaranties the existence of solution in [0,+∞). Because for a1 ≥ 0,

f ′ (a1) > 0, (6.23)

uniqueness of solution in [0,+∞) is guarenteed as well. To solve Eq. (6.19) the
bisection method was used. The left endpoint for the first iteration of the bisection
method can be choosen as a1 = 0, the right one can be determined by trivial
algorithm based on Eq. (6.22) [A18,A28].

Parameters calibrated by the algorithm developed are suitable to model the cyclic
loading cases. Moreover, since the explicit equation of CSSC was derived, this equa-
tion can be exploited for an alternative approach based on fitting by the nonlinear
least squares method. Since such a formulation may be considered highly nonlinear,
it requires a good initial estimation of parameters to achive the convergence of the
algorithm. The solution given by Eqs. (6.16)–(6.19) may be used for this purpose.

6.3 Examples for Cyclic Loading

In previous section, two methods of calibrating the model’s parameters from CSSC
were developed. The first method is based on the solution of the system of equa-
tions (6.16)–(6.19). The second method is based on CSSC fitting to appropriate
experimental data points. Here, these methods are combined and used in two steps
to calibrate model’s parameters from experimental data. In the first step, the ex-
perimental parameters P , Q, and R are determined from experimental data, and
the system of Eqs. (6.16)–(6.19) is solved. This yields four model’s parameters a1,
a2, κ2, and c. In the second step, these parameters are used as an initial estimation
for the nonlinear least squares method, and the calibration is finished [A12].

In order to present a calibration example, an experimental data of CSSC after [111]
and [130] was taken. Data is summarized in Tab. 6.1 and depicted in Figs. 6.6 and
6.7. Because no elastic moduli of materials in [111] and [130] were given, Young’s
modulus of both materials was estimated to be E = 2× 105 MPa.
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Tab. 6.1: Experimental data of cyclic stress–strain curves for steels 304LN [130]
and AISI 1018 HR [111].

304LN AISI 1018 HR

total strain
amplitude

stress
amplitude

total strain
amplitude

stress
amplitude

εtot11,a (%) σ11,a (MPa) εtot11,a (%) σ11,a (MPa)

0.20 256 0.13 207
0.50 312 0.26 253
0.77 354 0.39 272
1.00 403 0.52 287
1.20 458 0.65 299
1.40 491 0.78 312
1.60 531 0.91 323
1.80 563 1.04 334
2.00 583 1.17 345

1.30 355

Tab. 6.2: Parameters estimated from the experimental data in Tab. 6.1.

material P Q R r εp11,a,Q
(MPa) (MPa) (MPa) (1) (%)

304LN 256 430.5 583 0.726 47 0.884 75
AISI 1018 HR 207 305.5 355 0.594 00 0.562 25

Tab. 6.3: Parameters calibrated from the experimental data in Tab. 6.1.

material κ2 a1 a2 c εp11,a,Q
(MPa−1) (MPa) (MPa−1) (MPa−1) (%)

304LN 0.004 019 9 2.879 5 0.335 86 2.841 1e−1 0.884 75
AISI 1018 HR 0.004 663 8 135.30 0.008 331 3 1.776 3e−9 0.562 25
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Fig. 6.6: Model calibrated on 304LN experimental data [130].
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Fig. 6.7: Model calibrated on AISI 1018 HR experimental data [111].

73



Chapter 6. Results for Cyclic Loading

Two examples from model performance after initial estimation and final calibration
are shown in Figs. 6.6 and 6.7. The experimental parameters P , Q, and R deter-
mined from Tab. 6.1 are given in Tab. 6.2, and the calibrated model’s parameters
are summarized in Tab. 6.3.

As can be seen from Figs. 6.6 and 6.7, the estimated and calibrated CSSCs show
quite good agreement, which confirms the accuracy of the estimation given by
Eqs. (6.16)–(6.19). Moreover, the bisection method used to solve Eq. (6.19) is very
robust, especially in combination with Eqs. (6.21), (6.22), and (6.23). Note the
α-model can capture inflection in experimental data, as it can be seen in Fig. 6.6.

6.4 Sensitivity Analysis for Cyclic Loading

In order to understand relations between inputs and outputs of the calibration
procedure given by Eqs. (6.16)–(6.19) and to test robustness of the procedure, its
sensitivity analysis was carried out. The approach is to consider the derivative
∂pint/∂Pinp of a model interal parameter pint with respect to an input data Pinp,
and pre-multiply it by Pinp/pint for normalization.

For the sensitivity analysis of cyclic calibration algorithm given by Eqs. (6.16)–
(6.19), parameters from Tab. 6.2 of the 304LN grade steel were used. The sensitivity
matrix is given by

P
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∂κ2
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∂R

r
c
∂c
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 =


−1.00000 0 0 0
−5.3719 2.6687 3.6820 −5.2944
5.2342 0 −6.2342 6.9507
5.2342 0 −6.2342 7.9507

 .

(6.24)
This analysis reveals low sensitivity of all internal model’s parameters to experi-
mental parameters P , Q, R, and r, suggesting that the calibration procedure is
rather robust, and slight changes to the selected experimental parameters yield
only small changes to calibrated parameters [A28].
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Conclusions

T he origins of phenomenological theories of plasticity can be traced back to
1871 when Saint-Venant published his three postulates, initiating systematic

research into the topic [8]. After almost one hundred and fifty years of evolu-
tion, continuum models of plasticity have become some of the most successful
phenomenological constitutive models of solids [123]. While Saint-Venant’s orig-
inal interest was purely scientific, the plasticity theories rapidly expanded into
engineering design, mainly during the 1940s. Nowadays, numerical simulations
employing plasticity models are common in industrial applications.

The most advanced of current plasticity models implement a combined isotropic,
kinematic, and directional distortional hardening (DDH). All these phenomena
have been proved by numerous experiments and are characterized by expansion,
translation, and distortion of subsequent yield surfaces, respectively. Despite proved
by experiments and modeled by many researchers, DDH is not routinely recognized
by engineering community. There might be several reasons why, including a lack of
DDH implementation in FE codes, a higher number of parameters to be calibrated
when compared with the combined isotropic and kinematic hardening models, and
a requirement of sophisticated experimental procedures for calibration of param-
eters, among others. Thus, DDH models might be considered to occupy a death
valley from an engineering application point of view.

The general aim of this thesis—set up in Chapter 3—was to identify problems
applying DDH models and to bring answers, solutions, and explanations of these
problems so that the death valley mentioned would be abridged. Thus, there
have been several problems identified, and they may be divided into two groups—
experimental and theoretical ones. Although the experimental difficulties were
mentioned and described in Chapters 2 and 3, the thesis focused on the theoretical
problems with using DDH models. The experimental part is mentioned in Chap-
ters 2 and 3 because model calibration requires experimental data and thus one
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should always consider possibilities and limitations of the experimental techniques
available.

Regarding the theoretical aspects, there have been two main theoretical issues iden-
tified why DDH models are not routinely employed—the lack of the analysis and
understanding of DDH models, and the lack of effective calibration procedures. Al-
though the development of DDH models often include advanced theoretical frame-
works, e.g., the thermodynamical consistency and the yield surface convexity, the
analysis of basic properties of models is usually missing. This situation is typical
for DDH models, while some other models, e.g., the kinematic hardening models,
have been successfully studied from this point of view [93, 119]. Without this an-
alysis, it is difficult to connect model’s parameters with particular phenomena or
experimental data. In turn, it is a challenge to understand the behavior of the
model and use it for engineering applications. In this work, such an analysis was
addressed by aims #1 and #2 defined in Chapter 3.

Another challenge preventing use of DDH in engineering applications is the lack of
the effective calibration algorithms. There have been a few rather general attempts
to calibrate DDH models [122,133]. Although these attempts are of a high impor-
tance, they are usually based on the nonlinear least squares method. Since the
DDH models are highly nonlinear, and the method requires an initial estimation of
parameters, because of the complexity of these models, a general initial estimation
of parameters may be insufficient and the numerical algorithm may not converge.
This, of course, decreases an attractivity and applicability of models. Therefore, in
this work, advanced calibration algorithms for both the calibration and estimation
of initial parameters were addressed by aims #3 and #4 defined in Chapter 3.

7.1 Conclusions of Aim #1—Finding Closed Form
Solutions for Monotonic Loading

In Section 5.1, the general stress tensor and backstress in Feigenbaum–Dafalias
α-model with fixed distorional parameter [121,122] were expressed by a product of
fixed second-order tensor and a linear parameter. This restricted the stress state
to a one-dimensional linear subspace, which corresponds to arbitrary monotonic
proportional loading trajectories in stress space. Subsequently, the stress was ex-
pressed from the yield condition in terms of hardening variables. Next the differen-
tial equations for the isotropic and kinematic hardening variables were analytically
integrated, and isotropic and kinematic parameters were expressed in terms of
plastic strains. The third internal variable—a scalar-valued distortional parameter
c—is fixed in this model by the definition, so no integration was necessary. As the
stress was expressed in terms of the internal variables, and the internal variables
were expressed in terms of the plastic strain, this transitive relation formed an
explicit relation between the stress and the plastic strain—see Eq. (5.25).
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With an explicit expression of the stress field in terms of the plastic strain, spe-
cific initial conditions, and an elastic model, the stress–strain curve of the material
loaded along the linear multiaxial stress trajectory is completely described. In gen-
eral, this formula reveals how the stress–strain curve shape is influenced by model’s
parameters. In addition, this formula can be used to verify model implementation
in numerical codes, as was done in [A15].

7.2 Conclusions of Aim #2—Locating Limit En-
velope for Cyclic Loading

In Section 5.1, an equation of multiaxial stress–strain curve was derived. In Sec-
tion 6.1, this equation was exploited to derive an equation of the stabilized hystere-
sis loop inherent to Feigenbaum–Dafalias α-model with fixed distortional parame-
ter. Following the work of Lemaitre and Chaboche [93], the stabilized hysteresis
loop was derived from two monotonic stress–strain curves—one for the loading to-
wards tension and another for the loading towards compression. Both curves were
dislocated from the origin of the coordinate system and were joined by their ends—
see Fig. 6.1. Subsequently, a condition that would close the curves into a loop and
make the loop symmetric was found—see Fig. 6.2 and Eq. (6.7). Details of this pro-
cedure can be found in [93,A1]. Note, the hysteresis loop was searched just for the
backstress. That was possible because the isotropic hardening variable saturates in
case of cyclic loading and stress can be simply expressed from the yield condition in
terms of backstress—see Eq. (6.8). During the derivation of the equations for the
stabilized hysteresis loop for the back-stress, a convergence of the model to a sym-
metric hysteresis loop was studied. It was shown that a system of concatenated
curves matches a geometrical series, which implies quite “fast” convergence—see
Eq. (6.3). Since the cyclic stress–strain curve is given by vertices of stabilized hys-
teresis loops—see Fig. 6.3—it was quite straight-forward to write down its equation
from the equation of stabilized stabilized hysteresis stress—see Eq. (6.8).

An analytical expression for the stabilized hysteresis loop and the cyclic stress–
strain curve under multiaxial loading has several benefits. It provides a clear ex-
planation for the behavior of the model and the influence of the parameters under
cyclic loading, and allows one to study how the shapes of the curves are influenced
by internal model’s parameters. Moreover, both of these curves may be used to
calibrate model’s parameters, as reported in [93,119,A1].
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7.3 Conclusions of Aim #3—Developement of An-
alytical Calibration Algorithms

Two calibration algorithms have been developed—one suitable for calibration from
experimental data of monotonic loading and another for calibration from experi-
mental data of cyclic loading.

In Section 5.1, an equation of multiaxial stress–strain curve inherent to Feigen-
baum–Dafalias α-model with fixed distortional parameter was derived. In Sec-
tion 5.2, this equation together with that one for distorted yield surface was used
to develop an algorithm for calibration from experimental data of monotonic load-
ing. This algorithm is based on four particular experimental loading cases: an axial
stress–strain curve denoted A, a reverse loading denoted B, a second reverse loading
denoted C, and, finally, a shape of the yield surface denoted as experiment D. All
the experiments are shown in Figs. 5.3–5.6. For each loading case, several experi-
mental parameters need to be determined. In total, there are 10 such parameters
denoted A1, . . . , D3 that represent characteristics of particular loading cases, e.g.,
yield strength, tensile strength, stress–strain curve slope at yield strength. These
10 experimental inputs are given by 10 nonlinear equations (5.27)–(5.36). From
this system, the final six equations for model’s internal parameters are derived and
the system is solved. Thus, all six model’s parameters are calibrated completely
analytically, i.e., no numerical procedures are needed.

In Section 6.1, an equation of the cyclic stress–strain curve inherent to Feigenbaum–
Dafalias α-model with fixed distortional parameter was derived. In Section 6.2, this
equation was used to develop an algorithm for calibration from experimental data
of cyclic loading, namely from the points of the cyclic stress–strain curve. There
have been chosen four parameters that represent characteristic features of the cyclic
stress–strain curve, e.g., initial stress amplitude, limit stress amplitude. These pa-
rameters are given by equations (6.9)–(6.12) and depend on model’s parameters.
Inverting this system allows the model’s parameters to be expressed in terms of
feature of the cyclic stress–strain curve. Further, the nonlinear least squares me-
thod with initial guess based on the analytical equations (6.9)–(6.12) may be used
to obtain more precise calibration from a cyclic stress–strain curve, as the example
in Section 6.3 shows.

The calibration algorithm from monotonic experiments given in Section 5.2 and
that from the cyclic stress–strain curve given in Section 6.2 make use of several dis-
crete experimental parameters that are expressed in terms of model’s parameters.
In both cases, the calibration is done via inversion of these expressions, i.e., model’s
parameters are expressed in terms of experimental parameters. Although the both
systems of equations are nonlinear, it was possible to find explicit closed-form re-
lations for inversions. Parameters calibrated by these methods may be directly
used for modeling or may be used as an initial estimation for advanced calibration
procedures, e.g., the nonlinear least squares method, as was shown in Section 6.3.
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The algorithms proposed have several benefits. First, they do not require any
initial estimation of parameters. Next, the conditions that guarantee the existence
of solution are known, and if the solution exists, it is unique. In Sections 5.3 and
6.3, some examples of calibration procedures were given. Since no experimental
data were available in case of calibration from monotonic loading, an exemplary
sets of data were generated and used. A similar calibration method as developed
here was used to calibrate a fatigue model in [A12].

7.4 Conclusions of Aim #4—Sensitivity Analysis
of Calibration Algorithms

In order to understand better relations between inputs and outputs of both cal-
ibration procedures, a sensitivity analysis was done in Sections 5.4 and 6.4. For
both algorithms, the sensitivity was determined at particular points given by a set
of parameters. In order to suppress an influence of magnitudes of input and output
parameters, sensitivities were normalized. The results are given by Eqs. (5.60) and
(6.24) and revealed that sensitivities of calibration algorithms for the monotonic
and cyclic loading varies in about 2 and 1 order orders of magnitude, respectively.
The variation of 2 orders of magnitude means that particular model parameter may
increase or decrease in a range of 0.01–100 % due to 1 % change in the experimen-
tal data. This difference in parameters will not necessarily translate to different
overall predictions of stress–strain behavior, and high sensitivity of parameters is
not expected affect the overall accuracy of the method.

7.5 Future Work

This thesis includes analysis, algorithms, and calibration techniques that support
an application of DDH models, namely of that one by Feigenbaum and Dafalias
[121, 122]. It gives answers to numerous questions, e.g., What is the equation of
the stress–strain curve, the hysteresis loop, and the cyclic stress–strain curve under
multiaxial loading?, How to calibrate the model’s parameters?, What is a sensitivity
of particular model’s parameters to experimental data?, What is a saturation rate
of model’s internal variables under cyclic loading? Due to this, and with respect
to the conclusions given in Sections 7.1–7.4, the author believes that all four aims
of the thesis might be considered fulfilled. However, as is always the case with
research, there are still questions left unanswered and new questions arise from
these results.

Most importantly, this thesis offers a theoretical support for the application of DDH
models, the development of autonomous—and therefore effective—experimental
techniques is required as well. In particular, yield surface distortion can be rather
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difficult to detect experimentally. Usually yield surfaces are detected via probes in
the stress space. This process can be streamlined and effectivity can be substan-
tially increased through suitable control.

Moreover, there are numerous other topics in metal plasticity, where answers, mod-
els, or scientific consensus are still missing. These topics include finite strains,
consistent tangent operators for DDH models, the exact shape of distorted yield
surfaces, advanced hardening phenomena, etc.

Also, the work presented in this thesis or closely related to this topic has been pub-
lished in several conferences and papers, references of which are listed in Author’s
Publications. Some details on the topic might be seen in these references as well.
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Notation

Notation Unit Description

A1, A2, A3 MPa parameters determined from the experiment A
a1 MPa internal parameter of kinematic hardening
a2 MPa−1 internal parameter of kinematic hardening
α MPa kinematic hardening tensor—back-stress
α MPa Euclidean norm of the back-stress tensor α
αij MPa back-stress tensor component ij
α11,0 MPa initial condition for the back-stress component 11
α11,a MPa amplitude of the back-stress component 11
B1, B2 MPa parameters determined from the experiment B
C1, C2 MPa parameters determined from the experiment C
c MPa−1 internal parameter of distortional hardening
D1, D2, D3 MPa parameters determined from the experiment D
d 1 unit norm loading direction in stress space
dd 1 unit norm loading direction in deviatoric stress space
εp 1 infinitesimal plastic strain tensor
εp 1 plastic strain tensor norm
εpef 1 von Mises effective strain
εpij 1 infinitesimal plastic strain tensor component ij
εp0 1 norm of the initial plastic strain tensor
εp11,0 1 initial plastic strain component 11
εp11,a 1 amplitude of the plastic strain component 11
f MPa yield function
k MPa isotropic hardening variable
k0 MPa initial yield stress given by initial condition for k
κ1 MPa internal parameter of isotropic hardening
κ2 MPa−1 internal parameter of isotropic hardening
λ s−1 loading index, plastic multiplier
m 1 loading direction sign with respect to d and dd

n 1 unit norm tensor normal to the yield surface
nr 1 unit norm tensor along the (s−α) direction
P , Q, R MPa parameters determined from experiment
r MPa estimated parameter
s MPa deviatoric stress tensor
s MPa Euclidean norm of the deviatoric stress tensor s
sij MPa deviatoric stress tensor component ij
σ MPa stress tensor
σ MPa Euclidean norm of the stress tensor σ
σ MPa axial stress in biaxial testing
σef MPa von Mises effective stress
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Notation Unit Description

σy MPa yield stress
σij MPa stress tensor component ij
σ11,a MPa amplitude of the stress tensor component 11
σ11 MPa axial stress
σ12 MPa shear stress
τ MPa shear stress in biaxial testing
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à leur premier état, Journal de Mathématiques Pures et Appliquées. 2. Série 16
(1871) pp. 396–372.

[8] A. J. C. B. de Saint-Venant, Mémoire sur l’établissement des équations différentielles
des mouvements intérieurs opérés dans les corps solides ductiles au delà des limites
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[101] T. Kurtyka, M. Życzkowski, Evolution equations for distortional plastic hardening,
International Journal of Plasticity 12 (2) (1996) pp. 191–213. doi:http://dx.doi
.org/10.1016/S0749-6419(96)00003-4. URL http://www.sciencedirect.com/sc
ience/article/pii/S0749641996000034

[102] W.-C. Yeh, C.-D. Ho, W.-F. Pan, An endochronic theory accounting for deformation
induced anisotropy of metals under biaxial load, International Journal of Plasticity
12 (8) (1996) pp. 987–1004. doi:https://doi.org/10.1016/S0749-6419(96)00038
-1. URL http://www.sciencedirect.com/science/article/pii/S0749641996000
381

[103] L. Dietrich, Z. L. Kowalewski, Experimental investigation of an anisotropy in copper
subjected to predeformation due to constant and monotonic loadings, International
Journal of Plasticity 13 (1–2) (1997) pp. 87–109. doi:http://dx.doi.org/10.10
16/S0749-6419(97)00002-8. URL http://www.sciencedirect.com/science/arti
cle/pii/S0749641997000028

[104] H. Ishikawa, Subsequent yield surface probed from its current center, International
Journal of Plasticity 13 (6–7) (1997) pp. 533–549. doi:http://dx.doi.org/10.10
16/S0749-6419(97)00024-7. URL http://www.sciencedirect.com/science/arti
cle/pii/S0749641997000247

[105] C. Lissenden, B. Lerch, J. Ellis, D. Robinson, Experimental determination of yield
and flow surfaces under axial-torsional loading, in: S. Kalluri, P. Bonacuse (Eds.),
Multiaxial fatigue and deformation testing techniques, Vol. 1280 of American society
for testing and materials special technical publication, American Society for Testing
and Materials, 1997 pp. pp. 92–112, symposium on Multiaxial Fatigue and Defor-
mation Testing Techniques, Denver, CO, May 15, 1995. doi:10.1520/STP16214S.
URL http://www.refdoc.fr/Detailnotice?idarticle=15448531

94

http://www.sciencedirect.com/science/article/pii/074964199190019U
http://www.sciencedirect.com/science/article/pii/074964199190019U
http://dx.doi.org/http://dx.doi.org/10.1016/0749-6419(91)90019-U
http://dx.doi.org/http://dx.doi.org/10.1016/0749-6419(91)90019-U
http://www.sciencedirect.com/science/article/pii/074964199190019U
http://www.sciencedirect.com/science/article/pii/074964199190019U
http://www.sciencedirect.com/science/article/pii/074964199390056V
http://www.sciencedirect.com/science/article/pii/074964199390056V
http://dx.doi.org/http://dx.doi.org/10.1016/0749-6419(93)90056-V
http://www.sciencedirect.com/science/article/pii/074964199390056V
http://www.sciencedirect.com/science/article/pii/074964199390056V
http://www.sciencedirect.com/science/article/pii/0749641994000425
http://www.sciencedirect.com/science/article/pii/0749641994000425
http://dx.doi.org/https://doi.org/10.1016/0749-6419(94)00042-5
http://www.sciencedirect.com/science/article/pii/0749641994000425
http://www.sciencedirect.com/science/article/pii/0749641994000425
http://dx.doi.org/10.1115/1.2895992
http://dx.doi.org/10.1115/1.2895992
http://dx.doi.org/10.1115/1.2895992
http://dx.doi.org/10.1115/1.2895992
http://dx.doi.org/10.1115/1.2895992
http://www.sciencedirect.com/science/article/pii/S0749641996000034
http://dx.doi.org/http://dx.doi.org/10.1016/S0749-6419(96)00003-4
http://dx.doi.org/http://dx.doi.org/10.1016/S0749-6419(96)00003-4
http://www.sciencedirect.com/science/article/pii/S0749641996000034
http://www.sciencedirect.com/science/article/pii/S0749641996000034
http://www.sciencedirect.com/science/article/pii/S0749641996000381
http://www.sciencedirect.com/science/article/pii/S0749641996000381
http://dx.doi.org/https://doi.org/10.1016/S0749-6419(96)00038-1
http://dx.doi.org/https://doi.org/10.1016/S0749-6419(96)00038-1
http://www.sciencedirect.com/science/article/pii/S0749641996000381
http://www.sciencedirect.com/science/article/pii/S0749641996000381
http://www.sciencedirect.com/science/article/pii/S0749641997000028
http://www.sciencedirect.com/science/article/pii/S0749641997000028
http://dx.doi.org/http://dx.doi.org/10.1016/S0749-6419(97)00002-8
http://dx.doi.org/http://dx.doi.org/10.1016/S0749-6419(97)00002-8
http://www.sciencedirect.com/science/article/pii/S0749641997000028
http://www.sciencedirect.com/science/article/pii/S0749641997000028
http://www.sciencedirect.com/science/article/pii/S0749641997000247
http://dx.doi.org/http://dx.doi.org/10.1016/S0749-6419(97)00024-7
http://dx.doi.org/http://dx.doi.org/10.1016/S0749-6419(97)00024-7
http://www.sciencedirect.com/science/article/pii/S0749641997000247
http://www.sciencedirect.com/science/article/pii/S0749641997000247
http://www.refdoc.fr/Detailnotice?idarticle=15448531
http://www.refdoc.fr/Detailnotice?idarticle=15448531
http://dx.doi.org/10.1520/STP16214S
http://www.refdoc.fr/Detailnotice?idarticle=15448531


[106] L. F. Shampine, M. W. Reichelt, The MATLAB ODE Suite, SIAM Journal on
Scientific Computing 18 (1) (1997) pp. 1–22. arXiv:https://doi.org/10.1137/S1
064827594276424, doi:10.1137/S1064827594276424. URL https://doi.org/10.1
137/S1064827594276424

[107] C. Gil, C. Lissenden, B. Lerch, Determination of yield in inconel axial-torsional
loading at temperatures up to 649 ◦C, Tech. Rep. NASA/TM—1998-208658 (1998).

[108] J. M. Pestana, A. J. Whittle, Formulation of a unified constitutive
model for clays and sands, International Journal for Numerical and
Analytical Methods in Geomechanics 23 (12) (1999) pp. 1215–1243.
doi:10.1002/(SICI)1096-9853(199910)23:12<1215::AID-NAG29>3.0.CO;2-F.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9
853%28199910%2923%3A12%3C1215%3A%3AAID-NAG29%3E3.0.CO%3B2-F

[109] M. François, A plasticity model with yield surface distortion for non proportional
loading, International Journal of Plasticity 17 (5) (2001) pp. 703–717. doi:http:
//dx.doi.org/10.1016/S0749-6419(00)00025-5. URL http://www.sciencedirec
t.com/science/article/pii/S0749641900000255

[110] G. Grewolls, R. Kreißig, Anisotropic hardening – numerical application of a cubic
yield theory and consideration of variable r-values for sheet metal, European Journal
of Mechanics - A/Solids 20 (4) (2001) pp. 585–599. doi:https://doi.org/10.101
6/S0997-7538(01)01156-1. URL http://www.sciencedirect.com/science/arti
cle/pii/S0997753801011561

[111] A. Plumtree, H. A. Abdel-Raouf, Cyclic stress–strain response and substructure,
International Journal of Fatigue 23 (9) (2001) pp. 799–805. doi:http://dx.doi.o
rg/10.1016/S0142-1123(01)00037-8. URL http://www.sciencedirect.com/scie
nce/article/pii/S0142112301000378

[112] M. Yu, Advances in strength theories for materials under complex stress state in
the 20th century, Applied Mechanics Reviews 55 (3) (2002) pp. 169–218. doi:
10.1115/1.1472455. URL http://dx.doi.org/10.1115/1.1472455

[113] A. A. Brown, J. Casey, D. Nikkel Jr., Experiments conducted in the context of the
strain-space formulation of plasticity, International Journal of Plasticity 19 (11)
(2003) pp. 1965–2005, finite Plasticity and Viscoplasticity - Theoretical, Experi-
mental and Computational Aspects. doi:http://dx.doi.org/10.1016/S0749-641
9(03)00046-9. URL http://www.sciencedirect.com/science/article/pii/S074
9641903000469

[114] Y. F. Dafalias, D. Schick, C. Tsakmakis, A simple model for describing yield sur-
face evolution during plastic flow, in: K. Hutter, H. Baaser (Eds.), Deformation
and Failure in Metallic Materials, Lecture Notes in Applied and Computational
Mechanics, Springer Berlin Heidelberg, 2003 pp. 169–201. doi:10.1007/978-3-540
-36564-8\_7. URL http://dx.doi.org/10.1007/978-3-540-36564-8_7

[115] H.-C. Wu, Effect of loading-path on the evolution of yield surface for anisotropic
metals subjected to large pre-strain, International Journal of Plasticity 19 (10)
(2003) pp. 1773–1800. doi:http://dx.doi.org/10.1016/S0749-6419(03)00012-3.
URL http://www.sciencedirect.com/science/article/pii/S0749641903000123

[116] M. T. Huber, Specific work of strain as a measure of material effort, Archives of
Mechanics 56 (3) (2004) pp. 173–190.

95

https://doi.org/10.1137/S1064827594276424
http://arxiv.org/abs/https://doi.org/10.1137/S1064827594276424
http://arxiv.org/abs/https://doi.org/10.1137/S1064827594276424
http://dx.doi.org/10.1137/S1064827594276424
https://doi.org/10.1137/S1064827594276424
https://doi.org/10.1137/S1064827594276424
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9853%28199910%2923%3A12%3C1215%3A%3AAID-NAG29%3E3.0.CO%3B2-F
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9853%28199910%2923%3A12%3C1215%3A%3AAID-NAG29%3E3.0.CO%3B2-F
http://dx.doi.org/10.1002/(SICI)1096-9853(199910)23:12<1215::AID-NAG29>3.0.CO;2-F
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9853%28199910%2923%3A12%3C1215%3A%3AAID-NAG29%3E3.0.CO%3B2-F
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9853%28199910%2923%3A12%3C1215%3A%3AAID-NAG29%3E3.0.CO%3B2-F
http://www.sciencedirect.com/science/article/pii/S0749641900000255
http://www.sciencedirect.com/science/article/pii/S0749641900000255
http://dx.doi.org/http://dx.doi.org/10.1016/S0749-6419(00)00025-5
http://dx.doi.org/http://dx.doi.org/10.1016/S0749-6419(00)00025-5
http://www.sciencedirect.com/science/article/pii/S0749641900000255
http://www.sciencedirect.com/science/article/pii/S0749641900000255
http://www.sciencedirect.com/science/article/pii/S0997753801011561
http://www.sciencedirect.com/science/article/pii/S0997753801011561
http://dx.doi.org/https://doi.org/10.1016/S0997-7538(01)01156-1
http://dx.doi.org/https://doi.org/10.1016/S0997-7538(01)01156-1
http://www.sciencedirect.com/science/article/pii/S0997753801011561
http://www.sciencedirect.com/science/article/pii/S0997753801011561
http://www.sciencedirect.com/science/article/pii/S0142112301000378
http://dx.doi.org/http://dx.doi.org/10.1016/S0142-1123(01)00037-8
http://dx.doi.org/http://dx.doi.org/10.1016/S0142-1123(01)00037-8
http://www.sciencedirect.com/science/article/pii/S0142112301000378
http://www.sciencedirect.com/science/article/pii/S0142112301000378
http://dx.doi.org/10.1115/1.1472455
http://dx.doi.org/10.1115/1.1472455
http://dx.doi.org/10.1115/1.1472455
http://dx.doi.org/10.1115/1.1472455
http://dx.doi.org/10.1115/1.1472455
http://www.sciencedirect.com/science/article/pii/S0749641903000469
http://www.sciencedirect.com/science/article/pii/S0749641903000469
http://dx.doi.org/http://dx.doi.org/10.1016/S0749-6419(03)00046-9
http://dx.doi.org/http://dx.doi.org/10.1016/S0749-6419(03)00046-9
http://www.sciencedirect.com/science/article/pii/S0749641903000469
http://www.sciencedirect.com/science/article/pii/S0749641903000469
http://dx.doi.org/10.1007/978-3-540-36564-8_7
http://dx.doi.org/10.1007/978-3-540-36564-8_7
http://dx.doi.org/10.1007/978-3-540-36564-8_7
http://dx.doi.org/10.1007/978-3-540-36564-8_7
http://dx.doi.org/10.1007/978-3-540-36564-8_7
http://www.sciencedirect.com/science/article/pii/S0749641903000123
http://www.sciencedirect.com/science/article/pii/S0749641903000123
http://dx.doi.org/http://dx.doi.org/10.1016/S0749-6419(03)00012-3
http://www.sciencedirect.com/science/article/pii/S0749641903000123


References

[117] S. Kolling, A. Haufe, M. Feucht, P. A. Du Bois, SAMP-1: A semi-analytical model
for the simulation of polymers., in: 4. LS-DYNA Anwenderforum, Bamberg, 2005.

[118] H. P. Feigenbaum, Y. F. Dafalias, Directional distortional hardening in metal
plasticity within thermodynamics, International Journal of Solids and Structures
44 (22) (2007) pp. 7526–7542. doi:http://dx.doi.org/10.1016/j.ijsolstr.20
07.04.025. URL http://www.sciencedirect.com/science/article/pii/S00207
68307002077

[119] R. Halama, H. Robovská, L. Volková, T. Skočovský, D. Stacha, M. Švrček,
A. Vicherek, Parameter identification of Chaboche nonlinear kinematic hardening
model, in: K. Frydrýšek, et al. (Eds.), Conference of Applied Mechanics 2007,
Malenovice, April 16–19, 2007 , Technical University of Ostrava, Ostrava, Czech
Republic, 2007 pp. 97–98, [in Czech language].

[120] A. S. Khan, R. Kazmi, B. Farrokh, Multiaxial and non-proportional loading re-
sponses, anisotropy and modeling of Ti–6Al–4V titanium alloy over wide ranges
of strain rates and temperatures, International Journal of Plasticity 23 (6) (2007)
pp. 931–950. doi:https://doi.org/10.1016/j.ijplas.2006.08.006. URL http:
//www.sciencedirect.com/science/article/pii/S0749641906001264

[121] H. P. Feigenbaum, Y. F. Dafalias, Simple model for directional distortional harde-
ning in metal plasticity within thermodynamics, Journal of Engineering Mechan-
ics 134 (9) (2008) pp. 730–738. doi:10.1061/(ASCE)0733-9399(2008)134:9(730).
URL https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%282008
%29134%3A9%28730%29

[122] H. P. Feigenbaum, Directional Distortional Hardening in Plasticity Based on Ther-
modynamics, Ph.D. thesis, University of California, Davis, CA 95616, USA (2008).
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Appendix A. Computer Program for Parameters
Calibration from Quasistatic Loading Data

% monotonic_calibration.m file
% calibration algorithm for directional distortional model -- alpha model
% with fixed c parameter -- monotonic loading data
% model published by Feigenbaum & Dafalias (2008)
% written by Slavomir Parma
% Prague, Czech Republic, September 21, 2015
% utf-8 code page, CR line end (linux)
% GNU Octave 4.2.1, Matlab R2012b (8.0.0.783)
% algorithm published in paper
% Slavomír Parma, Jiří Plešek, René Marek, Zbyněk Hrubý,
% Heidi P. Feigenbaum, Yannis F. Dafalias
% International Journal of Solids and Structures (2018)
% Calibration of a simple directional distortional hardening model
% for metal plasticity

%% initialization
clear all; close all; % clc;

%% input file loading
input_dir_name = ’./input/’;
input_file_name = ’input_parameters.dat’;
parameters = load([ input_dir_name input_file_name ]);

%% input parameters initialization
A1 = parameters(1);
A2 = parameters(2);
A3 = parameters(3);
B1 = parameters(4);
B2 = parameters(5);
C1 = parameters(6);
C2 = parameters(7);
D1 = parameters(8);
D2 = parameters(9);
D3 = parameters(10);
eps= parameters(11); % eps_pl at the first unloading level

%% calibration
% calibration of the ’k0’ parameter
k0 = A1;

% calibration of the ’c’ parameter
c = 3* sqrt((D1-D2)*(D1-D2-2*D3)) / ...
( (D1-D2-D3)*(D1+D2-sqrt((D1-D2)*(D1-D2-2*D3))) );
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Appendix A. Computer Program for Calibration I

% calibration of the ’a_2’ parameter

% B
q3 = 9/2*sqrt(3/2)*c;
q2 = -3*sqrt(3/2)*c*(B1+B2);
q1 = sqrt(3/2)*c*(B1^2+B2^2)+3*(B1-B2);
q0 = -(B1^2-B2^2);

Discriminant = 18*q3*q2*q1*q0 - 4*q2^3*q0 + q2^2*q1^2 ...
- 4*q3*q1^3 - 27*q3^2*q0^2;

alpha_B = -q2/(3*q3) ...
- 1/(3*q3)* nthroot( 1/2* (2*q2^3 - 9*q3*q2*q1 ...
+ 27*q3^2*q0 + sqrt(-27*q3^2*Discriminant) ) , 3) ...
- 1/(3*q3)* nthroot( 1/2* (2*q2^3 - 9*q3*q2*q1 ...
+ 27*q3^2*q0 - sqrt(-27*q3^2*Discriminant) ) , 3);

% C
q3 = 9/2*sqrt(3/2)*c;
q2 = -3*sqrt(3/2)*c*(C1+C2);
q1 = sqrt(3/2)*c*(C1^2+C2^2)+3*(C1-C2);
q0 = -(C1^2-C2^2);

Discriminant = 18*q3*q2*q1*q0 - 4*q2^3*q0 + q2^2*q1^2 ...
- 4*q3*q1^3 - 27*q3^2*q0^2;

alpha_C = -q2/(3*q3) ...
- 1/(3*q3)* nthroot( 1/2* (2*q2^3 - 9*q3*q2*q1 ...
+ 27*q3^2*q0 + sqrt(-27*q3^2*Discriminant) ) , 3) ...
- 1/(3*q3)* nthroot( 1/2* (2*q2^3 - 9*q3*q2*q1 ...
+ 27*q3^2*q0 - sqrt(-27*q3^2*Discriminant) ) , 3);

a2 = sqrt(2/3)*( 2*alpha_B - alpha_C )/alpha_B^2;

% calibration of the ’a1’ parameter
a1 = -sqrt(2/3)/(a2*eps)*log(1-sqrt(3/2)*alpha_B*a2);

% calibration of the ’kappa2’ parameter
kappa2 = 1/( sqrt(1-c/a2) * ( A3 - sqrt(3/2)/a2 ) );

% calibration of the ’kappa1’ parameter
kappa1 = (2*A2 - sqrt(3/2)*k0*a1*c - 3*a1) / (1-kappa2*k0);

%% file output
output_dir_name = ’./output/’;
output_file_name = ’output_parameters.dat’;
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output_file = fopen([ output_dir_name output_file_name ], ’wt’);
fprintf ( output_file, [’%% calibrated parameters: k0(MPa) c(MPa^-1) ’ ...
’a1(MPa) a2(MPa^-1) kappa1(MPa^2) kappa2(MPa^-1)\n’]);
fprintf ( output_file, ’%-5.0f\n’, k0);
fprintf ( output_file, ’%-6.4f\n’, c);
fprintf ( output_file, ’%-6.0f\n’, a1);
fprintf ( output_file, ’%-6.4f\n’, a2);
fprintf ( output_file, ’%-6.0f\n’, kappa1);
fprintf ( output_file, ’%-6.4f’ , kappa2);
fclose(output_file);
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Appendix B. Computer Program for Parameters
Calibration from Cyclic Loading Data

% cyclic_calibration.m file
% calibration algorithm for directional distortional model -- alpha model
% with fixed c parameter -- cyclic loading data
% model published by Feigenbaum & Dafalias (2008)
% written by Slavomir Parma
% Flagstaff, Arizona, USA, December 8, 2014
% utf-8 code page, CR line end (linux)
% GNU Octave 4.2.1, Matlab R2012b (8.0.0.783)
% algorithm published in paper
% Slavomír Parma, Jiří Plešek, René Marek, Zbyněk Hrubý,
% Heidi P. Feigenbaum, Yannis F. Dafalias
% International Journal of Solids and Structures (2018)
% Calibration of a simple directional distortional hardening model
% for metal plasticity

% initialization
clear all; close all; % clc;

addpath(fullfile(cd,’input’)); % experimental data folder
addpath(fullfile(cd,’output’)); % output files folder

%% experimental data allocation
input_file_names_CSSC = { ’CSSC_a.csv’; ’CSSC_b.csv’};
input_file_names_youngs_modulus = ...
{ ’youngs_modulus_a.txt’; ’youngs_modulus_a.txt’};

for i=1:length(input_file_names_CSSC)

%% experimental data loading

% experimental data of CSSC
CSSC = load(input_file_names_CSSC{i});
% experimental data of Young’s modulus
E = load(input_file_names_youngs_modulus{i});

%% computation of plastic strain

CSSC_eps_tot = CSSC(:,1); % total strain amplitude
CSSC_sigma = CSSC(:,2); % stress amplitude

% plastic strain amplitude - Hooke’s law
CSSC_eps = CSSC_eps_tot - CSSC_sigma/E;
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%% initial estimation - determination of parameters A, B, C, eps_B, r

% one possible approach to estimation, different can be applied
A = min(CSSC(:,2));
% one possible approach to estimation, different can be applied
C = max(CSSC(:,2));

data_length = length(CSSC);
middle_position = floor(data_length/2);
% one possible approach to estimation, different can be applied
eps_B = 0.5*(CSSC_eps(middle_position)+CSSC_eps(middle_position+1));
% one possible approach to estimation, different can be applied
B = 0.5*(CSSC_sigma(middle_position)+CSSC_sigma(middle_position+1));

r = 0.9*(1-(A/C)^2);

%% initial estimation - determination of parameters a1, a2, k2, c

f_k2 = @(pA) 1/pA;
f_a2 = @(pA,pC,pr) sqrt(1.5)/(pC-pA/sqrt(1-pr));
f_c = @(pa2,pr) pr*pa2;
f_a1_all_parameters = @(pA,pB,pC,peps_B,pa1,pa2,pr) ...
pA/sqrt(1-pr*tanh(sqrt(3/2)*pa1*pa2*peps_B)) ...
+ sqrt(3/2)/pa2*tanh(sqrt(3/2)*pa1*pa2*peps_B)-pB;

k2 = f_k2(A);
a2 = f_a2(A,C,r);
c = f_c(a2,r);

f_a1 = @(pa1) f_a1_all_parameters(A,B,C,eps_B,pa1,a2,r);
a10 = 0; % initial estimation
a1 = fsolve(f_a1,a10);

%% calibration - Nonlinear Least Squares Method

% reparametrization to preserve restrictions for parameters
% a1 <-- aa1^2 means a1>=0
% a2 <-- cc^2 + aa2^2 means a2>=c
% k2 <-- kk2^2 means k2>=0
% c <-- cc^2 means c>=0

% transformation from internal to standard parameters

f_internal_to_standard = @(aa1,aa2,kk2,cc) ...
% a1 a2 k2 c
[ aa1^2, cc^2+aa2^2, kk2^2, cc^2 ];
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Appendix B. Computer Program for Calibration II

% transformation from standard to internal parameters
f_standard_to_internal = @(a1,a2,k2,c) ...
% aa1 aa2 kk2 cc
[ sqrt(a1), sqrt(a2-c), sqrt(k2), sqrt(c) ];

initial_estimation_internal = f_standard_to_internal(a1,a2,k2,c);

f_CSSC_all_parameters = @(aa1,aa2,kk2,cc,peps) ...
(1/kk2^2)./sqrt(1-cc^2/(cc^2+aa2^2) ...
*tanh(sqrt(3/2)*aa1^2*(cc^2+aa2^2)*peps)) ...
+ sqrt(3/2)/(cc^2+aa2^2)*tanh(sqrt(3/2)*aa1^2*(cc^2+aa2^2)*peps);

f_least_squares_all_parameters = @(peps,psigma,aa1,aa2,kk2,cc) ...
sum( (psigma - f_CSSC_all_parameters(aa1,aa2,kk2,cc,peps)).^2 );

f_least_squares = @(X) f_least_squares_all_parameters ...
(CSSC_eps,CSSC_sigma,X(1),X(2),X(3),X(4));

identified_parameters_internal = fminsearch ...
(f_least_squares, initial_estimation_internal);

%% data processing

% internal parameters
initial_estimation_internal = num2cell(initial_estimation_internal);
[ie_aa1, ie_aa2, ie_kk2, ie_cc] = initial_estimation_internal{:};

identified_parameters_internal = num2cell(identified_parameters_internal);
[ip_aa1, ip_aa2, ip_kk2, ip_cc] = identified_parameters_internal{:};

%% data presentation

figure(i)
plot(CSSC_eps,CSSC_sigma,’xr’,’MarkerSize’,7,’Linewidth’,1);hold on;

Eps = 0:1e-4:0.1;
plot(Eps,f_CSSC_all_parameters(ie_aa1,ie_aa2,ie_kk2,ie_cc,Eps), ...
’g--’,’Linewidth’,1);hold on;
plot(Eps,f_CSSC_all_parameters(ip_aa1,ip_aa2,ip_kk2,ip_cc,Eps), ...
’b-’,’Linewidth’,1);hold on;

legend(’experimental CSSC’,’initial estimation’, ...
’identified model’,’location’,’SE’);

xlabel(’\epsilon^p_{11,a} [1]’);
ylabel(’\sigma_{11,a} [MPa]’);
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if i==1
axis([0 0.02 0 500]);

elseif i==2
axis([0 0.07 0 750]);

end

% standard parameters computation
initial_estimation_standard = ...
num2cell(f_internal_to_standard(ie_aa1, ie_aa2, ie_kk2, ie_cc));
[ie_a1, ie_a2, ie_k2, ie_c] = initial_estimation_standard{:};

identified_parameters_standard = ...
num2cell(f_internal_to_standard(ip_aa1, ip_aa2, ip_kk2, ip_cc));
[ip_a1, ip_a2, ip_k2, ip_c] = identified_parameters_standard{:};

% parameters output to graphs
if 1==1 % yes/no

ie_x = 0.4;
ie_y = 0.55;
ie_d = 0.07;

ip_x = ie_x + 0.3;
ip_y = ie_y;
ip_d = ie_d;

set(gcf,’DefaulttextInterpreter’,’latex’,’DefaulttextFontSize’, 12, ...
’DefaulttextUnits’,’normalized’);

box1 = 4;
box2 = 17;

text(ie_x,ie_y,’estimated’);
text(ie_x,ie_y-1*ie_d,[ ’ \hbox to’ sprintf(’%5.2f’,box1) ...
’mm{$a_1$} \hbox to’ sprintf(’%5.2f’,box2) ...
’mm{=\hfill$’ sprintf(’%6.0f’,ie_a1) ’$}’ ]);
text(ie_x,ie_y-2*ie_d,[ ’ \hbox to’ sprintf(’%5.2f’,box1) ...
’mm{$a_2$} \hbox to’ sprintf(’%5.2f’,box2) ...
’mm{=\hfill$’ sprintf(’%6.5f’,ie_a2) ’$}’ ]);
text(ie_x,ie_y-3*ie_d,[ ’ \hbox to’ sprintf(’%5.2f’,box1) ...
’mm{$\kappa_2$} \hbox to’ sprintf(’%5.2f’,box2) ...
’mm{=\hfill$’ sprintf(’%6.5f’,ie_k2) ’$}’ ]);
text(ie_x,ie_y-4*ie_d,[ ’ \hbox to’ sprintf(’%5.2f’,box1) ...
’mm{$c$} \hbox to’ sprintf(’%5.2f’,box2) ...
’mm{=\hfill$’ sprintf(’%6.5f’,ie_c ) ’$}’ ]);

text(ip_x,ip_y,’identified’);
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Appendix B. Computer Program for Calibration II

text(ip_x,ip_y-1*ip_d,[ ’ \hbox to’ sprintf(’%5.2f’,box1) ...
’mm{$a_1$} \hbox to’ sprintf(’%5.2f’,box2) ...
’mm{=\hfill$’ sprintf(’%6.0f’,ip_a1) ’$}’ ]);
text(ip_x,ip_y-2*ip_d,[ ’ \hbox to’ sprintf(’%5.2f’,box1) ...
’mm{$a_2$} \hbox to’ sprintf(’%5.2f’,box2) ...
’mm{=\hfill$’ sprintf(’%6.5f’,ip_a2) ’$}’ ]);
text(ip_x,ip_y-3*ip_d,[ ’ \hbox to’ sprintf(’%5.2f’,box1) ...
’mm{$\kappa_2$} \hbox to’ sprintf(’%5.2f’,box2) ...
’mm{=\hfill$’ sprintf(’%6.5f’,ip_k2) ’$}’ ]);
text(ip_x,ip_y-4*ip_d,[ ’ \hbox to’ sprintf(’%5.2f’,box1) ...
’mm{$c$} \hbox to’ sprintf(’%5.2f’,box2) ...
’mm{=\hfill$’ sprintf(’%6.5f’,ip_c ) ’$}’ ]);
end

hold off;

%% data printing

set(gcf, ’PaperUnits’, ’centimeters’);
set(gcf, ’PaperSize’, .5*[29.7 21]);
orient landscape; % graphs corection
orient portrait;
print(’-depsc2’,’-loose’,’-r2400’, ...
sprintf(’output\\CSSC_%d.eps’,i) );

end
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Appendix C. Computer Program for Sensitivity
Analysis of Monotonic Calibration Procedure

% Slavomir Parma
% Institute of Thermomechanics of the CAS, v.v.i.
% Dolejskova 1402/5, 182 00 Prague 8, Czech Republic
% parma@it.cas.cz , origon@seznam.cz
% GNU Octave Version 4.2.1, package "symbolic 2.6.0",
% package "sympy-1.1.1" for symbolic computations in python
% GNU bash version 4.3.30, linux 3.16.0-4-amd64, Debian 3.16.43-2
% LF line end (linux), utf-8 encoding
% September 22, 2017
% sensitivity analysis of the alpha c directional distortional hardening
% model by Feigenbaum and Dafalias, model published in:
% - Feigenbaum, H. P., 2008. Directional distortional hardening in
% plasticity based on thermodynamics. PhD dissertation,
% University of California, Davis.
% - Feigenbaum, H. P., Dafalias, Y. F., 2008. Simple model for
% directional distortional hardening in metal plasticity within
% thermodynamics. Journal of Engineering Mechanics 134 (9),
% pp. 730--738.
% URL http://ascelibrary.org/doi/abs/10.1061/
% %28ASCE%290733-9399%282008%29134%3A9%28730%29
%
% results of this analysis are reported in a paper "Calibration of
% a simple directional distortional hardening model for metal
% plasticity", IJSS, (2017)

clc; clear all; close all;
more off;
addpath(genpath(pwd)); % add all subdirectories of actual working
% directory to path
output_file_name = ’output/sensitivity_analysis.txt’;
system([ ’rm ’ output_file_name ] );

pkg load symbolic % https://octave.sourceforge.io/symbolic/overview.html

%% %% symbolic computation of sensitivity
digits(10);
syms x; % this line may be erased
disp(’Loading symbolic equations of model...’);
s_model_setup;
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%% computation of jacobian
disp(’Computing symbolic jacobian...’);
J_F = sym(NaN(length(F),length(X)));
for i=1:size(J_F)(1)
for j=1:size(J_F)(2)
fprintf(1,’%d,%d\n’,i,j);
J_F(i,j) = jacobian(F(i),X(j));
end
end

%% numerical evaluation of jacobian
num_J_F = sym(NaN(length(F),length(X)));

for i=1:size(J_F)(1)
num_J_F(i,:) = subs(J_F(i,:), Par, Val );
end

eval_num_J_F = double(num_J_F);
output_matrix{1} = eval_num_J_F;

break

%% %% numerical computation of sensitivity
disp(’Computing numeric jacobian...’);
VAL_0 = double(VAL_0); % VAL represents a point in which jacobian
% is evaluated, VAL is loaded from the script "s_model_setup"
% dv = min(VAL(1,1:6))*1e-4
dv = 1e-6

f_k0 = function_handle(fs_k0, ’vars’, X ); % symbolic functions
% converted to standard ones, variables order specified by vector
% X defined in the script "s_model_setup"
f_c = function_handle(fs_c , ’vars’, X );
f_a2 = function_handle(fs_a2, ’vars’, X );
f_a1 = function_handle(fs_a1, ’vars’, X );
f_k2 = function_handle(fs_k2, ’vars’, X );
f_k1 = function_handle(fs_k1, ’vars’, X );

% fk = function_handle(k, ’vars’, X );

number_of_functions = size(VAL)(1);
number_of_variables = size(VAL)(2);
Z = NaN(number_of_functions,number_of_variables);

coefficients = [ -1/2 0 1/2 ]; % coefficients for central
% differences
% https://en.wikipedia.org/wiki/Finite_difference_coefficient
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% coefficients = [ 1/12 -2/3 0 2/3 -1/12 ];
% coefficients = [ -1/60 3/20 -3/4 0 3/4 -3/20 1/60 ];
length_coefficients = length(coefficients);
accuracy = length_coefficients-1;

f_expand = @(X) feval(@(x)x{:}, num2cell(X));

for i=1:number_of_variables

sum_Y = zeros(number_of_functions,1);

for j=1:length_coefficients
VAL = VAL_0;
mult = (j-1)-accuracy/2;
VAL(:,i) = VAL(:,i) + mult*dv;

[ A1, A2, A3, B1, B2, C1, C2, D1, D2, D3, eps_pl ] = f_expand(VAL(1,:));

A1 = f_A1(k0, k1, k2, a1, a2, c, sgn, eps_pl, eps_pl_0, alpha_0);
A2 = f_A2(k0, k1, k2, a1, a2, c, sgn, eps_pl, eps_pl_0, alpha_0);
A3 = f_A3(k0, k1, k2, a1, a2, c, sgn, eps_pl, eps_pl_0, alpha_0);

[ k0, k1, k2, a1, a2, c, sgn, eps_pl, eps_pl_0, alpha_0 ] = f_expand(VAL(4,:));
B1 = f_B1(k0, k1, k2, a1, a2, c, sgn, eps_pl, eps_pl_0, alpha_0);
B2 = f_B2(k0, k1, k2, a1, a2, c, sgn, eps_pl, eps_pl_0, alpha_0);

[ k0, k1, k2, a1, a2, c, sgn, eps_pl, eps_pl_0, alpha_0 ] = f_expand(VAL(6,:));
C1 = f_C1(k0, k1, k2, a1, a2, c, sgn, eps_pl, eps_pl_0, alpha_0);
C2 = f_C2(k0, k1, k2, a1, a2, c, sgn, eps_pl, eps_pl_0, alpha_0);

[ k0, k1, k2, a1, a2, c, sgn, eps_pl, eps_pl_0, alpha_0 ] = f_expand(VAL(8,:));
D1 = f_D1(k0, k1, k2, a1, a2, c, sgn, eps_pl, eps_pl_0, alpha_0);
D2 = f_D2(k0, k1, k2, a1, a2, c, sgn, eps_pl, eps_pl_0, alpha_0);
D3 = f_D3(k0, k1, k2, a1, a2, c, sgn, eps_pl, eps_pl_0, alpha_0);

% Y = [ k0, k1, k2, a1, a2, c, sgn, eps_pl, eps_pl_0, alpha_0 ]’;
% Y = [ A1, A2, A3, a1, a2, c, sgn, eps_pl, eps_pl_0, alpha_0 ]’;
% Y = [ A1, A2, A3, 1, 1, 1, 1, 1, 1, 1 ]’;
Y = [ A1, A2, A3, B1, B2, C1, C2, D1, D2, D3 ]’;

sum_Y = sum_Y + coefficients(j)*Y;
end

Z(:,i) = sum_Y/dv; % central differences
end

output_matrix{2} = Z;
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output_matrix{3} = (output_matrix{2}-output_matrix{1})./ ...
(output_matrix{2}+1e10*realmin)*1e2;

output_matrix{4} = Z;

output_matrix{5} = NaN(size(output_matrix{4}));

%% %% printing results

diary (output_file_name);

disp(’Sensitivity matrix for DDH alpha c model’);
disp(’’);
disp(’Sensitivity computed for these values of parameters:’);
disp(’’);
disp(output{5});

disp(’’);
disp(’Sensitivity of the model computed by symbolic derivatives:’);
disp(’’);
disp(output{1});

disp(’’);
disp(’Sensitivity of the model computed by numeric derivatives:’);
disp(’’);
disp(output{2});
disp(’’);

if 1
disp(’’);
disp(’Comparison of both approaches - Error (%):’);
disp(’’);
disp(output{3});
disp(’’);
end
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Appendix D. Computer Program for Sensitivity
Analysis of Cyclic Calibration Procedure

% Slavomir Parma
% Institute of Thermomechanics of the CAS, v.v.i.
% Dolejskova 1402/5, 182 00 Prague 8, Czech Republic
% parma@it.cas.cz , origon@seznam.cz
% GNU Octave Version 4.2.1, package "symbolic 2.6.0",
% package "sympy-1.1.1" for symbolic computations in python
% GNU bash version 4.3.30, linux 3.16.0-4-amd64, Debian 3.16.43-2
% LF line end (linux), utf-8 encoding
% September 22, 2017
% sensitivity analysis of the alpha c directional distortional hardening
% model by Feigenbaum and Dafalias, model published in:
% - Feigenbaum, H. P., 2008. Directional distortional hardening in
% plasticity based on thermodynamics. PhD dissertation,
% University of California, Davis.
% - Feigenbaum, H. P., Dafalias, Y. F., 2008. Simple model for
% directional distortional hardening in metal plasticity within
% thermodynamics. Journal of Engineering Mechanics 134 (9),
% pp. 730--738.
% URL http://ascelibrary.org/doi/abs/10.1061/
% %28ASCE%290733-9399%282008%29134%3A9%28730%29
%
% results of this analysis are reported in a paper "Calibration of
% a simple directional distortional hardening model for metal
% plasticity", IJSS, (2017)

clc; clear all; close all;
more off;
addpath(genpath(pwd)); % add all subdirectories of actual working
% directory to path
output_file_name = ’output/sensitivity_analysis.txt’;
system([ ’rm ’ output_file_name ] );

% https://octave.sourceforge.io/symbolic/overview.html
pkg load symbolic

%% %% symbolic computation of sensitivity
digits(10);
syms x; % this line may be erased
disp(’Loading symbolic equations of model...’);
s_model_setup;
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%% computation of jacobian
disp(’Computing symbolic jacobian...’);
J_F = jacobian(F,X);

%% numerical evaluation of jacobian
num_J_F = sym(NaN(size(VAL)));
num_J_F = subs(J_F, Par, VAL );
eval_num_J_F = double(num_J_F);
output_matrix{1} = eval_num_J_F;

%% %% numerical computation of sensitivity
disp(’Computing numeric jacobian...’);
VAL_0 = double(VAL_0); % VAL represents a point in which jacobian
% is evaluated, VAL is loaded from the script
% "s_model_setup"
% dv = min(VAL(1,1:6))*1e-4
dv = 1e-6

f_k2 = function_handle(fs_k2, ’vars’, X ); % symbolic functions
% converted to standard ones, variables order specified by vector
% X defined in the script "s_model_setup"
f_a1 = function_handle(fs_a1, ’vars’, X );
f_a2 = function_handle(fs_a2, ’vars’, X );
f_c = function_handle(fs_c, ’vars’, X );

number_of_functions = length(F);
number_of_variables = length(X);
Z = NaN(number_of_functions,number_of_variables);

coefficients = [ -1/2 0 1/2 ]; % coefficients for central
% differences
% https://en.wikipedia.org/wiki/Finite_difference_coefficient
% coefficients = [ 1/12 -2/3 0 2/3 -1/12 ];
% coefficients = [ -1/60 3/20 -3/4 0 3/4 -3/20 1/60 ];
length_coefficients = length(coefficients);
accuracy = length_coefficients-1;

f_expand = @(X) feval(@(x)x{:}, num2cell(X)); % distribution of
% vector components to variables

for i=1:number_of_variables

sum_Y = zeros(number_of_functions,1);
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for j=1:length_coefficients
VAL = VAL_0;
mult = (j-1)-accuracy/2;
VAL(i) = VAL(i) + mult*dv;

[ P, Q, R, r, eps_Q ] = f_expand(VAL);
k2 = f_k2(P, Q, R, r, eps_Q);
a1 = f_a1(P, Q, R, r, eps_Q);
a2 = f_a2(P, Q, R, r, eps_Q);
c = f_c(P, Q, R, r, eps_Q);

% Y = [ P, Q, R, r ]’;
Y = [ k2, a1, a2, c ]’;

sum_Y = sum_Y + coefficients(j)*Y;
end

Z(:,i) = sum_Y/dv; % central differences
end

output_matrix{2} = Z;

output_matrix{3} = (output_matrix{2}-output_matrix{1})./...
(output_matrix{2}+1e10*realmin)*1e2;

output_matrix{4} = Z;

output_matrix{5} = NaN(size(output_matrix{4}));

% percentual representation
Z = Z(:,1:end-1);

Z(1,:) = Z(1,:)/k2;
Z(2,:) = Z(2,:)/a1;
Z(3,:) = Z(3,:)/a2;
Z(4,:) = Z(4,:)/c;

Z(:,1) = Z(:,1)*P;
Z(:,2) = Z(:,2)*Q;
Z(:,3) = Z(:,3)*R
Z(:,4) = Z(:,4)*r;

output_matrix{6} = Z;
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%% %% printing results

diary (output_file_name);

disp(’Sensitivity matrix for DDH alpha c model’);
disp(’’);
disp(’Sensitivity computed for these parameters:’);
disp(’’);
disp(output{5});

disp(’’);
disp(’Numeric derivative result:’);
disp(’’);
disp(output{2});
disp(’’);

if 1
disp(’’);
disp(’Error (%):’);
disp(’’);
disp(output{3});
disp(’’);
end

if 1
disp(’’);
disp(’Pretty:’);
disp(’’);
disp(output{4});
disp(’’);
end

disp(’’);
disp(’Sensitivity of the model computed by numeric derivatives (%):’);
disp(’’);
disp(output{6});
disp(’’);

diary off
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