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Abstrakt

Dizertační práce se zabívá aplikací analogií mezi elektronovými a electromagnetickými vl-

nami a její následní aplikaci v návrhu polovodičových heterostruktur. V úvodní části

je stručne zhrnut spůsob řešení nerelativistické bezčasové Schrödingerovy rovnice pomocí

Kaneovy metody a tzv. envelope function formalismu. Pro úplnost je část doplněna o

teoretický popis šíření electromagnetických vln. V hlavní části jsou představeny analo-

gie mezi elektromagnetickými a elektronovými vlnami pro planárne a sférické struktury

a jsou navrhuty dvě nové polovodičové heterostruktury. Prvním je návrh dokonalé čočky

pro elektrony. Druhým návrhem je otevřený rezonátor, který podporuje vázané stavy v

kontinuu.

Klíčové slova:

Metamateriály, analogie mezi světelnými a electronovými vlnami, Kane-ův model, formaliz-

mus obálkové funkce, pseudopotenciál, dokonalá čočka pro elektrony, vázané kvantové jámy,

otevřený rezonátor, core–shell rezonátor, vázané stavy v kontinuu
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Abstract

The thesis focuses on analogies between electron waves and electromagnetic waves and

their subsequent application into design of semiconductor heterostructures. The introduc-

tory part of the work briefly summarizes the Kane’s method, envelope function formal-

ism for evaluation of non–relativistic time–independent Schrödinger equation, and time–

independent electromagnetic wave equation. The core part of the thesis presents analogies

between electromagnetic– and electron–plane waves and spherical waves and proposes two

novel designs. The first is a design of a perfect lens for electrons. The second design is an

open core–shell resonator supporting bound states in continuum.

Keywords:

Metamaterials, electron–light–wave analogy, Kane’s model, envelope function formalism,

pseudopotential, perfect lens, bound quantum wells, open resonator, core–shell resonator,

bound states in continuum.
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Abbreviations

Physical Quantities, Symbols and Signs

~ reduced Planck’s constant

me electron mass

m dispersive mass of electron

ω angular frequency

ε0 dielectric constant of vacuum

εr relative dielectric constant

µ0 permeability of vacuum

µr relative permeability

k0 wavenumber in vacuum

fc wave–function of an electron

τ life time

E eigen energy of the electron

P Kane’s parameter

Γ6 conduction electron band

Γ7 split–off holes band

Γ8 heavy and light holes band

EΓ6
band edge energy of the band Γ6

EΓ7
band edge energy of the band Γ7

EΓ8
band edge energy of the band Γ8
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Ec conduction band energy

Ev valence band energy

Eg energy band gap

∆ narrow band gap

T transmission coefficient

R radius

ψ (r) electron wave function

V (r) potential energy

k =
(

kx ky kz

)

wave vector

E =
(

Ex Ey Ez

)

vector of the electric intensity

H =
(

Hx Hy Hz

)

vector of the magnetic intensity

Mathematical Operators

∇ nabla operator
∂
∂x
, ∂
∂y
, ∂
∂z

partial derivatives

Ĥ Hamilton operator

Miscellaneous Abbreviations

BIC Bound states in continuum

ENZ Epsilon near zero

FCC Face–centered cubic

HgTe Mercury Telluride

HgCdTe Mercury Cadmium Telluride

LPM Local pseudopotential method

OPW Orthogonal plane wave

TE wave Transverse electric wave

TM wave Transverse magnetic wave
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Introduction

An analogy is a basic principle of understanding nature, where it joints different phenomena

linked by common properties or similar behavior. Such occurrence can be found in many

areas, not only in physics. A well known example is medicine, where developed treatment

is firstly tested on animals with a similar reaction to human. Another example is biology

where scientists use the knowledge of current fauna to research into extinct species on

the bases of species similarities, e.g. how they moved, what they eat, etc. This work

focuses on analogies between different areas of physics, namely classical electromagnetism

and non–relativistic quantum mechanics.

Although the existence of quantum–classical analogy is well–known since the early

years of quantum mechanics, its experimental verification has become relevant only in

recent years, since technological achievements have made possible to prepare quantum sys-

tems with classical–type behavior or classical systems with quantum–type behavior. For

example, technologies allowing semiconductor structures, in which electrons can propa-

gate without interactions with other electrons or ions, support the description of ballistic

electrons under the effective–mass approximation and thus as quantum–mechanical waves,

which can reflect, refract, diffract and scatter during propagation, and can even inter-

fere in the same manner as electromagnetic waves. This feature is quite surprising due

to the difference between the electrons and photons in almost every aspect, such as rest

mass (finite for electrons, zero for photons), spin (1/2 spin for electrons, 1 for photons),

charge (negative for electrons, no charge for photons), dispersion (parabolic for electrons,

linear for photons) and quantum statistics (Fermi-Dirac for electrons and Bose-Einstein

for photons). There are two possibilities of employing the electron–electromagnetic–waves

analogy — what the quantum mechanics can teach us and is simultaneously applicable

into electromagnetism, and vice versa. An example of the first possibility, i.e. what quan-

tum mechanics has brought into electromagnetism, is an idea of a photonic band gap that

has brought important new concept how to control the light propagation through media.
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Figure 1: (left) An example of Talbot effect, or near–field diffraction effect. The figure

shows an image of a grating in repetition at regular distances away from the grating plane

[1]. Similarly, so–called quantum carpets [2] represent quantum wave packet as electron in

an atom (right).

The concept is based on knowledge of propagation of an electron in a crystalline lattice —

periodically positioned atoms — which shows that there are only certain energies allowing

electron propagation and which are represented by a bandstructure. Further development

of photonic band gap structures opened a new part of the electromagnetic theory known as

photonic crystals [3], which have had major impact on the design of optical fibers [4, 5, 6],

mirrors [7, 8], filter transmission [9], and waveguide splitters [10, 11].

A design of electromagnetic periodic structures and arrays has brought also other effects,

not only photonic band gaps, that had not been observed in the existing solutions. Many of

these effects had been explained in quantum mechanics and thus their quantum description

was facilitated in electromagnetism. An illustrative example is a periodic motion of wave

packets in a homogeneous electric field firstly observed in 2004 [12], nowadays known as

optical Bloch oscillations. A similar phenomenon occurs also in crystalline lattices when

a DC electric field is applied. Caused periodical motions of electrons (Bloch oscillations)

driven by this electric field were pointed out by Bloch [13] and Zener [14] early in the

previous century and later also experimentally confirmed [15].

The analogy between quantum mechanics and electromagnetism has also initiated the

collaboration between these two fields. One of the interesting phenomena in quantum

mechanics is the bound state in continuum (BIC). The BICs were predicted for specific

potentials by von Neumann and Wigner in 1929 [16]. Their work was later extended to a
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two–electron wave function [17], still wearing the sign of BIC. More recently it has been

proposed that the BICs can be decoupled from all continuum states also by virtue of

symmetry [18, 19, 20]. Experimental observation of BICs has not yet been achieved [21].

Resonant states in the continuum have recently elicited significant interest in the field

of photonics. Indeed, for light waves it may be easier to design a resonator environment at

will using photonic crystals or metamaterials [22, 23, 24, 25, 26]. Photonic crystals even

made an experimental observation of BICs possible [27, 28, 29]. In this context, BICs may

be regarded as limiting cases of leaky waves. The usual leaky–wave states discussed in the

electromagnetism literature are excitations with a finite lifetime and are in some sense the

analog of electronic “resonant states”. Thus, a BIC may be seen as the limit of a leaky

state with vanishingly small resonance width [28, 29, 30].

Figure 2: SEM images of the photonic structure supporting optical bound states within

the continuum – top (left) and side (right) view [31].

It cannot be left unnoticed that there are also other photonic structures inspired by

quantum mechanics such as quantum wells [32], quantum wires [33] or quantum dots [34].

The second point of view on the analogy between electron– and light–waves is “What

can electromagnetism bring into quantum mechanics?” Due to the wave description of

electron motion in semiconductors and thus its ability to reflect, refract, diffract and in-

terfere, similarly as light waves, and due to the possibility of the precise monolayer growth

of semiconductors, the quantum–classical analogy has contributed significantly also in the

development of semiconductor environment. Many semiconductor devices based on this

analogy have been proposed and also experimentally demonstrated. As representative ex-

amples can be mentioned electrostatic or magnetic lenses [35, 36, 37], prism [38], electron
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beam splitter [39], directional couplers [40, 41], filters [42], circuit theory concepts [43].

Unfortunately, developments in this field peaked well before the emergence of metama-

(a) (b)

(c) (d)

Figure 3: Examples of semiconductor devices which have been inspired by their electro-

magnetic counterparts. a) Electrostatic lens [35], b) magnetic lens [36], c) electron prism

[38], d) electron beam splitter [39]

terials, i.e., composite materials offering electromagnetic properties not found in natural

substances, such as negative permittivity and permeability [44, 45]. Metamaterials have

brought important new concepts into classical electromagnetism, e.g. the perfect lens [46]

and transformation optics [47, 48], while their quantum analogies have not received the

attention that they deserve, with the exception of a few pioneering studies that will be

briefly reviewed. In [49], a particularly simple form of the analogy of an electromagnetic

plane wave and an electron wave is presented. The author then transfers the idea of

complementary media into the electron domain using transmission matrix formalism, and

proposes using the complementary medium layer to improve the scanning tunneling mi-

croscopy of specific structures. Paper [50] uses the analogy presented in [49] to explore

the I–V characteristics and the traversal times of ballistic electrons propagating normally

to the boundaries of the heterostructure analogous to the metamaterial perfect lens. The
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electron analogy of a perfect lens was further proposed in the form of a p-–n junction on

a graphene sheet [51]. In [52] it was shown that spatial transformations leading to trans-

formation optics and to metamaterial cloaking can also be used in a very similar manner

used on the Schrödinger equation. Later, in [53], it was shown that ballistic electrons prop-

agating in the HgTe-–CdTe heterostructure can exhibit perfect tunneling, a phenomenon

largely responsible for the unique properties of the perfect lens. Important papers [54, 55]

then showed that envelope approximation, commonly used for describing ballistic electrons

in semiconductor heterostructures, is equivalent to the effective medium theory commonly

used for describing of electromagnetic metamaterials. By means of this effective medium,

a perfect lens made of graphene [55] was proposed. Lastly, the analogies mentioned above

were used for a study of the cloaking of matter waves [56, 57, 58].

Goal of Thesis

This doctoral thesis is focused on applications of the analogy between quantum–mechanics

and electromagnetic wave. Based on the analogy,

• a perfect lens for electrons (Chap. 3);

• an open perfect resonator for electrons (Chap. 4)

is proposed. In order to achieve these key objectives, several steps need to be taken,

namely:

• approval of the analogy between electron– and electromagnetic–wave (planar system

Sec. 3.1, spherical system Sec. 4.1);

• study the design in electromagnetic case and propose its quantum–mechanical coun-

terpart (perfect lens - Sec. 3.2, open resonator – Sec. 4.2);

• discuss the proposed design (perfect lens – Secs. 3.2, and 3.3, open resonator – Secs.

4.3, 4.4, and 4.5).
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Chapter 1

Electron as an Envelope Function

The similar behavior of an electron– and light–wave has been proved by experiments as

well as by theory. In the current state of the art, there are several models of this analogy

and it is therefore essential to show on which this thesis is built on.

Understanding of electron propagation in solids is connected with a solution to

Schrödinger equation for the whole system of electrons and atomic cores including their

interactions. However, providing that only valence–electron propagation is considered and

noting that the mass of the ion core (core electrons with the nucleus) is much greater than

the mass of the valence electron, it is a common practice [59] to assume that every valence

electron interacts only with a given background potential V (r). Within this mean–field

approximation [59], the problem of an electron propagation via a solid is described by one

electron time–independent Schrödinger equation [60]

Ĥ1eψn (r) = Enψn (r) , (1.1)

where Ĥ1e is one–electron Hamiltonian, ψn (r) and En are, respectively, the wave function

and energy of the electron in an n-th eigenstate.

The one–electron Hamiltonian

Ĥ1e =
−~

2

2me

∇2 + Veff (r) (1.2)

expresses an energy of the whole system. Provided that effective potential Veff (r) is known,

Schrödinger equation (1.1) is a linear three–dimensional eigenvalue problem, where the

spectrum of energies En represents the eigenstates of an electron in the effective potential.

Many useful transport properties can be derived from the spectrum of allowed energies

itself. It is worth mentioning that the equation is not assuming spin of electron. The term
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describing spin interactions (for example spin orbit coupling) does not significantly affect

theoretical prediction described in this thesis and is therefore, intentionaly, ommited.

There are several standard methods of bandstructure computation for semiconductors,

and all of them involve approximations which emphasize some aspects of the electronic

properties of semiconductors while, at the same time, de–emphasizing other aspects. In

general, the methods can be divided into two groups depending on the way of determining

the potential Veff (r). The first group contains methods which calculate bandstructures

from first principles; without a need of any empirical parameters. These methods are

called ab initio methods and commonly utilize variational approach to calculate a ground

state energy of a many–body system, where the system is defined at the atomic level. To

this category belong methods such as Hartree–Fock or Density Functional Theory [61].

The second group contains empirical methods such as tight–binding method [62, 63], the

local or non–local empirical pseudopotential method [64], and the k · p envelope function

method [65, 66]. These methods utilize empirical parameters usually obtained from ex-

perimental data or above mentioned ab initio methods. The advantage of these empirical

methods is that the electronic bandstructure can be calculated from the one–electron time–

independent Schrödinger equation. In this thesis we will mostly employ the k · p envelope

function method and for specific purposes (see Sec.3.2) of verification we will also use local

pseudopotential method (Appendix A).

1.1 k · p Method

The k · p method was developed for exploring the properties of the energy bands and

wave functions in the vicinity of some important points in the k–space with the aid of a

perturbation theory. The advantage of k·p method is that the bandstructure in the vicinity

of a point in k–space can be reached using just a small number of parameters which may be

determined experimentally. Treating the one–electron problem of an electron propagation

in a periodic potential V (r)

Ĥ1eψ (r) =

[

− ~
2

2me

∇2 + V (r)

]

ψ (r) = Eψ (r) (1.3)

Bloch showed that ψ (r) may be written as

ψ (r) = eik·runk (r) , (1.4)
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where unk (r) has the periodicity of V (r) and forms a complete set of cell periodic functions

for any k lying in the first Brillouin zone [60]. The index n designates a band and runs

over a complete set of bands. From this it follows that if the energy and momentum

matrix elements are known for all bands for any given value of k, the energies for all k are

completely determined.

Substituting Eq. (1.4) into (1.3) gives

[

p2

2me

+
~

me

k · p+
~
2k2

2me

+ V (r)

]

unk (r) = En (k) unk (r) , (1.5)

whereby momentum p = −i~∇ was introduced. As was mentioned above, for any given

k, the set of unk (r) is complete for functions having the same periodicity as the potential

V (r). Hence, choosing k = k0, the wave function for any k′ in the vicinity of k0 may be

expressed as follows

unk′ (r) =
∑

n′

cn′n (k
′ − k0) un′k0

(r) . (1.6)

In other words, once the solution of the one–electron problem

Ĥk0
unk0

= En (k0) unk0 (1.7)

is known, the solution for any k in the vicinity of k0 is given by the following equation
(

Ĥk0
+

~

me

(k − k0) · p+
~
2

2me

(

k2 − k20
)

)

unk = En (k) unk, (1.8)

where

Ĥk0
=

p2

2me

+
~
2

me

k0 · p+
~
2k20
2me

+ V (r) . (1.9)

Equation (1.8) can easily be converted into a matrix eigenvalue equation by substituting

Eq. (1.6) into (1.8), multiplying both sides of Eq. (1.8) by unk0
, and integrating over the

unit cell. Thence equation (1.8) enters the form

∑

n′

[{

En (k0) +
~
2

2me

(

k2 − k20
)

}

δnn′ +
~

me

(k − k0) · pnn′

]

cn′n = En (k) cn′n, (1.10)

where

pnn′ =

∫

unit cell

u∗nk0
(r)pun′k0

(r) dr. (1.11)

If we look at the third term of the sum one can notice that ~/me (k − k0) · pnn′ are

off–diagonal and when k is close to k0, the term can be treated as a perturbation. Cor-

responding eigenvalues and eigenvectors can be calculated using the perturbation theory

[67].
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In semiconductors, the bands of interest are primarily valence band and the conduction

band. In such a case, it is common to introduce a new indexing n = c and n′ = v for

conduction band and valence band, respectively. Focusing on these states, (1.10) can be

written as

∣

∣

∣

∣

∣

∣

∣

Ec (k0)− Ec (k) +
~
2

2me

(k2 − k20)
~

me

(k − k0) · pcv

~

me

(k − k0) · pcv Ev (k0)− Ev (k) +
~
2

2me

(k2 − k20)

∣

∣

∣

∣

∣

∣

∣

= 0 (1.12)

which eigenvalues are

E (k) =
1

2

[

Ec (k0) + Ev (k0) +
~
2

me

(

k2 − k20
)

]

±

± 1

2

[

(Ec (k0)− Ev (k0))
2 +

4~2

m2
e

|(k − k0) · pcv|2
]

1
2

. (1.13)

For most applications, only the top/bottom of valence/conduction band is of interest.

Therefore, the point of evaluation k0 is placed at the Γ point, i.e., k0 = 0. Then the

solution (1.13) for small k · pcv is given by

E (k) =















Ec − Ev +
~
2k2

2me

+
~
2

(Ec − Ev)m2
e

|k · pcv|2 conduction band

~
2k2

2me

− ~
2

(Ec − Ev)m2
e

|k · pcv|2 valence band
(1.14)

where the term Ec − Ev is commonly known as energy band gap Eg.

For simple representation of semiconductor bandstructure this 2–band model is suf-

ficient. Nevertheless, for a more precise description of semiconductors it is necessary to

consider the degeneration of the valence band and also inter–band interactions.

The conduction bands (Γ6 group) originate primarily from the outermost atomic cation

s–states, whereas the top of valence bands consisting of heavy hole band, light hole band

(Γ8 group) and split–off band (Γ7 group) result from the outermost atomic anion p–states .

Since the conduction band at k = 0 is invariant under the space symmetry operations, one

denotes these functions by |S〉. On the other hand, the uppermost 3 valence band states

at Γ transform like |X〉, |Y 〉, |Z〉. However, these three functions do not form a basis

of an irreducible representation of the Hamiltonian. The solution of the problem can be

found in a linear combination of these states. One can show [68] that the following linear

combination of k = 0 Bloch states yields the band edge values as shown in Table 1.1.
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Table 1.1: Definition of new Bloch basis defined as a linear combination of the |S〉, |X〉,
|Y 〉, |Z〉.

State Combination Energy at Γ Group

|u1〉 i |S〉 Eg Γ6

|u2〉
√

1

2
(|X〉 − i |Y 〉) 0 Γ8

|u3〉 −
√

2

3
|Z〉 −

√

1

6
(|X〉 − i |Y 〉) 0 Γ8

|u4〉
√

1

3
|Z〉 −

√

1

3
(|X〉 − i |Y 〉) −∆ Γ7

Once the Bloch states at k0 = 0 and corresponding energies are known, i.e., solution

of equations

Ĥ0u1,0 = Ec,0u1,0

Ĥ0u2,0 = Ev,0u2,0

Ĥ0u3,0 = Ev,0u3,0

Ĥ0u4,0 = Ev,0u4,0 (1.15)

is known, the Hamiltonian Ĥ4x4 for non–zero k can be written. The individual terms of

the matrix are shown in Table 1.2.

Table 1.2: Elements of the Hamiltonian matrix.

|u1〉 |u2〉 |u3〉 |u4〉

|u1〉 Eg +
~
2k2

2me

−
√

2

3

P~kz
me

P~k+
me

√

1

3

P~kz
me

|u2〉 −
√

2

3

P~kz
me

~
2k2

2me

0 0

|u3〉
P~k−
me

0
~
2k2

2me

0

|u4〉
√

1

3

P~kz
me

0 0 −∆+
~
2k2

2me

where nomenclatures k± =
1√
2
(kx ± iky), energy band gap Eg = EΓ6

−EΓ8
and narrow

gap ∆ = EΓ8
− EΓ7

were introduced. The Kane’s parameter P defined as

P = −i 〈S |px|X〉 = −i 〈S |py|Y 〉 = −i 〈S |pz|Z〉 (1.16)

11



represents conduction–valence band interactions.

Finding eigenvalues E (k) is connected with solving the determinantal equation of the

4 by 4 k · p matrix given by the Table 1.2;

ε

(

(ε− Eg) ε (ε+∆)− P 2
~
2k2

m2
e

(

ε+
2

3
∆

))

= 0. (1.17)

Here, for the ease of presentation, the substitution ε = E (k)− ~
2k2

2me

is used.

Introducing an effective mass, the solution of (1.17) can be written in reduced form

Enk = En0 +
~
2k2

2mn

, (1.18)

where n denotes the band and En0 means the band edge energy of corresponding band.

For conduction band (Γ6) the band edge effective mass is defined as

1

mΓ6

=
1

me

+
2P 2

3

(

2

Eg

+
1

Eg +∆

)

. (1.19)

Up to this point, only isotropic, parabolic dispersion relation was assumed. Consider-

ing non–parabolic bands, an energy–dependent effective mass shall be defined via group

velocity

vg =
1

~

∂E

∂k
=

~k

m (E)
. (1.20)

In such a case the effective mass is given

1

m (E)
=

1

me

+
2P 2

3

(

2

E + Eg − EΓ6

+
1

E + Eg − EΓ6
+∆

)

. (1.21)

Once the effective mass and the band edge energies are known, the bandstructure of a

semiconductor is defined and hence the behavior of an electron in such the semiconductor

can be predicted.

Aforementioned theory can be used not only to predict the bandstructure of a semi-

conductor and/or to depict some properties, but in special cases can be used as a tool

for describing an electron propagation through a semiconductor heterostructure. How-

ever there has been developed a method for such application using an envelope function

formalism. As is shown further, also this approach gives similar results.
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1.2 Envelope Function Formalism

In realistic heterostructures, where each layer is composed of many atoms and wave vectors

of the electron are small k ≪ 2π/a, an alternative description of the valence electrons

is possible. In such a case, it is possible to homogenize the microscopic wave function

ψ (r) and the potential V (r) [65, 69, 54], resulting in an effective “macroscopic" wave

function ψeff (r) = 〈ψ〉, which varies slowly on the scale of the lattice constant, and in

an effective potential Veff (r) = 〈V 〉, which is a constant for each heterostructure layer

[65, 69, 54, 70, 57, 55]. The brackets 〈 〉 represent the operation of spatial averaging. This

envelopefunction formalism was originally introduced by G. Bastard [69, 68, 71], and it

was further reworked in recent studies [54, 57, 55]. The point of view of this article is based

on the ideas of Ref. [54, 55].

An important observation is that ψeff = 〈ψ〉 does not imply that |ψeff (r)|2 =
〈

|ψ|2
〉

, and

hence |ψeff (r)|2 does not generally represent the probability density. The spatially averaged

probability density of energy eigenstates can be written in terms of ψeff as [54, 70, 72] (see

Appendix B)
〈

|ψ|2
〉

=

(

1− ∂Veff
∂E

)

|ψeff |2 +
~
2

m2

∂m

∂E
‖∇ψeff‖2. (1.22)

Within this paradigm, the wave function ψeff satisfies the macroscopic time–independent

Schrödinger equation

− ~
2

2m
∆ψeff (r) + Veffψeff (r) = Eψeff (r) , (1.23)

where Veff = EΓ6
is the band edge energy of the conduction (Γ6) band, and where m is

dispersive mass [65, 69, 54, 55], defined as

1

m
=

1

me

+
2P 2

3~2

(

2

E − EΓ8

+
1

E − EΓ7

)

. (1.24)

This description is thus fully equivalent to the Kane’s model presented in Sec. 1.1.
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Chapter 2

Light as an Electromagnetic Wave

The aim of this work is to design metamaterial–like semiconductor structures. Since meta-

materials originally belong to classical electrodynamics, equations describing the propaga-

tion of electromagnetic waves in a medium are briefly discussed in this chapter.

Mathematically, electromagnetic wave propagation differ from electron waves propaga-

tion in two major aspects:

• folds an electric and magnetic wave;

• has vector character.

Electromagnetic wave description, therefore, involves vector calculus, embodied in Maxwell’s

equations

∇ ·D (r, t) = ρfree (r, t)

∇ ·B (r, t) = 0

∇×E (r, t) = −∂B (r, t)

∂t

∇×H (r, t) = J free (r, t) +
∂D (r, t)

∂t

(2.1)

where

E – electric intensity

H – magnetic intensity

D = ε0E + P – electric flux density
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B = µ0 (H +M ) – magnetic induction

P – electric polarization vector

M – magnetic polarization vector

J – current density

ρfree – charge density of free charges

As presented, Maxwell’s equations are macroscopic involving space and time averages

of microscopic quantities [73, 74]. The reason for this approximation is the enormous

complexity of microscopic charge and current densities inside a polarized matter, which

will make the microscopic description intractable. Such description is thus equivalent to

the use of effective atomic potential Veff (r) employed in Sec.1.1.

2.1 Propagation of electromagnetic waves

Propagation of electromagnetic waves in linear isotropic medium is best described in time–

harmonic domain [75], i.e., under assumption

E = Ẽ (r) eiωt,

H = H̃ (r) eiωt,
(2.2)

where F̃ is a phasor of the respective field, ω is an angular frequency and i denotes imagi-

nary unit. Under this assumption, Maxwell’s equations in source free region read

∇ · Ẽ = 0

∇ · H̃ = 0

∇× Ẽ = −iωµH̃

∇× H̃ = iωεẼ

(2.3)

which are also equivalent to a Helmholtz equation for an electric field

∆Ẽ + k2Ẽ = 0 (2.4)

or a magnetic field

∆H̃ + k2H̃ = 0, (2.5)
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with k being a wave number, i.e.,

k = ω
√
µε. (2.6)

Behavior of electromagnetic fields at medium interfaces is described by following bound-

ary conditions

n× (E2 −E1) = 0

n× (H2 −H1) = 0

(D2 −D1) · n = 0

(B2 −B1) · n = 0 (2.7)

where n is a unit normal to the corresponding medium interface. Equations (2.7) together

with (2.4) and (2.5) guarantee unique field solution.

Comparison of Helmholtz equation (2.4) or (2.5) with time–independent Schrödinger

equation (1.1) reveal apparent similarity that provides high probability of very similar

propagative behavior of electron and light wave in a medium. Particularly, if ψn represents

an electron wave and F̃ represents, for instance, electric wave, then Hamiltonian Ĥ1e is

quantum representative of ∇ operator and eigenenergy of electron En is classified in the

same manner as the wave number k.
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Chapter 3

Perfect Lens for Electron

One of the milestones in the matematerial research was the work in a perfect lens for

electromagnetic waves [46]. Pendry in his paper showed that electromagnetic wave can

propagate in an appropriate heterostructure from a source plane to an image plane with

transmission coefficient equal to 1 [46]. In order to mimic this behavior in the case of

electron waves, analogy between plane electromagnetic waves and ballistic electrons need

to be studied.

3.1 Analogy between electron waves and light waves for

planar systems

The topology of a perfect lens [46] is represented by a layered isotropic medium (stacking

along the z-axis is assumed) in which oblique plane waves with the wave–vector k = kzz0+

kyy0 (ky being the transversal wavenumber) propagate. In the quantum domain, such a

heterostructure is commonly described by the 4–band Kane’s model (1.17), where these

bands correspond to conduction electrons (symmetry Γ6), light and heavy holes (symmetry

Γ8) and split–off holes (symmetry Γ7). Then using the approximations suggested in [71],

which involves dropping the free space terms for the Γ7 and Γ8 bands, the spin states of

the conduction electrons remain degenerated even at oblique incidence, and are described

by a scalar equation for the wave–function, that is evaluated from Eq. (1.17)

[

− ~
2

2m

∂2

∂z2
+

~
2

2m
k2y + EΓ6

− E

]

fc (z) = 0 (3.1)
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where
1

m
=

2P 2

3

(

2

E − EΓ8

+
1

E − EΓ7

)

(3.2)

is the inverse of the mass of the electron inside the material (1.19) and E is the energy of

the electron. Parameter P , known as the Kane’s parameter, does not depend on energy,

is well defined for commonly used semiconductors, and can be obtained from experiments

or from microscopic calculations. Following [49], the equation (3.1) is rewritten in matrix

form

∂

∂z





fc

− i~

m

∂fc
∂z



 =











0
im

~

2i

(

E − EΓ6
− ~

2

2m
k2y

)

~
0















fc
−i~

m

∂fc
∂z



 (3.3)

and supplemented by boundary conditions by the continuity of fc and (∂fc/∂z) /m at all

heterostructure boundaries.

E

H

k

x
y

z

E

H

k

TE TM

Figure 3.1: Geometry of a transverse electric (TE) wave and a transverse magnetic (TM)

wave.

Due to the vector nature of electromagnetic fields, the propagation of electromagnetic

plane waves in an isotropic medium, unlike ballistic electrons, depends on polarization.

For simplicity and clarity is considered that the TE wave is characterized by ky, kz, Ex,Hy,

Hz,
∂

∂x
→ 0,

∂

∂y
→ iky and TM wave is defined as ky, kz, Ey, Ez, Hx,

∂

∂x
→ 0,

∂

∂y
→ iky

(see Fig. 3.1). The propagation of TE and TM waves in an isotropic material is described

by Maxwell’s equations that can be written as

∂

∂z





Ex

−i

ωµ

∂Ex

∂z



 =







0 iωµ

iωε

(

1−
k2y
ω2εµ

)

0











Ex

−i

ωµ

∂Ex

∂z



 (3.4)
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for the TE wave and

∂

∂z





Hx

−i

ωε

∂Hx

∂z



 =







0 iωε

iωµ

(

1−
k2y
ω2εµ

)

0











Hx

−i

ωε

∂Hx

∂z



 (3.5)

for TM wave. The boundary conditions (2.7) in this case demand the continuity of Ex,

Hx, (∂Ex/∂z) /µ and (∂Hx/∂z) /ε.

By mutual comparison of (3.3) with (3.4) and (3.5), the analogy between electron waves

and electromagnetic plane waves can be written as

Table 3.1: The analogy between the electron wave and plane electromagnetic waves.

Electron wave TE wave TM wave

fc Ex Hx

m µ ǫ

∆E = 2 (E − EΓ6
) ǫ µ

k2 = m∆E/~2 ω2εµ ω2εµ

3.2 Design of a poor–man’s lens

As was already mentioned, the perfect lens can be designed as a layered heterostructure of

isotropic materials. The simplest design is defined as an isotropic slab of thickness dlens with

material constants εin and µin surrounded by another isotropic material with parameters

εout and µout. If the materials are chosen [46] so that εout = −εin and µout = −µin the

slab behaves as a perfect lens, which transfers all plane waves, including all evanescent

harmonics, from the source plane at a distance dsource in front of the lens, to the image

plane, which is situated at a distance dimage behind the lens, provided that the distances

are chosen such that koutz dsource + koutz dimage = kinz dlens.

Comparing the above mentioned conditions and the analogies from Tab. 3.1, it can be

seen that the quantum analogy of the perfect lens is rather unlikely to exist. This is due

to the fact that the mass m and ∆E are mutually bound by the material bandstructure.

Therefore, these variables cannot be tuned separately, as is the case in electromagnetic

metamaterials, in which ε, µ are usually connected to distinct elements. Fortunately, as

shown in [46], if one is working in quasi–static conditions (ky ≫ ω
√
εµ, i.e. in the near
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Figure 3.2: Sketch of a perfect lens for electromagnetic plane waves.

field) and is thus not interested in the propagative harmonics, then total transmission of

the evanescent spectrum can be achieved by εin = any, µin = −µout for TE waves and

µin = any, εin = −εout for TM waves. This system is known as “the poor–man’s lens”. For

an electron lens, this implies the use of a slab of m < 0 and ∆E = any. The quasi–static

regime in this case is given by ky ≫ k =
√

m∆E/~2. In order to put the above–stated

conditions on solid grounds, the transmission and reflection coefficient of the lens is written

as

T =
4YinYoute

ikout
z

dimageeik
out
z

dsource

(Yin + Yout)
2 eikinz dlens − (Yin − Yout)

2 eikinz dlens
(3.6)

R =
(Y 2

in + Y 2
out)

(

eik
in
z
dlens − e−ikin

z
dlens

)

e2ik
out
z dsource

(Yin + Yout)
2 eikinz dlens − (Yin − Yout)

2 eikinz dlens
, (3.7)

where k2z = k2−k2y and Y = kz/m. Clearly, in the case of the perfect lens (∆Eout = −∆Ein,

mout = −min, dsource + dimage = dlens) there is kinz = koutz , Yin = −Yout and thus T = 1

and R = 0, irrespective of ky. The case of the poor–man’s lens is a little more tricky.

Assume that the waves are generated by a source at z < 0. For ky > k the physicality of

the solution (wave decays in the direction of propagation) demands kz = iα with α > 0.

Assume further that mout = −min and dsource + dimage = dlens. Two limits of (3.7) are then

of interest. First, for ky ≫ k but ‖kzdlens‖ ≪ 1 there is kinz → koutz , Yin → −Yout and

T → 1, R → 0. The second limit is ky → inf with ∆Eout 6= ∆Ein. In this case, (3.7),(3.9)
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goes to

T ≈ −
(

4~2k2y
min (∆Ein +∆Eout)

)2

e−2kydlens ≈ 0 (3.8)

R ≈
4~2k2y

min (∆Ein +∆Eout)
e−2kydsource ≈ 0. (3.9)

In the case of the poor–man’s lens, there thus clearly exist only a finite band of ky for

which T ≈ 1. The bandwidth grows as the lens gets thinner and also as k gets smaller.

In summary, to create a poor–man’s lens is necessary to fulfill several conditions:

• using the Kane’s model assumes that the bulk edge eigenfunctions have to be the

same (or very similar) at the interfaces throughout a heterostructure;

• the chosen materials have to fulfill aforementioned condition min = −mout .

The first assumption can be achieved by using the same material in whole heterostruc-

ture. The second one is more difficult to achieve. The easiest way to fulfill the second

condition is to find a material where the mass can change its value from positive to neg-

ative at given energy just using small static energy shift applied on the lens part of het-

erostructure. However this energy shift is not taken into account in the mode and therefore

it has to be kept small to obtain meaningful results. Moreover the outer material needs

to be propagative for ky = 0. The suitable material, where this kind of behavior can be

found, is material with so–called inverted bandstructure, in which the Γ6 band edge is

below the Γ8 band edge. According to Kane’s model, the negative effective mass means

that 2/ (E − EΓ8
) < −1/ (E − EΓ7

). To stay in the region of validity of 4–band model, we

always need to stay above the split–off band (which is the lowest from the 4 bands).

To design the poor–man’s lens as it is proposed above, the mercury telluride (HgTe)

is chosen for its specific properties - the inverted bandstructure. To use the Kane’s model

(3.1), (3.2) it was necessary to obtain parameter 2meP
2 to determine normalized mass from

(3.2), and the energies EΓ6
, EΓ7

and EΓ8
for HgTe. The parameter 2meP

2 was adjusted so

that the curvatures of the bands were very similar as in the bandstructure obtained by local

pseudopotential method (LPM) (see Appendix A). In the local pseudopotential method

[76], [77], the Hamiltonian is divided into two part, one describes potential of zinc-blend

structure, i.e. atoms, which are in the Brillouin zone, are approximated by form factors

and structure factors [78] and the second describes the spin orbit splitting. To specify the

zinc–blend structure were used 137 general reciprocal lattice vectors. Fig.3.3 shows the
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comparison of these methods in several cases. As can be seen, behavior of bandstructures

obtained from Kane’s model and LPM is the same or very similar for small kz. For higher

kz, Kane’s model ceases to describe the bandstructure of the material for the small number

of bands used in calculating (Fig.3.3a-b). In cases when ky 6= 0 there occurs an expansion

of the bandgaps and the spin states cease to be degenerate (Fig.3.3c-d), which can be

seen in LPM results. In the Kane’s model within our approximation, the spin states are

degenerated in all cases.

yk = 0Kane’s model
pseudopotential

Kane’s model
pseudopotential

k = 0y

yk = 0.05 k = 0.15yKane’s model
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Figure 3.3: The comparison of bandstructure computed by the Kane’s model (solid) and

using the local pseudopotential method A (dot) in different cases.

From the Fig.3.4a it is obvious that the value of effective mass can be changed from

negative to positive by using small energy shift. Actually the absolute values of normalized

mass, which is computed from normalized equation (3.2) for HgTe, are very similar for

its linear character around the energy EΓ8
. This ensures that the energy shift, created

by applied voltage, causes the effective mass in a given space changes from positive to
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negative. Small energy shift does not cause major changes of bandstructure and therefore

the boundary conditions at the interfaces are satisfied. To design the quantum poor–

Figure 3.4: (a) Dependence of the normalized mass on the energy of electron around the

EΓ8
. (b) Sketch of the poor–man’s lens (illustrates a top view). The electrodes are on the

whole surface. The lens is created by applied voltage, which produces the homogeneous

electric field that shifted the bandstructure of 2∆.
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Figure 3.5: (a) The transmission coefficient as a function of ky. The wavenumber is

normalized to 2π/a and distances to a/ (2π), where a is the lattice constant. (b) The

transmission coefficient depends on δ = 2 (mout +min) / (mout −min). The transmission

coefficient is computed for lens distance dlens = 20.

man’s lens, all requirements are fulfilled by using the HgTe. The proposed lens structure

is depicted in Fig.3.4b. By applied voltage, the energy shift is achieved in the middle part
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of the heterostructure. If the energy of an electron E is chosen as shown at Fig.3.4b, the

energy shift caused the change of a sign of the mass, but not the value, because of linear

character of the mass (Fig.3.4a). The transmission coefficient through this heterostructure

is depicted in Fig.3.5a for several values of dlens. The energy shift was intentionally chosen

so that the masses slightly deviate from ideal situation in which min = −mout. For this

purpose it was chosen 2 (mout +min) / (mout −min) = −10−5. The curves in Fig.3.5b show

how the lens is sensitive in this respect. The comparison of the figures 3.5a and 3.5b for

the transmission coefficient shows that the transmission coefficient is more sensitive to lens

distance dlens than to differences between effective mass.

3.3 Verification of the poor–man’s lens

dsource dlens dimage dslab/well

slab

( )well
lens

outer

medium

outer

medium
slab

( )well

dslab/well

Figure 3.6: A sketch of the system used for verification.

For better understanding what happens due to the changes of the thickness of the

poor–man’s lens theoretical experiment has been proposed. The assumption is that the

two quantum wells are perfectly bound just when the suitable perfect lens is put between

them. For comparison the coupling of two dielectric slabs in electromagnetic case is shown

in the first part of this chapter. In the second part, the poor–man’s lens is verified.

The general system, which is used in following, is depicted on Fig.3.6. Quantum wells

of thickness dwell are situated in infinite material. The distance between the quantum wells

is dsource + dimage + dlens.
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3.3.1 Two Dielectric Slabs: Electromagnetic case

In the electromagnetic case, a quantum well can be considered as infinite slab of a thickness

dwell with a high–valued permittivity εwellr and permeability µwell
r which is situated in another

medium with a low–valued permittivity εoutr and permeability µout
r . In these slabs can exist

bound states which can be described in the same way as the eigenmodes of a dielectric

waveguide [79]. These modes depend on a dimension of the dielectric waveguide and also

on the material constants of used material. But the modes are not localized only in the

waveguide, part of the field penetrate also into the outer medium. The penetration is

defined by the ratio of the permittivity of the waveguide material and the permittivity

of the outer material. If the difference between permittivities (permeabilities) is big, the

modes are bound in the waveguide much stronger than in the case when the permittivities

(permeabilities) are similar. The localization of the modes in the waveguide also depends

on the order of the mode. The higher modes leak into the outer medium more than the

lower.

In following cases, two infinite dielectric slabs of thickness dwell with relative permittivity

εwellr = 100 and the relative permeability µwell
r = 100 are used. All dimensions are normal-

ized to the thickness of the dielectric slab. To find an eigen wavenumber k0 =
√

k2y + k2z

of the system of two dielectric slabs, ABCD method was used [80].

3.3.1.1 Two dielectric slabs in vacuum

Firstly, the behavior of the coupling of two dielectric slabs situated in vacuum is discussed.

The slabs are perfectly bound if they are connected. By this connection, the new, big-

ger dielectric slab arises which width is 2dlens. For this well, the first two bound states

(eigenstates) characterized by wavenumbers are calculated. When the distance between

quantum wells increases, the wavenumber of the first bound states changes its value and

starts to approach to the value of the second bound state wavenumber. Exactly this mode

determines how strongly the quantum waves are mutually bound. The difference between

wavenumbers of the first two bound states is smaller, the quantum wells are bound weaker.

When the value of the first mode wavenumber takes the value of the second one, the

quantum wells become mutually independent, it appears the only one quantum wells is

the entire space. In the case of the two dielectric slabs situated in vacuum, the slabs are

mutually independent even when the distance between them is quite small, as is clear in

Fig.3.7a (dot–line).
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3.3.1.2 Two dielectric slabs bound by the perfect lens

In the case that the perfect lens is put between the two dielectric slabs, these slabs should

have been bound perfectly independently on the distance between them. This hypothesis is

based on the theory of the electromagnetic perfect lens [46]. The perfect lens is created by

the material with the relative dielectric constant εlensr = −1 and the relative permeability

µlens
r = −1. The width of the perfect lens dlens increases with increasing distance between

the slabs such that the condition dsourcekoutz + dimagek
out
z = dlensk

in
z is fulfilled. In Fig. 3.7a,

the solid line represents the result of calculation of the bound state wavenumbers in the

dielectric slabs, namely, dependence of the difference between the first two bound state

wavenumbers of the quantum wells on the distance. As is seen, the difference between the

wavenumbers is constant and the value of the difference is the same as in the case when

the dielectric slabs are connected into one well. These findings mean that the quantum

wells are still perfectly mutually bound independently on the distance between the slabs if

the suitable perfect lens is used.

3.3.1.3 Two dielectric slabs bound by the poor–man’s lens

The most important case for the comparison, is the case when the two dielectric slabs

are bound by a poor–man’s lens. As is mentioned in section 3.2, the poor–man’s lens

works only in quasi–static regime, i.e. ky >> k and only for evanescent harmonics. Both

these conditions are fulfilled in our calculations. The quasi–static regime is guaranteed by

high–valued transverse wavenumber ky. The bound states are defined such that the wave

is propagative in the slab but outside of the slab is evanescent. For perfect coupling of

two slabs is needed that the field leaked from the first slab (evanescent harmonic) reaches

into the second slab what the poor–man’s lens is supposed to ensure. The poor–man’s

lens in our computation is created by material with the relative permittivity εlensr = 1

and the relative permeability µlens
r = −1. The dashed line in the Fig.3.7a shows that the

poor–man’s lens contributes significantly to coupling of two dielectric slabs, but the slabs

are not bound perfectly. The difference of the bound state wavenumbers decreases with

increasing distance, what corresponds with the results in section 3.2. Finally, when the

distance between the quantum wells is 160 n.u. or longer, the slabs are not more mutually

bound and they behave like there is no poor–man’s lens, even like the only one quantum

well is in the whole space.
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Figure 3.7: a) Dependence of difference between the first two eigenstates wavenumbers on

a distance between two quantum wells when the quantum wells: are in vacuum (dotted),

are bound by poor–man’s lens (dashed), are bound by perfect lens (solid). b)Dependence

of the difference between the energies represented the first two eigenstates on a distance

between two quantum wells when the quantum wells: are separated by potential barrier

(dashed), are bound by poor–man’s lens (solid).

3.3.2 Two quantum wells: Electron case

In this part the quantum poor–man’s lens is verified such that the coupling of two quantum

wells separated by a barrier of different width is observed. The quantum well for an

electron can be described as a finite potential well of width dwell [81]. Similarly to the

previous case also potential well has bound states which can be obtained as a solution of

time–independent Schrödinger equation 1.3. The resulting wave represents a probability

function of the occurrence. Because of the finiteness of the potential well, the probability

of the occurrence is non–zero also out of the well. The bound states of the finite potential

well are the quantum analogy of aforementioned bound states in the electromagnetic case.

To evaluate the behavior of two quantum wells when they are moving away from each other

the same method as in previous case was used. In the calculations, HgTe was assumed as

a medium. The potential wells were created by static energy shift of the bandstructure to

give a potential barrier at the interfaces.

3.3.2.1 Two quantum wells in various distances

In quantum mechanics, the coupling of two potential wells means how big is the ability of

the electron to tunnel from the first potential well to the second well. In the first case, the

behavior of the two quantum wells created as two potential wells separated by potential
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barrier of various width is investigated. In Fig. 3.7b - dashed line shows the dependence

of the difference between two energies which represent 2 bound states on the width of the

potential barrier, i.e. on the distance between these quantum wells. It is clearly seen that

the behavior is the same as in the electromagnetic case, where the two dielectric slabs

are situated in the vacuum. The quantum wells are mutually unbound even the distance

between them is really small.

3.3.2.2 Two quantum wells bound by the quantum poor–man’s lens

Finally the coupling of two quantum wells by a suitable poor–man’s lens is examined.

In this results a poor–man’s lens is created as a slab of material surrounded by another

material where the electron masses are defined (mout +min) / (mout −min) ≈ 5 · 10−6 and

dimensions are such that dsourcekoutz + dimagek
out
z = dlensk

in
z . When the suitable poor–man’s

lens is used, the coupling of the quantum wells is stronger than in the case, when the

the quantum wells are separated by potential barrier, as is seen in Fig. 3.7b - solid line.

However, in the comparison with electromagnetic case of coupling of two dielectric slabs

by poor–man’s lens, the coupling is not so strong. As was shown in previous chapter, the

quantum poor–man’s lens is strongly dependent on the difference of the electron masses,

thus the coupling of two quantum wells becomes weaker faster.
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Chapter 4

A Core–shell Trap For Electrons

Previous chapter showed how to perfectly couple two potential wells, i.e., how achieve

perfect tunneling of an electron from one potential well into another. This chapter will in

contrary study how to trap an electron within the potential well. It may seem that such

functionality is only achieved in an infinite potential well. It, however, turns out that there

exists such quantum system that is described as a finite potential well but it has perfect

bound states also known as stationary states.

The stationary states of a quantum system with a finite height potential well are com-

monly divided into bound states, which form a discrete spectrum, and unbound states

which form a continuum [59]. Usually, the two classes of modes do not overlap: the ener-

gies of the bound states usually lie within a potential well, while the energies of unbound

states lie above the potential well. Surprisingly, this property of a quantum system is not

universal, as there are theoretical predictions of systems with bound state energies falling

into the continuum, so–called bound states in the continuum – BICs. Pioneering work

pointing out that bound states with energies in the continuum are exact solutions of the

one–electron Schrödinger equation for specific potentials was presented by von Neumann

and Wigner in 1929 [16]. The original formulation of von Neumann and Wigner has been

reworked and even extended to a two–electron wave function [17], still bearing the sign

of BICs. More recently, it has been proposed that the BICs can be decoupled from all

continuum states also by virtue of symmetry [18, 19, 20].

Alongside the paradigm introduced above, the so–called “resonant states” in quantum

systems have been discovered [82]. These represent a different approach for achieving

“bound” states (resonances) with energies lying above the continuum threshold. These

narrow–width resonances were proposed to exist as metastable states trapped by a large
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potential barrier, or as quasi–bound states in closed channels of a system with weakly

coupled channels [83, 18, 19, 20]. Strictly speaking, however, these states are not truly

bound, as they are in fact localized states with a finite lifetime constructed from continuum

states. Their appearance is however very close to true BICs.

The experiment closest to observing BICs was carried out by Capasso in 1992 [84].

The “bound state", albeit with energy above the potential barrier, was de facto a defect

mode achieved by Bragg reflections in the periodic system of potential wells [85]. Another

similar experiment, where the bound states were coupled to the continuum, was the case

of (Ga,In)(As,N)/(Al,Ga)As quantum wells done by Albo et al [21].

Until recently, all the known realizations of BIC resonators required infinitely extended

material profiles, e.g. a photonic crystal. Truncation of the material profile leads to

imperfect localization and to finite oscillation lifetimes. Importantly, however, it was shown

for the first time in [25] that spatially unbounded resonators are not required to have BICs,

and that, under some strict conditions, volume plasmons may enable the formation of BICs

in open cavities of finite size.

In this chapter a semiconductor heterostructure supporting BICs is proposed, although

it is characterized by a potential well of finite height. Inspired by [25] and using an

electron–light wave analogy, we show that an electron can be trapped with an infinite

lifetime within a spherical core–shell heterostructure when the electron dispersive mass in

the shell is precisely zero and the radius of the core is precisely tuned. All results are based

on an effective medium approximation [69] described in Chap. 1.2.

4.1 Analogy between electron waves and light waves for

spherical systems

The idea to trap an electron inside a core-shell heterostructure invites us to look at the

electron–light–wave analogy also for spherical system. Rather straightforward solution can

be found for electron that is described by a spherical wave. In such a case, one can look for

a solution of Eq. (1.23) of the form ψeff (r) = Rl (r)Pl (cosθ), where Pl (cos θ) represents a

Legendre polynomial of order l [86]. To ensure that the wave function ψeff (r) follows the

relevant physics at the interfaces of the layers, equation (1.22) is further complemented

with boundary conditions, i.e. with the continuity of ψeff and ∂nψeff/m at each boundary,

where ∂n = ∂/∂n and n represents the direction normal to the boundary surface [68, 55].
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For convenience, we introduce the function ψ̃eff (r) = ψeff (r) /m, which proves useful for

handling the limitm→ 0 (E = EΓ8
), which will be discussed later. Note that the boundary

conditions satisfied by ψ̃eff are the continuity of mψ̃eff and the continuity of ∂nψ̃eff .

Assuming all aforementioned it is straightforward to show [86] that the time–independent

Schrödinger equation reduces to

1

r2
∂

∂r

[

r2
∂R̃l

∂r

]

+

[

2m

~2
(E − EΓ6

)− l (l + 1)
1

r2

]

R̃l = 0. (4.1)

Due to the orthogonality of the spherical harmonics and the spherical symmetry of the sys-

tem, the boundary conditions for ψ̃eff (r) reduces to the continuity of mR̃l (r) and ∂rR̃l (r)

at each heterostructure boundary.

Unlike an electron in a crystalline heterostructure, a light bound mode in an electro-

magnetic heterostructure is described by a vector wave equation. In general, the vector

wave equation does not reduce to three uncoupled scalar equations, so there is no imme-

diate analogy between the light case and the electron wave case. In the case of spherical

coordinates [86], the electromagnetic fields can fortunately be separated into transverse

electric radial TEr waves and transverse magnetic radial TMr waves (transverse with re-

spect to the radial direction) [87]. The TEr and the TMr waves can be derived from a

single component of the electric vector potential F = r̂Fr , and the TMr waves can be

derived from a single component of the magnetic vector potential A = r̂Ar, so that the

vector wave equation reduces to a scalar wave equation [87, p.553-557].

(

∆+ k2
) Fr

r
= 0, (4.2a)

(

∆+ k2
) Ar

r
= 0. (4.2b)

By analogy with the electronic case, we introduce auxiliary functions F̃r = Fr/µr and

Ãr = Ar/εr, so that the wave equations (4.2a) and (4.2b) are further complemented by

boundary conditions that impose the continuity of µF̃r and ∂rF̃r for the TEr waves, and

the continuity of εÃr and ∂rÃr for the TMr waves, where ε, µ are the permittivity and the

permeability, respectively.

By comparing of (1.17) and (4.2a), (4.2b) and the corresponding boundary conditions,

a direct analogy between the semiconductor and the electromagnetic cases is obtained, see

Table 4.1.

Table 4.1 also reveals that the presented electron–light analogy for spherical waves is

very similar to that for plane waves [53, 88, 89, 50].
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Table 4.1: The analogy between an electron wave and electromagnetic waves.

Electron wave TE wave TM wave

ψ̃eff = ψeff/m F̃r = Fr/µr Ãr = Ar/εr

m µ ε

2 (E − EΓ6
) ε µ

k2 =
2m (E − EΓ6

)

~2
ω2εµ ω2εµ

∆f + k2f = 0 , f =
{

ψ̃eff , F̃r, Ãr

}

continuity of

mψ̃eff µF̃r εÃr

∂rψ̃eff ∂rF̃r ∂rÃr

4.2 The embedded eigenstate

The idea of a trapped electron is inspired by the electromagnetic case [25], where it was

shown that electromagnetic modes can under certain conditions be bound with infinite

lifetimes in a core–shell nanoparticle. Particularly, the TMr modes can be bound in the

inner region of a core–shell nanostructure when the permittivity of the shell is zero–valued,

εshell = 0, and the radius of the core has a precise value. In such the case, the shell has

infinite transverse wave impedance and behaves, for this particular mode of oscillation, as

a perfect magnetic conductor (PMC).

Applying the analogy described in the previous section, we see that an electron may be

trapped in the core of a spherical heterostructure with an energy such that the dispersive

mass of the shell vanishes. From Eq. (1.19) the condition m = 0 is satisfied for an energy

such that E = E
(2)
Γ8

, i.e. at the edge of the valence (with p–type symmetry) band. In

what follows, we will show that a semiconductor with a zero–valued dispersive mass may,

indeed, effectively behave as an infinite barrier for the electron, and enables the emergence

of a spatially localized stationary state embedded within the continuum. The geometry of

the open quantum resonator is sketched in Fig. 4.1. This design is based on the ternary

compound Hg1−xCdxTe with x being the mole fraction of cadmium [90]. This ternary

compound is used mainly because of its favorable valence band offset values and due to

the nearly perfect lattice matching between HgTe and CdTe.

In our design, both the core (Hg0.9Cd0.1Te) and the shell (HgTe) have inverted band-

structures with the Γ8 bands lying above the Γ6 bands (Fig. 4.1), and the core and the
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Figure 4.1: (left) A sketch of an open core–shell resonator for electrons consisting of a

core with radius R1 and a shell of width R2 − R1. The core–shell structure is surrounded

by an infinite background material. (right) A sketch of the energy bandstructures of the

heterostructure. The energy level associated with the embedded energy state is represented

by a dashed horizontal line, and corresponds to the edge of the valence (Γ8) band of

HgTe. Number 1 denotes the core, number 2 denotes the shell, and number 3 denotes

the background. Note that the considered semiconductor compounds have an inverted

bandstructure, such that the order of the valence band Γ8 and of the conduction band Γ6

is reversed.

background materials are assumed to be identical. The fact that the semiconductor com-

pounds have inverted bandstructures, and thus a negative dispersive mass within the band

gap, does not play any role in the context of the emergence bound states embedded in

the continuum. In principle, BICs can also be supported by other semiconductors with

regular bandstructure. The band edge energies are calculated from the width of the band

gap Eg = EΓ6
− EΓ8

and from the split–off energy ∆ = EΓ8
− EΓ7

. Energy Eg is com-

puted from the Hansen’s formula [90], considering zero temperature. The split–off energy

is taken as ∆ = 0.93 eV [91]. The valence band offset between HgTe and Hg1−xCdxTe

(see Fig. 4.1) is evaluated as Λ = 0.35x eV [92]. The Kane’s parameter P is given by

the relation 2P 2me/~
2 = 18 + 3x eV [93]. Next, we formally demonstrate that Eq. (4.1)

supports a bound state when E = E
(2)
Γ8

, i.e. when m2 = 0 in the shell. Note that the

energy level E = E
(2)
Γ8

lies within the continuous energy spectrum of the background and

core regions (Fig. 4.1), so the wavenumber k1 =

√

2m1

(

E − E
(1)
Γ6

)

/~2 in the core and

background regions is real–valued. Under the assumption that m2 = 0 in the shell, and
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that the wave function vanishes in the background region, the solution of the radial part

of the Schrödinger equation (4.1) can be written in the form [86]

R̃n (r) = N0











jn (k1r) r < R1

An(k1r)
n + Bn(k1r)

−n−1 R1 < r < R2

0 r > R2

(4.3)

where N0 is a normalization constant. The unknown coefficients An and Bn are determined

by the boundary conditions, which require the continuity of mR̃ (r) and ∂R̃ (r) at the two

interfaces. The continuity of ∂R̃ (r) implies that coefficients An and Bn are related as

An =
(k1R1)

1−n

n
j′n (k1R1)

[

1−
(

R2

R1

)2n+1
]−1

and

Bn = An
n

n+ 1
(k1R2)

2n+1

where j′n (x) = djn (x)/d (x).

The continuity of mR̃ (r) imposes that the inner radius must satisfy:

jn (k1R1) = 0 (4.4)

This condition shows that in order to have an embedded energy eigenvalue the radius of

the core region must be chosen precisely. For n = 1 (dipole–type symmetry) this condition

implies that the smallest possible radius for the core is R1,res ≈ 4.49/k1. This analysis

confirms the hypothesis that the electron can be trapped in the core of the semiconductor

heterostructure if the dispersive mass of the shell is zero–valued and the radius of the core

has a very specific value.

It is important to highlight that:

• In the ideal case of m2 = 0, the resonance condition is independent of the shell

thickness.

• For n = 0, the calculated coefficients An and Bn are singular, and hence a wave

function with monopole (s–type orbital) symmetry cannot be trapped within the

core. This important result implies that our resonator is penetrable by waves with

monopole symmetry, i.e. a semiconductor with a zero–valued dispersive mass behaves

as an infinite barrier only for waves with a nonzero azimuthal quantum number. Thus,

the core–shell heterostructure is generally open to electron waves. This is similar to
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Figure 4.2: (a) The macroscopic wave function ψ and (b) the spatial average probability

density
〈

|ψ|2
〉

(normalized to the peak value) of the trapped electron as a function of the

normalized z–coordinate.

the electromagnetic case, where the TMr wave may be bound to the core by a shell

made of permittivity near zero (ENZ) material, with the shell being penetrable by

TEr waves [25].

• The trapped modes are degenerate, because for each n there are in total 2n + 1

spherical harmonics differing only in the magnetic quantum number [86].

To illustrate the proposed theory, a semiconductor heterostructure with an HgTe shell

is considered. The Hg1−xCdxTe core has mole fraction x = 0.1 and radius R1 = R1,res ≈
4.49/k1 ∼ 65a, where a = 0.65 nm is the lattice constant of the considered bulk semicon-

ductor alloys. The radius of the shell is R2 = 1.1R1,res. The trapped electron state has

dipole–type symmetry (n = 1).

The calculated radius dependence of the “macroscopic" wave function ψ and the corre-

sponding averaged probability density
〈

|ψ|2
〉

for θ = π are depicted in Fig. 4.2. Note that

from Eq. (1.22) in each layer
〈

|ψ|2
〉

can be written in terms of ψ̃ as follows:

〈

|ψ|2
〉

= m2
∣

∣

∣
ψ̃eff

∣

∣

∣

2

+ ~
2∂m

∂E

∥

∥

∥
∇ψ̃eff

∥

∥

∥

2

. (4.5)

To obtain the formula presented above, ∂Veff/∂E = 0 was used. It is interesting to note

that for both semiconductor alloys m ≈ (E − EΓ8
) /2v2p in the energy range of interest,

with v2p = 2P 2/3~2 [54]. The parameter vp has unities of velocity. Thus ∂m/∂E ≈ 1/2v2p,

which is approximately the same in both the core and the shell. Figure 4.2a shows that

the “macroscopic” electron wave function is entirely confined within the core, i.e. ψeff

is identically zero not only outside the core–shell resonator, but also in the shell itself.
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However, as is shown in Fig. 4.2b, the average probability density is non–zero in the

shell. This means that the microscopic wave function (ψ) has strong fluctuations on the

scale of the unit cell of the HgTe shell, so that its macroscopic spatial average vanishes

in the shell, while the corresponding probability density function is non–zero. The fact

that the probability of finding the electron in the shell is non–zero is consistent with the

electromagnetic case, for which the electromagnetic energy stored in the permittivity near

zero (ENZ) shell is non–zero. Thus, a zero dispersive mass, m2 = 0, and a non–zero

azimuthal quantum number, imply that the shell behaves as an infinite height potential

barrier that blocks the electron tunneling out of the resonator.

It is relevant to note that in the electromagnetic case the light remains confined in the

core region due to the screening provided by the (non–radiative) volume plasmons of the

shell [25]. Interestingly, in the semiconductor case the role of the plasmons is played by the

heavy–hole states of HgTe [94]. In our framework the heavy–hole states have a flat energy

dispersion and occur precisely at the energy level wherein the dispersive mass vanishes.

4.3 Density of states

In order to further support the hypothesis of the emergence of the bound state in the

continuum, the density of states in the background material has been evaluated as [60]

g (E) =
∑

n

1

(2π)3

∫

E=Enk

1

|∇kEnk|
dS, (4.6)

where the summation is over all bands. Accounting for a spin degeneration and realizing

that the surfaces E = Enk are spherical within the used effective medium model, the Eq.

(4.6) can be simplified as

g (E) =
1

π2

k2

|~vg|
, (4.7)

where

vg =
1

~

∂E

∂k
= vP

√

(E − EΓ6
) (E − EΓ8

)

(E − (EΓ6
+ EΓ8

) /2)
(4.8)

is the group velocity. It is important to note that Eq. (4.8) assumes the linear mass

approximation m ≈ (E − EΓ8
) / 2v2P , which is valid in the vicinity of EΓ8

.

From the dispersion of the energy stationary states it is possible to write the wave

vector k as a function of the energy, so that one finally gets:

g (E) =
[(E − EΓ6

) (E − EΓ8
)]1/2 |E − (EΓ6

+ EΓ8
) /2|

π2~3v3P
(4.9)
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Figure 4.3: Density of states in the background medium. The vertical arrow represents the

bound state in the continuum.

The density of states (4.7) is depicted in Fig. 4.3. It can be seen that it is non–zero

at the energy E = E
(2)
Γ8

associated with the BIC. This confirms that the discrete spectrum

really overlaps the continuum spectrum. It is worth mentioning that the density of states of

the background region is coincident with the density of states of the continuous spectrum

of the structure. This is due to a one–to–one correspondence between the plane wave

electronic states in the background unbounded region and the extended electronic states

in the presence of the semiconductor heterostructure.

Note that the usual paradigm is that the bound states occur within the band gaps of

the background material, different from Fig. 4.3. In the present example, it may be shown

that there are no bound states in the band gap between the valence and conduction bands

of the background region. This happens because the band gap of the shell overlaps the

band gap of the background and of the core regions (Fig. 4.1).

4.4 The Trapping Lifetime for a Detuned Resonator

The previous section dealt with the ideal case, where the energy of the trapped electron

is equal to the band edge energy - EΓ8
- of the material in the shell, and the inner radius

is perfectly tuned to the value R1,res defined by Eq. (4.4). Such perfect tuning is however

unrealistic, and it is interesting to characterize about the trapping lifetime when the inner

radius R1 is detuned.

In the detuned case, the solution of the radial equation (4.1) has to be searched in the
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form

R̃ (r) =











anjn (k1r) r < R1

b
(1)
n jn (k2r) + b

(2)
n yn (k2r) R1 < r < R2

cnh
(1)
n (k3r) r > R2

(4.10)

where jn, yn are the spherical Bessel functions of the first and second kind, respectively,

h
(1)
n is the spherical Hankel function of the first kind and ki =

√

2mi

(

E − E
(i)
Γ6

)

/~2 is the

wavenumber in the i-th layer. As in the previous section, the unknown coefficients an, b
(1)
n ,

b
(2)
n and cn are obtained from the boundary conditions discussed previously, which result

in the following equation system





















jn (k1R1) −m2

m1

jn (k2R1) −m2

m1

yn (k2R1) 0

j′n (k1R1) −k2
k1
j′n (k2R1) −k2

k1
y′n (k2R1) 0

0
m2

m1

jn (k2R2)
m2

m1

yn (k2R2) −m3

m1

h(1)n (k3R2)

0
k2
k1
j′n (k2R2)

k2
k1
y′n (k2R2) −k3

k1
h′

(1)
n (k3R2)

































an

b
(1)
n

b
(2)
n

cn













= 0 (4.11)

In the detuned case, this homogeneous system (4.10) has a non–trivial solution only for

complex energy values, E = Ere + iEim, which correspond to the zeros of the matrix

determinant. The imaginary part of the energy is associated with the decay time of the

localized state, and non–zero Eim implies that the electron escapes from the resonator.

The trapping lifetime can be defined as τ ∼ ~/ (−2Eim) [59]. The lifetime is independent

of the origin of the energy scale. The trapping lifetime is shown in Fig. 4.4 as a function of

relative detuning R1/R1,res for R2 = 1.1R1,res. The calculation assumes that the core and

the background are made of Hg0.9Cd0.1Te, and that the shell is HgTe.

4.5 Scattering Cross–section of the Core–shell Resonator

Since the resonator may support a state with an infinite lifetime, it is natural to ask if

it can capture a free–electron propagating in the background region. To investigate this

possibility, the scattering of a plane electron wave by the core–shell resonator will be

studied.

Because of the angular symmetry of the resonator, it can be assumed without loss

of generality that the plane wave propagates along the z-axis. This plane wave may be
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decomposed into Legendre polynomials as [95]

eik3z =
∞
∑

n=0

in (2n+ 1) jn (kr)Pn (cos θ) (4.12)

This decomposition allows us to write the normalized wave function as ψ̃ =
∑

∞

0 ψ̃n with

ψ̃n (r, θ, ϕ) = R̃n (r) i
n (2n+ 1)Pn (cos θ) and

R̃n (r) =











anjn (k1r) r < R1

b
(1)
n jn (k2r) + b

(2)
n yn (k2r) R1 < r < R2

cnh
(1)
n (k3r) + jn (k3r) r > R2

(4.13)

The unknown coefficients are obtained by imposing the previously discussed boundary

conditions at the interfaces. Figure 4.5a shows the first four (n = 0, 1, 2, 3) Mie scattering

coefficients in the core region (an) as a function of the electron energy for a detuned

resonator with R1 = 1.01R1,res. The curve corresponding to n = 0 (black line) confirms

that the heterostructure is penetrable by an electron wave with monopole symmetry. This

is in conformity with the claim in Sec. 4.2. However, the remaining curves show clearly

that an (n ≥ 2) vanishes whenever E = Eideal. For this energy, the shell region behaves as

an infinite height barrier, and the incident electron wave is unable to reach the core region.

The most relevant of these coefficients, a1, which is associated with the trapped state, is

104
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Figure 4.4: The trapping lifetime as a function of relative detuning R1/R1,res. The trap-

ping lifetime is normalized with respect to the time τ0 = 2R2/vg = 0.11 ps that the

electron needs to pass the diameter of the core–shell resonator at the group velocity

vg = vp

√

(

E − E
(3)
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)(

E − E
(3)
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)

/
(
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in the background material.
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Figure 4.5: (a) Magnitude of the first four coefficients an (n = 0, 1, 2, 3) as a function

of relative energy detuning. The inner radius of the resonator is R1 = 1.01R1,res. (b)

Magnitude of a1 as a function of relative energy detuning. The inner radius is R1 =

{0.99, 1, 1.01}R1,res. The full lines correspond to the exact solution while the dashed lines

correspond to the approximation (4.14).

further studied in Fig. 4.5b for R1 ≈ R1,res. In this case, our numerical simulations reveal

that the approximation

a1 ≈
(E − Eideal)

(E − Eactual)
eiφ0 (4.14)

holds. In the above, Eideal is the valence band edge energy EΓ8
of HgTe for which the

shell blocks an electron wave, Eactual is the complex valued resonance energy determined

by the inner radius R1 and which is calculated as is explained in Sect. 4.4, and φ0 is some

irrelevant phase factor. Notably, equation (4.14) and Fig. 4.5b reveal that in the limit

case R1 → R1,res the zero associated with Eideal cancels the pole corresponding to Eactual,

and |a1| → 1. This contrasts with all the other an (n ≥ 2), which in the present example

vanish identically for E = Eideal, regardless of the radius R1. This means that, due to the

cancellation of a zero–pole, an incident wave with energy E = Eideal and dipole–symmetry

may actually penetrates into the shell, in the case of a perfectly tuned resonator (see Fig.

4.5b, blue curve). Nevertheless, even though the resonator may support an infinite lifetime

bound state and the free electron can penetrate into the core, it cannot be captured by

the resonator. Indeed, the condition for having a trapped electron in the present problem

is that |a1| → ∞ for some real–valued E. It may be checked that even though |a1| can

have rather large values in our structure, it remains finite for any real–valued energy. We

therefore conclude that, in the scenario studied here, the resonator is unable to capture

the free electron.
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This discussion may suggest that it is impossible to couple a free electron to the embed-

ded bound state. However, that is not necessarily the case. For example, if the resonator is

perturbed during a short time period (e.g. by applying a time–varying electric or magnetic

field), the temporary detuning may allow the free electron to excite the bound state and

be permanently captured after the perturbation is removed.

It is also interesting to characterize the scattering cross–section of the resonator. It is

given by [96]

σsc =

∫

Ω

∣

∣

∣

∣

ψsc
∂ψ∗

sc

∂r
− ψ∗

sc

∂ψsc

∂r

∣

∣

∣

∣

r2

|ψinc∇ψ∗

inc − ψ∗

inc∇ψinc|
dΩ =

4π

k21

∑

n

|cn|2 (2n+ 1) (4.15)

where subscript “sc" stands for scattered, and subscript “inc" stands for incident. Figure

4.6a shows that for a perfectly tuned resonator with R1 = R1,res (blue curve), the scat-

tering cross section does not exhibit any resonant features. This is consistent with the

zero–pole cancellation discussed above. However, for a detuned inner radius R1 there is a

resonant response which indicates a strong interaction of the free–electron with the het-

erostructure because of temporary electron trapping. This behavior is also perceptible in

Fig. 4.6b, where the scattering cross–section is represented for different energies of the

incident electron.
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Figure 4.6: (a) Scattering cross section σsc as a function of relative energy detuning for

R1/R1,res = 0.98, 0.99, 1, 1.01 and 1.02. (b) Scattering cross section σsc as a function of

the inner radius R1/R1,res for incident electron energy E = Eideal + ∆E, where ∆E =

{0.15, 0.1, 0,−0.05,−0.1} meV. In all calculation outer radius was taken as R2 = 1.1R1,res.
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4.6 Summary

It has been shown that a spherical semiconductor heterostructure may support bound

states embedded within the continuum at an energy level where the shell region has a zero–

valued dispersive mass. A realistic design of the heterostructure based on the Hg1−xCdxTe

compound has been proposed. An in-depth analysis of the suggested heterostructure, based

on the envelope function formalism, has been presented, showing the possibility to trap

an electron within the resonator core. The trapping lifetime of a detuned heterostructure

has also been characterized, and it has been shown that the heterostructure can trap the

electron for a long time, even if there is slight detuning. Finally, we investigated the

possibility of a free electron being captured by the semiconductor resonator. Notably, our

analysis has revealed that, in the same manner as a trapped electron is unable to escape

from the resonator, a free electron cannot be permanently captured by the resonator.

Interestingly, the scattering cross section does not exhibit any resonant features for a

perfectly tuned structure. This confirms that a free electron is unable to interact with the

embedded bound energy eigenstate.
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Chapter 5

Conclusion

5.1 Contribution of the thesis

The thesis provides an insight into the application of analogies between electromagnetic

waves and ballistic electrons. It shows that the analogy can be used not only to un-

derstand of the behavior of an electron as a wave, but it can be used also to design a

new semiconductor components. Here, the analogy was used to design so–called quantum

metamaterials. Both ideas of design discussed in this work come from the electromagnetic

world. Firstly it was shown that there can exist so–called poor–man’s lens. It is a perfect

lens for evanescent waves, i.e., it can transmit an oblique incident electron without any

loss of energy. Such a lens is very similar to its electromagnetic counterpart. It is created

as a layered heterostructure where each layer is suitably chosen. Then for a special range

of energies the heterostructure behaves in a required way. Another design was based on

an electromagnetic core–shell resonator. It was shown that such the resonator can trap an

electromagnetic wave for infinite time, i.e., it can behave as a perfect resonator even for

a frequency from the continues spectrum. In quantum mechanics such states are called

bound states in continuum and their existence was proven in early years of quantum me-

chanics. However they have never been experimentally verified although a lot designs of

system where BICs can be achieved. The proposed design in this work showed another

system where BICs can be achieved. Advantage of the design is that it is created by a

realistic materials, moreover the dimensions of the structure are technically achievable even

in these days. On the other hand, the dimensions have to be precisely chosen, as was also

shown in the chapter 4, which brings, together with high costs, a big disadvantage of the

design.
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5.1.1 Future directions

Theoretical developments described in this thesis shown that the concept of electron–light

wave analogy is viable and can lead to novel designs. On the other hand, the study opened

two questions which should be answered in future and are listed below.

• The first future work should aim at verification of proposed designs by some higher

order methods , since the simplistic envelope function description could hide some

important aspects of solid state physics. Several efforts in this direction have been

already done using QuantumWise software that uses density function theory. Un-

fortunately, for QuantumWise, dimensions of proposed designs are too large to be

manageable on regular computers.

• Examples of applications of electron–light–wave analogy mentioned in this text all

work in the direction from electromagnetism to quantum mechanics. In future, it

would be interesting to use the analogy in the opposite way. An interesting example

can be to learn from so–called Empirical Pseudopotential Method (EMP) described

in Appendix A and use a similar methodology for homogenization of electromagnetic

metamaterials. EMP provides easily achievable description of complex medium using

just a few parameters which can be obtained e.g. experiments. The idea is, in

the future, create similar method in electromagnetism in which the medium will be

described by an effective permittivity and effective permeability expressed in same

manner as is effective potential. In such a case, there is assumption that there can

exist finite number of coefficients needed for good description of a complex material,

such as metamaterials.

46



Appendices

47





Appendix A

Empirical Pseudopotential Method

The empirical pseudopotential method (EPM) was developed in the 1960’s [97, 98, 99]

as a technique for solving the Schrödinger equation without knowing the exact potential

experienced by an electron in the lattice. The core of the method is a knowledge that the

observed physical properties of solids most of all dependent on valence electrons. Therefore,

the EMP assumes that core electrons are tightly bound to the nucleus creating an ionic

core not influencing much the macroscopic behaviour of the solid. Subsequently, the ionic

core is replaced with a weaker pseudopotential, which acts on valence electrons described

by a set of pseudo wave functions. Theoretical background of the pseudopotential theory

can be started from the orthogonalized plane–wave (OPW) method in which the core and

out–of–core wave function contributions are separated. Such wave can be written in form

ψk = ϕk +
∑

a

caϕa (A.1)

where ϕk is a plane–wave–like function and ϕa in an atomic function and the sum goes

through all occupied atomic shells. The coefficients ca are chosen such that the function

ψk is orthogonal to the atomic function ϕa. It is evident that the wave possesses following

features: Out of the core the atomic functions ϕa are negligibly small and thus can be

omitted, so ψk ≈ ϕk. On the other hand, at the core, the atomic functions are considerable.

It is easy to show that wave given by (A.1) is a solution of a one–electron Schrödinger

equation
(

p2

2me

+ V pseudo

)

ϕk (r) = Eϕk (r) (A.2)

where pseudopotential V pseudo is introduced. The pseudopotential is weaker than the real

potential not showing any singularity in the ion core region. Due to the periodicity of
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the pseudopotential V pseudo, the function ϕk can be expressed according to the Bloch’s

theorem [60]

ϕk =
∑

c

G exp (i (k +G) · r) (A.3)

where G represents reciprocal lattice vectors. Substituting (A.3) into (A.2) gives

~
2

2me

∑

G

cG |k +G|2 e(i(k+G)·r) + V pseudo (r)
∑

G

cGe
(i(k+G)·r) =

= Ek

∑

G

cGe
(i(k+G)·r) (A.4)

Multiplication of the Eq.(A.4) by the orthogonal function exp (−iG′ · r) and subsequent

integration over the unit cell yields to the solution of the Schrödinger equation written in

form

~
2

3me

∑

G

cG |k +G|2 δ (G−G′) +
∑

G

cGV (G−G′) = Ek

∑

G

cGδ (G−G′) (A.5)

where

V (G−G′) = 1/Ω

∫

V pseudo exp ((G−G′) · r) (A.6)

represents a Fourier components of the pseudopotential V pseudo. If there is only one atom

in the primitive cell, the Fourier components are known as pseudopotential form factors

V . In the case, when there are several atoms per primitive cell, it is convenient to define

pseudopotential form factors and structure factors S depending strictly just on the position

of particular atom in the primitive cell separately. For zinc–blende–type semiconductors

which are represented by FCC primitive cell obtaining two different atoms (such as HgTe),

the pseudopotential V pseudo can be written as [97]

V pseudo =
∑

G′

(Ss
G′V s

G′ + iSa
G′V a

G′) exp i ((G−G′) · r), (A.7)

where indices s and a mean symmetric and antisymmetric, respectively, and individual

factors are given by

V s
G′ =

1

2
(V1 + V2) Ss

G′ = cos (G′ · r)

V a
G′ =

1

2
(V1 − V2) Sa

G′ = sin (G′ · r)
(A.8)

The advantage of empirical pseudopotential method is that a small number of these fac-

tors are sufficient for calculating a bandstructure and they are commonly obtained from

experiments.
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Appendix B

Spatially Averaged Probability

In the supplementary materials of [72] it is formally demonstrated that, within an effec-

tive medium framework, the relation between the spatially averaged probability density

associated with a Bloch energy eigenstate and the macroscopic wave function is such that:

〈

|ψ|2
〉

=

(

1− ∂Ĥeff

∂E

)

|ψeff |2 (A1)

In the above, Ĥeff (E,k) represents the homogenized (energy–dependent) Hamiltonian with

k = −i∇. In this work, the effective medium Hamiltonian is given by [see Eq. (1.23)]:

Ĥeff (E,k) =
~
2k2

2m
+ Veff . (A2)

Hence, it follows that:

〈

|ψ|2
〉

=

(

1− ∂Veff
∂E

)

|ψeff |2 −
∂

∂E

(

1

m

)

~
2

2
|ikψeff |2. (A3)

For a Bloch energy eigenstate in a continuous medium, we have ikψc = ∇ψc, and thus the

above result leads to Eq. (1.22) of the main text.
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