T UNIVERSITY
A PACCAR COMPANY IN PRAGUE

s JAN = ‘\\%?/{)‘ TECHNICAL

End studies’ project, Master of Automotive Engineering

Analysis of Liner’s
Bore Distortion from
Finite Elements
Method Calculations.

DAF Trucks

Damien Gode (Czech Technical University)

Acknowledgments

This part has been embedded within this report for purposes of thanking every person having
advised and assisted me all along this internship.

First of all, | would like to express my most truthful gratitude to DAF Trucks for having welcomed
me inside its structure, but more precisely to the initiator of this project, Mr. Paul Steuten, for having
given me the opportunity to expand my knowledge on bore distortion analysis, but also for having
guided me throughout the development of the project.

In a second time, my acknowledgments go to the Czech Technical University specially for having
enabled me to achieve the 5™ semester of the Master of Automotive Engineering in its
establishments, and for having offered me the chance to carry out such a project as well. The
gratitude of the University would be incomplete without mentioning Mr. Radek Tichanek, professor
having accompanied me all along the placement.

Finally, | would like to conclude this section by thanking ENSTA Bretagne, my original engineering
school within which | have received the most part of my expertise in mechanical engineering.

Abstract

The environmental restrictions, which become more and more demanding, force companies such
as DAF Trucks to meticulously assess their engines through truly accurate 3D model, for purposes of
optimizing as much as possible the performances of their vehicles. In that respect, DAF Trucks, during
the examination of their engines, pays the greatest attention to the liners’ inner surface
deformations, what might have consequences in terms of oil consumption in extreme cases. These
defects mostly provoked by assembly forces, thermal loads and gas pressures may effectively induce
a leakage of oil into the combustion chamber, what will, at the end, lead to an increase of
hydrocarbon emission.

To alleviate this issue, it is necessary to execute a bore distortion analysis in order to evaluate the
level of deformation and that way be sure that the ability of the piston ring to distort will be enough
to avoid any oil leakage.

This project proposed by DAF Trucks aimed to embed an additional module within Abaqus,
whose the main ambition was to carry out the bore distortion analysis, which was usually outsourced
by external companies, in order to afford DAF to have its own method to validate the bore distortion,
and this for its entire set of engines.

1 2$)) (> CZECH
DA P o,
A PACCAR COMPANY \ IN PRAGUE

Introduction

For several years the various companies of the automotive field increasingly rely on the use of 3D
models to create and design their engines before producing them. In this way, DAF Trucks, not
derogating from this statement, bases the development of its engines on a set of detailed 3D
computations which aims to return all the pieces of information required to analyse the
performances of the simulated engine. These performances may be about mechanical outputs, such
as the torque or the power coming out of the engine, or else about fuel consumption, or finally about
pollutant emissions, which, nowadays, become a gradually significant criterion in engine design.

For purposes of completing the computational approach of the DAF’s Research and Development
department, DAF proposed the possibility to work on the embedding of an auxiliary module within
Abaqus, a Finite Element Analysis software, in order to provide an exhaustive overview on the bore
distortion analysis. Actually, DAF Trucks was asking for a program displaying a set of useful pieces of
information to visualize the geometrical distortion of the liners, mainly induced by both assembly
forces and thermal loads. This assessment which was ordinarily carried out by external companies,
constitutes a genuine step in the validation of an engine design, notably due to its direct impact on
the oil consumption, and consequently the emission of hydrocarbons.

This labour settles in the frame of an end studies’ project within a Master of Automotive
Engineering attended to the Czech Technical University. This internship requested by the university
tends to offer an ultimate opportunity to accumulate a professional experience before entering in
the real labour world, and also to have a preview of the engineer’s job. The choice of carrying out
such an internship within DAF Trucks was founded on two prospects; firstly to obtain an international
experience, what is inseparable with the current profession of engineer, the globalization having
forced companies to expand to the world market; and secondly to focus the study not only on cars as
usual, but this time on trucks which are a conveyance largely used all around the world notably in the
carriage of goods, but also submitted to really demanding design constraints, which make this sector
truly attractive.

The supervisor of this project was expecting from the student, who would be in charge of this
work, to have some notions of programming, a perfect knowledge on engine operation and also a
certain awareness about the Fourier Transform. As | have always planned to become an automotive
engineer specialized in engine design, | have invariably made choices, throughout my learning path,
going in that direction. That is why, | immediately perceived the DAF proposal as a perfect
opportunity to extend my knowledge on the liners’ bore distortion analysis, and consequently move
towards my career ambitions. Moreover, as computer science becomes progressively important
nowadays, it is requested from engineers, even the ones completely focused on mechanics field, to
have some basic concepts of programming. That way, this mission, offered by DAF Trucks, was the
perfect occasion to enhance the little knowledge about this topic | had acquired until there, during
my academic years.

In that respect, this report aims to clearly introduce the entire development process of the
program, from the definition of the requirement specifications arisen from the DAF’s expectations,
by going through the presentation of the company and the explanation of issues related to this
analysis, to finish with the part about the elaboration of the program.

2 2$)) (> CZECH
DA P o,
A PACCAR COMPANY \ IN PRAGUE

Table of Contents

Vol o 1Y [=To F=d =Y oY USRS 1
LY o1 1 - T T TP P PP PPPUPRO 1
INEFOAUCTION ettt e b ettt b e e be e bt e e sab e e sbe e e s meeesaneesbeeenmeeesaneenars 2
I o1 1o) 8 110 - 5
1. Presentation of the COMPANYuuviiiii e e e e e e atr e e e e e e aeraereeeeaas 6
2. CONTEXE OF STUAY cooeiiiiiee e e e e e e et b e e e e e ettt e e e e e esaasaaeeeeeesanssbaeeeeeeansraneaens 8
2.1, Nature of diStOrtiONS ...eoecuiiiiiieiieeee ettt ettt et sbe e e sbe e sbee e saeeesneeenne 8
2 o1 o] o AT o =4 o =T PPN 8
2.3, MISCONAUCT ISSUBS ...eeutiiiiieiieeetieeite ettt ettt et e et e bt e e bt e ettt e bt e s sbeeesbeeesbeeesbeeesbeeenneeenneeenneeenns 9
2.3.1. (01 I ToT o YU 121 o1 4 o] o HP PR USURRN 9
2.3.2. Rotation Of PISTON FINES ...uuviiiiii e e e e e rrae e e e e e earraeee s 9
2.3.3. BIOWY .. e e e e e e e e e e e abar e e e e e e anaaees 10

2.4. Finite Elements MechaniCs analySiS........iiiiiciiiiieiiiiiiiiieee et e e e e e e e aaaanee e 10

3. Requirements SPECITICAtIONueiiii i e e e e e e naaes 11
3.1 WOIKD@SE e e s s 11
3.2, Project ambitioNnsuveiiiiiiiiiiiie e e e e e e e e e e e e e s naaaaaaaean 11
3.2.1. LiNer SNAPE OVEIVIEWeeiiiiiii ettt e st e e e e e st e e e e e e e sabaa e e e e e e nansees 11
3.2.2. oYU g T T = V2] USSR 12
3.2.3. TEMPEratUre @SPECT coviiiiiiiiiiiee ettt ettt s s s e e e e e eeeeaeabaaa s seeseeeeeeeeesessanns 12

O o 10 1T o= 0 F=1 1A LU PP 13
Ot I o TU g 1T o o o I=To V2P PR 13
4.2. Application to the bore distortion analysis.........ccceeeeeeiiiiiiiiicccee e 13
4.2.1. INPUL Of the MEthOdeeiiiiie e e 14
4.2.2. Change in the fOrmMUIAS ... et e e e e eeaees 15
4.2.3. Meaning Of the FESUILS.......uiiiii i e e e e 15

4.3, Definition Of HMIES ..ceoiiiii i et e e saree s 16
5. Definition of the operating MOde.........oeiiiiiiiiiie e e e e e e e 18
5.1. Selection of the iINPUL datacoooiiiiiiiiicee e eeeeee s 18
5.2. Use of an external Python iNterPreter.. ..o ciiiiiiiieeeeeeeeeeeeee e eee e e e 18
5.3, Retained METNOM....cc.uiiiiiee e s st e s e s sraee e 19
LR S WV (o] o [T = o PSPPSR 19
5.4.1. FIrst d@SIZN IEVEL ...uvvieieiceeeee e e e e st ee e e e e e abbee e e e e e asnees 19
5.4.2. Y=Tole] gTo le 1o ={ g T L=V PSPPI 19

3 $))()» CZECH
2l L= %ﬁ(/g B
A PACCAR COMPANY \ IN PRAGUE

5.4.3. Third deSIBN IEVEL..ccce e e e e e e e e aba e e e e eaaaaneeeeas 20

5.4.4, FOUIth deSiN IEVEI c.eeeiieeeieeee et e e e e e e e e e arees 20
5.4.5. Fifth d@SiZN I@VEL....veeeiiieeeee e s e e e e e e bbee e e e e e anaees 20

6. Program CONCEPLION . cciiiiiiiiiiccee ettt e e e e e ettt s e s e e e e eeeeeaesbabaaseeseeeeesenenessennnnnnsssnns 21
6.1. BoreDistortion_ANAIYSIS V7 ...ttt e e s e e e e raaaa e 21
6.1.1. Yol o1 A=AV To 1 U u o TR U SPP 21
6.1.2. Data PrOCESSING .evveeiiiiiiiiieteetett ettt ettt e et e e e eeeeeeesesssssssasssaassssrasbeareeeeaeeeeees 23
6.1.3. DY I o o] [Tor- Y 4o o -3 USSP 24

6.2, TeMPEratUre_ANAIYSIS..ciiiiiiciiiiieeeeiiiteee e esctre e e e e e e e e e e s rb e e e e e e s sstaeeeeeessnabeeeeeeaansnraeeeaeas 31
6.2.1. Data PrOCESSING .evvieiiiiiiiieitteteee ettt ettt ettt e e e eeeeeeeseesssassassaassbssrasbearaeeeaeeeeees 31
6.2.2. JAY o] o] [ToF= 1 4 o] o AU USSP 31

6.3. Files EeNEration ProSramciiiiiiciiiiieeeeiiiieee e e et e e e e e s e e e e e s e ssaabreeeesssnsraeeesesassraeeaeens 32
6.3.1. (0] o1 - Nu o] o F=1 Y =Tot 4] o SO PPPRPPN: 32
6.3.2. AV L (e R TT o= =T =TRSO 33

6.4. Graphical INtEIACES.uiiii i e e e e e e e araaeaae s 33
6.4.1. PrOgram INEEI ACE . .uiii it e e e e e 34
6.4.2. Files generation iNterface ... e 35
6.4.3. Comparative analysis iINtErface.......cccuuiiiiii i 36

L T = q o] |- Y 1V o T L PSPPSR 37
6.6. Link betWeen PYLNONS ..ooiiiiiiiee et raaea e 37
CONCIUSION ..ttt ettt ettt e et e e e s bt e e s sabe e e e abe e e e sabe e e s aabeeesaabeeeesabeeesaabbeesanbeeeesanseaesaneeens 39
211 o] [To ={ =T oo 1 VR PP 40
AN o] o 1=T o Lo | PSPPI PUPPRN 41
BoreDistortion_ANalysisS_V7 SCHPLciecuiiiiii ittt e e e e saree e e e e s sbree e e e e e s nnrees 41
Temperature _ANalySis SCIIPT. ..o e e e e e e e rerre e e e e e eeaaaaaaaaaaeeeseeeas 56
Distortion_generate_fil@S SCIIPL....uui et e e e e s srree e e e e e s anrees 66
Temperature_generate _files SCrIPT ... iiiii i e e e et e e e e e e anreeas 73
Program_iNterface SCriPL......ccoi i e e e e e e e e e e e e e e e e e s e b e b b e e b e e reaeeeeeeeaaaaaaaaaaeeeeanans 80
GenerateFiles_INterface SCIPt ..o e e e e e e e e e e e e e e s e reaeaeeeeeeeeeees 88
Comparison_INtErface SCHIPL .uuviiiiiiiiii e e e e e e e e e e e e e e e s e e s e e b e aaaeeeeeeeeees 91

ST aT= 0o LY (] (I o a1 U UURROt 107
EXPlICAtive INOTE SCIIPE . i e r et e e e e e e e e e e e eeaaaeaeaeeeseesennnan 108

DAE | fos

A PACCAR COMPANY

CZECH
TECHNICAL
UNIVERSITY
IN PRAGUE

Table of figures

Figure 1 : Photo of the new XF and CF trucks, Trucks of the year 2018.............ueeeeeeeeeeeeeeeeeeiiiieeeeeeeeeeeeeeeeceianenns 6
Figure 2 : Output of the final program illustrating a deformed Sectionccceueeeeeeeeeeeecciiiiiiieeeeeeeeeeeeecinns 14
Figure 3 : lllustration of the different patterns of AiStOrtioN...............uuieeeeeeeeeciiiiiieeeaeeeeeeeeecccrteaeeeeeeeeeeeeseanes 16
Figure 4 : Outcome of the application "PIOt_PALR"cooneeeeeeeeeeeee ettt a e e e e e e e e e eesaaens 24
Figure 5 : Outcome of the application "plot_def Profile"............uu it 25
Figure 6 : Outcome of the application "plot_distortion_graph"ooeeeeeeeeeeeieeeeeeeeeecceeiee e e e e e e eeeeecanes 28
Figure 7 : Outcome of the application "plot_distortion by _Order"cccoueeemeeeeeeeeeeeieeciiiieeeeeeeeeeeeeecesanns 29
Figure 8 : Summary schema of the radial distortion along the Z QXiscocceeeeeesiieeeemniiieieeeiieeeesieee e 30
Figure 9 : Outcome of the application "pPlot_CUt_Profile"..............eeeeeiiee oottt e e e e e e e eeeeeaaes 30
Figure 10 : Outcome of the application "plot_wall_temperature_complete"..............cccoeevcevivvvveeeeeeeeeeeeeeeiinnns 32
Figure 11 : Preview of the program's Mmain iNtEIfaCEcccuueeeimiuieiiimiiiiie ettt 34
Figure 12 : Preview of the folder's drop-dOWNn liSt.............ceeeeeueeeiieeiiiiie ettt e e e e e ee st e e e e e e e e sesssnnees 35
Figure 13 : Preview of the files generation iNtEIfACEuuuveveeiiieeeeeeeeeeecceeeee e e e e eeee st e e e e e e e eeesssanns 35
Figure 14 : Preview of the cOomparative WINAOWccceuuuueeeeiiieeeeeeeeeeceetteeeeeaaeeeeeeeeectaseeaaaaaeeeeeeesssnanns 36
Figure 15 : Outcome of the plot path comparative apPliCAtioncccuueeeemnouieiieeniiiieeeiiee e 37

DAFE g a%f;;

CZECH
TECHNICAL
UNIVERSITY
IN PRAGUE

file:///F:/Report/Analysis%20of%20Bore%20Distortions%20from%20Finite%20Elements%20Method%20Calculations.docx%23_Toc522376053
file:///F:/Report/Analysis%20of%20Bore%20Distortions%20from%20Finite%20Elements%20Method%20Calculations.docx%23_Toc522376054
file:///F:/Report/Analysis%20of%20Bore%20Distortions%20from%20Finite%20Elements%20Method%20Calculations.docx%23_Toc522376055
file:///F:/Report/Analysis%20of%20Bore%20Distortions%20from%20Finite%20Elements%20Method%20Calculations.docx%23_Toc522376057
file:///F:/Report/Analysis%20of%20Bore%20Distortions%20from%20Finite%20Elements%20Method%20Calculations.docx%23_Toc522376058
file:///F:/Report/Analysis%20of%20Bore%20Distortions%20from%20Finite%20Elements%20Method%20Calculations.docx%23_Toc522376059
file:///F:/Report/Analysis%20of%20Bore%20Distortions%20from%20Finite%20Elements%20Method%20Calculations.docx%23_Toc522376060
file:///F:/Report/Analysis%20of%20Bore%20Distortions%20from%20Finite%20Elements%20Method%20Calculations.docx%23_Toc522376061
file:///F:/Report/Analysis%20of%20Bore%20Distortions%20from%20Finite%20Elements%20Method%20Calculations.docx%23_Toc522376062

1. Presentation of the company

DAF Trucks is a Dutch manufacturer specialized in the production of Trucks of any kind, founded
in 1928 and reattached to the PACCAR group in 1996, which was already disposing of a few Truck
companies in North America such as Kenworth or Peterbilt. In this way, by the acquisition of DAF
Trucks, the PACCAR group was able to extend its influence within the world market related to its
entrance in the European market. Actually, DAF Trucks is one of the most prominent truck
manufacturers in the European-Union, the company sharing 15.3% of the heavy segment (trucks
heavier than 16 tons) and 10.5% of the light one during the year 2017, according to features, which
represents a total production of about 60 900 trucks. To manufacture their trucks, DAF Trucks
disposes of several plants spread through Europe, in countries such as the Netherlands, the United-
Kingdom, Belgium, for instance. However, DAF Trucks does not restrain itself to the European market
and truly wants to expatriate their trucks all around the world. That is why, in 2013, DAF Trucks
opened a new site in Brazil at Ponta Grossa in order to conquer the South American market. Hence,
by dint of these production plants, DAF Trucks is able to produce and assemble all the components
composing its three models of truck, the LF, the CF and the XF, respectively for light, medium and
heavy-duty applications. These trucks may involve the implementation of four different types of

engine, two of them, the smallest ones, the PX5 and PX7, being manufactured by an external
company and the two others, the MX11 and MX13 being produced by DAF Trucks itself.

Figure 1 : Photo of the new XF and CF trucks, Trucks of the year 2018

The success of DAF Trucks lies in the quality and the performance provided by its trucks.
Actually, these trucks are renowned for their comfort, their low fuel consumption, and their
reliability. Due to that, it sounds pretty obvious DAF’s trucks are often brought to the fore on the
international stage by means of prizes such as the “Truck of the year” reward, an award discerned by
a set of truck magazines. Thus, once again, the legitimacy of DAF Trucks as one of the main truck
manufacturers has increased since the acquisition of the 2018 “Truck of the year” prize for both CF
and XF trucks. Nevertheless, despite all these rewards, DAF Trucks keeps focusing on the perpetual
improvement of its trucks, notably in terms of environmental performances, in order to always
satisfy the various requirements defined by the EURO 6 decree, and the future ones. For this

D/~ 6 ‘\%?/P/?‘ e
[|| C UNIVERSITY
A PACCAR COMPANY / \J IN PRAGUE

purpose, DAF Trucks initiates within its Research and Development departments, a multitude of
projects having as ambition either to enhance the existing or to design a new way to proceed.

Finally, DAF Trucks relies on the high quality of its products, which is the outcome of a
demanding and advanced Research and Development work, to satisfy the expectations of the
customers and that way, gradually become the leader of the truck market.

]
IN PRAGUE
A PACCAR COMPANY

DAV 7 Pl b,
<

2. Context of study

The operation of a thermal engine is based on the vertical back-and-forth motion of pistons
inside cylinders. Then this movement is ensured by a surface interaction between the piston rings
and the inner surface of the liner, the liner being a low friction component press-fitted within the
cylinder block. This surface interaction will be altered by various loads applied to the liner and this
throughout the life of the engine. Thereupon, it sounds quite obvious that these alterations will
directly affect the proper operation of the piston motion, and consequently the operation of the
engine. The purpose of this project is about verifying that these deformations remain under the
tolerated limits in order to avoid any kind of misbehaviour.

2.1. Nature of distortions

First of all, it is essential to emphasize that the entire engine block will expand or contract along
with the temperature variations induced by the engine operation. Nevertheless, these displacements
do present no interests for this project, and hence they will be ignored. Actually, the only
displacements which truly find an interest within this project are the radial deformations of the liner,
notably due to their direct impact on the surface interaction between the liner and the piston rings.
These deformations may be provoked by different types of load gathered in five specific cases. The
first one represents the machining of the engine block, which will induce mechanical stresses within
the liner. The second one consists of assembling the engine block and the cylinder head by screwing
the several bolts, bringing about mechanical deformations. The third is about the thermal distortions
caused by the temperature inside the engine when it is operating. The penultimate possibility
susceptible to produce such distortions lies in the application of a mechanical pressure to the liner’s
wall by the gas load. The last one concerns the mechanical wear induced by a long-term operation of
the engine. Before going forward in the description of the context, it is relevant to talk about the
Out-of-roundness parameter (OOR), a variable often used in the bore distortion analysis, which
simply references to the radial deformation.

2.2. Pistonringsrole

The motion of the piston through the cylinder is only possible if it exits a gap between the
circumferential surface of the piston and the inner wall of the liner. However, to afford the
combustion to occur properly, it was required to seal the combustion chamber, and that way avoid
any mixture leakage or oil intrusion within the chamber. This sealing is often executed, in the recent
automotive industry, by a triplet of piston rings located on the piston’s lateral surface. Moreover, for
purposes of enabling as much as possible the piston motion, these piston rings must be made from
low friction material, easily deformable. Thus, the ability of the rings to deform will afford to
compensate the alterations occurring throughout the long-term operation of the engine, and
consequently still ensure the sealing of the combustion chamber. Unfortunately, as any kind of
material, the deformation properties of the piston rings have a physical limit, which will induce the
introduction of a critical value for the out-of-roundness.

8 $))()» CZECH
DA P o,
A PACCAR COMPANY \ IN PRAGUE

2.3. Misconduct issues

As described in the previous sections, the radial deformation of the liner is an inevitable
phenomenon, which does not present a great risk for the engine operation as long as the out-of-
roundness remains under the critical limits. However, in case of excess of these limits, some
disturbances may appear, which will affect, not only the engine performances but also the
satisfaction of the customers. The purpose of this section is about shortly presenting the main
misbehaviours related to a liner deformed in a too significant way.

2.3.1. 0il consumption

The oil is a lubricant component introduced within the engine in order to ease the motion of all
mechanical parts, what obviously includes the piston. Indeed, the oil, initially located in the oil pan, is
propagating by projection on the liners’ wall while the engine is running. Henceforth, the piston rings
will, on one hand, spread the oil all around the liner’s inner surface to reduce as much as possible the
friction, but also on the other hand, will prevent the oil from entering in the combustion chamber.
However, too important OORs would provoke the creation of gaps which the oil would have the
opportunity to flow through, into the combustion chamber. Even if this problem does not have a
direct impact on the engine efficiency in terms of performances, it remains concerning in an
environmental point of view, but also in a customer satisfaction point of view. Actually, as the
lubricant oil is mainly comprised of carbon molecules, its potential burn within the combustion
chamber would produce the appearance of hydrocarbon in the exhaust gas, which poses a problem
because hydrocarbons are chemical molecules really polluting. Moreover, the combustion of oil
would automatically induce a reduction of its quantity inside the engine, what would force the
customer to refill oil levels more often than the statements made by DAF, and hence what would
taint the brand image of the company. For all these reasons, DAF pays a special attention to the oil
consumption, either by initiating projects, directly or indirectly connected to this matter, such as the
one described in this report, or by assessing it through experimental measurements.

2.3.2. Rotation of piston rings

The piston rings are mounted on the piston head in such a way that it exits a degree of freedom,
the rotation along the axis carrying the piston motion, which is needed to ensure the proper spread
of the oil on the liner’s wall. It is relevant to underline that the dynamic rotation of the piston rings
has a straight effect on the wear of the liner’s inner surface, and consequently on the lifetime of the
entire engine. Actually, a too rapid rotation would engender an excessive wear of the liner, and on
the opposite no rotation would be a source of non-uniform wear. This variation of rotational speed
may be the result of the roundness modification, notably because it seems obvious that a shrinkage
of the liner’s radius, locally speaking, would induce an increase of the surface pressure between the
piston rings and the liner’s wall, what would provoke a reduction of rotational speed; conversely an
expansion of the liner’s radius, once again locally speaking, would bring about a diminution of surface
pressure, and hence a rise of the rotational speed. Therefore, the change of the liner’s roundness
directly influences the wear of the liner’s wall, and thus the lifetime of the engine.

9 $))()» CZECH
DA P o,
A PACCAR COMPANY \ IN PRAGUE

2.3.3. Blowby

The blowby designates the passage of the exhaust gas from the combustion chamber to the
crankcase. This phenomenon may be the outcome of many factors, such as the thermal expansion
and shrinkage, the vibrations, or also the out-of-roundness. Indeed, it is quite natural to guess that
the variation of diameter may ease the leakage of the exhaust gas towards the crankcase. Therefore
the radial deformations of the liner may provoke an increase of the blowby effect, what may
intensify the wear of the liner, and consequently reduce the lifetime of the entire engine.

2.4. Finite Elements Mechanics analysis

One of the methods implemented for purposes of assessing the bore distortions relies on
experimental measurements carried out through a test rig. Indeed, by using a set of sensors, more
precisely a set of Micro-epsilon transducers made from invar and with a low coefficient of thermal
expansion, moreover located at key points all around the piston head’s lateral surface, it is possible
to measure the value of distortions. However, this process remains truly complex and demanding in
time and resources. That is why, it is more common to measure the bore distortion from a Finite
Elements Mechanics (FEM) model, which will afford to compute the outcome quite accurately. This
method is based on a succession of calculations whose the ambition is to compute one by one all the
inputs required for the elaboration of the complete computation. The first FEM analysis aims to
compute the value of the coolant’s heat transfer coefficient from a Computational Fluid Dynamics
(CFD) method. Once this parameter known, the next step of calculation is the thermal analysis step
which consists of determining the temperature within the engine. This computation may only be
achieved if the thermal conductivity of each component, the heat transfer coefficient of each
component’s surfaces, and the boundary conditions in terms of temperature are specified. The last
calculation needed to be done before launching the final one, is about evaluating the mechanical
part of bore distortion, meaning the bore distortion only induced by the assembly forces excluding
thermal effect. Once again, this model requires some input parameters such as Young’s modulus or
assembly bolt forces for instance. From there, by combining the outcome of the previous FEM
calculations, it is possible to establish the final FEM model, and that way to obtain the genuine value
of bore distortion, including both thermal and mechanical aspect. In order to complete the pieces of
information given through this section, it is relevant to indicate that all the models depict a three-
cylinder engine whereas real DAF engines are six cylinders engines because it is a design choice to
save both memory space and computation time.

10 ? () CZECH
DAF Py reomen,
A PACCAR COMPANY \ IN PRAGUE

3. Requirements specification

As for any kind of project, the clear definition of objectives constitutes the foundation of the
work assignment and affords to guide the outcome towards the most sustainable solution. That way,
by means of discussions with the supervisor of this project, it was attainable to edit an explicit
requirements specification, gathering the ambitions that the program had to satisfy.

3.1. Work base

The purpose of this project is about offering a method to analyse the liners’ bore distortion of
the two main engines produced by DAF Trucks, in order to complete the post-conception
confirmation process. Usually, the bore distortion analysis is devolved to an external company (such
as AVL for instance) in charge of achieving the FEM calculations, and then, in a second time,
approved or not by DAF. But through this project, DAF shows its desire to possess its own
computational routine to assess the liners’ bore distortion for different engine states. Nevertheless,
it is truly significant to declare that this project did not have to start from scratches, due to the
existence of a draft carried out by the supervisor of this project, made from Excel. That way, the
method which needed to be implemented was perfectly known. Actually, the main principle behind
the bore distortion analysis relies on the application of Fourier transform (cf. the section 4. Fourier
analysis) and this on a certain type of data provided by the outcomes of FEM calculations executed
through Abaqus (a Computer Aided Engineering software). Therefore, the mission behind such a
project was to embed within Abaqus an additional module aiming to complete the bore distortion
analysis, including the Fourier transform. The ability to interact with a Python console through
Abaqus, Python being the programming language implemented to code this software, has led to the
choice of building the future program with Python for purposes of facilitating as much as possible the
integration of the module. To complete this section, it may be relevant to underline that the
elaboration of the program will be based on files concerning the MX11 and MX13 DAF’s engines,
which are both already produced by DAF. Hence, DAF already disposes of reports corroborating that
the out of roundness remains under the critical limits for these engines. Then by relying on these
reports, it was possible to calibrate the program until obtaining the same results.

3.2. Project ambitions

For purposes of ensuring the relevance of the bore distortion analysis, it is necessary to split the
study into several perspectives. Indeed, to consider the future program as an effective analysis tool,
it will have to afford the user to have an access to some fragments of information, and this way give
a global overview of the state of deformation. These elements of study may be distributed into three
categories.

3.2.1. Liner shape overview

The first aspect of the liners’ bore distortion analysis consists of delivering a direct vision of the
deformation in order to show how the liner warps under different cases of load. That way, it was
decided, after few discussions with the supervisor of this project but also by looking at what was
done in the report written by AVL, to display, on one hand, the cross-section profile of the liner, and
on the other hand the way the liner deforms along its height.

11 ?) CZECH
DAF Pl izamen,
A PACCAR COMPANY \ IN PRAGUE

3.2.2. Fourier analysis

The implementation of the Fourier transform within the bore distortion analysis affords to obtain
further information about the way the liner deforms. In short, from the Fourier transform, it will be
possible to set up some indirect view of the liner deformation. It is important to note that further
information about the Fourier analysis will be depicted in details within the section 4 of this report.

3.2.3. Temperature aspect

As the liners’ bore distortion strongly depends on the thermal state of the engine, more precisely
on the temperature inside the liners, it seems natural to embed within the script a functionality
displaying the temperature of the liners’ walls. That way, it will be possible to connect the
deformation of the liner with the local temperature and consequently corroborate the impact of the
temperature on distortions.

DAF 2 D T
A PACCAR COMPANY \w ; :.lNNpaEA%SJ;v

4. Fourier analysis

Despite the good accuracy of Abaqus, the simple exploitation of the values coming out of this
software is not enough to have a complete view on liners’ bore distortion. Consequently, it is
necessary, in order to dispose of an exhaustive analysis method, to execute a signal treatment
process based on the implementation of the Fourier transform.

4.1. Fourier theory

The Fourier transform is a mathematical approach decomposing an input signal, most of the time
it is about temporal signals, into a sum of basic terms defined from a complex exponential
(sometimes expressed from the Euler’s formula as the sum of a real cosine and a complex sine). It is
important to add that if the nature of the input signal is temporal, then the output of the Fourier
transform of such a signal would be frequency. Nevertheless, this method may obviously be applied
to any kind of signal not only temporal ones, and hence may be set up within this project.
Furthermore, this mathematical method relies on two types of transformation, one taking a discrete
signal as input and the other one a continuous signal, and for both of them it exists a direct formula,
computing the Fourier terms from the input signal, and a reverse formula, naturally achieving the
opposite. As the values extracted from Abaqus will be related to a whole of distinct nodes, it may be
postulated that only the discrete expression of the Fourier transform proves an interest within the
project. The both formulas, direct and reverse, behind such a method are defined as below:

N-1
(X 1) (k Znn) direct
=— > xn.exp[—j.|k.——]] direc
| Xk =) *n-exp[] v)
n=0
{ N-1
|) 2nn
k Xp = Xk.exp[].<k.T)] reverse
k=0

From the explanation detailed above these formulas, it is possible to deduce on one hand that x,,
gathers the N values of the input signal and on the other hand that X}, represents the output of the
Fourier transform. More precisely, X}, is a list of complex from which it is feasible to assess the values
of both Fourier coefficients and the dephasing angles, respectively by taking the module and by
computing the arctangent of the imaginary part over the real part. However, these entities are not
merely mathematical coefficients deprived of any physical sense. Indeed, as specified earlier within
this section, the main purpose of the Fourier transform is to decompose a signal into a sum of
elementary components, nevertheless it may appear either the involvement of these components
are not identical or they require to be lightly shifted to finally result to the initial signal. That way, the
Fourier coefficients are in charge of weighting the commitment of the various exponential terms and
the dephasing angles are responsible of shifting it at the proper position.

4.2. Application to the bore distortion analysis

As mentioned in the previous paragraph, the Fourier transform is usually applied to temporal
signals, however, it appears that in the frame of this project, meaning the bore distortion analysis,
this method is the most used in order to obtain a preview of the radial deformations.

13 ? () CZECH
DAF Py reomen,
A PACCAR COMPANY \ IN PRAGUE

4.2.1. Input of the method

First and foremost, it is important to say that this study only focuses on one specific group of
surfaces, the liners’ inner surfaces, and consequently only the nodes of these surfaces will be
concerned by the analysis. Moreover, after several readings of former reports about this topic and
also after having discussed with the supervisor of this project, it was decided to draw from what was
commonly done in the bore distortion analysis, and to display the results for distinct profiles, and this
all along the liner’s height. In this way, according to the two previous remarks, the idea behind the
execution of the Fourier transform within this project was about gathering the nodes located at the
same height from the liner’s top, under the form of one single entity, for purposes of obtaining the
deformed shape of the liner’s section at this height (cf. the figure right below).

Comparison of the deformed and original profile
Engine MX11 Cylinder 2 Step 3
Scale F.g}%;or 1000

— ~—— —— original profile

i o v deformed profile
-~ < —— s — N
-~ N
’ - \\
135 - . a5
y // ~ AN
e \\\ N
/ Nee \
N \
\
\
\
h 70
%\ \
50 \
\
& \
- : ‘\ ‘l
30 \
J “ \‘ l
| | ‘
| W | |
1800 | ! | | ©
| |l | |
| |
| \ '
\ ‘l I'
J
\ f J
\ / f
\ /
. /
. /
./‘
/“
/ /
/
// 4 /
.»\ v //
. N .
\\ X /
\ - /
L S " ~ g < :1 1 e
~ /;
L R T !

Figure 2 : Output of the final program illustrating a deformed section

Finally, the Fourier transform implemented within this project will have to compute both Fourier
coefficients and dephasing angles, and this from the deformed liners’ profiles, such as the one
illustrated in the figure above, which means from the data lists bringing about these graphs, in others
terms the lists containing the radial displacements of the section’s nodes.

DAF 1 D T
A PACCAR COMPANY \w ; :.lNNL\aEA%SJ;v

4.2.2. Change in the formulas

The adaptation of the Fourier transform to the bore distortion analysis involves the necessity to
modify the mathematical expressions. From there, and in order to facilitate the future explanations,
the decision of presenting the changes in the formulas before detailing the physical sense of this
method has been taken. Moreover, it might appear useful, at the sight of the project expectations, to
only focus on the direct Fourier transform, but it has been decided to also implement the reverse
method, initially for the sake of outcome validation. Actually, the direct formula does not require any
modification to be embedded within the bore distortion analysis, which is not the case of the reverse
one. Nevertheless, the adjustment does not represent a big deal and only consists of rewriting the
complex X, under its exponential form, which is X, = F.[k]e/®k , with F, the Fourier coefficient and
@ the dephasing angle. The substitution within the reverse Fourier transform expression affords to
reach this formula:

Xn = F [k].exp[] -(k-en + (pk)]

To conclude with this section, two remarks have to be pointed out. The first one is about the
appearance of the 6,, entity, which has been introduced to replace the term 2% for the sake of

simplification. The second remark is related to the function exponential, and to its potential change.
Indeed, this function exponential may be substituted, according to the nature of the signal, either by
a cosine when the signal is purely real or by a sine when the signal is complex. In this case, as the
radial deformations are considered as mainly real, the exponential is the previous mathematical
expression may be replaced by a cosine.

4.2.3. Meaning of the results

As it is mentioned in the first part of this section, the main interest of the Fourier transform is
about decomposing a given signal into a sum of simpler signals, which are called harmonics. That
way, in the frame of the bore distortion analysis, the Fourier transform is implemented in order to
break down a deformed profile, such as the one depicted in the figure 2, into a sum of nine
harmonics from the zeroth order to the eighth one (all the others being too small to really have an
impact on the origins of deformations), each of them describing a specific mode of deformation.
Actually, each harmonic, indexed by the variable k in the preceding mathematical formulas,
corresponds to a certain pattern of distortion described in the figure 3.

That way, by observing the figure, it is possible to notice that the zeroth order coincides with a
potential radial expansion of the liner’s section, the first one depicts the prospective eccentricity of
the profile, whereas all the other harmonics, from the second to the eighth, have a more significant
incidence on the geometry of the liner. Effectively, contrary to the two first orders, all the other ones
straightforwardly modify the shape of the profile as if it was subjected to centripetal forces, whose
the number is directly related to the order of the harmonic. That way, a cylinder surrounded by six
fixation screws will present a sixth order more significant than a cylinder only surrounded by four.
Therefore the application of the Fourier transform to the lists containing the radial displacements
computed from Abaqus, will afford to obtain both Fourier coefficients and dephasing angles for each
order. It is important to underline that the Fourier coefficients represent the maximal distance,

15 ? () CZECH
DAF Py reomen,
A PACCAR COMPANY \ IN PRAGUE

radially speaking, either positive or negative, between the deformed profile and the initial one,
whereas the dephasing angle corresponds to a potential rotation of the deformed shape around its
center.

Oth order 13t order md oedes

brd order Sth oeder
e th ordes

6th ordes Nth oedes th order

Figure 3 : lllustration of the different patterns of distortion

In that respect, as the forces applied to the liner will have a more or less significant impact on the
different harmonics, the Fourier transform executed in the frame of the bore distortion analysis
affords to obtain a quick preview on the most predominant modes of deformation, and that way
inform the user about the real nature of the deformation.

4.3. Definition of limits

As for any type of analysis, it is not possible to make a judgement on results simply by observing
the output computed by a method. Therefore, it is necessary to define a set of reference values in
order to place the outcomes with respect to these limits, and that way to conclude with the analysis
aspect of the project. In the case of bore distortion analysis, it exists two types of limit, the
borderline limit and the critical limit. The critical limit, as its name suggests, represents the most
extreme limit which must not be exceeded under any circumstances otherwise it would lead to
engine’s misbehaviour. The borderline limit, for its part, constitutes more a kind of design ambition;
in other words it is wanted to remain under this limit as much as possible but in case of excess, the
integrity of the engine is not put at risk while the values stay lower than the critical limit. The
elaboration of these limits is based on the principle of oil consumption (detailed in the section
2.3.1.), and consequently on the physical properties of the piston rings. Actually, according to the
report “Analysis of Distortions of Cylinders and Conformability of Position Rings” written by
Dunaevsky, it is feasible to obtain these limits, at least the critical ones, from the following formula:

16 ? () CZECH
DAF Py reomen,
A PACCAR COMPANY \ IN PRAGUE

152078
Y ht3E.(w?—1)

To ensure the proper understanding of the previous expression, it is required to enumerate the
name of the several entities involved in the definition of the bore distortion limit A4,,. That way, the
variable Q stands for the piston ring tension, the r for the piston ring radius, the t for the piston ring
thickness, E for its Young’s modulus, h for its height and finally w stands for the distortion order,
such as the ones depicted in the previous section.

DAFE z T
— /\J\ ey

A PACCAR COMPANY

5. Definition of the operating mode

Once the context around this project was clarified, that meant after having pointed out the
expectations behind the development of the program, but also after having completed all the
bibliography research, notably the one about the Fourier transform, it was necessary to focus on a
theoretical approach to execute the bore distortion analysis.

5.1. Selection of the input data

The reading of the previous section about the Fourier analysis easily affords to bring to the fore
the type of information needed to be extracted from Abaqus. Actually, as the Fourier transform will
be applied to the radial displacements of the nodes, it sounds obvious to work with the equivalent
variable within Abaqus, which is the U1 variable when the user coordinates system is defined as a
cylindrical one, centred on a liner. However, the Fourier transform may be correctly implemented
only if the nodes are gathered by height, as explained in the paragraph 4.1. Hence, it is essential to
find a way to refer to the nodes’ coordinates in order to sort them. Finally, as the bore distortion
analysis also consists of returning the liners’ walls temperature, it was also required to retrieve the
variable NT11 corresponding to the nodes’ temperature in Abaqus.

5.2. Use of an external Python interpreter

At this moment of the project, it is relevant to remind that the main ambition of the program
was to offer a visual overview of the bore distortion analysis through a set of graphs displaying the
various entities defined in the requirements specification section. Consequently, after having
identified the variables to be exploited, it was required to figure out a method to return the data
under a graphic shape, and this from the Python console made available by Abaqus, as initially
planned. The consideration of this issue has led to a couple of conclusions. On one hand, it turns out
that Abaqus disposes of a few functionalities enabling to display some graphs, however these
methods are truly specific and hence cannot satisfy the freedom demanded by the expectations of
the project. Before explaining the matter of the second conclusion, it is significant to declare that,
within Python, it exists a few libraries (a kind of program extension affording Python to carry out
some additional tasks), whose the mission is to generate charts, the most famous is called matplotlib.
In that respect, the second remark lies in the fact that the Python console provided by Abaqus is
deprived of such a library, which makes impossible the generation of graph through it. From there,
three options had emerged. The first one consisted of modifying the internal structure of Abaqus in
order to embed a new functionality displaying the type of graph wished. This solution was
immediately forgotten notably due to its complexity. The second solution, a little bit easier, was
about installing a matplotlib library within the Abaqus’ Python console. Unfortunately, after several
attempts and after a discussion with the assistance service of SIMULIA, which is the group having
implemented Abaqus, it appeared that such an update was not possible, for sake of software
protection. Therefore, the last option, which will be the retained one, lied in calling an external
Python interpreter in order to carry out all the applications of the program.

18 ? () CZECH
DAF Py reomen,
A PACCAR COMPANY \ IN PRAGUE

5.3. Retained method

As the choice of using an external Python interpreter was inevitable, it was necessary to figure
out a solution to extract the pieces of information, depicted in the paragraph 5.1, from Abaqus to the
external Python interpreter, in order to ensure the proper operation of the program. Fortunately, as
Abaqus is a well-developed CAE software, it is possible, by using some functionalities available within
its interface, to save some data inside text files. Therefore by means of this process, it is feasible to
generate, in a dedicated workspace, a set of files containing all the pieces of data needed to
complete the bore distortion analysis, and this for any configuration of study. In this way, as a Python
console offers the opportunity to read and exploit such files, it has been decided to base the
operation of this module on a two stages process consisting of firstly generating the text files from
Abaqus, for purposes of, in a second time, importing and exploiting them into the Python interpreter.

5.4. Levels of design

Even if the program might be considered as fully operational once the script would dispose of a
function for each ambition described in the section 3 of this report, it appeared that in its conception
it was feasible to define several design levels. Indeed throughout the project, as soon as the coarse
script was edited, it was decided to focus on a way to refine as much as possible the final outcome.
That way, the idea to do so, was to clearly distinguish small improvement steps, and then try to roll
them out one by one, until being unable to do better, in order to obtain the most optimized version.
Before detailing more accurately the different levels, it is relevant to specify that most of these
grades are based on observations appeared during the development of the program, however, they
are included within this part, for sake of clarity.

5.4.1. Firstdesign level

From the various statements outlined within this section, it is admissible to declare that the first
conception level merely consisted of writing a Python script achieving all the expectations raised by
the project and this in a proper way. Hence, at this design stage, it was possible to display all the
pieces of information about the bore distortion analysis by simply calling a few methods through the
Python console (in other terms by typing the name of the method with all its parameters).

5.4.2. Second design level

The first upgrade which has been considered was to set up a graphical interface in order to ease
all the interactions with the program, including the definition of the studied configuration but also
the calling of the various functions. Incidentally, it is significant to mention that what is called
“configuration” merely represents a set of information which gathers the name of the engine to be
analysed, but also the cylinder, the loading case (usually called “step”) and potentially a specific
cylinder section (defined from a height from its top). From there, the idea was to define this
configuration by using an indexing system, with which every entity (cylinder, step, or height) is
connected to an index (positive integer). Moreover, as depicted above in this paragraph, this
interface must afford a quick access to the various methods conceived earlier in the program
development. Therefore the retained solution to achieve such a request was to implement a series of
buttons referring to each of the applications.

19 ? () CZECH
DAF Py reomen,
A PACCAR COMPANY \ IN PRAGUE

5.4.3. Third design level

This improvement is about the generation of the reports made from Abaqus. Actually, so far, the
creation of these files had required the intervention of the user. Nevertheless, as the process to
obtain the files for every potential configuration is long and laborious, it appeared quite natural that
the next design amelioration lied in the automation of this procedure. Therefore the idea was to find
a way to generate these files automatically from a Python script, which would be run within Abaqus.

5.4.4. Fourth design level

After having created a script enabling to generate the different data reports, it was natural, once
again, to think about the implementation of a graphical interface providing a direct interaction with
all the functions set up within the generation script, and this through Abaqus.

5.4.5. Fifth design level

The ultimate design level consisted of finding a way to bind the two distinct interfaces in order to
have one entity program. Indeed, the idea was to figure out a method to launch the program
interface from the generation files interface popped up within Abaqus, by simply clicking on a
button, and moreover without manually opening the external Python interpreter.

DAF 20 D T
A PACCAR COMPANY \w ; :.lNNL\aEA%SJ;v

6. Program conception

After having presented the theoretical approach of the program, it is now essential to look at the
technical aspect induced by such a work. This section has been introduced within this report for
purposes of clearly describing and justifying every design step and choice which has been made
throughout the conception process. Hence, the following content will afford to better understand
the objectives and the achievements of the different scripts involved in the program, and this
without explaining the Python code line by line. Finally, the section will be organized according to
these Python scripts, for the sake of clarity. Moreover, it is crucial to add that the Python script will
be attached to this report in the appendix section.

6.1. BoreDistortion_Analysis_V7

This script constitutes the most important part of the entire program, because it gathers all the
bore distortion analysis, which represents a huge portion of the demanded task. Henceforth, it is
truly relevant to carefully dissect this Python code in order to explain in detail all the considerations
behind the development of this script.

6.1.1. Script evolution

First of all, it is relevant to underline that the script which will be detailed in the following
sections constitutes the most optimized version. However, it seems essential to introduce all the
intermediary stages having led to this outcome. Indeed, even if the method, which has been defined
from the project requirements, remains significantly the same from a version to another, the
difference between two versions lies in the inclusion of problems appeared during the development
of the previous version. That way by resolving these problems, related to automatization issues or to
files layout issues for instance, it was possible to reach the most suitable version of the script.

6.1.1.1. First version

The first variant consisted of returning all the points defined in the requirements specification for
one specific configuration, but in a coarse way. Indeed, in this version, there were no functions, the
computations were executed consecutively; moreover everything was done for one data file,
imported at the beginning of the script.

6.1.1.2. Second version

From that point, the next natural upgrade was to adapt the previous code to any configuration in
order to expand the analysis to the whole of files. This ambition implied to organize the script by
implementing various functions whose the main purpose was to return the different methods for a
specific configuration defined from a set of parameters given as input, such as the name of the
engine, the considered cylinder and the studied step, for instance.

6.1.1.3. Third version

Even if the second version of the program was perfectly working, a third variant had to be
introduced in order to take into account the temperature analysis described in the paragraph 3.2.3.
Furthermore, it is important to specify that, at this time, the temperature analysis was embedded to

CIECH

TECHNICAL
UNIVERSITY
IN PRAGUE

D /A - 2

e ——
A PACCAR COMPANY

the BoreDistortion_Analysis script, and it was only during the development of the sixth version that
this part of the project was disconnected from the original file and then implemented in an
independent script, notably for purposes of clarifying and distinguishing each different part of the
project.

6.1.1.4. Fourth and fifth version

The third draft of the program was originally supposed to be final one. So from that statement,
the next thing to do, before starting thinking about the graphical interfaces, was to validate the
method, notably the Fourier transform. Actually, the first Fourier transform implemented was the
one provided by a Python library and had to be checked once the entire script achieved. But it
appeared, by comparing the results coming out of the program and those showed in a report written
by AVL (obviously concerning the same model), that the Fourier transform within the program was
obsolete. After several modifying attempts and two new versions, the good Fourier transform has
been properly implemented in the program.

6.1.1.5. Sixth version

First of all, it is the ability of Abaqus to refer to its functionalities by means of Python command
lines which initiated the elaboration of an automatic way to edit the reports. Effectively, the original
ambition was to write a new Python script whose the mission would have been to produce all the
required files once run within Abaqus’ Python console. At this moment of the project, the last
functioning edition of the program based its operation on a set of text files, generated from the
Abaqus’ interface, which gathered, on the same document, both the coordinates and the adequate
parameter (radial displacement or temperature) of all the nodes located on the liners’ inner surfaces.
Unfortunately, it turned out that this method is one of the rare ones which does not have an
equivalent in terms of Python command line. Then it was necessary to find a new process to edit the
data reports. Nevertheless, the retrieval of nodes’ coordinates being indispensable to the
achievement of bore distortion analysis and the previous method being the only way to obtain these
coordinates, the automatic generation of files has been reduced to a semi-automatic one. Actually,
this new generative routine is based on a first files edition, manually accomplished, in order to create
a few documents containing the coordinates of nodes for the different engine liners. It is relevant to
specify that these coordinates are definitive, and do not require to be re-edited at each files
generation, except in case of new engine or new mesh. Then it was feasible to build a Python script
which will automatically generate the set of reports containing the missing information, in other
terms the values of radial displacements or the temperature of nodes. Therefore, as the structure of
the new reports differed from the previous ones, it was mandatory to develop a new variant of the
program in order to adjust to these modifications.

Furthermore, for purposes of dealing with different models, a new parameter appeared during
the development of the sixth version, whose the main interest is to select the folder where the files
are stowed in.

6.1.1.6. Seventh version

The last version of the program did not involve a large amount of modifications and simply
consisted of figuring out a way to compare the various results, obtained from the previous functions,

22 ?) CZECH
DAF Pl izamen,
A PACCAR COMPANY \ IN PRAGUE

for two distinct engines, or at least two different models, in order to make a judgement about
potential improvements regarding changes within the Abaqus models. Indeed, the analysis carried
out by the program may only be complete if this last one affords to have a clear view on outcomes
coming from two different models, for purposes of progressively reaching the most sustainable
solution.

6.1.2. Data processing

6.1.2.1. Coordinates retrieval

The type of the files lightly mentioned in the previous sections is not directly exploitable by
Python, notably due to the presence of undesired terms (symbols, words, etc.) and also useless data.
Hence, in order to be able to use the data within the program, it was required to firstly remove every
parasitic expression and then extract the values which constitute a genuine interest for this project.
These points have been carried out through the functions “extract coordinates” and
“extract_def data” in the script BoreDistortion _Analysis V7, one working on coordinates and the
other on radial displacements. The first technique implemented to achieve this task relies on the use
of the "replace” function, changing any disturbing terms by an “empty string”; the second one is
based on a browsing and locating method (implemented by “for” loops and some “if” conditions)
which consists of going through the file, then stowing the position of key terms into an index variable
and finally reorganizing the data by extraction around these index.

6.1.2.2. Values distribution

It exists, as it is slightly described in the paragraph 6.1.1.5, two types of input files, one gathering
the X, Y, Z coordinates of the considered liner, the other one grouping together either the radial
displacements of the nodes or their temperature (in this case these files are about radial
displacements). From that comment, it was necessary for both types of file, first and foremost to
retrieve these pieces of information and secondly to hand out these values towards several lists
specifically made to contain only one sort of data, meaning one list containing the X coordinates,
another one the Y coordinates and so on. This stage has been introduced thanks to the functions
“split_coordinates” and “extract_radial_def” by the use of a browsing and distributing method.
Indeed, by observing the files produced by Abaqus, it was really easy to deduce the sequence
employed by the report to organize the values. Then, by means of a “while” loop it was possible to
primarily go through the entire file term by term and in a later step, by knowing the index of the
picked out element and hence knowing its nature, to send the value in the appropriate list.

6.1.2.3. Data sorting

At the beginning of the script development, the files were supposed to be sorted and organized
according to the height from the top of the liner to the bottom (or the opposite, what was expected
was a logical classification). But the reality was completely different. Indeed, the values were
following the nodes numbers which did not correspond with any convenient arrangement (the values
were not gathered by height and they were spread into the document). From that conclusion, it was
fundamental to manually sort these values according to their Z coordinates, in order to ease the
achievement of the future functions. However, that was not the only issue which had to be solved. In
fact, it appeared during the implementation of this method, that the Z coordinate of certain nodes,

23 ? () CZECH
DAF Py reomen,
A PACCAR COMPANY \ IN PRAGUE

which were supposed to be on the level, could differ a few (for instance a node may be located at an
altitude of -16.1202 mm and another one at -16.1199 mm). Taking into account all these remarks,
three functions have been created (“split_height”, “gather_height”, “sort_height”) for purposes of
respectively scattering the nodes according to their height, then getting together the nodes whose
their height was approximately identical, and finally reorganizing all the lists with respect to the Z

coordinates, from the top to the bottom.
6.1.3. Data applications

Once the coarse data, obtained from Abaqus, was refined by the methods described previously
(that means the creation of the reorganized lists), it was possible to implement the functions having
as objective to return all the requirements defined during the conception of the project plan.

6.1.3.1. Definition of paths

First of all, in order to ensure a proper understanding of this section it is important to explain
what a “path” is. In this project, a path is considered as a succession of nodes along the inner
periphery of the liner at a given height from the liner’s top. Moreover because one of the project
ambitions is to return the radial displacement along these paths, it was mandatory to find a way to
produce these elements. So finally, by drawing from the definition, the idea was to characterize each
node of the path by an angle going from 0 to 2m radians (or by a distance along the perimeter which
implies to multiply the angle by the radius).

From this statement and from the coordinates, especially X and Y coordinates, it was feasible to
design a function which returns an angle. Indeed, by definition of the tangent function, it is possible
to express the angle as the arctangent of the ratio ordinate over abscissa (cf. the function “Angle”).
Lastly, a function “create_angle_list” has been created in order to simply apply the previous method
to the whole X and Y coordinates and that way to obtain a complete and sorted angle list.

0.002 A

0.000 A

—0.002 4

—0.004 A

—0.006 -

Radial deformation [mm]

—0.008 +

—0.010 4

0 50 100 150 200 250 300 350
Angular position [deg]
Figure 4 : Outcome of the application "plot_path"

24 ? () CZECH
DAF Ro@s e,
A PACCAR COMPANY \ IN PRAGUE

Therefore, for purposes of satisfying the objective behind this part, which was about plotting the
radial displacement of nodes along a path defined at a certain height, the function “plot_path” was
established. The operation of this function is quite simple. Actually, this function will simply create
both angle and radial displacement lists for the configuration specified through the various
parameters. Then with respect to the height entered as input, the function will extract all the values
related to this height, for finally return them in the form of a graph.

6.1.3.2. Generation of deformed profile

This part of the project did not raise too much issues notably due to its similarity with the
function working on the radial distortions along a path. However, the main modification with respect
to the previous method was the change of the graph’s coordinates system. Indeed, this time the
radial distortions are no longer plotted along a path in a Cartesian coordinates system but around an
axis in a cylindrical coordinates system. Hence, this new graphical representation induced to embed
some points to the last method. That way, in addition to the creation of both angle and radial
displacement lists for the specified configuration, a new list is created in which the real liner’s radius
is computed. This entity represents the sum of the liner’s initial radius with the multiplication of a
scale factor and the radial displacement of the considered point. It is essential to underline that the
scale factor has been introduced for purposes of making the deformations more visual, deformations
which are a few tens of micrometres big. All these elements may be illustrated under a Python form
in the function “plot_def profile”.

— - onginal profile
deformed profile

45

180°

270¢

Figure 5 : Outcome of the application "plot_def profile"

25 ? () CZECH
DAF Py reomen,
A PACCAR COMPANY \ IN PRAGUE

To conclude with this section, it is required to state that the function “plot_def _profile” relies on
another function called “plot_initial_profile”, which tends, as its name indicates, to plot the
undisturbed liner’s profile, in order to have a quick graphical comparison between the loaded liner
and the intact one (which is provided by the superposition of the two graphs on the same figure).

6.1.3.3. Build of Fourier transform

The construction of a method computing the Fourier coefficients, based on the theory developed
in the section 4, constituted the milestone of this project. Indeed, many requirements defined in the
preamble of this assignment demanded a good computation of these coefficients. At this time of the
work, several options could be executed, two options to be more accurate. The first one implied the
use of a Fast Fourier Transform, which is an already implemented Fourier transform available in a
Python library. The other one counted on the manual build of the Fourier Transform by using a sum
of exponentials. Therefore from that point, the ambition was to firstly select one of these possibilities
and then to check the accuracy of the results. To do so, a report written by AVL with regards to a
complete study of the MX11 engine has been provided. In this report, an entire section has been
dedicated to the bore distortion analysis, carried out from a certain model, which has been also
supplied with the report. Thus the validation process consisted of writing two functions, each of
them employing a different method in terms of Fourier Transform, to secondly apply them to a set of
data files corresponding to the cases studied by AVL. That way, it was possible to compare the
several samples of Fourier coefficients returned by the different functions with those showed in the
report. At the sight of the results, it was feasible to take note of two things; on one hand the results
returned by the two functions did not converge towards the same values, and on the other hand,
these values were completely away from the ones described in the report. From these observations,
it was decided, on one side, to focus only on the hand-built function, meaning without the Fast
Fourier Transform which had the disadvantage not to be adaptable, and on the other side, to define
a validation method to align the outcomes of this function towards the correct values (which were
supposed to be the ones illustrated in the AVL report).

The validation attempt has been based on the idea to consider the problem in an opposite
direction. In other terms, this time the Fourier coefficients were not viewed as an expected output
but as a problem input. Actually, the plan consisted of rebuilding a deformed circle (equivalent to a
deformed liner’s profile at a certain height) from the Fourier coefficients, to, in a second time, apply
the Fourier Transform method to the data list related to the freshly rebuilt profile, to finally conclude
with a comparison between the Fourier coefficients introduced as input and the ones returned by
the computational function.

The first stage of this plan required to implement a method employing the reverse Fourier
Transform for purposes of determining the values of radial displacements from Fourier coefficients
and dephasing angles. According to the section 4, it exists two expressions to carry out such a thing:

Xp = F.[k]. cos(k.0,, + @[k])

Or

DAFE 2 R Tt
A PACCAR COMPANY \ ; :JNNL\;?;SJ;Y

Xn =) Fc[k].exp[j.(k. 6, + @[k])]

In these mathematical formulas, F. and ¢ represent respectively the Fourier coefficients and
the dephasing angles whereas 6,, constitutes a list of angles arbitrarily created in order to simulate
the distribution of the nodes along the periphery of the liner. Of course, the entire verification
process depended on the proper elaboration of this reverse Fourier transform, which naturally
implied to approve the construction of this method. In that respect, the calibration of the function
was made by relying on the theory depicted in the section 4 of this report. Actually, by knowing the
shape of the returned profile when only one Fourier coefficient is set to a non-null value and all the
others to 0, what is described on the figure 3, it was possible to converge both methods to the
correct form.

Once these two methods fully approved, it was necessary to resume the Fourier Transform
developed at the beginning of this section in order to apply it to the radial displacement lists freshly
computed. Finally, the comparison between the coefficients entered as inputs and the ones obtained
by computations has afforded to reach two working configurations. Indeed, it appeared that if the
method used to compute the radial displacements relies on a sum of exponentials then the
respective Fourier Transform must work with a sum of exponentials without any multiplying factor;
whereas if the sum of cosines is chosen, then the Fourier Transform must also use a sum of
exponentials but this time with a factor 2 in front of the sum. The addition of a factor 2 within the
second method may be explained by the lack of sine terms in the sum. Indeed, originally the Fourier
Transform, forward or backward, is created from complex exponential, gathering by definition a real
cosine and a sine attached to the imaginary part. However in this case, as the signal is purely real, the
imaginary terms (coefficients in front of the sine) are truly close to zero and that way can be
neglected. That is why, the second method, using only the sum of cosine, converges towards the
good graphical solution as well. Nevertheless, as the sum of cosine constitutes only half of the
information, the method requires a factor 2 in order to compensate this lack of data.

As the two possibilities are correct, it has been retained to use the method using the sum of
cosine, notably because this expression is often employed in bore distortion computation.

Just before ending with the section about the elaboration of a Fourier Transform, it is important
to underline that despite the truthfulness of the selected method, which according to the check
process returned the good results, it still remained a divergence between the outcomes depicted by
the AVL report and those coming from the program. Indeed, the genuine results, the ones from AVL,
seemed to be approximately twice bigger than the computed outcomes. As the Fourier Transform
was no longer a potential reason to explain this divergence, it was mandatory to keep working on the
rest of the project.

6.1.3.4. Application of Fourier transform

In accordance with the requirements specification defined at the preamble of the project, two
outputs of the program are demanding the application of Fourier Transform.

The first one, achieved by the function called “plot_distortion_graph”, ensues from the ambition
to compare the diametrical distortion values, from the second order harmonic to the eighth, with

DAFE 27 R Tt
A PACCAR COMPANY \ ; :JNNL\;?;SJ;Y

some boundary limits, a borderline limit and a critical one. That way, the main purpose of this
method is to graphically check if the values always remain inferior to the borderline limit or at least
inferior to the critical limit which defines the maximal tolerated values. The computation of these
diametrical distortions will be carried out for a specific configuration, defined by an engine, a
cylinder, a step, a height and a folder. It is also significant to underline that initially the unit of these
elements was the millimetre but it was decided to convert them into micrometres, for the sake of
clarity. However, the problem raised during the development of this method was the definition of
the diametrical distortions. Actually, at the beginning, this element was considered to be a Fourier
coefficient, but it appeared, as slightly described in the previous section, the results obtained were
lower than the targeted ones, more or less twice lower. After the rereading of all the documents
retained during the bibliographical research, a potential justification has made its appearance.
Indeed, within a SAE report, a new parameter, called Uy,4x , is mentioned and is defined as two
times the Fourier coefficient. From that discovery, it was decided to ask the people who wrote the
AVL report if that was the reason of the results divergence. Finally, they confirmed this hypothesis
and explained that the Fourier coefficient describes the radial distortion whereas the graph is about
the diametrical distortion, so two times the Fourier coefficients. Once this consideration taken into

account, both of the outcomes finally converge towards approximately the same value.

—Crtical kit

order J order 3 order 4) order 7 orger 8
Critical bmit [um| 92 19.08

Border kne benit [um) %0 130

Diarmetral distorton [um) 4D 0924543502 M4.6%70077 300 1013107

Figure 6 : Outcome of the application "plot_distortion_graph"

The second method essentially draws from the structure implemented in the
“plot_distortion_graph” function with only the form of the output as difference. In fact, unlike the
previous function which has to be told about the considered height before computing its Fourier
coefficients, this application will carry out the computations for the entire liner. That way, this
method aims to return the diametrical distortions from the second order harmonic to the eighth and
this for every height composing the liner. The mechanism behind this function is simply based on the
successive computations of Fourier coefficients which will be in a second time distributed into
several lists containing only the values for one specific harmonic order. To conclude with this
function, it is relevant to indicate that this method affords a global view of the diametrical distortion
analysis (for one engine, one cylinder and one step), unfortunately at the expense of a calculation
time quite significant.

DAFE 2 T
JYF

i —— | UNIVEHSITY
IN PRAGUE
A PACCAR COMPANY

Ovder 1

h (o0

200

100

200 {

Dwmatial dintortion

Lum

Figure 7 : Outcome of the application "plot_distortion_by_order"

Order 2

S

trametral darnnsen |um|

Order 0
|
|
|
|
!
|
|
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
]
|

i] |

ametral @stortion |pm)

Order 3

L i
wmets s distertion [n

Oeder 7

)]
MNamete s distortion |jam |

%0

20

150

Order 4

tornion fum)

Order &

Dipnettal distortion (ur

Thus, the best way to carry out a complete bore distortion analysis could be to firstly display the
diametrical distortions for the entire liner, thanks to the function “plot_distortion_by_order” and by
doing so to spot the most critical cases, in order to, in a second phase, analyse these situations more

precisely with the function “plot_distortion_graph”.

6.1.3.5.

Creation of liner’s deformed shape

As the function built in the section 6.1.3.2 already affords to have an overview of the liner

deformations, the last aspect the script had to deal with, was about finding a new way to describe

the shape of the loaded liner. The retained approach lied in considering the radial deformations not

along a circular path but this time along the Z-axis, which corresponds to the virtual cut as illustrated

in the figure below.

D /A -

e ——
A PACCAR COMPANY

29

o
R

CZECH
TECHNICAL
UNIVERSITY
IN PRAGUE

Radial distortion

Liner's circular profile

Modes

Liner profile

£ axis

Figure 8 : Summary schema of the radial distortion along the Z axis

Nevertheless, the achievement of such an application required a preliminary stage. Indeed,
as it would have been really laborious to return every deformed profile located all around the Z axis,
it was mandatory to edit a method aiming to select only a few cases. The process retained to do so
relied on the method previously developed which afforded to generate an angle list from the X and Y
coordinates. That way, by creating this list, and hence by knowing the angular position of each node,
it was possible to identify all the nodes located at a certain angle. Finally, it was agreed to focus the
study on all angles from 0 degrees to 325 degrees with a 45 degrees increment between each of
them. This selection process is carried out by the function called “select_angle” within the script
BoreDistortion_Analysis_V7.

Argle 180 Ange Angle 225 Anghe 495

him

Figure 9 : Outcome of the application "plot_cut_profile"

e ——
A PACCAR COMPANY

DAFE 30 =
ks

CZECH
TECHNICAL
UNIVERSITY
IN PRAGUE

Once this auxiliary function created, it was possible to concentrate on the elaboration of the
application itself, called “plot_cut_profile”. Indeed, thanks to the previous method, the radial
displacements of the nodes defined by the sample angles (angles described in the previous
paragraph) may be extracted and subsequently distributed in different lists associated with a specific
angle value. Obviously, this calculation routine must be executed for every height of the liner in order
to obtain the radial distortions all along the Z axis. From there, it is only needed to generate the
various charts resulting from these data lists.

6.2. Temperature_Analysis

Originally embedded within the BoreDistortion_Analysis script, it was decided during the
elaboration of the sixth program version to work on the temperature analysis through an
independent file, for sake of clarity. Ergo, this aspect of the project has been achieved in a script,
structurally similar to the previous one but yet with a few divergences at some points.

6.2.1. Data processing

As for the bore distortion analysis program, before going forward in the genuine application, it is
required to work on the data itself. Once again, as for the previous method, the data needed to
follow the same three stages process consisting of values extraction, values distribution and finally
values sorting, before being fully exploitable by the coming application. However, the values
extraction stage of the temperature analysis slightly differed from the former script. Actually, the
thermal study expected in this project must not only focus on the temperature of liner’s nodes but
also on the temperature of the fire ring’s nodes. Therefore this inclusion of new nodes within the
files edited by Abaqus required to modify the method extracting the values from these files, notably
due to a change of length but also due to the presence of new parasitic expressions.

6.2.2. Application

The only application of this thermal section, called “plot_wall_temperature_complete”, consists
of displaying the temperature of liner’s wall throughout the Z axis. Such a request raised issues
already encountered in the part related to the method plotting the radial displacements along the Z-
axis, and hence was treated the exact same way than the previous function. Firstly, as mentioned in
the section 6.1.3.5, working along the Z-axis requires to retain only a few cases in order to save time
and memory space, a problem which can be overcome by using the function “select_angle” created
earlier in the project. Then, as in the application “plot_cut_profile”, some pieces of information will
be extracted thanks to the angle selection method, obviously this time it is about temperature
values. Finally, this process will be once again repeated for each of the liner and fire ring heights in
order to produce all the data lists, and hence to return the expected graphs.

31 ? () CZECH
DAF Pl izamen,
A PACCAR COMPANY \ IN PRAGUE

o poAEce | e

100

Liner
Lirer)

Liner)

Angle 0 Angle 45 Angle 90 Angle 135
L Lner | - 04 Lirw . s Lwwrd
r\ Uner 2 ..-‘ w Lirer .,p" - Liner
‘ Unar 3w Lner 3 | v
Teax « 2300 %0 Troax = 260 e o max « 2460
100 & 100 4
£ 8
. | { | 8
. 1% 190 4
> : s k ;
" o o® "
| £
200 00
|
0 20 é
160 e 200] 129 LI R (2 % I 120 140 80 1m0 300 40 12 150 |)
Tamperatine |*C) Temperatine [°C) Tomparature [*C) Tamnpurature
Angle 180 Angle 22% Angle 270 Anghe 319
¥ YLl (ner | L . Lrar) -~ Liner)
e 3 / R e ~ (T o L
e) > Inr /’ Lner)
Tias w0 %0 - Tmax = 2340 80 4 - THine = 205.0 %
100 106 { 1O
4
. -)
" =150 190 4 ‘\‘ y -1
- "‘ 0 N F P " . :'&
» .
2%0 290 4)

a0

100 200 440 o 160 o

Temparatne |°C)

ine 1 100 o a0 160

Taimperature | *C)
Figure 10 : Outcome of the application "plot_wall_temperature_complete"

6.3. Files generation program

The achievement of the main applications, carried out throughout the two previous scripts, has
afforded to focus on the third level ambition of this project which consisted of generating the files in
a way as automatic as possible. Indeed, the files generation, which was until that moment still
manual, had to be rebuilt in such a way that the future user would have the least handlings to do.
Before going forward in the explanation, it is significant to say that two files are involved in this
section, one generating the files for the temperature analysis and the other for the radial distortion
analysis.

6.3.1. Operational section

The development of this script was possible essentially thanks to the “Macro” functionality of
Abaqus. Actually, this process affords to translate any action done from the Abaqus interface into its
equivalent Python code. By relying on this method, it was feasible to manually carry out the entire
process, leading to the generation of the files and this through the Abaqus window, and hence in a
second time to obtain the analogous Python code. The process mentioned above consists of, first of
all, isolating one of the liners in the viewport, afterwards, creating a cylindrical coordinates system
for the selected liner (either located at the Fire ring shoulder for radial distortion analysis, or at the
liner’s top for the temperature analysis). From that point, a display group containing all the nodes of
the liner’s inner surface has to be established. Then this display group has to be isolated within the
viewport, due to the fact that the FieldOutput report method, which will be used to generate the

32

Turnpar wire [

D /A -

e ——
A PACCAR COMPANY

fa

- w'g
Liner i-'/. ,

Trhax » 257.00

209

Tmaex

;.‘;n 220
|

CZECH
TECHNICAL
UNIVERSITY
IN PRAGUE

| P

files, works on the active view (that implies if the display group is not isolated, the report will be
written for the entire liner). Finally, as slightly explained previously, a report concerning either the
radial displacement along the first axis of the early defined coordinates system or concerning the
temperature is edited. The repeat of this process for every liner affords to obtain all the Python code
required to implement the files generation functions. Thus, after having removed the useless pieces
of information (related to viewport manipulation for instance) and also after having modified some
details within the code lines, it was possible to produce four functions, two about the radial
distortion analysis for both MX11 and MX13 engines, and two others about temperature for the
same engines.

6.3.2. Various upgrades

Despite the proper operation of original functions described in the previous section, some ideas
of potential improvements appeared after a few thoughts. So in order to optimize as much as
possible the program, it was decided to execute these suggestions.

6.3.2.1. Mode of generation

Throughout the check routine of the previous code, it was observed that the files generation for
the entire set of configurations (in other terms for every step) was taking some time, about a few
tens of seconds. Moreover, some of these steps do not offer a great interest within the analysis (for
instance the step “Cold engine” for the thermal analysis to only mention that one) or may be
redundant with respect to others. In that way, it was chosen to implement a manual way of
generating the files which will afford the user to select only the cylinders and steps he wants to look
into. However, it is quite relevant to underline that the files once generated are saved in a
permanent way, there is no need to create them every time, that is why it could be better to
generate all the files once and for all, despite the pointlessness of some. Nevertheless, the point
behind this adaptation lied in giving the opportunity to the user to generate the files as he wants to.

6.3.2.2. Model folder handling

It was known at this moment that the program should be able to work for two engines described
from several Abaqus models. Such a statement induced to find a way to dissociate the files with
respect to the model used to generate them, in order to avoid any misguided removal for instance.
Two methods were identified as a solution to this problem. The first one was about distinguishing the
files from their name, by adding a reference in it and this in the main generator function. But this
solution would have induced the addition to several “if” conditions within the function’s body. The
second solution, the one retained, consisted of creating a folder, within the workspace, for each
model, and hence saving the files inside the good folder. This solution has been implemented notably
because it was the simplest one, but also the cleanest in terms of files storage.

6.4. Graphical interfaces

The main purpose of graphical interfaces is about providing a clear and direct access to the
several applications gathered within the program, by simply clicking on a button instead of entering a
complex call line in the Python interpreter. In that way, it was necessary to develop a graphical
interface for each Python script demanding an interaction with the user.

33 ? () CZECH
DAF Pl izamen,
A PACCAR COMPANY \ IN PRAGUE

6.4.1. Program interface

The first interface to be achieved is bound to the main body of the program, and because of that
must afford to fully exploit all the applications executed within the equivalent Python script, and this
in the simplest possible way. From there, the mission was about handling various functionalities
made available by a Python library in charge of producing graphical interfaces, called “Tkinter”, in
order to provide the most convenient interface in terms of settings and access to applications. In that
respect, it has been decided to select both engine and folder name via a drop-down list, these
entities having the main advantage to only show the existing cases. As the other parameters
constituting the rest of the configuration, which means the selection of cylinder, step and height, are
based on an indexing system (positive integer), it appeared quite natural to refer to them by using
integer inputs which are basically blank boxes inside which the user may enter the number he wants.
Finally, once the setting part achieved, it has been chosen to merely access the different applications
implemented in both BoreDistortion _Analysis and Temperature_Analysis scripts, through a set of
buttons.

4 =k
Liner Distortion and Thermal Analysis

Engine Folder
Mx1l — j03_03-5T_maxBL_WE-CE_SC_NO-lin —l‘
Cylinder Step Height

1 3 1|

Plot radial distortion along a path | Plot deformed profile |

Plot deformed profile from Fourier coefficients ‘

Plot axial position with respect to diametrical distortion ‘

Plot diametrical distortion with respect to harmonic order

Plot axial position with respect to radial distortion |

Plot wall temperature (all angles) | Plot wall temperature (ocne angle) ‘

Comparison method

Delete figures

Figure 11 : Preview of the program's main interface

]
IN PRAGUE
A PACCAR COMPANY

DA ” Pl i
<

g (ot e p———)

P e

Liner Disiortion and Therm;al Analysis

Engine Folder

MX11 —-Jl j03_03-ST_maxBL_WE-CE_SC_NO-fin —-JI

J03_03-ST_maxBL_WE-CE_SC_NO-lin

Cylinder | j03.03-ST_minBL WE-CE_SC_NO !
o i j03_03-ST_nomBL_WE-CE_SC_NO
e} MX13-MY21-230bar
‘ MX13-MY21-230bar-topfit
Plot radial distortion along a path] Plot deformed profile]

Plot deformed profile from Fourier coefficients I

Figure 12 : Preview of the folder's drop-down list

6.4.2. Files generation interface

Despite the fact that this interface had to be developed with the ambition to be run from
Abaqus, this last one does not differ from the previous one in terms of structure. Actually, once again
the idea behind this interface was about accessing all the methods implemented within the files
generation scripts by means of drop-down lists and buttons. In that way, through these entities, it
will be possible to generate either the distortion files or the temperature files for one specific model,
but also to create an explicative note (cf. the section 6.5) or finally to launch the external Python
interpreter.

*Generate files

Model
Remark : Don't forget
to reset before changing j03_03-ST_maxBL_WE-CE_SC_NO-lin.odb —! | Open |
the model

Engine Mode

Mxi1 — l Automatic —! | Generate distortion files | Generate temperature filesl

Generate explicative notel Launch program |

Figure 13 : Preview of the files generation interface

DAF N Rl e,

IN PRAGUE
A PAGCAR COMPANY

6.4.3. Comparative analysis interface

The graphical interface connected to the comparative analysis of two engines, depicted in the
paragraph 6.1.1.6, does not derogate from the rule of offering a clear and mere access to the
different applications which must be implemented within this section. In fact, this graphical interface
does not differ from the one done for the main program. Indeed, the idea was to reproduce the
same functionalities, but this time with two set of entities (drop-down lists, integer inputs, etc.) to
set up the configurations of both engines (folder, engine, cylinder, step, and height). Moreover, it is
also significant to underline that some applications, initially available within the Program_interface
interface, are not offered by this comparative interface because they are considered as non-relevant
in the frame of the comparative analysis.

Comparison mode

Enginel Engine 2

MX11 —-'| Mx11 —ll

Folder1 Folder 2

J03_03-ST_maxBL_WE-CE_SC_NO-lin — j03_03-ST_maxBL_WE-CE_SC_NO-lin —!

Cylinder1 Height1

Cylinder 2 Height 2

0

Plot radial distortion along a path Plot deformed profile I

Plot deformed profile from Fourier coefficients l

Plot axial position with respect to diametrical distortion |

Plot diametrical distortion with respect to harmonic order |

Plot axial position with respect to radial distortion I

Delete figures I

Figure 14 : Preview of the comparative window

D/~ 36 ‘\2;?2/‘ e
[|| Q UNIVERSITY
A PACCAR COMPANY / \J IN PRAGUE

0.005 4 | | | —— MX13-MY21-230bar
—— MX13-MY21-230bar-topfit

—. 0.000
£
E
c
S
& —0.005 -
E
8
[F
(=]
T —0.010 -
(]
4]
x

—0.015 1

0 50 100 150 200 250 300 350
Angular position [deg]

Figure 15 : Outcome of the plot path comparative application

6.5. Explicative note

The selection of the data set which the several applications have to work with is based on an
indexing system, whether for the liner, the step or the height. Even if the indexing is not a big deal
and remains truly simple, it may be possible that the user struggles to get through, at least during the
first manipulations. Therefore, in order to ensure as much as possible the proper operation of the
program, it was decided to implement an explicative note whose the main purpose is to enumerate
all the steps but also all the heights and then assign to them a corresponding index. To conclude with
this section, it may be relevant to specify that the different steps come from Abaqus models whereas
the heights are extracted from the files gathering the coordinates of the liners’ nodes, that is why
some of the functions defined in the BoreDistortion_Analysis script are also present in the scrip
Explanation_note.

6.6. Link between Pythons

As described in the section 5.2, it was mandatory to execute the program through two different
Python interpreters, the one embedded within Abaqus and an external one. Hence, the final
ambition of the project was about bringing together these two subsections into one single entity. The
idea was then to create a bond between the two interfaces by calling one interface from the other.
Fortunately, it exists a method already implemented in Python (called “subprocess.Popen”) which
affords to open a file from a specific software. However, for purposes of applying this method, it was
necessary to update the Python environment. Indeed, it is important to underline that all Python
interpreters are working with a specific environment, place gathering all the documents related to an

i —— | UNIVEHSITY
\ IN PRAGUE
A PACCAR COMPANY

D/ - ¥ /‘\}f;(?/’g TECHNICAL

interpreter (tools, scripts, etc.), which is different from an interpreter to another. In that respect, the
external Python console cannot be operational if the last active environment is the one in connection
with the Abaqus’ Python console. Consequently, after having redefined the working environment, it
was feasible to apply the method “subprocess.Popen” in order to launch the program interface from
the files generation interface. Nevertheless, even if the technique presented above is enough in the
case of two interpreters using the same version of Python, a problem may occur when the versions
differ (which turns out to be true in this project). In fact, the issue lies in the difference of the TCL
library (library called for the interface generation) between Python 2 (Abaqus) and Python 3 (Canopy,
interpreter used for the project). More precisely, the problem is due to the fact that when the
subprocess method is used to open the second Python, there is a transfer of information between
the two Pythons. That way, the TCL library imported in Abaqus will remain within the external
interpreter, which will pose a problem when Python 3 will be attempting to import the library.
Hence, in order to ensure the good operation of the program, this TCL library has to be reloaded
before running the program interface. Taking into account all these remarks, a Python script called
Bridge_file was executed in order to connect the two parts composing the program.

38 ? () CZECH
DAF Pl izamen,
A PACCAR COMPANY \ IN PRAGUE

Conclusion

After several months of labour it is possible to draw conclusions about the outcomes of this end
of studies’ project. In that respect, a truthful and unbiased review of the final program affords to
establish a contrasted balance-sheet of the additional module. Actually, it appears that the various
applications provided by the main section of the program are perfectly operational and graphically
return all the pieces of information needed to precisely analyse the bore distortion. Nevertheless,
the fundamental defect of the program lies in the generation of files, more specifically in the
automatic generation of files embedded within the module. As a matter of fact, even if the creation
of the files may still be done manually, which represents an effective but quite long process, the self-
generated method implemented in the corresponding graphical interface, yet working and fast,
tends to freeze Abaqus notably because of the amount of reports which has to be edited from it. In
the end, this complication make the automatic generation quite laborious needing sometimes to
restart Abaqus several times to complete the production of the data documents.

After having brought to light the essential drawback of the program in the previous paragraph, it
sounds pretty obvious that the main improvement of the module lies in fluidizing the automatic files’
generation by preventing Abaqus from crashing. However, a quite thorough investigation has led to
the following conclusion that, either this problem cannot be solved or it requires really extensive
knowledge in programming.

Despite the inconvenience depicted above, the program globally performs without any other
problems, and consequently will afford DAF Trucks to execute a correct bore distortion analysis to
their set of engines. In this way, the program designed within this project successfully satisfies all the
requirements expected by the supervisor of this project.

39 ? () CZECH
DAF Pl izamen,
A PACCAR COMPANY \ IN PRAGUE

Bibliography

Name : Analytical and Empirical for Optimization of Cylinder Liner Bore Distortion
Author : Franz Maassen, Franz Koch, Markus Schwaderlapp, Timo Ortjohann, Jurgen Dohmen
Year of publication : 2001

Name : Measurement of Bore Distortion in a Firing Engine
Author : Lawrence E. Bird, Robert M. Gartside
Year of publication : 2002

Name : Application to Engine Development of Friction Analysis by Piston Secondary Motion
Simulation in Consideration of Cylinder Block Bore Distortion

Author : Kenji Sato, Kinya Fujii, Makoto Ito, Shinsuke Koda

Year of publication : 2006

Name : The GOETZE Cylinder Distortion Measurement System and the Possibilities of Reducing
Cylinder Distortions

Author : Klaus Loenne, Ron Ziemba

Year of publication : 1988

Name : Effect of Cylinder Bore Out-of-Roundness on Piston Ring Rotation and Engine Oil Consumption
Author : Eric W. Schneider, Daniel H. Blossfeld, Donald C. Lechman, Robert F. Hill, Richard F. Reising,
John E. Brevick

Year of publication : 1993

Name : Analysis of Cylinder Bore Distortion During Engine Operation
Author : Shizuo Abe, Makoto Suzuki
Year of publication : 1995

Name : DAF MX11 MY2021
Author : Tamas Szabo, Balint Policza
Year of publication : 2017

Name : Analysis of Distortions of Cylinders and Conformability of Position Rings
Author : Dunaevsky
Year of publication : 1990

IN PRAGUE

DAFE a0 ﬂt.gg

i —— | UNIVEHSITY
A PACCAR COMPANY \J

Appendix

BoreDistortion_Analysis_V7 script

import math as m
import os

import numpy as np
import time

dirpath = "C:/Users/A-Damien.Gode/Documents/Distortion
program/Analysis"

os.chdir (dirpath)

In order to properly run the following program, it is needed to put
in the working folder the 6 coordinates documents

As the data extracted from Abaqus are under .txt format, it is
required to reorganize these files in order to make them exploitable by
Python
The following function is made to delete every parasitizing elements
in these files
def extract coordinates (engine,cylinder):
os.chdir (dirpath)
if engine == 'MX11l':

doc=open ('MX11l cyl%s Coordinates.txt'Scylinder, 'r")

doc=doc.read ()

doc=doc.replace ("\n","")

doc=doc.replace ("LIN-1",6"")

doc=doc.split ()

Coor table=[]

index=0

index1=0

for i in range(len(doc)) :

if doc[i]=='Part':
index=1i
if docli]=='"-""">"""""M"""¥""""""""""""——

indexl=1i
Coor_ table=doc[indexl+1:index]
return (Coor table)
if engine == 'MX13':
doc=open ('MX13 cyl%s Coordinates.txt'Scylinder, 'r"')
doc=doc.read ()
doc=doc.replace ("\n","")
doc=doc.replace ("LINER-1","")
doc=doc.split ()

Coor table=[]
index=0
index1=0
for i in range(len(doc)):
if doc[i]=='Part':
index=1

D/ - “ B Teomen
L — < UNIVERSITY
A PACCAR COMPANY / \ IN PRAGUE

indexl=i
Coor table=doc[indexl+1l:index]
return (Coor_ table)

The purpose of this function is to split these values and to stow
them in respective list
def split coordinates(engine,cylinder) :
Coor table=extract coordinates (engine, cylinder)
X coor=[]
Y coor=[]
Z _coor=[]
count=1
X coor.append(float (Coor table[l]))
Y coor.append(float (Coor table[2]))
Z_coor.append(float (Coor table[3]))
while 1+7*count<len (Coor table):
X coor.append(float (Coor table[l+7*count]))
Y coor.append(float (Coor table[2+7*count]))
Z coor.append (float (Coor table[3+7*count]))
count+=1
return (X coor,Y coor,Z coor)

This time as the radial deformations are not gathered under the same
file, it was required to implement two new functions to extract these
deformations
def extract def data(engine,cylinder, step, folder name) :
os.chdir (dirpath+"/%s"%folder name)
doc=open ('%s _cyl%s step%s.txt'%(engine,cylinder,step),'r")
doc=doc.read()
doc=doc.split ()
radial def table=[]
index=0
for i in range(len(doc)):
if docli]=""""———-"—"—""""""""""""""""""""""——~ '
index=1
radial def table=doc[index+l:len (doc)]
return (radial def table)

def extract radial def (engine,cylinder, step, folder name) :
data table=extract def data(engine,cylinder, step, folder name)
radial def=[]
count=1
radial def.append(float(data table[1l]))
while 2*count<len(data table):
radial def.append(float(data table[2*count+1]))
count+=1
return (radial def)

This function is done to return the diameter of engine
def diameter (engine) :
if engine=="MX13"':
diameter=130
if engine=="MX11"':
diameter=123

DAF “ R Tt
A PACCAR COMPANY / \ ; rNN:ﬂ;SJ?

return (diameter)

This function is done to return the coordinates of the cylinder's
center
def center (X coor,Y coor):

center=0

max X=max (X coor)

min X=min (X coor)

max Y=max (Y coor)

min Y=min (Y coor)

center=((max X+min X)/2, (max Y+min Y)/2)

return (center)

simple function to test if a value is in a list
def belong(List,val):
for i in range(len(List)):
if List[i]==val:
return (True)
return (False)

For the proper operation of the following functions and in order to
plot all the graphs, it is mandatory to regroup the nodes by their
height from the top
def split height (engine,cylinder, step) :
Z coor=split coordinates (engine,cylinder) [2]
height=[]
already=1]
ind list=[]
index=0
while index<len(Z coor):
value=7Z coor[index]
if belong(already,value)==True:
index+=1
else:
ind list=[]
for i in range(len(Z coor)):
if 7 coor[i]l==value:
ind list.append (i)
height.append((value,ind list))
already.append (value)
index+=1
return (height)

As some nodes, supposed to be on the same height, have not exactly
the same Z coordinate (0.1 micrometers difference in average), it was
needed to gather them under a same value
That way it was possible to get the same number of nodes for each
height
def gather height (engine,cylinder, step):
height=split height (engine,cylinder, step)
comp val=0
index=0
already=1[]
H=[]
index list=[]
while index<len (height):
comp val=height[index] [0]
if belong(already, round(comp val,1l))==True:

L — UNIVERSITY
IN PRAGUE
A PACCAR COMPANY

DAFE 4 /f.ia%;/
153

index+=1
else:
index list=[]
for 1 in range (index,len (height)):
if round(height[i][0],1)==round(comp val,l):
index list+=height[i][1]
H.append ((comp val,index list))
already.append (round (comp val, 1))
index+=1
return (H)

Then once the previous step done, it was required to reorder all the
list according to the height, from the top to the bottom
def sort height (engine,cylinder, step, folder name) :
height=gather height (engine,cylinder,step)
X coor=split coordinates (engine,cylinder) [0]
Y coor=split coordinates (engine,cylinder) [1]
rad def=extract radial def (engine,cylinder, step, folder name)
New X=T[]
New Y=[]
New Z=[]
New rad disp=[]
height.sort (reverse=True)
for i in range(len (height)):
for j in range(len(height[i][1])):
New X.append (X coorl[height[i][1][]j]])
New Y.append(Y coorl[height[i][1][3j]])
New Z.append(height[i][0])
New rad disp.append(rad def[height[i][1][J]])
return (New X,New Y,New Z,New rad disp)

Function computing an angle from X,Y coordinates
def Angle (X coor,Y coor,center):
if X coor-center[0]>0 and Y coor-center[1]>=0:
theta=m.atan((Y_coor—center[l])/(X_coor—center[O]))
if X coor-center[0]<0 and Y coor-center[1]>=0:
theta= m.pi—abs(m.atan((Yicoor—center[l])/(Xicoor—center[O])))
if X coor-center[0]<0 and Y coor-center[1]<=0:
theta= m.pi+abs(m.atan((Y_coor—center[l])/(X_coor—center[O])))
if X coor-center[0]>0 and Y coor-center[1]<=0:
theta= Z*m.pi—abs(m.atan((Y_coor—center[l])/(X_coor—

center[0])))
if X coor-center[0]==0 and Y coor-center[1]>=0:
theta=m.pi/2
if X coor-center[0]==0 and Y coor-center[1]<=0:

theta=3*m.pi/2
return (theta)

def create angle list(engine,cylinder, step, folder name) :
X coor=sort height (engine, cylinder, step, folder name) [0]
Y coor=sort height (engine, cylinder, step, folder name) [1]
angle list=[]
Center pt=center (X coor,Y coor)
for i in range(len(X coor)):
angle list.append(Angle (X coor[i],Y coor[i],Center pt))
return (angle list)

DAF “ R Tt
A PACCAR COMPANY / \ ; :JNNII"IIREA%SIEY

As the scale factor method, defined below, is based on the sign
change, it was necessary to implement a function spotting the sign

change
def sign change (Data list):
gap_tab=[]

N=len (Data list)
for i in range (N-1):
if Data list[i+l]*Data list[i]<=0:
gap_ tab.append(abs (Data list[i+l]-Data list[i]))
if Data list[-1]*Data 1list[0]<=0:
gap_tab.append (abs (Data list[-1]-Data 1list[0]))
return (gap tab)

As deformations are measured 1in micrometers, it is relevant to set a
scale factor in order to make the difference of shape clearer
def scale factor (engine,cylinder, step, folder name) :
rad disp=sort height (engine,cylinder, step, folder name) [3]
H=gather height (engine,cylinder, step)
n=len (H)
gap list=[]
radius=diameter (engine) /2
boundaryl=0
boundary2=0
for i in range(n):
boundary2+=len (H[i][1])
temp=rad disp[boundaryl:boundary?2]
gap list+=sign change (temp)
boundaryl=boundary?
max_gap=max (gap_ list)
scale fact=int (radius/2/max_gap)
if scale fact>1000:
scale fact=1000
return (scale fact)

import matplotlib.pyplot as plt

import matplotlib

from mpl toolkits.mplot3d import Axes3D

from matplotlib import cm

from matplotlib.ticker import LinearlLocator, FormatStrFormatter

plot the profile of the initial state of the cylinder
def plot initial profile (engine,cylinder, step, index) :
radius=diameter (engine) /2
H=gather height (engine,cylinder, step)
n=len (H[O][1])
theoretical theta=np.linspace(0,2*m.pi,n)
list radius=[radius]*n
if index==0:
plt.figure ()
ax=plt.subplot (111,projection = 'polar')
plt.plot (theoretical theta,list radius)
ax.grid(True)
plt.show ()
if index==1:
return (theoretical theta,list radius)

As angles are in disorder, it was important to sort them by ascending
order

i —— | UNIVERSILY:
IN PRAGUE
A PACCAR COMPANY

DAFE 4 /%%;/
153

def reorder(list 1,list 2):

tmp=1[]

for i in range(len(list 1)):
tmp.append ((list 1[i], 1))

tmp.sort ()

new 11=[]

new 12=[]

for i in range (len (tmp)) :
new 11.append(tmp[i] [0])
new l2.append(list 2[tmp[i][1]])

return(Hew_ll,new_l2) n

Plot the deformed profile of a cylinder at a specific height
def plot def profile(engine,cylinder, step,height, folder name, index) :
rad def=sort height(engine,cylinder, step, folder name) [3]
angle list=create angle list(engine,cylinder,step, folder name)
H=gather height (engine,cylinder, step)
H.sort (reverse=True)
radius=diameter (engine) /2
scale fact=scale factor(engine,cylinder,step,folder name)
dR by height=[]
theta by height=[]
loc=0
for s in range (height-1):
n=len(H[s] [1])
loc+=n
N=len (H[height-1][11)
for i in range(loc,loc+N):
dR by height.append(rad def[i]*scale fact+radius)
theta by height.append(angle list[i])
theta by height,dR by height=reorder (theta by height,dR by height)
theta by height.append(theta by height[0])
dR by height.append(dR by height[0])
if index==0: -
plot initial profile(engine,cylinder, step, index)
fig=plt.subplot(lll, projection='polar')
plt.plot (theta by height,dR by height)
plt.text (m.pi/6,120,"z = %s mm "$H[height-1][0], fontsize=15.0)
fig.grid (True)
plt.title("Comparison of the deformed and original profile \n
Engine %s Cylinder %s Step %$s \n Scale Factor
%s"% (engine, cylinder, step, scale fact))
plt.legend (('original profile', 'deformed profile'),loc=0)
plt.show ()
if index==1:
return (theta by height,dR by height, H, scale fact)

Plot the deformation path of a cylinder at a specific height
def plot path(engine,cylinder, step,height, folder name, ind) :

rad def=sort height (engine,cylinder, step, folder name) [3]

angle list=create angle list(engine,cylinder,step, folder name)

H=gather height (engine,cylinder, step)

H.sort (reverse=True)

def R=[]

path=1]

loc=0

for s in range (height-1):

DAFE E R e
A PACCAR COMPANY / \‘ : :JNN::‘EA%SJEY

n=len(H[s] [1])
loc+=n
N=len (H[height-1][1])
for i in range(loc,loc+N):
def R.append(rad def[i])
path.append(angle 1list[i]*180/m.pi)
path, def R = reorder (path,def R)

if ind==0:
plt.figure ()
plt.title("Plot of the radial deformation along a path \n
Engine %s Cylinder %s Step %$s \n z = %s

mm"$ (engine, cylinder, step,H[height-1]1[0]))
plt.xlabel ("Angular position [deg]")
plt.ylabel ("Radial deformation [mm]")
plt.plot (path,def R)
plt.grid()
plt.show ()

if ind==1:

return (path,def R,H)

The following function is used to compute the radial deformation from
the Fourier coefficients
def computed dR(theta,Fc,Fa,starting order):
def r=[]
N=len (theta)
for i in range(N):
S=0
for k in range(starting order,9):
S+=Fc[k]*m.cos ((k*theta[i]l+Fal[k]))
def r.append(S)
return (def r)

Fast Fourier Transform manually defined
def MFFT (engine,cylinder, step, height, folder name) :

theta=plot def profile(engine,cylinder,step,height,folder name, 1) [0]
def r=plot path(engine,cylinder,step,height, folder name, 1) [1]
N=len (def r)

X_k=[]
X k.append (sum(def r)/N)
for k in range(1,9):
temp sum=0
for n in range (N) :
temp sumt+=def r[n]*np.exp(-lj*k*thetal[n])
X k.append(2*temp sum/N)
return (X k)

Plotting of the deformed profile from Fourier Coefficients (without
the zeroth and first order) in order to see if this profile obtained by
this method looks like the one plotted by the function above

def plot def profile by Fourier (engine,cylinder, step, height,

folder name, index) :

theta=plot def profile(engine,cylinder,step,height,folder name, 1) [0]
H=gather height (engine,cylinder, step)
H.sort (reverse=True)
Xk=MFFT (engine, cylinder, step, height, folder name)
Fc=np.abs (Xk)

DAF v R Tt
A PACCAR COMPANY / \ ; rNN:ﬂ;SJ?

radius=diameter (engine) /2

Fa=np.angle (Xk)

dR=computed dR(theta, Fc,Fa,2)

scale fact=1000

defR=[]

for i in range(len(dR)):
defR.append(radius+dR[i] *scale fact)

if index == O0:
plot initial profile (engine,cylinder, step,0)
fig=plt.subplot (111, projection='polar"')
plt.plot (theta,defR)
plt.text (m.pi/6,120,"z = %$s mm "$H[height-1][0], fontsize=15.0)
fig.grid (True)
plt.title("Deformed profile plotted from Fourier coefficients

without zeroth and first order \n Engine %s Cylinder %s Step %s \n
Scale Factor %s"%(engine,cylinder,step,scale fact))

plt.legend(('original profile', 'deformed profile'),loc=0)
plt.show ()

if index ==
return (theta,defR, H)

Plotting of the path from Fourier Coefficients in order to see if
this path obtained by this method looks like the one plotted by the
function above
def plot path by Fourier (engine,cylinder, step, height,
folder name, index) :

H=gather height (engine,cylinder, step)

H.sort (reverse=True)

path=plot path(engine, cylinder, step, height, folder name, 1) [0]

theta=plot def profile(engine,cylinder,step,height, folder name, 1) [0]
del thetal-1]
Xk=MFFT (engine, cylinder, step, height, folder name)
Fc=np.abs (Xk)
Fa=np.angle (Xk)
dR=computed dR(theta,Fc,Fa,0)

if index == O:
plt.figure()
plt.title("Plot of the radial deformation along a path from
Fourier coefficients \n Engine %s Cylinder %s Step %s \n z = %s

mm"$ (engine, cylinder, step,H[height-1]1[0]))
plt.xlabel ("Distance along the path [mm]")
plt.ylabel ("Radial deformation [mm]")
plt.plot (path, dR)
plt.grid()
plt.show ()

if index ==

return (path, dR)

This function plots the distortions according to the different
Fourier's orders
def plot distortion by order (engine,cylinder,step, folder name, index) :
H=gather height (engine,cylinder, step)
H.sort (reverse=True)
n=len (H)
height=[]
first order=[]
second order=[]

DAF . R Tt
A PACCAR COMPANY / \ ; :JNNII"IIREA%SIEY

third order=[]
fourth order=[]
fifth order=[]
sixth order=[]
seventh order=[]
eighth order=[]
for i in range(n):
tmp=np.abs (MFFT (engine,cylinder, step,i+l, folder name)) *2000
first order.append (tmp[1])
second order.append (tmp[2])
third order.append (tmp[3]
fourth order.append (tmp |
fifth order.append (tmp[5
sixth order.append (tmp[6
seventh order.append (tmp
eighth order.append (tmp[
height.append (H[i] [0])
BorderlineLim=[25,13,9,4,3,1.5,1]
CriticallLim=(49.2,19.68,14.76,7.38,4.92,3.69,3.69]
CriticallLim list=[]
BorderlinelLim list=[]
for i in rangg(len(CriticalLim)):
CriticallLim list.append([CriticalLim[i]]*n)
BorderlineLim list.append([BorderlineLim[i]]*n)
if index ==
plt.figure()
plt.suptitle ("Plot of liner distortion \n Engine %s Cylinder $%s
Step %s"%(engine,cylinder, step))
plt.subplot (241)
plt.subplots adjust (hspace=0.2,wspace=0.3)
plt.title("Order %s "%1)
plt.plot (first order, height)
plt.grid()
plt.xlabel ("Diametral distortion [um]")
plt.ylabel ("Axial position [mm]")
plt.legend(('Liner Distortion', 'Border line limit', 'Critical
limit'), loc=1, fontsize=06)
plt.subplot (242)
plt.title ("Order %s "%2)
plt.plot (second order,height)
plt.plot (BorderlineLim list[0],height, 'r--")
plt.plot(CriticallLim 1ist[0],height, 'r-")

)

1)

]
)
]
)
)
7
1)

4
]
]
[
8

plt.grid()
plt.legend (('Liner Distortion', 'Border line limit', 'Critical
limit'), loc=1, fontsize=06)

plt.xlabel ("Diametral distortion [um]")

plt.ylabel ("Axial position [mm]")

plt.subplot (243)

plt.title ("Order %s "%3)

plt.plot (third order, height)

plt.plot (BorderlineLim list[1l],height, 'r—-")

plt.plot(CriticallLim list[1],height, 'r-")

plt.grid()

plt.xlabel ("Diametral distortion [um]")

plt.ylabel ("Axial position [mm]")

plt.legend (('Liner Distortion', 'Border line limit', 'Critical
limit'), loc=1, fontsize=06)

plt.subplot (244)

D /A = * /‘%{(2"

CZECH
TECHNICAL
UNIVERSITY
IN PRAGUE

plt.title("Order %s "%4)

plt.plot (fourth order, height)

plt.plot (BorderlineLim list[2],height, 'r--")

plt.plot (CriticallLim list[2],height, 'r-")

plt.grid()

plt.xlabel ("Diametral distortion [um]")

plt.ylabel ("Axial position [mm]")

plt.legend (('Liner Distortion', 'Border line limit','Critical
limit'), loc=1, fontsize=06)

plt.subplot (245)

plt.title("Order %s "%5)

plt.plot (fifth order,height)

plt.plot (BorderlineLim list[3],height, 'r--")

plt.plot (CriticallLim list[3],height, 'r-")

plt.grid()

plt.xlabel ("Diametral distortion [um]")

plt.ylabel ("Axial position [mm]")

plt.legend (('Liner Distortion', 'Border line limit', 'Critical
limit'), loc=1, fontsize=06)

plt.subplot (246)

plt.title("Order %s "%6)

plt.plot (sixth order, height)

plt.plot (BorderlineLim list[4],height, 'r--")

plt.plot (CriticallLim list[4],height, 'r-")

plt.grid()

plt.xlabel ("Diametral distortion [um]")

plt.ylabel ("Axial position [mm]")

plt.legend (('Liner Distortion', 'Border line limit', 'Critical
limit'), loc=1, fontsize=6)

plt.subplot (247)

plt.title("Order %s "%7)

plt.xlabel ("Diametral distortion [um]")

plt.ylabel ("Axial position [mm]")

plt.plot (seventh order,height)

plt.plot (BorderlinelLim list[5],height, 'r--")

plt.plot (CriticallLim list[5],height, 'r-")

plt.grid()

plt.legend (('Liner Distortion', 'Border line limit', 'Critical
limit'), loc=1, fontsize=06)

plt.subplot (248)

plt.title("Order %s "%8)

plt.plot (eighth order,height)

plt.plot (BorderlinelLim list[6],height, 'r--")

plt.plot (CriticallLim list[6],height, 'r-")

plt.grid()

plt.xlabel ("Diametral distortion [um]")

plt.ylabel ("Axial position [mm]")

plt.legend (('Liner Distortion', 'Border line limit', 'Critical

limit'), loc=1, fontsize=06)
plt.show ()
if index ==

return (height, first order, second order, third order, fourth order, fi
fth order, sixth order,seventh order,eighth order,BorderlinelLim list,Cri
ticallLim list)

Accessory function in order to get a visible validation by color
def color set(list 1,list 2,list 3):
color list=['w']*len(list 1)*2

D/ - >0 ﬂ%“(?/"
e /YRS

for i in range(len(list 3)):
if list 3[1i1<=list 2[i]:
color list.append('g')
if list 3[i]1>=1list 1[i]:
color list.append('r'")
if list 2[i]<list 3[i]l<list 1[i]:
color list.append('orange')
color list=np.array(color list).reshape(3,7)
return (color list)

This function plots the distortion of each order for a givem cylinder
and step
def plot distortion graph(engine,cylinder, step,height,
folder name, index) :
H=gather height (engine,cylinder, step)
H.sort (reverse=True)
Fourier coef=np.abs (MFFT (engine,cylinder,step,height, folder name))
[2:9]%2000
absc=(2,3,4,5,6,7,8]
BorderlinelLim=[25,13,9,4,3,1.5,1]
Criticallim=[49.2,19.68,14.76,7.38,4.92,3.69,3.69]
if index==0:
plt.figure ()
plt.subplot (211)
plt.title ("Graph of the diametral distortion depending on
harmonic order \n Engine %s Cylinder %s Step %s \n z = %s
mm"% (engine, cylinder, step,Hlheight-1]1[0]))
plt.plot (absc,Fourier coef, 'b'")
plt.plot (absc,Borderlinelim, 'r--")
plt.plot (absc,Criticallim, 'r-")

plt.grid()
plt.legend (('Liner Distortion', 'Border line limit', 'Critical
limit'),loc=1, fontsize=10)

plt.xlabel ("Harmonic order")
plt.ylabel ("Diametral distortion [um]")
plt.yticks (np.arange (0, 60, 5.0))

plt.xticks ([2,3,4,5,6,7,81,["2","3","4", "5", "6", "7","8"])
plt.subplot (212)

collabel=["order %s"%s for s in range(2,9)]
rowlabel=["Critical limit [um]","Border line limit

[um] ", "Diametral distortion [um]"]

val table=np.array([CriticallLim,BorderlinelLim,Fourier coef]) .resha
pe(3,7)

tab=plt.table(cellText=val table,colLabels=collabel, rowLabels=rowl
abel,cellColours=color set (Criticallim,BorderlinelLim,Fourier coef)
,loc="center left')
tab.auto_set font size(False)
tab.set fontsize (12)
plt.axis('off'")
plt.show ()
if index==1:
return (absc, Fourier coef,Borderlinelim,CriticalLim,H)

This function is used to select the index of the nodes having a
specific angle
def select angle(angle list,value):

DAFE 51 R e
A PACCAR COMPANY / \‘ : :JNN::S:;SJEY

index list=[]
if value==0:
for i in range(len(angle list)):
if abs(angle 1ist[i])<0.05:
index list.append(i)
else:
for i in range(len(angle list)):
if round(angle list[i],2)==round(value,2):
index list.append (i)
return (index list)

Plot of the profile cut of the cylinder for a specific angle
def plot cut profile(engine,cylinder, step, folder name, index) :
radius=diameter (engine) /2
angle list=create angle list(engine,cylinder,step, folder name)
rad disp=sort height (engine,cylinder, step, folder name) [3]
absc_max=max (abs (max (rad disp)),abs(min(rad disp)))
scale fact=scale factor(engine,cylinder, step, folder name)
absc max=radius+scale fact*absc max

angle value=[0,m.pi/4,m.pi/2,3*m.pi/4,m.pi,5*m.pi/4,3*m.pi/2,7*m.p
i/4]
cut profiles=[]
height=sort height (engine, cylinder,step, folder name) [2]
H=[]
for i in range(len(angle value)):
tmp=select angle(angle list,angle value[i])
TEMP=]
Tem=1]
for j in range(len(tmp)):
TEMP.append(rad disp[tmp[j]]*scale fact+radius)
Tem.append (height [tmp[j]])
cut profiles.append (TEMP)
H.append (Tem)
if index ==
plt.figure ()
plt.suptitle ("Plot axial position with respect to radial
distortion \n Engine %s Cylinder %s Step %s \n Scale factor
%s"% (engine, cylinder, step, scale fact))
plt.subplots _adjust (wspace=0.3)
plt.subplot (241)
plt.title("Angle %$s "%180)
plt.plot (cut profiles[4],H[4])
plt.grid()
plt.xlabel ("Radial distortion [mm]")
plt.xlim(2*absc max+10,0)
plt.ylabel ("Axial position [mm]")
plt.subplot (242)

plt.title ("Angle %s "%0)
plt.plot (cut profiles[0],H[0])

plt.grid()

plt.xlabel ("Radial distortion [mm]")
plt.x1im (0, 2*absc _max+10)

plt.ylabel ("Axial position [mm]")
plt.subplot (243)

plt.title ("Angle %s "%225)
plt.plot (cut profiles[5],H[5])
plt.grid()

DAFE 52 D
A PACCAR COMPANY / \‘ : :JNNL‘:‘EA%SJ?

plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.

if index

xlabel ("Radial distortion [mm]")
xlim(2*absc max+10,0)

ylabel ("Axial position [mm]")
subplot (244)

grid()

title ("Angle %s "%45)

plot (cut profiles[1],H[1])
xlabel ("Radial distortion [mm]")
x1im (0, 2*absc max+10)

ylabel ("Axial position [mm]™)
subplot (245)

title ("Angle %s "%270)

plot (cut profiles[6],H[6])
grid()

xlabel ("Radial distortion [mm]")
xlim(2*absc max+10,0)

ylabel ("Axial position [mm]")
subplot (246)

title ("Angle %s "%90)

plot (cut profiles[2],H[2])
grid()

xlabel ("Radial distortion [mm]")
x1im (0, 2*absc max+10)

ylabel ("Axial position [mm]")
subplot (247)

title("Angle %s "%315)

plot (cut profiles[7],H[7])
grid()

xlabel ("Radial distortion [mm]")
xlim(2*absc max+10,0)

ylabel ("Axial position [mm]")
subplot (248)

title ("Angle %s "%135)

plot (cut profiles[3],H[3])
grid()

xlabel ("Radial distortion [mm]")
x1im (0, 2*absc max+10)

ylabel ("Axial position [mm]")
show ()

return (H,cut profiles, absc max)

def COMP plot def profile(engine,cylinder,step,height, folder name,

index) :

rad def=sort height (engine,cylinder, step, folder name) [3]

angle list=create angle list(engine,cylinder,step, folder name)
H=gather height (engine,cylinder, step)
H.sort (reverse=True)

radius=diameter (engine) /2

scale fact=100

dR by height=[]

theta by height=[]

loc=0

for s in range (height-1):
n=len(H[s] [1])
loc+=n

N=len (H[height-1][1])

for i in range(loc,loc+N):

D /A -

e ——
A PACCAR COMPANY

53

fa

CZECH
TECHNICAL
UNIVERSITY
IN PRAGUE

dR by height.append(rad def[i]*scale fact+radius)
theta by height.append(angle list[i])
theta by height,dR by height=reorder (theta by height,dR by height)
theta by height.append(theta by height[0])
dR by height.append(dR by height[0])
if index==0:
plot initial profile(engine,cylinder, step, index)
fig=plt.subplot(lll, projection='polar')
plt.plot (theta by height,dR by height)
plt.text (m.pi/6,120,"z = %$s mm "$H[height-1][0], fontsize=15.0)
fig.grid (True)
plt.title("Comparison of the deformed and original profile \n
Engine %s Cylinder %s Step %s \n Scale Factor
%s"% (engine, cylinder, step, scale fact))
plt.legend(('original profile', 'deformed profile'),loc=0)
plt.show ()
if index==1:
return (theta by height,dR by height, H, scale fact)

def COMP plot cut profile(engine,cylinder,step,folder name, index) :
radius=diameter (engine) /2
angle list=create angle list(engine,cylinder,step, folder name)
rad disp=sort height (engine,cylinder, step, folder name) [3]
absc_max=max (abs (max (rad disp)),abs (min(rad disp)))
scale fact=100
absc _max=radius+scale fact*absc max

angle value=[0,m.pi/4,m.pi/2,3*m.pi/4,m.pi,5*m.pi/4,3*m.pi/2,7*m.p
i/4]
cut profiles=[]
height=sort height (engine, cylinder, step, folder name) [2]
H=[]
for i in range(len(angle value)):
tmp=select angle(angle list,angle value[i])
TEMP=1]
Tem=]
for j in range (len (tmp)):
TEMP.append(rad disp[tmp[j]]*scale fact+radius)
Tem.append (height [tmp[J]])
cut profiles.append (TEMP)
H.append (Tem)
if index ==
plt.figure ()
plt.suptitle ("Plot axial position with respect to radial
distortion \n Engine %s Cylinder %s Step %s \n Scale factor
%s"% (engine, cylinder, step, scale fact))
plt.subplots adjust (wspace=0.3)
plt.subplot (241)
plt.title ("Angle %s "%$180)
plt.plot (cut profiles[4],H[4])
plt.grid()
plt.xlabel ("Radial distortion [mm]")
plt.xlim(2*absc max+10,0)
plt.ylabel ("Axial position [mm]")
plt.subplot (242)

plt.title ("Angle %s "%0)
plt.plot (cut profiles[0],H[O0])

plt.grid()

DAFE 5 DS Tt
A PACCAR COMPANY / \V ; :JNNL\;EA?JEY

plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
if index
retu

xlabel ("Radial distortion [mm]")
x1im (0, 2*absc max+10)

ylabel ("Axial position [mm]")
subplot (243)

title ("Angle %s "%225)

plot (cut profiles[5],H[5])
grid()

xlabel ("Radial distortion [mm]")
xlim(2*absc max+10,0)

ylabel ("Axial position [mm]™)
subplot (244)

grid()

title ("Angle %s "%45)

plot (cut profiles[1],H[1])
xlabel ("Radial distortion [mm]")
x1im (0, 2*absc max+10)

ylabel ("Axial position [mm]")
subplot (245)

title("Angle %s "%270)

plot (cut profiles[6],H[6])
grid()

xlabel ("Radial distortion [mm]")
xlim(2*absc max+10,0)

ylabel ("Axial position [mm]")
subplot (246)

title ("Angle %s "%90)

plot (cut profiles[2],H[2])
grid()

xlabel ("Radial distortion [mm]")
x1im (0, 2*absc max+10)

ylabel ("Axial position [mm]")
subplot (247)

title ("Angle %s "%315)

plot (cut profiles[7],H[7])
grid()

xlabel ("Radial distortion [mm]")
xlim(2*absc max+10,0)

ylabel ("Axial position [mm]")
subplot (248)

title("Angle %s "%135)

plot (cut profiles[3],H[3])
grid()

xlabel ("Radial distortion [mm]")
x1im (0, 2*absc max+10)

ylabel ("Axial position [mm]")
show ()

rn (H,cut profiles, absc max)

D /A -

e ——
A PACCAR COMPANY

55

fa

CZECH
TECHNICAL
UNIVERSITY
IN PRAGUE

Temperature_Analysis script

import math as m

import os

import matplotlib.pyplot as plt

import numpy as np

import matplotlib

from mpl toolkits.mplot3d import Axes3D

from matplotlib import cm

from matplotlib.ticker import LinearLocator, FormatStrFormatter

A1l functions, implemented in BoreDistortion Analysis V6 have been
recoded and modified to deal with temperature files, which are bigger
In order to reduce as much as possible the computing time each
function has been re written for temperatures instead of doing one
function dealing with both deformation and temperature files

plt.close('all')

dirpath = "C:/Users/A-Damien.Gode/Documents/Distortion
program/Analysis"

os.chdir (dirpath)

def center (X coor,Y coor):
center=0
max X=max (X coor)
min X=min (X coor)
max_ Y=max (Y coor)
min Y=min (Y coor)
center=((max X+min X)/2, (max Y+min Y)/2)
return (center)

def T extract coordinates(engine,cylinder) :
os.chdir (dirpath)
if engine == 'MX11':
doc=open ('TEMP_MX11l cyl%s Coordinates.txt'%cylinder, 'r')
doc=doc.read()
doc=doc.replace ("\n","")
doc=doc.replace ("LIN-1",6"")
doc=doc.replace ("FR-1","")
doc=doc.split ()
Coor_ table=[]
index=0
index1=0
for i in range(len(doc)):
if doc[i]=='Part':
index=1i
if docli]=="'"-""""""“""—

indexl=1i
Coor table=doc[indexl+1:index]
retuEn(Coor_table)
if engine == 'MX13':
doc=open ('TEMP_MX13 cyl%s_ Coordinates.txt'scylinder, 'r'")

D/ - >0 ‘\ia?/)
e /YRS R

doc=doc.read()
doc=doc.replace("\n","")
doc=doc.replace ("LINER-1","")
doc=doc.replace ("FIRE-RING-1","")
doc=doc.split ()

Coor table=[]
index=0
index1=0
for i in range(len(doc)):
if doc[i]=='"Part':
index=1
if docli]=='"""—-"""H—>""""H—""""""""""

indexl=i
Coor table=doc[indexl+1l:index]
return (Coor table)

def T split coordinates (engine,cylinder):

Coor table=T extract coordinates (engine,cylinder)

X coor=[]

Y coor=[]

Z _coor=[]

count=1

X coor.append(float (Coor table[l]))

Y coor.append(float (Coor table[2]))

Z coor.append(float (Coor table[3]))

while 1+7*count<len (Coor table):
X coor.append(float (Coor table[l+7*count]))
Y coor.append(float (Coor table[2+7*count]))
Z coor.append(float (Coor table[3+7*count]))
count+=1

return (X coor,Y coor,Z coor)

def T extract temp data(engine,cylinder,step,folder name):
os.chdir (dirpath+"/%$s"%folder name)
if engine == 'MX11':
doc=open ('TEMP MX11l cyl%s step%s.txt'%(cylinder,step), 'r')
doc=doc.read ()
doc=doc.split ()
Temp table 1=[]
Temp table 2=[]

Temp table=[]
index=0
index1=0
for i in range(len(doc)):
if doc[i]=='FR-1"':
index=1
if doc[i]=="LIN-1"':

indexl=1i
Temp table 1=doc[index+7:index1-7]
Temp table 2=doc[indexl+7:len(doc)]
Temp table=Temp table 1+Temp table 2
return (Temp table)
if engine == 'MX13':
doc=open ('TEMP MX13 cyl%s step%s.txt'%(cylinder,step), 'r')
doc=doc.read ()
doc=doc.split ()

DAFE 57 R e
A PACCAR COMPANY / \‘ : :JNN::‘EA%SJEY

Temp table 1=[]
Temp table 2=[]

Temp table=[]
index=0
index1=0
for i in range(len(doc)):
if doc[i]=='FIRE-RING-1"':
index=1
if doc[i]=="'LINER-1"':

indexl=i
Temp table 1l=doc[index+7:index1-7]
Temp table 2=doc[indexl+7:len(doc)]
Temp table=Temp table 1+Temp table 2
return (Temp table)

def T extract temp(engine,cylinder,step, folder name) :
data table=T extract temp data(engine,cylinder,step,folder name)
Temp table=[]
count=1
Temp table.append(float (data table[l]))
while 2*count<len(data table):
Temp table.append(float (data table[2*count+l1]))
count+=1
return (Temp table)

def belong(List,val):
for i in range(len(List)):
if List[i]==val:
return (True)
return (False)

def T split height (engine,cylinder, step):
TEMP Z=T split coordinates (engine,cylinder) [2]
TEMP height=[]
TEMP already=[]
TEMP_ ind list=[]
TEMP index=0
while TEMP_ index<len (TEMP 7Z):
TEMP value=TEMP Z[TEMP index]
if belong (TEMP_ already,TEMP value)==True:
TEMP index+=1
else:
TEMP ind list=[]
for i in range(len(TEMP Z)):
if TEMP Z[i]==TEMP value:
TEMP ind list.append(i)
TEMP height.append ((TEMP value,TEMP ind list))
TEMP already.append(TEMP value)
TEMP index+=1
return (TEMP_height)

def T gather height (engine,cylinder, step):
TEMP height=T split height (engine, cylinder, step)
TEMP comp_ val=0
TEMP_ index=0
TEMP already=[]
TEMP H=[]
TEMP index list=[]

DAFE 58 R e
A PACCAR COMPANY / \‘ : :JNN::S:;SJEY

while TEMP index<len (TEMP_ height) :
TEMP comp val=TEMP height [TEMP_ index] [0]
if belong (TEMP already,round(TEMP comp val,l))==True:
TEMP index+=1
else:
TEMP index list=[]
for i in range (TEMP_ index,len (TEMP_ height)) :
if round(TEMP height[i] [0],1)==round(TEMP comp val,1l):
TEMP index 1list+=TEMP_ height[i][1]
TEMP H.append((TEMP comp val,TEMP index list))
TEMP already.append(round(TEMP comp val, 1))
TEMP index+=1
return (TEMP H)

def T sort height (engine,cylinder, step, folder name) :

TEMP height=T gather height (engine,cylinder, step)

TEMP height.sort (reverse=True)

Coor X=T split coordinates (engine,cylinder) [0]

Coor Y=T split coordinates (engine,cylinder) [1]

Temperature tab=T extract temp (engine,cylinder,step,folder name)

TEMP X=[]

TEMP Y=[]

TEMP Z=[]

New Temperature=[]

for i in range(len(TEMP height)):

for j in range(len(TEMP height[i][1]))

TEMP X.append (Coor X[TEMP height[i][1][3j]])
TEMP Y.append(Coor Y[TEMP height [1]1[1]1[]j]])
TEMP Z.append (TEMP height[i] [0])

New Temperature.append (Temperature tab[TEMP height[i][1][j]])
return (TEMP_ X, TEMP Y,TEMP Z,New Temperature)

def Angle (X coor,Y coor,center):
if X coor-center[0]>0 and Y coor-center[1]>=0:
theta=m.atan((Y_coor—center[l])/(X_coor—center[O]))
if X coor-center[0]<0 and Y coor-center[1]>=0:
theta= m.pi—abs(m.atan((Yicoor—center[l])/(Xicoor—center[O])))
if X coor-center[0]<0 and Y coor-center[1]<=0:
theta= m.pi+abs(m.atan((Y_coor—center[l])/(X_coor—center[O])))
if X coor-center[0]>0 and Y coor-center[1]<=0:

theta= 2*m.pi—abs(m.atan((Y_coor—center[l])/(X_coor—

center[0])))
if X coor-center[0]==0 and Y coor-center[1]>=0:
theta=m.pi/2
if X coor-center[0]==0 and Y coor-center[1]<=0:

theta=3*m.pi/2
return (theta)

def T create angle list(engine,cylinder,step, folder name) :

TEMP X pos=T sort height (engine,cylinder,step, folder name) [0]

TEMP Y pos=T sort height (engine,cylinder, step, folder name) [1]

TEMP angle list=[]

TEMP center=center (TEMP_ X pos,TEMP Y pos)

for i in range (len(TEMP X pos)):

TEMP angle list.append(Angle (TEMP X pos[i],TEMP Y pos[i],

TEMP center))

return (TEMP angle list)

DAFE 59 D
A PACCAR COMPANY / \‘ : :JNNL‘:‘EA%SJ?

def select angle(engine,angle list,value):
index list=[]
if value==0:
for i in range(len(angle list)):
if engine=="'MX11l' and abs(angle list[i])<0.1:
index list.append(i)
if engine=='MX13' and abs(angle 1list[i])<0.05:
index list.append (i)
else:
for i in range(len(angle list)):
if round(angle list[i],2)==round(value,?2):
index list.append(i)
return (index list)

def plot wall temperature single(engine,step,folder name,angle value):
H 3cylinder=[]
TEMP 3cylinder=[]
for ¢ in range(1l,4):
angle list=T create angle list (engine,c, step,folder name)
temperature tab=T sort height(engine,c,step, folder name) [3]
TEMP profiles=[]
height=T sort height (engine, c,step,folder name) [2]
H=[]
tmp=select angle (engine,angle list,angle value*m.pi/180)
TEMP=1]
Tem=]
for j in range (len (tmp)) :
TEMP.append (temperature tab[tmp[j]])
Tem. append (height [tmp[]j]])
TEMP profiles.append (TEMP)
H.append (Tem)
H 3cylinder.append (H)
TEMP 3cylinder.append(TEMP profiles)
plt.figure ()
plt.suptitle ("Plot wall temperature \n Engine %s Step
%$s"% (engine, step))
plt.title("Angle %s "%angle value)
plt.plot (TEMP_ 3cylinder[0][0],H 3cylinder([O0] [0],"'*")
plt.plot (TEMP_3cylinder[1][0],H 3cylinder([1][0],'-")
plt.plot (TEMP 3cylinder[2][0],H 3cylinder[2][0],"'.")
plt.grid()
plt.legend(('Liner 1','Liner 2', 'Liner 3'),loc=2,fontsize=10)
plt.xlabel ("Temperature [°C]")
plt.ylabel ("Axial position [mm]")
if round(max (TEMP 3cylinder[0][0][O],
TEMP 3cylinder[1][0][0],TEMP 3cylinder[2][0][0]),0) < 50:
plt.annotate ('Tmax = %s °C
'$round (max (TEMP_3cylinder[0] [0] [0], TEMP 3cylinder[1][0][0],TEMP 3cylin
der[2][0][0]),0),
xy=(max (TEMP_3cylinder[0] [0] [0],TEMP 3cylinder[1][0] [0],TEMP 3cylinder|
2]1[01[0]), H_3cylinder[0][0][0]),
xytext=(max (TEMP 3cylinder[0][0] [0],TEMP 3cylinder[1][0][0],TEMP 3cylin
der[2][0][0])*1.025, H 3cylinder[0][0][0]-50),
arrowprops=dict (facecolor='black', shrink=0.05),
)

else:

DAFE 60 D
A PACCAR COMPANY / \‘ : :JNNL‘:‘EA%SJ?

plt.annotate ('Tmax = %s °C
'%round (max (TEMP 3cylinder[0] [0] [0], TEMP 3cylinder[1][0][0],TEMP_ 3cylin
der[2][0][0]),0),

xy=(max (TEMP_ 3cylinder[0] [0] [TEMP 3cylinder[1][0][0],TEMP 3cylinder|

01,
21[01[0]), H_3cylinder[0][0][0]),
xytext=(max (TEMP 3cylinder[0][0] [0],TEMP 3cylinder[1][0][0],TEMP 3cylin
der[2][0][0])*0.85, H 3cylinder[0][0][0]-50),
arrowprops=dict (facecolor="'black', shrink=0.05),

)

def plot wall temperature complete (engine,step, folder name) :
H 3cylinder=[]
TEMP 3cylinder=[]
for ¢ in range(1l,4):
angle list=T create angle list (engine,c,step,folder name)
temperature tab=T sort height(engine,c,step, folder name) [3]
angle value=[0,m.pi/4,m.pi/2,3*m.pi/4,m.pi, 5*m.pi/4,
3*m.pi/2,7*m.pi/4]
TEMP profiles=[]
height=T sort height (engine, c,step,folder name) [2]
H=[]
for i in range(len(angle value)):
tmp=select angle (engine,angle list,angle value[i])
TEMP=]
Tem=]
for j in range(len(tmp)) :
TEMP.append (temperature tab[tmp[j]])
Tem. append (height [tmp[]j]])
TEMP profiles.append (TEMP)
H.append (Tem)
H 3cylinder.append (H)
TEMP 3cylinder.append(TEMP profiles)
plt.figure ()
plt.suptitle ("Plot wall temperature \n Engine %s Step
'$ (engine, step))
plt.subplot (241)
plt.title ("Angle %s "%0)
plt.plot (TEMP_ 3cylinder[0] [0],H 3cylinder([0] [0],'*')
plt.plot (TEMP_3cylinder[1][0],H 3cylinder([1][0],'-")
plt.plot (TEMP 3cylinder[2][0],H 3cylinder[2][0],"'.")
plt.grid()
plt.legend(('Liner 1','Liner 2', 'Liner 3'),loc=2,fontsize=10)
plt.xlabel ("Temperature [°C]")
plt.ylabel ("Axial position [mm]")
if round(max (TEMP 3cylinder[0] [0][0],TEMP 3cylinder[1][0][0],
TEMP 3cylinder[2][0][0]),0) < 50:
plt.annotate ('Tmax = %s °C
'$round (max (TEMP_3cylinder[0] [0] [0], TEMP 3cylinder[1][0][0],TEMP 3cylin
der[2][0][0]),0),
xy=(max (TEMP_3cylinder[0] [0] [0],TEMP 3cylinder[1][0] [0],TEMP 3cylinder|
2]1[01[0]), H_3cylinder[0][0][0]),
xytext=(max (TEMP 3cylinder[0][0] [0],TEMP 3cylinder[1][0][0],TEMP 3cylin
der[2][0]1[0])*1.025, H 3cylinder[0][0][0]-50),
arrowprops=dict (facecolor='black', shrink=0.05),

)

ot
58S

else:

i —— | UNIVEHSITY
IN PRAGUE
A PACCAR COMPANY

DA - 61 /%%/g
153

plt.annotate ('Tmax = %
'$round (max (TEMP 3cylinder[0] [
der[2][0]([0]),0),
xy=(max (TEMP_ 3cylinder[0] [0] [

s °C
O][O],TEMP_3cylinder[l][O][O],TEMP_3cylin

TEMP 3cylinder[1][0][0], TEMP 3cylinder|

01,
21[01[0]), H_3cylinder[0][0][0]),
xytext=(max (TEMP 3cylinder[0][0] [0],TEMP 3cylinder[1][0][0],TEMP 3cylin
der[2][0][0])*0.85, H 3cylinder[0][0][0]-50),
arrowprops=dict (facecolor="'black', shrink=0.05),

)
plt.subplot (242)
plt.title("Angle $%s "%45
plt.plot (TEMP 3cylinder|
plt.plot (TEMP 3cylinder[1][1],H 3cylinder([1][1]
plt.plot (TEMP 3cylinder[2][1],H 3cylinder[2][1]
plt.grid()
plt.legend(('Liner 1', 'Liner 2', 'Liner 3'),loc=2,fontsize=10)
plt.xlabel ("Temperature [°C]")
plt.ylabel ("Axial position [mm]")
if round(max (TEMP 3cylinder[0][1][0],TEMP 3cylinder[1][1][0],
TEMP 3cylinder[2][1][0]),0) < 50:
plt.annotate ('Tmax = %s °C
'%round (max (TEMP 3cylinder[0] [1][0],TEMP 3cylinder[1][1][0],TEMP 3cylin
der[2][1][0]),0),
xy=(max (TEMP_3cylinder[0] [1][O],
21[11001), H_3cylinder[0][1][0]),
xytext=(max (TEMP 3cylinder[0][1][0],TEMP 3cylinder[1][1][0],TEMP 3cylin
der[2][1][0])*1.025, H 3cylinder[0][1][0]-50),
arrowprops=dict (facecolor="'black', shrink=0.05),

)

)
0][1]1,H 3cylinder[0][1],"'*")
1)

1 \l

~ ~

TEMP 3cylinder[1][1][0],TEMP 3cylinder|

else:
plt.annotate ('Tmax = %
'%round (max (TEMP 3cylinder[0] [
der[2][1]1([0]),0),
xy=(max (TEMP_3cylinder[0][1][0],TEMP 3cylinder[1][1][0],TEMP 3cylinder|
21[1100]), H_3cylinder[0][1][0]),
xytext=(max (TEMP 3cylinder[0][1][0],TEMP 3cylinder[1][1][0],TEMP 3cylin
der[2][1]1[0])*0.85, H 3cylinder[0][1]([0]-50),
arrowprops=dict (facecolor="'black', shrink=0.05),
)
plt.subplot (243)
plt.title("Angle %s "%90)
plt.plot (TEMP 3cylinder[0] [2],H 3cylinder[0]([2],'*")
plt.plot (TEMP 3cylinder[1l][2],H 3cylinder[1]([2],'-")
plt.plot (TEMP 3cylinder([2][2],H 3cylinder[2][2],"'.")
plt.grid()
plt.legend(('Liner 1','Liner 2', 'Liner 3'),loc=2,fontsize=10)
plt.xlabel ("Temperature [°C]")
plt.ylabel ("Axial position [mm]")
if round(max (TEMP 3cylinder[0][2][0],TEMP 3cylinder[1][2][0],
TEMP 3cylinder[2][2][0]),0) < 50:
plt.annotate ('Tmax = %s °C
'%round (max (TEMP 3cylinder[0] [2] [0],TEMP 3cylinder[1][2][0],TEMP_ 3cylin
der([2][2][0]),0),
xy=(max (TEMP_3cylinder[0] [2] [O],
21[211001), H_3cylinder[0][2][0]),
xytext=(max (TEMP 3cylinder[0][2][0],TEMP 3cylinder[1][2][0],TEMP 3cylin
der[2][2][0])*1.025, H 3cylinder[0][2][0]-50),
arrowprops=dict (facecolor="'black', shrink=0.05),

DA ; Pl b,
<

s °C
l][O],TEMP_3cylinder[l][l][O],TEMP_3cylin

0], TEMP 3cylinder([1][2][0],TEMP 3cylinder|
0
[

]
IN PRAGUE
A PACCAR COMPANY

)
else:
plt.annotate ('Tmax = %s °C
'$round (max (TEMP 3cylinder[0] [2] [0], TEMP 3cylinder[1][2][0],TEMP 3cylin
der[2][2][0]),0),
xy=(max (TEMP_3cylinder[0][2][0],TEMP 3cylinder[1][2][0],TEMP 3cylinder|
2]112110]), H_3cylinder[0][2][0]),
xytext=(max (TEMP 3cylinder[0][2][0],TEMP 3cylinder[1][2][0],TEMP 3cylin
der[2][2][0])*0.85, H 3cylinder[0][2][0]-50),
arrowprops=dict (facecolor='black', shrink=0.05),
)
plt.subplot (244)
plt.title("Angle %$s "%135)
plt.plot (TEMP 3cyllnder[0][],H 3cylinder[0] [3]
1] [3],H 3cylinder[1] [3]
2]1[3],H 3cylinder[2][3]

v*v)
v_v)

)

plt.plot (TEMP 3cylinder]|
plt.plot (TEMP 3cylinder]|
plt.grid()
plt.legend(('Liner 1', 'Liner 2', 'Liner 3'),loc=2,fontsize=10)
plt.xlabel ("Temperature [°C]")
plt.ylabel ("Axial position [mm]")
if round(max (TEMP 3cylinder[0] [3][0],TEMP 3cylinder[1] [3]([0],
TEMP 3cylinder[2][3]1[0]),0) < 50:
plt.annotate ('Tmax = %s °C

~ N 0~

'%$round (max (TEMP 3cylinder[0] [3][0],TEMP 3cylinder[1][3][0],TEMP 3cylin
der[2][1101),0),
=(max (TEMP 3cylinder[0][3][0],TEMP 3cylinder[1][3][0],TEMP 3cylinder]|
2][1007), H 3cylinder([0][3][0]),
xytext=(max (TEMP 3cy11nder[0][3][O],TEMP_3cylinder[1][3][0],TEMP_3cylin
der[2][3]1[0])*1.025, H 3cylinder[0][3]([0]-50),

arrowprops=dict (facecolor="'black', shrink=0.05),
)
else:
plt.annotate ('Tmax = %s °C
'%$round (max (TEMP 3cylinder[0] [3][0],TEMP 3cylinder[1][3][0],TEMP_ 3cylin
der[2][3]1[0]),0),
xy=(max (TEMP_3cylinder[0][3][0],TEMP 3cylinder[1][3][0],TEMP 3cylinder|
2]103110]), H_3cylinder[0][3][0]),
xytext=(max (TEMP 3cylinder[0][3][0],TEMP 3cylinder[1][3][0],TEMP 3cylin
der[2][3]1[0])*0.85, H 3cylinder[0][3]1[0]-50),
arrowprops=dict (facecolor="'black', shrink=0.05),
)
plt.subplot (245)
plt.title ("Angle %s "%180)
plt.plot (TEMP 3cylinder[0] [4],H 3cylinder[0][4],"
plt.plot (TEMP 3cylinder[1][4],H 3cylinder[1][4],"'-")
plt.plot (TEMP 3cylinder[2][4],H 3cylinder[2][4],"'.")
plt.grid()
plt.legend(('Liner 1', 'Liner 2', 'Liner 3'),loc=2,fontsize=10)
plt.xlabel ("Temperature [°C]")
plt.ylabel ("Axial position [mm]")
if round(max (TEMP 3cylinder[0][4][0],TEMP 3cylinder[1][4][0],
TEMP 3cylinder[2][4]([0]),0) < 50:
plt.annotate ('Tmax = %s °C

*')

'%$round (max (TEMP 3cylinder[0] [4] [0], TEMP 3cylinder[1][4][0],TEMP 3cylin
der[2][4]([0]),0),

xy=(max (TEMP_ 3cylinder[0][4][0],TEMP 3cylinder[1][4][0],TEMP 3cylinder|
2]114110]), H_3cylinder[0][4][0]),

DAFE ‘3 D T
A PACCAR COMPANY / \V ; rNNL\;EA%SJ;Y

xytext=(max (TEMP 3cylinder[0] [4][0],TEMP 3cylinder[1][4][0],TEMP 3cylin
der[2][4]1[0])*1.025, H 3cylinder([0][4][0]-50),
arrowprops=dict (facecolor="'black', shrink=0.05),
)
else:
plt.annotate ('Tmax = %s °C
'$round (max (TEMP 3cylinder[0][4][0],TEMP 3cylinder[1][4][0],TEMP 3cylin
der[2][4]110]1),0),
xy=(max (TEMP_3cylinder[0] [4] [0],TEMP 3cylinder[1][4][0],TEMP 3cylinder|
21[41001), H_3cylinder[0][4]1[0]),
xytext=(max (TEMP 3cylinder[0] [4][0],TEMP 3cylinder[1][4][0],TEMP 3cylin
der([2][4][0])*0.85, H 3cylinder[0][4]([0]-50),
arrowprops=dict (facecolor="'black', shrink=0.05),
)
plt.subplot (246)
plt.title ("Angle %s "%22

S)
plt.plot (TEMP 3cylinder[O
1
2

1[5],H 3cylinder[0][5],"'*")
1[5],H 3cylinder[1][5],"'-")
105

[5],H 3cylinder[2][5],'.")

plt.plot (TEMP_3cylinder|
plt.plot (TEMP_ 3cylinder|
plt.grid()
plt.legend(('Liner 1','Liner 2', 'Liner 3'),loc=2,fontsize=10)
plt.xlabel ("Temperature [°C]")
plt.ylabel ("Axial position [mm]")
if round(max (TEMP 3cylinder[0] [5][0],TEMP 3cylinder[1][5][0],
TEMP 3cylinder[2][5][0]),0) < 50:
plt.annotate ('Tmax = %s °C
'$round (max (TEMP_ 3cylinder[0] [5] [0], TEMP 3cylinder[1][5][0],TEMP 3cylin
der[2][5]110]1),0),
xy=(max (TEMP_3cylinder[0] [5] [0],TEMP 3cylinder[1][5][0],TEMP 3cylinder|
21[51001), H_3cylinder[0][5]1[0]),
xytext=(max (TEMP 3cylinder[0][5][0],TEMP 3cylinder[1][5][0],TEMP 3cylin
der[2][5]1[0])*1.025, H 3cylinder[0][5][0]-50),
arrowprops=dict (facecolor='black', shrink=0.05),
)
else:
plt.annotate ('Tmax = %s °C
'$round (max (TEMP 3cylinder[0] [5][0], TEMP 3cylinder[1][5][0],TEMP 3cylin
der[2][5]1101),0),
xy=(max (TEMP 3cylinder[0][5] [0],TEMP 3cylinder[1][5][0],TEMP_ 3cylinder]|
2105110]), H_3cylinder[0][5][0]),
xytext=(max (TEMP 3cylinder[0][5] [0],TEMP 3cylinder[1][5][0],TEMP 3cylin
der[2][5]1[0])*0.85, H 3cylinder[0][5][0]-50),
arrowprops=dict (facecolor="'black', shrink=0.05),
)
plt.subplot (247)
plt.title("Angle %s "%270)
plt.plot (TEMP 3cylinder[0][6],H 3cylinder[0][6],
plt.plot (TEMP_ 3cylinder[1l][6],H 3cylinder([1l][6],'-")
plt.plot (TEMP_ 3cylinder[2][6],H 3cylinder([2][6],"'.")
plt.grid()
plt.legend(('Liner 1','Liner 2', 'Liner 3'),loc=2,fontsize=10)
plt.xlabel ("Temperature [°C]")
plt.ylabel ("Axial position [mm]")
if round(max (TEMP 3cylinder[0][6][0],TEMP 3cylinder[1][6][0],
TEMP 3cylinder[2][6][0]),0) < 50:
plt.annotate ('Tmax = %s °C
'$round (max (TEMP 3cylinder[0][6][0], TEMP 3cylinder[1][6][0],TEMP 3cylin
der[2][6]110]1),0),

DA " Pl b,
<

l*l)

]
IN PRAGUE
A PACCAR COMPANY

xy=(max (TEMP_3cylinder[0] [6] [0],
2]1[6]1[0]), H_3cylinder[0][6]I[0]),
xytext=(max (TEMP 3cylinder[0][6][0],TEMP 3cylinder[1][6][0],TEMP 3cylin
der[2][6][0])*1.025, H 3cylinder[0][6]([0]-50),
arrowprops=dict (facecolor='black', shrink=0.05),

)

0], TEMP 3cylinder([1][6][0],TEMP 3cylinder|
0
[

else:
plt.annotate ('Tmax = %s °C
'$round (max (TEMP_3cylinder[0] [6] [0], TEMP 3cylinder[1][6][0],TEMP_ 3cylin
der[2][6]10]1),0),
xy=(max (TEMP_3cylinder[0][6] [0],TEMP 3cylinder[1][6][0],TEMP 3cylinder|
21[6100]1), H_3cylinder[0][6][0]),

xytext=(max (TEMP 3cylinder[0][6][0],TEMP 3cylinder[1][6][0],TEMP 3cylin
der[2][6][0])*0.85, H 3cylinder[0][6]([0]-50),
arrowprops=dict (facecolor='black', shrink=0.05),
)
plt.subplot (248)
plt.title ("Angle %s "%31
plt.plot (TEMP_ 3cylinder|
plt.plot (TEMP 3cylinder|
plt.plot (TEMP 3cylinder|
plt.grid()
plt.legend(('Liner 1','Liner 2', 'Liner 3'),loc=2,fontsize=10)
plt.xlabel ("Temperature [°C]")
plt.ylabel ("Axial position [mm]")
if round(max (TEMP 3cylinder[0][7][0],TEMP 3cylinder[1][7][0],
TEMP 3cylinder([2][7][0]),0) < 50:
plt.annotate ('Tmax = %s °C
'$round (max (TEMP_3cylinder [0] [7][0], TEMP 3cylinder[1][7]([0],TEMP_ 3cylin
der[2][7]110]1),0),
xy=(max (TEMP_3cylinder[0][7] [0],TEMP 3cylinder[1][7][0],TEMP 3cylinder|
2]1[7110]1), H_3cylinder[0][7]10]),
xytext=(max (TEMP 3cylinder[0][7][0],TEMP 3cylinder[1][7][0],TEMP 3cylin
der[2][71[0])*1.025, H 3cylinder([0][7][0]-50),
arrowprops=dict (facecolor='black', shrink=0.05),

)

)

1[07],H 3cylinder[0][7],"'*")
1[7]1,H 3cylinder[1][7],'-"
1[7]1,H 3cylinder[2][7],"'.")

~ 0~

5
0
1
2

else:
plt.annotate ('Tmax = %s °C
'$round (max (TEMP_3cylinder[0] [7][0],TEMP 3cylinder([1][7][0],TEMP 3cylin
der[2][7]110]1),0),
xy=(max (TEMP_3cylinder[0][7] [O]
21[71101), H_3cylinder[0][7]10]),
xytext=(max (TEMP 3cylinder[0][7][0],TEMP 3cylinder[1][7][0],TEMP 3cylin
der[2][7]1[0])*0.85, H 3cylinder[0][7][0]-50),
arrowprops=dict (facecolor="'black', shrink=0.05),
)
plt.show ()

0], TEMP 3cylinder([1][7][0],TEMP 3cylinder|
01)
[7]

DAFE 6 DS Tt
A PACCAR COMPANY / \V ; :JNNL\;EA?JEY

Distortion_generate_files script

import os

import numpy as np

from collections import OrderedDict
from abagqus import *

from abagqusConstants import *
import main

from abagqus import getInput

dirpath = "C:\Users\A-Damien.Gode\Documents\Distortion
program\Analysis"

os.chdir (dirpath)

def create folder():
os.chdir (dirpath)

odb =

session.odbs[session.odbData.keys () [0]]

tmp=odb.name.split () [-1]
name=""

index=

for i

0
in range(len (tmp)) :

if tmp[i] == "'/':

index=1i

name=tmp[index+l:len (tmp)]

name = name[0:len (name) -4]

if os.path.exists(name) == False:
os.makedirs (name)

return (name)

def belong(List,val) :

for i

in range (len(List)):

if List[i]==val:

return (True)

return (False)

def cylinder selection (manual=False) :
cylinder list=[]
if manual == False:
cylinder list=[1,2,3]
return (cylinder list)
if manual == True:
already=1[]
N=int (getInput ("How many cylinders do you consider?"))
for i in range(N):

cyl=int (getInput ("Which cylinder?"))
while belong(already,cyl) == True:

cyl=int (getInput ("Already selected!

already.append(cyl)
cylinder list.append(cyl)

return (cylinder list)

def step index():

index=

odb =

[]

session.odbs[session.odbData.keys () [0]]

Choose a new one

D /A -

e ——
A PACCAR COMPANY

66

2
N

<

CZECH
TECHNICAL
UNIVERSITY
IN PRAGUE

N=len (odb.steps)

for i in range (N) :
index.append ((odb.steps.keys () [1],1))

index = OrderedDict (index)

return (index)

def step selection(manual=False):
step list=[]
odb = session.odbs[session.odbData.keys () [0]]
N=len (odb.steps)
if manual == False:
step list=list (np.linspace(0,N-1,N))
for i in range (N) :
step list[i]=int (step list[i])
return (step list)
if manual == True:
already=[]
n=int (getInput ("How many steps do you consider?"))
for i in range(n):
step=int (getInput ("Which step? "))
while belong (already, step) == True:
step=int (getInput ("Already selected! Choose a new one

already.append (step-1)
step list.append(step-1)
return (step list)

def MX11 files(manual=False):
import visualization
import xyPlot
import displayGroupOdbToolset as dgo
os.chdir (dirpath+"/%$s"%create folder())
cylinder list = cylinder selection (manual)
step list = step selection(manual)
leaf = dgo.LeafFromPartInstance (partInstanceName=('LIN-1"',))
session.viewports|['Viewport:
1'].odbDisplay.displayGroup.replace (leaf=leaf)
odb = session.odbs[session.odbData.keys () [0]]
scratchOdb = session.ScratchOdb (odb)
if belong(cylinder 1list,1l) == True:
nodel = odb.rootAssembly.instances['LIN-1"'].nodes[87368]
node? odb.rootAssembly.instances['LIN-1"'] .nodes[86376]
node3 = odb.rootAssembly.instances['LIN-1"'].nodes[86306]
scratchOdb.rootAssembly.DatumCsysByThreeCircNodes (name="'CSYS-

coordSysType=CYLINDRICAL, nodelArc=nodel, node2Arc=nodeZ2,
node3Arc=node3)
dtm = session.scratchOdbs[session.odbData.keys () [0]]
.rootAssembly.datumCsyses['CSYS-1"]
session.viewports|['Viewport:
1'].odbDisplay.basicOptions.setValues (
transformationType=USER SPECIFIED, datumCsys=dtm)
session.viewerOptions.setValues (deformedVariableCaching=False,
primaryVariableCaching=False, cutVariableCaching=False)
for i in range(len(step list)):
session.linkedViewportCommands.setValues
(_highlightLinkedViewports=True)
leaf = dgo.LeafFromOdbNodePick (nodePick=(('LIN-1"', 9252, (

DAFE 67 D
A PACCAR COMPANY / \‘ : :JNNL‘:‘EA%SJ?

'[#0:1267 #E££f££f0000 #ffffffff:160 #7ffff #0:7 #fffffff8
#ffffffff:60",

' #1ff #0:2 #fffffc00 #Effffffff:4 #1fffff #0:1106
#££££0000",

' #ffffffff:8 #3f££ff #0:10 #7£00000 #0:5 #18 #0:2°',

' #E££££800 #LfLEE£££££:5 #7££f #0:2 #100 #0:5 #f££ff£££8°',

' #ELEEEEEL #3ff #0:4 #L££££8000 #Lfffffff:2 #1fff£ff #0:9',

' #Eff£f£fc00 #LLEE£E£££:10 #T7L£££££Ff #0:8 #c7££0000
#ELEEEE£EF:2 $1EE£EEET,

' #0:2 #3000 #0:2 #38000000 #0 #4010842 #80210401"',

' #84208020 #ffffff00 #Lffffffff:7 #3fffff #0 #££de0000
0 e i e e A

' #ff #0:2 #fffffffe #f£fffffff:6 #£££f #0:3 #£8000000',

' HEEEEEEEET #EEEE], D)),),)

session.viewports|['Viewport:
1'].odbDisplay.displayGroup.replace (leaf=leaf)

dg = session.DisplayGroup (leaf=leaf, name='DisplayGroup-2"')

dgl= session.displayGroups|['DisplayGroup-2"]

session.viewports|['Viewport:
1'].odbDisplay.setValues (visibleDisplayGroups= (

dgl,))

session.viewports|['Viewport:
1'].odbDisplay.setFrame (step=step list[i], frame=1)

odb = session.odbs[session.odbData.keys () [0]]

session.fieldReportOptions.setValues (separateTables=0N,
printTotal=0FF,

printMinMax=0FF)

session.writeFieldReport (fileName="MX11l cyll step%s.txt'S(step list[i]+
1), append=0FF,

sortItem="'Node Label', odb=odb, step=step list[i], frame=1,
outputPosition=NODAL,

variable=(('U', NODAL, ((COMPONENT, 'U1"'),)),))

if belong(cylinder 1list,2) == True:
nodel = odb.rootAssembly.instances['LIN-1"'].nodes[77505]
node2 = odb.rootAssembly.instances['LIN-1'].nodes[77255]
node3 = odb.rootAssembly.instances['LIN-1'].nodes[77175]
scratchOdb.rootAssembly.DatumCsysByThreeCircNodes (name="CSYS-

coordSysType=CYLINDRICAL, nodelArc=nodel, node2Arc=nodeZ2,
node3Arc=node3)
dtm = session.scratchOdbs[session.odbData.keys () [0]]
.rootAssembly.datumCsyses['CSYS-2"]
session.viewports['Viewport:
1'].odbDisplay.basicOptions.setValues (
transformationType=USER SPECIFIED, datumCsys=dtm)
session.viewerOptions.setValues (deformedVariableCaching=False,
primaryVariableCaching=False, cutVariableCaching=False)
for i1 in range(len(step list)):
session.linkedViewportCommands.setValues
(_highlightLinkedViewports=True)
leaf = dgo.LeafFromOdbNodePick (nodePick=(('LIN-1"', 9252, (
'[#0:279 #f££00000 #ffffffff:153 #fff #0:6 #£0000000
#EffE£££££:73 7,
' #EffEfff #0:1895 #fffffffe #fffff£f£ff:3 #3ffff #0:4
#fffffffc’,
' #EFEEEEEE:3 #1EE£Ef #0:4 #E£££££££:52 #££E€ 1,)),),)

DAFE o D T
A PACCAR COMPANY / \V ; rNNL\;EA%SJ;Y

session.viewports|['Viewport:
1'].odbDisplay.displayGroup.replace (leaf=1leaf)

dg = session.DisplayGroup (leaf=leaf, name='DisplayGroup-2"')

dgl= session.displayGroups|['DisplayGroup-2"]

session.viewports|['Viewport:
1'].odbDisplay.setValues (visibleDisplayGroups= (

dgl,))

session.viewports['Viewport:
1'].odbDisplay.setFrame (step=step list[i], frame=1)

odb = session.odbs[session.odbData.keys () [0]]

session.fieldReportOptions.setValues (separateTables=0N,
printTotal=0OFF,

printMinMax=0FF)

session.writeFieldReport (fileName="MX11 cyl2 step%s.txt's
(step list[i]+1), append=O0FF,

sortItem='Node Label', odb=odb, step=step list[i], frame=1,
outputPosition=NODAL,

variable=(('U', NODAL, ((COMPONENT, 'Ul"),)),))

if belong(cylinder 1list,3) == True:
nodel = odb.rootAssembly.instances['LIN-1"'].nodes[79570]
node?2 = odb.rootAssembly.instances['LIN-1"'].nodes[80194]
node3 = odb.rootAssembly.instances['LIN-1"'].nodes[79752]
scratchOdb.rootAssembly.DatumCsysByThreeCircNodes (name="'CSYS-

coordSysType=CYLINDRICAL, nodelArc=nodel, node2Arc=nodeZ2,
node3Arc=node3)
dtm = session.scratchOdbs[session.odbData.keys () [0]]
.rootAssembly.datumCsyses['CSYS-3"']
session.viewports|['Viewport:
1'].odbDisplay.basicOptions.setValues (
transformationType=USER SPECIFIED, datumCsys=dtm)
session.viewerOptions.setValues (deformedVariableCaching=False,
primaryVariableCaching=False, cutVariableCaching=False)
for i in range(len(step list)):
session.linkedViewportCommands.setValues
(_highlightLinkedViewports=True)
leaf = dgo.LeafFromOdbNodePick (nodePick=(('LIN-1"', 9252, (
'"[#0:1690 #ff000000 #ffffffff:5 #7 #0:2 #fEf£f£f£f££0
#ffffffff:60"',
' #3ff #0:6 #fc000000 #ffffffff:160 #1fffffff #0:555
#80000000",
' $fffffff£:4 #3fff #0:2 #f£f£f£££f80 #3dffffff #0:9 #6',
' #0 #£f£fc00000 #ffffffff:2 #1ffff #0:28 #2000000 #0:5',
' #6000000 #0:5 #3f8 #0:10 #fffff000 #ffffffff:51 #£ffff 1°',

session.viewports|['Viewport:
1'].odbDisplay.displayGroup.replace (leaf=leaf)

dg = session.DisplayGroup (leaf=1leaf, name='DisplayGroup-2"')

dgl= session.displayGroups|['DisplayGroup-2"']

session.viewports|['Viewport:
1'].odbDisplay.setValues (visibleDisplayGroups= (

dgl,))

session.viewports|['Viewport:
1'].odbDisplay.setFrame (step=step list[i], frame=1)

odb = session.odbs[session.odbData.keys () [0]]

session.fieldReportOptions.setValues (separateTables=0N,
printTotal=0FF,

DAFE “ D T
A PACCAR COMPANY / \V ; rNNL\;EA%SJ;Y

printMinMax=0FF)

session.writeFieldReport (fileName="'MX11l cyl3 step%s.txt's
(step list[i]+1), append=O0FF,

sortItem="'Node Label', odb=odb, step=step list[i], frame=1,
outputPosition=NODAL,

variable=(('U', NODAL, ((COMPONENT, 'U1"),)),))

session.viewports|['Viewport: 1'].odbDisplay.setFrame
(step=0, frame=1)

print("Files generation successfully done")

def MX13 files(manual = False):
import visualization
import xyPlot
import displayGroupOdbToolset as dgo
os.chdir (dirpath+"/%$s"%create folder())
cylinder list = cylinder selection (manual)
step list = step selection(manual)
leaf = dgo.LeafFromPartInstance (partInstanceName=('LINER-1"',))
session.viewports|['Viewport:
1'].odbDisplay.displayGroup.replace (leaf=1leaf)
odb = session.odbs[session.odbData.keys () [0]]
scratchOdb = session.ScratchOdb (odb)
if belong(cylinder 1list,1l) == True:
nodel = odb.rootAssembly.instances|['LINER-1"'].nodes[14433]
node?2 = odb.rootAssembly.instances|['LINER-1"'].nodes[14345]
node3 = odb.rootAssembly.instances['LINER-1'].nodes[14389]
scratchOdb.rootAssembly.DatumCsysByThreeCircNodes (name="CSYS-

—

coordSysType=CYLINDRICAL, nodelArc=nodel, node2Arc=nodeZ2,
node3Arc=node3)
dtm = session.scratchOdbs[session.odbData.keys () [0]]
.rootAssembly.datumCsyses|['CSYS-1"]
session.viewports['Viewport:
1'].odbDisplay.basicOptions.setValues (
transformationType=USER SPECIFIED, datumCsys=dtm)
session.viewerOptions.setValues (deformedVariableCaching=False,
primaryVariableCaching=False, cutVariableCaching=False)
for i in range(len(step list)):
session.linkedViewportCommands.setValues
(_highlightLinkedViewports=True)
leaf = dgo.LeafFromOdbNodePick (nodePick=(('LINER-1', 8208,
(
'"[#0:315 #fffffffe #LfffEfff£ff #3ff #0 #£££fc0000 #ffffffff’',
' #1fEfEffff #0:125 #££800000 #ffffffff:4 #7f #0:126
#£££££c00',
' #ffEfEffEf£:246 #33LLEEEE], D)),),)
session.viewports|['Viewport:
1'].odbDisplay.displayGroup.replace (leaf=leaf)
dg = session.DisplayGroup (leaf=1leaf, name='DisplayGroup-2"')
dgl= session.displayGroups|['DisplayGroup-2"']
session.viewports|['Viewport:
1'].odbDisplay.setValues (visibleDisplayGroups= (
dgl,))
session.viewports|['Viewport:
1'].odbDisplay.setFrame (step=step list[i], frame=1)
odb = session.odbs[session.odbData.keys () [0]]
session.fieldReportOptions.setValues (separateTables=0N,
printTotal=0FF,

DAFE 7 DS Tt
A PACCAR COMPANY / \V ; :JNNL\;EA?JEY

printMinMax=0FF)

session.writeFieldReport (fileName="'MX13 cyll step%s.txt's
(step list[i]+1), append=O0FF,

sortItem="'Node Label', odb=odb, step=step list[i], frame=1,
outputPosition=NODAL,

variable=(('U', NODAL, ((COMPONENT, 'U1'),)),))

if belong(cylinder list,2) == True:
nodel = odb.rootAssembly.instances['LINER-1"'].nodes[69383]
node?2 = odb.rootAssembly.instances|['LINER-1"'].nodes[69297]
node3 = odb.rootAssembly.instances|['LINER-1"'].nodes[69339]
scratchOdb.rootAssembly.DatumCsysByThreeCircNodes (name="'CSYS—

2',

coordSysType=CYLINDRICAL, nodelArc=nodel, node2Arc=nodeZ2,

node3Arc=node3)

dtm =
session.scratchOdbs[session.odbData.keys () [0]].rootAssembly.datumCsyses
['CSYS-2"]

session.viewports|['Viewport:
1'].odbDisplay.basicOptions.setValues (
transformationType=USER SPECIFIED, datumCsys=dtm)
session.viewerOptions.setValues (deformedVariableCaching=False,
primaryVariableCaching=False, cutVariableCaching=False)
for i in range(len(step list)):
session.linkedViewportCommands.setValues
(_highlightLinkedViewports=True)
leaf = dgo.LeafFromOdbNodePick (nodePick=(('LINER-1', 8208,
(
'[#0:2032 #ffffffel0 #ffffffff #3fff #0 #££c00000
#ffffffff’,
' #1ffff£Eff #0:125 #£8000000 #ffffffff:4 #7ff #0:126
#ffffc000"',
' #EffEf£££:246 #3LLEEEEE 1Y, D)),),)
session.viewports|['Viewport:
1'].odbDisplay.displayGroup.replace (leaf=1leaf)
dg = session.DisplayGroup (leaf=leaf, name='DisplayGroup-2"')
dgl= session.displayGroups|['DisplayGroup-2"]
session.viewports|['Viewport:
1'].odbDisplay.setValues (visibleDisplayGroups= (
dgl,))
session.viewports|['Viewport:
1'].odbDisplay.setFrame (step=step list[i], frame=1)
odb = session.odbs[session.odbData.keys () [0]]
session.fieldReportOptions.setValues (separateTables=0N,
printTotal=0FF,
printMinMax=0FF)
session.writeFieldReport (fileName="'MX13 cyl2 step%s.txt'$%
(step_list[i]+1), append=0FF,
sortItem='Node Label', odb=odb, step=step list[i], frame=1,
outputPosition=NODAL,
variable=(('U', NODAL, ((COMPONENT, 'U1'),)),))

if belong(cylinder 1list,3) == True:
nodel = odb.rootAssembly.instances['LINER-1"'].nodes[124327]
node?2 odb.rootAssembly.instances['LINER-1"].nodes[124249]
node3 = odb.rootAssembly.instances['LINER-1"'].nodes[124283]
scratchOdb.rootAssembly.DatumCsysByThreeCircNodes (name="'CSYS-

3",

D/ - & ﬂ&“(?/"
e /YRS

coordSysType=CYLINDRICAL, nodelArc=nodel, node2Arc=nodeZ2,
node3Arc=node3)
dtm = session.scratchOdbs[session.odbData.keys () [0]]
.rootAssembly.datumCsyses['CSYS-3"']
session.viewports|['Viewport:
1'].odbDisplay.basicOptions.setValues (
transformationType=USER SPECIFIED, datumCsys=dtm)
session.viewerOptions.setValues (deformedVariableCaching=False,
primaryVariableCaching=False, cutVariableCaching=False)
for i1 in range(len(step list)):
session.linkedViewportCommands.setValues
(_highlightLinkedViewports=True)
leaf = dgo.LeafFromOdbNodePick (nodePick=(('LINER-1"', 8208,
(
"[#0:3749 #fffffe00 #ffffffff #3ffff #0 #£c000000
#ffffffff: 2",
' #1 #0:124 #80000000 #ffffffff:4 #7fff #0:126 #£££c0000"',
' HEEEEEEEL:24T7 #3 1,)),),)
session.viewports|['Viewport:
1'].odbDisplay.displayGroup.replace (leaf=1leaf)
dg = session.DisplayGroup (leaf=leaf, name='DisplayGroup-2"')
dgl= session.displayGroups|['DisplayGroup-2"]
session.viewports|['Viewport:
1'].odbDisplay.setValues (visibleDisplayGroups= (
dgl,))
session.viewports['Viewport:
1'].odbDisplay.setFrame (step=step list[i], frame=1)
odb = session.odbs[session.odbData.keys () [0]]
session.fieldReportOptions.setValues (separateTables=0N,
printTotal=0FF,
printMinMax=0FF)
session.writeFieldReport (fileName="'MX13 cyl3 step%s.txt'
% (step list[i]+1), append=0FF,
sortItem="'Node Label', odb=odb, step=step list[i], frame=1l,
outputPosition=NODAL,
variable=(('U', NODAL, ((COMPONENT, 'U1l"),)),))
session.viewports|['Viewport: 1'].odbDisplay.setFrame (step=0,
frame=1)
print("Files generation successfully done")

]
IN PRAGUE
A PACCAR COMPANY

DA : Pl i
<

Temperature_generate_files script

import os

import numpy as np

from collections import OrderedDict
from abagqus import *

from abagqusConstants import *
import main

from abagqus import getInput

dirpath = "C:/Users/A-Damien.Gode/Documents/Distortion
program/Analysis"

os.chdir (dirpath)

def create folder():
os.chdir (dirpath)

odb =

session.odbs[session.odbData.keys () [0]]

tmp=odb.name.split () [-1]
name=""

index=

for i

0
in range(len (tmp)) :

if tmp[i] == "'/':

index=1i

name=tmp[index+l:len (tmp)]

name = name[0:len (name) -4]

if os.path.exists(name) == False:
os.makedirs (name)

return (name)

def belong(List,val) :

for i

in range (len(List)):

if List[i]==val:

return (True)

return (False)

def cylinder selection (manual=False) :
cylinder list=[]
if manual == False:
cylinder list=[1,2,3]
return (cylinder list)
if manual == True:
already=1[]
N=int (getInput ("How many cylinders do you consider?"))
for i in range(N):

cyl=int (getInput ("Which cylinder?"))
while belong(already,cyl) == True:

cyl=int (getInput ("Already selected!

already.append(cyl)
cylinder list.append(cyl)

return (cylinder list)

def step index():

index=

odb =

[]

session.odbs[session.odbData.keys () [0]]

Choose a new one

D /A -

e ——
A PACCAR COMPANY

73

2
N

<

CZECH
TECHNICAL
UNIVERSITY
IN PRAGUE

N=len (odb.steps)

for i in range (N) :
index.append ((odb.steps.keys () [1],1))

index = OrderedDict (index)

return (index)

def step selection(manual=False):
step list=[]
odb = session.odbs[session.odbData.keys () [0]]
N=len (odb.steps)
if manual == False:
step list=list (np.linspace(0,N-1,N))
for i in range (N) :
step list[i]=int (step list[i])
return (step list)
if manual == True:
already=[]
n=int (getInput ("How many steps do you consider?"))
for i in range(n):
step=int (getInput ("Which step?"))
while belong (already, step) == True:
step=int (getInput ("Already selected! Choose a new one

already.append (step-1)
step list.append(step-1)
return (step list)

def MX11l Temperature files (manual=False):
import visualization
import xyPlot
import displayGroupOdbToolset as dgo
os.chdir (dirpath+"/%$s"%create folder())
cylinder list = cylinder selection (manual)
step list = step selection(manual)
leaf = dgo.LeafFromPartInstance (partInstanceName=('LIN-1"',))
session.viewports|['Viewport:
1'].odbDisplay.displayGroup.replace (leaf=leaf)
odb = session.odbs[session.odbData.keys () [0]]
scratchOdb = session.ScratchOdb (odb)

if belong(cylinder 1list,1l) == True:
session.viewerOptions.setValues (deformedVariableCaching=False,
primaryVariableCaching=False, cutVariableCaching=False)
for i in range(len(step list)):
session.linkedViewportCommands.setValues
(_highlightLinkedViewports=True)
leaf = dgo.LeafFromOdbNodePick (nodePick=(('FR-1"', 1584, (
'"[#0:90 #fffffffe #ffffffff #3I3fffff #0:4 #Effffffel
#ffffffff: 3",
' #1fffff #0:2 #££c00000 #Lffffffff #1ffff #0:154
#ffffffff:6',
' #0:143 #£0000000 #ffffffff:6 #7fffffff #0:11 #e0000000
#ffffffff:2",
' #EffEfEffff #0:5 #7£c00000 #0:14 #£0000000 #ffffffff:6 #3f',
' #0 #fffffffe #Lffffffff:16 #3Lf££££ff #0:105 #18 1',)),
('LIN-1', 9252,
("[#0:1267 #Ef£f£f£f0000 #ffffffff:160 #7ffff #0:7 #fffffffs8
#ffffffff:60",

DAFE 74 D
A PACCAR COMPANY / \‘ : :JNNL‘:‘EA%SJ?

' #1ff #0:2 #fff£ffc00 #ffffffff:4 #1£fffff #0:1106
#££££0000",

' #ffffffff:8 #3f£f£ff #0:10 #7£00000 #0:5 #18 #0:2°',

' $ff£f££800 #ffffffff:5 #7fff #0:2 #100 #0:5 #fffffffg",

' #EfLEEEEE #3ff #0:4 #££££8000 #ffffffff:2 #1ffffff #0:9°',

' #Effffc00 #LLEELE£E££:10 #T7L£££££Ff #0:8 #c7££0000
#ffffffff:2 #1£££££EET,

' #0:2 #3000 #0:2 #38000000 #0 #4010842 #80210401"',

' #84208020 #ffffff00 #ffffffff:7 #3fffff #0 #££fde0000
#ffffffffe’,

' #ff #0:2 #fffffffe #ffffffff:6 #££ff #0:3 #£8000000"',

" HEEEEEEEE:T #EEEE], D)),),)

session.viewports|['Viewport:
1'].odbDisplay.displayGroup.replace (leaf=1leaf)

dg = session.DisplayGroup (leaf=leaf, name='DisplayGroup-2"')

dgl= session.displayGroups|['DisplayGroup-2"]

session.viewports|['Viewport:
1'].odbDisplay.setValues (visibleDisplayGroups= (

dgl,))

session.viewports|['Viewport:
1'].odbDisplay.setFrame (step=step list[i], frame=1)

odb = session.odbs[session.odbData.keys () [0]]

session.fieldReportOptions.setValues (separateTables=0N,
printTotal=0FF,

printMinMax=0FF)

session.writeFieldReport (fileName=
'"TEMP MX11 cyll step%s.txt'%(step list[i]+1), append=0FF,

sortItem='Node Label', odb=odb, step=step list[i], frame=1,
outputPosition=NODAL,

variable=(('NT11', NODAL),))

if belong(cylinder 1list,2) == True:
session.viewerOptions.setValues (deformedVariableCaching=False,
primaryVariableCaching=False, cutVariableCaching=False)
for i in range(len(step list)):
session.linkedViewportCommands.setValues
(_highlightLinkedViewports=True)
leaf = dgo.LeafFromOdbNodePick (nodePick=(('FR-1"', 1584, (
'"[#0:060 #fffffffe #ffffffff:3 #3ffff #0:4 #fffffffc
#ffffffff: 3",
' #1ffff #0:187 #Effffffff:6 #0:46 #££££0000 #ffffffff:33
S o i o i
' #0:142 #80000000 1',)), ('LIN-1"', 9252, (
'[#0:279 #fff00000 #ffffffff:153 #fff #0:6 #£0000000
#ffffff££:73",
' $ffffff $#0:1895 #fffffffe #fff£££££:3 #3f£f£ff #0:4
#fffffffc’,
' $EFEEEEEE:3 #1EEEf #0:4 #E£E£E£££££:52 #££E€ 17,)),),)
session.viewports|['Viewport:
1'].odbDisplay.displayGroup.replace (leaf=1leaf)
dg = session.DisplayGroup (leaf=leaf, name='DisplayGroup-2"')
dgl= session.displayGroups|['DisplayGroup-2"]
session.viewports|['Viewport:
1'].odbDisplay.setValues (visibleDisplayGroups= (
dgl,))
session.viewports|['Viewport:
1'].odbDisplay.setFrame (step=step list[i], frame=1l)
odb = session.odbs[session.odbData.keys () [0]]

DAFE 7 D T
A PACCAR COMPANY / \V ; rNNL\;EA%SJ;Y

session.fieldReportOptions.setValues (separateTables=0N,
printTotal=0OFF,
printMinMax=0FF)

session.writeFieldReport (fileName='TEMP MX1l cyl2 step%s.txt'
% (step list[i]+1), append=OFF,

sortItem="'Node Label', odb=odb, step=step list[i], frame=1l,
outputPosition=NODAL,

variable=(('NT11', NODAL),))

if belong(cylinder 1list,3) == True:
session.viewerOptions.setValues (deformedVariableCaching=False,
primaryVariableCaching=False, cutVariableCaching=False)
for i in range(len(step list)):
session.linkedViewportCommands.setValues
(_highlightLinkedViewports=True)
leaf = dgo.LeafFromOdbNodePick (nodePick=(('FR-1"', 1584, (
'"[#0:199 #ff£f£f8000 #ffffffff #3ff #0:2 #£££££800
#ffffffff: 3",
' #T7ffffff #0:4 #fff£f£fc00 #Efff£f£f££f #7££££££F #0:57
#ffffffff:6',
' #0:91 #fffe0000 #ffffffff:2 #ffff #0:11 #£f£f££c000
#ffff£f£££:30",
' #ffff£f£ff #0:278 #70000 1',)), ('LIN-1', 9252, (
'[#0:1690 #ff000000 #ffffffff:5 #7 #0:2 #fffff£ff0
#ffffffff:60",
' #3ff #0:6 #£fc000000 #ffffffff:160 #1fff£f£fff #0:555
#80000000",
' #fffffff£:4 #3fff #0:2 #f£f£f£££80 #3dffffff #0:9 #6',
' #0 #£ffc00000 #ffffffff:2 #1ffff #0:28 #2000000 #0:5'",
' #6000000 #0:5 #3f8 #0:10 #fffff000 #ffffffff:51 #£ffff]',

session.viewports|['Viewport:
1'].odbDisplay.displayGroup.replace (leaf=1leaf)

dg = session.DisplayGroup (leaf=leaf, name='DisplayGroup-2"')

dgl= session.displayGroups|['DisplayGroup-2"']

session.viewports|['Viewport:
1'].odbDisplay.setValues (visibleDisplayGroups= (

dgl,))

session.viewports|['Viewport:
1'].odbDisplay.setFrame (step=step list[i], frame=1)

odb = session.odbs[session.odbData.keys () [0]]

session.fieldReportOptions.setValues (separateTables=0N,
printTotal=0FF,

printMinMax=0FF)

session.writeFieldReport (fileName='TEMP MX11l cyl3 step%s.txt'
% (step_list[il]+1), append=OFF,
sortItem='Node Label', odb=odb, step=step list[i], frame=1,
outputPosition=NODAL,
variable=(('NT11', NODAL),))
session.viewports|['Viewport: 1'].odbDisplay.setFrame (step=0,
frame=1)
print ("Files generation successfully done")

def MX13 Temperature files (manual=False):
import visualization
import xyPlot

DAFE 76 DS Tt
A PACCAR COMPANY / \V ; :JNNL\;EA?JEY

import displayGroupOdbToolset as dgo
os.chdir (dirpath+"/%$s"%create folder())
cylinder list = cylinder selection (manual)
step list = step selection(manual)
leaf = dgo.LeafFromPartInstance (partInstanceName=('LINER-1"',))
session.viewports|'Viewport:
1'].odbDisplay.displayGroup.replace (leaf=leaf)
odb = session.odbs[session.odbData.keys () [0]]
scratchOdb = session.ScratchOdb (odb)
if belong(cylinder 1list,1l) == True:
session.viewerOptions.setValues (deformedVariableCaching=False,
primaryVariableCaching=False, cutVariableCaching=False)
for i in range(len(step list)):
session.linkedViewportCommands.setValues
(_highlightLinkedViewports=True)
leaf = dgo.LeafFromOdbNodePick (nodePick=(('FIRE-RING-1"'",
1296, (
"[#0:45 #EfEfEEE£:31 #£££ff #0:17 #L££££0000 #ffffffff:8
#EEEE 1, D)), (
'LINER-1", 8208, (
'[#0:315 #fffffffe #fffEf£f£f£ff #3ff #0 #£f££c0000 #ffffffff’,
' #1ffffff #0:125 #££800000 #ffffffff:4 #7f #0:126
#£££££c00"',
' #Efffffff:246 #3I3LLEEEEE], D)),),)
session.viewports|['Viewport:
1'].odbDisplay.displayGroup.replace (leaf=leaf)
dg = session.DisplayGroup (leaf=leaf, name='DisplayGroup-2"')
dgl= session.displayGroups|['DisplayGroup-2"]
session.viewports|['Viewport:
1'].odbDisplay.setValues (visibleDisplayGroups= (
dgl,))
session.viewports|['Viewport:
1'].odbDisplay.setFrame (step=step list[i], frame=1)
odb = session.odbs[session.odbData.keys () [0]]
session.fieldReportOptions.setValues (separateTables=0N,
printTotal=0FF,
printMinMax=0FF)

session.writeFieldReport (fileName='TEMP MX13 cyll step%s.txt'
% (step_list[i]+1), append=OFF,

sortItem="'Node Label', odb=odb, step=step list[i], frame=1,
outputPosition=NODAL,

variable=(('NT11', NODAL),))

if belong(cylinder 1list,2) == True:
session.viewerOptions.setValues (deformedVariableCaching=False,
primaryVariableCaching=False, cutVariableCaching=False)
for i1 in range(len(step list)):
session.linkedViewportCommands.setValues
(_highlightLinkedViewports=True)
leaf = dgo.LeafFromOdbNodePick (nodePick=(('FIRE-RING-1"',
1296, (
'[#0:124 #£8000000 #ffffffff:8 #7ffffff #0:7 #££800000
#ffff£f££:31",
''#7€£1',)), ('LINER-1', 8208, (
'[#0:2032 #ffffffe0 #ffffffff #3fff #0 #££c00000
e o o i A

DAFE 77 /ﬂ%f?;

CZECH
TECHNICAL
UNIVERSITY
IN PRAGUE

' #1fffffff #0:125 #£8000000 #ffffffff:4 #7ff #0:126
#££££c000"',

' #EfEEfff££:246 #3LLEEEEE 1Y,)Y,),)

session.viewports|['Viewport:
1'].odbDisplay.displayGroup.replace (leaf=leaf)

dg = session.DisplayGroup (leaf=leaf, name='DisplayGroup-2"')

dgl= session.displayGroups|['DisplayGroup-2"]

session.viewports['Viewport:
1'].odbDisplay.setValues (visibleDisplayGroups= (

dgl,))

session.viewports|['Viewport:
1'].odbDisplay.setFrame (step=step list[i], frame=1)

odb = session.odbs[session.odbData.keys () [0]]

session.fieldReportOptions.setValues (separateTables=0N,
printTotal=0FF,

printMinMax=0FF)

session.writeFieldReport (fileName='TEMP MX13 cyl2 step%s.txt'
% (step_list[il]+1), append=OFF,

sortItem="'Node Label', odb=odb, step=step list[i], frame=1l,
outputPosition=NODAL,

variable=(('NT11', NODAL),))

if belong(cylinder 1list,3) == True:
session.viewerOptions.setValues (deformedVariableCaching=False,
primaryVariableCaching=False, cutVariableCaching=False)
for i1 in range(len(step list)):
session.linkedViewportCommands.setValues
(_highlightLinkedViewports=True)
leaf = dgo.LeafFromOdbNodePick (nodePick=(('FIRE-RING-1"',
1296, (
'[#0:196 #£8000000 #ffffffff:8 #7ff£ffff #0:7 #££800000
#fffff£f££:31",
'"'#7£ 1',)), ('LINER-1', 8208, (
'"[#0:3749 #fffffe00 #ffffffff #3ffff #0 #£c000000
#ffffffff: 2",
' #1 #0:124 #80000000 #ffffffff:4 #7fff #0:126 #£££c0000"',
' HEEEEEEEL:247 #3 1,)),),)
session.viewports|['Viewport:
1'].odbDisplay.displayGroup.replace (leaf=leaf)
dg = session.DisplayGroup (leaf=leaf, name='DisplayGroup-2"')
dgl= session.displayGroups|['DisplayGroup-2"]
session.viewports|['Viewport:
1'].odbDisplay.setValues (visibleDisplayGroups= (
dgl,))
session.viewports|['Viewport:
1'].odbDisplay.setFrame (step=step list[i], frame=1l)
odb = session.odbs[session.odbData.keys () [0]]
session.fieldReportOptions.setValues (separateTables=0N,
printTotal=0FF,
printMinMax=0FF)

session.writeFieldReport (fileName='TEMP MX13 cyl3 step%s.txt'
% (step list[i]+1), append=0FF,

sortItem="'Node Label', odb=odb, step=step list[i], frame=1,
outputPosition=NODAL,

variable=(('NT11', NODAL),))

i —— | UNIVEHSITY
IN PRAGUE
A PACCAR COMPANY

DAFE 7 E
JYF

session.viewports|['Viewport: 1'].odbDisplay.setFrame (step=0,
frame=1)

print ("Files generation successfully done")

IN PRAGUE
A PACCAR COMPANY

[» JAN — 7 /‘&?/Q‘ TECHNICAL

1 i" Q3 UNIVERSITY

Program_interface script

import os
import fnmatch

dirpath = r"C:\Users\A-Damien.Gode\Documents\Distortion
program\Analysis"

import tkinter as t
os.chdir (dirpath)

from BoreDistortion Analysis V7 import *
from Temperature Analysis import *
from Comparison interface import *

files=os.listdir (dirpath)

pattern = '*_ *!
folder=[]
for i in range(len(files)):
if fnmatch.fnmatch (files[i],pattern) == False and files[i] !
" pycache ":
folder.append(files[i])

check dict = {}

check dict["j03 03-ST maxBL WE-CE SC NO-1in"] = "MX11"
check dict["j03 03-ST minBL WE-CE SC NO"] = "MX11"
check dict["j03 03-ST nomBL WE-CE SC NO"] = "MX11"
check dict["MX13-MY21-230bar"] = "MX13"

check dict["MX13-MY21-230bar-topfit"] = "MX13"

height check dict = {}
height check dict["MX11"] = 65
height check dict["MX13"] = 57

step check dict = {}
step check dict["MX11"]
step check dict["MX13"]

14
12

def program() :

def SetValues():
return (int (CylinderBox.get ()),int (StepBox.get ())
,int (HeightBox.get ()))

def apply plot path():
if Engine.get() != check dict[Folder.get()]:
ErrorTextBox ("Error : Wrong engine \n Please set the engine
button")
return
if (SetValues () [0]<=0 or SetValues () [0]>3):
ErrorTextBox ("Error : Wrong cylinder value \n Must be
between 1 and 3")
return

]
IN PRAGUE
A PACCAR COMPANY

LR N P b,
N

if (Engine.get () == "MX11" and (SetValues () [1]<=0 or
SetValues () [1]>step check dict["MX11"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Engine.get () == "MX13" and (SetValues () [1]<=0 or
SetValues () [1]>step check dict["MX13"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Engine.get () == "MX11" and (SetValues () [2]<=0 or
SetValues () [2]>height check dict["MX11"])):
ErrorTextBox ("Error : Wrong height value \n Look at the
explanation note to get more details")
return
if (Engine.get () == "MX13" and (SetValues () [2]<=0 or
SetValues () [2]>height check dict["MX13"])):
ErrorTextBox ("Error : Wrong height value \n Look at the
explanation note to get more details")
return
return (plot path (Engine.get (), SetValues() [0],SetValues () [1]
,SetValues () [2],Folder.get(),0))

def apply plot def profile():
if Engine.get() != check dict[Folder.get()]:
ErrorTextBox ("Error : Wrong engine \n Please set the engine
button™)
return
if (SetValues () [0]<=0 or SetValues () [0]>3):
ErrorTextBox ("Error : Wrong cylinder value \n Must be
between 1 and 3")
return
if (Engine.get () == "MX11l" and (SetValues () [1]<=0 or
SetValues () [1]>step check dict["MX11"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Engine.get () == "MX13" and (SetValues () [1]<=0 or
SetValues () [1]>step check dict["MX13"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Engine.get () == "MX11" and (SetValues () [2]<=0 or
SetValues () [2]>height check dict["MX11"])) :
ErrorTextBox ("Error : Wrong height value \n Look at the
explanation note to get more details")
return
if (Engine.get () == "MX13" and (SetValues() [2]<=0 or
SetValues () [2] >height check dict["MX13"])):
ErrorTextBox ("Error : Wrong height value \n Look at the
explanation note to get more details")
return
return (plot def profile(Engine.get (), SetValues () [0]
, SetValues () [1], SetValues () [2],Folder.get(),0))

def apply plot def profile by Fourier():
if Engine.get() != check dict[Folder.get()]:

DAFE o1 R e
A PACCAR COMPANY / \‘ : :JNN::‘EA%SJEY

ErrorTextBox ("Error : Wrong engine \n Please set the engine
button")
return
if (SetValues () [0]<=0 or SetValues () [0]>3):
ErrorTextBox ("Error : Wrong cylinder value \n Must be
between 1 and 3")
return
if (Engine.get () == "MX11l" and (SetValues () [1]<=0 or
SetValues () [1]>step check dict["MX11"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Engine.get () == "MX13" and (SetValues () [1]<=0 or
SetValues () [1]>step check dict["MX13"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Engine.get () == "MX11l" and (SetValues() [2]<=0 or
SetValues () [2] >height check dict["MX11"])):
ErrorTextBox ("Error : Wrong height value \n Look at the
explanation note to get more details")
return
if (Engine.get () == "MX13" and (SetValues () [2]<=0 or
SetValues () [2]>height check dict["MX13"])):
ErrorTextBox ("Error : Wrong height value \n Look at the
explanation note to get more details")
return
return (plot def profile by Fourier (Engine.get(),
SetValues () [0],SetValues () [1],SetValues () [2],Folder.get(),0))

def apply plot distortion by order():
if Engine.get() != check dict[Folder.get()]:
ErrorTextBox ("Error : Wrong engine \n Please set the engine
button™)
return
if (SetValues () [0]<=0 or SetValues () [0]>3):
ErrorTextBox ("Error : Wrong cylinder value \n Must be
between 1 and 3")
return
if (Engine.get () == "MX11l" and (SetValues () [1]<=0 or
SetValues () [1]>step check dict["MX11"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Engine.get () == "MX13" and (SetValues()[1]<=0 or
SetValues () [1]>step check dict["MX13"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
return (plot distortion by order (Engine.get (), SetValues () [0]
,SetValues () [1],Folder.get (),0))

def apply plot distortion graph():
if Engine.get() != check dict[Folder.get()]:
ErrorTextBox ("Error : Wrong engine \n Please set the engine
button™)
return
if (SetValues () [0]<=0 or SetValues () [0]>3):

DAFE o2 R e
A PACCAR COMPANY / \‘ : :JNN::‘EA%SJEY

ErrorTextBox ("Error : Wrong cylinder value \n Must be
between 1 and 3")
return
if (Engine.get () == "MX11l" and (SetValues()[1]<=0 or
SetValues () [1]>step check dict["MX11"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Engine.get () == "MX13" and (SetValues () [1]<=0 or
SetValues () [1]>step check dict["MX13"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Engine.get () == "MX11l" and (SetValues () [2]<=0 or
SetValues () [2]>height check dict["MX11"])):
ErrorTextBox ("Error : Wrong height value \n Look at the
explanation note to get more details")
return
if (Engine.get () == "MX13" and (SetValues() [2]<=0 or
SetValues () [2]>height check dict["MX13"])) :
ErrorTextBox ("Error : Wrong height value \n Look at the
explanation note to get more details")
return
return (plot distortion graph (Engine.get (), SetValues () [0]
,SetValues () [1], SetValues () [2],Folder.get(),0))

def apply plot cut profile():
if Engine.get() != check dict[Folder.get()]:
ErrorTextBox ("Error : Wrong engine \n Please set the engine
button")
return
if (SetValues () [0]<=0 or SetValues () [0]>3):
ErrorTextBox ("Error : Wrong cylinder value \n Must be
between 1 and 3")
return
if (Engine.get () == "MX11l" and (SetValues () [1]<=0 or
SetValues () [1]>step check dict["MX11"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Engine.get () == "MX13" and (SetValues () [1]<=0 or
SetValues () [1]>step check dict["MX13"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
return (plot cut profile(Engine.get (), SetValues () [0]
,SetValues () [1],Folder.get(),0))

def apply plot wall temperature complete () :
if Engine.get() != check dict[Folder.get()]:
ErrorTextBox ("Error : Wrong engine \n Please set the engine
button")
return
if (Engine.get () == "MX11l" and (SetValues()[1]<=0 or
SetValues () [1]>step check dict["MX11"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return

DAFE o3 R e
A PACCAR COMPANY / \‘ : :JNN::‘EA%SJEY

if (Engine.get () == "MX13" and (SetValues() [1]<=0 or
SetValues () [1]>step check dict["MX13"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
return (plot wall temperature complete (Engine.get ()
,SetValues () [1],Folder.get()))

def AngleSelectionBox () :

def SetAngle () :
ang = Angle.get()
return (plot wall temperature single(Engine.get (),
SetValues () [1],Folder.get (), anqg))

if Engine.get() != check dict[Folder.get()]:
ErrorTextBox ("Error : Wrong engine \n Please set the engine
button")
return
if (Engine.get () == "MX11" and (SetValues () [1]<=0 or

SetValues () [1]>step check dict["MX11"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Engine.get () == "MX13" and (SetValues () [1]<=0 or
SetValues () [1]>step check dict["MX13"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
ValWindow=t.Tk ()
ValWindow.geometry ("200x100")
Angle leg=t.Label (ValWindow, text="Select Angle")
Angle leg.pack()
Angle leg.place(relx=0.5, rely=0.2, anchor='center')
Angle=t.IntVar (ValWindow)
Angle.set (0)
Angle choice=t.OptionMenu (ValWindow, Angle,
0,45,90,135,180,225,270,315)
Angle choice.pack()
Angle choice.place(relx=0.5, rely=0.45, anchor='center')
OKButton=t.Button (ValWindow, text="0K", command = SetAngle)
OKButton.pack ()
OKButton.place (relx=0.3, rely=0.8, anchor='center')
QuitButton=t.Button (ValWindow, text="Quit", command =
ValWindow.destroy)
QuitButton.pack()
QuitButton.place(relx=0.7, rely=0.8, anchor='center')

def Delete figures():
plt.close("all")

def ErrorTextBox (message) :
N = len (message)
Ewindow=t.Tk ()
Ewindow.geometry ('$sx100"'%$ ((N+20) *4))
Message=t.Label (Ewindow, text=message)
Message.pack ()
Message.place(relx=0.5, rely=0.4, anchor='center')

DAF o D T
A PACCAR COMPANY / \i ; :JNNL‘;EIS;SJ?

OKButton=t.Button (Ewindow, text="0OK", command = Ewindow.destroy)
OKButton.pack ()
OKButton.place (relx=0.5, rely=0.8, anchor='center')

def comparison method() :
comparison window (window)

window = t.Tk()
window.geometry ('500x500")

label = t.Label (window, text="Liner Distortion and Thermal
Analysis")

label.config (font=("Courrier",20))

label.pack ()

Engine leg=t.Label (window, text="Engine")
Engine leg.pack()
Engine leg.place(relx=0.25, rely=0.15, anchor='center')

Engine=t.StringVar (window)

Engine.set ("MX11")

Engine choice=t.OptionMenu (window, Engine, "MX11", "MX13")
Engine choice.pack()

Engine choice.place(relx=0.25, rely=0.2, anchor='center')

Folder leg=t.Label (window, text="Folder")
Folder leg.pack()
Folder leg.place(relx=0.65, rely=0.15, anchor='center')

Folder=t.StringVar (window)

Folder.set ("$s"%folder[0])

Folder choice=t.OptionMenu (window,Folder, *folder)

Folder choice.pack()

Folder choice.place(relx=0.65, rely=0.2, anchor='center')

Cylinder leg=t.Label (window, text="Cylinder")
Cylinder leg.pack()
Cylinder leg.place(relx=0.25, rely=0.3, anchor='center')

CylinderVar=t.IntVar (window)
CylinderBox=t.Entry (window, textvariable=CylinderVar)
CylinderBox.pack ()

CylinderBox.place (relx=0.25, rely=0.35, anchor='center')

Step leg=t.Label (window, text="Step")
Step leg.pack()
Step leg.place(relx=0.5, rely=0.3, anchor='center')

StepVar=t.IntVar (window)

StepBox=t.Entry(window, textvariable=StepVar)
StepBox.pack ()

StepBox.place (relx=0.5, rely=0.35, anchor='center')

Height leg=t.Label (window, text="Height")
Height leg.pack()
Height leg.place(relx=0.75, rely=0.3, anchor='center')

HeightVar=t.IntVar (window)

DAFE = DS Tt
A PACCAR COMPANY / \V ; :JNNL\;EA?JEY

HeightBox=t.Entry(window, textvariable=HeightVar)
HeightBox.pack ()
HeightBox.place (relx=0.75, rely=0.35, anchor='center')

button=t.Button (window, text="Quit", command = window.destroy)
button.pack()
button.place (relx=0.9, rely=0.9, anchor='center')

buttonl=t.Button (window, text="Plot radial distortion along a
path", command = apply plot path)

buttonl.pack ()

buttonl.place(relx=0.36, rely=0.45, anchor='center')

button2=t.Button (window, text="Plot deformed profile", command =
apply plot def profile)

button2.pack ()

button2.place (relx=0.68, rely=0.45, anchor='center')

button3=t.Button (window, text="Plot deformed profile from Fourier
coefficients",command = apply plot def profile by Fourier)

button3.pack ()

button3.place(relx=0.5, rely=0.51, anchor='center')

buttond=t.Button (window, text="Plot axial position with respect to
diametrical distortion",command = apply plot distortion by order)

buttond.pack ()

buttond.place(relx=0.5, rely=0.57, anchor='center')

button5=t.Button (window, text="Plot diametrical distortion with
respect to harmonic order",command = apply plot distortion graph)

buttonb.pack ()

buttonb.place(relx=0.5, rely=0.63, anchor='center')

button6=t.Button (window, text="Plot axial position with respect to
radial distortion",command = apply plot cut profile)

button6.pack ()

buttoné6.place(relx=0.5, rely=0.69, anchor='center')

button7=t.Button (window, text="Plot wall temperature (all
angles)",command = apply plot wall temperature complete)

button’.pack ()

button7.place(relx=0.31, rely=0.75, anchor='center')

button8=t.Button (window, text="Plot wall temperature (one
angle) ", command = AngleSelectionBox)

button8.pack ()

button8.place(relx=0.69, rely=0.75, anchor='center')

button9=t.Button (window, text="Delete figures",command =
Delete figures)

button9.pack ()

button9.place(relx=0.5, rely=0.87, anchor='center')

buttonlO=t.Button (window, text="Comparison method", command =
comparison method)

buttonlO.pack()

buttonlO.place (relx=0.5,rely=0.81,anchor="center"')

DAFE = /C%f?/

<

CZECH
TECHNICAL
UNIVERSITY
IN PRAGUE

window.update ()
window.mainloop ()

programf()

DAFE &7 /“%z?/?g‘ oo

IN PRAGUE
A PACCAR COMPANY

GenerateFiles_interface script

import os

import fnmatch
import Tkinter as T
import abaqus

dirpath = "C:\Users\A-Damien.Gode\Documents\Distortion
program\Analysis"

Modelpath = "C:/Users/A-Damien.Gode/Documents/Distortion program/Odb
files"

os.chdir (dirpath)

from Explicative Note import *

from distortion generate files import *
from Temperature generate files import *
from bridge file import *

os.chdir (Modelpath)

files=o0s.listdir (Modelpath)
pattern = '"*.odb'
Modelfolder=[]
for i in range(len(files)):
if fnmatch.fnmatch (files[i],pattern) == True:
Modelfolder.append(files[i])

os.chdir (dirpath)

check dict = {}

check dict["j03 03-ST maxBL WE-CE_SC NO-lin.odb"] = "MX11"
check dict["j03 03-ST minBL WE-CE SC NO.odb"] = "MX11"
check dict["j03 03-ST nomBL WE-CE SC NO.odb"] = "MX11"
check dict["MX13-MY21-230bar.odb"] = "MX13"

check dict["MX13-MY21-230bar-topfit.odb"] = "MX13"

window = T.Tk()
window.geometry ("600x250")

label = T.Label (window, text="Generate files")
label.config (font=("Courrier", 20))
label.pack ()

Engine leg=T.Label (window, text="Engine")
Engine leg.pack()
Engine leg.place(relx=0.1, rely=0.45, anchor='center')

Engine=T.StringVar (window)

Engine.set ("MX11")

Engine choice=T.OptionMenu (window, Engine, "MX11", "MX13")
Engine choice.pack()

Engine choice.place(relx=0.1, rely=0.55, anchor='center')

Mode leg=T.Label (window, text="Mode")
Mode leg.pack()
Mode leg.place(relx=0.28, rely=0.45, anchor='center')

DAF o R Tt
A PACCAR COMPANY / \ ; :JNNII"IIREA%SIEY

Mode=T.StringVar (window)

Mode.set ("Automatic")

Mode choice=T.OptionMenu (window,Mode, "Manual", "Automatic")
Mode choice.pack ()

Mode choice.place(relx=0.28, rely=0.55, anchor='center')

Remark = T.Label (window, text = "Remark : Don't forget \n to reset
before changing \n the model")

Remark.pack ()

Remark.place (relx=0.3, rely=0.3, anchor='center')

name=""
index=0

if session.odbData.items() == []:
name = "No model"
else:
odb = session.odbs[session.odbData.keys () [0]]
tmp=odb.name.split () [-1]
for i in range (len (tmp)) :
if tmp[i] == "'/"':
index=1
name=tmp [index+1l:1len (tmp)]

Model leg=T.Label (window, text="Model")
Model leg.pack()
Model leg.place(relx=0.65, rely=0.2, anchor='center')

Model=T.StringVar (window)

Model . set (name)

Model choice=T.OptionMenu (window,Model, *Modelfolder)
Model choice.pack()

Model choice.place (relx=0.65, rely=0.3, anchor='center')

def reset():
if session.odbData.items() == []:
ErrorTextBox ("Error : There is no model open in session")
import visualization
import xyPlot
import displayGroupOdbToolset as dgo
odb = session.odbs[session.odbData.keys () [0]]
odb.close()

def OpenFile () :
if Model.get () == "No model":
ErrorTextBox ("Error : You must select a model")
else:
import visualization
import xyPlot
import displayGroupOdbToolset as dgo
0ol = session.openOdb (name= Modelpath + "/%$s"%Model.get ())
session.viewports|['Viewport: 1'].setValues (displayedObject=01)
session.viewports|['Viewport: 1'].odbDisplay.setFrame (step=0,
frame=1)
odb = session.odbs[Modelpath + "\%s"%Model.get ()]

DAFE o R e
A PACCAR COMPANY / \‘ : :JNN::‘EA%SJEY

def gen dist files():

if Model.get () == "No model":
ErrorTextBox ("Error : You must open a model")
if Engine.get() != check dict[Model.get()]:
ErrorTextBox ("Error : Wrong engine \n Please set the engine
button™)
return
if Engine.get () == 'MX11l' and Mode.get () == "Automatic":
return (MX11 files(False))
if Engine.get () == 'MX11l' and Mode.get () == "Manual":
return (MX11 files(True))
if Engine.get () == 'MX13' and Mode.get () == "Automatic":
return (MX13 files(False))
if Engine.get () == 'MX13' and Mode.get () == "Manual":
return (MX13 files(True))
def gen temp files():
if Model.get () == "No model":
ErrorTextBox ("Error : You must open a model™)
if Engine.get() != check dict[Model.get()]:
ErrorTextBox ("Error : Wrong engine \n Please set the engine
button")
return
if Engine.get () == 'MX11l' and Mode.get () == "Automatic":
return (MX11l Temperature files(False))
if Engine.get () == 'MX11l' and Mode.get () == "Manual":
return (MX11l Temperature files(True))
if Engine.get () == 'MX13' and Mode.get () == "Automatic":
return (MX13 Temperature files(False))
if Engine.get () == 'MX13' and Mode.get () == "Manual":
)

return (MX13 Temperature files(True)

def gen expl note():
if Model.get () == "No model":
ErrorTextBox ("Error : You must open a model")
return (create explanation note (Engine.get()))

def launch program() :
window.destroy ()
ENV = os.environ
ENV['TCL LIBRARY'] = r"C:\Users\A-
Damien.Gode\AppData\Local\Enthought\Canopy\edm\envs\User\tcl\tcl8.6"
return (bridge())

def ErrorTextBox (message) :
N = len (message)
Ewindow=T.Tk ()
Ewindow.geometry ('$sx100'% ((N+20) *4))
Message=T.Label (Ewindow, text=message)
Message.pack ()
Message.place(relx=0.5, rely=0.4, anchor='center')
OKButton=T.Button (Ewindow, text="0OK", command = Ewindow.destroy)
OKButton.pack ()
OKButton.place (relx=0.5, rely=0.8, anchor='center')

ResetButton=T.Button (window, text="Reset", command = reset)
ResetButton.pack ()
ResetButton.place(relx=0.1, rely=0.3, anchor='center')

DAFE 0 /ﬂ%ﬁ/

<

CZECH
TECHNICAL
UNIVERSITY
IN PRAGUE

OpenButton=T.Button (window, text="0pen", command = OpenFile)
OpenButton.pack()
OpenButton.place (relx=0.9, rely=0.3, anchor='center')

Qbutton=T.Button (window, text="Quit", command = window.destroy)
Qbutton.pack ()
Qbutton.place(relx=0.9, rely=0.9, anchor='center')

Button=T.Button (window, text="Generate distortion files",command =
gen dist files)

Button.pack()

Button.place (relx=0.53, rely=0.55, anchor='center')

Buttonl=T.Button (window, text="Generate temperature files", command =
gen temp files)

Buttonl.pack ()

Buttonl.place(relx=0.82, rely=0.55, anchor='center')

Button2=T.Button (window, text="Generate explicative note",command =
gen_expl note)

Button2.pack ()

Button2.place(relx=0.3, rely=0.8, anchor='center')

Button3=T.Button (window, text="Launch program", command = launch program)
Button3.pack ()

Button3.place(relx=0.7, rely=0.8, anchor='center')

window.update ()
window.mainloop ()

Comparison_interface script

D/~ 91 M g
| | V / UNIVERSITY
A PACCAR COMPANY \ Sy INPRAGUE

import os
import fnmatch

dirpath = r"C:\Users\A-Damien.Gode\Documents\Distortion
program\Analysis"

import tkinter as t
import matplotlib.pyplot as plt

os.chdir (dirpath)

from BoreDistortion Analysis V7 import *
from Program interface import *

files=os.listdir (dirpath)

pattern = '* . *!
folder=[]
for i in range(len(files)):
if fnmatch.fnmatch(files[i],pattern) == False and files[i] !=
" pycache ":
folder.append(files[i])

check dict = {}

check dict["j03 _03-ST maxBL WE-CE SC NO-1lin"] = "MX11"
check dict["j03 03-ST minBL WE-CE SC NO"] = "MXI11"
check dict["j03 03-ST nomBL WE-CE SC NO"] = "MXI11"
check dict["MX13-MY21-230bar"] = "MX13"

check dict["MX13-MY21-230bar-topfit"] = "MX13"

height check dict = {}

height check dict["MX11"] = 65
height check dict["MX13"] = 57
step check dict = {}

step check dict["MX11"] = 14
step check dict["MX13"] = 12

def comparison window (active window) :
active window.destroy ()
window = t.Tk()
window.geometry ('500x500")
label = t.Label (window, text="Comparison mode")
label.config (font=("Courrier", 20))
label.pack ()

Enginel leg=t.Label (window, text="Engine 1")
Enginel leg.pack/()
Enginel leg.place(relx=0.25, rely=0.1, anchor='center')

Enginel=t.StringVar (window)

Enginel.set ("MX11")

Enginel choice=t.OptionMenu(window,Enginel, "MX11", "MX13")
Enginel choice.pack()

Enginel choice.place(relx=0.25, rely=0.15, anchor='center')

Engine2 leg=t.Label (window, text="Engine 2")

DAFE o2 R e
A PACCAR COMPANY / \‘ : :JNN::‘EA%SJEY

Engine2 leg.pack()
Engine2 leg.place(relx=0.75, rely=0.1, anchor='center')

Engine2=t.StringVar (window)

Engine2.set ("MX11")

Engine2 choice=t.OptionMenu(window,Engine2, "MX11", "MX13")
Engine2 choice.pack()

Engine2 choice.place(relx=0.75, rely=0.15, anchor='center')

Folderl leg=t.Label (window, text="Folder 1")
Folderl leg.pack()
Folderl leg.place(relx=0.25, rely=0.21, anchor='center')

Folderl=t.StringVar (window)

Folderl.set ("%$s"%folder[0])

Folderl choice=t.OptionMenu(window,Folderl,*folder)

Folderl choice.pack()

Folderl choice.place(relx=0.25, rely=0.26, anchor='center')

Folder2 leg=t.Label (window, text="Folder 2")
Folder2 leg.pack()
Folder2 leg.place(relx=0.75, rely=0.21, anchor='center')

Folder2=t.StringVar (window)

Folder2.set ("$s"%folder[0])

Folder2 choice=t.OptionMenu(window,Folder2, *folder)

Folder2 choice.pack()

Folder2 choice.place(relx=0.75, rely=0.26, anchor='center')

Cylinder legl=t.Label (window, text="Cylinder 1")
Cylinder legl.pack()
Cylinder legl.place(relx=0.25, rely=0.32, anchor='center')

CylinderVarl=t.IntVar (window)
CylinderBoxl=t.Entry (window, textvariable=CylinderVarl)
CylinderBox1.pack ()

CylinderBoxl.place (relx=0.25, rely=0.37, anchor='center')

Step legl=t.Label (window, text="Step 1")
Step legl.pack()
Step legl.place(relx=0.5, rely=0.32, anchor='center')

StepVarl=t.IntVar (window)
StepBoxl=t.Entry (window, textvariable=StepVarl)
StepBoxl.pack()

StepBoxl.place (relx=0.5, rely=0.37, anchor='center')

Height legl=t.Label (window, text="Height 1")
Height legl.pack()
Height legl.place(relx=0.75, rely=0.32, anchor='center')

HeightVarl=t.IntVar (window)
HeightBoxl=t.Entry (window, textvariable=HeightVarl)
HeightBoxl.pack()

HeightBoxl.place (relx=0.75, rely=0.37, anchor='center')

Cylinder leg2=t.Label (window, text="Cylinder 2")
Cylinder leg2.pack()

DAFE 3 DS Tt
A PACCAR COMPANY / \V ; :JNNL\;EA?JEY

Cylinder leg2.place(relx=0.25, rely=0.42, anchor='center')

CylinderVar2=t.IntVar (window)
CylinderBox2=t.Entry (window, textvariable=CylinderVar2)
CylinderBox2.pack ()

CylinderBox2.place (relx=0.25, rely=0.47, anchor='center')

Step leg2=t.Label (window, text="Step 2")
Step leg2.pack()
Step leg2.place(relx=0.5, rely=0.42, anchor='center')

StepVar2=t.IntVar (window)
StepBox2=t.Entry (window, textvariable=StepVar?2)
StepBox2.pack ()

StepBox2.place (relx=0.5, rely=0.47, anchor='center')

Height leg2=t.Label (window, text="Height 2")
Height leg2.pack/()
Height leg2.place(relx=0.75, rely=0.42, anchor='center')

HeightVar2=t.IntVar (window)
HeightBox2=t.Entry (window, textvariable=HeightVar2)
HeightBox2.pack ()

HeightBox2.place (relx=0.75, rely=0.47, anchor='center')

def SetValuesl():
return (int (CylinderBoxl.get ()),int (StepBoxl.get()),
int (HeightBoxl.get ()))

def SetValues2():
return (int (CylinderBox2.get ()),int (StepBox2.get ()),
int (HeightBox2.get ()))

def apply plot path():

if Folderl.get () == Folder2.get():
ErrorTextBox ("Error : Identical model")
return
if Enginel.get () != check dict[Folderl.get()]:
ErrorTextBox ("Error : Wrong engine \n Please set the engine
button")
return
if Engine2.get () != check dict[Folder2.get()]:
ErrorTextBox ("Error : Wrong engine \n Please set the engine
button")

return
if (SetValuesl () [0]1<=0 or SetValuesl () [0]1>3):
ErrorTextBox ("Error : Wrong cylinder value \n Must be
between 1 and 3")
return
if (SetValues2 () [0]<=0 or SetValues2()[0]>3):
ErrorTextBox ("Error : Wrong cylinder value \n Must be
between 1 and 3")
return
if (Enginel.get() == "MX11" and (SetValuesl()[1]<=0 or
SetValuesl () [1]>step check dict["MX11"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return

DAFE o4 D
A PACCAR COMPANY / \‘ : :JNNL‘:‘EA%SJ?

if (Enginel.get () == "MX13" and (SetValuesl()[1]<=0 or
SetValuesl () [1]>step check dict["MX13"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Enginel.get() == "MX11" and (SetValuesl()[2]<=0 or
SetValuesl () [2]>height check dict["MX11"])):
ErrorTextBox ("Error : Wrong height value \n Look at the
explanation note to get more details")
return
if (Enginel.get () == "MX13" and (SetValuesl () [2]<=0 or
SetValuesl () [2]>height check dict["MX13"])):
ErrorTextBox ("Error : Wrong height value \n Look at the
explanation note to get more details")
return
if (Engine2.get() == "MX11" and (SetValues2()[1]<=0 or
SetValues2 () [1]>step check dict["MX11"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Engine2.get () == "MX13" and (SetValues2()[1l]<=0 or
SetValues2 () [1]>step check dict["MX13"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Engine2.get() == "MX11l" and (SetValues2()[2]<=0 or
SetValues2 () [2]>height check dict["MX11"])):
ErrorTextBox ("Error : Wrong height value \n Look at the
explanation note to get more details")
return
if (Engine2.get () == "MX13" and (SetValues2()[2]<=0 or
SetValues2 () [2]>height check dict["MX13"])):
ErrorTextBox ("Error : Wrong height value \n Look at the
explanation note to get more details")
return
pathl,def R1,Hl=plot path(Enginel.get(),SetValuesl() [O],
SetValuesl () [1],SetValuesl () [2],Folderl.get(),1)
path2,def R2,H2=plot path(Engine2.get(),SetValues2() [0],
SetValues2 () [1],SetValues2 () [2],Folder2.get(),1)

plt.figure ()
plt.title("Comparison of the radial deformation along a path
between \n Engine %s Cylinder %s Step %s z = %s mm \n Engine %s

Cylinder %s Step %s z = %$s mm
"% (Enginel.get () ,SetValuesl () [0],SetValuesl () [1],Hl1[SetValuesl () [2]-
1]1[0],Engine2.get (), SetValues2 () [0],SetValues2 () [1],H2[SetValues2 () [2]-

110071))

plt.plot (pathl,def R1)

plt.plot (path2,def R2)

plt.grid()

plt.xlabel ("Angular position [deg]")

plt.ylabel ("Radial deformation [mm]™)

plt.legend(('%$s'%$Folderl.get (), '$s'%Folder2.get()),
loc=1, fontsize=10)

plt.show ()

def apply plot def profile():
if Folderl.get () == Folder2.get():
ErrorTextBox ("Error : Identical model")

DA > Pl i
<

]
IN PRAGUE
A PACCAR COMPANY

return
if Enginel.get () != check dict[Folderl.get()]:
ErrorTextBox ("Error : Wrong engine \n Please set the engine

button")
return
if Engine2.get () != check dict[Folder2.get()]:
ErrorTextBox ("Error : Wrong engine \n Please set the engine
button")

return
if (SetValuesl () [0]<=0 or SetValuesl () [0]>3):
ErrorTextBox ("Error : Wrong cylinder value \n Must be
between 1 and 3")
return
if (SetValues2 () [0]1<=0 or SetValues2 () [0]1>3):
ErrorTextBox ("Error : Wrong cylinder value \n Must be
between 1 and 3")
return
if (Enginel.get () == "MX11" and (SetValuesl()[1]<=0 or
SetValuesl () [1]>step check dict["MX11"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Enginel.get () == "MX13" and (SetValuesl()[1]<=0 or
SetValuesl () [1]>step check dict["MX13"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Enginel.get () == "MX11" and (SetValuesl () [2]<=0 or
SetValuesl () [2]>height check dict["MX11"])):
ErrorTextBox ("Error : Wrong height value \n Look at the
explanation note to get more details")
return
if (Enginel.get () == "MX13" and (SetValuesl()[2]<=0 or
SetValuesl () [2]>height check dict["MX13"])):
ErrorTextBox ("Error : Wrong height value \n Look at the
explanation note to get more details")
return
if (Engine2.get () == "MX11" and (SetValues2()[1]<=0 or
SetvValues2 () [1]>step check dict["MX11"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Engine2.get () == "MX13" and (SetValues2()[1]<=0 or
SetValues2 () [1]>step check dict["MX13"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Engine2.get () == "MX11" and (SetValues2()[2]<=0 or
SetValues2 () [2]>height check dict["MX11"])):
ErrorTextBox ("Error : Wrong height value \n Look at the
explanation note to get more details")
return
if (Engine2.get () == "MX13" and (SetValues2()[2]<=0 or
SetValues2 () [2]>height check dict["MX13"])):
ErrorTextBox ("Error : Wrong height value \n Look at the
explanation note to get more details")
return
scale fact=100

DAF o R Tt
A PACCAR COMPANY / \i ; :JNN:;E;:;SJ?

thetal,dR1l,H1=COMP plot def profile(Enginel.get(),SetValuesl () [0]
,SetValuesl () [1],SetValuesl () [2],Folderl.get(),1)[0:3]

theta2,dR2,H2=COMP plot def profile(Engine2.get (), SetValues2 () [0]
, SetValues2 () [1],SetValues2 () [2],Folder2.get(),1) [0:3]
deltaR1=0
countl=0
deltaR2=0
count2=0
radiusl=diameter (Enginel.get ())/2
radius2=diameter (Engine2.get ())/2
iniRl=[radiusl]*len (dR1)
iniR2=[radius2]*len (dR2)
for i in range(len(dR1l)):
if abs(dR1[i]-iniR1[i])>deltaRl:
deltaRl=abs (dR1[i]-iniR1[i])
countl=i1i
for i in range (len(dR2)):
if abs(dR2[i]-iniR2[i])>deltaR2:
deltaR2=abs (dR2[i]-iniR2([1i])
count2=1i
plt.figure ()
plt.subplot(lll,projection = 'polar')
linel,=plt.plot(thetal, iniR1)
line2,=plt.plot (theta2,iniR2)
line3,=plt.plot (thetal,dRl)
lined,=plt.plot (theta2,dR2)
plt.text (m.pi/6,120," Engine 1, z = %s mm \n Engine 2, z = %s
mm"% (H1 [SetValuesl () [2]-1][0],H2[SetValues2 () [2]-1][0]), fontsize=15.0)
if O<=thetal[countl]<=m.pi/2:
plt.annotate (" %s maximal gap = %s
um" % (Folderl.get () ,deltaR1*10),xy=(thetal[countl],dR1l[countl]) ,xytext=(
thetal [countl],dR1[countl]+10),arrowprops=dict (facecolor="'black',
shrink=0.05))
if m.pi/2<thetal[countl]<3*m.pi/2:
plt.annotate (" %s maximal gap = %s
um"% (Folderl.get () ,deltaR1*10),xy=(thetal[countl],dRl[countl]) , xytext=(
thetal [countl],dR1[countl1]+30),arrowprops=dict (facecolor="black’,
shrink=0.05))
if 3*m.pi/2<=thetal[countl]<=2*m.pi:
plt.annotate (" %s maximal gap = %s
um"% (Folderl.get () ,deltaR1*10),xy=(thetal[countl],dR1l[countl]), xytext=(
thetal [countl],dR1[countl]+10),arrowprops=dict (facecolor="'black',
shrink=0.05))
if O<=theta2[count2]<=m.pi/2:
plt.annotate (" %s maximal gap = %s
um"% (Folder2.get () ,deltaR2*10) ,xy=(theta2[count2],dR2[count2]),xytext=(
theta2[count2],dR2[count2]+15),arrowprops=dict (facecolor="black',
shrink=0.05))
if m.pi/2<theta2[count2]<3*m.pi/2:
plt.annotate (" %s maximal gap = %s
um"% (Folder2.get () ,deltaR2*10) ,xy=(theta2[count2],dR2[count2]) , xytext=(
theta2 [count2],dR2[count2]+35) ,arrowprops=dict (facecolor="'black',
shrink=0.05))
if 3*m.pi/2<=theta2[count2]<=2*m.pi:
plt.annotate (" %s maximal gap = %s
um"% (Folder2.get () ,deltaR2*10) ,xy=(theta2[count2],dR2[count2]) ,xytext=(

D/ - ¥ ﬂ%“(?/"
e /YRS

theta2 [count2],dR2[count2]+15) ,arrowprops=dict (facecolor="'black',
shrink=0.05))

plt.grid(True)

plt.title("Comparison of the deformed and original profile
between \n Engine %s Cylinder %s Step %s \n Engine %s Cylinder %s Step
%s \n Scale Factor
%$s"% (Enginel.get () ,SetValuesl () [0],SetValuesl () [1],Engine2.get (), SetVal
ues2 () [0],SetValues2 () [1],scale fact))

plt.figlegend(handles=[linel,line2,1ine3,1line4d],labels=('Original
profile %s'Enginel.get (), 'Original profile
%s'$Engine2.get (), '%s'S$Folderl.get (), 's'Folder2.get()),loc="upper
right', fontsize=12)

plt.show ()

def apply plot def profile by Fourier():

if Folderl.get () == Folder2.get():
ErrorTextBox ("Error : Identical model")
return
if Enginel.get () != check dict[Folderl.get()]:
ErrorTextBox ("Error : Wrong engine \n Please set the engine
button")
return
if Engine2.get () != check dict[Folder2.get()]:
ErrorTextBox ("Error : Wrong engine \n Please set the engine
button")

return
if (SetValuesl () [0]<=0 or SetValuesl () [0]>3):
ErrorTextBox ("Error : Wrong cylinder value \n Must be
between 1 and 3")
return
if (SetValues2 () [0]<=0 or SetValues2 () [0]1>3):
ErrorTextBox ("Error : Wrong cylinder value \n Must be
between 1 and 3")
return
if (Enginel.get() == "MX11l" and (SetValuesl()[1]<=0 or
SetValuesl () [1]>step check dict["MX11"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Enginel.get () == "MX13" and (SetValuesl()[1]<=0 or
SetValuesl () [1]>step check dict["MX13"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Enginel.get() == "MX11" and (SetValuesl()[2]<=0 or
SetValuesl () [2]>height check dict["MX11"])):
ErrorTextBox ("Error : Wrong height value \n Look at the
explanation note to get more details")
return
if (Enginel.get () == "MX13" and (SetValuesl () [2]<=0 or
SetValuesl () [2]>height check dict["MX13"])):
ErrorTextBox ("Error : Wrong height value \n Look at the
explanation note to get more details")
return
if (Engine2.get () == "MX11l" and (SetValues2()[1]<=0 or
SetValues2 () [1]>step check dict["MX11"])):

DAFE o8 D
A PACCAR COMPANY / \‘ : :JNNL‘:‘EA%SJ?

ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Engine2.get () == "MX13" and (SetValues2()[1l]<=0 or
SetValues2 () [1]>step check dict["MX13"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Engine2.get () == "MX11" and (SetValues2()[2]<=0 or
SetValues2 () [2]>height check dict["MX11"])):
ErrorTextBox ("Error : Wrong height value \n Look at the
explanation note to get more details")
return
if (Engine2.get () == "MX13" and (SetValues2()[2]<=0 or
SetValues2 () [2]>height check dict["MX13"])):
ErrorTextBox ("Error : Wrong height value \n Look at the
explanation note to get more details")
return
thetal,defRl,Hl=plot def profile by Fourier (Enginel.get ()
,SetValuesl () [0],SetValuesl () [1],SetValuesl () [2],Folderl.get(),1)
theta2,defR2,H2=plot def profile by Fourier (Engine2.get ()
,SetValues2 () [0],SetValues2 () [1],SetValues2 () [2],Folder2.get(),1)
deltaR1=0
count1=0
deltaR2=0
count2=0
radiusl=diameter (Enginel.get()) /2
radius2=diameter (Engine2.get ()) /2
iniRl=[radiusl]*len (defR1l)
iniR2=[radius2]*len (defR2)
for i in range(len (defR1l)):
if abs(defR1[i]-iniR1[i])>deltaR1l:
deltaRl=abs (defR1[i]-iniR1[i])
countl=i
for i in range(len(defR2)):
if abs(defR2[i]-iniR2[1i])>deltaR2:
deltaR2=abs (defR2[1]-1niR2[1i])
count2=1
plt.figure ()
plt.subplot(111l,projection = 'polar')
linel,=plt.plot(thetal,iniR1l
line2,=plt.plot (theta2,iniR2
line3,=plt.plot (thetal,defR1l
lined,=plt.plot (theta2,defR2
plt.text (m.pi/6,100," Engine 1, z = %s mm \n Engine 2, z = %s
mm"% (H1[SetValuesl () [2]-1]1[0],H2[SetValues2 () [2]1-11[01), fontsize=15.0)
if O<=thetal[countl]<=m.pi/2:
plt.annotate (" %s maximal gap = %s
um"% (Folderl.get () ,deltaRl), xy=(thetal[countl],defRl[countl]), xytext=(t
hetal[countl],defR1l[countl]+10),arrowprops=dict (facecolor="black',
shrink=0.05))
if m.pi/2<thetal[countl]<3*m.pi/2:
plt.annotate (" %s maximal gap = %s
um"% (Folderl.get () ,deltaRl),xy=(thetal[countl],defRl[countl]), xytext=(t
hetal[countl],defR1l[countl1]+30),arrowprops=dict (facecolor="black',
shrink=0.05))
if 3*m.pi/2<=thetal[countl]<=2*m.pi:

)
)
)
)

]
IN PRAGUE
A PACCAR COMPANY

DA > Pl i
<

plt.annotate (" %s maximal gap = %s
um"% (Folderl.get () ,deltaRl) ,xy=(thetal [countl],defRl[countl]), xytext=(t
hetal[countl],defR1l[countl]+10),arrowprops=dict (facecolor="black',
shrink=0.05))
if O<=theta2[count2]<=m.pi/2:
plt.annotate (" %$s maximal gap = %s
um"$ (Folder2.get () ,deltaR2),xy=(theta2[count2],defR2 [count2]), xytext=(t
heta2[count2],defR2[count2]+15),arrowprops=dict (facecolor="'black',
shrink=0.05))
if m.pi/2<theta2[count2]<3*m.pi/2:
plt.annotate (" %s maximal gap = %s
um"% (Folder2.get () ,deltaR2?),xy=(theta2[count2],defR2 [count2]), xytext=(t
heta2[countl],defR2[count2]+35),arrowprops=dict (facecolor="black',
shrink=0.05))
if 3*m.pi/2<=theta2[count2]<=2*m.pi:
plt.annotate (" %$s maximal gap = %s
um"% (Folder2.get () ,deltaR2),xy=(theta2 [count2],defR2[count2]), xytext=(t
heta2[count2],defR2[count2]+15),arrowprops=dict (facecolor="'black',
shrink=0.05))
plt.grid(True)
plt.title (" Comparison of deformed profile plotted from Fourier
coefficients without zeroth and first order between \n Engine %s
Cylinder %s Step %s \n Engine %s Cylinder %s Step %s \n Scale Factor
%s"% (Enginel.get (), SetValuesl () [0],SetValuesl () [1],Engine2.get (), SetVal
ues2 () [0],SetValues2 () [1]1,1000))

plt.figlegend(handles=[linel,line2,1line3,lined4], labels=("'Original
profile %$s'%Enginel.get (), 'Original profile
%$s'%$Engine2.get (), '%s'S$Folderl.get (), '%s'SFolder2.get ()), loc="upper
right', fontsize=12)

plt.show ()

def apply plot distortion by order():

if Folderl.get () == Folder2.get():
ErrorTextBox ("Error : Identical model")
return
if Enginel.get () != check dict[Folderl.get()]:
ErrorTextBox ("Error : Wrong engine \n Please set the engine
button")
return
if Engine2.get () != check dict[Folder2.get()]:
ErrorTextBox ("Error : Wrong engine \n Please set the engine
button")

return
if (SetValuesl () [0]1<=0 or SetValuesl () [0]>3):
ErrorTextBox ("Error : Wrong cylinder value \n Must be
between 1 and 3")
return
if (SetValues2 () [0]<=0 or SetValues2()[0]>3):
ErrorTextBox ("Error : Wrong cylinder value \n Must be
between 1 and 3")
return
if (Enginel.get() == "MX11" and (SetValuesl()[1]<=0 or
SetValuesl () [1]>step check dict["MX11"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return

DA - Pl i
<

]
IN PRAGUE
A PACCAR COMPANY

if (Enginel.get () == "MX13" and (SetValuesl()[1]<=0 or
SetValuesl () [1]>step check dict["MX13"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Engine2.get() == "MX11l" and (SetValues2()[1]<=0 or
SetValues2 () [1]>step check dict["MX11"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Engine2.get () == "MX13" and (SetValues2()[1]<=0 or
SetValues2 () [1]>step check dict["MX13"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
heightl, first orderl, second orderl,third orderl,
fourth orderl, fifth orderl,sixth orderl,seventh orderl,eighth orderl, Bo
rderlinelLim list,CriticallLim list=plot distortion by order (Enginel.get (
), SetValuesl () [0], SetValuesl () [1],Folderl.get (), 1)
height2, first order2,second order2,third orderZ,
fourth order2, fifth order2,sixth order2,seventh order2,eighth order2=pl
ot distortion by order (Engine2.get(),SetValues2() [0],SetValues2() [1],Fo
lder2.get(),1) [0:9]
plt.figure ()
plt.suptitle ("Comparison of liner distortion between \n Engine
%s Cylinder %s Step %s \n Engine %s Cylinder %s Step
%$s"% (Enginel.get (), SetValuesl () [0],SetValuesl () [1],Engine2.get (), SetVal
ues2 () [0],SetValues2 () [1]))
plt.subplot (241)
plt.subplots adjust (hspace=0.2,wspace=0.3)
plt.title("Order %s "%1)
plt.plot (first orderl,heightl)
plt.plot (first order2,height2)
plt.grid()
plt.xlabel ("Diametral distortion [um]")
plt.ylabel ("Axial position [mm]")
plt.subplot (242)
plt.title ("Order %s "%2)
linel,=plt.plot (second orderl, heightl)
line2,=plt.plot (second order2,height2)
line3,=plt.plot(BorderlineLim 1list[0],heightl, 'r--")
line4,=plt.plot(Criticallim 1list[0],heightl, 'r-")
plt.figlegend(handles = [linel,line2,1ine3,1line4]
,labels=("'%s'%$Folderl.get (), "$s'%$Folder2.get (), 'Border line
limit','Critical limit'),loc="upper right', fontsize=12)
plt.grid()
plt.xlabel ("Diametral distortion [um]")
plt.ylabel ("Axial position [mm]")
plt.subplot (243)
plt.title("Order %s "%3)
plt.plot (third orderl,heightl)
plt.plot (third order2,height2)
plt.plot (BorderlineLim list[1l],heightl, 'r--")
plt.plot (Criticallim list[1],heightl, 'r-")
plt.grid()
plt.xlabel ("Diametral distortion [um]")
plt.ylabel ("Axial position [mm]")
plt.subplot (244)

D 101 2$)) (> CZECH
Lol = /%(%/' e,
A PACCAR COMPANY \ IN PRAGUE

plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.

title ("Order %s "%4)

plot (fourth orderl,heightl)

plot (fourth order2,height2)

plot (BorderlineLim list[2],heightl, 'r--")
plot (Criticallim list[2],heightl, 'r-")
grid()

xlabel ("Diametral distortion [um]")
ylabel ("Axial position [mm]")

subplot (245)

title ("Order %$s "%5)

plot (fifth orderl, heightl)

plot (fifth order2, height2)

plot (BorderlineLim list[3],heightl, 'r--")
plot (Criticallim 1list[3],heightl, 'r-")
grid()

xlabel ("Diametral distortion [um]")
ylabel ("Axial position [mm]")

subplot (246)

title ("Order %s "%06)

plot (sixth orderl, heightl)

plot (sixth order2, height2)

(
.plot (BorderlineLim list([4],heightl, 'r--")
(

plot (CriticallLim list([4],heightl, 'r-")
grid()

xlabel ("Diametral distortion [um]")
ylabel ("Axial position [mm]")

subplot (247)

title ("Order %s "%7)

xlabel ("Diametral distortion [um]")
ylabel ("Axial position [mm]™)

plot (seventh orderl,heightl)

plot (seventh orderz,height2)

plot (BorderlineLim list[5],heightl, 'r--")
plot (CriticallLim list[5],heightl, 'r-")
grid()

subplot (248)

title ("Order %s "%8)

plot (eighth orderl,heightl)

plot (eighth order2,height2)

plot (BorderlineLim list[6],heightl, 'r--")
plot (CriticallLim list([6],heightl, 'r-")
grid()

xlabel ("Diametral distortion [um]")
ylabel ("Axial position [mm]")

show ()

def apply plot distortion graph():

if Folderl.get () == Folder2.get():
ErrorTextBox ("Error : Identical model")
return
if Enginel.get () != check dict[Folderl.get()]:
ErrorTextBox ("Error : Wrong engine \n Please set the engine
button")
return
if Engine2.get () != check dict[Folder2.get()]:
ErrorTextBox ("Error : Wrong engine \n Please set the engine
button™)

D /A -

e ——
A PACCAR COMPANY

102

)
A

<

CZECH
TECHNICAL
UNIVERSITY
IN PRAGUE

return
if (SetValuesl () [0]<=0 or SetValuesl () [0]>3):
ErrorTextBox ("Error : Wrong cylinder value \n Must be
between 1 and 3")
return
if (SetValues2 () [0]1<=0 or SetValues2 () [0]>3):
ErrorTextBox ("Error : Wrong cylinder value \n Must be
between 1 and 3")
return
if (Enginel.get () == "MX11" and (SetValuesl()[1]<=0 or
SetValuesl () [1]>step check dict["MX11"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Enginel.get() == "MX13" and (SetValuesl()[1]<=0 or
SetValuesl () [1]>step check dict["MX13"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Enginel.get() == "MX11" and (SetValuesl () [2]<=0 or
SetValuesl () [2]>height check dict["MX11"])):
ErrorTextBox ("Error : Wrong height value \n Look at the
explanation note to get more details")
return
if (Enginel.get() == "MX13" and (SetValuesl()[2]<=0 or
SetValuesl () [2]>height check dict["MX13"])):
ErrorTextBox ("Error : Wrong height value \n Look at the
explanation note to get more details")
return
if (Engine2.get () == "MX11" and (SetValues2()[1]<=0 or
SetValues2 () [1]>step check dict["MX11"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Engine2.get () == "MX13" and (SetValues2()[1]<=0 or
SetValues2 () [1]>step check dict["MX13"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Engine2.get () == "MX11l" and (SetValues2()[2]<=0 or
SetValues2 () [2]>height check dict["MX11"])):
ErrorTextBox ("Error : Wrong height value \n Look at the
explanation note to get more details")
return
if (Engine2.get() == "MX13" and (SetValues2()[2]<=0 or
SetValues2 () [2]>height check dict["MX13"])):
ErrorTextBox ("Error : Wrong height value \n Look at the
explanation note to get more details")
return
absc,Fourier coefl,BorderlinelLim,CriticallLim,Hl =
plot distortion graph(Enginel.get(),
SetValuesl () [0],SetValuesl () [1],SetValuesl () [2],Folderl.get (), 1)
absc2,Fourier coef2,BorderlinelLim2,CriticallLim2,H2 =
plot distortion graph(Engine2.get(),SetValues2() [0],SetValues2 () [1
],SetValues2 () [2],Folder2.get(),1)

color cell=(np.concatenate((color set(Criticallim,Borderlinelim,Fourier
_coefl) [0][:],color set(Criticallim,BorderlinelLim,Fourier coefl) [1][:],

103 2$)) (> CZECH
_ f‘%ﬁ% e
A PACCAR COMPANY \‘ IN PRAGUE

color set(Criticallim,Borderlinelim,Fourier coefl) [2][:],color set (Crit
icallim,Borderlinelim, Fourier coef2) [2][:]))) .reshape(4,7)

Fourier coefl
Fourier coef2 =

= np.around(Fourier coefl,decimals=4)
np.around (Fourier coef2,decimals=4)

plt.figure ()
plt.subplot (211)
plt.title("Comparison of the diametral distortion depending on

harmonic order between \n Engine %s Cylinder %s Step %s z =
Engine %s Cylinder %s Step %s z
mm" % (Enginel.get (), SetValuesl ()
1]1[0],Engine2.get (), SetValues?2 (

11001))
plt.
plt.
plt.
plt.
plt.
plt.

$s mm \n

= %s
[0],SetValuesl () [1],H1[SetValuesl() [2]-
) [

0],SetValues2 () [1],H2[SetValues2 () [2]-

plot
plot

absc, Fourier coefl, 'b'")

absc, Fourier coef2, 'orange')

plot (absc,BorderlinelLim, 'r—-")

plot (absc,Criticallim, 'r-")

grid()

legend (('%s'%Folderl.get (), '%s'%Folder2.get (), 'Border line

—_~ e~~~

limit', 'Critical limit'),loc=1l, fontsize=10)

plt.xlabel ("Harmonic order")

plt.ylabel ("Diametral distortion [um]")

plt.yticks (np.arange (0, 60, 5.0))

plt.xticks ([2,3,4,5,6,7,81,["2","3","4", "5", "g","7","8"])
plt.subplot (212)

collabel=["order %$s"%s for s in range(2,9)]
rowlabel=["Critical limit [pm]","Border line limit

[pm] ", "%s"%Folderl.get (), "%s"%Folder2.get ()]
val table=np.array([CriticallLim,BorderlinelLim,Fourier coefl,Fourier coe
f2]) .reshape (4, 7)

tab=plt.table(cellText=val table,collLabels=collabel, rowLabels=rowlabel,
cellColours=color cell,loc='center left')
tab.auto set font size(False)
tab.set fontsize (10)
plt.axis ('off")
plt.show ()
def apply plot cut profile():
if Folderl.get () == Folder2.get():
ErrorTextBox ("Error Identical model")
return
if Enginel.get () != check dict[Folderl
ErrorTextBox ("Error Wrong engine

.get ()]:
\n Please set the engine

button™)
return
if Engine2.get () != check dict[Folder2.get()]:
ErrorTextBox ("Error Wrong engine \n Please set the engine
button")

return
if (SetValuesl () [0]<=0 or SetValuesl () [0]>3):

ErrorTextBox ("Error Wrong cylinder value \n Must be
between 1 and 3")
return
(SetValues2 () [0]<=0 or SetValues2()[0]>3):
ErrorTextBox ("Error Wrong cylinder value \n Must be
between 1 and 3")

return

if

104

D /A -

e ——
A PACCAR COMPANY

fa

CZECH
TECHNICAL
UNIVERSITY
IN PRAGUE

if (Enginel.get () == "MX11" and (SetValuesl()[1]<=0 or
SetValuesl () [1]>step check dict["MX11"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Enginel.get() == "MX13" and (SetValuesl()[1]<=0 or
SetValuesl () [1]>step check dict["MX13"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Engine2.get () == "MX11" and (SetValues2()[1]<=0 or
SetValues2 () [1]>step check dict["MX11"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
if (Engine2.get () == "MX13" and (SetValues2()[1]<=0 or
SetValues2 () [1]>step check dict["MX13"])):
ErrorTextBox ("Error : Wrong step value \n Look at the
explanation note to get more details")
return
H1,cut profilesl,absc maxl=COMP plot cut profile
(Enginel.get (), SetValuesl () [0],SetValuesl () [1],Folderl.get(),1)
H2,cut profiles2,absc max2=COMP plot cut profile
(Engine2.get (), SetValues2 () [0],SetValues2() [1],Folder2.get (),1)
absc max = max (absc_maxl, absc max2)
plt.figure()
plt.suptitle ("Comparison axial position with respect to radial
distortion between \n Engine %s Cylinder %s Step %s \n Engine %s
Cylinder %s Step %s \n Scale factor
%$s"% (Enginel.get () ,SetValuesl () [0],SetValuesl () [1],Engine2.get (), SetVal
ues2 () [0],SetValues2 () [1],100))
plt.subplots adjust (wspace=0.3)
plt.subplot (241)
plt.title("Angle %$s "%180)
linel,=plt.plot(cut profilesl([4],H1[4])
line2,=plt.plot(cut profiles2[4],H2[4])
plt.figlegend (handles = [linel,line?2]
,labels=("'%s'%Folderl.get (), '$s'%Folder2.get ()), loc="'upper
right', fontsize=12)
plt.grid()
plt.xlabel ("Radial distortion [mm]")
plt.xlim(2*absc max+10,0)
plt.ylabel ("Axial position [mm]")
plt.subplot (242)
plt.title("Angle %$s "%0)
plt.plot (cut profilesl[0],H1[0])
plt.plot (cut profiles2[0],H2[0])
plt.grid()
plt.xlabel ("Radial distortion [mm]")
plt.x1im (0, 2*absc max+10)
plt.ylabel ("Axial position [mm]")
plt.subplot (243)
plt.title("Angle $%$s "%225)
plt.plot (cut profilesl[5],H1[5])
plt.plot (cut profiles2[5],H2[5])
plt.grid()
plt.xlabel ("Radial distortion [mm]")
plt.xlim(2*absc_max+10,0)

D 105 2$)) (> CZECH
Lol = /%(%/' e,
A PACCAR COMPANY \ IN PRAGUE

plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.

ylabel ("Axial position [mm]"™)
subplot (244)

grid()

title("Angle %s "%45)

plot (cut profilesl[1],H1[1])
plot (cut profiles2[1],H2[1])
xlabel ("Radial distortion [mm]")
x1im (0, 2*absc max+10)

ylabel ("Axial position [mm]™)
subplot (245)

title ("Angle %s "%270)

plot (cut profilesl[6],H1[6]
plot (cut profiles2[6],H2[6]
grid()

xlabel ("Radial distortion [mm]")
xlim(2*absc max+10,0)

ylabel ("Axial position [mm]")
subplot (246)

title ("Angle %s "%90)
plot (cut profilesl[2],H1[
plot (cut profiles2[2],H2[
grid()

xlabel ("Radial distortion [mm]")
x1im (0, 2*absc max+10)

ylabel ("Axial position [mm]")
subplot (247)

title("Angle %s "%315)

plot (cut profilesl([7],H1[7])
plot (cut profiles2[7],H2[7])
grid()

xlabel ("Radial distortion [mm]")
xlim(2*absc max+10,0)

ylabel ("Axial position [mm]")
subplot (248)

title ("Angle %s "%135)

plot (cut profilesl[3],H1[3])
plot (cut profiles2[3],H2[3])
grid()

xlabel ("Radial distortion [mm]")
x1im (0, 2*absc_max+10)

ylabel ("Axial position [mm]™)
show ()

)
)

21)
21)

]

def Delete figures():

plt.

close("all")

def ErrorTextBox (message) :

N =

len (message)

Ewindow=t.Tk ()

Ewindow.geometry ('$sx100"'% ((N+20) *4))
Message=t.Label (Ewindow, text=message)

Message.pack ()

Message.place (relx=0.5, rely=0.4, anchor='center')

OKButton=t.Button (Ewindow, text="0OK", command = Ewindow.destroy)
OKButton.pack ()

OKButton.place (relx=0.5, rely=0.8, anchor='center')

def End |

method () :

D /A -

e ——
A PACCAR COMPANY

106

fa

CZECH
TECHNICAL
UNIVERSITY
IN PRAGUE

window.destroy ()
program/()

button=t.Button (window, text="Quit"
button.pack()
button.place (relx=0.9, rely=0.9, a

,command = End method)

nchor="'center"')

buttonl=t.Button (window, text="Plot radial distortion along a

path", command = apply plot path)
buttonl.pack ()
buttonl.place(relx=0.33, rely=0.55

button2=t.Button (window, text="Plot deformed profile", command

apply plot def profile)
button2.pack ()
button2.place (relx=0.67, rely=0.55

, anchor='center')

, anchor='center')

button3=t.Button (window, text="Plot deformed profile from Fourier

coefficients",command = apply plot def profile by Fourier)

button3.pack ()
button3.place(relx=0.5, rely=0.62,

anchor="'center')

buttond=t.Button (window, text="Plot axial position with respect to
diametrical distortion",command = apply plot distortion by order)

buttond.pack ()
buttond.place (relx=0.5, rely=0.69,

anchor='"'center')

button5=t.Button (window, text="Plot diametrical distortion with
respect to harmonic order",command = apply plot distortion graph)

button5.pack ()
buttonb.place(relx=0.5, rely=0.76,

anchor="'center')

button6=t.Button (window, text="Plot axial position with respect to

radial distortion”,command = apply plo
button6.pack ()
button6.place(relx=0.5, rely=0.83,

button7=t.Button (window, text="Delete figures", command

Delete figures)
button7.pack ()
button7.place(relx=0.5, rely=0.9,

window.update ()
window.mainloop ()

Brigde_file script

import os
import subprocess
import copy

t cut profile)

anchor='center')

anchor="'center')

DAFE o

e ——
A PACCAR COMPANY

W

CZECH
TECHNICAL
UNIVERSITY
IN PRAGUE

def bridge() :

pyt path = r"C:\Users\A-
Damien.Gode\AppData\Local\Enthought\Canopy\App\Canopy.exe"

pyt script = r"C:\Users\A-Damien.Gode\Documents\Distortion
program\Analysis\Program interface.py"

ENV = copy.deepcopy (os.environ)

del ENV['PYTHONPATH']

sp =
subprocess.Popen ([pyt path,pyt script],stderr=subprocess.PIPE, stdout=su
bprocess.PIPE, shell=True, env=ENV)

sp.communicate ()

Explicative_Note script

import os

from abagqus import *

from abagqusConstants import *
import main

DAF 108 R Tt
A PACCAR COMPANY / \ ; :jNN:"‘EA%SJ;Y

dirpath = "C:/Users/A-Damien.Gode/Documents/Distortion
program/Analysis"

os.chdir (dirpath)

def extract coordinates(engine,cylinder):

os.chdir (dirpath)

if engine == 'MX11':
doc=open ('MX11 cyl%s Coordinates.txt'Scylinder, 'r"')
doc=doc.read ()
doc=doc.replace ("\n","")
doc=doc.replace ("LIN-1","")
doc=doc.split ()

Coor table=[]
index=0
index1=0
for i in range(len(doc)):
if doc[i]=='"Part':
index=1
if docli]=='"""—"H—H-"+"—"H——"-"H—-"""""—"""""——

indexl=i
Coor table=doc[indexl+1:index]
return (Coor_ table)
if engine == 'MX13':
doc=open ('MX13 cyl%s Coordinates.txt'scylinder, 'r'")
doc=doc.read ()
doc=doc.replace ("\n","")
doc=doc.replace ("LINER-1","")
doc=doc.split ()

Coor_ table=[]
index=0
index1=0
for i in range(len(doc)):
if doc[i]=='Part':
index=1
if doc[i]=="———— ==

indexl=i
Coor table=doc[indexl+1l:index]
return (Coor_ table)

The purpose of this function is to split these values and to stow
them in respective list
def split coordinates(engine,cylinder) :

Coor_ table=extract coordinates (engine, cylinder)

X coor=[]

Y coor=[]

Z _coor=[]

count=1

X coor.append(float (Coor table[l]))

Y coor.append(float (Coor table[2]))

Z coor.append(float (Coor table[3]))

while 1+7*count<len (Coor_ table):

X coor.append(float (Coor table[l+7*count]))

109 2$)) (> CZECH
_ /%ﬁ% e
A PACCAR COMPANY \‘ IN PRAGUE

Y coor.append(float (Coor table[2+7*count])
Z coor.append (float (Coor table[3+7*count])
count+=1

return (X coor,Y coor,Z coor)

)
)

This time as the radial deformations are not gathered under the same
file, it was required to implement two new functions to extract these
deformations
def extract def data(engine,cylinder, step,folder name) :
os.chdir (dirpath+"/%$s"%$folder name)
doc=open ('%s _cyl%s step%s.txt'%(engine,cylinder,step), 'r')
doc=doc.read()
doc=doc.split ()
radial def table=[]
index=0
for i in range(len(doc)):
if docli]=='"-""&""¥"""""""""""""“"“"“"“"“""“""——— '
index=1
radial def table=doc[index+1l:len (doc)]
return?radzal_def_table)

def extract radial def (engine,cylinder, step, folder name) :
data table=extract def data(engine,cylinder, step, folder name)
radial def=[]
count=1
radial def.append(float(data table[1l]))
while 2*count<len(data table):
radial def.append(float(data table[2*count+1]))
count+=1
return (radial def)

This function is done to return the diameter of engine
def diameter (engine):
if engine=="MX13"':
diameter=130
if engine=="MX11":
diameter=123
return (diameter)

This function is done to return the coordinates of the cylinder's
center
def center (X coor,Y coor):

center=0

max X=max (X coor)

min X=min (X coor)

max Y=max (Y coor)

min Y=min (Y coor)

center=((max X+min X) /2, (max Y+min Y)/2)

return(centez) N N

simple function to test if a value is in a list
def belong(List,val):
for i in range(len(List)):
if List[i]==val:
return (True)
return (False)

DAFE 110 /%%;
E— C UNIVERSITY
A PACCAR COMPANY \ IN PRAGUE

For the proper operation of the following functions and in order to
plot all the graphs, it is mandatory to regroup the nodes by their
height from the top
def split height (engine,cylinder, step):
Z coor=split coordinates (engine,cylinder) [2]
height=[]
already=[]
ind list=[]
index=0
while index<len(Z coor):
value=7Z coor[index]
if belong(already,value)==True:
index+=1
else:
ind list=[]
for i in range(len(Z coor)):
if 7Z coor[i]==value:
ind list.append (i)
height.append((value,ind list))
already.append (value)
index+=1
return (height)

As some nodes, supposed to be on the same height, have not exactly
the same Z coordinate (0.1 micrometers difference in average), it was
needed to gather them under a same value
That way it was possible to get the same number of nodes for each
height
def gather height (engine,cylinder, step):
height=split height (engine,cylinder, step)
comp val=0
index=0
already=1[]
H=[]
index list=[]
while index<len (height):
comp val=height[index] [0]
if belong(already, round(comp val,1l))==True:
index+=1
else:
index list=[]
for i in range (index, len(height)):
if round(height[i] [0],1)==round(comp val,l):
index list+=height[i][1]
H.append ((comp val,index list))
already.append (round (comp val, 1))
index+=1
return (H)

def create explanation note (engine):
if engine == 'MX11l':
expl note=open ('MX11l explanation note.txt',6 'w')
height=gather height ('MX11',1,1)
height.sort (reverse=True)
odb = session.odbs[session.odbData.keys () [0]]
tmp=odb.name.split ()
name=""
index=0

i —— | UNIVERSILY:
IN PRAGUE
A PACCAR COMPANY

DAF 11 A b
JYF

for i in range (len (tmp)) :

if tmp[i] == "'/':
index=0
name=tmp [index+1:1en (tmp)] [0]

expl note.write ("\n\n\n\n")
expl note.write ("FOR THE ENGINE %s"%name)

(
expl note.write ("\n\n\n\n")
expl note.write("Step indexing explanation")
expl note.write("\n\n")

N=len (odb.steps)
for i in range (N) :
expl note.write("\n\nThe step indexed by %s is %s
"% (1i+1,odb.steps.keys () [i]))
expl note.write ("\n\n\n\n")
expl note.write("Height indexing explanation")
expl note.write("\n\n")
for i in range(len (height)):
expl note.write("\n\n the height indexed by %s, for the
engine MX11l, is %s mm from the liner top" %(i+l,height[i][0]))
if engine == 'MX13':
expl note=open ('MX13 explanation note.txt',6 'w')
height=gather height ('MX13',1,1)
height.sort (reverse=True)
odb = session.odbs[session.odbData.keys () [0]]
tmp=odb.name.split ()
name=""
index=0
for i in range (len (tmp)) :
if tmp[i] == "/"':
index=0
name=tmp [index+1:1len (tmp)] [0]
expl note.write ("\n\n\n\n")
expl note.write ("FOR THE ENGINE %s"%name)

expl note.write ("\n\n\n\n")
expl note.write("Step indexing explanation")
expl note.write("\n\n")

N=len (odb.steps)
for i in range(N):
expl note.write("\n\nThe step indexed by %s is %s
"$(i+1l,odb.steps.keys () [i]))
expl note.write ("\n\n\n\n")
expl note.write("Height indexing explanation")
expl note.write("\n\n")
for i in range(len (height)):
expl note.write(" \n\n the height indexed by %s, for the
engine MX13, is %s mm from the liner top" % (i+l,height[i][0]))
expl note.close()
return (expl note)

112 2$) () CZECH
s f‘%ﬁ% e
A PACCAR COMPANY \‘ IN PRAGUE

