
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague September 29, 2018

ASSIGNMENT OF MASTER’S THESIS
 Title: Applying the Normalized Systems Theory on Microservice Architecture

 Student: Bc. Vincenc Kolařík

 Supervisor: Ing. Robert Pergl, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of winter semester 2019/20

Instructions

- Analyze the current state-of-the-art design methods and industrial applications of microservice
architecture.
- Discuss compliance of the currently used methods with Normalized Systems theory (NS) and explore
possibilities for improvements using NS. Address the most important challenges encountered in the
industry.
- Then formulate guidelines for designing microservices based on the results from the previous topic.
- Discuss the results and demonstrate them on a case study.

References

Will be provided by the supervisor.

Master’s thesis

Applying the Normalized Systems Theory
on Microservice Architecture

Bc. Vincenc Kolař́ık

Department of Software Engineering
Supervisor: Ing. Robert Pergl, Ph.D.

January 10, 2019

Acknowledgements

Thanks to my family and especially to my girlfriend, Tamara, for all their
patience and care. Thanks to my thesis supervisor, Robert, for everything he
taught me.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on January 10, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2019 Vincenc Kolař́ık. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Kolař́ık, Vincenc. Applying the Normalized Systems Theory on Microservice
Architecture. Master’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2019.

Abstrakt

Práce se zabývá schopnost́ı evolvability aplikaćı postavených na architektuře
mikroslužeb. Aplikuje pravidla definovaná teoríı Normalizovaných systémů
a diskutuje jejich dopad. Práce zevrubně zkoumá doménu architektury
mikroslužeb a identifikuje jej́ı kĺıčové architektonické aspekty. Aspekty jsou
dále zkoumány pomoćı teorie Normalizovaných systémů. Výsledkem je soubor
pravidel pro dosažeńı evolvability aplikaćı využ́ıvaj́ıćıch mikroslužeb. Vhod-
nost navrhovaných pravidel je poté diskutována.

Kĺıčová slova architektura mikroslužeb, evolvabilita, mikroslužby, softwarová
architektura, teorie normalizovaných systémů

vii

Abstract

The thesis is engaged in evolvability of applications build using microservice
architecture. It applies the rules defined by the Normalized Systems the-
ory and discusses its impacts. The thesis thoroughly analyses the domain of
microservice architecture and identifies the key architectural aspects. The as-
pects are examined using the Normalized Systems theory and results in a set
of guidelines to achieve evolvability of the microservice applications. The vi-
ability of proposed guidelines is then discussed.

Keywords evolvability, microservice architecture, microservices, normal-
ized systems theory, software architecture

viii

Contents

Introduction 1

1 Goals and Approach 3
1.1 Goals . 3
1.2 Approach . 3
1.3 Thesis Structure and Tasks . 5

2 Theoretical Background 7
2.1 Introduction to Normalized Systems 7
2.2 Design Theorems of Stable Software 8
2.3 Introduction to Software Architecture 11
2.4 4+1 View Model of Architecture 12
2.5 Architectural Styles . 14

3 Microservice Architecture Literature Review 17
3.1 Available Sources . 17
3.2 Related Work . 21

4 Analysis of the Microservice Architecture 23
4.1 (De)composition of Microservice Application 25
4.2 Inter-microservice Communication 30
4.3 Transaction management . 31
4.4 Persistence . 39

5 Towards Stable Microservice Architecture 41
5.1 Selected Aspects . 41
5.2 Microservice Scope . 42
5.3 Inner vs. Outer Architecture 43
5.4 Cross-Cutting Concerns . 44
5.5 Transactional Management . 45

ix

5.6 Polyglotism and Technological Diversity 45
5.7 Persistence . 45
5.8 External APIs . 46

6 The Stable Microservice Architecture 47
6.1 Microservice Building Block . 47
6.2 The Normalized Elements of MSA 50
6.3 Example Usage . 50
6.4 Viability of the Proposed Method 51
6.5 Other Observations . 52

Conclusion 53
Author’s comments on proposed solution 53
Evaluation of Goals . 54

Bibliography 55

A Acronyms 63

B Contents of enclosed CD 65

x

List of Figures

2.1 Combinatorial effects explained . 8
2.2 4+1 View Model of Architecture 12
2.3 Hexagonal Architecture . 15

4.1 Monolith vs. Microservices Illustrated 23
4.2 Monolith vs. Microservices — Productivity to Complexity ratio . . 24
4.3 Inner vs. Outer Architecture . 26
4.4 CAP Theorem . 28
4.5 Two-phase Commit . 32
4.6 Saga Pattern — Choreography (happy flow) 33
4.7 Saga Pattern — Choreography (error flow) 35
4.8 Saga Pattern — Orchestration (happy flow) 36

5.1 An example of NS building element [1] 44

6.1 Proposed building block of MSA . 48
6.2 The Payroll Usecase . 51

xi

List of Tables

3.1 Number of articles including keyword microservices per year . . . 19

4.1 Interaction Model to Interaction Style Matrix 30
4.2 Saga to Local Transaction Breakdown 38

xiii

Introduction

Combining Normalized Systems and microservices is like making two worlds
collide. The virtuous academia, which favors sound theories and logical proofs,
crashes with the vibrant and restless software development industry, which
prefers trial and error to a formulation of a hypothesis.

Normalized systems specify how to build evolvable systems — systems that
will be able to absorb changes with least effort for an infinite amount of time.

The community around microservices does not use the term evolvability.
Nevertheless, in the industry where microservices are widespread, business
agility is the key to success. There is clear evidence that frequent software re-
leases are correlated with good business performance.1 Companies like Spotify
and Netflix invest tremendous effort to improve their agile software develop-
ment, focusing on shortening lead time. The technology and retail behemoth
Amazon.com deploys new code to production systems every 11.7 seconds on
average.2 All of this is an obvious indication of a need for evolvability.

Both worlds are utilizing similar concepts — high modularity, strict sep-
aration of concerns, high cohesion and low coupling — just to name some.
However, the way the tools are used vary.

The goal of this work is to streamline the best practices of the industry
using a solid scientific approach. For academia, this topic is not so enriching.
The greatest achievement this work can bring is just another proof that the
theories were right. However, that is a dream come true of every researcher,
isn’t it?

1https://puppet.com/resources/whitepaper/2017-state-of-devops-report
2https://www.youtube.com/watch?v=dxk8b9rSKOo

1

Chapter 1
Goals and Approach

1.1 Goals

According to a thesis assignment the following goals were set:

• Analyze the current state-of-the-art design methods and industrial ap-
plications of microservice architecture (MSA).

• Identify key features and the most significant challenges encountered
in the industry.

• Discuss compliance of the currently used methods with Normalized Sys-
tems theory (NS) and explore possibilities for improvements using NS.

• Formulate guidelines for designing microservices based on the results
from the previous chapter, discuss them and demonstrate them on a case
study if reasonable.

1.2 Approach

Microservices architecture is an enterprise architecture (EA) pattern. EA
could be analyzed in enormously broad context, spanning from business – IT
alignment, through SW development methodologies to a choice of program-
ming languages. This section discusses boundaries for this thesis to make the
topic reasonably narrow without overlooking the quintessence of microservice
architecture.

1.2.1 Organizational Aspects

Microservices are often valued for their positive effects on organizations and
teams of engineers creating them. Development of end-to-end features and
operational responsibility fosters DevOps culture [2]. Code ownership and

3

1. Goals and Approach

cross-functional teams cultivate team spirit and nurture motivation of devel-
opers [3, 4, 5].

There’s also a sociological observation called Conway’s law that states:

Any organization that designs a system (defined broadly) will pro-
duce a design whose structure is a copy of the organization’s com-
munication structure. [6]

The bi-directional influence between software architecture and the organi-
zation that creates it is a remarkable topic, and it would be unwise to ignore
it while running a business. Despite that, it will be ignored in this thesis, as
it would broaden its scope excessively. The NS literature [7, 1] has the same
attitude and avoids discussion how the organization influences the software
(SW) and vice versa.

1.2.2 Performance Aspects

The Normalized Systems theory describes a set of laws which, if applied
strictly, guarantee a system to be free from combinatorial effects, i.e., to be
indefinitely evolvable. Until now, the industrial software projects [8, 9] are
focused on the evolvability of the SW artifact and does not value any other
non-functional requirement as much as evolvability.

On the other hand, the notion of a microservice (MS) came into being due
to the need for performance and scalability [5, 10]. The evolvability aspect
is never more important that those two mentioned. Therefore this thesis will
respect this order and will not sacrifice performance and scalability for the
sake of evolvability.

1.2.3 User Interface, Client Applications, etc.

Successful Internet applications have tenths of GUIs: web browser front-end
(FE), desktop apps, mobile apps, watch apps and desktop widget. Due to
the heterogeneity of the human-facing interfaces, they are out of scope of this
thesis.

1.2.4 General Rules

In an effort to make this work conceptually coherent, there were defined es-
sential principles with which this thesis is created:

1. Avoid discussion how organization influences the SW and vice versa.

2. Do not sacrifice performance and scalability for the sake of evolvability.

3. Focus on the internal architecture of the back-end (BE).

4

1.3. Thesis Structure and Tasks

1.3 Thesis Structure and Tasks

To fulfill the goals of this thesis the following finer-grain task list was defined.
The final structure of this work is derived from this list.

1. Perform a literature review on MS and on application of NS to MS
and/or related architecture styles and patterns

⇒ chapter 3: Microservice Architecture Literature Review

2. Analyze the microservice architecture

• Extract the essential concepts of state-of-the-art design of MS
• Identify key concerns in MS design and implementation
⇒ chapter 4: Analysis of the Microservice Architecture

3. Examine compliance of microservice architecture to Normalized Systems
theory

• Discuss the architectural patterns and principles using Normalized
Systems theory
• Apply the Design Theorems for Stable Software [11] to the essential

concepts from previous chapter
⇒ chapter 5: Towards Stable Microservice Architecture

4. Summarize design guidelines for MSA

• Provide concise and comprehensive overview of formulated guide-
lines
• Demonstrate guidelines on suitable case study
⇒ chapter 6: The Stable Microservice Architecture

5. Summarize successes and failures

⇒ chapter: Conclusion

5

Chapter 2
Theoretical Background

2.1 Introduction to Normalized Systems

Normalized Systems theory (NS) is a theoretical framework designed to engi-
neer systems (in its broad meaning) to be able to absorb a set of anticipated
changes in an infinite period. The ability to absorb changes — evolvability —
is the essential property of studied systems. The theory formulates a set
of rules of evolvability backed by formal proofs (more in section 2.1.2).

2.1.1 Ongoing Research

The theory is being developed at the University of Antwerp, the department
Management Information Systems of the faculty Applied Economics. Due to
its success, the authors, Jan Verelst and Herwig Mannaert, have established
the Normalized Systems Institute for further applied research in the SW in-
dustry.

Although the theory originated in a narrow field — software development,
it has been generalized and now is being applied to wide range of various
disciplines: from business process modeling through legal documents to first
thoughts on civil engineering. [11]

Due to the focus of this thesis, Normalized Systems theory will be ex-
plained on the domain of software development.

2.1.2 Essential Principles

The authors of Normalized Systems theory state the contemporary IT prob-
lems are manifestations of fundamental flaws in currently used SW develop-
ment methodologies. The Achilles’ heel is the evolvability — adding new
features to existing code base generates combinatorial effects (or instabilities
in newer literature, e.g. [1]), that lead to a growth of overall system complex-

7

2. Theoretical Background

Figure 2.1: Combinatorial effects explained

ity (see fig. 2.1 [7]). Such effects cause to increase the cost of future changes
and decrease overall software quality.[7]

Initial idea was first uttered by Manny Lehman in 1980:

As an evolving program is continually changed, its complexity,
reflecting deteriorating structure, increases unless work is done
to maintain or reduce it. [12]

In spite of that, Normalized Systems theory strive to fulfill the dream
articulated by Douglas McIlroy in 1968:

Expect families of routines to be constructed on rational principles
so that families fit together as building blocks. In short, [the user]
should be able safely to regard components as black boxes. [13]

NS assume that a change introduced to a system is a natural and unavoid-
able phenomenon. Therefore all rules and principles are designed to accom-
modate that fact. The theory defines a set of guidelines on how to engineer
the software architecture as a structure of highly independent modules, which
can be added, removed or changed separately. Sufficiently granular architec-
ture will suppress all combinatorial effects during evolution of the system.

The normalized design theorems require a strict separation of data and
actions manipulating that data. Such segregation might be controversial as it
contradicts the essence of object oriented programming (OOP), which postu-
lates that data and related actions belong into one entity — a class.

2.2 Design Theorems of Stable Software

This section introduces the four rules of software evolvability — the design
theorems of stable software, which are the building blocks of NS theory. An
experienced software developer will recognize these rules as they originate
from a heuristic design knowledge. The value added by NS is the theoretical

8

2.2. Design Theorems of Stable Software

proofs which promote these practical experiences to defensible theorems. (The
proofs are omitted for brevity, but can be found in [7, 1].)

2.2.1 The Four Theorems

The NS theory can prove the system is free from instabilities if and only if the
system complies to all the design theorems. Therefore the following postulate
is set as an ultimate goal:

An evolving information system should not have instabilities (com-
binatorial effects): a bounded amount of additional functional re-
quirements cannot lead to an unbounded amount of additional
(versions of) software primitives. [1]

2.2.1.1 Separation of Concerns

A processing function can only contain a single task in order to
achieve stability. [1]

This theorem implies the identification and separation of every single task.
Correct separation of tasks will induce separation of concerns in the big pic-
ture.

Separation of concerns is a widely used best practice among software archi-
tects. However, it is very vaguely formulated. Current manifestations in soft-
ware development include for example multi-tier architectures (e.g., MVC,
MVVM) or use of an integration bus for inter-process communication.

2.2.1.2 Data Version Transparency

A structure that is passed through the interface of a processing
function needs to exhibit version transparency in order to achieve
stability. [1]

Data version transparency is an instrument to cope with an addition or
removal a data field in entity. It implies encapsulation of the data fields.
Wrapping the data entity allows co-existence of various versions of such entity.

An example from OOP: data version transparency can be easily achieved
by using exclusively the 0-parameter constructor for instantiation and accessor
methods for the attribute access (e.g., a POJO). In that case, all internal data
fields are hidden and addition of a new one does not cause processing method
to fail.

2.2.1.3 Action Version Transparency

A processing function that is called by another processing func-
tion, needs to exhibit version transparency in order to achieve
stability. [1]

9

2. Theoretical Background

Analogously to previous theorem, various versions of data entities need
to co-exist in single system.

This can be achieved by using wrapper functions in procedural program-
ming or by using polymorphism in OOP.

2.2.1.4 Separation of States

Calling a processing function within another processing function,
needs to exhibit state keeping in order to achieve stability. [1]

It is a formalization of instinctive avoiding the transition to an undefined
state. When a state is kept for every call of a processing function, the whole
system behaves as a deterministic state machine. This eliminates the need for
complicated recovery from undefined error states.

An example of a manifestation of this design theorem is a database trans-
action mechanism. The commit (rollback) action guarantees atomic transition
from one defined state to another.

2.2.2 Impacts on Software Development

The postulate in section 2.2 implies all the design theorems for stable software
must be consistently followed. The SW artifact must be free of instabilities at
compile time, deployment time and run time. It requires the code base to be
entirely error free, which is not an easy task to achieve.

Other inconveniences are inevitably encountered during the development
of SW according to NS. For example the data and action version transparency
rules also imply a lot of boilerplate (non-logic) code (e.g., wrapper classes,
accessor methods). For a human programmer writing code complying with
NS is annoying and frustrating.

On the other hand, NS presents a set of software design patterns (described
in [7]) which could be easily produced via code generation. The generated boil-
erplate code skeleton is then enriched with custom code containing business
logic and algorithms. In case the skeleton itself is introduced to a change, the
custom code is harvested and then re-injected back to the fully re-generated
skeleton. [14]

The code generation approach remedies the developers’ disgruntlement for
sure. However, it requires the development of sophisticated tooling to get the
fully NS-compliant software working. The only known implementation — the
NSX Expanders3 — is capable of production of remarkably granular, yet still
monolithic applications.

This thesis is an attempt to broaden the application of Normalized Systems
theory to a domain of distributed software architectures.

3https://normalizedsystems.org/tools/

10

2.3. Introduction to Software Architecture

2.3 Introduction to Software Architecture

As time goes by, the size and complexity of a software system grow, the design
questions soon grow beyond algorithms and data structures. The new problem
of the overall system design emerges.

When the problem is untreated, applications soon become tightly coupled,
brittle and increasingly difficult to change. Even experienced team of devel-
opers without a vision resort to the prosaic layered architecture pattern also
known as the n-tier architecture, creating implicit layers by separating source-
code modules into packages. A result of this practice often is a collection of
poorly organized source code, modules and components lack clear borders,
responsibilities, and relationships with each other. This primeval architecture
style is mockingly called a the big ball of mud [15].

2.3.1 Formal Definition

Obviously, the topic of software architecture (SA) is frequently discussed.
There are many conferences organized by respected organizations (e.g., IEEE
International Conference on Software Architecture4, O’Reilly Software Ar-
chitecture Conference5), many people bear a job title Software Architect or
Solutions Architect6. Despite all that, there are many definitions of software
architecture, and none of them is considered universal.

For example, the IEEE Computer Society defines software architecture as:

[Software] Architecture is the fundamental organization of a sys-
tem embodied in its components, their relationships to each other,
and to the environment, and the principles guiding its design and
evolution. [16]

One of the pioneers of software architecture, Len Bass, defines this complex
discipline as:

The software architecture of a computing system is the set of struc-
tures needed to reason about the system, which comprise software
elements, relations among them, and properties of both. [17]

After introducing these two definitions, the problem of SA seem to be
highly abstract and difficult. It is clear there’s a need of an instrument, that
will help break down this complex domain. Such an instrument is featured in
the next chapter.

4http://icsa-conferences.org/
5https://conferences.oreilly.com/software-architecture/
6https://www.glassdoor.com/

11

2. Theoretical Background

Process Physical

Logical Development

Scenarios

source
code

compiled
code

deployment
nodes

processes,
threads

Figure 2.2: 4+1 View Model of Architecture

2.4 4+1 View Model of Architecture

The 4+1 View Model was designed by Philippe Kruchten as a tool describing
the architecture of software-intensive systems, based on the use of multiple,
concurrent views. [18]

Architects may use the four views to systematically depict the miscella-
neous SW elements and the fifth view — scenarios (or use cases in contempo-
rary terminology) which illustrate or animate the static system.

The view model is generic. It does not prescribe any particular notation
for the different perspectives, or any set of available architectural patterns or
styles, hence allowing the multiple styles coexist in one system.

2.4.1 Views Description

• Logical view describes the elementary code fragments produced by
developers — classes, funtions, configuration files, etc.

– Components: class (OOP), function (FP)
– Connectors: association, inheritance, composition
– Stakeholders: end-user
– Concerns: functionality

• Development view depics the artefacts of a packaged runnable code.
It describes modules (e.g., a JAR file) and components (e.g., a WAR
archive or executable JAR) components and dependencies among them.

– Components: compiled SW artefacts
– Connectors: compile-time dependencies

12

2.4. 4+1 View Model of Architecture

– Stakeholders: developer, operations engineer
– Concerns: modularity, code reuse, portability, deployable artefact

boundaries

• Process view represents components at runtime.

– Components: processes
– Connectors: inter-process communication (e.g., REST/SOAP/RPC

call)
– Stakeholders: developer, operations engineer
– Concerns: performance, availability, fault-tolerance, data integrity

• Physical view describes how the running deployed artifacts are mapped
to deployment nodes.

– Components: nodes (i.e. containers, VMs, physical machines)
– Connectors: network interfaces
– Stakeholders: operations engineer
– Concerns: scalability, performance, availability

• Scenarios are detailed recipes describing actions across the whole appli-
cation. This view is redundant to the previous four — therefore marked
as +1 — but serves as a validation mechanism for the whole architec-
tural vision.

– Components: step-by-step scenarios
– Connectors: use-case dependencies
– Stakeholders: end-user, developer, QA engineers
– Concerns: understandability

2.4.2 Relations between views

The four views are not fully independent or orthogonal. Elements of one
view must relate to elements in other views, otherwise, the model has some
inconsistencies (e.g., non deployed code artifacts, not utilized or inaccessible
VMs). Directions of those relationships — mappings — between the views are
shown in fig. 2.2 using the black arrows.

Although every software architecture could be viewed from all of those
four viewpoints, it is not always necessary to draw all of them to describe the
architecture sufficiently. For example, a simple web application running on
a single machine with an embedded database does not need a physical view,
as it would depict just one machine hosting one process. On the opposite
side, systems with millions of lines of code may require logical view diagrams

13

2. Theoretical Background

containing thousands of classes and packages. This view would require a high
level of abstraction to be understandable. The abstractions could become
almost identical to the development view, and therefore render the logical
view redundant.

The scenarios are always useful since they contain information about the
purpose of the application — the business value.

2.5 Architectural Styles

The term architectural style is in similar manner used in civil engineering.
Building were designed in renaissance, functionalism or brutalism styles. All
buildings of the particular style were different, yet they shared the same ma-
terials, had similar properties (e.g., aesthetics, hygiene), and they were build
to fulfill the same ideals.

That is surprisingly close to how it applies to software — the applications of
particular style are built using the same set of elements and relations between
them (e.g., classes and their composition), they exhibit the same properties
(e.g., layering, modularity) and are build to fulfill the same non-functional
requirements (e.g., high availability, rapid evolvability).

There is a often-cited definition of architectural style by David Garlanand
and Mary Shaw published in 1994:

An architectural style, then, defines a family of such systems in
terms of a pattern of structural organization. More specifically, an
architectural style determines the vocabulary of components and
connectors that can be used in instances of that style, together
with a set of constraints on how they can be combined. [19]

Architectural styles are usually characterized only from a single view. For
example, a Model-View-Controller architecture (MVC) application is defined
in logical view as a trio of interacting components, each with its defined re-
sponsibility and function. MVC does not say how the application should be
deployed — it does not prescribe anything for the other views.

Next two sections provide a brief introduction to some of the architectural
styles that are used and compared in further chapters.

2.5.1 Layered Architecture

Layered architecture organizes code elements SW into stacked modules — lay-
ers. Each layer has a properly defined purpose and responsibilities. Elements
in those layers can interact only with elements from layer right above or right
below. A layer can only depend on a layer right below.

This architecture style is sometimes called the n-tier architecture, where
n can be replaced with an integer. A frequently used instance is the 3-tier
architecture:

14

2.5. Architectural Styles

• presentation layer handles user-interaction code

• business logic layer contains the core functions and algorithms

• persistence layer handles database transactions

Such architecture elegant in its simplicity, and this principle may be ap-
plied to any of the four views.

However, major drawbacks arise for advanced applications. Imagine a log-
ical view of a simple web application. What if a customer running the website
wants to add a mobile application to his portfolio? In the style of layered ar-
chitecture, the code of the mobile app would belong to the presentation layer,
causing the web FE and mobile app code to be mixed. If it would be put to a
separate layer, the mobile app would have to interact with the business logic
layer through the the web FE.

2.5.2 Hexagonal Architecture

The Hexagonal Architecture was first proposed in 2007 by Alistair Cockburn,
one of the co-authors of The Agile Manifesto7.

It aims to overcome limits of the layered architecture. The business logic
is isolated in the centre (Core Application in Hexagonal Architecture) and
exposes interfaces called ports.

Ports have two directions:

• inbound handle the invocations of the business logic from the outer
world, usually an application programming interface

7https://agilemanifesto.org/

Core
Core

Application

Persist-
enceEvents

Processor

Business
Func. X

JDBC
Driver

Message
Producer

Message
Consumer

DB

REST
Controller

Message
Broker

portsadapters JavaScript
Application

inbound

outbound

Logging

Logserver
Adapter

File
Writer

log

Logstash

Figure 2.3: Hexagonal Architecture

15

2. Theoretical Background

• outbound is how the business logic interacts with external systems, e.g.
a data persistence, logging, message publishers

Between a port and an external system is an adapter, which bridges the
business logic port with the specific technology (e.g., a data access object).
The core application does not depend on the adapters. Therefore it is easy to
swap, e.g., a generic ORM for a custom optimized DAO.

More than one adapter may be bound to a single port (e.g., the same
business logic action is invoked by a message received or by a REST call).

Decoupling using ports and adapters allows easy extendability without any
changes introduced to the business logic. It also makes the core application
testable without the need for the surrounding components (e.g., the whole
application can be black-box tested without a need for DB)

2.5.3 Monolith Architecture

MSA in this thesis is often compared to a monolith or a monolithic architec-
ture. This term is a polyseme — it is applied to more than one of the four
architectural views and has a different meaning in each of them.

Originally it was used in context of the layered architecture (i.e., in the
logical view). It was a synonym for the 1-tier logically unstructured code base
[20, 21], usually exhibiting the same poor properties as the big ball of mud [15].

On the dawn of microservice architecture, it needed to be compared to the
traditional single-process application — so the word monolith received a new
meaning. In [22] it is defined as:

A monolith is a software application whose modules cannot be
executed independently.

In this context, monolith does not have the pejorative connotation, as it of-
ten represents the well structured, n-tier application (see Figure 4.1: Monolith
vs. Microservices Illustrated).

In this thesis the word monolith is used exclusively with the second mean-
ing.

16

Chapter 3
Microservice Architecture

Literature Review

This chapter surveys the available academic literature and other sources of
information on the topic of microservice architecture.

Section 3.2 investigates sources of information for the topics of evolvability
of microservice architecture and application of Normalized Systems theory to
software architecture. Then it compares the scope of this thesis to state-of-
the-art academic research and industry publications.

The retrieved knowledge is synthesized and critically analyzed in chapter 4:
Analysis of the Microservice Architecture.

3.1 Available Sources

Microservices as an architecture style started to emerge around year 2013 [3].
Since then, the research is lead by industry and professionals. Academia is was
a long time reluctant to this field (see Table 3.1: Number of articles including
keyword microservices per year).

Since a lot of know-how has been published on the Internet before the
phenomenon reached scientific journals, many reviewed articles reference to
those original ideas, e.g., [22, 23, 24, 25]. To track back the original sources
and to follow the most recent trends, an unorthodox category of information
sources is created — the community.

3.1.1 The Community

The microservice boom was kicked-off by practitioners — developers of big
successful companies presenting their know-how on blogs, conference talks
and even open-source SW code repositories.

17

3. Microservice Architecture Literature Review

It is almost impossible not to stumble upon the Martin Fowler’s blog8 and
blogs of companies like Netflix9 or Spotify10. Those are the entry-points to the
heterogeneous web of cross-referenced documents, which contain fragments of
the bleeding-edge expertise on the MSA — original ideas, success stories as
well as failures and dead ends.

Due to the unstructured nature and temporality of the content, system-
atic review would require an unimaginable effort. Therefore it was believed
that the community will expose and reference the most interesting ideas and
experiences. The lack of systematic approach was balanced out by author’s
proficiency in this field, and his personal interest.

This category consists of various non-reviewed Internet sources. Trustwor-
thiness of the content was assessed by cross-checking the information, reputa-
tion of the author(s), and to a lesser extent the publication medium.

Summary

The community provides an unstructured but exhaustive overview of all the
aspects of MSA. With the exception of Martin Fowler’s blog, community con-
tent misses overall visions. All of the sources also lack formal definitions,
terminology or taxonomy. The community also prefers colloquial story-telling
to an unambiguous formal language. Despite all of that, it was invaluable
source of most recent ideas and inspiration.

3.1.2 Industry Literature

The professional literature publishing business offers vast numbers of books
on this topic, so the long list had to be filtered. The criteria of the selection
were:

• analysis of MSA in general (i.e., not limited to testing MS or container-
ization of MS)

• no focus to a particular technology (i.e., not limited to building MS with
Spring)

• focus on the software architecture domain (i.e., not dedicated to opera-
tions, agile development and other adjacent domains)

• good reputation of author or publisher

8https://martinfowler.com/microservices/
9https://medium.com/netflix-techblog

10https://labs.spotify.com/

18

3.1. Available Sources

Table 3.1: Number of articles including keyword microservices per year

SpringierLink IEEE Explore ScienceDirect ACM DL
2013 5 1 0 0
2014 3 3 0 0
2015 30 24 6 7
2016 125 76 30 40
2017 218 153 53 62
2018 350 204 118 65

The final list of book, that were analyzed thoroughly and are considered
the essential engineering knowledge about the domain of MSA:

• Building Microservices [5] — provide an comprehensive overview of MSA,
includes currently used patterns and best practices

• Building Evolutionary Architectures [10] — focuses on how to design SW
systems to better absorb changes (i.e. not limited to MSA), includes best
practices

• Microservice Patterns [26] — focused on advanced architectural pat-
terns, but still relevant for all the MSA domain

• Tao of Microservices [27] — provide an comprehensive overview of MSA,
provides another point of view, author often uses logical argumentation
or statistical data to support arguments, tends to be systematical

There are also two books freely available on the internet, both sponsored
by industrial giants. [28], sponsored by CA11, offers good overall introduc-
tion, but it’s scope is completely covered by [5]. [29], sponsored by Microsoft
to promote their Azure12 platform, first 30 % contains very brief and under-
standable introduction to MSA domain, suitable for complete beginners. The
remaining 70 % is dedicated to Azure.

Summary

The industry literature provides an overall vision, it is coherent, comprehen-
sible and concise. It describes a lot of aspects of MSA, yet it claims it is
not complete. The literature also lacks formal definitions, leastwise it uses
seemingly uniform terminology. All of the books are focused on getting things
done and do not see any value formal and systematic approach.

11https://www.ca.com/us.html
12https://azure.microsoft.com/

19

3. Microservice Architecture Literature Review

3.1.3 Academic Literature

There were two main goals for this part of the review:

• to get an insight to the state-of-the-art research of MSA

• to find some formal definitions, a terminology, or taxonomy — the topics
the two previous categories of sources do not offer

Search engines used for the academic sources were: SpringierLink13, IEEE
Explore14, ScienceDirect15, ACM Digital Library16 in a discipline Computer
Science, IT or similar.

The retrieved articles were be divided into these categories:

• Introductions to MSA — general summaries of the MSA domain [24,
30, 31], some providing formalization and definitions [22]

• Case study — experience with some particular technology (e.g., Jolie
programming language [32]) or domain (eCommerce [33], parking sys-
tem [34])

• Narrow focused — focus on some particular aspect of MSA (e.g.,
financial rentability [35], monitoring and testing [36])

• Literature review — exactly one [23]

Summary

The literature review by Martin Garriga [23] served as the guidepost for
the scientific literature until the year 2017. Garriga’s review was done using
the systematic literature review (SLR) method [37], therefore it’s considered
to be complete.

Alongside the exhaustive literature review, author proposes a MSA tax-
onomy extensively covering many aspects of the architecture style.

The articles in Introduction to MSA somehow summarize the expertise
already published by the community or professional literature. A few of them
attempt to provide formal definitions of commonly used terms, on the other
hand, the definitions are not respected out of the scope of the single paper.

The case study and narrow focused introduce new information, unfor-
tunately they were too specialized to fit into the scope of this thesis.

13https://link.springer.com/
14https://ieeexplore.ieee.org/
15https://www.sciencedirect.com/
16https://dl.acm.org/

20

3.2. Related Work

3.2 Related Work

3.2.1 Academic Literature

Normalized System Institute books

The first published NS book [7] provides a brief discussion of compliance
of the service-oriented architecture (SOA) with NS. Authors note that SOA
may exhibit desired properties of evolvability, but do not provide any further
argumentation.

The second NS book [1] contains plenty of related information:

• Chapter 12 Toward Stable Modular Software Architectures provides a
prescriptive design rules for stable software architectures.

• Chapter 15 Normalized Elements for Software Architectures presents es-
sential building blocks of evolvable architectures — normalized elements
— and shows the implementation of those elements on code examples.

Content of both chapters is highly relatable to the focus of this thesis.
Although the knowledge is not effortlessly applicable to the distinctive domain
of microservice architecture.

Science Journals

The domain of evolvability of microservice architecture seems to be a virgin
territory in scientific journals. Searches performed in databases of available
science publishers (see 3.1.3) yielded exactly zero relevant results. The search
results were not always an empty list (due to generality of some keywords, e.g.,
change or distributed system), but the after closer examination the returned
results were all considered irrelevant.

Keywords were all possible pairs composed of members of two sets:

• microservices, microservice architecture, service oriented architecture,
distributed systems

• evolvability, change, normalized systems

3.2.2 Industry Literature

The book Building Evolutionary Architectures [10] to some extent overlaps
with focus of this thesis — as its topic is resistance of software system to
change and a great portion is dedicated to microservice architecture. On the
other hand, the authors of the book does not have any formal theory to back
up the arguments. Every argument is based on their, undoubtedly immense,
experience.

21

3. Microservice Architecture Literature Review

3.2.3 The Community

Bloggers and programmers often consider evolvability a virtue. However, it
is not a frequently discussed topic and the community does not provide any
relevant information on this particular problem.

22

Chapter 4
Analysis of the Microservice

Architecture

Microservice architecture is described in process view — simply as a collection
of processes communicating with each other. Although logical and develop-
ment views may be organized organized in any way, MSA strongly endorses
one rule: share nothing with others. This extremely radical decoupling allows
swift development of independently deployable artifacts.

This architecture style is exploited by leading companies in the online
business — e.g., Amazon, Ebay, Netflix, Spotify, Uber, SoundCloud and many

Presentation

Persistence

Business

Web Browser

DB

Service
A

Service
B

Service
C

Service
D

Web FE
Service

DB
B

DB
C

Public
API
Ser.

Web Browser Mobile App

Document
DB

Monolith Microservices

Figure 4.1: Monolith vs. Microservices Illustrated

23

4. Analysis of the Microservice Architecture

Figure 4.2: Monolith vs. Microservices — Productivity to Complexity ra-
tio [45]

more [38]. The enterprises praise adoption of this style due to its two crucial
features: easy scalability to their extreme dimensions [39, 40, 41, 42], and rapid
development of new features — evolvability. Modern enterprises are able to
create new functionality on an unprecedented rates - online marketplace Etsy
is able to release new features 50 times a day and Amazon deploys new code
to production every 11.7 seconds [43].

Loose coupling and independently deployable artifacts are the essential
principles of MSA. Not only it allows teams to deploy their artifacts services
without waiting for other teams, it allows them to choose any 3rd party tech-
nology they want to use. Teams handle th

In spite of all the listed advantages, microservice architecture is no sil-
ver bullet. This style adds a lot of obvious as well as hidden complexity —
complicated operations, asynchronous communication, fallacies of distributed
computing [44], changes in organization necessary to deal with Conway’s law
[6]. (More in subsection 4.1.5: Trade-offs of a Distributed Architecture).

It’s not easy to decide when the pros MSA compensate the cons. Analysis
of the proper decision making is too complex to fit in scope of this thesis, but
the general rule of thumb is:

Do not even consider microservices unless you have a system that’s
too complex to manage as a monolith. [45]

Microservices is a buzzword now and since the successful large companies
adopted this architecture, it must be the key to their success — this is a por-
trayal of a dangerous phenomenon called Microservice Envy. This assumption

24

4.1. (De)composition of Microservice Application

may lead a lot of R&D departments to unnecessary struggle. The Thought-
Works company made a website dedicated to monitoring the state-of-the-art
of MSA knowledge and tooling to help other teams to avoid this pitfall.17

4.1 (De)composition of Microservice Application

This section looks closer on the eminent implications and concerns creating
a microservice application.

4.1.1 Microservice Scope

Microservice applications are composed of microservices. The preposition
micro suggests existence of some milliservices or nanoservices. Or at least that
the microservice itself should be very small. This might be very misleading
interpretation. If we consider the common rule, that the microservice code
base should be owned by one cross-functional team [5, 10, 3] with top limit of
8-10 people, the deployed artifact might not be small at all.

MSA could be used for project starting from scratch (a greenfield project),
or for splitting a monolithical code base (a brownfield project). Regardless of
the origin, the recommended first step is always deep analysis of the applica-
tion domain. The well-known methodology for this purpose is domain driven
design (DDD) exquisitely described in [46].

Based on a particular domain model, the development team can identify
real-world components. Each component is responsible for a business capa-
bility — in DDD it is called a bounded context. Seams between the bounded
contexts are the first candidates for microservice boundaries.

This approach is the essence mentioned in the industry-oriented books
[5, 10, 26, 28] as well as science journals [47, 48, 49, 50, 51] and many blog
posts (e.g., [3, 4]). Yet, this is the only advice that is given by the many
authors of the professional literature. The rest is upon the particular domain,
experience of the enterprise architecture and the team delivering the service.

4.1.2 Inner vs. Outer Architecture

Until now, the MSA was discussed as a cluster of independently deployed
services and communication between them. On the other hand, the resultant
artifact was always addressed as one application — that means the services
construct an integral system. In order to keep balance between the freedom
of the inner workings of a MS and complexity of operations, another border
between inner and outer architecture must be defined (see fig. The Figure 4.3:
Inner vs. Outer Architecture).

17https://www.thoughtworks.com/radar/techniques/microservice-envy

25

4. Analysis of the Microservice Architecture

Microservice A

Loadbalancing

Execution Env.

Microservice B

Loadbalancing

Execution Env.

Microservice C

Loadbalancing

Execution Env.

Microservice D

Execution Env.

Messaging Channels

Operational Capabilities
e.g., automation, health-check, logging

Management Capabilities
e.g., routing, discovery, configration

Outer Architecture

Inner Architecture

Clients
e.g. mobile app, web app, client API

Synchronous Asynchronous

Communication

Figure 4.3: Inner vs. Outer Architecture

The outer architecture includes direct communication between services
and other supporting systems (e.g., monitoring and logging), the execution
environments (e.g., docker containers or VMs), networking (including load-
balancing, routing etc.) and messaging channels (i.e. message brokers). It
does not describe just the inter-connections, but more importantly the con-
tracts between them (i.e. the API definitions).

The inner architecture is everything else — the internal business logic,
the choice of programming language, 3rd party libraries and frameworks (if
it’s possible to run them in the supported execution environment), the data
persistence (everything from ORM through schema to the choice of DBMS
is hidden from the outer world — as long as it is able to be executed in the
unified environment).

4.1.3 Technological diversity

The freedom of the inner architecture is often considered an advantage of
MSA. It allows developers to select the best weapons — the best programming

26

4.1. (De)composition of Microservice Application

language, the best 3rd party technology, the most suitable DB schema. It
allows experimentation with all the aspects and that keeps the developers
motivated [5, 52], fosters the culture of innovation [53], reduces the chance
of lock-ins for outdated technology [5] and helps keep the whole application
loosely coupled (see 4.1.4).

4.1.4 Strong Module Boundaries

A common recommendation in SW development is to have clearly defined
code module boundaries. It’s the manifestation of loose coupling and Dou-
glas McIlroy’s vision (see subsection 2.1.2: Essential Principles). MSA is no
different.

Respecting the strong module boundaries does not depend on the archi-
tecture style — it is possible to create a perfectly modular monolithic app. It
is only the matter of developer’s discipline.

The microservice architecture magnifies the need for modularization by its
intrinsic features, e.g., separate build artifacts for independent deployment,
freedom of choice in technologies or persistence encapsulation.

Therefore, a developer feels much stronger guilt for including code from
another service, when he knows the code he borrows might be rewritten to
completely different programming language without prior notice.

Sometimes the discipline means breaking some established but blindly-
followed guidelines and best practices. For example the undisputed do not
repeat yourself (DRY) principle must be in context of MSA be applied only
on the microservice level, not across the whole application.

Authors of the up-to-date industry literature [5, 10, 28] also recommend an
extreme caution when creating an internal shared library of common functions
and/or data structures (e.g., DTOs) since it leads to unrestrained coupling
and the time invested into creation of such artifacts limits the technological
diversity.

4.1.5 Trade-offs of a Distributed Architecture

This section analyses the costs of adoption of the microservice architecture.
Every benefit listed in the previous section has a cost of its own. And almost
all of them increase the overall complexity of the system.

4.1.5.1 Distribution

MSA utilizes a distributed system to provide fine-grained modularity. The
fact it is distributed bring a lot of complexity and possible unintended conse-
quences.

L. Peter Deutsch compiled a list called Fallacies of distributed computing
[54] in 1994. The list consists of eight false assumptions which must be kept
in mind while designing and operating a distributed system:

27

4. Analysis of the Microservice Architecture

Availability

Consistency

Partition
tolerance

x
CA

AP

CP

Figure 4.4: CAP Theorem

• The network is reliable.

• Latency is zero.

• Bandwidth is infinite.

• The network is secure.

• Topology does not change.

• There is one administrator.

• Transport cost is zero.

• The network is homogeneous.

All of the listed fallacies are still valid [44], although effects of some are
were alleviated due to the advance of related technology.

• The network is reliable has a whole subsubsection 4.4.1.2: Availability
and Resilience dedicated to dealing with this phenomenon.

• Latency is zero, transport cost is zero, and bandwidth is in-
finite have a great impact on applications performance. The ways
how to mitigate this are discussed in section 4.2: Inter-microservice
Communication.

• Topology does not change, and the network is homogeneous is
mitigated using e.g. service discovery, discussed in ??: ??

• The network is secure, and there is one administrator belong
to the application operations domain, therefore are out of scope of this
analysis.

4.1.5.2 Eventual Consistency

The MSA is a distributed architecture therefore it exhibits implications of
the CAP (also known as Brewer’s) theorem [55]. The theorem states that

28

4.1. (De)composition of Microservice Application

a distributed data store can’t provide more than two out of the following
properties:

• Consistency — each read receives the most recent write or an error.

• Availability — each request receives a non-error response, although
without a guarantee to contain the most recent write.

• Partition tolerance — the data store responds with an non-error reply
despite an erratic number of messages being lost or delayed in commu-
nication between nodes.

The implications of this phenomenon are known to all users of some of the
present-day web applications — missing updated data, inconsistent notifica-
tions counts, etc. That’s the nature of distributed architecture: the request
to update data is handled by green node, the request for listing the data is
handled by blue node. Until the blue and green nodes exchange information,
the user is stuck in an inconsistency window.

For users, the eventual consistency is just annoying. For a programmers it
is a whole lot of added complexity they have to deal with. The logic they’ve
might end up making decisions on inconsistent information. This issue is
exceptionally difficult to debug as the numbers of possible situations may rise
extremely.

Design patterns guaranteeing the eventual consistency already exist (see
section 4.3: Transaction management), but for some use cases it might not
be good enough. The eventuality will probably never be accepted in mission-
critical financial, traffic control and similar systems. Since the CAP theorem
is formally proven, the MSA will be hardly ever adapted in domains with such
requirements.

4.1.5.3 Operational Complexity

By splitting up the monolithic code base, the complexity of the code base
itself lowers, but it leaks into the space between the microservices — into the
operations of the application. The number of deployed code artifacts rise;
number of DBMS and NoSQL DBs rise; load-balancers, message brokers and
monitoring and management systems need to be deployed.

The swarm of tiny services is almost impossible to handle one by one.
That reinforces the importance of continuous integration (CI) and continuous
delivery (CD) tools and practices, as well as it enforces the implementation of
the DevOps ideas and culture.

Distributed architecture also necessitate additional supporting systems,
such as monitoring dashboards and centralized logging. Lack of those systems
render almost impossible to trace back a bug in the application.

29

4. Analysis of the Microservice Architecture

4.2 Inter-microservice Communication

The inter-microservice communication is a specialization of a general prob-
lem in IT called inter-process communication (IPC). In the professional lit-
erature the discussion of this specialization of the problem usually resorts to
even greater specialization of discussing particular problems and patterns (e.g.
REST vs. RPC or XML vs. JSON). An abstract taxonomy was needed, the
one used here is adapted form [23] and extended.

4.2.1 Interaction Models

Interaction model defines how entities interact with each other in two per-
pendicular dimensions:

1. whether the requester is blocked by the reply or not

• synchronous — the requester expects an immediate response from
the replier, requester can’t continue execution until response is re-
ceived or timeout expires

• asynchronous — the requester submits a request and continues
execution, received response is processed independently

2. the number of receivers of a request

• one-to-one — each request is processed by exactly one receiver

• one-to-many — each request is processed by multiple receivers

Table 4.1: Interaction Model to Interaction Style Matrix

one-to-one one-to-many
sync. • (sync.) request/response —

async. • one-way notifications
• async. request/response

• publish/async. responses
• publish/subscribe

4.2.2 Interaction Styles

Since both of the model dimensions must have a value, actual communica-
tion is modelled by the carthesian product of those two dimensions — an
interaction style (see tab. 4.1).

The chosen interaction style has a major impact on the degree of final
coupling between two requester and replier. In general, the synchronous re-
quest/response style causes severe coupling; the asynchronous is coupled very
loosely.

30

4.3. Transaction management

• (synchronous) request/response — A requesting entity makes a re-
quest to a replier and waits for a response; the requester expects the
response to arrive promptly, because it can’t continue execution until
response is received (or timeout expires).

• asynchronous request/response — A requesting entity makes a re-
quest to a replier, which replies occasionally. The requester is aware of
the delay continues execution.

• publish/async. responses — A requesting entity submits a request
and then waits for a certain amount of time for responses from interested
repliers.

• publish/subscribe — An entity publishes a message to a channel; the
message is consumed by zero or more subscribed consumers.

• one-way notifications — A requesting entity makes a request to an-
other entity, but no reply is sent nor expected.

4.2.3 Service Contracts

Service contracts are the different means of specifying contracts (protocols)
for the inter-process communication [22]. The possible values are:

• formal — defined through a formal, technology agnostic contract (e.g.,
Swagger)

• technology-tied — the contract is pre-defined by or tied to a specific
technology (e.g., message broker client)

• ad-hoc — defined in a novel, ad-hoc language

4.3 Transaction management

A common practice in MSA is the one DB per microservice pattern (see 4.4).
Consolidating data scattered around the swarm of microservices demands non-
trivial architectural patterns. Transaction management is crucial aspect of the
IS, as it is used to execute complex workflows.

There are two sorts of transactions in the MSA: those, which guarantee
ACID [56] properties (see 4.3.1), and those which sacrifice isolation for better
latency (see 4.3.2).

31

4. Analysis of the Microservice Architecture

Figure 4.5: Two-phase Commit [57]. Schema from the original paper from
1986. The words in italics are commands. An * indicates that the record is
forced to permanent storage.

4.3.1 N-Phase Commit

The first protocol to handle handle data transactions in distributed systems
was a 2-phase commit (see fig. 4.5). The greatest disadvantage is that is is
a blocking protocol — if the coordinator stops responding, the subordinates
may never resolve the started transactions and will be blocked until a commit
or rollback command is received.

To resolve the issues with blocking and failures, a 3-phase commit [58]
was invented. Unsurprisingly, it incorporates one more phase to ensure all
participants successfully processed the data, and it places an upper bound on
the amount of time required before a transaction automatically commits or
aborts. This ensures the resources held by particular transaction is always
released.

4.3.2 The Saga Pattern

Although the 3-phase commit is safe and non-blocking way to manage dis-
tributed transactions, it still considerably prolongs the response time. Users
are used to the comfort of snappy applications, therefore a different mechanism
had to be adapted to maintain the low latency — the saga. (Surprisingly, the
notion of a saga is just a few months younger than the 2-phase commit. [59])

A saga is a sequence of local transactions executed to maintain data con-
sistency [59]. Every local transaction must exhibit the ACID properties, oth-

32

4.3. Transaction management

erwise data inconsistencies may occur.

There are two ways of coordinating sagas:

• choreography — has no central point of control; participants listen
to other participant’s events and decides if an action should be taken
or not; after their action is done, they announce it with publishing a
message

• orchestration — a central control entity issues commands to partici-
pants what operation to perform via messages

The following two sections explain the two ways on a simple example and
evaluates advantages and disadvantages.

The examples depicts a simple e-shop order fullfilment flow of an order
(steps 3. and 4. may be executed in parallel):

1. an order is created
2. the customer’s details are veri-

fied
3. payment is verified

4. warehouse starts expediting the
order

5. order is completed

1) createOrder()
7) approveOrder()

orders

Message
broker

warehouse

customers

payments

2) verifyCustomer()

3) createTicket()
6) approveTicket()

4) createPayment()
5) authorizeCard()

publish

subscribe

(A)
order

created
(B)

customer
verified

(C)
ticket

created

(D)
payment

successful

(A)

(A)

(A)

(D)(D)

(B)
(C)

Order
Service

Customer
Service

Warehouse
Service

Payment
Service

Figure 4.6: Saga Pattern — Choreography (happy flow)

33

4. Analysis of the Microservice Architecture

4.3.2.1 Choreography

The successful flow is executed as follows (see fig.: 4.6):

1. Order Service receives an external API call to create an order, cre-
ates an instance of Order in state ORDER PENDING and publishes an (A)
order created event.

2. Customer Service consumes the (A) order created message, verifies
the customer’s details and publishes an (B) customer verified event.

3. Warehouse Service consumes the (A) order created message, and
creates an instance of OrderTicket in state TICKET PENDING and pub-
lishes an (C) ticket created event.

4. Payment Service consumes the (A) order created, and creates an
instance of Payment in status PAYMENT PENDING.

5. Payment Service consumes (B) customer verified, (C) ticket created
messages, and executes the card authorization, then it updates the sta-
tus of Payment to PAYMENT PROCESSED, and publishes a (D) payment
successful message.

6. Warehouse Service consumes the (D) payment successful message
and updates status of OrderTicket to state TICKET EXPEDITING.

7. Order Service consumes the (D) payment successful message and
updates status of Order to state ORDER EXPEDITING.

The flow when a payment fails is executed as follows (see fig.: 4.7):

1. Order Service receives an external API call to create an order, cre-
ates an instance of Order in state ORDER PENDING and publishes an (A)
order created event.

2. Customer Service consumes the (A) order created message, verifies
the customer’s details and publishes an (B) customer verified event.

3. Warehouse Service consumes the (A) order created message, and
creates an instance of OrderTicket in state TICKET PENDING and pub-
lishes an (C) ticket created event.

4. Payment Service consumes the (A) order created, and creates an
instance of Payment in status PAYMENT PENDING.

5. Payment Service consumes (B) customer verified,
(C) ticket created messages, and executes the card authorization,
then updates the status of Payment to PAYMENT CANCELLED, and pub-
lishes a (D) payment failed message.

34

4.3. Transaction management

1) createOrder()
7) cancelOrder()

orders

Message
broker

warehouse

customers

payments

2) verifyCustomer()

3) createTicket()
6) cancelTicket()

4) createPayment()
5) authorizeCard()

publish

subscribe

(A)
order

created
(B)

customer
verified

(C)
ticket

created

(D)
payment

failed

(A)

(A)

(A)

(D)(D)

(B)
(C)

Order
Service

Customer
Service

Warehouse
Service

Payment
Service

Figure 4.7: Saga Pattern — Choreography (error flow)

6. Warehouse Service consumes the (D) payment failed message and
updates status of OrderTicket to state TICKET CANCELLED.

7. Order Service consumes the (D) payment failed message and up-
dates status of Order to state ORDER CANCELLED.

To allow the choreography to function properly, messages must contain
a correlation identificator, so the decoupled messages relate to the same in-
stances of the objects. (For example the consumed messages (A) and (D)
could not be associated with the same OrderTicket without an correlation
id.)

Advantages

• loose coupling — participants listen to events and do not need to be
aware of each other

• simplicity — services react to events, and publish events when they
manipulate business objects

Disadvantages

• difficult to understand — there’s is no central place of definition of
the behaviour, it is dispersed among all participants

35

4. Analysis of the Microservice Architecture

• cyclic dependencies — participants subscribe to each other’s events,
which might create a cyclic dependency

• risk of tight coupling — new functionality may cause unexpected
coupling, e.g., the Warehouse Service should newly cancel the order in
case some items on the order are not in stock, in that case the Order
Service must subscribe to Warehouse Service messages — which tightens
the coupling between the saga participants (more in [60])

4.3.2.2 Orchestration

The orchestration pattern uses an controlling entity — an orchestrator —
to issue commands to other participants using the publish / async. response
interaction style. The orchestrator is the only participant responsible for exe-
cuting the workflow (including the failure path) and keeping the status of the
workflow instance.

An orchestrator could be a dedicated service or a class inside a service
containing other business logic (as is in the following example).

customer

Message
broker

warehouse

(2) (4) (6) create order

payments

command

response

(1)
veriify customer

(2)
customer verified

(3)

(1)

(4)
ticket created

(5)

(5)
authorize card

(6)
card

authorized

Order
Service

Customer
Service

Warehouse
Service

Payment
Service

Create
Order Saga
Orchestrator

(3)
create
ticket

(8) order serv.

(8) approve order

Figure 4.8: Saga Pattern — Orchestration (happy flow)

The successful flow is executed as follows (see fig.: 4.8):

1. Order Service receives an external API call to create an order, creates
an instance of CreateOrderSagaOrchestrator.

36

4.3. Transaction management

2. CreateOrderSagaOrchestrator sends the (1) verify customer com-
mand to Customer Service.

3. Customer Service responds with (2) customer verified message.

4. CreateOrderSagaOrchestrator sends the (3) create ticket command
to Warehouse Service.

5. Warehouse Service responds with (4) ticket created message.

6. CreateOrderSagaOrchestrator sends the (5) authorize card com-
mand to Payment Service.

7. Payment Service responds with (6) card authorized message.

8. CreateOrderSagaOrchestrator sends the (7) authorize card com-
mand to Payment Service which then continues with its own wofk-
flow.

Advantages

• no cyclic dependencies — orchestrator as the central entity depends
on the subordinate participants, but they do not depend on the orches-
trator

• less coupling — participants react only to the messages from the or-
chestrator and are not coupled to the other participants

• better separation of concerns — participants have less reasons to
change, because they do not bear the burden of executing workflow; the
orchestrator does not execute any bussiness logic but keeping the state
of the workflow

• workflow as a state machine — because the workflow is concetrated
in one place, it could be modelled and implemeted as a state machine,
simplifying the design and implementation

Disadvantages

• risk of God object — if the orchestrator is a class inside a service (as in
the example), the service will tend to contain all the related workflows,
easily becoming a God object [61]

• risk of power disbalance — the orchestrator must only issue com-
mands and do not execute any business logic and use the services as
CRUD proxies

37

4. Analysis of the Microservice Architecture

Table 4.2: Saga to Local Transaction Breakdown

cat. # Service Transaction Compensation Transaction
C 1 Order createOrder() cancelOrder()
C 2 Customer verifyCustomer() —
C 3 Warehouse createTicket() cancelTicket()
C 4 Payment createPayment() cancelPayment()
P 5 Payment authorizeCard() —
R 6 Warehouse approveTicket() —
R 7 Order approveOrder() —

4.3.2.3 Anomalies Caused by Lack of Isolation

The anomalies caused by lack of isolation encountered while executing saga
are similar to anomalies of relational DBs.

List of possible anomalies:

• lost updates — one transaction overwrites unfinished writes of other
transaction

• dirty reads — one transaction reads unfinished writes of other trans-
action

• fuzzy/non-repeatable reads — two different reads of one transaction
make the same query and get different results because another transac-
tion has updated the data

Local transactions may be categorized into the three following categories:

• compensatable transactions — transactions, that may be rolled back
(using a compensation transaction)

• pivot transaction — the point of no return, only this transaction may
fail irreversibly,

• retriable transactions — transactions guaranteed to eventually suc-
ceed (compensated by retrial)

In order to be able to compensate the the whole transaction, the local
transactions must be executed in the three phases: compensatable — pivot —
retriable. Compensatable and retriable phases may execute the local trans-
actions in random order, even in parallel. The pivot transaction must be
executed alone. (For an example of categorization of the local transaction of
saga is in tab. 4.2)

38

4.4. Persistence

4.4 Persistence

To achieve loose coupling between services, datastore is a private matter. The
recommended pattern for greenfield projects is to have separated datastore
per service kind (not instance). The microservice container itself is stateless,
the state is kept in the database. The only allowed DB integration is with
other instances of the same kind.

In a legacy systems, data storage could be used to integrate multiple ser-
vices. When transitioning to microservices architectures, it is mandatory to
find seams in the databases and use the right technologies to split them out
cleanly [5].

Due to the one datastore per service pattern, there is no limit to selection
of storage technology, therefore in one

4.4.1 Operation Aspects

4.4.1.1 Scalability / Elasticity

Scalability and elasticity is the the capability to quickly react to the sudden
need of increase of the overall capacity of the platform. It is realized by adding
or removing service instances. This whole process is also minimize the need
for human intervention, using various tools or vendor-provided mechanisms.

4.4.1.2 Availability and Resilience

Resistance to failures is a crucial feature of microservice applications. Suc-
cessful companies that adapted this architecture always design their systems
for failure. Netflix has developed a tool called Chaos Monkey [62] that is able
to randomly terminate services. They are running this tool in production
environment, to be sure the whole system is robust and resilient enough to
withstand the erroneous termination of deployed instances.

4.4.2 Observability

Observability is the term for measuring, collecting, and analyzing various di-
agnostics data from an application. These signals may include metrics, logs,
profiles and more.

In large-scale microservices systems, some practices from the single process
systems do not scale. To achieve a usable observability, some practices must
be applied:

• External requests must have assigned a unique id to track across the
services (the id must be passed with each inner call)

• Include the external id in logs

39

4. Analysis of the Microservice Architecture

• Record all the information in centralized service

40

Chapter 5
Towards Stable Microservice

Architecture

In this chapter, key aspects of MSA are extracted from chapter 4: Analysis
of the Microservice Architecture and the Normalized Systems theory (NS)
is applied. Section 5.1 contains list of identified subdomains and discussion
whether they will be subject to further analysis. The section 5.2.2 attempts
to map the patterns for normalized elements to the notions of MSA. Sections
following the sec. 5.2.2 closely examine the respective subdomains.

5.1 Selected Aspects

Aspects were extracted as the outline of the chapter 4 and modified. The
topics selected for further discussion are marked with check mark (Ë), topics
rejected are marked with a cross (é) and the decision is briefly justified.

Ë Microservice scope — a crucial question which is now answered only
with a very vague guidelines. Will be discussed separately.

Ë Inner vs. outer architecture — often neglected, yet important
topic, closely related to separation of concerns. Will be discussed sep-
arately.

Ë Polyglotism, technological diversity — one of the most hyped
benefits of MSA and potential source of complexity. Will be discussed
separately.

é Trade-offs of distributed system — although this is a set of im-
portant topics, it is actually only a list of essential problems with
distributed architecture. Solutions to those problems are discussed
in subsubsection 4.1.5.1: Distribution. Therefore this topic won’t be
discussed separately.

41

5. Towards Stable Microservice Architecture

é Interaction models and styles — only a taxonomy, does not rep-
resent real patterns or problems. The real communication complexity
is discussed in section 5.5: Transactional Management.

Ë Service contracts — will be discussed in section 5.3: Inner vs. Outer
Architecture and section 5.4: Cross-Cutting Concerns.

Ë N-phase commits — will be discussed in section 5.5: Transactional
Management.

Ë Saga pattern — will be discussed in section 5.5: Transactional Management.

Ë Persistence — will be discussed separately.

Ë External APIs — will be discussed separately.

é Deployment and Operations — operations fall out of scope of this
thesis; the interesting topics related to this subdomain are listed in
section 5.4: Cross-Cutting Concerns.

é Scalability / Elasticity — scalability is a matter of operations, there-
fore does not fall into the scope of this thesis. The only requirements to
the microservice is to be transactional and stateless (both are discussed
in in section 5.5: Transactional Management).

é Availability and Resilience — both properties are essential for
MSA, therefore are taken into account at every decision or proposal.
Although improving both qualities is a matter of operations, therefore
out of scope of this thesis.

Ë Cross-cutting concerns — will be discussed separately.

5.2 Microservice Scope

NS states that a software element should have only one change driver. A
software element in this case is a microservice. Applying this rule would lead
to extremely granular system — a MS for each data element or workflow would
need its own service. If this rule is not respected, the number of change drivers
rise and combinatorial effects emerge.

5.2.1 Microservice as a Normalized System

Let us assume that the microservice itself is a Normalized System. This way
it is possible to avoid the extreme granularity, but it does not help with the
original question.

There is also a definition of microservice by Sam Newman: A microservice
should be rewritten by a team of developers in two weeks. [5] Implication of

42

5.3. Inner vs. Outer Architecture

this statement is that the complexity of one MS is bounded (to the two weeks
of work of one team). Considering that, microservice itself as a Normalized
System does not bring any value.

5.2.2 Mapping NS Elements to Microservice Architecture

This section explores the idea of building a microservices application as a Nor-
malised System.

A NS element is a high-level design pattern, designed to provide a basic
functionality of an information system [1]. The NS elements are aptly defined
in [63]:

• data elements, to represent data variables and structures,
and including support for cross-cutting concerns such as re-
mote access and persistence support;
• task elements, to represent processing instructions, and in-

cluding support for cross-cutting concerns such as remote ac-
cess, logging and access control;
• flow elements, to handle control flow and orchestrations

(i.e., the execution of a number of task elements on a specific
target data element in a stateful way);
• connector elements, to allow the interaction with external

systems (via a user interface or another application);
• trigger elements, to offer periodic clock-like control and

checking whether a task element needs to be triggered.

These elements are theoretically proven to have only one change driver
(reason to change), therefore they are free from combinatorial effects [1]. Also,
it is experimentally proven that it is possible to create a viable information
system (IS) [64] using only these elements.

The idea is to create a microservice building block, similar to a NS building
element, which would allow imitation of the NS elements using services18.

5.3 Inner vs. Outer Architecture

The notion of inner and outer architecture resembles the NS element approach
— the cross-cutting concerns are separated from the business logic.

Normalized Systems consider persistence a cross-cutting concern. Due to
the MSA pattern one DB per service, it is the private matter of the single

18This is probably the point where a veteran software engineer can’t contain his indig-
nation anymore, and stops reading while yelling: This is ridiculous, spinning up a Docker
container just to have a configured cron running somewhere! What a waste! If you are one
of those, please, hold on. This suboptimal use of system resources will hopefully result in
infinite evolvability.

43

5. Towards Stable Microservice Architecture

Figure 5.1: An example of NS building element [1]

service. None of the principles of the NS seem to contradict that assumption.
Therefore, the definition of inner and outer architecture considered compliant
with NS theory.

5.4 Cross-Cutting Concerns

Each NS element consists of business logic encapsulated in a building block.
The building block executes the business logic code, as well as it provides
access to cross-cutting concerns (e.g. persistence, access control).

This very same concept is used by various microservice ready frameworks,
e.g., Spring Boot19. The Spring Boot application out-of-the-box contains some
cross-cutting concerns (e.g. security and logging), others can be added via
configuration (e.g. Actuator plugin for monitoring) and others can be added
simply by including a dependency in a build script (e.g. JPA access).

The framework uses dependency injection to shield the programmer from
implementation detail and the framework itself can be easily updated via
Maven or Gradle build script.

To summarize, the engineering community is dealing with the cross-cutting
concerns in a very similar manner, thus it is considered compliant with NS.
(However, there is nothing to learn from NS,.)

19http://spring.io/projects/spring-boot

44

5.5. Transactional Management

5.5 Transactional Management

5.5.1 N-phase Commit

The 2-phase as well as 3-phase commit is a relationship coordinator – co-
hort(s). That means it is orchestrated by a single entity. All communication
and coordination is done through single entity and it is the only one keeping
the state of the commit (i.e., of a workflow). Therefore, the number of depen-
dencies in the transaction is not rising faster than the number of participants
and does not became unbounded.

The fact that the transaction is blocking/non-blocking does not seem to
break any of the rules of evolvability.

Therefore both transaction modes are considered compliant with a NS.

5.5.2 Saga

Saga has two possible modes of execution:

Orchestration

The orchestration is also a coordinator — cohort relationship. It exhibits
the same properties as the 3-phase commit (it is non-blocking and eventually
consistent). As a result, it is considered compliant with the NS theory.

It is also the preferred way to execute sagas in various literature, e.g., [26].

Coordination

Saga using the choreography principle exhibits a risk of tight coupling, since
there’s no fixed number dependencies on which of the particular participant
depends, therefore, the number may eventually become unbounded and com-
plexity rises unnecessarily. Therefore, this way of execution is not compliant
with the NS theory.

This concern is raised in professional literature [26].

5.6 Polyglotism and Technological Diversity

In MSA the services communicate only via APIs or via message brokers, there-
fore they can not depend on each other’s implementation details. Therefore,
the polyglot approach does influence the architectural complexity.

5.7 Persistence

The one DB per MS pattern prohibits any integration throught database or
other code smells, it is perfectly compliant with the separation of concerns
design theorem.

45

5. Towards Stable Microservice Architecture

5.8 External APIs

The both external and internal APIs must exhibit the data version trans-
parency. This is easily achievable by versioning the API, e.g., using the version
in URL. This already used and recommended practise in MSA.

46

Chapter 6
The Stable Microservice

Architecture

This section attempts to apply the findings of the last chapter.

6.1 Microservice Building Block

This section proposes the microservices building block. It is an analogy to the
NS building element (see 5.1). There are several functions this block fulfills:

• provides an execution environment for the business logic

• provides adapters for inbound and outbound ports, so the business logic
is reachable by and can reach other microservices

• provides adapters for inbound and outbound ports, so the microservices
are able to control the cross-cutting concerns it needs to reach (e.g.,
persistence access, centralized log output)

• handles the infrastructure cross-cutting concerns and shields the busi-
ness logic from them (e.g., health-check, access management, service
discovery client)

6.1.1 Building Block Layers

The building block consists of three layers and it is heavily inspired by the
hexagonal architecture (see subsection 2.5.2: Hexagonal Architecture). The re-
sponsibilities of the layers are as follows:

• business logic layer — contains the custom code and algorithms

47

6. The Stable Microservice Architecture

Inbound
Adapter

Bussiness
Logic
Layer

Adapter
Layer

Operation
Layer

Infrastructure

Cross
Cutting
Con.

Outbound
Adapter

Cross
Cutting
Con.

port-adapter
contract

cross-cutting
concern
contract

inter-microser.
contract

inner-outer architecture border

layer border

interface

passthrough

Persistence

Outbound
Adapter

Figure 6.1: Proposed building block of MSA

• adapter layer — provides a bridge between the business logic and the
runtime, separating the inner and outer architecture (see section 5.3:
Inner vs. Outer Architecture)

• operation layer — the independently deployable runtime environment

The operation layer is the prefabricated MS building block. It serves the
same purpose as a NS element of an application skeleton generated by the
NS expander — it shields the business from the execution environment, thus
making it free of combinatorial effects of the cross-cutting concerns.

The adapters fulfill the same function as in the original hexagonal archi-
tecture. It bridges the business logic and the technology surrounding it. Since
the business logic does not depend on the adapters, but the adapters on the
business logic. Therefore, it is necessary to define a contract — a language
agnostic interface definition — between those two layers, so the adapters can
be implement the functionality accordingly.

48

6.1. Microservice Building Block

6.1.2 Building Block Contracts

Contracts are also the proposed way how to keep the whole system inde-
pendent decoupled from the particular 3rd party technologies. It defines the
interface regardless of the programming language, similar to SOAP messaging
or REST calls.

Total of three categories of contracts for each building block is defined (see
fig. 6.2):

• port – adapter contracts — decouples the business logic from the
encapsulating framework; bound to programming language (or a group
of compatible languages, e.g. Java, Kotlin, Scala)

• inter-microservice contracts — decouples the microservices them-
selves; it bound to the interaction styles (e.g., request/response, pub-
lish/subscribe)

• cross-cutting concern contracts — decouples the cross-cutting con-
cerns from the infrastructure serving them (e.g., health-check, logging,
access management)

Thanks to the contracts, the used 3rd technologies may be freely swapped.
An application built using a framework A, but because of, e.g., security rea-
sons, it needs to be swapped for a framework B. Both frameworks implement
the REST standard (as the only inter-MS communication standart used).
Both frameworks also implement a JSON web token (JST) authentication (as
the only cross-cutting concern used). Thanks to the port – adapter contracts,
the only respective adapters for framework B need to be re-implemented. Once
it is done, the framework B may be deployed in the whole MS application.

6.1.3 An Example Building Block

To fullfill the functions listed in beginning of this section, the easiest way to
create a building block is to assemble it from various third-party technologies.
There’s a plenty of tooling available that together create a complete MSA
ecosystem.

Here is an example building block using a ready-made technologies: The
most common way to create a independently deployable artefact in MSA is
to use a application containerization tool, such as Docker20. The Docker is
running a lightweight Linux distribution, such as AlpineLinux21, which runs
a Java Runtime Environment22, which runs Tomcat23, which runs a Spring-
Boot24 application. The Spring Boot application is bundled with a developer’s

20https://www.docker.com/
21https://alpinelinux.org/
22https://openjdk.java.net/
23http://tomcat.apache.org/
24http://spring.io/projects/spring-boot

49

6. The Stable Microservice Architecture

own, prepared adapters. Although this sounds extremely complicated, the
Docker makes the whole process simple and automated out of the box.

Docker containers are built using layers stacked on top of each other.
When something is changed, only the layer containing the change and layers
above need to be rebuilt. Therefore rebuilding a prepared MSA building block
with a custom code (the top layer) is a matter of seconds.

Even though the preparation of a single building block is relatively simple,
a complete application would need a vast amount of such building blocks to
cover a reasonable functionality. The viable solution seems to be the one that
is utilized by Normalized Systems Expander — automatic code generation of
an application skeleton based on a domain model, and then implementing the
bussiness logic as a custom code (more about this approach in [1]).

6.2 The Normalized Elements of MSA

The empty building block from the last section may be further specialized to
the normalized elements of MSA — the normalized services.

• data services — responsible for create, read, update, delete,
search (CRUDS) operations of data

• task services — responsible for executing data operations
on 1 or more data entities

• flow elements — responsible for executing workflows using
saga-like transactions

• connector elements — responsible for external APIs

• trigger elements — responsible for triggering scheduled
workflows and tasks

All of the elements are bundled with the vital cross-cutting concerns out
of the box (logging, access control, message broker connectors, direct inbound
and outbound calls etc.). The data and flow services also equipped with
persistence so they persist the processed data entities as well as workflow
status.

6.3 Example Usage

The following section is an example of a workflow in a system composed of
Normalized elements of MSA. It represents a system excerp and shows only
the communicating entities.

The usecase is very simple: at the end of the month, calculate a salary of
an employee from his timesheet.

50

6.4. Viability of the Proposed Method

<< flow >>
Calculate

Payroll
Orchestrator

<< data >>
Employees

<< trigger >>
Payroll
Timer

<< data >>
Timesheets

<< task >>
Calculate

Payroll

1

2
3

4

<< data >>
Payrolls 5

Figure 6.2: The Payroll Usecase

Scenario (for illustration see fig.: 6.2)

1. the PayrollTimer expires and triggers a CalculatePayrollOrchestrator,
which created an instance of its workflow

2. the CalculatePayrollOrchestrator requests instance of an Employee
data entity from Employees and gets a response

3. the CalculatePayrollOrchestrator requests instance of an Timesheet
data entity from Timesheets and gets a response

4. the CalculatePayrollOrchestrator requests a payroll calculation from
CalculatePayroll task service (using the Employee and Timesheet as
arguments) and gets a Payroll entity back

5. the CalculatePayrollOrchestrator submits the Payroll entity to
Payrolls data service.

6.4 Viability of the Proposed Method

As seen on the example, even such a trivial task requires a large number of
services and very chatty communication between the services.

Large numbers of services mean an excess of used resources. Although,
thanks to the flexible cloud environments an excess of used resources does not
require an excess of money in hardware and Docker containers are lightweight
compared to VMs. But still, resources are not for free and wasting them is
wrong business strategy.

As is stated in the fallacies of distributed computing (see sec. 4.1.5.1), the
network is slow and unreliable compared to local calls. The stumbling block
in this case is the metric — the network latency — which is almost impossible

51

6. The Stable Microservice Architecture

to scale or improve. That would render each non-trivial operation intolerably
slow.

To conclude, this method is theoretically achievable, but not economically
viable way to build information systems.

6.5 Other Observations

There might be some guidelines, lessons learned or proofs provided by the
NS theory. For example it proves the high coupling in choreographed saga;
encapsulation of bussiness logic code to a framework managing cross-cutting
concerns (see 5.4).

On the other hand, this fact is also revealed by professional literature in
microservices field (although, using just a simple example instead of logical
proofs).

Confirmations of such recommendation or obvious facts is not credited to
NS theory.

52

Conclusion

Author’s comments on proposed solution

I, as an author, have had high expectations from this research topic. The
solution I’ve proposed I the last chapter was wrong from the very beginning.
It does not require strong imagination to realize that such system would have
extremely high latency. I started this research with completely different idea.

The Normalizes Systems and microservice architecture share many charac-
teristics: High modularity. The need for evolvability. Separation of concerns
— the do one thing but do it right principle. Separation of states. The version-
ing of APIs resembles data and action version transparency. Both approaches
appear to have the same challenges with cross cutting concerns. I believed
that there must be something in Normalized Systems, that would help the
craftsmanship of microservice practitioners to improve their know-how.

The development of the microservices is driven by immense experience and
intuition, but it is also limited by restraint to do anything extreme — such as
breaking an application to extremely small modules. And yet this has been
proven to be the way to guarantee an infinite evolvability.

It was proven that applying Normalized Systems theory on microservices
architecture would result in a system that is infinitely evolvable. However, it

would be a waste of computational resources as well as human patience.

53

Conclusion

Evaluation of Goals

• Perform a literature review on MS and on application of NS to MS
and/or related architecture styles and patterns

Accomplished — the literature review was performed on vast amounts of
resources. Although lacking systematical approach for the community,
retrieved information served as an comprehensive base for the analysis.

• Analyze the microservice architecture

Accomplished — the domain was analyzed thoroughly within a required
scope. The key aspects and challenges of microservice architecture were
identified.

• Examine compliance of microservice architecture to Normalized Systems
theory

Accomplished — the compliance with Normalized Systems theory was
examined and discovered improvements were suggested.

• Summarize design guidelines for MSA

Accomplished — a set of design rules was proposed and demonstrated
on suitable example. A discussion of viability of the proposed method
was done. The initially proposed case study was omitted due to the
findings.

54

Bibliography

[1] De Bruyn, P.; Mannaert, H.; Verelst, J. Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design. Antwerp, Belgium: Koppa, 2016, ISBN 978-90-77160-
091.

[2] Amazon.com, Inc. What Is DevOps? [ONLINE], 2018, [accessed: 3.
6. 2018]. Available from: https://aws.amazon.com/devops/what-is-
devops/

[3] Fowler, M.; Lewis, J. Microservices: a definition of this new architectural
term. [ONLINE], 2014, [accessed: 1. 2. 2017]. Available from: https:
//martinfowler.com/articles/microservices.html

[4] Mahlen, P. Modeling Microservices at Spotify with Petter Mahlen. [ON-
LINE], 2106, [accessed: 5. 9. 2018]. Available from: https://dzone.com/
articles/modeling-microservices-at-spotify-with-petter-mari

[5] Newman, S. Building Microservices: Designing Fine-Grained Systems.
O’Reilly Media, Inc., 2015, ISBN 978-1-491-95035-7.

[6] Conway, M. Conway’s Law. [ONLINE], 1967, [accessed: 25. 6. 2018].
Available from: http://www.melconway.com/Home/Conways_Law.html

[7] Mannaert, H.; Verelst, J. Normalized Systems: Re-creating Information
Technology Based on Laws for Software Evolvability. Antwerp, Belgium:
Koppa, 2009, ISBN 978-90-77160-00-8.

[8] Verelst, J.; Mannaert, H.; Huysmans, P. ”IT Isn’t Different After All”:
Implications of Normalized Systems for the Industrialization of Software
Development. In 2013 IEEE 15th Conference on Business Informatics,
July 2013, ISSN 2378-1963, pp. 356–362, doi:10.1109/CBI.2013.58.

55

https://aws.amazon.com/devops/what-is-devops/
https://aws.amazon.com/devops/what-is-devops/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://dzone.com/articles/modeling-microservices-at-spotify-with-petter-mari
https://dzone.com/articles/modeling-microservices-at-spotify-with-petter-mari
http://www.melconway.com/Home/Conways_Law.html

Bibliography

[9] Op ’t Land, M.; Krouwel, M.; Dipten, E.; et al. Exploring Normal-
ized Systems Potential for Dutch MoD’s Agility. In Practice-Driven Re-
search on Enterprise Transformation, Lecture Notes in Business Infor-
mation Processing, volume 89, edited by F. Harmsen; K. Grahlmann;
E. Proper, Springer Berlin Heidelberg, 2011, ISBN 978-3-642-23387-6,
pp. 110–121, doi:10.1007/978-3-642-23388-3 5. Available from: http:
//dx.doi.org/10.1007/978-3-642-23388-3_5

[10] Ford, N.; Kua, P.; Parsons, R. Building Evolutionary Architectures: Sup-
port Constant Change. O’Reilly Media, Inc., 2017, ISBN 978-1-491-98636-
3.

[11] Mannaert, H.; Verelst, J.; Ven, K. Towards evolvable software architec-
tures based on systems theoretic stability. Software: Practice and Experi-
ence, volume 42, no. 1, 2012: pp. 89–116, ISSN 1097-024X, doi:10.1002/
spe.1051. Available from: http://dx.doi.org/10.1002/spe.1051

[12] Lehman, M. M. Programs, life cycles, and laws of software evolution.
Proceedings of the IEEE, volume 68, no. 9, 1980: pp. 1060–1076.

[13] McIlroy, M. D.; Buxton, J.; Naur, P.; et al. Mass-produced software com-
ponents. In Proceedings of the 1st International Conference on Software
Engineering, Garmisch Pattenkirchen, Germany, sn, 1968, pp. 88–98.

[14] Kolař́ık, V. Applying OntoUML for structural definitions of Normal-
ized Systems Expanders. Bachelor’s thesis, Czech Technical University
in Prague, Prague, Czech Republic, May 2014.

[15] Foote, B.; Yoder, J. Big Ball of Mud. [ONLINE], 1999, [accessed: 4. 10.
2018]. Available from: http://www.laputan.org/mud/mud.html

[16] ISO/IEC 42010:2007(E). IEEE Recommended Practice for Architectural
Description of Software-Intensive Systems. Technical report, IEEE Com-
puter Society, 2000.

[17] Clements, P.; Garlan, D.; Bass, L.; et al. Documenting Software Architec-
tures: Views and Beyond. Pearson Education, 2002, ISBN 0201703726.

[18] Kruchten, P. B. The 4+1 View Model of Architecture. IEEE Software,
volume 12, no. 6, Nov 1995: pp. 42–50, ISSN 0740-7459, doi:10.1109/
52.469759.

[19] Garlan, D.; Shaw, M. An Introduction to Software Architecture. Techni-
cal report, Carnegie Mellon University, Pittsburgh, PA, USA, 1994.

[20] Fedorov, A.; Francis, B.; Harrison, R. Professional Active Server Pages
2.0. Professional Series, Wrox Press, 1998, ISBN 9781861001269. Avail-
able from: https://books.google.cz/books?id=hWZm_9NnvO8C

56

http://dx.doi.org/10.1007/978-3-642-23388-3_5
http://dx.doi.org/10.1007/978-3-642-23388-3_5
http://dx.doi.org/10.1002/spe.1051
http://www.laputan.org/mud/mud.html
https://books.google.cz/books?id=hWZm_9NnvO8C

Bibliography

[21] Wikipedia. Monolithic application. [ONLINE], 2018, [accessed: 20. 12.
2018]. Available from: https://en.wikipedia.org/wiki/Monolithic_
application

[22] Dragoni, N.; Giallorenzo, S.; Lafuente, A. L.; et al. Microservices:
Yesterday, Today, and Tomorrow. Cham: Springer International Pub-
lishing, 2017, ISBN 978-3-319-67425-4, pp. 195–216, doi:10.1007/978-3-
319-67425-4 12. Available from: https://doi.org/10.1007/978-3-319-
67425-4_12

[23] Garriga, M. Towards a Taxonomy of Microservices Architectures. In Soft-
ware Engineering and Formal Methods, edited by A. Cerone; M. Roveri,
Cham: Springer International Publishing, 2018, ISBN 978-3-319-74781-1,
pp. 203–218.

[24] Sorgalla, J.; Rademacher, F.; Sachweh, S.; et al. On Collaborative Model-
Driven Development of Microservices. In Software Technologies: Appli-
cations and Foundations, edited by M. Mazzara; I. Ober; G. Salaün,
Cham: Springer International Publishing, 2018, ISBN 978-3-030-04771-
9, pp. 596–603.

[25] Vural, H.; Koyuncu, M.; Misra, S. A Case Study on Measuring the Size of
Microservices. In Computational Science and Its Applications – ICCSA
2018, edited by O. Gervasi; B. Murgante; S. Misra; E. Stankova; C. M.
Torre; A. M. A. Rocha; D. Taniar; B. O. Apduhan; E. Tarantino; Y. Ryu,
Cham: Springer International Publishing, 2018, ISBN 978-3-319-95174-4,
pp. 454–463.

[26] Richardson, C. Microservice Patterns. Manning Publications Company,
2018, ISBN 9781617294549. Available from: https://books.google.cz/
books?id=UeK1swEACAAJ

[27] Rodger, R. The Tao of Microservices. Manning Publications Company,
2017, ISBN 9781617293146. Available from: https://books.google.cz/
books?id=uosOkAEACAAJ

[28] Nadareishvili, I.; Mitra, R.; McLarty, M.; et al. Microservice Architecture:
Aligning Principles, Practices, and Culture. O’Reilly Media, Inc., first
edition, 2016, ISBN 1491956259, 9781491956250.

[29] Familiar, B. Microservices, IoT, and Azure: Leveraging DevOps and Mi-
croservice Architecture to Deliver SaaS Solutions. Berkely, CA, USA:
Apress, first edition, 2015, ISBN 1484212762, 9781484212769.

[30] Schwartz, A. Microservices. Informatik-Spektrum, volume 40, no. 6, Dec
2017: pp. 590–594, ISSN 1432-122X, doi:10.1007/s00287-017-1078-6.
Available from: https://doi.org/10.1007/s00287-017-1078-6

57

https://en.wikipedia.org/wiki/Monolithic_application
https://en.wikipedia.org/wiki/Monolithic_application
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://books.google.cz/books?id=UeK1swEACAAJ
https://books.google.cz/books?id=UeK1swEACAAJ
https://books.google.cz/books?id=uosOkAEACAAJ
https://books.google.cz/books?id=uosOkAEACAAJ
https://doi.org/10.1007/s00287-017-1078-6

Bibliography

[31] Gruhn, V. Die Organisation der Zukunft: Microservices. Wirtschaftsin-
formatik & Management, volume 10, no. 1, Feb 2018: pp. 52–57,
ISSN 1867-5913, doi:10.1007/s35764-018-0022-0. Available from: https:
//doi.org/10.1007/s35764-018-0022-0

[32] Guidi, C.; Lanese, I.; Mazzara, M.; et al. Microservices: A Language-
Based Approach. Cham: Springer International Publishing, 2017,
ISBN 978-3-319-67425-4, pp. 217–225, doi:10.1007/978-3-319-67425-4 13.
Available from: https://doi.org/10.1007/978-3-319-67425-4_13

[33] Hasselbring, W.; Steinacker, G. Microservice Architectures for Scalabil-
ity, Agility and Reliability in E-Commerce. In 2017 IEEE International
Conference on Software Architecture Workshops (ICSAW), April 2017,
pp. 243–246, doi:10.1109/ICSAW.2017.11.

[34] Yugopuspito, P.; Panduwinata, F.; Sutrisno, S. Microservices architec-
ture: Case on the migration of reservation-based parking system. In
2017 IEEE 17th International Conference on Communication Technol-
ogy (ICCT), Oct 2017, ISSN 2576-7828, pp. 1827–1831, doi:10.1109/
ICCT.2017.8359946.

[35] Singleton, A. The Economics of Microservices. IEEE Cloud Computing,
volume 3, no. 5, Sep. 2016: pp. 16–20, ISSN 2325-6095, doi:10.1109/
MCC.2016.109.

[36] Ma, S.; Fan, C.; Chuang, Y.; et al. Using Service Dependency Graph to
Analyze and Test Microservices. In 2018 IEEE 42nd Annual Computer
Software and Applications Conference (COMPSAC), volume 02, July
2018, ISSN 0730-3157, pp. 81–86, doi:10.1109/COMPSAC.2018.10207.

[37] BA, K.; Charters, S. Guidelines for performing Systematic Literature
Reviews in Software Engineering. volume 2, 01 2007.

[38] Richardson, C. Microservices architecture. [ONLINE], 2018, [accessed:
10. 4. 2018]. Available from: https://microservices.io/articles/
whoisusingmicroservices.html

[39] Shoup, R. An Approach to Achieve Scalability and Availability of Data
Stores. [ONLINE], 2008, [accessed: 11. 11. 2017]. Available from: https:
//www.infoq.com/articles/ebay-scalability-best-practices

[40] Narula, M. An Approach to Achieve Scalability and Availability of
Data Stores. [ONLINE], 2017, [accessed: 11. 11. 2017]. Available
from: https://www.ebayinc.com/stories/blogs/tech/an-approach-
to-achieve-scalability-and-availability-of-data-stores/

58

https://doi.org/10.1007/s35764-018-0022-0
https://doi.org/10.1007/s35764-018-0022-0
https://doi.org/10.1007/978-3-319-67425-4_13
https://microservices.io/articles/whoisusingmicroservices.html
https://microservices.io/articles/whoisusingmicroservices.html
https://www.infoq.com/articles/ebay-scalability-best-practices
https://www.infoq.com/articles/ebay-scalability-best-practices
https://www.ebayinc.com/stories/blogs/tech/an-approach-to-achieve-scalability-and-availability-of-data-stores/
https://www.ebayinc.com/stories/blogs/tech/an-approach-to-achieve-scalability-and-availability-of-data-stores/

Bibliography

[41] Barkas, N. Spotify: Horizontal scalability for great success. [ON-
LINE], 2011, [accessed: 11. 11. 2017]. Available from: https://
www.youtube.com/watch?v=BBAfIYpDMX4

[42] Gonzalo, P. Microservices Architecture at Spotify. [ONLINE], 2015, [ac-
cessed: 25. 6. 2018]. Available from: https://medium.com/codebase/
microservices-architecture-at-spotify-beac905e9622

[43] Novak, A. Going to Market Faster: Most Companies Are Deploying
Code Weekly, Daily, or Hourly. [ONLINE], 2016, [accessed: 9. 12.
2018]. Available from: https://blog.newrelic.com/technology/data-
culture-survey-results-faster-deployment/

[44] Rotem-Gal-Oz, A. Fallacies of Distributed Computing Explained. [ON-
LINE], 2007, [accessed: 25. 11. 2018]. Available from: http://
www.rgoarchitects.com/Files/fallacies.pdf

[45] Fowler, M. Monolith First. [ONLINE], 2015, [accessed: 7. 6. 2018]. Avail-
able from: https://martinfowler.com/bliki/MonolithFirst.html

[46] Evans, E. J. Domain-Driven Design: Tacking Complexity In the Heart of
Software. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2003, ISBN 0321125215.

[47] Bogner, J.; Zimmermann, A. Towards Integrating Microservices with
Adaptable Enterprise Architecture. In 2016 IEEE 20th International En-
terprise Distributed Object Computing Workshop (EDOCW), Sep. 2016,
ISSN 2325-6605, pp. 1–6, doi:10.1109/EDOCW.2016.7584392.

[48] Zimmermann, A.; Sandkuhl, K.; Pretz, M.; et al. Towards an integrated
service-oriented reference enterprise architecture. O’Reilly Media, Inc.,
08 2013, ISBN 1491956259 9781491956250, 26-30 pp.

[49] Hassan, S.; Bahsoon, R. Microservices and Their Design Trade-Offs:
A Self-Adaptive Roadmap. In 2016 IEEE International Conference
on Services Computing (SCC), June 2016, pp. 813–818, doi:10.1109/
SCC.2016.113.

[50] Wilde, N.; Gonen, B.; El-Sheikh, E.; et al. Approaches to the Evolution of
SOA Systems. In Emerging Trends in the Evolution of Service-Oriented
and Enterprise Architectures, edited by E. El-Sheikh; A. Zimmermann;
L. C. Jain, Cham: Springer International Publishing, 2016, ISBN 978-3-
319-40564-3, pp. 5–21, doi:10.1007/978-3-319-40564-3 2. Available from:
https://doi.org/10.1007/978-3-319-40564-3_2

[51] Toffetti, G.; Brunner, S.; Blöchlinger, M.; et al. Self-managing cloud-
native applications: Design, implementation, and experience. Future

59

https://www.youtube.com/watch?v=BBAfIYpDMX4
https://www.youtube.com/watch?v=BBAfIYpDMX4
https://medium.com/codebase/microservices-architecture-at-spotify-beac905e9622
https://medium.com/codebase/microservices-architecture-at-spotify-beac905e9622
https://blog.newrelic.com/technology/data-culture-survey-results-faster-deployment/
https://blog.newrelic.com/technology/data-culture-survey-results-faster-deployment/
http://www.rgoarchitects.com/Files/fallacies.pdf
http://www.rgoarchitects.com/Files/fallacies.pdf
https://martinfowler.com/bliki/MonolithFirst.html
https://doi.org/10.1007/978-3-319-40564-3_2

Bibliography

Generation Computer Systems, volume 72, 2017: pp. 165 – 179,
ISSN 0167-739X, doi:https://doi.org/10.1016/j.future.2016.09.002. Avail-
able from: http://www.sciencedirect.com/science/article/pii/
S0167739X16302977

[52] Amundsen, M. Three Pillars of Microservice Culture. [ONLINE], 2016,
[accessed: 25. 6. 2018]. Available from: https://www.oreilly.com/
ideas/three-pillars-of-microservice-culture

[53] Ashkenas, R.; Spiegel, M. Your Innovation Team Shouldn’t Run Like a
Well-Oiled Machine. [ONLINE], 2015, [accessed: 20. 12. 2018]. Available
from: https://hbr.org/2015/10/your-innovation-team-shouldnt-
run-like-a-well-oiled-machine

[54] Wikipedia. Fallacies of Distributed Computing. [ONLINE], 2018, [ac-
cessed: 25. 11. 2018]. Available from: https://en.wikipedia.org/wiki/
Fallacies_of_distributed_computing

[55] Gilbert, S.; Lynch, N. Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-tolerant Web Services. SIGACT News,
volume 33, no. 2, June 2002: pp. 51–59, ISSN 0163-5700, doi:
10.1145/564585.564601. Available from: http://doi.acm.org/10.1145/
564585.564601

[56] Haerder, T.; Reuter, A. Principles of Transaction-oriented Database
Recovery. ACM Comput. Surv., volume 15, no. 4, Dec. 1983: pp.
287–317, ISSN 0360-0300, doi:10.1145/289.291. Available from: http:
//doi.acm.org/10.1145/289.291

[57] Mohan, C.; Lindsay, B.; Obermarck, R. Transaction Management in the
R* Distributed Database Management System. ACM Trans. Database
Syst., volume 11, no. 4, Dec. 1986: pp. 378–396, ISSN 0362-5915,
doi:10.1145/7239.7266. Available from: http://doi.acm.org/10.1145/
7239.7266

[58] Keidar, I.; Dolev, D. Increasing the resilience of distributed and replicated
database systems. Journal of Computer and System Sciences, volume 57,
no. 3, 1998: pp. 309–324.

[59] Garcia-Molina, H.; Salem, K. Sagas. SIGMOD Rec., volume 16, no. 3,
Dec. 1987: pp. 249–259, ISSN 0163-5808, doi:10.1145/38714.38742. Avail-
able from: http://doi.acm.org/10.1145/38714.38742

[60] Rücker, B.; Schimak, M. Know the Flow! Microservices and Event
Choreographies. [ONLINE], 2017, [accessed: 11. 12. 2017]. Avail-
able from: https://www.infoq.com/articles/microservice-event-
choreographies

60

http://www.sciencedirect.com/science/article/pii/S0167739X16302977
http://www.sciencedirect.com/science/article/pii/S0167739X16302977
https://www.oreilly.com/ideas/three-pillars-of-microservice-culture
https://www.oreilly.com/ideas/three-pillars-of-microservice-culture
https://hbr.org/2015/10/your-innovation-team-shouldnt-run-like-a-well-oiled-machine
https://hbr.org/2015/10/your-innovation-team-shouldnt-run-like-a-well-oiled-machine
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
http://doi.acm.org/10.1145/564585.564601
http://doi.acm.org/10.1145/564585.564601
http://doi.acm.org/10.1145/289.291
http://doi.acm.org/10.1145/289.291
http://doi.acm.org/10.1145/7239.7266
http://doi.acm.org/10.1145/7239.7266
http://doi.acm.org/10.1145/38714.38742
https://www.infoq.com/articles/microservice-event-choreographies
https://www.infoq.com/articles/microservice-event-choreographies

Bibliography

[61] Wikipedia. God object. [ONLINE], 2017, [accessed: 11. 12. 2017].
Available from: https://en.wikipedia.org/w/index.php?title=God_
object&oldid=812564435

[62] Netflix, I. Chaos Monkey Documentation. [ONLINE], 2018, [accessed: 8.
9. 2018]. Available from: https://netflix.github.io/chaosmonkey/

[63] De Bruyn, P.; Mannaert, H.; Verelst, J.; et al. Enabling Normal-
ized Systems in Practice – Exploring a Modeling Approach. Business
& Information Systems Engineering, volume 60, no. 1, Feb 2018: pp.
55–67, ISSN 1867-0202, doi:10.1007/s12599-017-0510-4. Available from:
https://doi.org/10.1007/s12599-017-0510-4

[64] De Bruyn, P.; Mannaert, H.; Verelst, J.; et al. Enabling Normal-
ized Systems in Practice – Exploring a Modeling Approach. Business
& Information Systems Engineering, volume 60, no. 1, Feb 2018: pp.
55–67, ISSN 1867-0202, doi:10.1007/s12599-017-0510-4. Available from:
https://doi.org/10.1007/s12599-017-0510-4

61

https://en.wikipedia.org/w/index.php?title=God_object&oldid=812564435
https://en.wikipedia.org/w/index.php?title=God_object&oldid=812564435
https://netflix.github.io/chaosmonkey/
https://doi.org/10.1007/s12599-017-0510-4
https://doi.org/10.1007/s12599-017-0510-4

Appendix A
Acronyms

ACID atomicity, consistency, isolation, durability

API application programming interface

BE back-end

CAP consistency, availability, partition tolerance (theorem)

CD continuous delivery

CI continuous integration

CRUD create, read, update, delete

CRUDS create, read, update, delete, search

DAO data access object

DB database

DBMS database management system

DDD domain driven design

DRY do not repeat yourself

DTO data transfer object

EA enterprise architecture

FE front-end

FP functional programming

63

GUI graphical user interface

IPC inter-process communication

IS information system

IT information technology

JSON JavaScript object notation

JST JSON web token

MS microservice

MSA microservice architecture

MVC Model-View-Controller architecture

MVVM Model-View-ViewModel architecture

NS Normalized Systems theory

OOP object oriented programming

ORM object-relational mapping

POJO plain old Java object

R&D research and development

REST representational state transfer

RPC remote procedure call

SA software architecture

SLR systematic literature review

SOA service-oriented architecture

SOAP simple object access protocol

SW software

VM virtual machine

XML extensible markup language

64

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
Figures.........................source files of figures used in the thesis
Text...thesis text

DP Kolarik Vincenc.pdf..................PDF version of the thesis
src.................................LATEX source codes of the thesis

65

	Introduction
	Goals and Approach
	Goals
	Approach
	Thesis Structure and Tasks

	Theoretical Background
	Introduction to Normalized Systems
	Design Theorems of Stable Software
	Introduction to Software Architecture
	4+1 View Model of Architecture
	Architectural Styles

	Microservice Architecture Literature Review
	Available Sources
	Related Work

	Analysis of the Microservice Architecture
	(De)composition of Microservice Application
	Inter-microservice Communication
	Transaction management
	Persistence

	Towards Stable Microservice Architecture
	Selected Aspects
	Microservice Scope
	Inner vs. Outer Architecture
	Cross-Cutting Concerns
	Transactional Management
	Polyglotism and Technological Diversity
	Persistence
	External APIs

	The Stable Microservice Architecture
	Microservice Building Block
	The Normalized Elements of MSA
	Example Usage
	Viability of the Proposed Method
	Other Observations

	Conclusion
	Author's comments on proposed solution
	Evaluation of Goals

	Bibliography
	Acronyms
	Contents of enclosed CD

