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ABSTRACT 

The aim of this dissertation is to study “Elastokinematics of wheel suspension” 

of Škoda Superb 4X4, with the existing test bench in the laboratory of Automotive 

Department at Juliska. Primarily, I performed detail analysis of previous studies on 

elastokinematic test bench. Next, I refurbished the old setup, retraced the 

measurements and prepared the data acquisition software in LabVIEW.  

In addition to this, I proposed the solution for the sliding mechanism and 

checked the feasibility of suggested guides. Designed and fabricated the measurement 

setup for the left wheel (i.e. sliding table, sensors stand, height sensor mount and the 

wheel clamp) to measure the change in elastokinematic parameters of left wheel in a 

car. Detail study of the measured data with edited test bench and suggested the 

possibilities of the future improvement. 
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1. INTRODUCTION: 

Today, increasing demands of automobiles have increased the emphasis of 

automakers to work in the field of safety, comfort and ride quality in a very delicate 

manner when compared to the manufacturers in the past. In a vehicle, all the above 

defined factors share a prominent element, chassis. Optimally tuned chassis significantly 

provides better handling, directional stability and security. In addition to chassis, 

suspension is a very important in an automobile, since it directly affects the handling 

performance and ride comfort. All the driving/braking forces and lateral forces during 

cornering are transferred to the car body from the ground through the suspension 

system. Overall, the suspension system consists of dampers, springs, arms, knuckles 

and anti-roll bars as the main components and bushings, bearings and fasteners as the 

support components.  

Since, the driving dynamics directly concerned with suspension. So, the deep study 

of automotive suspension is necessary to develop an appropriate mechanism to handle 

the undulations of roads and provide drive comfort to drivers. Kinematics and 

Elastokinematics of a vehicle suspension are the two branches of mechanics which need 

to be studied to determine the behavior of a car. 

• Suspension kinematics : It refers to the relative motion between the wheels and 

body whose movement is constrained by linkage in between. Assumption : 

Linkages are taken as rigid bodies. Rubber bushings or any elastic element does 

not take into consideration. 

• Suspension elastokinematics : Under this study, Linkages such as subframe, 

control arms, knuckle etc. along with the elastic connections (rubber bushings) 

are considered. 

The wheel angle with respect to body such as toe angle, camber angle can be 

expressed as functions of the suspension travel or the parameters to study kinematics 

and elastokinematics of a suspension. 

Although, simulation tools can be used to study the behavior of a vehicle both 

kinematically and elastokinematically, but the behavior is unprecedented for 

elastokinematics analysis of suspensions particularly under dynamic testing [1]. 

To determine the behavior of resilient elements, the test bench had built in late 20th 

century and since then it has been improved as a diploma work in CVUT laboratory, 
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Juliska. The test bench has not been functional since 2013. So, some changes were 

required including new wiring and connections with the sensors to make it functional 

again in its basic form Figure 1-1.  

 

Figure 1-1 : Elastokinematics measurement test bench in CVUT Lab, Juliska (2011) [2] 

The suspension to be studied is McPherson strut, front wheels, RHD, Škoda superb 4X4. 

Earlier studies did not consider the elastokinematics behavior of left wheel (LW) 

suspension with respect to the force applied on right wheel (RW). Both the wheels are 

directly connected with anti-roll bar and indirectly connected with drive shaft & tie-rod. 

All the mentioned links have involved elastomeric elements i.e. anti-roll bar bushings, axle 

and tie-rod rubber boots. An anti-roll bar is intended to force each side of the vehicle to 

lower, or rise, to similar heights, to reduce the sideways tilting (roll) of the vehicle on 

curves, sharp corners, or large bumps. It is basically a torsion spring which resist body 

roll motion. To determine the elastokinematic parameters of LW with respect to RW 

suggest the current study to be carried out. 



 

[3] 
 

 

Figure 1-2: McPherson strut with sway bar link [3] 

Summing up, this Master thesis deals with the suggestions & possible 

improvements to refine characteristics measurement and to determine the 

interdependency of elastokinematic behavior of front suspension. The demonstration of 

improvement and successful execution of the measuring station has been shown using 

the graph and figures in the work below. 
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2. ELASTOKINEMATICS: 

Elastokinematics is the study of motion of a mechanism in which the elastic behavior 

of the bodies is also taken into consideration. It can be grouped as the combination of theory 

of elasticity + kinematics. In Kinematic analysis of a car suspension, the joints and the 

bodies are treated as having strictly those degrees of freedom i.e. pivot - 1 rotation, ball 

joint - 2 rotation, the structural deflections of bodies like control arm are not considered. 

But in elastokinematics analysis of these bodies generally have a lot more degrees of 

freedom, as the rubber bushes can deform anyhow (axial, radial, conical). An automobile 

simply consists of many mechanisms but here we are focused on Kinematics and 

elastokinematics of wheel suspension. By studying the kinematics, one can describe the 

motion of various links and joints in wheel suspension mechanism. Like any another 

mechanism, it seems quite simple to understand the movement of wheel with respect to its 

adjacent links or fixed frame. On theoretical basis, we consider the components of this 

mechanism rigid and accordingly the studies have carried out. In real life, to achieve the 

balance of comfortability and stability of the vehicle, to provide freedom to the wheel to 

accommodate itself to small asperities on road. Some elastics behavior is provided to the 

joints of the mechanism. Now, the focus is to study the elastokinematics of wheel 

suspension, precisely the study describes changes in the position of the wheel with respect 

to the ground causes by the forces and moments acting between the tire and road in 

longitudinal and lateral directions. Additionally, the geometrical characteristics has increased 

owing to these elastics’ elements, designers must consider these parameters to design of 

the chassis and tuning the vehicle behavior. Twist beam suspensions which are common 

rear suspension in most hatchbacks and sedans today can be analyze only by 

elastokinematics as they structurally deform during suspension travel. It cannot be 

examined using pure kinematics [4].  

In Figure 2-1 representation of McPherson strut suspension has shown the 

participation of various resilient elements (bushes and boots) along with other structural 

units. 
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Figure 2-1: McPherson strut, focusing element in blue [4] 

2.1 PARAMETERS TO STUDY THE ELASTOKINEMATICS: 

Wheel geometry of a vehicle with respect to road can be defined by many parameters 

such as toe, camber, castor, kingpin inclination, scrub radius etc. The important 

characteristics are toe, camber and castor these are the most influencing ones which can 

affect stability while driving maneuvers and relatively simple to measure. This diploma work 

based upon the measurements of these two parameters (toe and camber) when the 

suspension is subjected to in-lab simulated driving conditions. 

2.1.1  TOE:  

Also known as tracking, toe is the measure of how far inward or outward the leading edge 

of the tire is facing, when viewed from the top and determines how the car reacts to steering 

inputs as well as the tire wear. There can be two possibilities: 

• If the front of the wheel pointing towards the centerline of the vehicle, toe in. 

• If the front wheel pointing away from the centerline of the vehicle, toe out. 

When the car has a toe-in during acceleration the thrust force will tend to bring the wheels 

back into straight line, but it will have drastic effects during turns and braking. When toe-

out is present, during acceleration the thrust force will try to increase the toe-out which has 

a greater influence on the vehicles’ stability.  

  

Sway bar link rod kit with bush 
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The method using with which the toe is measured is shown in Figure 2-2. 

 
 

Figure 2-2: Toe in & out [source: Wikipedia] 

  

2.1.2  CAMBER: 

Camber is the angle at which the wheel and tire stand relative to the road, assuming 

it is perfectly flat. When stationary, the tire maintains a static camber angle, whereas when 

the car is cornering, due to body roll, the contact patch is reduced. 

If the top of the tire is leaned in closer to center of the vehicle, that geometry known 

as negative camber. Similarly, if the tire leaned outward, that wheel and tire exhibit positive 

camber as shown in Figure 2-3. Camber angle changes due to the application of longitudinal 

and lateral forces and the changes are more prominent due to lateral forces exerted on the 

wheel during cornering. With this experiment, we will observe the behavior of camber angle 

with respect to the forces exerted in all three direction (X, Y, Z).  

In an independent suspension wheel inclines with the body during cornering resulting 

in positive camber on outer wheel (reduces lateral grip) and vice-a-versa for inner wheel. 

To balance this, manufacturer designs the suspension such that the wheels go into negative 

camber as they travel in bump and into positive camber as they rebound with permanent 

negative camber setting on wheels. According to studies, the wheel on the strut dampers 

takes on more positive camber during rebound, this being the equivalent of better lateral 

force absorption on the (less loaded) wheel on the inside of the bend [5].  
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Figure 2-3: Positive and Negative camber on front axle [source: Wikipedia] 

2.2 METHODOLOGY OF THE EXPERIMENT: 

 

Figure 2-4: Test-bench layout 
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The test bench has long history, it has been improving since then as a part of diploma 

work. A basic idea of the work done during this master thesis has been presented in Figure 

2-4 with notations [B], [4].  Basically, it works upon the measurement of distance between 

the two points using tactile sensors (LARM MSL 50). A hydraulic aggregate (position 2) 

generates pressure to move two hydraulic cylinders which can further push the wheel in X 

(longitudinal) & Y (lateral) directions, producing the forces Fx & Fy (position 3). Using 

electrically driven lifting table ZS 2400 from TES Vsetín, a.s. (position 5) wheel stroke (Z 

direction motion) can be change during measurement. To trace the change in wheel 

geometry, a plane [A] parallel to wheel has clamped with wheel. Optoelectronic LARM MSL 

50 position sensors have seamless contact with plane [A],  which generates signal due to 

change in position of the plane [A]. Respective data obtained transfers to a DAQ system. 

Eventually stored in a text/MS excel file. 

LabVIEW is used as a DAQ system. It stands for “Laboratory Virtual Instrument 

Engineering Workbench”. It is a programming environment in which programs can be 

created using a graphical notation (connecting functional nodes via wires through which 

data flows) instead of long written text. In this regard, it differs from traditional 

programming languages like C, C++, or Java. 

Position 1 shows distribution box, which contains hardware units of data acquisition 

system. For example, compact DAQ chassis 9171 with attached measurement cards (9237, 

9201, 9401, 9263), Power source and relays. 
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2.2.1  HISTORY OF THE TEST BENCH 

       
In 1970, the bench had set up to determine the characteristics of the axles of 

passenger cars as per the demand of auto manufacturers concerned with CVUT, Prague. 

The test bench was modified in 1993 by a team led by doc. Ing. Jiří Svoboda. Under this 

modification, vertical and longitudinal movement had given to the wheel set up used for 

measurements. Details, history and the technical information of the test bench has been 

taken from the documentation done by Mr. Luboš Růžička [6] and Mr. Fišer [2] in their 

diploma work. During their thesis, they have done remarkable work to improve 

measurement rig.  

In 2011, Mr. Luboš Růžička [6] modified the test bench as per his diploma work 

requirements. He made the dedicated mechanism for each directional force (Longitudinal 

and Lateral force, Figure 2-5) including the changes in old induction sensors and the 

measuring amplifier. He used optoelectronic incremental LARM sensor (MSL 50), to 

accommodate them well with the new set up a new clamping system has implemented 

which is shown in Figure 2-5. In addition to this, he added the WPS-500 MK30-P10 micro 

epsilon potentiometric sensor to measure the wheel stroke in vertical direction. 

 
 

Figure 2-5: Clamping system with optoelectronic LARM sensors [6] 

New 

clamp 

LARM 

sensors 
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Figure 2-6: Loading Mechanism set up [6] 

In the next phase of modification, Mr. Fišer [2] worked hand in hand in order to make 

the test bench to work in both the direction simultaneously. Two composed blocks P06-

M38/2 fitted with proportional pressure reducing valve RZGO-A-0102 with electronic control 

type E-RI-AE along with electromagnetic switch gear RPE3-06 provides the hydraulic 

aggregate the functionality to load the test bench with variable loads in lateral and 

longitudinal direction at a time. To maintain the oil quality appropriate for the above-

mentioned pressure reducing valve, a new oil filter FRI025BAGI was provided. He calculated 

the maximum load produced by the hydraulic aggregate in both the direction and compared 

with the loading conditions in actual vehicle 𝐹max long = 4000 N & 𝐹max late = 3100 𝑁. The 

schematics of the current hydraulic circuit has shown in Figure 2-7.   

The measurement results obtained using the improved test bench were compared with 

the previous ones and found to be satisfactory and accurate. In final reports and detail 

study, we found future perspective of advancement which can be done to obtain the result 

with much more accuracy and different possibilities. Since then, the test bench was not 

operational for last few years (2013 – 2018). 

Longitudinal 

hydraulic 

actuation 

 Lateral 

hydraulic 

actuation 
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Figure 2-7 Hydraulic aggregate scheme (above) [2] & pictorial description (below)  
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2.3 PREVIOUS MEASUREMENT AND RELATED STUDIES: 

The motive has been to study the behavior of elastic joints (rubber bushings) in a 

suspension subjected at various loading conditions such as acceleration, braking, cornering 

and wheel travel. The elastokinematic parameters play crucial role to handle a car in steady-

state maneuvers. Suspension bushings are one of the most highly stressed components 

fitted to an automotive. They withstand enormous strains with no maintenance or 

lubrication. Generally, bushing is made of rubber compound or a material called 

polyurethane which deteriorate with age. It becomes softer and more pliable with reduction 

in resisting forces. This leads to lesser control over suspension geometry and result in 

excessive tire wear, braking instability and poor handling [7]. 

 

 

Figure 2-8: (a) Test bench with wheel; (b) test bench with wheel replacement [2].  

In Mr. Fišer’s [2] diploma work, the changes in the elastokinematic characteristics has 

been measured with wheel or with wheel replacements (refer Figure 2-8), subjected to the 

simulated maneuvering conditions. The detail study and analysis of the behavior will be 

discussed in the literature below and compared later with the new results “Measurement 

2018”. He has concluded his thesis with mentioned flaws realized in elastic behavior of linear 

guideway bearing, elasticity of rubber tire and the limitations in wheel replacement.  
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Figure 2-9, shows the change in toe and camber with respect to vertical wheel travel. 

The trend is similar in both the cases, but with wheel replacement (b) toe values are bit 

higher because of the offset vertical forces. Hysteresis can be also be observed in graph (a), 

possible cause can be the elasticity of rubber tire (compression and expansion under vertical 

loading and unloading) and free play in the links. Observed camber change does not match 

with other experimental and virtual testing. 

 

Figure 2-9: Toe and camber vs wheel stroke (a) with wheel; (b) with wheel replacement [2]. 

 

 

Figure 2-10: Toe and camber vs lateral force (a) with wheel; (b) with wheel replacement [2] 

Figure 2-10, refers the change in wheel geometery under lateral loading condition. The trend 

for the respective parameters is opposite in cases (a) and (b). With wheel replacement the 

trend is tracing the usual path. But with wheel, the behaviour is quite opposite to the normal 
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because it is possible because of the elasticity of the rubber tire, applied force has been 

absorbed by the tire. This is the reason that the change in camber is more as compare to the 

change in toe in fig 2-10 (a). Generally, change is toe is almost negligible as compare to 

camber during lateral loading. 

 

Figure 2-11: Toe & camber vs longitudinal force (a) with wheel; (b) with wheel replacement [2] 

Figure 2-11 shows the change in toe in and camber change with respect to longitudinal 

force, the measured trend using the wheel replacements seems practical as compared to 

data obtained with wheel. The longitudinal feed of the wheel (forwards and backwards) is 

slightly increased, causing trouble when using a wheel substitute. The longitudinal feed of 

the wheel (forwards and backwards) is slightly increased, resulting in excessive increase in 

toe. From the above analysis, it can be easy to say that the wheel replacement was good 

suggestion for the measurement rig. 

Józef Knapczyk et al. [1], in their study “ Elastokinematics modelling and study for five 

rod suspension with subframe” evaluated the influence of deflections of the elastic bushings 

(linking the suspension subframe with the car body) on spatial displacements of the wheels 

under an external load. The elastomeric bushing transmits force and torque between its 

outer and inner sleeve with corresponding elastic deflection. But, for their application torque-

rotation characteristic was not crucial. Therefore, the bushings are modeled as three 

orthogonal translational springs constraining displacement of the center point belonging to 

the inner sleeve with respect to the outer. The modeling approach was based on 

simultaneous solution of linearized equations of kinematic constraints and force equilibrium. 

But it was not much effective. 
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Figure 2-12: Bushing modeled as three orthogonal linear springs [1]. 

The study used three models:  

M1—the simplest model with rigid joints and spring/tire support 

M2—the model with compliant joints in the rods and spring/tire support. 

M3—the so-called complete model with subframe. 

This study provides a mathematical understanding of rubber bushings and the results 

can be used to understand the outcome of this diploma work.  

N. Ikhsan et al.  [8], performed analysis of kinematics and compliance for passive 

McPherson strut type suspension in a dynamic simulation software (ADAMS). With change 

in wheel stroke, the behavior of elastokinematic parameters observed and the simulated 

results were verified with the experimental results on a test bench.  

 

Figure 2-13: McPherson strut assembly on ADAMS car test rig [8]. 
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The suspension concerned with this diploma work is an active (front) McPherson strut of  

Škoda superb 4X4 (2nd gen) having different hard points with respect to the suspension 

discussed by N. Ikhsan et al. [8]. Customizing a suspension model in ADAMS as per the 

configuration of the above-mentioned vehicle could have provided reliable source to compare 

the test bench outcomes. But due to late development of idea and time related issues this 

additional task could not be performed. So, the results cannot be considered as a reliable 

source of comparison for the improved test bench outcomes. But the graph trend can be 

comparable because this is also McPherson strut suspension (front). So, the trend supposed 

to be same irrespective of technical parameters of the suspension parts. 

 

 

Figure 2-14: (a) Toe; (b) camber change for LW & RW suspension wrt parallel wheel travel 
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3. ELASTOKINEMATIC MEASUREMENT 2018 

After studying the previous diploma work, several tasks are listed to improve the 

measurement test rig, which became the guidelines for my master thesis. 

This master thesis has divided in six major tasks: 

• Refurbish the measurement status and retrace the measurements taken in 2012/13. 

• Suggestion to replace the soft linear guide system of the existing test bench. 

• Design and fabricate a linear guide system for the second wheel. 

• Design and fabricate the support for the new sensors. 

• Prepare a software for the data acquisition in LABVIEW and test the improved bench. 

3.1 RE-ESTABLISHMENT OF TEST BENCH 

Since 2013, the test bench has not been used often. The prime objective was to check 

all the sensors and related connectors, wirings, the working of the measurement cards. 

Owing to this leap, the components prone to aging such as wires, connectors, springs in 

optoelectronic LARM sensors were found damaged and faulty. Rest of the components were 

working appropriately. 

LARM sensors were sent to the manufacturer for repair and the M9 series 711 

subminiature connectors were ordered from the website, “www.binder-connector.de”. A 

flexible fast attaching, detaching wiring scheme was prepared for the sensors to make their 

removal safe and easy, as shown in Figure 3-1 

                 

Figure 3-1: M9 subminiature connector (left); Flexible connections (right) 

It was required to check the aggregate working of hydraulic accumulator along with force 

measuring sensors “strain gauges”. Both the longitudinal as well as lateral pressure reducing 

valve and solenoids for direction changes were in perfectly working state. But due to 

obstruction in block shown in Figure 3-2, the longitudinal operation was intermittent, so we 

decided to remove it. Also, it was meant to increase the height of pressure reducing valve for 
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longitudinal hydraulic mechanism to incorporate a pressure gauge which has no significance 

to use in this application. 

 

Figure 3-2: Blocked cube  

Improvement in LabVIEW program is one of the guidelines for this diploma work. 

Basically, a LabVIEW program (commonly known as Virtual instrument/VI) consist of two 

windows: 

• Front panel : User interface of the VI. It has controls and indicators, which are the 

interactive input and output terminals, respectively, of the VI. 

• Block diagram : The block diagram contains the graphical source code of a LabVIEW 

program. Front panel objects appear as terminals on the block diagram. [9] 

To check hydraulics aggregate and strain gauges (force measuring sensors), a program 

was made from existing LabVIEW program [2]. But the old program was quite big because, 

for each operation there were dedicated DAQ MAX tasks which made the program slow and 

less efficient to obtain data in a limited time period. To avoid this condition, combined DAQ 

MAX tasks were used to control all respective operations for controlling pressure reducing 

valve, for controlling directions using electromagnetic switch gear RPE3-06 and for strain 

gauges. 

NI 9263 plug-in module was used to generate analog signals which regulated 

proportional pressure reducing valves. Corresponding to the value of voltage ( 0 – 10 V), 

the extent of opening and closing of the valve was regulated, resulting in the control of 

amount of oil released and the force developed at hydraulic cylinders.  

DAQ MAX task (refer Figure 3-3) is created as: My System/Data Neighborhood/Create New 

NI-DAQmx Task/Generate Signals/Analog Output/Voltage/physical channel:   

• Longitudinal → cDAQ1Mod3/ao0 

• Lateral        →  cDAQ1Mod3/ao1 
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Figure 3-3: DAQ MAX task set up for pressure reducing valves. 

 

Figure 3-4: DAQ MAX task set up for electromagnetic switch gear 
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To control electromagnetic switch gear, NI USB 6525 is used. DAQ MAX task (refer Figure 

3-4) is created as: My System/Data Neighborhood/Create New NI-DAQmx Task/Generate 

Signals/Analog Output/Voltage/physical channel:   

• Left    → Dev1/port0/line0 

•  Right   → Dev1/port0/line1 

• Front   → Dev1/port0/line2 

•  Back    → Dev1/port0/line3 

We use DAQ MAX task read/write function for multiple channels. Few block functions for 

different tasks belong to same DAQ card and same kind of signals can be used which helps 

in saving memory and fast execution of loop which makes the data acquisition system more 

efficient. VI for hydraulic check is attached in section 7.A “LabVIEW VI attachments”. In  

block diagram, task for “MOVEMENT” (both laterally and longitudinally) has been combined 

and the task for “DIRECTION” change (front, back, right, left) is done using one DAQ MAX 

task (evident from Figure 3-3 & Figure 3-4). 

The NI 9237 plug-in module is used for measuring force in longitudinal and lateral 

directions using strain gauges HBM U2A 1 ton & 0.5 ton respectively. DAQ MAX task for 

gauges including the data for their calibration is taken from Mr. Fišer’s work [2]. 

To accommodate the new analog sensors wiring in the distribution box, the slot in  NI 

9171 compact DAQ USB chassis for NI 9237 and NI 9401 plug-in module is interchanged. 

This reduced the entanglement in wires. Remaining connections, relays, power source and 

measurement modules are intact.  

 

Figure 3-5: Plug-in module wiring (a) before ; (b) after. 

25 pin D-sub 

male connector 
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Another possible solution to improve the wire congestion issue is to use 25 pin D-sub 

male connector at NI 9401 terminal as shown in Figure 3-5 (b). 

 

 
Figure 3-6: NI 9401 connection and 25 pin D-sub connector along with color scheme. 

Figure 3-6 shows the color scheme for the new connections at NI 9401 terminal as well as 

for the LARM connectors. After doing all the above amendments and servicing, the test bench 

is ready to retrace the measurements. The measured data and the graphs will be included in  

section RESULTS. 
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3.2 EDITING THE EXISTING LINEAR GUIDE SYSTEM:  

Earlier in the literature, we saw that the linear guide got deformed under vertical load 

from the wheel. Due to this, the motion given to moving guides is not smooth and 

continuous. This was examined during the recent trials to move the guides under different 

loadings i.e. without wheel, with wheel. 

Observations:  

• Without wheel over the platform shows continuous application of forces and motion. 

• With wheel: To observe the effect of wheel loading, the height of the table is adjusted 

on which the moving platform and the quarter car were placed. The motion was getting 

more intermittent with increasing the height (more load) of the table. 

This confirmed the motion interference due to the elastic deformation of the soft plastic 

linear guides as shown in Figure 3-7.  

 
 

Figure 3-7: (a) soft plastic linear guides ; (b) Stress-strain graph of a thermoplastic POM [10] 

 

3.2.1 OPTIONS AND METHODOLOGIES:  

To avoid the problem of elastic deformation, a solution which can provide enough rigidity 

to sustain vertical loading is required. There can be numerous possibilities but considering 

no changes in existing test bench platform. Two solutions potentially suited our condition: 

• THERMOPLASTIC GUIDEWAYS:  

Thermoplastic is a polymer which becomes moldable above specific temperature and 

solidify upon cooling. They show quite a similar elastic property as metals up to a loading 

condition. We chose polyoxymethylene also known as acetal, polyacetal and 

polyformaldehyde, material for the new guides because it has high stiffness, low friction and 

good dimensional stability. 
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Similar shaped guides as shown in Figure 3-8  is offered by SCHNEEBERGER, 

RODRIGUEZ (EU manufacturers) and several other global manufacturers. Due to customized 

demand of the guides, the deal couldn’t be grounded. Even, this solution was quite 

expensive as compared to others. 

 

Figure 3-8:  Schneeberger POM guides 

• SLIDING GUIDES:  

Reducing friction between the surfaces can be a method to provide free uni-directional 

motion to the guides. The easiest way to do this is to coat the respective surfaces using 

graphite, molybdenum disulphide (MoS2), PTFE (poly tetrafluoro ethylene) coatings. This 

method offers advantage: 

• Easy to use 

• Cheap  

• Good availability 

Among the three types of mentioned coats, the best option is molybdenum disulphide 

because it offers lowest friction coefficient of 0.06 (under perfect manufacturing conditions) 

as compared to graphite (fr =0.2) and PTFE (fr =0.16). The basic requirement for PTFE 

coating is 0.3 µm surface roughness because smoother surface gives better durability and 
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abrasion resistance. On the other hand, the molybdenum disulphide coat requires 510 µm 

surface roughness because it settle down evenly on the micro surface asperities.  

Sliding guides with coating can produced even in university laboratory with few simple steps: 

i. Obtain proper surface finish as per the requirement. 

ii. Pretreatment of carbon substrate (Degreasing and grit blasting the surfaces). 

iii. Coat with metal powder by atmospheric plasma spraying 

iv. Degreasing with solvents 

v. Precise schedule properly vented oven 

vi. Thickness depends number of coatings 

Feasibility check : known parameters of spring (measured), Material used : SAE-9254 

Spring Steel. Properties [11] 

• Diameter of spring wire, d=15 mm  

• Outer diameter of spring, D outer =145 mm 

• Number of active coils, n= 6 

• Young’s modulus of material, E= 205.4 GPa, Shear modulus G = 72 GPa 

• Poisson ratio of material =0.29 

• Density of material = 7800 Kg/m3 

For spring stiffness : 𝐾 = 𝐺𝑟4/4𝑅3𝑛  = 38.08 N/mm , true safe travel = 112.95 mm 

[12] 

Case A : Wheel stroke = 0  

frictional coefficient(f) = 0.1 ( a value between 0.06 − 0.15), weight of quarter car (M) =

420 Kg    

Frictional Force required = M*g *f = 420*9.81*0.1 = 412 N 

Case B : Wheel stroke(max) = 75 mm (bump) 

Frictional Force required = (M*g + K*75)*f = (420*9.81 + 38.08*75)*0.1 =697 N 

Clearly, from the above calculation that this solution requires 412 N force to move the 

table at normal table height 0 mm & 697 N at 75 mm table height which can be okay from 

the hydraulic capability. Still, there are two issues:  

First, during the change in suspension height the load on the table varies (Case B). 

And there are two sliding tables one over the other. The table below will experience higher 
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loads as compare to the table on top. So, higher friction for the base sliding table. There 

will be requirement to calibrate the strain gauges separately for each table as well as before 

changing the height of the table which will be quite complicated for the application. 

Second, this solution cannot be implemented for LW because 412 N force is quite large 

to depict the movement of LW and observe changes in LW geometry pertained by RW. 

Beside all pros and cons, still, there is an option to consider, ACCURIDE FG115 guides 

(Figure 3-9) if required in future. It can withstand 4 kN vertical loading but high moments 

during the movements would be a problem for the guides. To avoid this, a support needs 

to be designed on the tables in such a manner that it can take the forces from the hydraulics 

and reduce the resulting moments on the guides. 

 

 

 

Figure 3-9: Accuride frictional guides [13] 

The linear bearing guides can potentially be the feasible solution which is discussed in 

detail along with its feasibility in section 3.3. 
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3.3 LINEAR GUIDE SYSTEM FOR SECOND WHEEL: 

To observe the dependency of the suspensions in front, a guide system similar to the 

existing one is required for the second wheel. With suitable changes in existing moving table 

elements a new sliding system is designed on CATIA V5. And after considering the feasibility 

and availability of the options for guides in section 3.2.1, a third option of “linear bearing 

guides” came into consideration. There are number of manufacturers who provides the 

linear bearing solutions but TEA Technik and HIWIN already has been trusted before.  

Advantages and features of linear guideways : 

• High positional accuracy 

• Long life with high motion accuracy 

• Equal loading capacity in all directions 

• Easy installation 

• Easy maintenance 

• Interchangeability  

• Low driving force 

Over such a wide range of products and series, choosing an appropriate solution is difficult. 

Overall height of the new mechanism is the most considerable constraint for the application 

because initially both the front wheel must be at the same level. In addition to this, factors 

like compactness, load admissibility and weight narrowed the choices. Chosen HIWIN linear 

guides consist of two parts rail and carriage. Considering the restraints, HGH20CA series 

carriage and HGR20R series rail were found suitable for the new sliding mechanism.  

 

Figure 3-10: HIWIN linear guides. 

  

Carriage 

Rail 
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Calculations: To check the load admissibility and service life of the chosen guides 

For Upper slider   

Type of linear guideway Dimension of device Operation condition 

Type: HGH 20CA 

C : 17.75 KN 

C0 : 27.76 KN 

Preload : Z0 

 

d = 118 mm 

c = 256 mm 

or 

load at corners 

a = 78 mm 

b = 144 mm 

 

Weight = 180 N 

Acting force max = 2.1 KN 

Temperature = Normal 

Load status =vertical load 

Case: vertical loading    

 

Load at center        

a = 0 mm 

b = 0mm  

 

P1=P2=P3=P4= (0.18/4) + (2.1/4) = 0.57 KN 

Load at corners (rare case) 

a = 78 mm 

b = 144mm 

P1= 2.17 KN ; P2= 0.39 KN ; P3= 1.53 KN ; P4= -1.03 

KN 

 

L = [1*1*17.75/1*2.2]3*50 km = 26260 km 

1 to & fro travel = 0.168 m 

Nominal life for extreme vertical loadings in current 

situation = 4,411,680 times to & fro tarvel on bench. 

• Comment = calculation is done assuming point loading. But the 

area over which force is being applied is not negligible. It can be 

taken as non uniform loading.   
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For base slider : parameters (HIWIN catalogue)  

Type of linear guideway Dimension of device Operation condition 

Type: HGH 20CA 

C : 17.75 KN 

C0 : 27.76 KN 

Preload : Z0 

 

d = 118 mm 

c = 382 mm 

or 

load at corners 

a = 78 mm 

b = 144 mm 

 

Weight = 210 N 

Acting force max = 2.385 

KN 

Temperature = Normal 

Load status =vertical load 

Case: vertical loading    

 

Load at center        

a = 0 mm 

b = 0mm  

 

P1=P2=P3=P4= (0.21/4) + (2.385/4) = 0.6 KN 

Load at corners (rare case) 

a = 80 mm 

b = 207mm 

P1= 2.94 KN ; P2= -1.242 KN ; P3= 2.44 KN ; P4= -

1.74 KN 

 

L = [1*1*17.75/1*2.94]3*50 km = 11003 km 

1 to & fro travel = 0.168 m 

Nominal life for extreme vertical loadings in current 

situation = 1,848,504 times to & fro travel.  

• Comment = calculation is done assuming point loading. It can be 

taken as non uniform loading.  
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The mechanism will provide the wheel longitudinal as well as lateral sliding motion 

with the friction coefficient (f) 0.004 [14]. In comparison to the sliding guide’s friction 

coefficient (0.1), linear bearing has almost 1/10 of friction coefficient.  

Calculations : frictional force feasibility check ( data taken from section 3.2.1 sliding guides) 

 Case A : Wheel stroke = 0  

frictional coefficient(f) = 0.004 ( a value between 0.002 − 0.005),

weight of quarter car (M) = 420 Kg    

Frictional Force required = M*g *f = 420*9.81*0.004 = 16.5 N 

Case B : Wheel stroke(max) = 75 mm (bump) 

Frictional Force required = (M*g + K*75)*f = (420*9.81 + 38.08*75)*0.004 = 27.9 N 

Calculations suggest  good load admissibility  and practical amount of force which can 

easily move the non-force subjecting wheel (LW). HIWIN checked the feasibility of chosen 

parts for the application and provided the linear guides as shown in  

Figure 3-10 [14]. 

 

Figure 3-11: Sliding mechanism design in Catia V5 (a) isometric view; (b) top view; (c) side 

view 

(a) 

(b) (c) 
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The design is divided into three parts as shown in Figure 3-11 with colors blue (upper table), 

light blue (middle table) and pink (bottom table). The old guides do not provide considerable 

(merely 5 mm) elevation to the supporting table, but the new guides give the offset of 

30mm (Figure 3-13 “H”). To maintain the height comparable to the existing one, the 

thickness of the all the respective tables (upper, middle and bottom) is reduced to an 

acceptance (safe) level, keeping strength of the structural elements into consideration. 

Technical specifications: 

Rail : Notations referred by Figure 3-12 [14] 

 

 

 

Figure 3-12: Rail HGR20R [14] 

Carriage: Notations referred by Figure 3-13 [14] 

 

 

Figure 3-13: Linear bearing carriage HGH20CA [14] 
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Figure 3-14: Fabricated slider base with installed rails  

Numerically, the motion is very smooth, but this is not the only purpose guides should serve. 

They should be arranged with consideration of futuristic perspective of the test bench for 

example implementing hydraulics enable sliding mechanism on left wheel. This is the reason 

slide travel of 114.4 mm is given to slider to slide freely (each side, equivalent stroke length 

= 228.8) as shown in Figure 3-15. Considering the stroke length of existing pneumatics 

cylinders (125 mm), this mechanism has 52 mm more slide travel on each side. So, the screws 

at both extremities  can be used with a purpose to stop the movement of carriage further on 

the rails. And to maintain a balance of moments due to vertical loading 2 carriages is used 

and keeping in mind the overall length of the table 40 mm offset is given between the two 

carriage. This can help to maintain the dynamic as well as static stability 

 

Figure 3-15: carriage arrangement 

Protruded 

screws to stop 

slider 
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3.4  SUPPORT FOR NEW SENSORS: 

3.4.1 FEASIBILITY CHECK FOR NEW SENSORS 

New analog sensors have already been procured from “MEGATRON” before the 

commencement of this diploma work. The measurement principle for these sensors are 

based upon potentiometer with a return internal spring. LARM sensors are incremental 

encoders i.e. they measure the change in the position and does not able to read the absolute 

position. To read the absolute position of the wheel as well as the changes in the position, 

analog sensors were found to be a better option.  

Specifications of new sensors: [15] 

 

Basic specification like linearity, repeatability and resolution can be the basis of 

comparison between the sensors. MSLPIS 50D 5K 1M analog sensor has upper notch over 

the LARM in terms of resolution and the repeatability is insignificant for incremental 

encoders. The new sensors are quite reliable in terms of specifications. To check the 

measurement feasibility of the analog sensors, an appropriate measurement card is 

required. There are many C- series plug-in modules which support acquisition of analog 

signals for example C- series universal analog input module, C- series voltage & current 

input module and C- series voltage input module. As, per the application the requirement is 

to acquire signals from 5 analog sensors ( 3 MSLPIS 50D 5K 1M & 2 WPS µepsilon) all of 

them as single ended analog input channels. Among the available choices appropriate 
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options are NI 9201, NI 9205 and NI 9221. NI 9201 & NI 9221 is already available in Juliska 

laboratory facility for the test bench. Among the two options, the prior one found to be the 

most suitable because it provides appropriate analog input range ( -10 to 10 V) [9]. 

To measure voltage module NI 9201 has created a MAX task with multiple channels as 

shown in Figure 3-16. The task creation process is : My System / Data Neighborhood / 

Create/New NI-DAQmx Task / Acquire Signals / Analog Input / Voltage. Physical channel 

configuration (refer Figure 3-17): 

• H_1                                    cDAQ1Mod2/ai0    

• V_1                                    cDAQ1Mod2/ai1 

• Centre sensor                      cDAQ1Mod2/ai2 

• Height (RW)                        cDAQ1Mod2/ai3 

• Height (LW)                        cDAQ1Mod2/ai4 

 

Figure 3-16: MAX task for analog sensors 
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To use the time resources of the plug-in module NI 9201 efficiently, all the analog 

signals from the respective sensors is acquired using a single MAX task. Considering the 

purpose of the application, a dedicated LabVIEW program is made to check the working and 

feasibility of the all the analog sensors (while acquiring signals simultaneously). Task 

combining also simplified the program and made the fault tracing (if any) easy. The LabVIEW 

program is attached in “ Section: LabVIEW attachments” along with other related details. 

Wiring scheme for NI 9201 Measurement card has shown in Figure 3-17. The color coding 

of the wires is similar to what have used in reality. 

 

 

Figure 3-17: Electrical scheme Analog sensors 
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3.4.2 TEST BENCH ACCESSORIES FOR MEASUREMENT  

Considering the application requirement and the type of sensors MSLPIS 50D 5K 1M 

(tactile). The required approach for the measurement of elastokinematics for the left wheel 

supposed to be the same as of right wheel. So, the same principle for placing the sensor is 

developed for the new sensors. This principle suggests two geometries: as mentioned in 

Figure 3-18 

• Sensor stand: To hold sensors rigidly while measurements. 

• Wheel clamp: To hold the measurement plane parallel to the plane of the wheel. 

• Height sensor clamp: To attach height sensor in order to measure wheel lift. 

 

Figure 3-18: Measurement principle 

As mentioned before in literature, the “Megatron” sensors are absolute sensors. So, 

there is good possibility to determine the geometric characteristic of wheel at steady state. 

To do so, measuring plane necessarily be parallel to wheel geometry. After setting a plane 

parallel to wheel geometry, the tactile sensors need to be in contact with the plane. To 

observe the small changes in elastokinematic characteristics, the sensors (toe and camber) 

set 0.25 m apart from the central sensor (to detect lateral motion) as shown in Figure 3-18. 
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Mathematically, the existing sensor stand is capable to measure the change in toe and 

camber characteristics for rims up to 20-inch diameter and for wheels up to 25-inch 

diameter.  

Sensors stand (for LW):  

The RW sensor stand has been designed quite well, capable to have the basic 

adjustment required by the test bench as shown in Figure 2-5. But it cannot be applied 

successfully for variety of wheel sizes as the sensor stand cannot access vertical motion. 

Additionally, it is a bit difficult to move the setup in order to use wider vehicles for 

measurements . Considering these aspects of application, for left wheel a sensor stand is 

designed in CATIA V5 refer Figure 3-19 and built respectively. 

As per the designed geometry, the stand can vary its position over the table and using 

the movement intersection block (holding cube), it can access motion in other two axes. 

The sensors can change their position on the measuring plane independently over the lifting 

table. The design is simple, easy for manufacturing and can be used in future without much 

changes.  

 

Figure 3-19: new sensors stand 

This geometry is combined assembly of 8 sub-assembled parts. The detail drawings of 

the respective parts are included in section 7.A Technical drawings. 
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Figure 3-20: Fabricated sensor stand RW 
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Wheel clamp (LW): 

In previous experiments, the clamp is used to attach with  wheel using stud extensions 

as shown in Figure 3-21. With such an arrangement, it is difficult to comment that the 

measuring plane is parallel to the wheel plane. Although, it was not necessary condition to 

have this parallelism on RW because the measuring probes in use are incremental encoders. 

But the analog sensors use on LW gives the advantage to realize the actual geometry of the 

wheel at steady state as well. 

 

Figure 3-21: Wheel clamp with stud extensions 

An appropriate wheel clamp needs to be designed and manufactured which can imitate 

the exact change in wheel geometry. Taking everything into consideration, an idea has taken 

from the wheel alignment station as shown in Figure 3-22.  

 

Figure 3-22: (a) Alignment station; (b) wheel clamp; (c) rim stud retainer [16] 

Wheel 

stud 
extension 
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The idea is to attach the clamp at periphery of wheel rim (as shown in Figure 3-23 ©) 

because this will make the clamp easy to imitate the actual motion. On the other hand, 

wheel stud extensions cannot be taken as reliable clamping mechanism to follow wheel 

geometry in exact same manner because  the change in measuring plane is depend upon 

the change in plane associated with pitch circle diameter of the wheel rim. 

 

Figure 3-23: wheel clamp with wheel rim (a) isometric view; (b) front view; (c) top view. 

The suggested geometry consists of 5 parts, assembled together using three type of 

screws. All three sensors rests upon a plane surface, it could be mirror, poly carbonate 

sheets or Acrylic sheets. Due to heavy weight of glass, the choice can be anyone of the 

rest two (polycarbonate, Acrylic sheets). The Required dimensions of the sheet: 350x350, 

thickness 6mm and 250x250, thickness 6mm. There are three e-distributors of the 

concerned sheets in Czech Republic : .  

1. http://www.az-plastik.cz/en/material-for-sale/plexiglas-pmma 

2. https://www.plexisklo.eu/plexisklo-extrudovane-plexiglas-xt 

3. http://www.arlaplast.com/products/polycarbonate-trsp/. 

Measuring 
plane 

Rim stud 
retainer 

http://www.az-plastik.cz/en/material-for-sale/plexiglas-pmma
https://www.plexisklo.eu/plexisklo-extrudovane-plexiglas-xt
http://www.arlaplast.com/products/polycarbonate-trsp/


 

[40] 
 

The new clamping mechanism is versatile for wide range of wheel rims size, supporting 

with the features like easy to clamp & dismantle, easy to manufacture. Few fabricated parts 

are shown in Figure 3-24 

 

Figure 3-24: Left – frame with plane geometry; Right – rim stud retainer 

The drawings corresponding to the wheel clamp mechanism is attached below in section 7.A 

Technical drawings. 
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Height sensor clamp: 

To measure behavior of elastokinematic parameters with respect to the lab simulated 

conditions of bumps and potholes, two “µepsilon WPS 500 MK30” wire drawing potentiometer 

sensors are used for each moving table. In previous measurements, height sensor was 

attached to the side panel of chassis (just above the wheel) of the car on moving table. 

Practically, it is not an appropriate place to mount the sensor because: 

• The front part of the vehicle is on the table which is vertically moving. Technically, the 

sensor is not at steady state. 

• Fenders need to be dismantled each time for the application ( difficult to mount) 

• Not valid for different range of cars. 

Taking into consideration the flaws of previous height clamp, a new clamp is designed 

in Catia V5 and fabricated respectively. 

 

 

 

Figure 3-25: Height sensor clamp RW 

  

RW height clamp 

part 1 

Micro epsilon wire  

(blue) drawing 

potentiometer 

RW height clamp 

part 2 
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This accessory consists of two parts: ( refer Figure 3-25) 

• Part 1 : Hold the sensor rigidly with the steady part of the test rig  

• Part 2 : It is mounted on vertical moving part of test rig and holds the wire from the 

sensor (wire drawing potentiometer) which can extend as per the movement of the 

bench.  

As the height of the sliding table on RW is 90 mm so the neutral position of the vehicle 

suspension on the test stand is 90 mm below. Considering the variety of vehicles, height 

sensor is clamped at height of 150 mm above the steady table. Owing to this, vehicles with 

at least 200 mm up and down wheel travel can be used in future.   

After assembled over the test rig, different views of the assembly of sensor mount for RW 

is shown in Figure 3-26. For LW the geometry is mirror image of as of RW. So, the parts are 

designed accordingly.  

 

Figure 3-26: (a) front view; (b) side view; (c) isometric view 

Technical drawings corresponding to sensor mount is attached in section 7.A Technical 

drawings.  

(a) (b) 

(c) 
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Figure 3-27: Circuit diagram  
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3.5 CIRCUIT DIAGRAM 

Owing to certain modifications in the circuit,  there is a need to clarify the modified 

circuit briefly. Using a drawing application “Draw.IO”, a circuit diagram as shown in Figure 

3-27 has drawn. This gives the clear understanding of color coding of the connections, type 

of connections, all the type of sensors and actuators used for the application and the 

respective measurement cards. The dotted line refers to distribution box boundaries. 

According to the electrical power requirement, 3 types of adapters/AC-DC converters has 

been installed in distribution box. 230 V household power distributes to: 

• DRP - 240 -24 switching regulator 

Supply power to electromagnetic switch gear via relay FINDER 40.31 to enhance the 

switching capability of  NI USB 6525 plug-in module, proportional pressure reducing 

valve and fan in distribution box. 

 

Figure 3-28: Mean well switching regulator 

Table 1: Device specifications 

OUTPUT 

DC OUTPUT VOLTAGE 24V  

REGULATION  24 – 28V 

OUTPUT CURRENT 10A 

ACTUAL POWER 240W 

INPUT 

AC INPUT VOLTAGE 85 – 264V 

CONSUMPTION AT 230VAC 1.4A 

EFFICIENCY  84 % 

CONNECTIONS  Terminal blocks 
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• XP Power adapter 

Supply power to NI compact DAQ 9174 

Table 2: Device specification 12V DC source 

OUTPUT 

DC OUTPUT VOLTAGE 12V  

OUTPUT CURRENT 1.25A max 

INPUT 

AC INPUT VOLTAGE 100 – 240V 

CONSUMPTION AT 230VAC 0.4A 

FREQUENCY 47 – 63 Hz 

 

• 5V source 

It supplies power to LARM MSL 50 sensors, Megatron MSLPIS 50D 5K 1M 

potentiometers and µepsilon WPS-500-MK-30 wire drawing potentiometers. 

 

The table below depicts the appropriate information related to measurement cards and 

terminal connections. 

 

Table 3: Plug-in Modules description 

MEASUREMENT CARDS USAGE INFORMATION 

A. NI USB 6525 Direction changing 

solenoid RPE3-06, 

Receives digital signal 

and switch built in relay. 

For safe operation of 

solenoids with rated 

current 1.29 A, additional 

relay (finder 40.31 has 

been used). 

- USB 2.0 (12 MB/s) 

- Programmable 

power up output 

states for relays 

- 8 output channels 

60 DC/30 Vrms 

max 
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B. NI 9401  Engaged  with 

Incremental encoders 

“LARM MSL 50” 

- Counter 

compatible 

- 5V/TTL signal 

level 

- 8 DIO channels 

- 100ns Update rate 

- Vmax = ±30 V DC 

C. NI 9201  

For detail connection refer 

Figure 3-17 

Analog Sensors 

- MSLPIS 50D 5K 

1M 

- WPS-500-MK-30 

- 8 AI channels 

- ±10 V 

- Sample rate = 

500 kS/s 

- 12 bits 

D. NI 9263 Pressure reducing valves 

2X E-RI-AE 

 

- 4 AO 

- ±10 V 

- 16 Bit 

- 100 kS/s/ch 

E. NI 9237  

Circuit shown clearly in Circuit 

scheme 

Strain gauges 

- HBM U2A 1t 

- HBM U2A 0.5t 

- 4 AI 

- ±25 mV/V 

- 24 Bit 

- 50 kS/s/ch 

 

 

A – V+ (RED) 

B – Vo  (WHITE) 

D -  Input + (RED) 

E – Input - (WHITE) 
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4. RESULTS 

Measurements has been taken over the re-established test bench. First, we need to be sure 

about  the proper working of the test rig. So, that the results can be relied for measurements 

of the other wheel. These measurements are performed in identical situation as done during 

the previous testing.  Using the LabVIEW program Attachment 7.A.3 The data obtained from 

testing has been shown graphically. 

 

Graph 1 : Change in toe with vertical wheel displacement 

 

Graph 2: camber change with vertical wheel displacement 

Graph 1 & 2 are corresponding to the change in concerned elastokinematic parameters of 

right front wheel with the change in wheel stroke. This simulates the condition of bump and 

rebound. The behavior of the suspension follows the same trend when compared with the 
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studies in section 2.3 (Figure 2-14). Graph 1 display hysteresis, even considering the tire 

compliance this can be caused due to free play in the links ( most anticipated steering link).  

To realize this free play, we pre-loaded wheel with +200 N lateral force (similar to left 

cornering) and did the experiments again. 

 

Graph 3: Toe and camber change with wheel stroke in preloaded state 

Camber follows the same trend with a small shift towards 3rd quadrant of the graph. On the 

other hand, toe depicts significant increase in hysteresis owing to the deflection of rubber tire 

and other resilient elements. 

 

Graph 4: change in camber with lateral loading condition 

Graph 4 shows the change in right front camber as a function of lateral force applied to tire 

contact patch. The trend of change in camber is similar to the behavior of wheel suspension 
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during cornering, as studied in literatures. From the graph, hysteresis can be observed. It 

can be said that for a given load camber value can be anything in the loop depends on the 

direction of loading. 

 

Graph 5: change in toe with longitudinal loading condition 

Graph 5 shows the change in toe of the right front wheel as longitudinal force is applied to 

the tire contact patch. Front and back load is corresponding to the situation of acceleration 

and braking. As expected, from elastokinematics point of view. Graph forms a loop, resulting 

from the resilient elements present in the suspension. It can be seen from the graph that 

the position of the wheel is not only dependent on the load applied, but the load history also 

plays a prominent role. Trend of the graph observed to be similar to the related literatures. 

The irregularities during unloading in graph 5 is cause of dislocated soft linear guide which 

can be seen in Figure 4-1. To avoid further issues, measurements stopped intermediately. 

Owing to this reason the measurement could not be proceeded for other combined loaded 

situations.  

The shoe as shown Figure 4-2 which accommodate wheel is very well designed and it serves 

its purpose quite well, but it must be fixed appropriately with the table. During the 

measurement,  there were the situations when shoe stop being in contact with the sliding 

table quite often. 
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Figure 4-1: Dislocated linear guide 

 

Figure 4-2: Wheel shoe issue 
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The behavior of camber in longitudinal loading condition same as studied in literature in 

section 2.3. The change is very less in order of 0.03 deg change per 1000 N force. This 

may be the reason that few studies do not consider this study specifically. It is the same 

scenario with change in toe with the lateral loading conditions. The Graph 6 & Graph 7 

shows the change in camber with longitudinal loads and toe change with lateral loads 

respectively. 

 

Graph 6: Change in camber with longitudinal force 

 

Graph 7: change in Toe with lateral loading conditions 

  



 

[52] 
 

5. CONCLUSIONS 

Improvement in the existing measurement rig and designing & fabricating the test stand for 

the LW is the objective of this master thesis along with verified measurements with the new 

test bench. 

Re-establishment of the unfunctional test bench has been done successfully with the optimized 

software for the data acquisition. In “RESULTS” the graphs have been suggesting the 

improvements in data acquisition. Proposal for the stiffer polyoxymethylene guide was given 

to replace the old soft linear guides. Owing to some reasons, guides could not be procured.  

The solution of the guides for the LW sliding mechanism was given which is mentioned with 

feasibility study in section 3.3. Designing of the sliding mechanism along with supportive 

accessories like wheel clamp, sensor stand, and the height sensor clamp has been done and 

respective drawings sent for fabrication. Few designed parts like sensor stand, new slider base 

and new clamp parts have already been fabricated. Few parts are still under manufacturing 

procedure. Due to this reason, the task of verification with measurements could not be 

included in this diploma work. The technical drawings of the designed parts are attached in 

“Appendix: Technical drawings”. 

 All the fabricated parts expectedly will be acquired before thesis defense. So, the final 

presentation will be attached with verified results from both the wheels. The solution for the 

soft linear guides would be based on the performance of the proposed linear bearing guides. 

In addition to this, the reliability of the analog sensors will also be tested with the new 

measurement rig. 

Suggestion for further improvement 

During testing, I observed lag in strain gauges to read the applied forces. On the other hand, 

tactile sensors (LARM MSL 50 and MSLPIS 50D) response is instantaneously with change in 

wheel geometry,  due to which  continuous data acquisition is problematic. To avoid the 

largest source of compliance (rubber tire), to obtain sheer behavior of elastic rubber bushings 

in suspension. A rigid wheel replacement is required which can be easily accommodate the 

exact same geometry as of the wheel during measurements.  
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Attachment 7.A.1 : To control and measure the hydraulically simulated vehicle maneuvering 

conditions i.e. longitudinal force and lateral force with change in respective directions. 

 

• Block diagram: Depicts the DAQ MAX tasks for strain guages, electromagnetic switch 

gear, proportional pressure reducing valves which is explained in Section 3.1, block 

functions for reading, writing & clearing tasks and conditional operators.  

 

 

 
Figure 7-1:Block diagram edited hydraulic control VI. 
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• Front pannel Operational instructions : 

 

o Make sure all the related electric connections are appropriately connected. 

o Open NI-MAX application and follow instruction (section 3.1) to check MAX task 

o Open LabVIEW project “Elastokinematics 2018”/ Hydraulics control. 

o Press  and use switch buttons ON/OFF, direction switches, force regulating 

knobs according to the requirement of the application as shown in Figure 7-2. 

 

 
Figure 7-2: FP hydraulic control VI 
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Attachment 7.A.2 : To measure both wheel geometry 

“Elastokinematics 2018” VI is consist of three parts 

• To control and measure forces as shown in Error! Reference source not found. 

• To acquire signal from all the sensors as shown in Figure 7-4 & Figure 7-5 

• To form table of the required data and save the tabular data in form of text/excel 

doc as shown in Figure 7-6 

 

 

 

 

 

Figure 7-3: LabVIEW VI FP “Elastokinematics 2018” 
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Figure 7-4: Block diagram for LARM sensors 

 

 

Figure 7-5: Block diagram for all analog sensors 

  



 

[60] 
 

 

Figure 7-6: file saving VI with table forming 
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Attachment 7.A.3 :  This basic idea of this program has copied from Mr. Fišer’s [2] master 

thesis. To ensure the proper and efficient usage of the channels of NI plug-in module, a flat 

sequence structure is used for the data acquisition from LARM sensors. Additionally, to make 

the fast Formula node in the loop to count toe and camber has been removed. The obtained 

results are better with modified data acquisition software. 

 

Figure 7-7: edited program for LARM sensors 

 

 

Figure 7-8: block diagram for height sensor for height sensor 

There is not much change in the front panel of the VI. As  the program serves the same 

purpose. The figures depicting in attachments are not very clear as they are attached here 

only for reference in the text. All the used program has been included DVD enclosed with 

the hard copy of this master thesis. 
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Attachment 7.A.4 :This attachment encloses the information  of DAQ MAX tasks along with 

respective images. 

DAQ MAX tasks configuration: 

A. For LARM MSL 50 

To create the Task, select My System / Data Neighborhood / Create New NI-DAQmx Task 

/ Acquire Signals / Counter Input / Position / Linear/ Choose plug-in module NI 9401 & 

physical channels / choose Input terminal A & B / other configurations  will be according 

to the picture 

Table 4: Configuration of MAX tasks for NI 9401 

Physical channel sensor PFI 

cDAQ2Mod3/ctr0 Toe PFI 1 & PFI 2 

cDAQ2Mod3/ctr1 Camber PFI 3 & PFI 4 

cDAQ2Mod3/ctr2 Longitudinal PFI 5 & PFI 6 

cDAQ2Mod3/ctr3 Lateral PFI 7 & PFI 8 

 

 

Figure 7-9: MAX task configuration LARM MSL50 
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B. For analog sensors (3x) MSLPIS 50D & (2x) micro epsilon WPS 500 mk 30 

To measure the signals from analog sensors a single task has been created for analog 

input through NI 9201. The task creation process is : My System / Data Neighborhood / 

Create/New NI-DAQmx Task / Acquire Signals / Analog Input / Voltage / choose NI 9201 

plug-in module / choose channels. 

Table 5: Physical channel configuration for analog sensors 

Physical channel sensors 

cDAQ2Mod2/ai0    H_1 (Toe) 

cDAQ2Mod2/ai1   V_1 (camber) 

cDAQ2Mod2/ai2    Centre sensor 

cDAQ2Mod2/ai3    Height (RW) 

cDAQ2Mod2/ai4    Height (LW)                         

 

 

Figure 7-10: MAX task corresponding to table 5 
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C. For strain gauges : Longitudinal HBM U2A 1 ton & HBM U2A 0.5 ton. 

To measure force in longitudinal as well as lateral direction, one task has been created 

with two channels using NI 9237 plug-in module. The task creation process is: My System 

/ Data Neighborhood / Create New NI-DAQmx Task / Acquire Signals / Analog Input / 

Strain / selecting NI 9237 module / choosing physical channels. 

Table 6: Physical channel configuration for NI 9237 

Physical channel sensors 

cDAQ2Mod1/ai0 Longitudinal sensor 

cDAQ2Mod1/ai1 Lateral sensor 

 

 

Figure 7-11: Strain gauges configuration with NI MAX task 
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D. For electromagnetic switch gear: 

Using NI USB 6525 solenoids valves (2x) RPE3-06 is used to switch the directions of the 

sliding table. For NI MAX task refer Figure 3-4 

Table 7: physical channel configuration of directional solenoids 

Physical channel Direction 

Dev1/port0/line0 Left 

Dev1/port0/line1 Right 

Dev1/port0/line2 Front  

Dev1/port0/line3 Back 

 

E. For Pressure reducing valves: 

NI 9263 has been used for receiving the input from LabVIEW to control the actuation of 

proportional pressure reducing valves. For MAX task refer Figure 3-3. 

Table 8: Physical channel configuration for pressure reducing valves 

Physical channel Actuator 

cDAQ2Mod4/ao0 Longitudinal 

cDAQ2Mod4/ao1 Lateral 
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Drawing 1: Upper slider (sliding mechanism) 
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Drawing 2: Middle slider (sliding mechanism) 
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Drawing 3: Base slider (sliding mechanism) 
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Drawing 4: Sensor stand base (sensor stand) 
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Drawing 5: Holding cube (sensor stand) 
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Drawing 6: Horizontal motion block (sensor stand) 
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Drawing 7: Rod (sensor stand) 
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Drawing 8: Sensor holder (sensor stand) 
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Drawing 9: Sensor stand 2nd (sensor stand) 
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Drawing 10: T-joint (sensor stand) 
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Drawing 11: Vertical stand (sensor stand) 
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Drawing 12: Frame (wheel clamp) 
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Drawing 13: Fixture stud retainer ( wheel clamp) 
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Drawing 14: Plane geometry ( wheel clamp) 
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Drawing 15: Rim stud retainer (wheel clamp) 
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Drawing 16: Height sensor clamp part 1(LW) 
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Drawing 17: Height sensor clamp part 2 (LW) 
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Drawing 18: Height sensor clamp part 1 (RW) 
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Drawing 19: Height sensor clamp part 2 (RW) 


