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ABSTRACT	
	

Speech	 analysis	 of	 neurodegenerative	 diseases	 such	 as	 Parkinson’s	 disease	 (PD)	 and	
Huntington’s	disease	(HD)	yields	tremendous	potential	for	high-throughput	screening	in	the	
population	under	the	risk	of	developing	neurodegenerative	disorders	and	remote	monitoring	
of	 progression	 and	 treatment	 efficacy.	 Big	 databases	 of	 speakers	 affected	 by	
neurodegeneration	 are	 necessary	 for	 development	 of	 predictive	 models.	 Unfortunately,	
difficulties	 in	 recruitment	 of	 new	 patients	 and	 limitations	 of	 the	 language	 make	 the	 big	
databases	unavailable.	This	Bachelor's	thesis	examines	the	idea	that	a	recognition	model	can	
be	 trained	 only	 on	 speakers	 with	 no	 history	 of	 communication	 or	 neurological	 disorder	
hereby	healthy	controls	(HC)	that	can	be	recruited	easily.	The	thesis	proposes	the	criteria	of	
feature	 selection	 for	 differentiation	 of	 dysarthria,	 reviews	 various	 one-class	 classification	
methods,	compares	the	performance	of	one-class	and	multiclass	classifiers	on	this	task,	and	
discusses	the	suitability	of	one-class	classification	in	the	clinical	context.	
	

The	database	used	in	this	thesis	consisted	of	48	subjects	with	PD,	43	subjects	with	
HD,	and	65	HC	subjects.	None	of	the	subjects	suffered	from	any	additional	disease	that	could	
negatively	 influence	 the	 speech	 performance.	 Each	 participant	 performed	 rhythm	 task,	
sustained	phonation	of	vowels	/A/	and	/I/,	monologue,	reading	passage	and	diadochokinetic	
task,	 of	 which	 acoustic	 signals	 were	 recorded	 using	 a	 standardized	 procedure	 and	 then	
processed	by	fully	automated	methods.		

	
The	features	were	selected	using	series	of	tests	that	involved	correlation,	Bartlett's	

test	of	homogeneity	of	variances,	followed	with	Anova1	test	and	Kruskal-Wallis	test.	Selected	
features	 of	 healthy	 controls	 were	 evaluated	with	 one-class	 classifiers	 trained	 on	 HC	 and	
compared	with	multi-class	classifiers	trained	on	both	HC	and	patients	with	dysarthria.	The	
result	 of	 one-class	 classifiers	 reached	 up	 to	 84	 percent	 of	 accuracy,	 which	 was	 almost	
comparable	outcome	with	multi-class	 classifiers	 for	 category	 containing	both	PD	and	HD.	
Unfortunately,	 one-class	 classifiers	 compared	 to	 multi-class	 classifiers	 performed	
inconsistently	 for	 individual	 categories	 of	 detection	PD	 and	HD.	Nevertheless,	 our	 results	
suggest	 that	 the	 idea	 of	 using	 the	 one-class	 models	 have	 potential	 utilization	 in	 clinical	
practice.			
	
Key	words:	
	
Speech	pattern	 recognition,	One-class	 classifier,	Multi-class	 classifier,	 Parkinson's	disease,	
Huntington's	disease,	Hypokinetic	dysarthria,	Hyperkinetic	dysarthria.		
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ABSTRACT	
	

Řečová	 analýza	 neurodegenerativních	 onemocnění	 jakou	 je	 Parkinsonova	 nemoc	 (PD)	 a	
Hungtingtonova	 nemoc	 (HD)	 přináší	 obrovský	 potenciál	 pro	 automatizovaný	 systémy	
hodnocení	 u	 populace	 pod	 rizikem	 vzniku	 neurodegenerativních	 onemocnění	 a	 následné	
vzdálené	 pozorování	 progrese	 a	 účinnosti	 léčby.	 Pro	 vývoj	 prediktivních	modelů	 je	 třeba	
velká	 databáze	 lidí	 postižených	neurodegenerací.	 Bohužel	 komplikace	 v	 získávání	 nových	
pacientů	a	omezení	jazyka	činí	tuto	možnost	získávání	nedostupnou.	Tato	bakalářská	práce	
zkoumá	 myšlenku	 využití	 rozpoznávání	 modelu	 pouze	 na	 pacienty	 bez	 záznamu	
komunikačních	 a	 neurologických	 onemocnění,	 tedy	 zdravá	 skupina	 lidí	 (HC),	 kterou	 lze	
snadno	 získat.	 Práce	 navrhuje	 kritéria	 výběru	 přízaků	 vhodných	 pro	 diferenciální	
diagnostiku	disartrie,	zkoumá	různé	jednotřídní	klasifikační	metody,	porovnává	výkonnost	
jednotřídních	a	vícetřídních	klasifikátorů,	a	nakonec	diskutuje	možnost	využití	klasifikátorů	
v	klinické	praxi.	
	

Databáze	v	této	práci	se	skládala	z	48	pacientů	PD,	43	pacientů	HD	a	65	HC.	Nikdo	z	
pacientů	 netrpěl	 nemocí,	 která	 by	 mohla	 negativně	 ovlivnit	 průběh	 jejich	 testů.	 Každý	 z	
pacientů	 provedl	 rytmický	 test,	 úlohu	 prodloužené	 fonace	 hlásky	 /A/	 a	 /I/,	 čtenı́	 textu,	
monolog	 a	 diadochokinetický	 test,	 z	 nichž	 byly	 zaznamenány	 akustické	 signály	 pomocí	
standardizovaného	postupu	a	poté	zcela	zpracovány	automatizovanými	metodami.	
	

Příznaky	byly	vybrány	pomocí	série	testů,	které	zahrnovaly	korelaci,	Bartlettův	test	
homogenity	odchylek,	následovaný	Anova1	 testem	a	Kruskal-Wallisovým	testem.	Vybrané	
příznaky	 zdravých	 pacientů	 byly	 hodnoceny	 jednotřídními	 klasifikátory	 trénované	 na	
skupinu	 HC.	 Dosažené	 výsledky	 byly	 následně	 porovnávány	 s	 výsledky	 klasifikátorů	
vícetřídních,	které	byly	naučeny	jak	na	zdravý	pacienty,	tak	na	pacienty	s	dysartrií.	Výsledky	
jednotřídních	klasifikátorů	dosahovaly	až	84	procent	přesnosti,	což	bylo	téměř	srovnatelné	s	
výsledky	 vícetřídních	 klasifikátorů	 v	 kategorii	 obsahující	 PD	 i	 HD.	 Bohužel	 jednotřídní	
klasifikátory	ve	srovnání	s	vícetřídními	klasifikátory	nedosahovaly	konzistentních	výsledků	
pro	 individuální	 kategorie	 PD	 a	HD.	Nicméně	 naše	 výsledky	 ukázaly,	 že	myšlenka	 využití	
modelu	 rozpoznávání	 založeného	 pouze	 na	 zdravých	 pacientech	má	 potenciální	 využití	 v	
klinické	praxi.	
	
Keywords:	
	
Rozpoznávání	řečových	vzorů,	Jednotřídní	klasifikátor,	Vícetřídní	klasifikátor,	Parkinsonova	
nemoc,	Huntingtonova	nemoc,	Hypokinetická	dysartrie,	Hyperkinetická	dysartrie.	
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	 1	

 Introduction	
	
1.1 MOTIVATION	
	
Parkinson’s	disease	and	Huntington’s	disease	patients	are	the	most	common	after	Alzheimer	
and	 it	 is	 estimated	 that	 currently	 4	 to	 6	 million	 people	 suffer	 from	 Parkinson’s	 disease,	
worldwide.	Statistics	 for	 the	number	of	affected	people	with	neurodegenerative	disorders	
show	an	 increase	 in	proportion	with	 the	overall	 ageing	of	 the	worldwide	population	as	 a	
whole.	 Thus,	 considerable	 attention	 has	 been	 given	 to	 progressive	 neurodegenerative	
diseases	affecting	 the	basal	 ganglia	 such	as	Parkinson’s	disease	and	Huntington’s	disease.	
Medical	 treatment	 mitigates	 certain	 symptoms	 of	 these	 diseases	 but	 there	 is	 no	 cure	
available.	Still,	early	diagnosis	of	the	diseases	has	a	very	important	role	in	improving	patient’s	
live,	 e.g.	 appropriate	 diagnosis	 and	 treatment	 can	 slow	 the	 progress	 of	 the	 disease.		
Behavioral	speech	therapy,	which	includes	intensive	voice	treatment,	shows	to	be	one	of	most	
effective	 and	 objective	 type	 of	 speech	 intervention	 at	 present.	 	 For	 that	 purposes,	 many	
acoustical	 voice	 analyses	 and	 measurement	 methods	 have	 been	 tested	 and	 reported	 in	
previous	studies	(Rusz	et	al.	2011,	Postuma	et	al.	2012,	Harel	et	al.	2004).	Development	of	
precise	 acoustic	 models	 requires	 a	 large	 database	 of	 patients	 with	 neurodegenerative	
diseases	because	values	of	speech	features	can	be	influenced	by	several	factors	such	as	age	
and	gender.	However,	 collecting	a	 large	balanced	database	of	 speakers	with	no	history	of	
communication	or	neurodegenerative	disorder	hereby	healthy	controls	(HC)	can	be	an	easy	
task.	This	thesis	revolves	around	the	idea	to	train	the	model	on	the	HC	speakers	using	one-
class	classifiers.	While	a	significant	amount	of	research	has	been	devoted	to	examining	the	
impact	of	within-class	imbalance	over	multi	classifiers,	very	little	attention	has	been	given	to	
their	impact	on	one-class	classifiers,	which	are	typically	used	in	cases	of	extreme	between-
class	 imbalance.	 This	 work	 focuses	 on	 the	 application	 of	 one-class	 classifiers	 in	 speech	
pattern	 recognition,	 comparison	 of	 various	 types	 of	 one-class	 classifiers	 with	 regard	 to	
performance;	 and	 discussion	 of	 the	 applicability	 of	 one-class	 classifiers	 in	 the	 clinical	
practice.		
	

1.2 PARKINSON’S	DISEASE	
	
Idiopathic	 Parkinson's	 disease	 (PD)	 is	 a	 progressive	 neurodegenerative	 disorder.	 PD	was	
described	two	centuries	ago;	still	the	causes	of	disease	remain	unknown.	Progressive	loss	of	
dopaminergic	neurons	in	the	substantia	nigra	pars	compacta	results	in	dopamine	deficiency	
within	 the	 basal	 ganglia	 (Hornykiewicz	 2008).	 An	 imbalance	 between	 acetylcholine	 and	
dopamine	in	basal	ganglia	leads	to	characteristic	parkinsonian	motor	symptoms	represented	
by	rest	tremor,	rigidity,	postural	 instability	and	bradykinesia	(Jankovic	2008)	(Rodriguez-
Oroz	2009).	
	

PD	affects	primarily	age	group	older	 than	50	years.	Previous	 studies	 show	 that	 in	
average	PD	effects	the	most	category	of	people	of	age	60	(Inzelberg	et	al.	2002),	however	it	
is	predicted	 that	5-10%	of	patients	get	PD	 in	 the	young	age	of	20-40	years	 (Golbe	1991)	
depending	primarily	on	genetic	dispositions	(Inzelberg	et	al.	2002).	PD	is	the	second	most	
common	 neurodegenerative	 disease	 (after	 Alzheimer’s	 disease)	 with	 prevalence	 0,3%	 in	
population	(Rajput	and	Birdi	1997).	It	is	estimated	that	between	4.1	and	4.6	million	patients	
were	diagnosed	in	the	year	2005	and	in	the	year	2030,	the	number	will	rapidly	increase	to	
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approximately	9	million	(Dorsey	et	al.	2007).	The	patient's	life	expectancy	is	individually,	and	
it	 is	 within	 the	 range	 of	 6	 to	 12	 years	 (Rajput	1992,	Willis	2012).	 Despite	 the	 fact	 that	
medication	generally	prolongs	active	life	expectancy,	the	effect	of	treatment	depends	upon	
the	 stage	 of	 the	 disease	 during	 which	 it	 is	 initiated.	 Furthermore,	 there	 is	 no	 effective	
treatment	that	can	cure	PD	or	halt	its	progression.	Patient's	therapy	is	based	on	relieving	the	
symptoms	 (Becker	 2002).	 The	 main	 goal	 is	 to	 balance	 neurotransmitter	 imbalances	 by	
increasing	 the	 level	of	dopamine	by	 its	metabolically	acceptable	 form	of	L-DOPA.	Another	
option	 is	 a	 surgical	 procedure,	 primarily	 used	 to	 remove	 tremors.	 As	 it	 was	 already	
mentioned,	there	are	so	far	no	treatments	for	PD,	therefore	the	early	diagnosis	of	PD	plays	a	
vital	role	in	improving	the	patient's	quality	of	life	(National	Parkinson	Foundation	2013).			
	

The	diagnosis	of	PD	is	based	upon	the	presence	of	primary	motor	symptoms,	which	
develop	after	60-70%	of	dopaminergic	neurons	degenerate	and	dopamine	levels	are	reduced	
by	80%	(Fearnley	and	Lees	1991).	In	addition	to	the	most	common	motor	manifestations,	PD	
is	also	associated	with	non-motor	symptoms	such	as	autonomic	dysfunction,	cognitive	and	
neurobehavioral	abnormalities,	speech	impairment,	hallucination,	and	sensory	disruptions,	
and	sleep	alterations.	Non-motor	symptoms	precede	the	parkinsonian	motor	symptoms	by	
more	than	a	decade	(Kalia	and	Lang	2015).		

	
Both	 these	 diseases	 share	 features	 that	 include	 delayed	 onset,	 abnormal	 protein	

processing	and	aggregation,	cellular	toxic	effects	involving	both	cell	autonomous	and	cell-cell	
interaction	mechanism	and	selective	neuronal	vulnerability, despite	widespread	expression	
of	disease-related	proteins	during	the	whole	lifetime	(Ross	et	al.	2011).	

1.2.1 Speech	impairment	
	
Several	studies	have	found	the	impaired	speech	to	be	one	of	the	earliest	manifestations	of	PD	
(Postuma	 et	 al.	 2012,	 Harel	 et	 al.	 2004).	 The	 process	 of	 speech	 impairment	 can	 be	
categorized	 into	 interdependent	 stages,	 which	 includes:	 Respiration	 problem,	 phonation	
problem,	articulation	problem	and	prosody.	
	

• Respiratory	problem	-	reduction	of	the	ability	to	control	breath	for	articulation	speech	
(Critchley	1981,	Rusz	et	al.	2011).	Infliction	by	the	rigidity	of	the	respiratory	muscles	
(Goberman	and	Coelho	2002).	

• Phonation	 problem	 -	 trouble	 learning	 the	 sound	 system	of	 the	 language,	 failing	 to	
recognize	which	sound	contrasts,	problems	in	the	vocal	folds	of	the	larynx,	the	voice	
involuntarily	sounds	breathy,	raspy,	or	strained,	or	 is	softer	 in	volume	or	 lower	 in	
pitch	(Hunker	1982),	impairing	the	ability	to	open	vocal	cords	(Weismer	1983).	

• Articulation	 problem	 -	 difficulty	 learning	 to	 physically	 produce	 the	 intended	
phonemes.	 Infliction	of	bradykinesia	and	 rigidity	of	 larynx	and	pharynx	 (Critchley	
1981,	Rusz	et	al.	2011)	

• Prosody	 -	 refers	 to	 intonation,	 stress	 pattern,	 loudness	 variations,	 pausing,	 and	
rhythm	 (Apraxia	 Kids	 2018).	 It	 also	 includes	 respiration,	 phonation,	 articulation	
problems	and	also	neurological	principal	of	speech	(Hammen	1996,	Goberman	and	
McMillan	 2005).	 Prosody	 is	 expressed	 mainly	 by	 varying	 pitch,	 loudness,	 and	
duration.	
	

	 Ho	et	al.	(1998)	reported	that	up	to	90%	of	PD	patients	suffer	from	vocal	impairment,	
with	 the	most	 significant	 impact	 on	phonatory	 and	articulatory	 features	of	 speech.	These	
vocal	deficits	can	be	generally	described	as	hypokinetic	dysarthria	(Rosen	et	al.	2006),	(Kent	
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et	al.	2000).	Hypokinetic	dysarthria	is	characterized	by	reduced	vocal	loudness,	rough	and	
breathy	 vocal	 quality,	 harsh	 or	 breathy	 vocal	 quality	 and	 abnormal	 speaking	 rates	 (slow	
speaking	 rates	 but	 rushes	 of	 fast	 speech),	 monopitch,	 monoloudness	 and	 reduced	 stress	
(Rudzicz	 2011,	 Canter	 1965).	 As	 already	 mentioned,	 PD	 is	 associated	 with	 hypokinetic	
dysarthria	due	to	akinesia	and	bradykinetic-rigid	syndromes.	The	distinctive	speech	patterns	
connected	 with	 hypokinetic	 and	 hyperkinetic	 dysarthria	 are	 generally	 antagonistic,	 even	
though	both	PD	and	HD	are	primarily	 disorders	 of	 the	basal	 ganglia.	As	 an	 example,	 it	 is	
known	 that	 hypokinetic	 dysarthria	 in	 PD	 typically	 shows	 reduced	 vocal	 loudness	 and	
flattened	loudness	and	pitch	inflections,	poor	voice	quality,	variable	and	frequently	increased	
speech	rate,	inappropriate	silences	and	breathiness	(Rusz	et	al.	2014).	
	

1.3 HUNTINGTON’S	DISEASE	
	
Huntington's	 disease	 (HD)	 is	 defined	 as	 a	 chronic,	 degenerative,	 progressive	
neuropsychiatric	 disorder,	 characterized	 by	 progressively	 increasing	 of	 chloreiform	
movements.	 	 HD	 is	 caused	 by	 an	 expansion	 of	 the	 number	 of	 guanine	 nucleotide	 (CAG)	
repeats	located	on	the	short	arm	of	chromosome	4	at	4p16.3	(Kremer	et	al.	1994,	Hayden	
1981).		
	

Huntington's	disease	can	be	regarded	as	a	model	neurodegenerative	disorder.	 It	 is	
monogenic,	fully	penetrant,	and	similar	to	other	neurodegenerative	diseases,	a	disorder	of	
protein	misfolding.	The	gene	for	HD,	huntingtin,	was	discovered	17	years	ago.	The	condition	
is	typified	by	progressive	degeneration	of	the	medium	spiny	neurons	within	basal	ganglia,	
primarily	the	caudate	and	putamen	(Albin	et	al.	1992,	Albin	1995).	As	the	disease	progresses,	
neuronal	 loss	 occurs	 in	 the	 white	 matter,	 cerebral	 cortex	 and	 thalamus	 (Vonsattel	 et	 al.	
1985).	The	disease	 is	 inherited	 in	an	autosomal	dominant	manner.	The	penetrance	of	HD	
depends	on	the	age	of	patients.	Typically,	the	onset	of	symptoms	is	in	middle	age	after	affected	
individuals	have	had	children,	but	the	disorder	can	exhibit	at	any	time	between	infancy	and	
senescence.	By	using	predictive	genetic	test,	it	is	possible	to	identify	individuals,	who	are	at	
risk	of	inheriting	the	expanded	cytosine,	adenine	and	CAG	repeats	before	their	clinical	onset.	
Increased	CAG	repeats	predict	the	earlier	onset,	accounting	for	up	to	50-70%	of	the	variance	
in	age	of	onset,	with	the	remainder	likely	to	be	due	to	modifying	genes	and	the	environment	
(Wexler	 2004).	 On	 the	 contrary,	 expanded	 CAG	 repeats	 contribute	 less	 to	 the	 rate	 of	
progression	and	there	is	an	opportunity	for	intervention	by	understanding	the	determinants	
of	rate	of	progression	(Rosenblatt	et	al.	2006).		
	

Prevalence	of	Huntington's	disease	is	4-10	per	100	000	in	the	western	world,	with	
many	more	people	at	risk	of	the	disease.	The	Mean	age	of	onset	is	40	years,	typically	the	death	
occurs	15-20	years	from	onset.	Clinical	features	of	Huntington's	disease	include	progressive	
motor	dysfunction,	cognitive	decline	and	psychiatric	disturbance,	caused	by	both	neuronal	
dysfunction	 and	 neuronal	 cell	 death	 (Walker	 2007,	 Ross	 et	 al.	 1997).	 The	 precise	
pathophysiological	 mechanism	 of	 Huntington’s	 disease	 is	 poorly	 understood.	 Formal	
diagnosis	of	HD	is	made	on	the	basis	of	characteristic	extrapyramidal	motor	signs	of	chorea,	
dystonia,	bradykinesia	or	incoordination	in	an	individual	at	risk	(Huntington	1996).	Chorea	
is	usually	prominent	in	the	early	stage	of	the	disease.	In	the	late	stage	of	HD	bradykinesia,	
incoordination	and	rigidity	(motor	impairment)	are	more	disabling	functionally	(Rosenblatt	
et	al.	2003).	Many	patients	have	substantial	cognitive	or	behavioral	disturbances	before	the	
onset	of	diagnostic	motor	signs	(Marder	et	al.	2000).	
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1.3.1 Speech	impairment	
	
The	 dysarthrias	 are	 differentiated	 according	 to	 perceptual	 characteristics	 of	 speech	 and	
verified	 by	 the	 underlying	 neuropathology.	 Patients	 with	 HD	 develop	 a	 motor	 speech	
disorder,	 which	 occurs	 primarily	 as	 a	 consequence	 of	 underlying	 choreatic	 movements	
(Hartelius	et	al.	2003)	(Saldert	et	al.	2010).	The	characteristics	of	hyperkinetic	dysarthria	
vary	 considerably	 across	 patients.	 Commonly	 observed	 speech	 patterns	 in	 patients	 with	
hyperkinetic	dysarthria	 include	unexpected	variations	 in	pitch	or	 loudness,	 inappropriate	
silence,	 harsh	 voice,	 slow	 speech	 rate,	 inappropriate	 pauses	 vocal	 noises,	 constant	 or	
intermittent	 dysphonia,	 constant	 or	 intermittent	 hypernasality,	 intermittent	 breathy	
segments	and	articulatory	imprecision	(Darley	et	al.	1969,	Logemann	et	al.	1978,	Darley	et	
al.	1975).	HD	shows	hyperkinetic	dysarthria	 resulting	 from	chorea	 (Duffy	2013).	 For	HD	
patients	specifically,	those	symptoms	have	been	described	in	several	studies	(Ramig	1986,	
Garcia	et	al.	2011),	Hartelius	et	al.	2013,	Zwirner	et	al.	1991)	as	harsh,	breathy,	and	strained-
strangled	 voice	 with	 occasional	 pitch	 fluctuations	 and	 vocal	 arrests.	 The	 most	 notable	
symptoms	 of	 speech	 deviations	 in	 HD	 include	 unpredictable	 breakdowns	 of	 articulation,	
phonatory	dysfunction	and	abnormalities	in	speech	timing	and	prosody	(Duffy	2013,	Darley	
et	al.	1969).	In	addition,	the	gravity	of	dysarthria	is	connected	to	the	overall	severity	of	motor	
symptoms	in	both	diseases	(Garcia	et	al.	2011,	Hartelius	et	al.	2013).	What	is	also	interested,	
is	the	fact	that	preliminary	reports	have	suggested	that	speech	deficits	may	precede	the	onset	
of	the	first	motor	symptoms	(Vogel	et	al.	2012,	Kaploun	et	al.	2011).		
	

Considering	the	potential	for	early	treatment	and	management	strategies	in	HD	and	
PD	due	 to	 its	genetic	predictability	 (Tabrizi	 et	al.	2011),	 speech	analysis	 is	potentially	an	
important	 method	 for	 monitoring	 disease	 onset	 and	 progression,	 as	 well	 as	 treatment	
efficacy.	It	provides	subtle	and	quantitative	information.	Recent	studies	considered	speech	
analysis	as	affordable,	objective,	and	widely	available	(Postuma	et	al.	2012,	Harel	et	al.	2004,	
Rusz	et	al.	2011).	 	Speech	manifestations	can	be	assessed	by	a	wide	range	of	speech	tests,	
such	 as	 fast	 syllable	 repetition,	 sustained	 phonation,	 various	 readings	 and	 freely	 spoken	
monologue.	 Recorded	 utterances	 are	 subjected	 to	 methods	 as	 of	 assessment	 of	 sound	
pressure	 levels,	 fundamental	 frequency,	 formant	 frequencies,	 speech	 rate	 and	 rhythm	
(Baumgartner	et	al.	2001,	Chenausky	et	al.	2011,	Rusz	et	al.	2011,	Fischer	and	Goberman	
2010,	Goberman	and	Blomgren	2008).	

	

1.4 CLASSIFICATION	
	
The	classification	can	be	defined	as	the	process	of	assigning	an	object	represented	by	a	vector	
of	feature	values	(observation	vectors)	to	a	category	of	objects	(class).	The	training	data	set	
is	the	set	of	observation	vectors	along	with	the	corresponding	class	labels	(HC,	HD,	PD).	The	
test	 dataset	 of	 observations	 consists	 of	 the	 vector	 of	 feature	 values	 without	 class	 labels.	
Classifier	learns	to	assign	the	class	labels	to	unlabeled	objects	from	the	test	set	by	using	a	set	
of	objects	from	the	training	set	with	a	purpose	to	create	a	new	model.	New	observations	are	
then	classified	based	on	the	learned	model.	The	classifier's	applicability	takes	into	account	
the	type	of	the	features	the	classifier	deals	with	as	well	as	characteristics	of	the	classification	
method,	 such	as	 robustness,	 computational	and	storage	 requirements,	 and	 the	number	of	
parameters	to	be	estimated/set.	
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1.4.1 Multiclass	classifiers	

Naive	Bayes	classifier	
	
The	 Naive	 Bayes	 (NAIVE)	 is	 classifier	 based	 on	 the	 principle	 of	 Maximum	 a	 posteriori	
probability	 (MAP).	 Given	 a	 problem	 with	 C	 classes	 {𝐶R, . . . , 𝐶T }	 with	 prior	 probabilities	
𝑃(𝐶R), . . . , 𝑃(𝐶T) .	 We	 assign	 the	 class	 label	 c	 to	 the	 unknown	 example	 with	 features	𝑥 =
(𝑥R, . . . , 𝑥X),	such	that:	
	

𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥^𝑃(𝐶 = 𝑐‖(𝑥R, . . . , 𝑥X)	,	
	

Equation	1	

here	the	class	with	the	maximum	a	posterior	probability	is	chosen	given	the	observed	data.	
This	a	posterior	probability	 is	defined	by	the	Bayes	theorem	of	probability	defined	by	the	
following	equation:	
		

𝑃(𝐶 = 𝑐‖(𝑥R, …	, 𝑥X) =
𝑝(𝐶b)𝑝(𝑥|𝐶b)

𝑝(𝑥) 	,	 Equation	2	

	
to	 predict	 the	 class	 of	 unknown	data	 set.	 It	 is	 a	 classification	 technique	that	 assumes	 the	
independence	among	predictors.	In	other	words,	a	Naive	Bayes	classifier	assumes	that	the	
value	of	a	particular	feature	in	a	class	conditionally	independent	on	the	value	of	any	other	
feature.	For	example,	an	observation	of	fruit	can	be	considered	to	be	a	pear	when	its	colour	
is	green,	a	shape	is	oval,	and	diameter	is	within	a	certain	range.	If	these	features	depend	on	
each	other	or,	all	of	 these	properties	 independently	contribute	to	 the	probability	 that	 this	
fruit	is	a	pear	and	that	is	why	it	is	known	as	‘Naive’.	Along	with	simplicity,	Naive	Bayes	model	
is	easy	to	build	and	particularly	useful	for	very	large	data	sets	and	was	shown	to	perform	well	
despite	the	simplifying	assumption	of	conditional	independence	(Aly	2005,	Rish	2001).		

Nearest	neighbour	classifier	
	
The	 nearest	 neighbour	 algorithm	 (NN)	 is	 among	 the	 oldest	 and	 simplest	 of	 all	 machine-
learning	algorithms.	The	NN	represents	a	non-parametric	machine	learning	since	the	model	
is	defined	by	the	store	training	instances.	The	principle	of	NN	prediction	is	that	the	label	of	
classified	observation	is	predicted	from	the	labels	of	observations	nearest	to	the	classified	
observation.	The	number	of	nearest	observations	is	either	constant	defined	by	the	user	or	
varies	with	 regard	 to	 the	 local	 density	 of	 points	 called	 radius-based	neighbours	 learning.	
Generally,	the	distance	can	be	any	metric	measure	such	as	standard	Euclidean	distance,	which	
is	the	most	common	choice.	The	class	is	defined	by	a	majority	vote	of	its	neighbours,	where	
the	class	is	assigned	to	the	most	common	among	its	k	nearest	neighbours	(k	is	positive	small	
integer	parameter	(Pedregosa	et	al.	2011).	

Quadratic	Discriminant	analysis	classifier	
	
Quadratic	 discriminant	 analysis	 (QDA)	 and	 linear	 discriminant	 analysis	(LDA)	 are	 closely	
related.	 Both	 methods	 assume	 that	 the	 measurements	 from	 each	 class	 are	normally	
distributed.	While	LDA	can	only	learn	linear	boundaries,	QDA	can	learn	quadratic	boundaries	
and	threfore,	it	is	a	more	flexible	method.	Boundaries	of	QDA	are	based	on	the	Mahalanobis	
distance	 assuming	 different	 variance-covariance	 matrices	 for	 each	 class.	 Mahalanobis	
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distance	of	an	observation	𝑥⃗ = (𝑥R, . . . , 𝑥X)dfrom	a	set	of	observation	with	covariance	matrix	
S	and	mean	𝜇⃗ = (𝜇R, . . . , 𝜇X)d 		is	defined	as:	
	

𝐷f(𝑥⃗) = g(𝑥 − 𝜇⃗)d𝑆jR(𝑥⃗ − 𝜇⃗)	.	
	

Equation	3	

The	boundary	produced	by	QDA	is	a	quadratic,	thus,	classes	can	be	separated	even	when	their	
variances	 are	 very	 different.	 As	 the	 variances	 of	 the	 classes	 become	 more	 similar,	 QDA	
boundaries	will	tend	toward	each	other.	When	classes	possess	identical	variance	structures,	
QDA	boundary	will	be	linear,	as	well	as	the	variance-covariance	matrix	for	each	class	will	be	
equal	to	the	pooled	variance-covariance	matrix.		
	

For	non-Bayesian	form,	assuming	equal	prior,	class	sizes	are	equal.	For	the	Bayesian	
form,	the	likelihood	of	each	class	is	determined	from	posterior	distribution	(Friedman	et	al.	
2001).	The	Gaussian	parameters	are	assessed	from	training	points	with	maximum	likelihood	
(ML)	 estimation.	 The	 simple	 Gaussian	 model	 assumption	 is	 best	 for	 cases	 of	 lacking	
information	 to	 characterize	 a	 class,	 e.g.	 little	 amount	 of	 training	 samples	 to	 deduce	 class	
distribution.	When	 the	 number	 of	 training	 samples	 is	 small	 compared	 to	 the	 number	 of	
dimensions	of	each	training	sample,	the	maximum-likelihood	(ML)	covariance	estimation	can	
be	 ill-posed	 (Dixon,	Brereton	2009,	 Srivastava	et	al.	2007).	QDA	 is	 recommended	 for	 the	
large	training	set,	so	the	variance	of	the	classifier	is	not	main	concern	or	if	the	assumption	of	
the	common	covariance	matrix	is	unsustainable.		

Decision	tree	classifiers	
	
The	Decision	trees	are	support	tools	that	use	branching	methods	to	illustrate	every	possible	
outcome	of	a	decision	with	the	help	of	an	algorithm	that	only	contains	conditional	control	
statements.	The	classification	of	a	pattern	happens	through	a	sequence	of	questions,	where	
each	next	question	asked	depends	on	the	answer	to	the	current	question.	Non-metric	data	is	
best	to	work	with	using	this	approach	as	all	the	questions	can	be	answered	with	a	"yes/no"	
or	 "true/false".	 The	 predictive	 model-observation	 about	 an	 item	 can	 be	 viewed	 as	 the	
branches	and	the	conclusions	about	the	pattern	or	item's	target	value	can	be	viewed	as	the	
leaves.	The	classification	of	a	pattern	or	item's	value	begins	at	the	first	root	node,	which	is	
displayed	at	the	top	and	is	connected	by	directional	branches	to	other	nodes.	Here	is	where	
the	first	split	of	data	happens.	A	split	is	each	decision	outcome	at	a	node	since	it	corresponds	
to	splitting	a	subset	of	the	data.	The	split	at	each	node	is	based	on	a	feature	that	gives	the	
maximum	 information	 gain	 of	 each	 attribute,	which	 is	 the	 expected	 reduction	 in	 entropy	
caused	by	the	partitioning	of	the	samples	according	to	the	attribute.	The	root	node	splits	the	
full	training	data	set	and	so	does	each	and	every	successive	decision.	In	general,	the	number	
of	splits	depends	on	the	designer	and	may	vary	throughout	the	tree.	The	different	branches	
correspond	 to	 the	 different	 possible	 values.	 Depending	 on	 the	 answer	 we	 choose	 the	
appropriate	branch,	which	leads	to	a	descendant	node.	A	descendant	node	can	be	considered	
as	the	root	of	a	sub-tree,	where	we	again	make	a	decision,	which	branch	we	follow	next.	The	
algorithm	continues	this	way	until	it	reaches	one	of	the	possible	conclusions	at	the	terminal	
nodes	 or	 leaf	 nodes,	 which	 have	 no	 further	 connections.	 A	 post-pruning	 process	 can	 be	
carried	out	to	prevent	overfitting	(Duda	et.	al.	2012,	Aly	2005,	Li	et	al.	2004).		
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Support	vector	machines	classifier	
	
Support	 vector	 machines	 (SVM)	 are	supervised	 learning	models	 used	
for	classification	and	regression	analysis.	Given	a	set	of	 training	examples,	each	marked	as	
belonging	to	one	or	the	other	of	two	categories;	an	SVM	training	algorithm	builds	a	model	
that	 assigns	 new	 examples	 to	 one	 category	 or	 the	 other,	 making	 it	 a	 non-
probabilistic	binary	linear	classifier.	An	SVM	model	 is	a	 representation	of	 the	examples	as	
points	in	space,	mapped	so	that	the	examples	of	the	separate	categories	are	divided	by	a	clear	
gap	that	is	as	wide	as	possible.	The	examples	are	mapped	into	that	same	space	and	predicted	
to	belong	to	a	category	according	to	the	side	of	the	gap	they	fall.	The	method	was	developed	
by	 Vapnik	 in	 early	 1960	 but	was	 not	 implemented	 in	 current	 form	 until	 1990	when	 the	
concept	of	nonlinear	kernels	was	introduced.		
	
	 For	 our	models,	 we	 used	 SVM	with	 nonlinear	 kernel	 function	 called	 Radial	 Basis	
Function	(RBF),	which	is	the	most	popular	employed	using	SVM.	SVM	can	be	divided	into	hard	
and	soft	margin	SVM.	Hard	margin	presumes	that	 two	classes	are	separable	and	finds	the	
optimal	boundary	that	separates	classes	with	the	maximum	possible	margin	between	the	two	
classes.	It	is	possible	to	find	a	feature	space	in	which	two	classes	are	separable	using	RBF	and	
forcing	the	algorithm	to	search	for	this	feature	space	may	lead	to	overfitting	of	the	model.	To	
avoid	 overfitting,	 soft	 margin	 SVM	 tolerates	 a	 degree	 of	 misclassification.	 They	 are	 also	
designed	 to	 balance	 classification	 error	 with	 the	 complexity	 of	 the	 model.	 The	 penalty	
parameter	 C	 trades	 off	misclassification	 of	 training	 data	 set	 against	 the	 simplicity	 of	 the	
decision	surface.	A	low	C	makes	the	decision	surface	smooth,	while	a	high	C	aims	to	classify	
all	 training	data	correctly	by	giving	the	model	 freedom	to	select	more	samples	as	support	
vectors.	The	parameter	Gamma	(positive	number)	determines	the	width	of	the	RBF.	Gamma	
defines	how	far	the	influence	of	a	single	training	data	set	reached.	The	gamma	parameter	can	
be	seen	as	the	inverse	of	the	radius	of	influence	of	samples	selected	by	the	model	as	support	
vectors.		Gamma	and	C	have	a	big	effect	on	the	position	and	complexity	of	the	SVM	decision	
boundary.	The	optimal	values	for	these	parameters	need	to	be	determined	from	dataset	itself.	
For	the	case,	where	gamma	is	large,	the	radius	of	the	area	of	influence	of	the	support	vectors	
only	contains	the	support	vector	itself.	And	therefore	no	amount	of	regularization	with	C	will	
be	able	to	prevent	overfitting.	When	gamma	is	very	small,	the	model	is	too	constrained	and	
cannot	 capture	 the	complexity	of	 the	data.	The	most	 common	method	 for	optimisation	of	
these	parameters	is	the	grid	search	carrying	out	repeated	random	sub-sampling	validation.	
(Cortes,	Vapnik	1995,	Dixon	and	Brereton	2009,	"Support	vector	machines,"	n.d.).	

1.4.2 One-class	classifiers	
	
A	one-class	classifier	is	a	special	type	of	two-class	classifier,	where	only	data	from	one	class	
are	used	for	modelling	the	data	such	as	 in	our	case	where	training	data	are	obtained	only	
from	HC	group.	One	class	classifiers	are	exceedingly	beneficial	in	medical	studies	when	the	
real	data	obtained	from	measurements	of	patients	with	diseases	are	difficult	and	costly	or	
almost	impossible	to	obtain.	Visible	attention	has	been	given	to	the	one-class	classifiers	in	
last	 years	 and	 several	 approaches	 to	 one-class	 classification	 have	 been	 presented	 and	
reviewed	 (Irigoien	 et	 al.	 2014).	 Possible	 applications	 of	 one	 class	 classifiers	 include	
mammograms	for	breast	cancer	detection	(Tarassenko	et	al.	1995,	Costa	and	Moura	1995),	
prediction	of	protein-protein	interactions	(Reyes	and	Gilbert	2007),	identification	of	patients	
with	Nosocomial	infections	using	clinical	and	other	data	collected	during	the	survey	(Cohen	
et	al.	2008),	categorization	of	patients	affected	with	interstitial	lung	diseases	(Depeursinge	
et	 al.	 2010),	 heart	 murmur	 diagnosis	 (Cabral	 and	 Oliveira	 2014),	 image	 based	 tumor	
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recognition	 or	 analysis	 of	 electrocardiogram	 (Irigoien	 et	 al.	 2014),	 or	 the	 one-class	
recognition	of	cognitive	brain	functions	(Boehm	et	al.	2011).	In	the	case	of	the	medical	alert	
system,	which	notifies	staff	about	unusual	measurements,	e.g.	laboratory	results	or	data	from	
sensors,	the	model	of	“normality”	could	be	used	for	detection	of	outliers.	Another	example	
could	be	for	machine	condition	monitoring,	where	faults	should	be	detected	(Tax	2001).	To	
the	present	date,	there	have	been	few	applications	of	the	SVDD	to	clinical	medicine,	such	as	
in	 radiology	 and	MR	 imaging.	 Cognitive	 brain	 states	 in	 fMRI	 images	 (Song	 and	Wyrwicz	
2009),	 reconstruction	 of	 brain	 tissue	 (Wang	 et	 al.	2007)	 and	 the	 segmentation	 of	 brain	
tumors	were	analyzed	(Zhou	et	al.	2007).		
	

There	have	been	a	handful	of	one-class	classification	models	proposed.	Most	of	them	
focus	on	outlier	detection.	One	way	for	outlier	detection	is	to	generate	outlier	data	around	
the	target	set.	Then	a	classifier	is	trained	to	differentiate	between	outliers	and	the	target	data	
(Roberts	et	al.	1994).	In	this	thesis,	few	models	for	one-class	classification	are	explored	and	
compared.	Three	types	of	models	were	used:	the	density	estimator,	the	boundary	methods	
and	the	reconstruction	methods.	These	methods	differ	in	the	definition	of	the	function,	the	
error	and	in	the	minimization	method.	This	section	includes	2	density	methods	(mixture	of	
Gaussians	and	 the	Parzen	density	estimation);	2	boundary	methods	 (k-nearest	neighbour	
method	 and	 Support	 vector	 data	 description);	 and	 2	 reconstruction	 methods	 (Principal	
Component	Analysis	and	Self-organizing	map).	

Density	methods	
	 	
The	most	straightforward	method	to	get	one-class	classifier	is	to	estimate	and	threshold	the	
probability	density	 (PDF)	of	 the	 training	data	 (Tarassenko	et	 al.,	1995).	Due	 to	unknown	
information	 about	 the	 second	 class,	 the	 PDF	 for	 the	 second	 class	 is	 assumed	 uniform.	 A	
specific	form	of	the	distribution	of	feature	values	is	often	unknown	but	can	be	approximated	
by	a	mixture	of	multiple	Gaussians	or	other	kernels.	The	data	in	the	training	set	are	assumed	
to	 be	 representative	 of	 the	 true	 data	 distribution.	 The	 classification	 can	 be	 obtained	 by	
comparing	the	PDF	of	the	current	observation	vector	to	a	threshold	(Mazhelis	2006).	

Mixture	of	Gaussians	
	
This	method	assumes	that	data	can	be	described	as	a	mixture	of	several	normal	distributions.	
A	 mixture	 of	 Gaussians	 (MOG)	 represents	 a	 linear	 combination	 of	 normal	 distributions	
according	to	the	following	equation	(Bishop	1995):		
	

𝑝fkl(𝑥) = 	
1

𝑁fkl
o𝑝𝒩F𝑥; 𝜇q, ∑qL
q

𝑃(𝑖)	,	

	

Equation	4	

where	 mixing	 coefficient	 P(i)	 reflects	 the	 prior	 probability	 that	 an	 observation	 vector	 is	
generated	from	i-th	component	of	the	mixture.	It	has	a	smaller	bias	than	the	single	Gaussian	
distribution,	 on	 the	 other	 hand,	 it	 requires	 far	 more	 data	 for	 training.	 The	 number	 of	
Gaussians	𝑁fkl is	 defined	 beforehand	 by	 the	 user,	 the	means	𝜇qand	 covariances	∑qof	 the	
individual	Gaussian	components	can	be	efficiently	estimated	by	an	expectation	minimization	
routine	(Bishop	1995).	The	number	of	parameters	for	the	MOG	is:	
	

𝑛tuvuwfkl = 𝑁fklF𝑛tuvuwfkl + 1L	.	 Equation	5	
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The	parameters	of	MOG	are	derived	by	employing	the	expectation-maximization	algorithm	
(EM	 algorithm).	 The	 learning	 process	 using	 EM	 algorithm	 is	 more	 computationally	
demanding,	as	a	number	of	interactions	should	be	done	before	the	algorithm	converges.	The	
classification	process	is	relatively	simple.	It	is	a	more	flexible	density	method	than	Gaussian	
distributions	due	to	its	unimodality	and	convexity	(Tax	2001,	Mazhelis	2006).	

Parzen	density	estimation	
	
Parzen	 density	 estimation	 (PDE)	 is	 an	 extension	 of	 the	 previous	 method.	 The	 estimated	
density	 is	 a	 mixture	 of	 Gaussian	 kernels	 centred	 on	 the	 individual	 training	 objects.	 The	
parametric	density	model	is	defined	(Parzen	1962):	
	

𝑝t(𝑥) 	= 	
1
𝑁o𝑝𝒩(𝑥; 𝑥y, 𝛴y

y

)	,	 Equation	6	

	
where		𝛴y 	is	diagonal	covariance	matrices	of	Gaussian	kernels.		
	

	Σy = ℎ𝐼	.	
	

Equation	7	

The	equal	width	h	in	each	feature	direction	means	that	the	Parzen	density	estimator	assumes	
equally	weighted	features	and	it	will	be	sensitive	to	the	scaling	of	the	feature	values	of	the	
data,	especially	for	lower	sample	sizes	(Tax	2001).		
	
	 Training	a	Parzen	density	consists	of	the	determination	of	one	single	parameter,	the	
optimal	width	of	the	kernel	h.	Thus,	the	number	of	free	parameters	in	the	model:		
	

𝑛~v��� = 1	.	 Equation	8	
	
The	h	 is	optimized	using	 the	maximum	 likelihood	solution	 (Kraaijveld	and	Duin	1991).	A	
good	description	depends	on	the	representatives	of	the	training	set.	The	computational	cost	
for	 training	 a	 Parzen	 density	 estimator	 is	 lower	 than	 other	 methods,	 but	 the	 testing	 is	
expensive.	All	training	objects	have	to	be	stored	and,	during	the	learning	phase,	distances	to	
all	 training	 objects	 have	 to	 be	 calculated	 and	 sorted.	 Considering	 large	 datasets	 in	 high	
dimensional	 feature	 spaces,	 this	 could	 severely	 limit	 the	 applicability	of	 the	method.	PDE	
works	very	well	when	the	sample	size	used	for	training	is	sufficiently	high	to	overcome	the	
curse	of	dimensionality	(Duda	et	al.	2012).		
	
	 The	non-parametric	density	model	is	defined	as	(Gramacki	2018):		
	

𝑝�(𝑥)) =
1
𝑛ℎ�o𝜑

�

y�R

�
𝑥 − 𝑥y
ℎ �	,	 Equation	9	

	
where	h	is	window	width,	n	is	a	total	number	of	samples	and	d	is	dimensionality	of	the	
problem.	The	method	is	advantageous	due	to	its	ability	to	approximate	the	arbitrary	
distribution,	whose	parametric	form	is	unknown.	Its	disadvantageous	is	need	of	a	large	
number	of	samples	for	accurate	estimation	(Mazhelis	2006).			
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Boundary	methods	
	
Boundary	methods,	 as	 the	 name	 implies,	 estimate	 the	 boundary	 of	 the	 trained	 data.	 The	
methods	derive	 the	distance	between	 the	 classified	 observation	 vector	 and	 the	boundary	
around	the	trained	observation	vectors.	The	distance	calculation	can	take	into	account	the	
distance	 between	 the	 analyzed	 observation	 vectors	 and	 the	 observation	 vectors	 in	 the	
training	 dataset	 as	well	 as	 the	 distances	 between	 the	 observation	 vectors	 in	 the	 training	
dataset.	 Boundary	 methods	 are	 specifically	 targeted	 at	 one-class	 classifiers	 unlikely	 to	
density	and	reconstruction	methods	that	are	used	often	for	multiclass	classifiers	(Mazhelis	
2006).		

K-nearest	neighbor	method	
	
K-nearest	neighbor	method	(KNND)	is	derived	from	local	density	estimation	by	the	nearest	
neighbor	classifier	 (Duda	et.	al.,	2012).	The	probability	density	 is	calculated	based	on	 the	
number	of	observation	vectors	in	a	region	of	a	certain	volume.	The	method	avoids	the	explicit	
density	 estimation	 and	 only	 uses	 distances	 to	 the	 first	 nearest	 neighbor.	 In	 the	 nearest	
neighbor	density	estimation,	a	cell	(hypersphere	in	d	dimensions)	is	centred	around	the	test	
object	z.	The	volume	of	this	cell	is	grown	until	it	captures	k	objects	from	the	training	set.	The	
local	density	is	then	estimated	by:		
	

𝑝XX(𝑧) = 	
𝑘
𝑁

𝑉bF�𝑧 − 𝑁𝑁b�v(𝑧)�L
	,	 Equation	10	

	
where	𝑁𝑁b�v(𝑧)	is	the	k	nearest	neighbor	of	z	in	the	training	set	and	𝑉bis	the	volume	of	the	
cell	containing	this	object. In	the	KNND,	a	test	object	z	is	accepted	when	its	local	density	is	
larger	or	equal	to	the	local	density	of	its	(first)	nearest	neighbor	in	the	training	set	𝑁𝑁�v(𝑧)=	
𝑁𝑁R�v(𝑧).	All	 the	 distances	 to	 the	 k	 nearest	 neighbors	 are	 averaged,	 and	 furthermore,	 the	
distance	 of	 an	 object	 z	 to	 its	 k	 nearest	 neighbors	 is	 replaced	 by	 a	more	 robust	 distance	
definition.	When	objects	are	very	near	the	target	data,	the	k-th	nearest	neighbor	distance	is	
used,	 instead	of	 the	 first	nearest	neighbor	distance.	This	robust	measure	makes	 it	hard	to	
distinguish	between	objects	which	are	near	the	boundary	or	which	are	deep	within	a	tight	
cluster	of	objects.	This	algorithm	requires	 that	 the	user	defines	 in	advance	 the	number	of	
neighbors	k	(Tax	2001,	Mazhelis	2006).	

Support	vector	data	description	
	
Support	vector	data	description	(SVDD)	defines	the	hypersphere	around	the	positive	class	
data	that	encompasses	almost	all	points	in	the	data	set	with	the	minimum	radius.	The	SVDD	
is	a	special	case	of	support	vector	classifier	(Vapnik	2013).		During	the	training	phase	(Tax	
and	Duin	1999)	
	

𝐿 = 𝜀���� =o𝛼y(𝑥y ∙ 𝑥y) −
y

o𝛼y𝛼q(𝑥y ∙ 𝑥q)
y,q

	,	
Equation	11	

the	 parameter	𝛼y 	are	 estimated	 by	 minimizing	 subject	 to	 the	 constraints	∑ 𝛼y	y = 1 	and	
0 ≤ 𝛼y ≤ 𝐶 ,	 where	 C	 determines	 the	 number	 of	 vectors	 that	 will	 not	 be	 covered	 by	 the	
description.	The	minimization	is	solved	as	a	quadratic	programming	problem.	 	The	kernel	
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function	transforms	the	vectors	to	a	higher	dimensional	feature	space	where	a	more	accurate	
description	can	be	produced.	In	the	training	phase,	the	distance	from	the	new	observation	
vector	to	the	centre	of	the	hypersphere	is	calculated	and	compared	against	its	radius.	The	
SVDD	 classifier	 rejects	 a	 given	 test	 point	 as	 an	 outlier	 if	 it	 falls	 outside	 the	 hypersphere.	
However,	SVDD	can	reject	some	fraction	of	positively	labelled	data	when	the	volume	of	the	
hypersphere	decreases.		
	

The	method	 is	 relatively	resistant	 to	noise	and	mislabelling	errors.	We	reduce	 the	
noisy	and	mislabelled	vectors	from	a	produced	description	by	adjusting	the	regularization	
parameters.	 Similarly	 like	 in	 SVM	 for	 multiclass	 classifiers,	 the	 user	 provides	 the	
regularization	parameter.	The	training	procedure	 is	computationally	expensive	due	to	 the	
time	complexity	of	solving	a	quadratic	programming	problem.	The	complexity	can	be	reduced	
when	the	simplicity	of	the	employed	constraints	 is	taken	into	account	 in	the	design	of	the	
optimization	 routine.	 Large	 storage	 space	 is	 needed	 at	 the	 training	 phase	 since	 all	 the	
observation	vectors	from	the	training	dataset	are	used	in	the	optimization.	The	classification	
using	this	method	is	computationally	simple	and	does	not	require	a	significant	allocation	of	
memory	(Tax	2001,	Mazhelis	2006).	

	
	

Reconstruction	methods	
	
The	model	 of	 the	 data	 generation	process	 is	 assumed	 in	 reconstruction	methods	 and	 the	
parameters	 of	 this	model	 are	 estimated	 during	 the	 learning	 phase.	 The	 fit	 of	 the	 current	
observation	 vector	 the	 model	 is	 evaluated	 by	 the	 reconstruction	 error.	 The	 smaller	
reconstruction	error,	the	more	likely	the	data	were	generated	by	this	model.	The	discriminant	
function	can	be	implemented	as	an	inverted	reconstruction	error	(Mazhelis	2006).	

Principal	Component	Analysis	
	
Principal	 Component	 Analysis	 (PCA)	 is	 aimed	 at	 explaining	 the	 internal	 variance	 and	
covariance	 structure	 of	 n-dimensional	 data	 in	 terms	 of	 the	 set	 of	 variables	 (principal	
components;	Bishop	1995).	 Principal	 components	 are	 linear	 combinations	of	 the	original	
variables.	The	PCA	mapping	finds	the	orthonormal	subspace,	which	captures	the	variance	in	
the	data	as	best	as	possible.	Neural	network	approaches	exist	for	the	optimization	of	a	PCA.	
The	 simplest	 optimization	 procedure	 uses	 eigenvalue	 decomposition	 to	 compute	 the	
eigenvectors	of	the	target	covariance	matrix.	The	eigenvectors	with	the	largest	eigenvalues	
are	 the	 principal	 axis	 of	 the	 d-dimensional	 data	 and	 point	 in	 the	 direction	 of	 the	 largest	
variance.	These	vectors	are	used	as	basis	vectors	for	the	mapped	data.	The	number	of	basis	
vectors	M	is	optimized	to	explain	a	certain,	user-defined,	fraction	of	the	variance	in	the	data.	
Because	they	form	an	orthonormal	basis,	the	number	of	free	parameters	in	the	PCA	becomes	
(Tax	2001):		
	

𝑛��� = 	 �
𝑑 − 1
𝑀 �	.	 Equation	12	

	 	
	 The	PCA	performs	well	when	a	clear	 linear	subspace	 is	present.	Also	 for	very	 low	
sample	 sizes,	 the	 data	 is	 automatically	 located	 in	 a	 subspace,	 e.g.,	 10	 objects	 are	 always	
distributed	 in	 a	 9-dimensional	 subspace.	When	 the	 intrinsic	 dimensionality	 of	 the	data	 is	
smaller	than	the	feature	size,	the	PCA	can	still	generalize	from	the	low	sample	size	data.	When	
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the	data	has	variance	in	all	feature	directions,	it	might	sometimes	be	impossible	to	reduce	the	
dimensionality	 without	 reducing	 the	 fraction	 of	 the	 explained	 variance	 too	 much.	 For	
instance,	when	the	user	requests	that	90%	of	the	variance	of	some	2-dimensional	data	should	
be	explained,	it	might	happen	that	each	of	the	two	PCA	features	explains	about	50%	of	the	
variance.	In	this	case,	no	feature	reduction	can	be	applied	and	the	complete	feature	space	is	
described	by	two	features.	Therefore,	all	data	will	be	accepted.	Also	when	data	is	distributed	
in	separate	subspaces,	the	PCA	will	produce	an	average	subspace,	which	may	represent	the	
data	in	each	subspace	very	poorly.	The	PCA	is	relatively	sensitive	to	the	scaling	of	the	features,	
it	directly	influences	the	feature	variances.	Scaling	changes	the	order	of	the	large	variance	
directions	and	thus	the	PCA	basis.	When	data	directions	are	enhanced,	this	improves	the	PCA	
description,	but	when	noise	is	amplified,	it	harms	the	characterization.	Finally,	because	the	
PCA	only	focuses	on	the	variance	of	the	target	set,	the	PCA	is	incapable	of	including	negative	
examples	in	the	training	phase.	The	use	of	the	PCA	as	the	one-class	classifier	is	justified	when	
the	dimensionality	 of	 the	data	 analyzed	by	 the	 classifier	 is	 high.	 Then,	 the	 computational	
complexity	of	classification	can	be	decreased	by	reduction	of	the	dimension	using	the	PCA.	
The	PCA	 is	 sensitive	 to	 the	noise	and	outliers	 in	 training	data,	 since	 they	may	distort	 the	
estimation	of	variances	and	covariances	(Tax	2001,	Mazhelis	2006).		

Self-organizing	map		
	
Self-organizing	map	(SOM)	is	a	clustering	method,	which	assumes	that	data	is	clustered	and	
can	be	described	by	a	set	of	prototype	vectors	𝜇b .	In	the	SOM,	the	placing	of	the	prototypes	is	
not	only	optimized	with	respect	to	the	data,	but	also	constrained	to	form	a	low-dimensional	
manifold	 (Kohonen	 1990).	 The	 number	 K	 of	 prototype	 vectors	 should	 be	 selected	
beforehand.	During	classification,	Euclidean	distance	is	used	in	the	definition	of	the	error	and	
the	computation	of	the	distance	(Tax	2001)	
	

𝑑��f = 	min
b
‖𝑥 − 𝜇b‖�	.	 Equation	13	

	 	
	 The	 placement	 of	 prototype	 vectors	 is	 calculated	 from	 the	 training	 dataset.	 The	
simple	competitive	learning	is	employed,	i.e.	each	subsequent	observation	vector	𝑥y	is	used	
to	update	the	position	of	the	nearest	prototype	𝜇b 	(Kohonen	1990).	
	

𝜇b(𝜏 + 1) = 𝜇b(𝜏) + 𝜂(𝜏)(𝑥y	 − 𝜇b)	,	
	

Equation	14	

where	𝜂(𝜏)	is	 the	 learning	 rate	 ranging	 between	 zero	 and	 one.	 The	 SOM	as	well	 employs	
competitive	 learning	 to	 define	 the	 positions	 of	 prototype	 vectors.	 Not	 only	 the	 nearest	
prototypes	are	updated,	but	also	the	prototypes	in	a	neighborhood	of	the	nearest	neighbor	
are	 also	 updated.	 More	 distant	 prototypes	 get	 a	 smaller	 update.	 This	 neighborhood	 is	
determined	 by	 a	 predefined	 topology.	 Often	 a	 2-	 or	 3-dimensional	 regular	 square	 grid	 is	
chosen	for	this	manifold	such	that	data	mapped	on	this	manifold	can	be	visualized	afterwards.	
Higher	dimensional	manifolds	are	possible,	but	the	storage	and	optimization	costs	become	
prohibitive.	When	the	dimensionality	of	the	manifold	does	not	fit	the	data,	this	topological	
constraint	on	the	placing	of	the	prototypes	might	result	in	suboptimal	placing.		
Thus,	in	the	optimization	of	the	SOM	𝑘�¢£¤ 	neurons	have	to	be	placed	in	the	d-	dimensional	
feature	 space.	 This	means	 that	 the	 number	 of	 free	 parameters	 in	 the	 SOM	becomes	 (Tax	
2001):		
	

𝑛~v����f = 𝑑𝑘�¢£¤	.	 Equation	15	
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The	 dimensionality	 of	 the	manifold	𝑑��f 	and	 the	 learning	 rate	 are	 supplied	 by	 the	 user.	
Furthermore,	the	user	defines	a	neighborhood	function	over	the	grid,	which	can	even	change	
during	training.		
	
		 The	method	is	sensitive	to	remote	outliers,	because	they	may	bias	the	placement	of	
the	 prototype	 vectors.	 The	 noise	 present	 in	 training	 data	 can	 be	 compensated	 by	 a	 high	
number	of	observation	vectors	within	each	cluster.	The	method	is	computationally	light;	a	
small	memory	space	is	needed	in	order	to	store	the	prototype	vectors	(Mazhelis	2006).
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 Material	and	Methods	
	
2.1 SUBJECTS	
	
Data	were	obtained	from	a	total	of	156	Czech	native	speakers.	Participants	were	recruited	for	
previous	studies,	but	their	speech	patterns	were	never	examined	comprehensively.	
	
	 The	PD	group	included	48	participants	(21	women,	27	men),	all	of	who	fulfilled	the	
diagnostic	criteria	for	PD.	The	diagnosis	criteria	of	PD	were	established	by	the	UK	Parkinson's	
Disease	 Society	 Bank	 Criteria	 (Hughes	 et	 al.	 1992).	 All	 participants	 were	 on	 stable	
dopaminergic	medication	for	at	least	4	weeks	before	examinations,	which	were	conducted	in	
the	 on-medication	 state.	 All	 the	 PD	 participants	 were	 examined	 immediately	 after	 the	
diagnosis	was	made	and	before	symptomatic	treatment	was	initiated.	The	mean	age	of	PD	
subjects	was	62.0	years	±	11.6	standard	deviation	(SD)	with	range	(34-82)	 ,	mean	disease	
duration	6.6	years	±	5.3	SD,	disease	stage	2.6	±	0.5	SD	(1-3)	according	to	the	Hoehn	&	Yahr	
staging	scale	(ranging	from	1	to	5,	where	1	indicates	mild	unilateral	motor	disorder	and	5	
indicates	confinement	to	a	wheelchair;	Hoehn	and	Yahr	1967),	mean	motor	score	21.0	±	11.3	
SD	(6-43)	according	to	the	Unified	Parkinson's	Disease	Rating	Scale	(UPDRS	III;	ranging	from	
0	 to	 108,	 with	 0	 representing	 a	 symptom-free	 state	 and	 108	 representing	 severe	motor	
impairment;	Stebbing	and	Goetz	1998).	None	of	the	PD	patients	reported	previous	speech	
disorders	unrelated	to	the	present	illness.		
	

The	HD	group	consisted	of	participants	(24	women,	19	men),	all	of	who	fulfilled	the	
diagnostic	criteria	for	HD.	The	mean	age	of	HD	subjects	was	46.5	years	±	14.0	SD	with	range	
(22-69),	mean	disease	duration	6.1	years	±	3.7	SD,	a	mean	number	of	CAG	triplets	44.9	±	3.6	
SD	 (40-54).	 Most	 of	 the	 patients	 were	 treated	 with	 monotherapy	 or	 a	 combination	 of	
benzodiazepines,	 antipsychotics,	 amantadine	 and	 antidepressants.	 All	 HD	 patients	 were	
further	assessed	by	a	movement	disorders	specialist	and	were	rated	according	to	the	motor	
score	of	the	Unified	Huntington’s	Disease	Rating	Scale	(UHDRS,	ranging	from	0	to	124,	where	
0	 indicates	 no	motor	 disability	 and	 124	 indicates	 severe	motor	 disability;	 Kieburtz	 et	 al.	
2001).	 In	 addition,	 the	 burden	 of	 disease	 score	 was	 calculated	 for	 each	 subject	 using	 a	
formula	(Penney	et	al.	1997):	

	
𝑏𝑢𝑟𝑑𝑒𝑛	𝑑𝑖𝑠𝑒𝑎𝑠𝑒	𝑠𝑐𝑜𝑟𝑒 = 𝑎𝑔𝑒	𝑥	(𝐶𝐴𝐺	𝑟𝑒𝑝𝑒𝑎𝑡	𝑙𝑒𝑛𝑔𝑡ℎ − 35.5)	.	 Equation	16	
	

The	UHDRS	motor	score	was	26.9	±	11.6	(3-54)	and	the	burden	of	disease	score	was	426.8	±	
78.9.	

	
	 The	 group	 of	 65	 subjects	 (38	women,	 27	men)	with	 no	 history	 of	 neurological	 or	
speech	disorder	diagnostic	was	included	as	HC.	Mean	age	of	HC	subjects	was	54.9	years	±	12.5	
SD	(29-80)	with	range	(29-80).		
	
	 None	of	 the	HC,	PD	or	HD	subjects	suffered	 from	a	chronic	obstructive	pulmonary	
disease,	 allergy,	 asthma,	 respiratory	 tract	 infection,	 facial	 paresis,	 or	 another	malady	 that	
could	negatively	influence	participant	speech	performance.	The	study	was	approved	by	the	
Ethics	 Committee	 of	 the	 General	 University	 Hospital	 in	 Prague	 and	 all	 participants	were	
provided	with	written,	informed	consent.	
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2.2 PROTOCOL	
	
Recordings	were	taken	in	a	quiet	examination	room	with	a	low	ambient	noise	level	using	a	
condenser	microphone	at	a	distance	of	approximately	5	cm	from	the	subject's	mouth	in	order	
to	minimize	 the	 influence	 of	 environmental	 noise.	 Data	were	 digitalized	with	 a	 sampling	
frequency	of	48	kHz	and	16-bit	quantization.	All	participants	were	recorded	shortly	after	the	
diagnosis	was	established.	Each	utterance	was	recorded	during	a	single	session	by	a	speech-
language	pathologist.	All	participants	were	instructed	before	each	task	with	information	to	
know	what	 specifically	 to	 perform	 in	 their	 task.	 	 The	whole	 protocol	 required	 recording	
session	approximately	30	minutes	in	duration.		
	
	 Each	 speaker	performed	 rhythm	 task,	 sustained	phonation	of	 vowels	 /A/	and	/I/,	
monologue,	reading	passage	and	diadochokinetic	task	according	to	instructions	summarized	
in	Table	1.		All	participants	were	asked	to	repeat	their	production	of	an	attempt	that	resulted	
in	the	flawless	production	of	any	task.		Participants	could	repeat	their	production	at	any	time	
if	they	or	the	speech	therapist	were	not	fully	satisfied	with	their	performance.		All	recorded	
acoustic	signals	were	examined	using	digital	signal	processing.	
	
	
Tasks	 Speech	data	
Sustained	phonation	
of	vowel	/I/	

Sustained	phonation	of	/I/	at	a	comfortable	pitch	and	loudness	as	constant	and	long	as	
possible,	at	least	5s.	The	task	was	performed	on	one	breath.	

Diadochokinetic	task	 Rapid	 steady	 /Pa/-/Ta/-/Ka/	 syllables	 repetition	 as	 constant	 and	 long	 as	 possible,	
repeated	at	least	5	times.	The	task	was	performed	on	one	breath.	

Sustained	phonation	
of	vowel	/A/	

Sustained	phonation	of	/A/	at	a	comfortable	pitch	and	loudness	as	constant	and	long	as	
possible,	at	least	5s.	The	task	was	performed	on	one	breath.	

Monologue	 Monologue,	at	least	90s.	The	participants	were	generally	instructed	to	speak	about	what	
they	did	that	current	day,	their	interests,	job	or	family.	

Reading	passage	 Reading	the	standardized	text	of	71	words.		

Rhythm	 Repeat	 the	 syllable	/Pa/	at	 least	20	 times	at	 a	 comfortable	and	steady	pace	without	
acceleration	or	deceleration.	

Table	1:	List	of	vocal	tasks	
Note.	Adapted	from	Rusz,	J.,	Cmejla,	R.,	Ruzickova,	H.,	&	Ruzicka,	E.	(2011).	Quantitative	acoustic	measurements	for	characterization	
of	speech	and	voice	disorders	in	early	untreated	Parkinson's	disease.	The	Journal	of	the	Acoustical	Society	of	America,	129(1),	350-
367.	
	

	
2.3 METHOD	
	
All	 speech	 signals	 were	 analysed	 using	 specialized	 digital	 signal	 processing	 methods.	
Processing	of	signals	consisted	of	pre-processing	using	high	pass	filter	to	attenuate	main	hum	
and	 other	 non-speech	 low-frequency	 noise	 and	 resampling	 of	 the	 sampling	 frequency,	
segmented	to	recognize	the	individual	speech	events	using	machine	learning,	and	calculation	
of	 speech	 features	 using	 measurement	 methods	 to	 detect	 certain	 properties	 of	 speech	
performance.		
	
	 The	 criteria	 for	 selection	 of	 measurement	 methods	 were	 that	 feature	 extraction	
should	 be	 fully	 automated	 and	 compatible	 with	 characteristics	 of	 the	 speech	 disorders	
analyzed.	All	data	including	extracted	features	were	given	by	supervisor	and	in	the	following	
section,	basic	information	about	speech	features	are	explained.		
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Phonatory	features	were	measured	by	using	intervals	of	voiced	speech.	Phonatory	
features	provide	information	about	disabilities	to	control	 the	closing	and	opening	of	vocal	
folds.	Standard	methods	include	measures	of	the	fundamental	frequency	(F0)	mean,	F0	range,	
standard	 deviation	 of	 power	 (stdPWR)	 and	 a	 standard	 deviation	 of	 the	 fundamental	
frequency	 (stdF0).	 StdPWR	 represents	 an	 abnormal	 variation	 in	 loudness	 observed	 in	
dysarthria.	 StdF0	 measurements	 were	 determined	 using	 several	 vocal	 tasks	 such	 as	
sustained	 vowel	 phonation,	 reading	 a	 text	 and	monologue.	 StdF0	 represents	 a	 dysphonic	
symptom	of	impaired	control	of	stationary	voice	pitch.	By	using	sustained	vowel	phonation,	
the	 most	 popular	 measurements	 of	 voice	 functions	 were	 obtained,	 which	 are	 the	
perturbation	measures	 jitter	 (extent	 of	 variation	 of	 voice	 range),	 shimmer	 (the	 extent	 of	
variation	 of	 expiratory	 flow)	 and	 harmonics-to-noise	 ratios	 (HNR,	 the	 amplitude	 of	 noise	
relative	to	tonal	components	in	the	speech)	(Baken	and	Orlikoff	2000),	(Vokřál	and	Novák	
1995).	 Gaping	 in-between	 voiced	 speech	 (GVI)	 describes	 clear	 pauses	 between	 voiced	
speeches	(Hlavnička	et	al.	2017).	To	determine	 insufficiency	of	breath	support	 for	speech	
production,	maximum	phonation	time	(MPT)	was	examined.	To	 investigate	aperiodicity,	a	
number	of	voice	breaks	(NVB),	a	degree	of	pitch	breaks	(DPB)	and	the	degree	of	vocal	arrest	
(DVA)	were	evaluated.		
	
	 Speech	 rhythm	 abnormalities	 are	 commonly	 present	 in	 patients	 with	 the	
neurodegenerative	disorder.	A	lower	ability	to	reproduce	perceived	speech	rhythm	is	one	of	
the	deficits	in	PD	and	HD	speech.	By	measuring	speech	in	task	8,	it	was	possible	to	determine	
speech	 features	 that	 represent	 rhythm	 instability	 (RI)	 and	 rhythm	 acceleration	 (RA).	
Previous	 studies	 (Skodda	 et	 al.	 2010,	 2012)	 have	 revealed	 that	 patients	 with	 impaired	
function	of	basal	ganglia	showed	similar	instabilities	in	speech	production,	in	particular	PD	
and	HD	manifest	difficulties	in	the	steady	performance	of	single	syllable	repetition	without	
speed	alterations.	There	is	a	correlation	between	motor	severity	scores	and	RI	for	HD	groups	
as	well	(Rusz	et	al.	2015).	Features	involving	information	about	the	rhythmic	organization	of	
speech	were	evaluated	as	 the	 rate	of	 speech	 timing	 (RST)	 including	voiced,	unvoiced	and	
pause	intervals.	Acceleration	of	speech	associated	with	PD	was	computed	by	the	acceleration	
of	speech	timing	(AST).	Net	speech	rate	(NSR)	is	standard	measurement	used	by	pathologists.	
NSR	is	measured	when	a	number	of	syllables	is	known,	the	total	number	of	syllables	is	divided	
by	the	total	duration	of	the	speech.	Duration	of	pause	intervals	(DPI)	relates	to	the	quality	of	
speech	timing.	The	heterogeneity	of	speech,	in	terms	of	the	matter	of	voiced,	unvoiced,	pause	
and	respiratory	intervals,	 is	described	as	the	entropy	of	the	speech	timing	(EST),	which	is	
Shannon	entropy	(Hlavnička	et	al.	2017).		
	
	 Another	method	is	a	measurement	of	articulation	rate	and	pause	characteristics	that	
reveal	differences	of	PD	subjects	in	comparison	with	HC	(Skodda	and	Schlegel	2008;	Forrest	
et	 al.	1989).	Articulation	 rate	was	calculated	 for	 reading	 the	 text.	PD	speakers	have	been	
found	 to	 have	 an	 overall	 lower	 intensity	 level,	 deficits	 in	 intensity	 range,	 and	 intensity	
variations	 during	 speech	 production	 (Watson	 and	 Munson	 2008).	 The	 measurement	 of	
intensity	 variations	was	determined	using	 the	 reading	 text	 and	 the	monologue.	The	most	
common	method	of	evaluating	articulatory	skills	is	a	diadochokinetic	(DDK)	task.	DDK	task	
measures	 the	 subject's	 ability	 to	 repeat	 a	 rapid	 and	 steady	 consonant-vowel	 (C-V)	
combination	 and	 usually	 consists	 of	 two	measures.	 The	 average	 DDKR	 is	 the	 number	 of	
syllable	 vocalizations	 per	 second.	 The	 coefficient	 of	 DDKG	 measures	 the	 degree	 of	 rate	
variations	 in	 the	 period	 and	 assesses	 the	 ability	 to	 maintain	 a	 constant	 rate	 of	 C-V	
combinations.	We	can	also	measure	the	voice	onset	time	(VOT)	duration	in	DDK	task.	VOT	is	
typically	measured	as	the	duration	of	time	from	the	articulatory	release	of	a	stop	consonant	
to	 the	 onset	 of	 voicing	 for	 the	 following	 vowel.	 The	 duration	 of	 unvoiced	 stops	 (DUS)	
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measured	stop	consonants,	which	is	one	of	the	most	challenging	articulatory	movements.	In	
addition,	the	temporal	quality	of	articulation	was	determined	from	unvoiced	fricatives	using	
the	 decay	 of	 unvoiced	 fricatives	 (DUF;	 Hlavnička	 et	 al.	 2017).	 By	 reading	 the	 passage,	
articulatory	 decay	 (resonant	 frequency	 attenuation)	 was	 extracted.	 Resonant	 frequency	
attenuation	(RFA)	represents	a	decrease	of	spectral	energy	as	a	result	of	decayed	articulatory	
movements	(Rusz	et	al.	2016).	
	
	 The	 respiratory	 aspects	 were	 assessed	 by	 using	 data	 from	 detected	 respiratory	
intervals	 and	 expirations	 represented	 by	 voiced	 and	 unvoiced	 intervals.	 The	 respiratory	
aspects	were	evaluated	on	a	connected	speech	from	monologue	and	reading	passage	tasks.	
The	 latency	 of	 respiratory	 exchange	 (LRE)	 measures	 the	 pause	 between	 expiration	
represented	 by	 the	 time	 speech	 ends	 and	 respective	 inspiration,	 the	 rate	 of	 speech	
respiration	(RSR)	calculates	respiratory	rate	during	speech	and	was	computed	from	median	
duration	between	respiration,	pause	intervals	per	respiration	(PIR)	depicts	breath	groups.	
The	relative	loudness	of	respiration	(RLR)	evaluates	audibility	of	respiration	relative	to	the	
loudness	of	speech,	eliminating	dependence	on	microphone	gain	(Hlavnička	et	al.	2017).	
	
	 The	 feature	 calculation	 stage	 involved	 the	 application	 representative	 selection	 of	
traditional	 and	 non-standard	measurement	methods	 to	 all	 the	 speech	 signals.	 Altogether	
there	were	used	44	 features,	which	produced	a	single	number	 for	each	of	 the	156	signals	
(participants).	See	table	2	 for	 the	 list	of	 features	of	 the	measurement,	which	also	 includes	
standard	deviation	and	the	mean	of	all	groups	(HC,	HD	and	PD)	for	each	feature.	
	

Many	features	of	signals	could	be	highly	correlated	with	other	features.	Therefore,	
the	correlation	of	normalized	speech	features	with	clinical	scales	was	carried	out	by	
Pearson’s	correlation	coefficient	and	for	non-normally	distributed	speech	features	
Spearman’s	correlation	coefficient	was	used.	Correlations	were	done	separately	for	each	
group	of	participants,	due	to	the	different	characteristics	of	these	groups.	Out	of	all	44	
features,	4	features	were	not	used.	More	specifically	shimmer	phonation	(-0.88	with	HNR	
phonation),	NSR	text	(0.84	with	RST	text),	DPI	text	(-0.86	with	RST	text)	and	PIR	monologue	
(-0.84	with	DPI	monologue).	These	features	showed	high	correlation	amongst	each	other	
like	shown	in	figure	2,	figure	3,	figure	4	and	figure	5.	

	
Using	statistical	tests,	the	hypothesis	that	the	appropriate	symptom	may	have	

abnormal	values	for	a	given	group	were	verified.	Some	statistical	tests,	for	example	the	
analysis	of	variance,	assume	that	variances	are	equal	across	groups	or	sample.		For	this	
purpose,	Bartlett's	test	was	used	to	evaluate	the	normality	of	the	variances.	Equal	variances	
across	features	are	called	homogeneity	of	variances.	The	one-way	analysis	of	variance	
(ANOVA)	test	with	post	hoc	Bonferroni	adjustment	was	used	for	homogeneous	features	and	
the	Kruskal-Wallis	test	with	post	hoc	Bonferroni	adjustment	was	used	for	non-
homogeneous	features.	With	respect	to	the	explorative	nature	of	the	current	study	and	the	
fact	that	each	acoustic	variable	represents	a	unique	speech	aspect,	adjustment	for	multiple	
comparisons	with	regard	to	correlations	was	not	performed.	The	level	of	significance	was	
set	to	p	<	0.05.	In	practice,	only	the	most	distinguishing	features	were	selected	to	reduce	the	
computational	burden.	Figure	5	highlights	the	feature	selection	process	using	a	flowchart	
diagram.		 	
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Table	2:	List	of	features	of	acoustic	measures	
Table	2	includes	the	characteristics	of	each	measurement,	with	the	mean	and	standard	deviation	of	values	in	the	PD,	HD	and	HC	
groups.	The	marked	features	represent	the	features	that	were	chosen	after	eliminating	process.	
Symbols:	μ	=	mean,	σ	=	standard	deviation.		

Feature	
HC	 HD	 PD	

μ	 σ	 μ	 σ	 μ	 σ	
VOT	 20,31	 4,48	 25,23	 5,13	 23,24	 4,89	
DDKR	 6,72	 0,74	 4,34	 1,48	 6,21	 0,90	
DDKG	 22,81	 11,91	 101,04	 68,31	 32,72	 16,99	
DDKW	 0,39	 0,04	 0,32	 0,09	 0,39	 0,05	
EFn_M	phonationI	 -34,96	 1,64	 -32,63	 2,47	 -34,61	 1,71	
EFn_SD	phonationI	 3,80	 0,87	 3,86	 1,14	 3,58	 0,99	
RA	rhythm	 2,38	 3,65	 -1,42	 11,74	 3,38	 2,94	
RI	rhythm	 5,95	 2,68	 18,71	 8,39	 7,47	 2,66	
DVA	phonationA	 0,00	 0,00	 3,18	 5,23	 0,01	 0,08	
MPT	phonationA	 14,80	 4,80	 6,99	 4,79	 13,14	 4,62	
stdF0	phonationA	 0,54	 0,71	 1,34	 1,25	 0,80	 1,17	
jitter	phonationA	 0,47	 0,20	 0,83	 1,32	 0,62	 0,64	
shimmer	phonationA	 2,21	 0,84	 3,56	 2,88	 2,56	 1,56	
HNR	phonationA	 21,14	 3,23	 17,09	 4,74	 19,39	 3,86	
pitchBreaks	
phonationA	 0,79	 2,27	 2,44	 5,72	 2,51	 9,19	

EST	text	 1,56	 0,01	 1,55	 0,01	 1,56	 0,01	
RST	text	 420,48	 48,81	 318,88	 63,89	 386,82	 60,39	
AST	text	 14,22	 13,30	 10,91	 13,71	 11,75	 12,57	
DPI	text	 139,51	 23,79	 231,35	 85,59	 157,42	 55,22	
DVI	text	 215,86	 29,92	 265,41	 47,92	 227,88	 37,17	
GVI	text	 63,66	 10,41	 53,43	 11,06	 58,22	 13,33	
DUS	text	 28,16	 7,93	 43,46	 10,99	 34,61	 13,49	
DUF	text	 -2,81	 2,70	 -1,28	 1,46	 -1,42	 2,34	
RFA	text	 10,72	 1,22	 9,95	 1,39	 9,87	 1,33	
RLR	text	 -22,18	 3,31	 -21,46	 4,44	 -23,42	 3,29	
PIR	text	 7,69	 2,99	 4,40	 1,49	 6,28	 2,19	
RSR	text	 16,30	 4,68	 19,97	 5,48	 18,51	 4,20	
LRE	text	 150,33	 86,78	 185,37	 103,29	 144,92	 63,33	
stdPWR	text	 3,32	 0,38	 3,49	 0,61	 3,05	 0,49	
stdF0	text	 2,67	 0,80	 2,07	 0,84	 1,65	 0,59	
NSR	text	 2,53	 0,32	 1,74	 0,40	 2,40	 0,32	
EST	monologue	 1,56	 0,01	 1,55	 0,02	 1,55	 0,02	
RST	monologue	 350,48	 62,33	 326,40	 76,46	 338,10	 49,43	
DPI	monologue	 185,42	 62,53	 234,06	 83,44	 205,91	 66,34	
DVI	monologue	 263,40	 38,13	 274,07	 74,36	 256,87	 41,73	
GVI	monologue	 52,48	 10,43	 51,68	 11,60	 47,96	 11,11	
DUS	monologue	 36,74	 13,85	 41,81	 12,13	 43,38	 16,65	
RFA	monologue	 9,01	 1,28	 8,52	 1,52	 8,77	 1,24	
RLR	monologue	 -20,49	 4,36	 -19,77	 4,99	 -22,64	 3,83	
PIR	monologue	 6,51	 4,17	 4,61	 2,27	 5,82	 2,96	
RSR	monologue	 15,04	 4,33	 18,94	 5,58	 16,01	 4,36	
LRE	monologue	 176,97	 92,18	 255,42	 147,79	 204,01	 86,46	
stdPWR	monologue	 3,86	 0,66	 4,18	 0,61	 3,57	 0,71	
stdF0	monologue	 2,25	 0,74	 2,37	 0,80	 1,59	 0,48	
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Abbreviations:	HNR	=	harmonic	noise	ratio		
	

Abbreviations:	RST	=	rate	of	speech	timing,	NSR	=	net	speech	rate	

			
Abbreviations:	RST	=	acceleration	of	speech	timing,	DPI	=	duration	of	
pause	timing			

Abbreviations:	PIR	=	pause	interval	per	respiration,	DPI	=	duration	of		
pause	timing			

	
	
	

The	 symptomatology	 of	 Parkinson's	 disease	 and	 Huntington's	 disease	 is	
heterogeneous	and	so	it	made	sense	to	check	for	accuracy	of	prediction	models	in	order	to	
find	the	best	combination	of	features	that	contribute	the	most	to	the	diagnosis	of	PD	and	HD.	
The	following	processes	of	cross-validation	and	classification	were	therefore	done	for	each	
combination	of	features	(total	number	of	combinations	=	2RR − 1).	
	
Because	 such	 a	 model	 is	 excessively	 complex	 due	 to	 a	 lot	 of	 descriptive	 features,	 all	
combinations	of	 features	were	 tested	 to	 select	 the	most	efficient	ones.	A	 technique	called	
Cross-validation	was	used	for	assessing	how	the	results	of		statistical	analysis	will	generalize	
to	an	 independent	data	 set	and	 to	 try	 to	 limit	 the	overfitting	problem,	which	may	 lead	 to	
outstanding	performance	on	the	trained	data,	but	poor	predictive	performance	in	new	data.	
Cross-validation	 methods	 split	 the	 sample	 into	 simulated	 training	 samples	 and	 testing	
samples.	
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Figure	5:	Flowchart	diagram	depicting	selections	of	features	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 	
	
	
	
	

The	model	was	then	trained	on	a	training	sample	and	evaluated	on	the	testing	sample.	
More	specifically	repeated	random	sub-sampling	validation	was	used	for	all	of	the	classifiers.	
The	dataset	was	randomly	shuffled	into	two	subsamples	where	one	subsample	was	retained	
as	a	validation	data	for	testing	(20%	of	data)	and	the	other	sample	was	used	as	training	data	
(80%	 of	 data).	 The	 two	 groups	 of	 data	 were	 put	 into	 an	 algorithm	 that	 implements	
classification.	 Naive	 Bayes	 classifier,	 k-nearest	 neighbour	 classifier,	 QDA,	 Decision	 tree	
classifier	and	Support	vector	machines	classifier	were	used	for	multi-class	classification.	For	
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k-nearest	 neighbour	 classifier,	 parameter	 k	 was	 set	 to	 5.	 For	 the	 Bayesian	 form	 of	 QDA	
classifier,	QDA	modelled	the	likelihood	of	each	class	as	a	Gaussian	distribution,	then	used	the	
posterior	distributions	to	estimate	the	class	for	a	given	test	point.	RBF	kernel	was	applied	in	
our	 SVM	 classifier	 to	 search	 for	 all	 feature	 combinations	 across	 acoustic	 features,	 which	
depended	on	parameters	gamma	and	C.		At	first,	the	model	was	trained	based	on	intuitively	
picked	gamma	(scale	from	0.5	to	2	with	iteration	step	0.5)	and	c	(scale	from	0.5	to	2	with	
iteration	step	0.5).	To	improve	the	accuracy	of	the	prediction	model,	 the	function	imagesc	
was	 used	 based	 on	 parameters	 c,	 gamma	 and	meanACC,	 where	 new	 gamma	 and	 c	 were	
visually	chosen	based	on	the	area	of	meanACC	for	the	best	combination.	Various	combination	
of	C	and	gamma	were	 tested	and	 for	value	c	=	3.7	and	gamma	=	1.5	we	received	the	best	
accuracy.	The	overall	classification	performance	of	the	SVM-based	model	was	computed	as	
the	average	percentage	of	correctly	classified	subjects	into	an	appropriate	group	through	all	
10	 iterations.	 For	 one-class	 classification	 we	 used	 Mixture	 of	 Gaussian,	 Parzen	 density	
estimation,	 k-nearest	 neighbor	 method,	 Support	 vector	 data	 description,	 Principal	
Component	Analysis	and	Self-organizing	map	classifiers.	For	SOM	classifier,	a	neighborhood	
function	is	defined	by	the	user.	We	used	the	defaults	in	the	SOM-tool	Matlab	toolbox,	i.e.	a	
Gaussian	neighborhood,	which	decreases	in	size	over	time.			
	
	 Each	classifier	created	a	prediction	model,	which	was	later	tested	on	the	test_data	set	
by	comparing	the	predicted	labels	to	the	actual	test_labels	of	the	test_data	set.	The	outcome	
of	a	comparison	between	predicted	labels	and	test_labels	was	marked	either	as	true	positive	
(TP),	 true	negative	 (TN),	 false	negative	 (FN)	or	 false	positive	 (FP).	 	We	had	 to	establish	a	
specific	metric	for	each	disease	separately	and	these	defined	measures	(TP,	TN,	FN	and	FP)	
represented	different	value.		
	 	
	 We	 defined	 a	 category	 of	 general	 dysarthria	 in	 order	 to	 examine	 characteristics	
shared	between	hypokinetic	and	hyperkinetic	dysarthria.	For	general	dysarthria,	a	variable	
true	positive	 referred	 to	HD	and	PD	correctly	 identified	as	dysarthria	 (HD	or	PD).	False	
positive	referred	to	HC	incorrectly	identified	as	PD	and	HC	incorrectly	identified	as	HD.	True	
negative	 referred	 to	HC	 correctly	 identified	 as	HC.	False	negative	 to	 PD	 and	HD	people	
incorrectly	identified	as	HC.	
	
	 A	category	of	hypokinetic	dysarthria	was	made	in	order	to	distinguish	hypokinetic	
and	non-hypokinetic	speech	pattern.	For	hypokinetic	dysarthria,	true	positive	referred	to	
PD	 identified	 as	 hypokinetic	 speech	 pattern.	 False	 positive	 referred	 to	 HC	 identified	 as	
hypokinetic	speech	pattern	and	HD	identified	as	hypokinetic	speech	pattern.	True	negative	
referred	 to	 HC	 identified	 as	 non-hypokinetic	 speech	 pattern	 and	 HD	 identified	 as	 non-
hypokinetic	 speech	 pattern.	False	 negative	 referred	 to	 PD	 incorrectly	 identified	 as	 non-
hypokinetic	speech	pattern.	
	
	 A	category	of	hyperkinetic	dysarthria	was	made	in	order	to	distinguish	hyperkinetic	
and	non-hyperkinetic	speech	pattern.	For	hyperkinetic	dysarthria,	true	positive	referred	to	
HD	 identified	 as	 hyperkinetic	 speech	 pattern.	False	positive	 referred	 to	HC	 identified	 as	
hyperkinetic	speech	pattern	and	PD	identified	as	hyperkinetic	speech	pattern.	True	negative	
referred	 to	 HC	 identified	 as	 non-hyperkinetic	 speech	 pattern	 and	 PD	 identified	 as	 non-
hyperkinetic	 speech	pattern.	False	negative	 referred	 to	HD	 incorrectly	 identified	as	non-
hyperkinetic	speech	pattern.	
	
	 From	these	new	variables,	the	positive	predictive	value,	accuracy,	sensitivity	and	f-
score	of	the	prediction	model	were	calculated.			
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Accuracy	in	classification	problems	is	the	number	of	correct	predictions	made	by	the	model	
over	all	kinds	predictions	made.	Calculation	of	the	accuracy	of	the	prediction	model	was	done	
by	using	this	formula:		
	

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	 d�²dX
d�²dX²³�²³X

	.	
	

Equation	17	

Precision	(also	called	positive	predictive	value)	is	a	measure	that	tells	us	what	proportion	of	
patients	that	were	diagnosed	as	having	disease	actually	had	the	disease.		The	calculation	was	
done	using	the	following	formula:	
	

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 = 	 �´wµ�v	k~	�v´�	tk¶y�y·�¶
�´wµ�v	k~	�v´�	tk¶y�y·�¶	²	�´wµ�v	k~	~u¸¶�	tk¶y�y·�¶

.	
	

Equation	18	

Precision	 shows	 us	 how	 accurate	 our	model	 is	 out	 of	 the	 predictive	 positive.	 It	 is	 a	 good	
measure	to	determine	when	the	costs	of	false	positive	are	high.		
	
Recall	(known	as	sensitivity)	referred	to	the	model's	ability	to	correctly	detect	patients	who	
do	have	the	dysarthria.	The	calculation	was	done	using	the	following	formula:	
	

𝑟𝑒𝑐𝑎𝑙𝑙	 = 	 �´wµ�v	k~	�v´�	tk¶y�y·�¶
�´wµ�v	k~	�v´�	tk¶y�y·�¶	²	�´wµ�v	k~	~u¸¶�		��¹u�y·�¶

	.	
	

Equation	19	

Recall	is	metric	to	use	for	selecting	our	best	model	when	there	is	a	high	cost	associated	with	
false	negative.	E.g.,	during	detection	of	general	dysarthria	amongst	patients,	 if	 the	patient	
with	 dysarthria	 goes	 through	 test	 and	 is	 predicted	 as	 not	 sick,	 this	 result	 will	 leave	
consequences	on	earlier	treatment	and	therefore	life	expectancy.	
		
F-score	 is	needed	to	seek	a	balance	between	precision	and	recall.	F-score	is	the	harmonic	
average	of	the	precision	and	recall,	where	F-score	reaches	its	best	value	at	1	and	worst	at	0.	
It	is	very	important	to	use	this	metric,	especially	when	there	is	an	uneven	class	distribution	
(a	large	number	of	true	negatives).	
	
The	calculation	was	done	using	this	formula:	
	

𝐹𝑠𝑐𝑜𝑟𝑒	 = 	2 ∙ tv�^y¶yk�	∙	v�^u¸¸
tv�^y¶yk�	²	v�^u¸¸

	.	 Equation	20	

	 Due	to	the	randomization	of	data	in	2-fold	cross-validation	process	the	2-fold	cross-
validation,	classification	and	calculation	of	accuracy	of	the	prediction	model	were	repeated	
15	times.	In	the	end,	mean	of	all	10	accuracies	was	determined	for	the	specific	combination	
of	features.	Finally,	mean	accuracies	of	each	combination	of	features	were	sorted	in	order	to	
get	the	best	mean	accuracy	for	the	specific	classifier.	It	was	also	possible	to	determine	which	
features	were	 the	most	 relevant	 for	 the	 identification	 of	 speakers.	 For	 each	 classifier,	we	
received	an	arithmetic	average	of	mean	accuracy,	mean	precision,	mean	recall	and	f-score	of	
3	best	combinations	of	features.
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 Results	
	
After	 feature	 selection	 process	 and	 with	 the	 process	 of	 repeated	 random	 sub-sampling	
validation	 cross-validation	 and	 classification	 of	 the	 prediction	 model,	 we	 received	 mean	
recalls,	mean	precisions	and	mean	accuracies	of	all	combinations.		
	
3.1 GENERAL	DYSARTHRIA	
3.1.1 Multi-class	and	one-class	comparison	
	
In	 table	3,	we	summarize	 the	results	of	each	classifier	 including	one-class	and	multi-class	
classifiers.	For	a	case	of	multi-class	classifiers,	the	highest	average	mean	accuracy	91,21%	
was	 reached	 with	 Naive	 Bayes	 classifier,	 closely	 behind	 it,	 was	 QDA	with	 average	 mean	
accuracy	90,16%.	Lowest	accuracy	was	reached	with	SVM	classifier	(average	mean	accuracy	
87,74%)	and	KNN	 (average	mean	accuracy	88,47%)	 classifier.	The	difference	of	 accuracy	
between	SVM	classifier	and	Naive	Bayes	classifier	is	not	significantly	large	and	overall	these	
multi-class	 classifiers	 showed	a	positive	outcome.	Furthermore,	 it	 is	 shown	 that	QDA	and	
Naive	Bayes	classifiers	reached	the	highest	percentage	of	recall,	which	means	that	model's	
ability	to	correctly	detect	patients	with	dysarthria	is	very	good,	that	all	is	supported	with	high	
precision	and	f-score	over	90%.	
	
	 Compared	to	the	results	of	multi-class	classifiers,	results	of	one-class	classifiers	were	
also	quite	impressive.	SOM	classifier	reached	82,84	%	and	PCA	had	the	highest	average	mean	
accuracy	83,91%.	For	both	of	these	classifiers,	 f-score	reached	a	similarly	high	value	as	 in	
case	of	multi-class	classifiers.	Similarly	to	the	results	of	multi-class	classifiers,	KNND	(74,93%	
average	mean	 accuracy)	 and	 SVDD	 (76,62%	 average	mean	 accuracy)	 showed	 the	 lowest	
average	mean	accuracy	for	one-class	classifiers	

3.1.2 Feature	selection	
	 	
Table	4	shows	the	best	combinations	of	features	for	each	multi-class	classifier	and	table	5	for	
each	one-class	classifier.	Despite	high	accuracy	not	all	of	these	features	were	represented	in	
all	classifiers.	Only	these	features	(DDKG,	RI	rhythm,	RFA	text,	PIR	text	and	stdF0	text)	have	
appeared	9	or	more	 times	 in	best	combinations,	which	 is	shown	 in	 table	5	 for	multi-class	
classifier.	In	comparison	with	multi-class	classifiers,	only	4	features	(DDKR,	DDKG,	RI	rhythm	
and	 DUS	 text)	 have	 appeared	 9	 or	 more	 times	 for	 one-class	 classifiers.	 Therefore,	 by	
observing	occurrences	 of	 features	 in	both	 classifiers,	we	 conclude	 that	 results	 showed	RI	
rhythm	and	DDKG	significant	features	in	the	process	of	diagnosis	of	patients	with	dysarthria.		

3.1.3 Reliability	of	classifiers	
	
The	accuracy	of	prediction	models	was	calculated	for	each	best	combination	of	features	from	
a	certain	classifier.	The	resulting	comparison	of	accuracies	of	each	prediction	model	is	shown	
in	table	6	for	multi-class	classifiers	and	table	7	for	one-class	classifiers.	We	observed	from	
table	6,	that	Naive	Bayes	was	one	of	the	most	reliable	for	multi-class	classifier	and	from	table	
7	that	SOM	was	most	reliable	for	the	case	of	the	one-class	classifier.	
	



	26		
	

Classifiers	 Accuracy	 Recall	 Precision	 F-score	

Multi-class	

SVM	 87,74%	 84,89%	 98,42%	 91,15%	

KNN	 88,47%	 83,78%	 98,41%	 90,51%	

QDA	 90,16%	 88,56%	 96,51%	 92,36%	

NAIVE	 91,21%	 88,33%	 99,61%	 93,63%	

TREE	 89,58%	 85,49%	 94,87%	 90,15%	

One-class	

KNND	 74,93%	 65,30%	 90,03%	 75,69%	

MOG	 80,71%	 92,99%	 94,36%	 93,67%	

PARZEN	 81,78%	 94,36%	 99,40%	 96,82%	

PCA	 83,91%	 100,00%	 81,68%	 89,91%	

SOM	 82,84%	 95,73%	 83,05%	 88,94%	

SVDD	 76,62%	 84,62%	 100,00%	 91,67%	
Table	3:	Accuracy,	recall,	precision	and	F-score	of	general	dysarthria	
Table	3	includes	5	classifiers	from	multi-class	classifiers	and	6	classifiers	from	one-class	classifiers.	Each	row	contains	one	classifier	
and	average	of	3	best	results	of	mean	accuracy	mean	recall,	mean-precision	and	mean	f-score	of	each	classifier.	

	
	
	
	
	

	 Features	

Classifiers	 VOT	
ddk	 DDKR	 DDKG	 RI	

rhythm	
RST	
text	

GVI	
text	

DUS	
text	

RFA	
text	

PIR	
text	

RSR	
text	

stdF0	
text	

SVM	
1	 0	 1	 1	 0	 1	 1	 1	 0	 1	 0	
1	 0	 0	 1	 0	 0	 1	 0	 0	 0	 1	
1	 0	 1	 1	 0	 0	 1	 1	 0	 1	 1	

KNN	
1	 0	 1	 1	 0	 0	 0	 0	 1	 0	 1	
1	 1	 0	 1	 1	 0	 0	 1	 1	 0	 1	
1	 0	 1	 1	 0	 1	 0	 1	 1	 0	 1	

QDA	
1	 0	 0	 1	 1	 0	 1	 1	 1	 0	 1	
0	 0	 0	 1	 0	 0	 0	 1	 1	 0	 1	
0	 0	 1	 1	 0	 0	 1	 1	 1	 1	 1	

NAIVE	
1	 1	 1	 1	 1	 0	 0	 1	 0	 0	 1	
0	 1	 1	 0	 0	 1	 1	 1	 1	 0	 1	
0	 0	 1	 1	 1	 0	 0	 0	 1	 1	 1	

TREE	
0	 0	 1	 1	 1	 1	 0	 0	 1	 0	 1	
0	 0	 1	 1	 0	 0	 0	 0	 1	 0	 1	
0	 0	 1	 1	 0	 1	 0	 0	 0	 1	 1	

Total	 8	 3	 11	 14	 5	 5	 6	 9	 10	 5	 14	
Table	4:	3	best	combinations	of	features	for	each	multi-class	classifier	
The	 best	 3	 combinations	 of	 features	 are	 listed	 in	 the	 column	 for	 each	multi-class	 classifier.	 They	 are	 represented	with	 specific	
features	in	table	4.	These	features	(VOT	ddk,	DDKR,	DDKG,	RI	rhythm,	RST	text,	GVI	text,	DUS	text,	RFA	text,	PIR	text,	RSR	text	and	
stdF0	text)	are	the	most	significant	in	the	process	of	determining	whether	the	patient	has	dysarthria	or	not.	Only	the	features	that	
have	appeared	in	the	best	combinations	9	or	more	times	were	chosen	
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	 Features	

Classifiers	 VOT	
ddk	 DDKR	 DDKG	 RI	

rhythm	
RST	
text	

GVI	
text	

DUS	
text	

RFA	
text	

PIR	
text	

RSR	
text	

stdF0	
text	

KNND	
0	 0	 1	 1	 0	 0	 1	 0	 1	 0	 1	
0	 1	 1	 1	 1	 0	 1	 1	 1	 0	 1	
0	 0	 1	 1	 1	 0	 0	 0	 0	 0	 0	

MOG	
0	 1	 0	 0	 0	 0	 1	 0	 0	 0	 0	
0	 0	 1	 1	 0	 0	 0	 0	 0	 0	 0	
0	 1	 1	 0	 0	 0	 1	 0	 0	 0	 0	

PARZEN	
0	 0	 1	 1	 0	 0	 0	 0	 0	 0	 0	
1	 1	 0	 1	 0	 0	 1	 0	 0	 0	 0	
0	 0	 1	 0	 0	 0	 1	 0	 0	 0	 0	

PCA	
0	 1	 1	 1	 0	 0	 1	 0	 1	 1	 0	
0	 1	 1	 1	 0	 0	 1	 1	 0	 1	 1	
1	 0	 1	 1	 0	 0	 1	 1	 1	 0	 0	

SOM	
1	 0	 1	 0	 0	 1	 1	 0	 0	 1	 1	
1	 1	 0	 1	 0	 0	 1	 1	 0	 0	 1	
0	 0	 1	 1	 0	 1	 1	 0	 0	 0	 0	

SVDD	
0	 1	 0	 1	 0	 0	 0	 0	 0	 0	 0	
0	 1	 0	 0	 0	 0	 0	 0	 0	 0	 1	
0	 0	 0	 0	 0	 0	 1	 1	 0	 0	 1	

Total	 4	 9	 12	 12	 2	 2	 13	 5	 4	 3	 7	
Table	5:	3	best	combinations	of	features	for	each	one-class	classifier	
The	best	3	combinations	of	features	are	listed	in	the	column	for	each	one-class	classifier.	They	are	represented	with	specific	features	
in	table	5.	These	features	(VOT	ddk,	DDKR,	DDKG,	RI	rhythm,	RST	text,	GVI	text,	DUS	text,	RFA	text,	PIR	text,	RSR	text	and	stdF0	text)	
are	 the	most	 significant	 in	 the	 process	 of	 determining	whether	 the	 patient	 has	 dysarthria	 or	 not.	 Only	 the	 features	 that	 have	
appeared	in	the	best	combinations	9	or	more	times	were	chosen.	
	

Classifiers	 QDA	 NAIVE	 TREE	 KNN	 SVM	
QDA	 86,3%	 77,5%	 69,4%	 72,5%	 71,3%	
NAIVE	 77,5%	 86,3%	 75,0%	 70,6%	 78,1%	
TREE	 64,4%	 61,3%	 78,1%	 73,1%	 63,1%	
KNN	 67,5%	 61,3%	 61,9%	 80,6%	 63,1%	
SVM	 66,5%	 67,0%	 66,0%	 70,5%	 84,5%	

Table	6:	Combination	of	the	multi-class	classifier	accuracy	for	the	best	combination	of	features	
Table	6	is	a	comparison	of	accuracies.	The	best	combination	of	features	for	each	classifier	was	tested	on	other	classifiers.		The	best	
accuracy	of	the	best	combination	of	features	of	each	classifier	corresponding	to	each	row	is	evaluated	in	each	column	for	specific	
classifier.	
	
	

	Classifiers	 KNND	 MOG	 PARZEN	 PCA	 SOM		 SVDD	
KNND	 75,20%	 66,40%	 69,33%	 71,73%	 69,07%	 66,93%	
MOG	 65,87%	 81,07%	 80,53%	 64,53%	 62,40%	 73,87%	

PARZEN	 69,07%	 77,33%	 82,67%	 58,93%	 63,47%	 78,67%	
PCA	 78,67%	 59,73%	 77,07%	 84,00%	 76,53%	 56,53%	
SOM	 76,80%	 66,40%	 75,20%	 77,07%	 82,93%	 77,07%	
SVDD	 48,00%	 75,47%	 61,87%	 48,00%	 48,00%	 77,33%	

Table	7:	Combination	of	the	one-class	classifier	accuracy	for	the	best	combination	of	features	
Table	7	is	a	comparison	of	accuracies.	The	best	combination	of	features	for	each	classifier	was	tested	on	other	classifiers.		The	best	
accuracy	of	the	best	combination	of	features	of	each	classifier	corresponding	to	each	row	is	evaluated	in	each	column	for	specific	
classifier.	
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3.2 HYPERKINETIC	DYSARTHRIA	
	
In	the	section	for	results	of	hyperkinetic	dysarthria,	we	determined	how	accurate	are	models	
in	process	of	distinguishing	HD	from	PD	and	HC.		

3.2.1 Multi-class	and	one-class	comparison	
	
Table	 8	 showed	 similar	 average	 mean	 accuracy	 amongst	 multi-class	 classifiers.	
Correspondingly	to	results	of	multi-class	classifiers	from	general	dysarthria	section,	models	
for	hyperkinetic	dysarthria	showed	in	general	high	average	mean	accuracy.	NAIVE	and	TREE	
reached	 the	 highest	 average	mean	 accuracy	 88,15%.	QDA	on	 the	 other	 hand	 reached	 the	
lowest	average	mean	accuracy	84,68%,	but	still	only	3,5%,	which	is	not	markedly	different.	
On	 the	 contrary,	 one-class	 classifiers	 showed	 poor	 performance.	 The	 results	 of	 one-class	
classifiers	were	not	consistent.	Highest	average	mean	accuracy	around	73,07%	was	reached	
with	SVDD	and	71,82%	average	mean	accuracy	with	PARZEN	classifiers.	However,	the	result	
of	mean	F-score	of	these	two	classifiers	showed	differences.	SVDD	had	82,90%	mean	F-score	
against	 only	 purely	 41,11%	 of	 mean	 F-score	 from	 PARZEN.	 PCA	 and	 SOM	 classifiers	
performed	poorly	with	barely	46%	average	mean	accuracy.		
	

3.2.2 Feature	selection	
	
In	summary,	from	presented	results	in	table	9	we	can	see	the	best	combinations	of	features	
for	each	multi-class	classifier	and	table	10	for	each	one-class	classifier.	Features	(DDKR,	RI	
rhythm,	PIR	text	and	stdF0	text)	have	appeared	9	or	more	times	in	best	combinations	for	
multi-class	classifier.	Features	(DDKR,	GVI	text,	RFA	text,	PIR	text,	RSR	text	and	stdf0	text)	
have	appeared	9	or	more	times	for	one-class	classifiers.	Thus,	features	DDKR,	PIR	and	stdF0	
text	were	most	significant	features	for	both	classifiers	in	the	process	of	separating	HD	
patients	from	healthy	patients	and	PD.	Even	though	these	features	were	most	significant,	
not	all	of	them	were	a	representative	feature	for	each	classifier,	e.g.	Feature	DDKR	was	not	
amongst	best	3	results	of	SVDD	classifier. 
	

3.2.3 Reliability	of	classifiers	
	
Comparison	 of	 the	 average	 mean	 accuracies	 of	 the	 prediction	 models	 based	 on	 each	
classifier's	best	combination	of	 features	 is	presented	in	table	11	for	multi-class	classifiers,	
respectively	 table	 12	 for	 one-class	 classifiers.	Despite	 the	 best	 result	 of	NAIVE	 and	TREE	
classifiers,	KNN	classifier	seemed	to	be	one	of	the	most	reliable	for	the	multi-class	classifier.	
SVDD	classifier	was	most	reliable	for	the	case	of	one-class	classifier.	But	as	mentioned	above,	
reliability	of	these	classifiers	was	low	due	to	their	inconsistency.		
	
	

3.3 HYPOKINETIC	DYSARTHRIA	
	
Similarly	to	hyperkinetic	dysarthria	part,	where	we	determined	how	accurate	are	models	in	
process	of	distinguishing	HD	from	PD	and	HC.	In	this	part,	we	evaluated	the	accuracy	and	the	
reliability	of	models	to	determine	how	well	these	classifiers	differentiated	PD	from	HC	and	
HD.		
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Classifiers	 Accuracy	 Recall	 Precision	 F-score	

Multi-class	

SVM	 86,14%	 61,25%	 89,02%	 72,57%	

KNN	 85,63%	 64,75%	 78,78%	 71,08%	

QDA	 84,68%	 68,75%	 74,99%	 71,73%	

NAIVE	 88,15%	 67,75%	 87,04%	 76,19%	

TREE	 88,15%	 67,75%	 85,23%	 75,49%	

One-class	

KNND	 55,73%	 53,65%	 30,28%	 38,71%	

MOG	 60,36%	 81,90%	 27,96%	 41,68%	

PARZEN	 71,82%	 82,54%	 27,37%	 41,11%	

PCA	 39,38%	 100,00%	 30,40%	 46,63%	

SOM	 39,20%	 98,10%	 29,71%	 45,61%	

SVDD	 73,07%	 70,79%	 100,00%	 82,90%	
Table	8:	Accuracy,	recall,	precision	and	F-score	of	hyperkinetic	dysarthria	
Table	8	includes	5	classifiers	from	multi-class	classifiers	and	6	classifiers	from	one-class	classifiers.	Each	row	contains	one	classifier	
and	average	of	3	best	results	of	mean	accuracy	mean	recall,	mean-precision	and	mean	f-score	of	each	classifier.	
	
	
	
	
	
	

	 Features	

Classifiers	 VOT	
ddk	 DDKR	 DDKG	 RI	

rhythm	
RST	
text	

GVI	
text	

DUS	
text	

RFA	
text	

PIR	
text	

RSR	
text	

stdF0	
text	

SVM	
1	 1	 0	 1	 0	 0	 0	 1	 1	 0	 1	
0	 1	 0	 1	 0	 0	 0	 1	 1	 0	 1	
1	 1	 1	 1	 0	 0	 0	 0	 1	 1	 1	

KNN	
0	 1	 0	 1	 0	 0	 0	 1	 0	 0	 1	
0	 0	 0	 1	 0	 0	 0	 0	 0	 0	 1	
1	 0	 1	 1	 0	 0	 0	 0	 1	 0	 1	

QDA	
1	 0	 0	 1	 1	 0	 1	 1	 1	 0	 1	
0	 1	 0	 1	 1	 0	 1	 1	 0	 1	 1	
0	 1	 0	 1	 0	 0	 0	 0	 0	 1	 1	

NAIVE	
1	 1	 1	 1	 1	 0	 0	 1	 0	 0	 1	
1	 1	 0	 1	 0	 1	 0	 0	 1	 0	 1	
1	 0	 1	 1	 0	 0	 1	 1	 1	 1	 1	

TREE	
0	 0	 1	 1	 0	 0	 0	 0	 1	 0	 1	
0	 1	 1	 1	 0	 0	 1	 0	 1	 1	 1	
0	 0	 1	 1	 0	 1	 0	 0	 0	 1	 1	

Total	 7	 9	 7	 15	 3	 2	 4	 7	 9	 6	 15	
Table	9:	3	best	combinations	of	features	for	each	multi-class	classifier	
The	best	3	combinations	of	features	are	listed	in	the	column	for	each	one-class	classifier.	They	are	represented	with	specific	features	
in	table	9.	These	features	(VOT	ddk,	DDKR,	DDKG,	RI	rhythm,	RST	text,	GVI	text,	DUS	text,	RFA	text,	PIR	text,	RSR	text	and	stdF0	text)	
are	 the	most	 significant	 in	 the	 process	 of	 determining	whether	 the	 patient	 has	 dysarthria	 or	 not.	 Only	 the	 features	 that	 have	
appeared	in	the	best	combinations	9	or	more	times	were	chosen.	
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	 Features	

Classifiers	 VOT	
ddk	 DDKR	 DDKG	 RI	

rhythm	
RST	
text	

GVI	
text	

DUS	
text	

RFA	
text	

PIR	
text	

RSR	
text	

stdF0	
text	

KNND	
0	 0	 0	 0	 0	 1	 0	 0	 1	 1	 1	
0	 1	 0	 0	 0	 1	 0	 1	 1	 1	 1	
1	 1	 0	 0	 0	 0	 0	 1	 0	 1	 0	

MOG	
1	 1	 1	 1	 0	 0	 0	 1	 1	 1	 1	
1	 1	 1	 1	 0	 1	 1	 1	 1	 1	 0	
1	 1	 1	 1	 0	 0	 1	 0	 0	 1	 1	

PARZEN	
1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 0	
1	 1	 1	 1	 0	 1	 1	 1	 1	 1	 1	
1	 1	 1	 1	 1	 0	 1	 1	 1	 1	 1	

PCA	
0	 1	 0	 0	 0	 1	 0	 0	 0	 0	 0	
0	 1	 0	 0	 0	 1	 0	 0	 0	 0	 1	
0	 1	 0	 0	 0	 0	 0	 0	 0	 1	 0	

SOM	
0	 0	 0	 0	 0	 0	 0	 1	 0	 0	 1	
0	 1	 0	 0	 0	 1	 0	 1	 0	 1	 0	
0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 1	

SVDD	
1	 0	 0	 0	 0	 1	 0	 1	 1	 0	 0	
1	 0	 0	 1	 0	 1	 0	 0	 1	 0	 0	
0	 0	 1	 0	 0	 0	 0	 1	 1	 1	 0	

Total	 9	 12	 7	 7	 2	 10	 5	 11	 10	 12	 9	
Table	10:	3	best	combinations	of	features	for	each	one-class	classifier	
The	best	3	combinations	of	features	are	listed	in	the	column	for	each	one-class	classifier.	They	are	represented	with	specific	features	
in	table	10.	These	features	(VOT	ddk,	DDKR,	DDKG,	RI	rhythm,	RST	text,	GVI	text,	DUS	text,	RFA	text,	PIR	text,	RSR	text	and	stdF0	
text)	are	the	most	significant	in	the	process	of	determining	whether	the	patient	has	dysarthria	or	not.	Only	the	features	that	have	
appeared	in	the	best	combinations	9	or	more	times	were	chosen.	
	

Classifiers	 QDA	 NAIVE	 TREE	 KNN	 SVM	
QDA	 86,89%	 83,28%	 79,76%	 78,50%	 81,23%	
NAIVE	 82,00%	 86,23%	 82,53%	 80,65%	 80,99%	
TREE	 81,81%	 81,29%	 85,03%	 82,28%	 81,67%	
KNN	 86,73%	 84,76%	 84,66%	 88,85%	 84,99%	
SVM	 82,70%	 83,63%	 81,03%	 83,47%	 89,55%	

Table	11:	Combinations	of	the	multi-class	classifier	accuracy	for	the	best	combination	of	features	
Table	11	is	a	comparison	of	accuracies.	The	best	combination	of	features	for	each	classifier	was	tested	on	other	classifiers.		The	best	
accuracy	of	the	best	combination	of	features	of	each	classifier	corresponding	to	each	row	is	evaluated	in	each	column	for	specific	
classifier.	
	
	Classifiers	 KNND	 MOG	 PARZEN	 PCA	 SOM		 SVDD	
KNND	 56,00%	 38,13%	 39,20%	 45,87%	 51,73%	 47,73%	
MOG	 39,47%	 61,07%	 35,47%	 33,07%	 40,27%	 40,27%	

PARZEN	 45,07%	 67,47%	 72,00%	 34,13%	 34,13%	 38,13%	
PCA	 33,60%	 17,33%	 14,93%	 39,47%	 37,07%	 32,53%	
SOM	 31,73%	 21,60%	 19,47%	 35,47%	 40,00%	 30,40%	
SVDD	 69,87%	 72,00%	 72,00%	 35,20%	 37,07%	 73,60%	

Table	12:	Combination	of	the	one-class	classifier	accuracy	of	the	best	combination	of	features	
Table	12	is	a	comparison	of	accuracies.	The	best	combination	of	features	for	each	classifier	was	tested	on	other	classifiers.		The	best	
accuracy	of	the	best	combination	of	features	of	each	classifier	corresponding	to	each	row	is	evaluated	in	each	column	for	specific	
classifier.	
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3.3.1 Multi-class	and	one-class	comparison	
	
Table	13	contains	average	mean	accuracies	of	multi-class	classifiers,	which	were	equally	very	
high.	These	classifiers	had	around	95%	average	mean	accuracy.	Likewise,	the	average	mean	
F-score	of	these	classifiers	also	corresponded	with	high	performance	up	to	97%.	Opposite	to	
that,	results	of	one-class	classifiers	in	table	13	showed	notably	lower	performance.	Compared	
to	other	one-class	classifiers,	just	a	few	one-class	like	SVDD	and	PARZEN	classifiers	are	able	
to	use	labelled	outliers	in	the	training	and	therefore	they	are	more	robust	against	outliers.	
Thus	PARZEN	(84,36%	average	mean	accuracy)	and	SVDD	(81,87%	average	mean	accuracy)	
classifiers	 showed	 the	highest	average	mean	accuracy.	Good	performance	of	PARZEN	and	
SVDD	classifier	underlies	also	high	average	mean	f-score	of	these	two	classifiers.		

3.3.2 Feature	selection	
	
Features	(DDKG,	RI	rhythm	and	RSR	text)	have	appeared	9	or	more	times	in	table	14	for	best	
combinations	of	multi-class	classifier.	Features	(DDKR,	DDKG,	RI	rhythm,	PIR	text,	RSR	text	
and	stdf0	text)	have	also	appeared	9	or	more	times	for	one-class	classifiers	in	table	14.	Thus,	
we	can	assert	that	DDKG,	RI	rhythm	and	RSR	text	are	most	significant	features	to	separate	PD	
from	healthy	patients	and	HD	patients.	

3.3.3 Reliability	of	classifiers	
	
Comparison	 of	 the	 average	 mean	 accuracies	 of	 the	 prediction	 models	 based	 on	 each	
classifier's	best	combination	of	features	is	presented	for	multi-class	classifiers	and	one-class	
classifiers	 in	 table	16	and	 table	17.	Regardless	of	 the	 good	performance	of	 all	multi-class	
classifiers,	 comparison	 of	 their	 average	 mean	 accuracies	 for	 each	 specific	 multi-class	
classifier	showed	that	KNN	is	a	most	reliable	classifier.	SVDD	classifier	was	most	reliable	for	
one-class	classifier	just	as	it	was	in	the	case	of	hyperkinetic	dysarthria.	SVDD	presents	low	
sensitivity	to	errors	in	values	of	features	and	outliers	and	thus	is	a	very	robust	method.	It	is	
also	comparatively	resistant	to	noise.	
	
	

Classifiers	 Accuracy	 Recall	 Precision	 F-score	

Multi-class	

SVM	 95,92%	 94,80%	 100,00%	 97,33%	

KNN	 94,57%	 89,20%	 100,00%	 94,29%	

QDA	 95,66%	 94,80%	 98,26%	 96,50%	

NAIVE	 95,81%	 93,60%	 97,61%	 95,56%	

TREE	 96,14%	 96,40%	 97,00%	 96,70%	

One-class	

KNND	 66,84%	 72,89%	 33,34%	 45,75%	

MOG	 73,69%	 97,78%	 37,63%	 54,34%	

PARZEN	 84,36%	 95,56%	 100,00%	 97,73%	

PCA	 51,11%	 100,00%	 27,84%	 43,55%	

SOM	 54,13%	 100,00%	 27,50%	 43,14%	

SVDD	 81,87%	 77,78%	 100,00%	 87,50%	
Table	13:	Accuracy,	recall,	precision	and	F-score	of	hypokinetic	dysarthria	
Table	13	includes	5	classifiers	from	multi-class	classifiers	and	6	classifiers	from	one-class	classifiers.	Each	row	contains	one	classifier	
and	average	of	3	best	results	of	mean	accuracy,	mean	recall,	mean-precision	and	mean	f-score	of	each	classifier.	
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	 Features	

Classifiers	 VOT	
ddk	 DDKR	 DDKG	 RI	

rhythm	
RST	
text	

GVI	
text	

DUS	
text	

RFA	
text	

PIR	
text	

RSR	
text	

stdF0	
text	

SVM	
1	 0	 0	 1	 1	 0	 0	 1	 0	 1	 0	
0	 1	 1	 1	 0	 0	 0	 1	 0	 0	 0	
1	 0	 0	 1	 1	 0	 0	 1	 0	 0	 0	

KNN	
1	 0	 1	 1	 1	 1	 0	 0	 1	 1	 1	
1	 0	 1	 1	 1	 1	 1	 0	 1	 1	 0	
0	 1	 1	 1	 0	 0	 0	 0	 0	 0	 0	

QDA	
0	 0	 1	 1	 1	 0	 0	 1	 0	 1	 1	
0	 0	 1	 1	 0	 0	 1	 1	 0	 1	 1	
0	 1	 1	 1	 1	 0	 0	 1	 0	 0	 1	

NAIVE	
1	 1	 1	 1	 0	 0	 0	 0	 0	 0	 1	
0	 1	 0	 1	 0	 0	 1	 0	 0	 1	 1	
0	 1	 1	 1	 1	 0	 0	 1	 1	 1	 0	

TREE	
0	 0	 1	 1	 1	 1	 0	 0	 1	 1	 1	
0	 1	 1	 1	 0	 0	 0	 0	 1	 0	 1	
0	 1	 1	 1	 0	 1	 0	 0	 1	 1	 0	

Total	 5	 8	 12	 15	 8	 4	 3	 7	 6	 9	 8	
Table	14:	3	best	combinations	of	features	for	each	multi-class	classifier	
The	best	3	combinations	of	features	are	listed	in	the	column	for	each	one-class	classifier.	They	are	represented	with	specific	features	
in	table	14.	These	features	(VOT	ddk,	DDKR,	DDKG,	RI	rhythm,	RST	text,	GVI	text,	DUS	text,	RFA	text,	PIR	text,	RSR	text	and	stdF0	
text)	are	the	most	significant	in	the	process	of	determining	whether	the	patient	has	dysarthria	or	not.	Only	the	features	that	have	
appeared	in	the	best	combinations	9	or	more	times	were	chosen.	
	
	
	

	 Features	

Classifiers	 VOT	
ddk	 DDKR	 DDKG	 RI	

rhythm	
RST	
text	

GVI	
text	

DUS	
text	

RFA	
text	

PIR	
text	

RSR	
text	

stdF0	
text	

KNND	
0	 0	 1	 1	 0	 0	 0	 0	 0	 1	 1	
0	 1	 0	 1	 0	 0	 0	 1	 1	 0	 1	
1	 0	 1	 0	 1	 1	 0	 1	 1	 0	 1	

MOG	
0	 1	 1	 1	 0	 0	 1	 1	 0	 1	 1	
1	 1	 1	 1	 0	 0	 0	 1	 0	 1	 0	
1	 0	 1	 1	 0	 0	 0	 0	 1	 1	 1	

PARZEN	
0	 1	 1	 1	 1	 1	 0	 0	 1	 1	 1	
1	 1	 1	 0	 1	 1	 0	 1	 1	 1	 0	
1	 1	 1	 1	 1	 1	 0	 0	 0	 1	 1	

PCA	
0	 1	 0	 1	 0	 1	 0	 0	 0	 0	 1	
1	 0	 0	 1	 0	 0	 0	 0	 0	 0	 1	
0	 0	 0	 1	 0	 0	 0	 1	 1	 1	 0	

SOM	
1	 0	 0	 1	 0	 0	 0	 0	 1	 0	 1	
1	 1	 1	 1	 0	 0	 0	 1	 0	 0	 0	
0	 0	 1	 1	 0	 0	 0	 0	 0	 0	 0	

SVDD	
0	 1	 1	 0	 0	 0	 0	 0	 0	 1	 1	
0	 0	 0	 0	 1	 0	 0	 1	 1	 0	 1	
0	 0	 0	 0	 1	 0	 0	 0	 1	 0	 1	

Total	 8	 9	 11	 13	 6	 5	 1	 8	 9	 9	 13	
Table	15:	3	best	combinations	of	features	for	each	one-class	classifier	
The	best	3	combinations	of	features	are	listed	in	the	column	for	each	one-class	classifier.	They	are	represented	with	specific	features	
in	table	15.	These	features	(VOT	ddk,	DDKR,	DDKG,	RI	rhythm,	RST	text,	GVI	text,	DUS	text,	RFA	text,	PIR	text,	RSR	text	and	stdF0	
text)	are	the	most	significant	in	the	process	of	determining	whether	the	patient	has	dysarthria	or	not.	Only	the	features	that	have	
appeared	in	the	best	combinations	9	or	more	times	were	chosen.	
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Classifiers	 QDA	 NAIVE	 TREE	 KNN	 SVM	
QDA	 96,78%	 86,15%	 92,70%	 95,18%	 88,57%	
NAIVE	 86,61%	 95,26%	 92,03%	 88,65%	 91,28%	
TREE	 89,58%	 91,58%	 95,98%	 90,96%	 91,48%	
KNN	 92,82%	 93,39%	 92,92%	 95,97%	 91,86%	
SVM	 86,26%	 90,84%	 88,97%	 91,44%	 96,40%	

Table	16:	Combination	of	the	classifier	accuracy	for	the	best	combination	of	features	
Table	16	is	a	comparison	of	accuracies.	The	best	combination	of	features	for	each	classifier	was	tested	on	other	classifiers.		The	best	
accuracy	of	the	best	combination	of	features	of	each	classifier	corresponding	to	each	row	is	evaluated	in	each	column	for	specific	
classifier.	
	
	
	
	
	Classifiers	 KNND	 MOG	 PARZEN	 PCA	 SOM		 SVDD	
KNND	 67,20%	 58,67%	 60,80%	 59,73%	 57,60%	 56,53%	
MOG	 56,80%	 74,13%	 57,07%	 49,07%	 60,27%	 49,33%	

PARZEN	 62,13%	 77,87%	 84,53%	 48,53%	 52,80%	 60,00%	
PCA	 46,93%	 39,73%	 41,07%	 51,20%	 48,00%	 31,73%	
SOM	 47,20%	 48,00%	 43,73%	 39,73%	 55,20%	 46,13%	
SVDD	 79,47%	 80,00%	 80,00%	 76,00%	 73,07%	 82,13%	

Table	17:	Combination	of	the	classifier	accuracy	of	the	best	combination	of	features	
Table	17	is	a	comparison	of	accuracies.	The	best	combination	of	features	for	each	classifier	was	tested	on	other	classifiers.		The	best	
accuracy	of	the	best	combination	of	features	of	each	classifier	corresponding	to	each	row	is	evaluated	in	each	column	for	specific	
classifier.
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 Discussion	
	
PD	 is	associated	with	motor	symptoms	and	non-motor	symptoms	 that	precede	 the	motor	
symptoms	by	more	than	a	decade	(Kalia	and	Lang	2015).	 	So,	the	early	diagnosis	of	PD	is	
largely	 dependent	 on	 various	 non-motor	 symptoms,	 speech	 impairment	 being	 one	 of	 the	
earliest	manifestations.	Machine	learning	could	rapidly	aid	this	process	of	detection	patients	
with	dysarthria	and	it	can	be	a	key	tool.	To	diagnose	the	diseases,	machine	learning	systems	
are	constructed	 from	data	set	of	healthy	and	unhealthy	patients.	Cases	chosen	for	disease	
prognosis	are	representative	of	different	disease	states.	With	the	use	of	common	multiclass	
classifiers	such	as	Naive	Bayes	(NB),	k-Nearest	Neighbors	(KNN),	Support	Vector	Machine	
classifiers	 (SVM),	 classification	 trees	 and	 Quadratic	 Discriminant	 Analysis	 (QDA)	 we	
evaluated	speech	patterns	of	dysarthrias.	We	also	evaluated	speech	patterns	using	one-class	
classifiers	 such	 as	 Mixture	 of	 Gaussians	 (MOG),	 Parzen	 density	 estimations	 (PARZEN),	
Principal	 component	 analysis	 (PCA),	 Self-organizing	 map	 (SOM),	 Support	 vector	 data	
descriptions	(SVDD)	and	K-nearest	neighbor	methods	(KNND).		
	

4.1 Performance	of	classifiers	
	
Results	in	a	category	of	general	dysarthria	showed	best	results	of	Naive	Bayes	classifier.	It	
makes	sense	since	the	features	are	independent	of	each	other	and	the	NB	does	not	need	many	
observations	to	perform	well.	Moreover,	Naive	Bayes	less	likely	overfit	the	training	data	that	
suffer	 from	 smaller	 a	 sample	 size.	 The	 reduction	 of	 features	 at	 the	 start	 and	 taking	 into	
account	the	correlations	amongst	the	features	may	have	contributed	to	the	accuracy	of	NB,	
since	the	performance	of	NB	greatly	improves	if	the	data	does	not	contain	highly	correlated	
features.	The	result	of	QDA	was	also	very	high	and	compared	to	NB,	QDA	learns	quadratic	
boundaries	and	is	therefore	more	flexible	to	use.	On	the	other	hand,	KNN	and	SVM	reached	
the	lowest	accuracy.		The	problem	with	KNN	might	be	because	one	category	occurred	more	
than	another.	In	our	case	there	were	more	HC	than	PD	and	HD	and	since	we	did	not	apply	any	
weight	to	the	more	common	category	it	might	have	affected	the	classifier's	accuracy	in	the	
end.	Lower	accuracy	of	SVM	can	be	explained	by	the	fact	that	the	accuracy	of	SVM	is	very	
sensitive	to	the	chosen	gamma	and	c	parameter.		
	
	 PCA	and	SOM	reached	comparable	results	to	the	results	of	multi-class	classifiers.	As	
mentioned,	both	these	classifiers	belong	to	reconstruction	methods,	where	a	model	is	chosen	
and	fitted	to	the	data	based	on	knowledge	of	the	data	and	it	makes	presumptions	about	the	
generating	process.	PCA	classifier	performed	well	due	to	the	presence	of	clear	linear	subspace	
of	data	and	this	method	is	not	so	sensitive	to	the	scaling	of	the	features.	For	the	case	of	SOM	
classifier,	the	learning	rule	was	adapted	to	also	repel	the	outlier	objects	and	therefore	this	
method	 indicated	 robustness	 to	 outliers	 in	 the	 training	 data,	 which	 derived	 in	 the	 good	
performance	of	the	model.		KNND	and	SVDD	similarly	to	KNN	and	SVM	showed	the	lowest	
accuracy.	 Both	 these	 classifiers	 are	 scale	 sensitive	 of	 the	 feature	 values.	 KNND	 uses	 the	
distance	in	the	evaluation	of	a	test	object	and	SVDD	by	the	use	of	a	Gaussian	kernel.	KNND	is	
also	 the	 least	 robust	 to	 noise.	 An	 outlier	 will	 cause	 a	 portion	 of	 the	 feature	 space	 to	 be	
acceptable.	In	the	case	of	KNDD	no	parameters	are	present	and	no	model	is	assumed.	And	so,	
this	method	depends	completely	on	the	training	set	and	its	distribution	of	features.		
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	 In	 the	 category	 of	 hyperkinetic	 and	 hypokinetic	 dysarthria,	 PARZEN	 and	 SVDD	
achieved	the	best	results.	PARZEN	method	has	an	advantage	when	there	is	a	small	sample	of	
size	of	features;	the	width	of	the	parameter	is	equal	for	all	directions	in	the	feature	space.	For	
lower	sample	sizes,	a	method	such	SVDD	directly	estimates	the	boundary	and	is	also	more	
preferred.	Recent	developments	from	the	field	of	statistical	learning	theory	have	shown	that	
kernel-based	methods	such	as	SVDD	are	suited	to	solve	machine	learning	problems	in	high	
dimensions	(Platt	et	al.	2001).	SVDD	estimates	the	support	of		distribution	by	identification	
of	 a	 region	 in	 input	 space	 by	 nonlinearly	 projecting	 the	 data	 into	 a	 feature	 space	 and	
separating	data	from	the	origin	as	a	margin	without	extra	computational	costs.		In	the	study	
of	outlier	detection	with	one-class	SVMs	(Dreiseitl	et	al.	2010),	where	the	findings	indicated	
that	 the	 classification	 via	 outlier	 detection	 using	 one-class	 SVM	 offered	 performance	
comparable	to	regular	classification	algorithms,	our	results	of	SVDD	showed	similar	outcome.				
	 	
4.2 Significant	features	
	
Previous	 studies	 (D'Alatri	 et	 al.	 2008)	 showed	 that	 PD	 patients	 have	 problems	 with	
articulation,	which	is	the	modification	of	the	position	and	shape	of	the	speech	organs	(e.g.,	
tongue)	 in	 the	 creation	 of	 sound.	 Diadochokinetic	 task	 is	 the	 most	 common	 method	 of	
evaluating	articulatory	skills,	and	our	results	showed	that	DDKG	in	the	category	of	general	
dysarthria	 has	 also	 been	 chosen	 as	 one	 of	 the	most	 significant	 features.	 Beside	DDKG,	RI	
rhythm	was	a	very	significant	feature.	Feature	RI	rhythm	is	associated	with	irregular	pace	
due	to	increased	speech	motor	control,	impaired	timing	or	discoordination.	Our	finding	on	RI	
rhythm	 as	 significant	 feature	 for	 detection	 of	 dysarthria	 is	 in	 general	 agreement	 with	
previous	researches	which	demonstrated	impairment	of	vocal	pace	stability	in	PD	and	HD	
(Skodda	et	al.	2012,	2014).		
	
	 In	accordance	with	the	majority	of	previous	studies	mentioned	in	the	introduction,	
the	characteristic	of	hyperkinetic	dysarthria	commonly	indicates	in	form	of	decreased	rate	of	
speech	 intervals,	 unpredictable	 articulatory	breakdown	and	phonatory	dysfunction.	Thus,	
features	DDKR,	PIR	and	stdF0	text,	which	were	most	dominant	for	both	classifiers	showed	as	
well	as	in	our	results	the	most	significant	features	in	the	process	of	separating	HD	patients	
from	HC	and	PD	patients.	The	standard	deviation	of	F0	(stdF0)	is	the	fundamental	frequency	
or	 pitch	 of	 vocal	 oscillations,	 which	 is	 one	 of	 the	 traditional	 features	 measured	 when	
examining	phonation.	HD	patients	are	generally	attributed	to	disruptions	of	phonation.		
	
	 Skodda	reported	impaired	steadiness	of	syllable	repetition	in	early	motor	stages	of	
PD	 (Skodda	2015),	 likewise	 that,	 our	 results	demonstrated	RI	 feature	as	one	of	 the	most	
significant	features	for	detection	of	hypokinetic	dysarthria	as	well	as	and	RSR	text	and	DDKG	
features.	As	mentioned	in	the	introduction,	speech	impairment	which	includes	respiration	
problems	has	been	found	to	be	one	of	the	earliest	manifestations	of	PD	(Postuma	et	al.	2012,	
Harel	et	al.	2004),	our	results	also	documented	that.	RSR,	which	is	one	of	respiration	feature,	
relates	 to	 the	 inefficiency	of	air-flow	management	during	speech	production	or	decreased	
control	of	respiratory	movements	and	is	therefore	a	very	important	feature	to	detect	patients	
with	PD.	
	
4.3 Clinical	practice	
	 	
In	this	thesis,	we	assessed	the	one-class	classification	methods	and	compared	their	reliability	
and	 accuracy	 with	 multi-class	 classification	 methods.	 On	 closer	 examination,	 the	 results	
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showed	 the	 satisfying	 performance	 of	 one-class	 classifiers,	 especially	 results	 of	 general	
dysarthria	detection	showed	 that	all	 classifiers	performed	well	 in	comparison	with	multi-
class	classifiers.	For	a	category	of	the	general	dysarthria	detection,	the	average	accuracy	of	
all	one-class	classifiers	is	80%	and	multi-class	classifiers	are	89%.	We	could	present	the	9%	
accuracy	difference	of	these	models	in	the	following	example.	In	the	general	population,	the	
prevalence	 of	 Parkinson’s	 disease	 is	 0,3%	which	means	 that	with	 the	 population	 of	 1,28	
million	in	Prague,	384	people	have	Parkinson’s	disease.	This	means	that	one-class	classifiers	
would	detect	correctly	307	out	of	384	cases	and	multi-class	classifiers	would	detect	343	out	
of	384	cases.	9%	accuracy	between	these	models	represents	36	misdetections.	The	question	
however	 is,	 if	 this	deviation	 is	considerable.	Multi-class	models	describe	data	with	similar	
attributes	better	than	one-class	models,	because	they	retrieve	additional	information	from	
the	other	class	and	by	that	they	minimalize	prediction	error.	However,	it	does	not	necessarily	
mean	that	they	describe	better	the	hypotheses	of	disease	development.	Important	is	how	to	
understand	 the	 interpretation	 of	 our	 results.	 One	 class-classifiers	 indicates	 whether	 a	
combination	of	features	is	abnormal	and	despite	the	occurrence	of	an	error,	results	could	be	
still	interpreted.	With	multi-class	classifiers,	we	receive	better	performance,	but	results	can	
be	elucidated	only	to	that	specific	disease.	It	is	worth	mentioning	that	hypokinesia	occurs	in	
HD	with	cognitive	dysfunction.	Hypokinesia	is	characterized	by	loss	of	muscle	movement	due	
to	disruption	in	the	basal	ganglia.	This	corresponds	with	PD	patients,	who	experience	muscle	
rigidity	and	inability	to	produce	movement.	Therefore,	the	overlap	of	results	and	error	rate	
is	not	completely	defective.	
	

High	 average	 mean	 recall,	 precision	 and	 f-score	 in	 results	 indicated	 reliable	
identification	of	healthy	patients	from	those	with	diseases.	The	results	of	these	metrics	would	
be	here	more	suitable	to	evaluate	our	models,	especially	taking	in	consideration	an	uneven	
class	distribution	of	our	data.	Average	recall	of	one-class	classifiers	was	approximately	89%,	
which	means	amongst	384	PD	subjects	from	the	previous	example,	342	of	them	would	be	
detected	 with	 PD.	 Given	 average	 precision	 of	 91%,	 we	 determined	 that	 311	 out	 of	 342	
detected	subjects	 truly	had	PD.	 	 In	comparison	with	 that,	multi-class	classifiers	with	86%	
recall	would	detect	330	patients	with	PD.	With	average	precision	97,5%,	it	would	mean	322	
out	of	330	patients	that	were	diagnosed	with	PD	actually	had	the	disease.	In	summary,	one-
class	model	would	detect	precisely	311	out	of	384	subjects	and	for	multi-class	model	it	would	
be	322	out	of	384	subjects.		
	

Chosen	significant	features	could	ultimately	help	to	focus	on	certain	tests	during	the	
examination	 of	 patients.	 The	 ANOVA1	 and	 Kruskal-Wallis	 tests	 showed	 the	 statistical	
significance	of	these	features	lower	than	5%	making	them	valid.	The	credibility	of	our	results	
could	have	been	improved	with	more	features,	more	cross-validation	repetitions	(with	better	
computer	performance)	and	more	patients	(bigger	data	scale	would	provide	more	data	for	
the	 prediction	models	 to	 learn	 from).	 	 Especially	 in	 case	 of	 SVM	 classifier,	more	 samples	
would	serve	potentially	as	support	vectors.	Nevertheless,	the	limitation	of	cross-validation	
could	arise.		Suppose	a	model	is	developed	to	predict	risk	for	being	diagnosed	with	dysarthria	
within	the	next	year.	 If	 the	model	 is	 trained	using	data	from	a	study	which	contain	only	a	
specific	 population	 group	 (e.g.	 old	 people	 or	 women)	 but	 is	 then	 applied	 to	 the	 general	
population,	the	cross-validation	results	from	the	training	set	could	vary	considerably	from	
the	actual	predictive	performance.	
	
	 It	 is	 important	 to	 remark	 that	 in	 one-class	 classifiers,	 the	 ability	 to	 learn	 the	 true	
characteristics	 of	 the	 data	 set	 in	 presence	 of	 noise	 or	 errors	 in	 the	 feature	 values	 is	
particularly	important.	Moreover,	the	number	of	parameters	determined	by	users	should	be	
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minimized.	We	should	take	into	consideration	the	possibilities	of	combining	several	one-class	
classifiers.	 It	 is	 well	 known	 that	 combining	 the	 results	 of	 conventional	 classifiers	 can	
significantly	 improve	 performance	 in	 conventional	 classification	 problems.	 Due	 to	 the	
different	nature	of	one-class	classifiers,	it	will	be	investigated	how	far	these	characteristics	
are	preserved	in	the	combination	of	one-class	classifiers.	Also,	the	computational	and	storage	
requirements	must	be	considered,	as	there	are	limiting	factors	of	usage	for	some	methods.	
The	feature	selection	helped	us	to	simplify	the	computation	and	as	well	the	whole	system	by	
allowing	one-class	classifiers	to	be	trained	on	the	represented	target	class.	Without	that,	the	
presence	of	noisy	samples	could	impact	classifier	performance	as	well	as	the	problem	with	
overfitting	and	the	curse	of	dimensionality	(Devijver	and	Kittler	1982,	Pudil	et	al.	1994).		
	
	 For	 all	 the	 reasons	 stated	 above,	 one-class	 classifiers	 can	 be	 very	 useful	 in	many	
biomedical,	clinical,	pathological,	or	biological	applications.	The	result	of	one-class	classifiers	
therefore,	showed	potential	utilization	in	clinical	practice.
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Appendix	A	
	
Content	of	CD	
	
	
/TEXT		 	 	 directory	contents	include	electronic	version	of		 thesis		
	 	 	 	 Bachelor.pdf	
	
	
/HELP		 	 	 includes	documentation	of	disk	content,	each		 	
	 	 	 	 directories	and	implemented	functions		 	 	
	 	 	 	 Documentation.pdf	
	
	
/METHOD	 	 	 contains	main	scripts		
	
	
/METHOD/prtools	 	 additional	toolbox	needed	for	one-class	classifiers	
	
	
/METHOD/dd_tools	 	 additional	toolbox	for	one-class	classifier		
	
	
/RESULT	 	 	 contains	results	of	one-class	and	multi-class	classifiers		
	 	 	 	 and	tables	of	best	features,	also	includes	scripts	for		
	 	 	 	 tables		
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