POSUDEK OPONENTA DIPLOMOVÉ PRÁCE

SLOVNÍ HODNOCENÍ

Autor DP: BC. JIŘÍ NÝČ

Název DP: ZAŘÍZENÍ PRO AUTOMATICKÉ SKENOVÁNÍ ZAKRIVENÝCH PLOCH PRO ULTRAZVUKOVÉ ZKOUŠENÍ MATERIÁLŮ

Oponent DP: ING. JAKUB HŮREJŠÍ

- Přístup studenta k řešené problematice

 Teoretická část diplomové práce se stručně, ale věcně správně zabývá základními principy ultrazvukové metody, a také vybrané NDT metody, která je součástí zadání. Následně rešerše má za cíl připravit technické podklady pro posouzení finálního řešení. Většina rešerše je zaměřena na robotické systémy, ale ve výsledku je vybráno řešení založené na principu manipulátoru. V této části bych očekával rešerší týkající se řízení manipulátorů a následné zevrubně porovnání obou principů s posouzením jejich výhod a nevýhod z pohledu ultrazvukové metody, konstrukce, složitosti výroby a výrobních nákladů. Přínosem těmto principům ultrazvukového testování je výsledku zvolen manipulátor pouze za metodou odrazovou, která neumožňuje použít průchodové metody, zatímco manipulátor pro metodou průchodovou by mohl pracovat i v režimu metody odrazové. Praktická část, týkající se konstrukčního návrhu je rozsáhlá a zaměřuje se na podstatné prvky, které je třeba u tohoto typu zařízení řešit.

- Zvolený postup řešení

- Dosažené výsledky, jejich přínos a praktické využití

 Navržené řešení manipulátoru lze využít jako koncept pro ultrazvukové testování odrazovou metodou velkých měrně zakrivených dílů. Vzhledem k zadání, kde je uveden požadavek na univerzální použití manipulátoru, by bylo přínosnější navrhnout manipulátor pro ultrazvukovou průchodovou metodou a roz pracovat koncept nakládání ultrazvukové hlavice ve dvou osách. Pro uvedení do praxe bude nutné odlehnout most, sjednotit výrobce pohonů, rozpracovat do detailu a přidat prvky jako je vana, vodní hospodářství, kabelové nosiče, připevnění elektro prvů a ochranných prvů.

- Grafické zpracování (úprava) a přehlednost práce

 Práce je logicky uspořádaná, uvedené tabulky a obrazová dokumentace je dostatečně vypovídající. V části, která je věnována konstrukčnímu návrhu je až zbytečně mnoho výpočtů, které by stačilo uvést pouze v příloze. Naproti tomu není vždy jasné, jak byly získány vstupní údaje (o hmotnostech) a jaké byly důvody volby výrobce vybraných komponent.
Připomínky k diplomové práci
- Práce obsahuje relativně malé množství chyb a překlepů.
- V práci chybí srovnání výhod a nevýhod robotických a CNC systémů.
- V části věnující se pohybové jednotce osy X je jednou počítáno s hmotností břemene 1300 kg a podruhé 2700 kg, aniž by bylo jasně vysvětleno, o jaká břemena se jedná.
- Životnost lineárního vedení osy X je velmi nízká, pouhých 478 hodin.
- Výkon motoru pro osu X je uveden jako pouhých 0,845 W. Zřejmě se jedná o překlep, vzhledem k vysokému točivému momentu motoru. Typové označení tohoto motoru podle katalogu fi. Siemens odpovídá jiným momentovým a výkonostním charakteristikám.
- Chybí zdůvodnění, proč bylo vybráno řešení čtveřice motorů pro osu X, jakým způsobem se sčítají jejich síly a jak by bylo řešeno následné řízení těchto motorů.
- Chybí alespoň zjednodušená analýza tuhosti celé soustavy v místě uchycení sond.

Otázky na studenta k zodpovězení u obhajoby
- Proč byla kvůli předepsát v ose X vybrána dvouice motorů a ne jiné řešení?
- Jakým způsobem je (by bylo) zajištěno krytí zařízení proti rozštěpující vodě?
- Jakým způsobem by bylo nejvhodnější zajištění bezpečnosti obsluhy?
- Jaký řídící systém by byl zvolen jako nejvhodnější pro řízení pohonů?

Závěrečné hodnocení
Jedná se o poměrně rozsáhlé těma zahrnující jak principy týkající se defektoskopie, rešení manipulačních systémů, tak návrh na realizaci zařízení. Práce poskytuje užitečné nápady, postupy a informace v oblasti manipulačních zařízení. Práce se mohla zaobírat detailnějším porovnáním manipulačních systémů a komplexním zdůvodněním vybraného řešení. Pro konstrukční návrh byla vybrána varianta, která není z hlediska defektoskopie dostatečně univerzální, naproti tomu leže toto řešení s malými úpravami využít pro další typ ultrazvukového skenování, pro konkrétní typ. Uvedených důvodů má i tato varianta potenciál pro uplatnění v praxi. Ve výsledku se jedná o práci, na jejímž základě by bylo možné s určitými úpravami rozpracovat do detailu funkční defektoskopické zařízení, což byl hlavní účel zadání.

Prohlášení:
Diplomová práce splňuje zadání a doporučuji ji k obhajobě.

Datum: 22.8.2018
Podpis oponenta

Kontakt na Oponenta:
ATG s.r.o.
Toužimská 771, Praha, 199 00
horejsi@atg.cz
POSUDEK OPONENTA DIPLOMOVÉ PRÁCE

NÁVRH KLASIFIKACE

Autor DP: BC. JIŘÍ NÝČ

Název DP: ZAŘÍZENÍ PRO AUTOMATICKÉ SKENOVÁNÍ ZAKRIVENÝCH PLOCH PRO ULTRA ZVUKOVÉ ZKOUŠENÍ MATERIÁLŮ

Opontent DP: ING. JAKUB HOŘEJŠÍ

NÁVRH KLASIFIKACE:

<table>
<thead>
<tr>
<th>Hlediska hodnocení</th>
<th>A (1) Výborně</th>
<th>B (1,5) Velmi dobré</th>
<th>C (2) Dobrě</th>
<th>D (2,5) Uspokojivě</th>
<th>E (3) Dostatečně</th>
<th>F (4) Nedostatečně</th>
</tr>
</thead>
<tbody>
<tr>
<td>Splnění požadavků a cílů</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odborné úroveň práce</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pracnost a variantnost řešení</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Úroveň seznámení se stavem problematiky</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uspešného a úpravy, jazykové zpracování</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diplomovou práci navrhuji klasifikovat známkou:

<table>
<thead>
<tr>
<th>A (1) Výborně</th>
<th>B (1,5) Velmi dobré</th>
<th>C (2) Dobrě</th>
<th>D (2,5) Uspokojivě</th>
<th>E (3) Dostatečně</th>
<th>F (4) Nedostatečně</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Datum: 22. 6. 2018
Podpíše opONENTA

1 Hodnocení označte X v příslušném políčku klasifikačního stupně.
2 Hodnocení odborné úrovni práce by mělo zohlednit i množství a vážnost chyb vyskytujících se v praxi.
3 Hodnocení pracnosti by mělo zohlednit podrobnost zpracování (např. konstrukční nebo výpočtové) vlastního řešení, více variant vlastního řešení nebo zpracování většího objemu naměřených dat.
4 Hodnocení úrovni seznámení se stavem problematiky by mělo zohlednit zaměření rešení na řešenou problematiku a využití tuzemské a zahraniční literatury a oveřených informačních zdrojů.
5 Hodnocení uspořádání a úpravy by mělo zohlednit logiku členění práce do kapitol, grafickou podobu a celkovou úpravu práce, množství pravopisných chyb a celkový styl vyjadřovacího projevu.
6 Výslednou klasifikací stanovíte jako aritmetický průměr hodnocení s přihlédnutím k celkové úrovni práce.