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Abstract 

This Master thesis focuses on the virtual design of powertrain components under 

consideration of construction space and NVH requirements. In the first part of the thesis an 

introduction of hybrid vehicles, half shafts and dual-mass flywheels can be found. Calculation 

for a half shaft and DMF design has been proceeded, both considering a given installation 

space. In the second part passenger specific operating conditions have been introduced and 

a 1D torsional MBS model has been created with characteristic properties of a hybrid 

vehicle.  The model has been used to perform a modal and time domain analysis of pertinent 

operating conditions, the results have been compared and evaluated. Finally the engine of 

the hybrid vehicle has been modified and an optimization for this alternative has been made 

to improve the dynamic behavior.   
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Half shaft, dual-mass flywheel, hybrid vehicle, NVH, operating conditions, 1D MBS, modal 
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Abbreviations and Nomenclature 

Abbreviation Unit Description 

� [] Amplitude 

���  All-wheel drive 

� ���� Width 

��	 ���� Synchronization ring backlash 


 ��� Spring index 

��
  Computer Aided Engineering 

�, � ��� diameter 

��/�� ��� External diameter/Radius 

��/�� ��� Internal diameter/Radius 

���  Dual-clutch transmission 

���  Dual mass flywheel 


�  Electric motor 

� ���� Frequency 

��  ��� Force acting on spring 

��� ��� Normal force 

���  Front-wheel drive 

� ������� Shear modulus 

��	 ���� Synchronization ring gap height 

�
   Hybrid electric vehicle 

!�
  Internal combustion engine 

" #$��� Frahm’s value  

% ��� Engine order 

&�  #$��� Inertia 

# ���'(��)� Torsional stiffness 

*+�  ��� Nominal spring length 

*,� ��� Solid spring length 

*-�  ��� Installation space length 
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.� ��� shaft length 

� �#$� mass 

�/ �#$� Vehicle mass on axle 

�01 ���� torque transmitted by the bow spring 

�23  Multibody simulation 

4 ��� Number of active coils 

45  ��� Number of coils 

� �  Noise Vibration Harshness 

62  Parallel hybrid arrangement with clutch between crankshaft 

and electric motor 

6�
   Plug-in hybrid electric vehicle  

', � ��� radius 

'/ ���� Gear tip radius 

���  Rear wheel drive 

3	 ������ shear stress 

� ���� Torsional moment 

85 ������ Torsional stress 

9 �'(�� Rotation angle 

9,� �'(�� Solid spring angle 

9-� �'(�� Installation space angle 

∆9 �'(�� Rotational difference 

; �'(�<�)� Angular velocity 

�5 ���=� Torsional section modulus 
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1. Introduction 

Vehicles and passenger cars are widely used all over the world and the amount of cars is 

rising rapidly each year. Because of that currently a high effort is being made to make 

vehicles in all branches of the industry more ecological. Demands on lower emissions but 

also costumer demands on the vehicle power and behavior are rising rapidly. This of course 

affects also the automotive industry and passenger cars. The main targets are lower fuel 

consumption, maintenance cost, but higher power and efficiency. At the same time, 

customers are searching for vehicles with low noise and comfortable riding ability making 

the task even more difficult. 

The current approach of many automotive companies is either electrification or the use of 

new technologies like for example fuel cells. With both technologies still some issues are 

connected. In case of electric vehicles it is mostly the distance which can be reached using 

energy from batteries only and the huge impact of temperature on it which still seems to be 

for most of the users insufficient. These are the main reasons why hybrid vehicles represent 

a common compromise between driving more ecologically while keeping the possibility to 

overcome long distance journeys. On the other hand it also means a new call for powertrain 

optimization. By adding more and more components necessary for electric driving, the NVH 

behavior of the powertrain and therefore of the whole vehicle changes too. The new mass 

distribution has to be taken into account to achieve optimal results regarding vibrations and 

noises of the vehicle body and chassis. Another consequence is the change of the available 

installation space and magnitude of stresses caused by the higher weight and component 

characteristics. All these parameters go hand by hand since due to higher stresses and NVH 

behavior some of the carrying components need to get stiffer, more loadable and durable, 

that being mainly accomplished by bigger size. Consequently the ideal ratio between size 

and durability is being searched to find an optimal solution for all parameters mentioned 

above and more.   

The aim of the present thesis is to create a calculation algorithm for half shafts and dual-

mass flywheels under consideration of the available construction space, stress and NVH 

requirements and its usage in a final DMF optimization for an engine with variable 

displacement. 

A research about half shafts and dual mass flywheels (DMF) will be made to show the 

current state of art and give some insight into the topic, to understand important 

parameters defining them. For the half shaft, the necessary basic equations for constructing 

its dimensions will be stated. Same will be made for a dual mass flywheel with respect to a 

given installation space whereby parameters of the later in the work presented vehicle will 

be used. DMFS are an important component used for optimizing NVH and are nowadays 

present in almost every passenger car. Comparison of the dynamic behavior with and 

without dual mass flywheel has been already made several times before which is why in this 
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thesis only the setting of the dual mass flywheel will be analyzed and its suitability 

evaluated. The modal behavior is a complex issue which can influence the vehicle in many 

ways and for that a compromise is searched to get the optimum in most of the operational 

states like start, idle drive, or part/full load drive. For both the side shaft and the DMS an 

algorithm will be compiled to make the dimensioning process faster and to get a quick 

overview on how the change of their parameters affect the whole system. 

A MBS model of a by the company IAV specified P2 plug-in hybrid powertrain with front 

wheel drive will be created and its modal analysis performed in SimulationX, which is a CAE-

Software for the simulation of physical-technical systems created on the basis of a discrete 

network approach. Based on this model, time domain analysis and the effect of powertrain 

components in comparison to operating conditions specific targets will be revealed. In the 

end of the work depending on the result, suggestions for optimization of the DMF for the 

same engine but with variable displacement will be made using the created DMF calculation 

file. 
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2. Powertrains – state of the art 

2.1. Hybrid vehicles 

Hybrid drives are more and more used due to some very easy facts: strict environmental 

regulations are being set in order to reduce harmful emissions and to keep the environment 

in future cleaner. Electric vehicles are still not at the right point to take over the market from 

regular internal combustion engine (ICE) vehicles. The main reason for it is the battery and 

its non-sufficiency for longer trips. Due to this many automotive companies started with the 

introduction of hybrid cars. While electric vehicles are limited in range because of the full 

battery drive, in hybrid vehicles with a second source in form e.g. of an internal combustion 

engine are the possibilities the same as in a conventional ICE vehicle. At the same time, less 

CO and CO2 emissions are being produced while driving. Even though both conventional ICE 

and electrical vehicles have similar well-to-wheel efficiency, many more factors like the 

specific and relevant toxic gas production has to be considered. The source of electrical 

power for charging the battery in hybrid-electric cars represents an important parameter, 

since the production of the electrical power differs from country to country. However some 

studies show, that the emissions of battery electric vehicles and hybrid vehicles in general 

have lower emissions than ICE vehicles even for countries with a large amount of coal based 

electricity production (1). This could be due to the better filtering possibilities of stationary 

coal power plants, where the final amount of pollutants in the waste gas is lower than from 

vehicles.  

For passenger cars emission restrictions are being made, in particular for bigger cities, where 

cars have to fulfill a certain emission limit to be able to enter the city or pass through it. This 

is made possible with hybrid electric, battery electric or fuel cell electric vehicles. 

To understand how energy can be saved in hybrid-electric vehicle (HEV), all the factors which 

have to be overcome at the wheels have to be kept in mind, but also inertia, power for 

accessories etc. play an important role. Most of the produced energy is lost through cylinder 

wall heat losses, exhaust gas losses or non-ideal burning of fuel. Today`s automobiles have a 

peak thermal efficiency around 35-45% depending whether it’s a diesel or gasoline engine  

(2). In normal operation the engine doesn’t stay in its ideal operating range and the average 

efficiency during driving is even lower, about 20-25% (3). In case of urban driving, losses due 

to braking and idling gain in importance.  

Besides the possibility of zero emission driving another advantage of HEVs is regenerative 

braking. Regenerative braking is basically the conversion of kinetic energy via a generator 

into electric energy, which is afterward stored into the battery.  

Drive cycles in conventional vehicles use many different torque-speed combinations, i.e. 

operating points whereas in hybrid vehicles the traction system is being controlled and 

optimum operating points are being chosen to lead to high efficiency and lower emissions. 
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The basic idea is to operate the ICE more efficiently including reduction of idle which can be 

achieved by the start/stop system used in many current vehicles. By using the electric drive 

of the HEV some losses can be reduced or avoided completely by using the battery to absorb 

some of the power of the ICE or replace it. This way the engine can be used only for 

operating points when it is most efficient. When comparing both based on a demanding 

driving cycle the main differences can be made visible. With HEV low efficiency points for the 

combustion engine can be avoided completely.  

In HEV part of the load can be taken up by the battery and the combustion engine can be 

downsized. In conventional vehicles, even though the engine does not always operate at 

peak load, it has to be dimensioned for worst case operating points. When using the battery 

the engine can be only build for continuous load making it smaller in size and weight. This 

likewise enables the possibility to operate the engine at higher fuel efficiency during most of 

the driving. 

One contra factor is the potential for higher weight. Although the fuel power-path 

components will be smaller in size, the total weight is often higher than when using only ICE 

because of the storage device, motors and other components. Electric devices tend to be 

efficient but often just for one-way energy flows. In many hybrids energy flows in both 

directions (from motor to wheels and opposite) leading to more noticeable losses. All 

components have to be picked carefully to retain the theoretical efficiency advantage often 

linked to electric vehicles.  

Nowadays many different types of hybrid vehicles have been presented, a view of them will 

be mentioned below. 

2.1.1. Definition and types of hybrid vehicles 

One of many versions of the definition of a hybrid vehicle is: 

“A hybrid vehicle is a vehicle with more than one power source” (4). 

Power sources can be electric machines, fuel cells, capacitors, flywheels or ICE. In a technical 

way generally the hybrid vehicle is a technology which indulges both mechanical and electric 

drive train. The mechanical drive contains a fuel tank, an ICE, gear box and transmission to 

the wheels. Similarly the electric drive consists of a battery, an electric motor and 

components for converting and adjusting the electrical power as well as power electronics 

for its control. In this thesis a hybrid with an ICE is being considered.  

Many different topologies of HEV are available, each with different fuel consumption, 

emission or performance characteristics. Hybrid vehicles can be classified as followed: 
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Series Hybrid 

This type of hybrid has no mechanical connection between the internal combustion engine 

and wheels, the engine serves as a propeller for the generator. Its principle is in Figure 2.1.1. 

The electricity produced from 

the generator can be than 

stored into the battery or 

directly used for driving the 

electric motor. An advantage of 

this arrangement is the fact that 

the engine can be operated with 

maximum efficiency, speed and 

torque can be chosen at any 

time. The battery can be charged independently on whether the car is driving or not. The ICE 

can be turned off when needed. On the other hand, energy produced by the ICE is being 

converted multiple times before driving the wheels. This results in a higher loss in system 

efficiency and higher cost. The motor has to be able to transmit peak power and the 

generator engine power. Both can be installed separately allowing a better weight 

distribution in vehicles. This is favorable in low floor buses.  

Parallel hybrid 

The main difference of the parallel hybrid compared to the serial hybrid is the possibility to 

drive the vehicle by using the internal combustion engine only (Figure 2.1.2). Wheels and ICE 

are connected mechanically. Thus some of the components needed in the serial hybrid are 

not necessary, resulting in an easier and cheaper system. Dimensioning of the drive 

components can be made more efficient, since the ICE can be constructed e.g. according to 

necessary maximum speed and the electric motor for city driving. It has a higher potential 

for achieving lower fuel consumption. The vehicle can be driven electrically while the ICE can 

charge the battery or is turned off; only by the internal combustion engine or both at the 

same time when peak power is being required. In some cases the electric motor is just used 

as a boost for driving. Different types of 

coupling between the motor and engine exist. 

Often used are planetary gears which can 

unite three power sources and hooks the 

engine and electric motor together and allows 

them to operate independently. Another 

possibility are in-wheel-electric motors. In this 

configuration electric motors are installed 

close to the driving wheels and are moving 

them through small drive shafts. The result is a 

very good responsiveness to accelerating demands and a better behavior during steering 

achieved by independent control of each driving wheel.  

 

Figure 2.1.1- Series hybrid transmission scheme 

Figure 2.1.2 - Parallel hybrid transmission scheme 
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Strigear hybrid 

In the strigear hybrid are the two layouts just merged together by adding a clutch between 

two electric machines, therefore advantages from both arrangements are being exploited. In 

operation the onboard system compares the losses from both concepts and the better 

solution is chosen. This however results in a bigger complexity of the whole system. Strigear 

is a shortcut of “sequentially run, triple gearbox connected engine/motor hybrid” and is 

sometimes referred to as combined hybrid. (5) 

Complex hybrid 

Complex hybrids cannot be classified into the above kinds because of its complex 

configuration. Two separate mechanical drives with a light transmission system are used. 

The generator and motor are both electric machines making it similar to the series-parallel 

hybrid. However the power flow is bi-directional in the motor unlike the unidirectional flow 

of the generator in series-parallel hybrids. The front wheels and back wheels can be 

powered by hybrid or electrical propulsion separately meaning high power flux flexibility.  

Other classification 

Another classification of hybrid vehicles is depending on the relevance of the power source: 

• Mild hybrid. Motors build in micro hybrids are usually not dimensioned for fully 

electric driving but for improving the power and efficiency of the engine when 

needed in certain drive situations. When braking or lowering the gear the battery is 

charged through the energy generated due to regenerative braking.  

• Full hybrid. If the power supplied from the motor is higher and fully electric driving is 

possible then is the speech of full hybrids. The size/performance of the motor is 

sufficient for propelling the vehicle by itself and thus all driving modes, i.e. electric, 

mechanic or the combination of both is possible.   

• Plug in hybrids (PHEV). Their difference from full hybrids is the possibility to charge 

the battery via the plug present in all typical households. They represent an 

intermediate between hybrids and electric vehicles.  

And in parallel hybrid a nomenclature specified by Daimler AG depending on the electric 

motor position (according to Figure 2.1.3) in the powertrain has settled (6): 

• P1. Powertrain with direct connection between crankshaft and electric-motor. 

Decoupling in electric driving modes is not possible and the engine is being dragged 

during all operating modes. The efficiency during electric driving is finite which is why 

this arrangement is used only in powertrains with low electric driving performance. 

• P2. A clutch between engine and electric motor is present. The engine can be 

decoupled during operation increasing the electric drive and recuperation efficiency.  

• P3. The electric motor is positioned at the output of the gearbox. The performance 

during electric driving and recuperation doesn’t have to be conducted through the 

transmission enabling a wider rotational speed range. 
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• P4. Engine and electric motor drive different axes. Since the driving forces are 

reunited through the road, the arrangement is also considered as parallel with the 

possibility of switching to 4-wheel drive being its main advantage. 

 

2.2. Half shaft and joint configurations 

In the previous sections the powertrain of a hybrid vehicle has been introduced. The 

arrangement of the powertrain depends on the gearbox position and a basic division is as 

followed: 

• Front-wheel drive (FWD) 

• Rear-wheel drive (RWD) 

• All-wheel drive (AWD) 

Depending on the placement of the gearbox and the driven axle, shafts with different types 

of joint are used to accomplish an optimal movement and torque transmission to the output 

shaft. Three types of drive shafts can be distinguished: 

• Hooke’s jointed (Figure 2.2.1) 

• Ball jointed 

• Pode jointed 

The gearbox can be positioned either in the front or in the back of the vehicle. In case of an 

opposed position, e.g. gearbox in the front and rear-wheel drive, a propeller shaft is needed 

to transmit the torque from the engine to the differential. They have to be strong and resist 

the twisting action of the driving torque. It must be also resilient to absorb torsional shocks 

und resist the tendency to sag by reason of its own weight for vibration occurs when the axis 

of the shaft does not coincide with the center of gravity. Since the axes of the rigid rods are 

usually inclined to each other, a need for joints has emerged. In propeller shafts universal 

joints are used for the transmission. 

Figure 2.1.3 - Parallel hybrid powertrain distinction depending on the EM position (6) 
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The shafts mentioned in the next sections are side shafts or also called half shafts used for 

transmitting the torque from the differential to the wheels and thus differ from the propeller 

shaft by the used joint. Large wheel movement due to suspension deflection and short 

distance between the road wheel and final drive housing cause big drive angles of the joints 

and variation of length of the shaft. Also vibrations have to be isolated. Each side shaft has 

two constant velocity joints. In case of rear-wheel drive is the shaft in the back connected to 

the fixed-final drive assembly and having independent rear suspension. The individual parts 

of the driveshaft system are shown in (7). 

2.2.1. Shaft joints 

Angular agility is necessary in powertrains. In case of drive shafts, e.g. for vehicle suspension, 

non-coaxial positioning of the differential input and gearbox output or vibrational 

deformation of the vehicle body have to be enabled. Joint types can be distinguished by 

their flexibility: 

• Torsionally elastic or rigid 

• Longitudinal displaceability or longitudinal rigidness  

• Uniform or non-uniform 

The basic joint types are listed below. 

Universal Joints 

Universal joints are flexible couplings between two shafts permitting an angle between 

them. They belong to the family of spherical crank mechanisms (8). The simplest and most 

common type is the Cardan joint (also named Hooke joint), which consists of two yokes 

connected by a cross shaped member called spider (Figure 2.2.2). A basic characteristic of 

the Cardan joint is the non-uniform motion transmission varying the angular-velocity ratio 

between input and output shaft cyclically. It can be eliminated by using two appropriately 

phased joints in series; however the angular velocity fluctuation of the intermediate shaft 

cannot be avoided. (9) The driving shaft and driven shaft have to have equal angles with 

 

Figure 2.2.1 - Hooke’s jointed shaft in a Z-configuration and diagrammatic representation of the system elements 
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respect to the intermediate shaft. Double Cardan shafts are used in rear-wheel drive vehicles 

as a propeller shaft.  

Another option is also the Double Cardan’s joint (Figure 2.2.2 – right) where two universal 

joints are mounted back to back with a center yoke which replaces the intermediate shaft 

and are depending on the configuration quasi-homokinetic or strictly homokinetic. Both are 

very complicated, thus many attempts to simplify the system have been made resulting in a 

variety of modifications, where the three most common types are the cross and roller, ball 

and trunnion joint. 

 

Constant Velocity (CV) Joints 

Constant-velocity joints (also homokinetic or CV joints) allow power transmission through a 

variable angle at constant rotational speed and without a significant increase in friction or 

clearance. Their main usage is in front wheel drive-vehicles but also in modern rear-wheel 

drive vehicles with independent rear suspension.  

Speed fluctuations caused by conventional u-joints are not a problem for rear-wheel drive 

shafts where they have to drive through small angles only. Much bigger angles have to be 

achieved in front-wheel drives due to steering and present velocity fluctuations can be a 

serious problem. The usage of u-joints would cause slippage, tire wear and hard steering. 

Constant velocity joints are designed to be used to connect the front axle shaft to the driving 

wheels. 

The main functions of the side shaft have been stated before and to meet the requirements 

is the basic operation of a CV joint as followed: 

• The outer joint is fixed and transfers rotating power from axle shaft to the hub 

assembly. 

• The inner joint is in most applications a plunge joint allowing the effective length of 

the side shaft to change due to suspension with as little friction as possible 

Examples for CV joints are: 

• Tracta Joint 

• Weiss Joint 

• Rzeppa CV Joint 

 

Figure 2.2.2–simple universal joint (left) and the double Cardan's joint concept (right) 
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• Tripod Joint 

• Thompson Coupling 

2.2.2. Side shaft for steer drive axles 

Side shafts for front-wheel drive axles are designed to transmit torque from the differential 

to the driven wheels of the front- and/or rear axle and enable movement of the suspensions 

and steering. To accomplish this it is built from three main components: CV joint on gearbox 

side, a connecting shaft and a joint on wheel side (7). The inner one as explained before is 

usually a plunged joint enabling the side shaft to follow the movement of the suspension. At 

the wheels are fixed ones.  

Their function can be divided (8): 

• Uniform transmission of torque and rotation 

• Ability to alter distance between driven unit and driving unit  

• Ability to alter angle between driven unit and driving unit  

To optimize vehicle behavior and emissions, today’s tendency in passenger cars is to 

downsize vehicle components and use lightweight construction and maintaining or 

increasing their performance. Even side shafts are affected and to minimize their weight, 

different construction types can be used. The shaft can be solid or hollow and even the hub-

connection can be modified.   

2.3. Dual-mass flywheel 

Vibrations are often the result of ignition induced rotational irregularities. As the engine 

reciprocates, different forces and torques are being exerted at each stage of the engine 

cycle. The highest torque amount occurs during the power stroke when the piston is pushed 

downwards by the expanding gas causing the crankshaft to rotate rapidly. Another 

inconvenience regarding the comfort are load change reactions provoked by fast 

acceleration and deceleration causing the powertrain to wind up itself and oscillate while 

damping slowly. Dual-mass flywheels (DMF) are used to minimize these phenomena in 

vehicles and are positively influencing the behavior of the entire powertrain (7). They consist 

of a primary side which is connected to the crankshaft of the engine and a secondary side, 

which forms the friction surface of the clutch. Attachment is ensured via a set of springs with 

a progressive stiffness meaning a soft behavior at smaller deflections and harder behavior at 

bigger deflections. It is operated overcritical and isolates the secondary side from the high-

frequency oscillations from the crankshaft (10).  

2.3.1. Function and properties 

Different configurations of DMF have been constructed to isolate the engine crankshaft from 

the gearbox. At engine idle and low engine speeds it helps reducing rattling sensitivity 

allowing driving also at low engine revolutions, whilst at cruising and starting/stopping it 

protects the gearbox from torsional shocks transmitted through the crankshaft from the 
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engine (7). With the DMF torsional oscillations can be almost completely isolated (11). Figure 

2.3.1 shows the angular velocity at the engine outcome and gearbox entry for a conventional 

system with torsional damper in the clutch disk (on the left) compared to a system with DMF 

(on the right). By selection of an appropriate damping, resonance can be avoided.  

 

This means also relieve for the transmission and crankshaft. The DMF eliminates almost 

completely high frequency oscillations resulting in the possibility to transmit a higher static 

torque for diesel engines. In conventional systems decrease of vibration is achieved by a 

heavy flywheel acting with its high moment of inertia against the vibrational and uneven 

movement of the crankshaft which can depending on its mass retard the engine’s response 

to transient requirements. It is placed between the engine and transmission. 

When using a system with a DMF, the mass of the conventional flywheel is separated into 

two flywheel masses. The secondary mass concerning its influence on the reaction force can 

be neglected due to its loose connection via torsion damper and roller bearings to the 

primary mass. Also the primary mass is significantly lighter than a conventional flywheel 

reducing crankshaft stress. 

Driving in a wider speed range is one of the most important properties of passenger vehicles. 

Because of it, the importance of modal analysis is tremendous since natural frequencies and 

their natural modes have to be taken into account. When reaching a natural frequency 

during a driving cycle great damage can be caused. Usage of DMF generally moves the 

natural frequency of the system to a lower engine revolution range where the vehicle is not 

operated and the given frequencies are reached only during start up.  

The dimensioning of the DMF always depends on the requirements of every individual 

vehicle and can only represent a compromise due to the variety of operating conditions and 

comfort specifications. The relevant operating points considered and drivetrain problems 

caused by it are: 

• Idle (gear rattle) 

• Drive/coast (gear rattle, boom) 

• Engine stop (gear rattle, clatter) 

• Tip-in and back-out (load changes, surging) 

 

Figure 2.3.1 – Effect of the DMF (12) 
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• Vehicle launch (judder, rattle, surging) 

• Engine start (durability, comfort) 

• Sub-idle speed resonance drive (durability) 

Usually the operating condition with the highest probability of occurrence is dispositive and 

the optimization of the DMF parameters have to be considered already during the concept 

phase. Simulation of the powertrain system is one of the important keys in the design 

process and many additional requirements have to be achieved in order to reach the already 

mentioned targets.  

2.3.2. Types of Flywheels 

The most basic division of flywheels can be done in the following manner: 

• Standard Flywheel 

• Dual Mass flywheel 

A standard flywheel is the type of system mentioned in the previous section. It consists only 

of one heavy disk connected to the end of the crankshaft or engine. Besides providing 

weight for smoothing out the ‘pulses’ created by the pistons it generally has a gear around 

its circumference on which the starter motor operates and is a convenient way of attaching 

the clutch.  

All the rest description and main subject is the dual-mass flywheel. These can be further 

divided into: 

• Conventional Dual Mass Flywheel 

• Planetary Dual Mass Flywheel 

The conventional DMF consists of the primary and secondary flywheel as well as a series of 

torsion springs and cushions.  A friction ring is located between the inner and outer flywheel 

allowing them to slip. It alleviates damage to the transmission when torque loads exceed the 

vehicle rating of the transmission. It includes the clutch with pressure plate and friction disk. 

Planetary DMFs are designed for engines with stronger vibrations in the lower speed range 

and have an integrated planetary gear. The result is greater driving, shifting comfort and 

reduced fuel consumption because of the possibility of lower idling speed. For this purpose 

the flywheel masses are linked via gears. When high torsional spikes occur, the two elements 

move in relation to each other. This is limited by the compression springs on the 

circumference. Multi-stage characteristic can be achieved by usage off springs with different 

stiffness. 
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Besides the spring arrangement different spring types and construction variations are 

possible. Mostly used in DMFs are two main outer arc springs build in semicircular. However 

since new technologies for the reduction of friction forces acting on the guides in the spring 

channel appeared, also sliding shoes mounted between the coils have been added. Another 

possibility is the sequence of in parallel arranged multiple compression springs with a plastic 

element in between for keeping them apart. Extra improvement during acceleration is 

achieved thanks to inner springs which are in some cases of newer versions of the DMF 

being replaced by a rotational speed adaptive vibration absorber (centrifugal pendulum). 

The main subject of this thesis is the conventional Dual Mass Flywheel with arc springs. A 

description of the components will be made further. 

2.3.3. DMF components (12) 

Typical components of a standard DMF are visible in Figure 2.3.3: 

 

 

Figure 2.3.3- Components of a standard DMF 

 

Figure 2.3.2 – Planetary DMF (12) 
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Primary flywheel disc 

The primary disc is connected to the crankshaft of the engine and creates with its mass a 

unit. It is lighter compared to conventional flywheels and reduces therefore the load acting 

on the crankshaft. A starter ring gear is positioned on it for engine starting. The primary 

mass with the primary cover form the arc spring channel and is generally split into two 

sections which are separated by the spring stops.  

Secondary flywheel disc 

The secondary mass forms the connecting point to the transmission side of the powertrain. 

Transmission of torque between the primary and secondary flywheel disc is realized with a 

flange. When the primary disc is being moved, the springs inside are being compressed due 

to the spring stops between them. The flange also has two ‘wings’ positioned in between the 

springs and as a result being is moved by the springs. The primary and secondary mass can 

move independently relative to each other in tangential movements. Together with the 

clutch, modulated torque is transmitted where the clutch is the power output. A spring 

mechanism presses the clutch disk toward the friction surfaces of the secondary flywheel 

disc. 

Bearings 

Bearings are a connection between two rotating masses. Their main task is usually the 

absorption of weight related radial and -axial forces generated by the release force when 

disengaging. 

Either ball bearings or plain bearings can be used. Additional components are necessary 

because of the constantly rising demands on the rotary vibration damping increasing the 

construction space leading to a reduction of the bearing diameter. Plain bearings take less 

space and have a simpler design but have bigger demands on the oil supply.  

Flange 

Torque transmission from the primary to the secondary flywheel is realized with the flange. 

It is tightly riveted with the secondary mass with its wings seated between the spring 

channels of the primary mass. The flange can be rigid as one piece or with an internal 

damper. As already mentioned centrifugal force acts on the arc spring at high engine speed 

pressing them against the guides and disabling the coils. Due to this the stiffness increases 

and spring action is lost. 
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To avoid this effect straight pressure springs are mounted within the flange and are subject 

to lower centrifugal force because of their smaller mass and mounting radius. Consequently 

lower friction and therefore independence on the engine speed is ensured. They help 

reducing vibration during acceleration and are visible in Figure 2.3.4 (right).  

The flange can be also designed as a diaphragm spring and pre-tensioned by two retaining 

plates with a thin friction lining. Load on the flange wings occurring at sudden load changes 

can be with this construction minimized.  

Arc springs 

An arc spring with a large number of coils is fitted in a semicircular position in the arc spring 

guides. In this guide friction is generated during operation causing damping. Varying the 

guides shape can reduce friction which leaded to the construction of several sliding shoe 

types. Either the standard arrangement with two semicircular bow springs can be used with 

sliding shoes between the windings in certain distances, or instead of a bow spring, multiple 

straight springs can be used with bigger sliding shoes keeping them apart from each other. 

For this case a combination of springs with different stiffness’s can be mounted.   

 

Figure 2.3.4- DMF with straight pressure springs on the outer (both) and inter radius (inner damper-right) 
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In case of using the bow (arc) spring various designs with different characteristics are 

available: 

• Single-stage springs 

• Two-stage springs – parallel or in-line arrangement 

• Three-stage arc spring 

 

Standard springs are called one-stage springs in parallel. The outer and inner spring are 

almost of the same length and connected in parallel according to Figure 2.3.5–left picture. 

Their individual characteristic curves are forming the characteristic curve of the spring pair. 

Similar is the two-stage spring in parallel type. In this case there are two springs, one inside 

the other (in the middle of Figure 2.3.5). The internal spring is shorter and therefore acts in 

cases of bigger deflection. The external spring is generally adjusted to the requirements at 

engine start-ups and has lower stiffness. When the applied torque rises, in ‚second stage‘, 

the second internal spring is engaged and works together in parallel with the external spring. 

How the springs deflect for a two-stage DMF is presented Figure 2.3.6 and Figure 2.3.7. The 

two springs are drawn side by side for demonstration although in reality the 2nd spring (red) 

is placed inside of the 1st spring (yellow). In Figure 2.3.6 the DMF is in its initial position and 

no torque acts on spring 1 (yellow). When torque is applied spring 1 starts to deflect until 

stage 1 torque is reached. The stiffness for this deflection is only given by spring 1. In Figure 

2.3.7 stage 1 torque is reached and spring 1 and 2 have the same length. After increasing the 

applied torque spring 2 starts to deflect too and due to the parallel arrangement, the final 

stiffness is: 

#� = #�?@�-A) + #�?@�-A� (1) 

Where #�?@�-A) is the stiffness of spring 1 and #�?@�-A� the stiffness of spring 2. 

 

Figure 2.3.5 - From left: single-stage, two-stage and three-stage arc spring 
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The last type is the three-phase bent spring consisting of one outer and two inner springs, 

the inner ones connected in-line (Figure 2.3.5 - right). Springs with different stiffness’ are 

utilized ensuring together with the parallel and series connection an optimal torsional 

compensation for each torque value. Its principal is similar as for the two stage spring. In 

stage 1 acts only spring 1. After reaching stage 1 torque, spring 2 and 3 start to deflect. With 

stage 2 torque, spring 2 reaches its solid length. Therefore, in stage 3, spring 1 and 3 act 

together till the end stop is reached (all springs reach their solid length). 

  

 

Figure 2.3.6 – Initial position - Torque starts to act on the DMF -> spring 1 (yellow) starts to deflect 

 

Figure 2.3.7 - Stage 1 torque reached -> spring 1 (yellow) has same length as spring 2 (red), when torque increases 

spring 1 and 2 start to deflect equally 
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3. Component dimensioning 

The dimensioning conducted in this chapter is provisional to give an insight into the Excel 

calculation tools created by the author. For the half shafts only a gross concept for 

computation will be introduced since for half shafts and half shaft joints FEM analysis being 

based on the presumed cyclic load, which will be known after simulation, would be 

necessary. For the DMF, design values of the analyzed P2-hybrid vehicle will be used to show 

the calculation process and later in this work the file will be utilized again for optimization.  

3.1. Half shaft design and dimensioning 

3.1.1. Requirements 

Half shafts are systems, which transmit torque from the differential to the wheels and at the 

same time mobility has to be ensured. 

Basic requirements of side shafts are the transmission of the torque with a very high 

efficiency and constant gear ratio, long service life, operation with low or no maintenance 

and a low moment of inertia. On the front axle steering angles up to 52° have to be 

overcome leading to high stresses in normal operation. The working angles of the rear axis 

are usually smaller and limited by the self-steering angles of the suspension (7). To obtain a 

high lifespan, temperatures between -40° and 120°C have to be withstood. They can reach 

up to 2600 rpm. The joints are usually protected from impurities with an elastic plastic piece 

for covering them and also for keeping the grease inside the joint space. Dimensioning is 

made for permanent durability with consideration of peak loads. 

Important parameters influencing the drive shaft design are: 

• Length 

• Outer diameter maximum 

• Rotational speed maximum 

• Ultimate strength requirements at different temperatures 

• Desired torsional stiffness 

• Fatigue/lifecycle requirements 

• Attachment type front and rear, used joints 

• NVH issues of the system – frequency problem concerns, sound or resonance 

vibration problems, etc.  

• Torque spikes during use 

• Environmental challenges 

The final stiffness of the shaft also has to be mentioned. A shaft with very high torsional 

stiffness can apply shock loads back to the gearbox and engine. On the other hand low 

stiffness can cause the shafts natural frequency to lie in an improper speed range. Because 

of that it is important to keep the shaft diameter at reasonable values.  
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3.1.2. Stress analysis 

Friction between road and tires, axial force due to cornering acting as pulling/pressure force 

and reaction force from the road act on the wheels. Besides them also shocks which are 

transmitted due to road surface irregularities have to be absorbed by the upright bearing 

and steering facilitated. (13) 

The suspension used in vehicles eliminates this bending moment and tension/compression 

and only the torsional stress due to driving torque and has to be transmitted by the side 

shaft. (14) 

3.1.3. Calculation 

An easy example of side shaft designing will be inducted. The following simplified example 

calculation for a FWD shaft accounts only for stress caused by torsion which is also the main 

strain acting on the shaft. For solid shafts with a circular cross-section the torsional section 

modulus is: 

�5 = C�=16  
(3.1.1) 

And the torsional stress: 

85 = ��5 F 85/GG  (3.1.2) 

Where 85/GG  is the allowed torsional stress and � the on the shaft applied torque. For hollow 

shafts is the torsional resistance: 

�5 = CH�/I � ��IJ16�/ = C�/=H1 � #IJ16  
(3.1.3) 

# = KLKM is the diameter ratio. The diameter can then be calculated for the solid shaft as: 

� N O 16 ∗ �C ∗ 85/GG
Q

 

(3.1.4) 

The torsional moment � transmitted from the differential and acting on the side shaft can be 

calculated from the maximum torque given from the engine parameters. Because of the 

possibility of extreme situations a factor of safety is included in the formula: 

� = 12 ∗ ��R/S ∗ #K ∗ TA ∗ TU ∗ V? 
(3.1.5) 

Where ��R/S is the maximum engine torque, TA the gearbox ratio and TU the final drive ratio. 

Half of the engine torque is considered in equation (3.1.5) because of the symmetrical 

torque division at the differential. #K is a dynamic factor used for accounting dynamic 

processes and depends on the DMF setting, VWis the transmission efficiency.  
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When a change in stiffness is necessary and the diameter of the shaft has to be changed, the 

above mentioned equations can be used to check the shaft against failure.  

3.2. DMF Dimensioning 

3.2.1. Key Parameters 

Rotational irregularities can be reduced with rising flywheel moment of inertia. The DMF 

makes it possible to obtain vibrational isolation while using lower mass. The two masses 

serially are linked with a spring-damper system with different characteristics. If the spring 

units are adjusted for a soft behavior, the resonance frequency can be lowered to a level 

beneath the idle speed.  

The spring rate decreases with increasing spring diameter �R and increasing amount of 

spring coils 4.  

# = � ∗ �I8 ∗ �R= ∗ 4 
(3.2.1) 

To put this property into practice the spring has been moved more outward, i.e. on a bigger 

radius to ensure more installation space and the possibility to use bigger spring diameters. 

Effects of this action can be showed by the force resulting from the moment transmitted by 

the bow spring: 

�1 = #5 ∗ ∆9 (3.2.2) 

��) = �1' sinH9+ � ∆9J = #' ∆9 ∗ sin	H9+ � ∆9J (3.2.3) 

Where �1 is the torque acting on the arc spring, #5 the torsional stiffness, �� the related 

radial force (Figure 3.2.1 – right), ∆9 the deflection angle and 9+ the initial spring angle. The 

characteristic damping behavior of the DMF is strongly influenced by Coulomb’s friction. It 

has partly a revolution- and frequency dependent damping and on the other hand a 

constant damping evocating a basic hysteresis. The basic attrition is composed by seal-, 

bearing friction and friction of the integrated discs. Dominant friction forces are caused by 

the contact between the bow spring coils and the spring guides. The line of action of the 

spring forces are not identical due to the bow shape of the spring. Radial forces arise in 

every coil with which the bow spring leans on the guides. (15) 
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One part of the radial force is caused by the tangential spring force called redirection force 

and can be calculated according to equation (3.2.3). An example for its formation is visible in 

Figure 3.2.1 - left. 

 

The second part are the with rotational speed increasing centrifugal forces (���). As 

mentioned before they dominate the redirection force from a certain angular velocity: 

��� = � ∗ ;� ∗ ' (3.2.4) 

Where � is the spring weight and ; the DMF angular velocity. Both forces developing at 

loading and relief have a damping effect on the system and increase with higher twisting 

angles. Thanks to this damping effect, jerking oscillations during load changes can be 

filtered.  

 

Figure 3.2.1 – Radial forces acting on the spring guides (left) (16) and forces acting on spring coils and absorption areas 

(WFP) (right) 
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An increasing twist angle ∆9 also means an increasing radial force, visible in 

Figure 3.2.1 – Radial forces acting on the spring guides (left)  due to deflection, but at the 

same time, the angle between the bow spring endings 9+ � ∆9 decreases. Increasing 

friction in turn results in a bigger hysteresis area. This effect is visible in Figure 3.2.2.  

 

At low rotational speed friction is low, but with an increasing twist angle the hysteresis gets 

wider. At higher rotational speed a higher torque is necessary to move the spring in the 

guide and just a part of the windings will be moved. This is an explanation for the steepness 

of the curves representing the spring behavior at higher speed. In this case it is also not 

possible for the spring to unwind, thus the spring effect shows again after a certain twist 

angle when decompressing. The friction µ can be influenced by using a lubricant or sliding 

shoes influencing the spring damper characteristics.  

When searching the ideal combination between spring stiffness and damping behavior a few 

more factors have to be considered. Forces acting on the spring are also causing shear 

stresses in the wire which have to be calculated to ascertain, that the spring is able to 

transmit the load. The main parameter adding to the spring strength is the wire diameter. 

Besides adding strength it also influences together with the number of coils, spring length 

and material the final spring stiffness.  

3.2.2. Design conditions 

For this thesis, dimensioning of a dual-mass flywheel considering the construction space 

shall be performed. Important parameters and their calculation have been acknowledged. 

The operating modes of interest have also been mentioned earlier. For choosing the basic 

spring parameters, the torsion damper requirements have to be stated first. These are listed 

in Table 3.2-1. 

 

Figure 3.2.2 –Torsion at different engine speeds (16) 
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Table 3.2-1 – Torsion damper requirements 

Operating mode Problem Excitation 

Frequency 

Vibration 

Angle  

Spring rate Damping 

Idle, drive, coast Noise High Low Low Low 

Load cycle Surging Low High Medium High 

Resonance break-

through 

Noise, 

durability 

Low High Low High 

Important for these operating modes is the individual frequency and vibration amplitude. 

The general excitation frequency for the first category (idle, drive, coast) is at ca. 20-400 Hz. 

In these operating modes mean torque is usually low and irregular engine torque has a very 

small influence even for diesel engines with their characteristically high torsional 

irregularities. The vibration angle isn’t usually larger than ±2°. A low spring rate and damping 

characteristics is necessary to achieve the best possible isolation. (17) 

The resonance break-through is the designation for the action happening during engine start 

and stop, when the speed increases or is decreased to zero. During this phase the resonance 

frequency of the drive train is passed and low frequency vibrations at large vibration angles 

occur. Because of it, a low spring rate and high damping effect are required so the resonance 

will not be magnified during passing the resonance range.  

The same accounts for load cycles. Sudden excitations caused by for example tip-in/back-out 

result in large vibrational angles combined with low frequency excitation (e.g. jerking – 3 Hz). 

The DMF operates in the same stage as for drive which is why high spring rates cannot be 

chosen and a medium spring rate has to be selected. To decrease the negative effect of the 

sudden torque change, high damping is necessary where part of the energy is dissipated to 

accomplish reduction of the vibration amplitudes.  

All coils of the arc spring become active during large vibrational angles typical for resonance 

break-through and load cycling which results in a lower spring rate and higher damping. The 

spring rate and damping caused by friction is also dependent on the engine speed and 

vibration angle. Higher speed and lower vibration angle increase the spring rate because of 

coil deactivation as described before. At high engine speeds, centrifugal force acting on the 

coils increases causing higher friction force and resistance against the coil movement. In 

combination with small vibration angles when small spring forces act on the coils, movement 

is inhibited.  
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Dependence of the spring rate and friction damping on engine speed and vibration angle are 

visible in Figure 3.2.3.  

For three-stage characteristics linear springs connected in series can be used. The 

arrangement in this example consists of one external and two internal springs, a usual 

arrangement produced by e.g. Schaeffler. The external spring has a low stiffness and 

provides enough damping for low engine speed where high vibrational angles occur. Two 

internal springs are arranged in-line thus both the advantage of parallel and in series 

arrangement can be accomplished. The highest stiffness in stage 3 is generally used for 

worst case situations when unexpected high dynamic torque arises. Its stiffness is being 

chosen in a manner to avoid achievement of the solid length for all three springs. When 

optimizing a DMF for 4-cylinder engines it has to be kept in mind that two cylinders fire at 

the first revolution of the engine crankshaft and the other two at the second causing two 

vibration cycles per revolution. The frequency transferred to the DMF is the second engine 

order of the engine revolution frequency.  

3.2.3. Dimensioning for a DMF with one outer and two inner springs 

In this chapter an example for the dimensioning of the DMF arc springs shall be performed. 

All initial parameters mentioned have been given by the company and belong to the P2-

hybrid analysed later in this work. These are the DMF installation space, the applied torque, 

the individual torque stages and the corresponding stiffness’s. Depending on them the 

number of coils, wire diameter, coil diameter and applied stress can be calculated. The 

known installation space dimensions are the maximum outer DMF radius (�� = 135	��) 

and the internal limitation for the arc spring (�� = 100	��). The maximum applied torque 

which is equal to the maximum engine torque is ��-A = 250	�� multiplied by a safety 

factor to cover the dynamic part. The vehicle analysed has a safety factor of 80%, which is 

quite high and in normal cases 40-50% are used. The maximum dynamic torque H�K	- =450	��J magnitude determines when the solid length, which is the length of a completely 

compressed spring, is being reached. 

 

Figure 3.2.3 - Spring rate (left) and friction damping (right) as function of engine speed and vibration angle for a 2.5l 

diesel (17) 
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An excel file with all the specified equations has been created to ease the calculation 

process. In two tables it is either possible to dimension the spring with the knowledge of the 

load on each of them or with the knowledge of the desired stiffness for each stage. As 

mentioned, in this case the stiffness is known. Multiple coil and wire diameter variations are 

used in the file to find the optimal combination for the given parameter. The functioning of 

the file will be explained further although the calculation example will be made to determine 

one specific dimension possibility. 

Spring #1 

The DMF in the vehicle given and analysed later has a first stage stiffness of #) = 2.5 �RK�A 

acting till  �) = 14	�� (k1 in Figure 3.2.5 and Figure 3.2.6). During engine start, when it’s 

rotational speed increases from zero and the critical frequency range is being passed, the 

biggest risk is the possibility that the DMF natural frequency is being excited causing the 

powertrain to get stuck at its value and to critically oscillate. This is why for the first stage 

the stiffness should be chosen as low as possible. In case of the usage of bow springs in the 

DMF, two sets of springs are inserted according to Figure 2.3.5 (right – three stage DMF). 

The stiffness and transmitted torque are combined values for both spring halves in the DMF. 

All known values are collected in Table 3.2-2:  

 

In further calculations only one of the two spring sets in the DMF will be used and thus the 

half stiffness and torque value. Normal engine operations should occur in the second stage 

Table 3.2-2 – spring 1 calculation parameters 
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being an indicator for the torque range in which both the external and internal springs 

should be acting. Due to the dynamic behaviour of the power train the torque for the second 

stage was chosen to be higher than the maximum engine torque, resulting in �� = 326	��. 

As mentioned before the external spring is arranged in parallel with the internal springs, the 

internal springs being in a mutual series arrangement.  The stiffness of two springs in series 

is: 

1#�= = #� ∗ #=#� + #= 
(3.2.5) 

For #� = 6.4	 �RK�A and #= = 21.2 �RK�A is #�= = 4.9	 �RK�A.  

Before the dimensions can be defined, torque transmitted by every single spring has to be 

calculated, since they are a scale for determining the stress acting on them. Between each 

spring and stopper is a backlash present as visible in Figure 3.2.4. 

 

Its influence on the system will be discussed later. For the DMF used in the vehicle is the 

given backlash 9U = 1°. The outer spring is larger in length and has to transmit the full 

magnitude of stage one (in this case � = de� = 7	��). After reaching the first stage, the 

external and internal springs are of the same length and the torque with a higher magnitude 

than stage 1 torque will be divided between them till the last stage is reached. Spring 2 has a 

smaller stiffness than spring 3 and should reach its solid length with the second stage torque 

(� = dg� = 163	��). The solid length is the length of the spring when the coils are fully 

compressed. No further deflection of spring 2 is possible and has therefore no longer 

influence on the torsional stiffness. In stage 3 torque vibration decoupling is ensured just by 

the first and third spring which continue to deflect until the maximum torque � = dQ� =225	��. 

 

Figure 3.2.4 - DMF stopper and free angle (12) 
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 A bigger stiffness starts to act due to the remaining parallel arrangement of the outer and 

third inner spring (Figure 3.2.5). To be able to calculate the spring geometry, torque acting 

on each single spring in all for it relevant stages has to be calculated. The related equations 

express the torque acting on the respective spring (each term is divided by two to account 

just one of the two): 

• Torque acting on spring 1 – deflecting in all three stages 

��) = H�) +�� ��)#) + #�= ∗ #) +�h1i ���#) + #= ∗ #)J/2
= H14 + 326 � 142.5 + 4.9 ∗ 2.5 + 450 � 3262.5 + 21.2 ∗ 2.5J/2 = 66.21	�� 

(3.2.6) 

• Torque acting on spring 2 - only in the second stage – in 3rd stage fully compressed 

(not deflecting anymore) 

(#�= is the combined stiffness of spring 2 and 3) 

��� = H�� ��)#) + #�= ∗ #�=J/2 = H326 � 142.5 + 4.9 ∗ 4.9J/2 = 103.3	�� 
(3.2.7) 

• Torque acting on spring 3 - in the second and third stage 

��= = H�� ��)#) + #�= ∗ #�= +�h1i ���#) + #= ∗ #=J/2
= H326 � 142.5 + 4.9 ∗ 4.9 + 450 � 3262.5 + 21.2 ∗ 21.2J/2 = 158.7	�� 

(3.2.8) 

The deflection difference angle of each spring can be expressed: 

∆9�) = ��)#)/� = 66.211.25 = 52,97° (3.2.9) 

∆9�� = ���#�/� = 103.33.2 = 32.28° (3.2.10) 

∆9�= = ��=#=/� = 158.710.6 = 14.97° (3.2.11) 

This means if a torque with the magnitude of 66.21 Nm will be applied on spring 1 it deflects 

or shortens by 52.97°. For spring 2 and 3 it is not possible to reach bigger deflection angles 

together as they are smaller and their maximum length is given by spring 1. Both together 

 

Figure 3.2.5 - Spring arrangement in stage 3 

k1 

k2+k3 
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cannot be longer than spring 1 after reaching stage 1 torque. The DMF characteristic curve 

and representation of the torque stages and springs acting during them are in Figure 3.2.6. 

The springs are represented in a non-deflected state. 

 

By means of these equations (based on the equations given in (18)) it is now possible to 

determine the dimensions of all springs. Spring 1 is limited by the available constructing 

space thus the outer spring diameter can be calculated from the dimension limitations: 

�) = �� � �� = 135 � 100 = 35	�� (3.2.12) 

�)is the coil diameter, ��  the external installation space radius and  �� the inner installation 

space radius. 

Since the stiffness’s mentioned before are torsional, they have to be recalculated to the 

linear form and #)/� in ��/'(� has to be used:  

#G�-) = #)/��R� = 1,25 ∗ )j+k ∗ 1000117.5� = 5.19	�/�� 

(3.2.13) 

�Ris the mean radius between �� and ��.  
The force � applied on the spring is: 

�) = ��)�R = 66.21	0,118 = 561.10	� 
(3.2.14) 

With the outer spring diameter also the wire diameter can be calculated. # is an empirical 

constant used for first spring dimensioning and depends on the used manufacturing 

technology, wire material and diameter. Assumed is a wire diameter less or equal 5mm, # is 

then 0.15 (according to (18)): 

�) l # ∗ m� ∗ �)Q = 0,15 ∗ √561.10 ∗ 35Q = 4,05	��	 → �)= 5	��	H�!�	2076J (3.2.15) 

 

Figure 3.2.6 - DMF characteristic curve 
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The wire diameter was chosen higher because of the dependency of the number of coils on 

it. A higher amount of coils are necessary for bigger wire diameters according to equation 

(3.2.18). In (18) are further restrictions given by the spring production procedures for cold 

drawn wires: � F 17	��, .+ F 600, 4 N 2, 
 = 4 ÷ 20, where the spring index	
: 

) = �R)�) = H35 � 5J5 = 6 

(3.2.16) 

�R)is the mean coil diameter. The applied force acts as a torsional stress on the spring and a 

stress analysis has to be performed to check if the selected diameter withstands the load. 

The wire is assumed to be made of a steel wire according to EN 10270-2, a SiCr-alloyed 

spring steel with a tensile strength of r�3 = 1900	�6(. For dynamic loaded springs 

corresponding fatigue stress diagrams exist. As a starting value the stress utilization factor is 

used (50%) thus the resulting admissible shear stress is 8/KR = 950	�6( .The stress 

increases on the inside of the spring and must be reflected upon when fatigue is being 

considered. To account for shear stress resulting from spring curvature several empirical 

factors have been set. Here calculation according to Bergstraesser (18) is shown: 

8) = 8 ∗ �R ∗ �C ∗ �= ∗ c + 0,5c � 0,75 = 8 ∗ H35 � 5J ∗ 561.10C ∗ 5= ∗ 6 + 0,56 � 0,75 = 424.566	�6(	
F 855	�6( 

(3.2.17) 

The wire and coil diameter fulfil the strength and spring index criteria and the number of 

active coils can be determined: 

4) = � ∗ �I8 ∗ �R= ∗ #5/@A�5) =
79160 ∗ 5I8 ∗ H35 � 5J= ∗ 5.19 = 44.13 

(3.2.18) 

Results from this equation don’t have to be necessarily reasonable values and may have to 

be adjusted. Because of the limited space a maximum number of coils has to be determined 

according to which the final number of coils can be selected. The maximum available length 

can be calculated from the radius and amount of degrees available for the spring. Each 

spring would have in an ideal case a 180° space. The stoppers between the two springs 

(Figure 3.2.4) take usually around 5-10°. For this example αuvwxxyz = 5° stoppers have been 

picked. In case of the arc spring DMF some backlash is left between the spring and stopper 

(α{|}~�|u� = 1°,	Figure 3.2.4). Due to this small torque oscillation are not being transmitted. 

When considering the length differences on the inner and outer side of the spring it is 

reasonable to use the inner installation space radius to add some safety to the calculation. 

The resulting available installation space expressed in degrees 9-) and millimetres *-)is 

then: 

9-) = 3602 � αuvwxxyz � α{|}~�|u� = 180 � 5 � 1 = 174° (3.2.19) 

*-) = 9-) ∗ C180 ∗ �R = 174 ∗ C180 ∗ 117.5 = 356.83	�� (3.2.20) 
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The nominal spring length *+) in unloaded condition has to be smaller than the available 

installation space length: 

*+) < *-) = *) + *,) = ��)#) + H4) + 2J ∗ �R/S)� 
(3.2.21) 

Where *) is the deflection length meaning the value by which the spring is shortened if 

deflected: 

*) = �)#)/� 
(3.2.22) 

And the solid spring length: 

*,) = H4) + 2J ∗ �R/S) (3.2.23) 

Since the goal is to use the available space efficiently, the non-deflected spring length should 

be equal to the available space. �R/S 	is the sum of the wire diameter and its upper 

permissible deviation �<	which can be found in (18) table TB 10-2a. When expressing #)from 

equation (3.2.18) and inserting into equation (3.2.22), equation (3.2.21) can be transformed 

and accordingly the maximum number of active coils 4)is: 

4) F *-) � 2�R/S)�e∗j∗��eQ�∗Ke� + �R/S)
= 356.83 � 2 ∗ H5 + 0,045J��).)+∗j∗=+Q��)�+∗�� + H5 + 0,045J = 46.26 

(3.2.24) 

The number of coils calculated in equation (3.2.18) meets the condition of (3.2.24) and can 

be used for further computation. After choosing a meaningful value for the number of active 

coils, the real stiffness can be calculated: 

#@�/G = � ∗ �I8 ∗ �R= ∗ 4 
(3.2.25) 

For this case the number of active coils is fitting and will be only rounded to a value of 46.5, 

which shouldn’t have a big impact on the final stiffness. The total number of coils 45 for cold 

drawn wires is: 

45 = 4 + 2 (3.2.26) 

And the solid length which is the blocking length of the spring, if sanded: 

*,) F H4) + 2J ∗ �R/S) = H46.5 + 2J ∗ H5 + 0.045J = 244.68	�� (3.2.27) 

All linear measures have to be converted into angular dimensions using the installations 

space radius. The resulting solid spring angle 9,) is: 

9,) = *,)�R ∗ 180C = 244.68117.5 ∗ 180C = 119.31° (3.2.28) 

The minimum nominal angle of the unloaded spring is the sum of the spring deflection ∆9�) 

during maximum torque and its solid length	9,): 
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9,) + ∆9�) = 119.31 + 52.97 = 172.28°	 < 174° (3.2.29) 

All conditions necessary to obtain the requested parameters have been verified and the 

dimension for the outer spring set.  

In case of the excel file the installation space, stress utilization, spring index, minimum wire 

diameter and maximal number of coils have been used, for the inner springs also the 

winding diameter has been adjusted to meet the stiffness requirement. If it is not possible to 

find any value fulfilling the demands, the following parameters have to be modified: it is 

feasible to either lower the number of coils or to increase the wire diameter resulting in a 

higher stiffness and the possibility to transmit higher torque; to lower the torque which gives 

the possibility to use a smaller wire diameter or if possible the coil diameter can be 

increased, both lowering the resulting stiffness. If none of these changes are appropriate, 

only increase of the stiffness is possible. 

Spring #2 

When using the combination of an external and internal spring it is favourable to use the 

biggest diameter possible for the external spring to facilitate a bigger space and more 

diameter options for the internal spring, especially when higher torque has to be 

transmitted in the second stage. 

 

The coil diameter of spring 2 �� is the inner coil diameter of spring 1 �): 

�� = �) � 2�R/S) = 35 � 2 ∗ H5 + 0,045J = 24,91	�� → 24	�� (3.2.30) 

The torque transmitted by spring 2 is defined by equation (3.2.7) and using equation (3.2.9) 

the deflection difference angle can be specified. When using equation (3.2.14) in equation 

(3.2.15) the wire diameter �� is: 

Table 3.2-3 - spring 2 calculation parameters 
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�� l # ∗ m�� ∗ ��Q = # ∗ O����R ∗ ��Q = 0,15 ∗ √875.42 ∗ 24Q = 4.1	��	 → �
= 3.8	�� 

(3.2.31) 

For the stress analysis and spring index the value 8 = 820.65	�6(  and 
 = 5.32  were 

obtained and are sufficient. 

The length of both internal springs cannot exceed the rest length of the external spring after 

reaching stage one torque. Again for both enough space has to be facilitated to ensure the 

needed deflection length for the given parameters. When determining the installation space 

and deflection angle of the springs, the blocking length and thus the number of coils can be 

calculated. For this all the equations from the sections before can be used. If just one 

internal spring is used, all of the left space after the external spring reaches stage 1 is left for 

spring 2. After the external spring reaches its solid length no more deflection is possible, 

which is why the solid length for the second and third spring together should be chosen to 

be the same as the external spring 1 length. When considering two internal springs in serial 

arrangement the situation is somehow different. The goal is to reach a higher stiffness in the 

last stage when the highest torque is applied. The two springs arranged in serial have a lower 

final stiffness than each of them alone, so to ensure a high stiffness in stage 3, one of the 

two internal springs has to reach their blocking length in stage two. It is clear that the one 

with lower stiffness will reach its blocking length earlier. The second spring has to reach its 

solid length with stage 2 torque and should be as small as possible to provide more space for 

the third spring. First we consider all the space available after stage 2 has been attained: 

9-� = 9-) ��)#) = 174 � 5.6 = 168.4° (3.2.32) 

*-� = 9-� ∗ C180 ∗ �R = 168.4 ∗ C180 ∗ 117.5 = 345.35	�� (3.2.33) 

And with the available installation space is the maximum number of coils (equation (3.2.24)): 4 F 46.45. 

To obtain the desired stiffness (#� = 3.19	 �RK�A) the number of active coils has to be according 

to equation (3.2.18) 4 = 18.9, which is in the desired range. When using a higher number of 

coils the stiffness will get lower, so to maintain the same stiffness value the wire diameter 

would have to be raised, too. On the other hand if the space for the second spring is too low 

the only other possibility would be to lower both the wire diameter and number of active 

coils. For 4 = 18.9 is the solid length *,= = 80.36	�� (equation (3.2.27)). The nominal length 

of spring 2 in unloaded condition is then: 

*+� = *,� +���#� = 80.36 + 32.38 = 112.74	��	 → 9+� = *+� ∗ 180C ∗ �R
= 112.74 ∗ 180C ∗ 117.5 = 54.98° 

(3.2.34) 
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Spring #3 

 

The remaining space for spring 3: 

9-= = 9-) � 9+� = 174 � 54.98 = 119.02° (3.2.35) 

Since it’s favourable to attain with the addition of spring 2 and 3 the same solid length as 

spring 1, the solid length of spring 3 is already given: 

9,= = 9,) � 9,� = 119.31 � 39.19 = 80.12° (3.2.36) 

The final check is if the remaining space is enough to ensure the deflection angle of spring 3 

necessary for stage 2 and 3. For ��= = 158.7	�� is 9�= = 14.97° and meets therefore the 

requirements. After this check the rest of the parameters can be calculated. �= is the same 

as ��, the wire diameter of spring 3 is �= = 4,78	��. A slightly smaller size from TB 10-2a in 

(18)	�= = 4,75	�� was chosen, the shear stress for this value is 8= = 848.17	�6( and the 

spring index 
= = 4,05. For this wire diameter and the chosen stiffness is the number of coils 4 = 16.05. The final solid length 9,= = 42.21°, which is smaller than the value computed 

before and means that with this coil and wire diameter chosen spring 3 would not reach its 

solid length after maximum deflection of the outer spring. The difference to the requisite 

value of 9,= = 75.2° is 32.99°. An option to find a value better fitting into the given space 

limitations, the spring coil or wire diameter and number of coils would have to be modified.  

  

Table 3.2-4 - spring 3 calculation parameters 
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4. NVH Aspect of hybrid vehicles 

NVH is a shortcut for Noise-Vibration-Harshness. It’s a summarizing topic concerning 

hearable and perceptible vibrations (frequency range: 20 - 100 Hz) in vehicles which are 

directly affecting the drivers driving experience. Mechanical oscillations appear in the 

automotive technologies in various ways and are mainly unwanted even though in particular 

cases these vibration phenomena are used to emphasize the vehicles character. Low 

frequency oscillations are perceived by car occupants as vibration, whereas higher 

frequencies up to 1 kHz are of importance as structure-borne noise. The latter will only be 

perceived by the car occupant if airborne sound arises thus resulting in a for the human ear 

hearable sound. Frequencies of a certain range (20 – 100 Hz) are perceptible as well as 

hearable and are therefore termed as harshness. The combinations of acoustic- and 

vibrational effects are still a hardly explored field. Important parameters for expressing 

oscillation are distances, angles, angular velocity and acceleration, forces, torques and so on. 

Oscillations can be divided into free, where the observed system will be oscillating with its 

natural frequency, forced oscillations, which are induced by an outer energy source, self-

excited and parameter-excited oscillations. Latter are the most complex since one or more 

not constant periodically changing coefficients can appear. All of these categories are for 

passenger cars relevant.  

Three main sources for the oscillations are known: road-excited, wheel-excited and engine-

excited oscillations. The former is caused by irregularities on the road. Wheel-excited 

oscillations arise due to un-uniformities of the wheel resulting in fluctuating wheel load. 

These are at higher velocities mainly perceived at the steering wheel and seat. The latter as 

the name suggests are excitations induced by the engine. These arise from the forces acting 

on the crankshaft. The dominant periodic tangential and radial forces acting on the 

crankshaft are resulting from the combustion process inside of the cylinders. Energy 

produced during the combustion process is transformed into a piston stroke, which is 

converted by the crankshaft into torque available at the flywheel. For 4-cylinder engines 

combustion occurs twice every engine revolution leading to acceleration and deceleration of 

the reciprocating power-transfer components generating inertia forces. As mentioned 

before, in case of the 4-cylinder engine analyzed in this thesis, forces and torques of the 2nd 

order (often referred to as main harmonics) originate. Except of the forces originating in the 

combustion process, the inertia forces caused due to motion of the reciprocating masses act 

on the crankshaft. These inertia forces combined with operating gas and gravity forces act 

on the crank mechanism and are the primary source of engine vibrations  (19). In case of the 

cylinder forces it is usual to talk about average peak cylinder pressure since a deviation of 

the maximum pressure occurs. They are split into the ones acting on the rod and the other 

sideway on the cylinder wall resulting in the crankshaft output torque. Excitation forces due 

to the rotating parts like centrifugal force or torque from unbalances are a secondary source.  
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Engine noise is mostly radiated from larger and flexible surfaces, e.g. sumps, timing case 

covers and induction manifolds. These should be therefore isolated. Ideal gear pairs should 

be running at constant speed with smooth power transmission. However in reality tooth 

errors and in some cases shaft eccentricities exist and can become a fundamental 

component of vibration. Gear teeth are elastic and bend slightly when operating under load. 

When contact between the teeth of the driving and driven wheels is made, abrupt transfer 

of load causes torsional vibration and noise in the transmission. Teeth oscillation can be 

recognized by a characteristic whining or whistle noise. Oscillation of loose components are 

named rattle. Also noise when changing the gear or from the bearings are possible. 

Frequently encountered are torsional and bending vibrations of the crankshaft and valves-

camshaft. Those can lead to fracture of the shaft or bearing damage. To external vibrations 

of the entire engine as a block is referred to as external vibrations and is usually integrated 

with the transmission case. These are caused by unbalanced, inertial moment or variable-

output torque.  

Engine oscillations are e.g. Start-Stop oscillations as well as powertrain oscillations and load 

cycling and friction oscillations at clutch slipping. Resonance occurs when an excitation 

torque is applied which coincides with the natural frequency of any powertrain component 

and if severe can end up in overall failure.  

At the wheels a transformation of the rotational movement into translational occurs and 

torsional torque oscillations are being transformed into oscillations in the vehicles 

longitudinal direction. Very important is load cycling usually caused by the driver (tip-in, 

back-out). Low frequency excitations are known as jerking (closed clutch) and picking 

(slipping clutch), high frequency load shocks or clicking. The mass forces of the crank 

mechanisms and balance shaft act as reaction forces in the bearings. Engine torque must be 

supported via a contra-torque in the engine bearings.  

Since the structure of hybrid vehicles is of bigger complexity than conventional vehicles, NVH 

challenges have to be adapted and are the following: 

• Increased system complexity and inertia due to the electric motor rotor– more 

potential noise sources and shifting of the system natural frequencies 

• No masking by IC-engine in full electric mode – NVH effects shifted to higher 

frequencies 

• NVH from transient operating conditions – change of torque flow and 

activation/deactivation of components during: 

� Start/Stop 

� ICE Engagement 

� Transition between operating conditions 

• E-machine, inverter and relay noise 

Consequently are control strategies more complex and lead to more NVH critical operating 

conditions. 
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Only vibration arising in the powertrain are going to be analyzed in this thesis, the main 

focus being set on their source and importance during hybrid specific operating conditions. 

4.1. Operating conditions and NVH effects (20) 

The goal of this thesis is to simulate individual operating conditions of a P2 hybrid vehicle 

and to evaluate NVH in the drive train depending on different DMF settings. During normal 

operation, hybrid vehicles pass several operation states. In these states the rotational speed 

and torque process can be according to Figure 4.1.1: 

 

The operation states presented are: 

I. Electric motor start and operation 

II. Internal combustion engine start 

III. Hybrid operation – electric motor and ICE 

IV. Load-raise – engine operated at higher load to charge battery 

V. Breaking – recuperation, battery charging  

Operating conditions which are part of the above mentioned and which will be analyzed 

within this thesis are: 

• Idle drive 

• Run-up  

• Start/stop process 

• Cycling 

 

Figure 4.1.1 - Rotational speed and torque in hybrid specific operating conditions 
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These and usual NVH effects will be further described in the next chapter. 

4.1.1. Idle operation 

Idle drive is the condition when no torque is transmitted by the engine and energy from the 

fuel is only used to overcome friction and other losses in the cylinder. The usual idle drive 

rotational speed is around 600-1000 rpm. Oscillations arise through cyclic and stochastic 

excitation from the engine. Different oscillation modes can be excited:  

For lengthwise installed engines the most typical are:  

• Aggregate waving in the engine bearings 

• Opposite aggregate/vehicle-lateral oscillations  

• Vehicle rolling on  wheel spring 

All these conditions appear at different frequencies. If one of them is being reached through 

the dominant engine order, critical vibration occur. For a 4-cylinder engine the second order 

is from importance and the vehicle has to be adjusted to it.  

To avoid the excitation of vehicle natural frequencies through the engine order, torsional 

and bending frequencies have to be between 27 and 33 Hz with at least 3 Hz spacing (20). 

Most typical for idle speed operation is gear rattle induced by the teeth on the loose gear-

wheel hitting the pinion gear.  The components of engine vibration at idling are multiples of 

engine speed. The primary bending mode of cars can be less than 20 Hz. It’s easy to excite 

body resonance at idle if the engine is not isolated well.  

To control NVH appearance during idle some natural frequencies of the vehicle have to be 

taken into consideration. For this reason their value has to be determined and further 

vehicle design adapted. 

4.1.2. Hybrid/conventional start/stop 

Vibro-accoustic effects of relevance appear when the ICE is being started or stopped. With 

the start-stop system, vibrations occurring at idle loose of importance since they are in less 

situations relevant. The oscillations originating should be kept bellow perceptibility 

especially when they are initiated automatically. When starting a vehicles IC-engine, first the 

starter has to overcome the breakaway torque of the engine and increase its speed. 

Everything after depends on the moments of inertia of the crank train, the gas forces of all 

cylinders and on the friction torque. Three start processes can be distinguished depending 

on the engine speed when first combustion occurs: 

Conventional low engine speed start 

To increase engine speed from zero electric starter motor starts the turning. A pinion gear is 

located on its shaft and engages with a larger gear ring around the rim of the engine 

flywheel. Electric current is drawn from the battery to initiate rotation. The pinion is not 

fixed to the shaft and threaded on to it, so when rotation speed increases, the pinion gear 

shifts along the thread until a stop is reached and afterwards it starts to turn with the shaft 
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and engages with the gear ring on the flywheel. When the engine picks up speed and the 

pinion gear starts to turn faster than its shaft, it disengages again to avoid damage of the 

starter motor. 

At low engine speed start, first combustion occurs at 250-300 1/min. Important is the fast 

haul up of the engine via a sufficiently designed starter motor. Especially in powertrains with 

a DMF it is necessary to ensure a fast run-up from zero to avoid excitation of the DMF 

natural frequency, which usually lies below idle speed. Very often synchronous machines 

with belt drive are used as starter and generator since they offer more starting comfort than 

pinion gears. Even better in performance are starting-generators.  

High rotational speed-fluctuations occur during start up and are caused by unstable 

combustion forces, which arise when the resonance frequency of the engine mounting is 

being reached. These fluctuations are perceptible as shaking. 

Critical are slightly decreasing starter-speed and premature disengagement of the starter. 

Some P2 hybrids use a starter to launch the vehicle instead of a hybrid start so the ICE can be 

started independently of the EM and the EM is only used to ensure traction during IC-engine 

start.  

High engine speed/hybrid start 

In vehicles, where purely electrical driving is possible and an additional clutch is present, 

start processes are very often used and can be initiated depending on the driving situation 

independently of the driver. High demands are being set to make the engine start as 

seamless as possible. This is possible by means of high engine speed start-ups, occurring at 

600-750 1/min. Electro motors with more power have to be employed to drag the engine to 

its initial speed in a short time making this technology ideal for full hybrids or plug in hybrids, 

where electro motors of sufficient size are already present.  

The launch-up is ensured in the following steps: 

• The electric motor transmits a torque value depending on the gas pedal position 

• After clutch-closure initiation this torque is being raised by a value necessary for the 

IC-engine tow 

• The linearly increasing torque is being transmitted during the clutch-closing process 

to the ICE; the electric motors and IC-engines’ relative speed start to balance 

• When the ICE reaches its target value, firing is being started causing the IC-engine 

torque to rise and the EM torque to lower down again to the gas-pedal position value 

Natural frequencies, which are in the start-up speed range, are being passed through during 

engine start and cannot be avoided. To lower these, small cylinder fillings are advantageous. 

The throttle valve should be almost closed.  Another option is optimization with the help of 

the DMF via e.g. damping modification (usage of inner damper).  

A compromise between the tolerated resonance amplitude and oscillation isolation has to 

be found. When increasing the DMF’s damping value, isolation in overcritical areas is 
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worsened since isolation effects decrease with rising frequency ratio according to Figure 

4.1.2 (20). 

 

Where V: 

V = � � ��
T�(�T�4	�'����4
�; � 4(��'(.	�'����4
�  
(4.1.1) 

Motor stop 

Motor stop occurs when the engine is being shut down. In hybrid vehicles this is induced by 

the start-stop system during idle or standing phases. Similarly to the engine start, also during 

engine stop the resonance frequency is being passed through.  

An important parameter during engine stop is again cylinder filling, since it directly affects 

the magnitude of the gas torque. The filling inside the cylinder acts as a spring and its 

stiffness depends on the filling amount. The gas-exchange torque dominates the moment of 

inertia and friction torque and the gas torque in the at last compressed cylinder to a value 

which causes a change of direction. The filling is being again compressed until the engine 

stops. Higher bearing forces appear and are transmitted to the car body. If the throttle valve 

is closed, peak pressure is being reduced and the stopping process takes place in an even 

manner.  

4.1.3. Cycling 

Standard passenger vehicle powertrains with DMF are usually designed torsionally flexible. 

When maximum torque is applied, twisting angles up to 90° from the crankshaft to the 

wheel can occur. Due to this torsional oscillation are excited during cycling and can be 

perceived as longitude-low-frequency oscillation (jerking) or higher frequency acoustic 

phenomena (load change reaction, clonk). At low frequency oscillations two types of jerking 

appear: picking with closed clutch or shudder, when the clutch is slipping. Both have a 

strongly negative effect on the driving comfort. 

Jerking oscillation appear in a for humans very sensitive frequency range from 2-8 Hz, 

depending on the activated gear. This excitation is not caused by the engine orders but by 

 

Figure 4.1.2 - Ideal isolation for different damping values 

(V2=amplification function, η=frequency ratio) 
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sudden torque changes occurring when suddenly accelerating (Tip-In) or decelerating, i.e. 

quick foot removal from the gas pedal (Tip-Out). The system reacts to this impulse and starts 

to oscillate with a frequency in accordance with some of the natural frequencies. This 

appears often in vehicles with a manual transmission at low engine speed and low gears. 

Load shocks appear at higher frequencies and gears than jerking. Similarly as before is the 

cause sudden torque change induced by quick gas pedal movements. The vehicle makes an 

abrupt translator movement in the driving direction causing the transmission to oscillate 

against the engine and vehicle followed by a hollow beat noise. The noise results from the 

bearings and loose transmission components reaching their end stop position or just moving 

between their end stop positions, dependent on the magnitude of the load change. This is 

perceptible as a higher metallic sound often called clicking and clatter.  

Picking arises due to periodically alternating torque originating when the clutch is not fully 

engaged and slipping. If the alternating torque lies in between some of the natural 

frequencies of the through the clutch uncoupled part of the power train, longitude 

movements appear. When the clutch is closed, the same natural frequencies lie above and 

have typical values around 8-12 Hz.  

Two types of picking exist:  

• Self-excited picking occurs when the clutch friction coefficient is between the stick- 

and slip value. Firstly the output side is being dragged due to static friction and 

twisted. After a certain deflection the torque is higher than the static friction causing 

both sides to rotate relatively to each other until sticking occurs again and the 

procedure repeats, the power train oscillates.  

• Forced excitation is the result of a periodically varying normal force on the friction 

partners. Also in this case the clutch disc starts to oscillate. Causal are geometrical 

deviations in the clutch system effecting fluctuations of the normal force. To obtain 

better power train efficiencies, friction reduction in the drive train are being 

researched having a bad impact on the picking tendency.  

Gear changing is another cause of oscillations considering it as a fast change of output 

torque. The easiest way to control these effects is to implement some kind of regulation into 

the engine control system and prevent the engine from getting commands directly from the 

pedal position by filtering and adjusting the signal. The torque rise is more controlled and 

limited by the load shock damping, anti-jerking functions modify the ignition angle and cause 

additional damping of the drive train. Further improvements can be made with slip-

controlled clutches or by specific adjusting of the power train components stiffness. The 

usage of dual mass flywheels has a perceptible impact and is likewise often used in modern 

vehicles.  
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4.1.4. Run-up (full load/part load) 

The biggest issue regarding NVH in hybrid vehicles appearing during run-up is connected to 

the change of torque flow caused by activation or deactivation of the electric motor or 

combustion engine. Depending on the driving mode and activated component, during 

accelerating often both electric motor and engine are used to provide a sufficient boost. The 

results are similar to the ones described in section 4.1.3.  

4.2. Components affecting NVH in hybrid vehicles 

A driveline usually consists of the engine flywheel (single- or twin mass), clutch, manual or 

other transmission system including all shafts, the differential with the side shafts, wheel 

and tires (21). An example of drive components of a passenger car with the possibly 

occurring corresponding NVH phenomena are in Figure 4.2. Some of the most important will 

be described further. 

 

4.2.1. E-machine 

Often used in HEV systems are asynchronous-motors and permanent magnetic synchronous-

motors. These are contributors to the interior noise. 

The electric motor can cause NVH related problems, mainly of acoustic nature. Saturation or 

ripple torque effects of motors are not big enough to be noticed from the driver. The noise 

level emitted by the electromotor is very low compared to the ICE, but has different 

frequency content due to its high frequency level and appears to be more annoying. The IC-

engine noise is in many cases even a requirement from the driver, since it enhances the 

sporty drive feeling. With electric motors there is no dependency of the interior noise on the 

load which is compared to the ICE to the drivers perceived as a shortage.  

Electric motor noises are most significant during generator operation.  In most HEVs the 

electric motor is being converted into a generator whenever the vehicle is braking and 

produces variable frequency noise depending on the generator speed. The generators noise 

 

Figure 4.2 - NVH phenomena in a passenger car powertrain (FWD-left)) and their characteristic frequencies (right) 

(21) 
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amplitude increases with decreasing vehicle speed (22). In these conditions motor noises get 

also more apparent since the overall background noise levels decrease.  

4.2.2. IC engine 

Noise intensity of combustion engines is proportional to the square of the pressure rise rate 

and the sound pressure level of noise to the logarithm of heat generation or release rate in 

each cylinder (23). The pressure rise rate is defined by the ignition delay, speed and torque 

load and can therefore influence noise intensity. Mechanical sources are mainly the piston 

slap, friction, gear and tooth belt meshing, belt slippage, bearings and the timing, accessory 

and pump system. These are proportional to engine speed. As mentioned before noise 

radiation from the engine surface as the engine block surface, oil pan and cylinder head and 

cover are another relevant source. Fan, intake and exhaust noise are aerodynamic sources 

and are determined by their dimensions, e.g. in case of the fan by its blades and also number 

of blades and in case of intake and exhaust the pressure pulse, flow friction and turbulence.  

Contribution of ICEs to the vehicles NVH characteristic is different for various operational 

conditions and dependent on the engine type. Former and latter differ for hybrid vehicles. 

Transient operating conditions appear which have to be analyzed. Due to the present 

electric motor, engines in hybrid vehicles are even more downsized changing the vehicles 

NVH significantly. An example for the operating condition dependent noise is the missing 

correlation between engine speed and vehicles speed in hybrid driving modes. The engine 

does not necessarily increase its speed when moving the gas pedal and increasing the speed 

requirement. This is due to the demand for lower fuel consumptions. A control unit monitors 

the drivers demand and calculates the best engine operating point. Extra torque needed to 

increase vehicle speed is provided by the electrical motor. 

4.2.3. Clutch 

The clutch has an important effect on torsional vibrations. These are either dry friction 

damping or torsion spring effects. Clutch activation happens in two steps: first the transition 

period and second the traction period. Dry friction damping influences the vibrational 

behavior only during the transition period, when power is slowly passed from the engine to 

the gearbox, or in case of too high torque transmission, when the clutch starts to slip. Both 

are also influenced by the spring stiffness of the damping springs included in the clutch. In 

case of this work torsion springs are included in the DMF, the clutch being directly a part of 

it. NVH behavior can be modified with the used friction material and transition time.  

4.2.4. Transmission (23) 

Many of the driveline noises can be connected with its gear box. Most problems are 

connected with manual transmission and have been partly resolved with the entry of new 

transmission systems like the dual clutch transmission or automatic transmission. Different 

types of gear box noise are: 

• Low rotational frequency harmonics (~1-400Hz) 
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• Gear whine (~500-4000 Hz) 

• Gear rattle (~20-120 Hz) 

• Shift noise (~25-80 Hz) 

In this thesis the occurrence of transmission rattle is going to be inspected. 

Low rotational frequency harmonics of shafts 

Low rotational frequency harmonics are caused by imbalances, layer offset and curvature of 

the drive shaft and have impact in low frequency spectra. Primary affected are components 

which drive the gear behind the clutch.  

Gear whine 

Whining is caused by the torque transmitting tooth pairs in gearboxes and their relative 

movement. Its main cause variable is the number of tooth pairs in mesh, further geometry 

errors or the shaft bending stiffness (20).  With a higher number of teeth in mesh, the final 

force which has to be transmitted by each tooth is decreasing causing subsequently a lower 

tooth deformation and hence lowering also the resulting noise.  

Gear rattle 

Rattle is a typical result of unengaged gear pair or other loose components moving freely 

within their backlash and generating contact force impacts. The movement itself is caused 

by torsional excitation at the transmission input. Rattle noise occurring during traction at low 

load or low velocity and speed ranges are also called creeping. Rattle appears mainly at spur 

gear manual and dual clutch transmissions. It is perceived as especially annoying because of 

its broken-like noise.  

Shift noise 

Shift noise occur at synchronization malfunction caused by scratching of gear switching 

teeth, or are cycling conditioned due to transient excitement also called clonk. The same 

noise can likewise arise during fast clutch engagement or disengagement.  

4.2.5. The wheels 

The wheels consist of rim, rigid rotating components and the tire. When simulating wheels, 

interactions with the road have to be taken into account. It is assumed that deformation 

takes place on the tire surface and that the tire material has viscous-elastic properties. Due 

to this, deformation and self-damping effects are assumed to be a combination of elasticity 

and damping.  

4.2.6. Dual mass flywheel 

Facts about the DMF and how it influences the vehicles NVH has already been described in 

detail in section 2.3. 
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5. NVH Evaluation 

5.1. Introduction into 1D MBS 

Multibody systems are technical systems consisting of different rigid or flexible bodies which 

are connected. Connections can be created with classical force laws (mass less springs and 

dampers, actuators, contact) or by kinematical constraints (e.g. joints).  

Multibody simulation (MBS) is a branch of mechanics dealing with movement behavior of 

mechanical systems. The bodies themselves are represented by their inertia. All bodies have 

6 degrees of freedom when spatial movement is considered, 3 translational and 3 rotational. 

These can be defined by boundary conditions and with addition of initial conditions the 

transient motion of these systems and the forces and moments acting in the connection 

points can be analyzed through simulation. Typical examples are moving gears in vehicles, 

robotics, etc. 

MBS plays a considerable role in the automotive industry where the gain is to simulate 

movements of all parts of the designed vehicle. This is very important to recognize undesired 

behavior already in the designing phase. Important parameters are: 

• Comfort/NVH 

• Performance 

• Durability  

• Costs 

• Installation space/mass 

• efficiency 

Thanks to the usage of CAE software, development time can be significantly shortened; the 

production performance increased and costs of production lowered since no prototype is 

necessary.  

In case of drive technologies following characteristics and tasks have to be written: 

• Investigation of dynamic behavior of complex drive systems  

• Comparison of natural frequencies and excitation frequencies especially in drives 

with variable rotational speed and broad excitation spectra’s to determine possible 

resonance occurring during operation  

In this thesis the CAE software Simulation X from ESI ITI, version 3.9 was used. It is an 

interdisciplinary software for modeling, simulating and analyzing multi physics systems on 

the basis of Modelica. Included is a library with system components which ease the modeling 

process. Both one-dimensional and three-dimensional systems can be simulated.  

1D MBS will be used to perform a modal and time domain analysis of a passenger vehicle P2 

hybrid. Through modal analysis the systems natural frequencies can be obtained and used 

for comparison when evaluating the time domain analysis. In the time domain analysis the 
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behavior for hybrid vehicles typical operating modes will be specified via simulation and the 

critical natural frequencies visualized. The source of excitement can be determined and the 

system optimized by modification of the sources properties. For this thesis models for hybrid 

specific operating conditions have been constructed to simulate the behavior of a P2 hybrid 

powertrain. They differ not only in construction but also their boundary conditions and 

starting values are different for every mode. Because of this, individual models for each 

mode have been prepared. Their structure and the used values will be explained in the next 

chapter.  

5.2. Creation of hybrid powertrain 1D torsional MBS model 

One topic of this master thesis is the creation of a hybrid powertrain as 1D torsional MBS 

model with characteristic properties to simulate its dynamic behaviour in hybrid specific 

operating conditions. The basic model for this master thesis has been entirely created in 

SimulationX by the author according to the P2 hybrid arrangement of the given vehicle and 

will be now introduced more in detail in this section.  

To create a simulation model first the basic structure of the P2 hybrid powertrain has to be 

determined. All important sections have to be considered and divided into elementary parts 

to ensure as realistic results as possible. The basic structure is visible in Figure 5.2.1: 

 

Subject of analysis in this section is a passenger vehicle P2 hybrid with 4-cylinder engine, 

DMF and Dual-Clutch-Transmission (DCT) connected via differential to the side shafts. All 

basic vehicle parameters from importance for the simulation model are in Table 5.2-1: 

Table 5.2-1 - parameters of the analysed vehicle 

Vehicle type P2 - hybrid passenger vehicle  

Coupe type Hatchback 

Electric motor Torque  330 Nm (short time)  

ICE Torque 250 Nm/1600-3500 rpm 

Figure 5.2.1 - P2 hybrid arrangement 
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Number of cylinders 4 

Position of cylinders Inline 

Fuel type Hybrid – petrol/electricity 

Transmission type Dual-Clutch Transmission 

Number of gears 6 

 

In Figure 5.2.3 is the MBS model showing the motor side of the hybrid powertrain.  On the 

engine side of the P2-hybrid is the internal combustion engine with the crankshaft broken 

down into several rotational inertias and spring and damping units. Their values have been 

obtained from a test bench. The engine itself is divided into 4 individual cylinders, their 

pistons driven by a force calculated from a pressure characteristic. The engine has a 

maximum performance of 110 kW and torque of 250 Nm. The crankshaft is divided into 

several inertias representing the mass of the Damper, Pulley, Journals etc. Due to its 

asymmetric shape, the rotating mass has to be reduced to a representative value (Frahm1-

4). This value is delivered by Frahm’s formula: 

"@�K = '�H�@�5 + 12���,J (5.2.1) 

Where ' is the cranking radius,  �'�� the rotating mass and ��<
 the oscillating mass. 

Directly connected to the crankshaft is the primary part of the DMF consisting of several 

external straight compression springs and two internal springs. Its characteristic is divided 

into 3 stages with the stiffness and parameters used in section 3.2.3. The DMF setting in the 

SimulationX program environment is in Figure 5.2.2. 

 

Attached to the secondary DMF side is the main clutch K0, ensuring the connection between 

the electric motor and internal combustion engine. K0 is visible in Figure 5.2.4 (J_K0_EM). 

 

Figure 5.2.2 - DMF settings in SimulationX 
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Figure 5.2.3 - MBS simulation model - engine side 
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Figure 5.2.4 - MBS simulation model - transmission side 

 

Clutch and electric motor inertia 

Dual-clutch transmission 

Gear selection 

Half shafts, vehicle and test bench 

Total transmission translation and run-up velocity function 



 

 

59 

 

Through this clutch the switching between the individual operating modes and the hybrid 

start of the IC-engine is enabled. The electric motor is placed on the gearbox input shaft and 

directly coupled with the primary K1 and secondary K2 clutch of the 6 gears dual-clutch 

transmission. For the simulation only the inertia of the EM has been considered since for the 

analysis performed in this thesis, the difference caused by the extra weight of it is from 

biggest importance and has been added to the K0 inertia. Its maximum performance is 75 

kW and torque 350 Nm (short time). These clutches are controlled by an electro-hydraulic 

control unit comparable to automatic transmissions. Clutch K1 controls the odd and K2 the 

even gears. Thanks to this, gears can be changed without interruption of the power flow 

shortening the shift times, ensuring better fuel economy and ease of operation.  

The shaft to clutch K1 is inserted into the clutch K2 shaft according to Figure 5.2.5. Each shaft 

is divided into three inertias to increase the accuracy of the simulation model and each 

inertia represents the weight of a part of the shaft and pinion gear (viz. Figure 5.2.4, the full 

shaft is divided into Jan_11, Jan_12 and Jan_13and the hollow shaft Jan_21, Jan_22 and 

Jan_23). Between them are spring-damper modules ensuring the stiffness and damping 

properties of the shaft (Can_XX). The loose (freely rotating) gears are represented by an 

individual inertia (J1-6, JR). Also the output shafts (Jab_11-13, Jab_21-23) and differential are 

included in the gear box. The differential is represented as one separate inertia and rigid 

connection between the output shafts and side shafts. The side shafts are similarly divided 

like the gearbox shafts. The right side shaft is assembled from an additional intermediate 

shaft since the gearbox is not centred. Penultimate part is the vehicle mass. It is a complete 

model of the vehicle mass, tires and rims. It includes the tire stiffness and damping 

properties as well as the torsional stiffness between tire and rim. Besides defining the 

 

Figure 5.2.5 - dual-clutch transmission with selected 2nd gear (27) 
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vehicles basic characteristics, all parameters necessary for calculation of the driving 

resistances acting against the vehicle movement have to be input. The last point is the test 

bench, where the vehicle velocity is being preset.  

All elements in the simulation model are shortly explained in Table 5.2-2. 

Table 5.2-2 - elements included in the simulation model 

Element Input parameters 

Damper Crankshaft damper (inertia, stiffness and damping) 

Pulley Crankshaft pulley for the drive belt (inertia, stiffness and damping) 

GearC Crankshaft gear for timing chain (inertia, stiffness and damping) 

Journal 1-5 Journals between rods for each cylinder (inertia, stiffness and damping) 

Frahm 1-4 Reduced rotating inertia of the crankshaft 

Cylinder 1-4 Specification of the cylinder geometry, initial conditions, mass division 

Curve 1-4 Engine pressure characteristic 

Source 1-4 Conversion of engine pressure to force acting on piston 

Firing angle 1-4 Specification of the firing angle for each cylinder 

DMF_prim DMF primary side inertia 

DMF Specification of the spring masses, stiffness, damping, deflection angles 

DMF_sec DMF secondary side inertia 

J_K0_EM Clutch K0 and electric motor inertia 

K1_EF Clutch K1 switching element 

K2_EF Clutch K2 switching element 

Jan_1x Full shaft (input shaft 1) inertia 

Can_1x Full shaft (input shaft 1) stiffness and damping 

Jan_2x Hollow shaft (input shaft 2) inertia 

Can_2x Hollow shaft (input shaft 1) stiffness and damping 

Jab_1x Output shaft 1 inertia 

Cab_1x Output shaft 1 stiffness and damping 

Jab_2x Output shaft 2 inertia 

Cab_2x Output shaft 2 stiffness and damping 

Gear1-6,R Transmission translation 
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J1-6, R Loose gears inertia 

G1-6, R Gear switching element 

Axis 1-2 Differential translation for output shaft 1 and 2 

Differential1 Differential rigid connection joint 

Shaft_VR/VL Right/left half shaft inertia, stiffness and damping specification 

Vehicle Vehicle specification (mass, values for resistance calculation, wheel 

stiffness, damping, radius, inertia etc.,  tyre slip, initial conditions) 

Test_Bench Powertrain velocity specification 

The basic simulation settings are obtained in Table 5.2-3. CVODE is a solver for ordinary 

differential equations (C-language Ordinary Differential Equation solver). Since the results 

will be analysed in MATLAB, equidistant result recording was chosen to ensure a constant 

time step.  

Table 5.2-3- Simulation settings 

Starting time 0 [s] 

Stopping time 10 [s] 

Solver CVODE 

Minimal calculation step 1e-08 [s] 

Maximal calculation step 1e-4 [s] 

Result recording equidistant 

Maximum output step 0.0001 [s] 

Further on each simulation model for hybrid specific operating conditions will be displayed 

and explained more in detail.   

5.2.1. Idle 

The MBS model created to simulate the phenomena rattle during idle is in Appendix 2 and 3. 

The rotational speed during idle is being kept at a constant value with the help of an idle-

regulator and torque-to-load converter. In this case the rotational speed is 1000 rpm. The 

idle regulator keeps the engines rotational speed at a given value if the clutch is opened and 

a driving desire missing (Appendix 2 – idle speed regulation). In this case clutch K0 and K1 is 

closed but no gear synchronized. Input values are the actual engine rotational speed, which 

is measured at the DMF primary side and adjusted by a mean value filter, and the target 

rotational speed. A PI-regulator calculates the corresponding engine torque which is 

required to reach the target value. To ensure good control behaviour, the desired value is in 

case of abrupt changes modified by a PT1-filter (control technology transmission element). 
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The cylinder pressure is regulated via a load specification. To convert the output torque from 

the idle regulator a torque-to-load converter is included after. The result is a load value 

between 0 and 1, where 0 stands for zero load (overrun conditions) and 1 for full load.  

Depending on the load value, rotational engine speed and engine angle, a linearly 

interpolated pressure value results from the 3D zero-load and full-load engine 

characteristics. 

 

The simulation model will be used to analyse gear rattle in the powertrain. To obtain a more 

realistic model, resistances occurring at the loose gears have been included (Appendix 3 – 

drag torque definition). These involve: 

• Splashing drag torque 

• Bearing drag torque 

• Synchronizer drag torque 

Splashing is the resistance caused by the presence of oil which is braking the individual gear. 

It depends on the immersion depth into the transmission oil sump (gear tip radius '/), gear 

width �, oil density �, the absolute loose gear rotatory speed ; and a factor �1 which has to 

be determined via correlation with measurements: 

�1? = �) ∗ � ∗ ;� ∗ '/I ∗ � (5.2.2) 

 

Bearing drag torque has its origin in the moving bearing under the loose gears. These have a 

load dependent and independent proportion. Loose gears do not transmit any torque which 

is why the load independent parts are being taken into account. The gears and shafts have a 

different velocity causing movement of the bearings resulting in small resistance which is 

depending on the bearing type. Bearing drag torque depends on the kinematic oil viscosity �,  

on the absolute relative speed between the loose gear and the shaft ∆4, the average 

 

Figure 5.2.6 - Engine pressure characteristic – zero load (left), full load (right) 
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diameter of the bearing �R=  and as before on a factor �� that has to be determined via 

correlation with measurements:  

�0i = �� ∗ 10�� ∗ H� ∗ ∆4JgQ ∗ �R=  (5.2.3) 

Last type included in this work is the synchronizer drag torque. The synchronizer cones fixed 

to the loose gears and the cones fixed to the synchro hub rotate with different speeds. 

Between the cones is a gap generally filled with oil. Due to the speed difference a shear 

force acts between the opposing cone areas. The drag torque caused by this shear stress 

depends on the axial backlash �3�, the gap height �3�, the average diameter �R, and relative 

speed between loose gear and blocker-ring ∆;.  

�1	 = 14 ∗ C ∗ �R= ∗ ∆;,�-�� ∗ � ∗ � ∗ �1	�1	 
(5.2.4) 

5.2.2. Hybrid start/tow launch 

The hybrid start has been described in section 4.1.2 – high engine speed/hybrid start. To 

simulate the effects on the DMF during hybrid launch an initial speed of n0=1600 rpm has 

been set and the clutch starts to close after 2 seconds. The electric motor has a short time 

maximum torque of 330 Nm. For simulation a torque of 300 Nm was set as an initial 

condition. The simulation model arrangement is in Appendix 4. 

The effect of three parameters on the dynamic behaviour is going to be analysed. One of 

them is the electric motor torque raise. After the clutch starts to close the torque available 

for driving decreases by the value necessary for the engine tow. To maintain a constant 

acceleration it is necessary to increase the electric motor torque, in this case 15 Nm. 

Initiation has been set to the same time the clutch starts to close (Figure 5.2.7- right). The 

clutch closing process and torque raise were chosen to be defined by a cosines function of 

identical shape to ensure even transition of the control signal and thus even clutch closing 

and simultaneous transmission.  

The second parameter is the transition time which is the duration of the clutch transition 

from opened to engaged state. The third parameter is the clutch torque, which defines how 

much torque can be transmitted by the clutch.  

 

 

Figure 5.2.7 - Clutch torque (left) and electric motor torque (right) timing 



 

 

64 

 

In Figure 5.2.7 a transition time of 1 second is set. It can be assumed, that by shortening the 

transition time a bigger excitation appears at the DMF during the clutch closing process. Its 

influence on the DMF response will be analysed in section 5.4.2. 

5.2.3. Cycling 

Cycling occurs during abrupt load change when the gas pedal position is changed by the 

driver due to sudden change of mind. As already mentioned during cycling the first natural 

mode is exited and a vibration node between vehicle and transmission arises.   

In the simulation model a constant engine speed of 2000 rpm will be considered, since in the 

range between 2000-3000 rpm maximum torque is applied. A situation like this can be only 

achieved on a test bench, since in normal operation the vehicle velocity slows down if the 

vehicle is moving on a straight road and the foot is moved from the gas pedal. Nevertheless, 

the excitation itself is independent of these circumstances and therefore simulation 

according to test bench conditions can be performed.  

 

Figure 5.2.8 is the engine load curve simulating cycling. As already mentioned before, the 

value 1 stands for 100% load and 0 for 0% load. In the first 2 seconds the engine load is being 

kept at a constant value of 0 load, after being slowly raised for 1.5 seconds to 1.This time 

delay has been selected to simulate realistic drive behaviour. In cars when the driver 

suddenly decides to accelerate, the signal is being adjusted before reaching the fuel throttle 

actuator to lower the gradient. Same applies for tip-out from the 7th second, where for the 

load decrease a transitional period of 1 second was chosen, a realistic value taken over from 

vehicle measurements. After the vehicle is being towed again.  

5.2.4. Run-uppart-load/full-load 

The simulation model in Figure 5.2.3 and Figure 5.2.4 is used to simulate the operating mode 

run-up with part-load or full load. The clutch K0 dividing the electric motor from the engine 

crankshaft is engaged during the entire run-up process and the car is being driven by the 

internal combustion engine starting at a value of n0=800 rpm. The rotational speed is being 

increased from 800 rpm to 1000 rpm during the first 2 seconds to ensure a sufficient settling 

time and to avoid transient oscillation.  

 

Figure 5.2.8 - Load change curve 
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For further analysis only the start-up from 1000 rpm to 6300 rpm, the idle speed and a 

maximum revolution value given by the vehicle manufacturer, has been considered. 

Depending on the drive torque, part-load (50%) and full-load (100%) can be distinguished. As 

described in the section before, 1 stands for full load and 0 for motoring mode. Depending 

on the load value, rotational engine speed and engine angle, a linearly interpolated pressure 

value results from the 3D zero-load and full-load 3D engine map (Figure 5.2.6).  

5.3. Modal analysis of hybrid powertrain 

Modal analysis is an important field in NVH and serves to analyse oscillating systems. These 

appear in many areas of everyday life, e.g. in cars, domestic appliances etc. Crucial is the 

systems stability in normal operation towards oscillation. It is necessary to investigate these 

to minimize their effect and to find possible causes for undesired behaviour.     

It is recommended to start the dynamic analysis of an assembly with a modal analysis in 

which besides natural frequencies likewise natural modes are identified. Knowledge about 

the natural frequencies and modes of a system are from great importance when evaluating 

the dynamic behaviour.  

If a prototype is available, it is usually recommended to perform also an experimental 

analysis.  

Natural frequencies influence the system behaviour more or less depending on the systems 

damping factor. To every natural frequency belongs a certain oscillation pattern. When 

forced excitation acts on the system and corresponds to one of the natural frequencies, high 

amplitudes occur.  

When a linear system is excited by some kind of force in one point it starts to oscillate and 

responds to the excitement with particular vibration behaviour. Its response in another point 

depends on the system properties. They influence the transmission behaviour between 

these two points. These are the three variables necessary for its description. 

As mentioned before an oscillating system can be described by the combination of mass (or 

inertia), springs and dampers. By connecting these, more complex systems with many 

 

Figure 5.2.9 - Run-up - Time settings 
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degrees of freedom can be described. Such kinds of models are expressed by differential 

equations of motion, boundary and initial conditions which describe the systems behaviour 

and displacement, velocity and acceleration can be calculated. With these it is possible to 

calculate the transfer function and the systems dynamic behaviour. The basic matrix entry of 

these equations is: 

�9� + 29� + �9 = �H�J (5.3.1) 

Where � is the matrix of mass, 2 the damping matrix and � the stiffness matrix. �H�J is the 

time dependent excitement. 

 In this master thesis the modal analysis for the 2nd, 4th and 5th gear has been performed to 

analyse the behaviour for a gear from both full and hollow shaft and with higher and lower 

gear ratio. In 4-cylinder engines is the 2nd order from biggest relevance and related 

frequency range can be calculated according to the engine speed range (max. 6300 rpm): 

� = % ;2C = % 460 = 2 ∗ 630060 = 210	�� 
(5.3.2) 

Where � is the frequency, and % the relevant engine order. Multiples of the 2nd order can 

appear and a slightly higher frequency (250 Hz) has been chosen to include them. The whole 

powertrain modal analysis can be directly performed in SimulationX, where besides the 

natural frequency values also the deflection, kinetic, potential energy can be analysed. The 

kinetic energy indicates which inertia in the powertrain is influenced most whereas the 

potential energy specifies the source. Latter is an important indicator to point out which 

stiffness has the biggest impact on the related natural frequency: 


?�5 = 12 ∗ # ∗ �� 
(5.3.3) 

All system natural frequencies of relevance are listed in Table 5.3-1. The potential energy 

from importance for the belonging natural frequency will be mentioned in the text below.   

Table 5.3-1 - natural frequencies (P2 hybrid) 

 2nd gear [Hz] 4thgear [Hz] 5th gear [Hz] 

f1 3.547 6.45 7.45 

f2 13.65 13.75 13.81 

f3 16.81 16.81 16.81 

f6 22.09 23.21 23.65 

f7 51.99 51.99 51.99 

f10 55.81 55.93 55.58 

f11 225.28 188.33 87.34 

f12 230.67 230.68 230.70 
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The natural frequencies f2-f10 and f12 differ only slightly and show independency on the 

shifted gear. This means that the reason and stiffness having effect on them is a component 

besides the gear box. Their source are according to the modal analysis of the powertrain 

mainly the DMF, the tires and wheel-road contact. The natural frequency increases with 

decreasing gear ratio due to the increasing inertia of the transmission output side during low 

translations. In the following figures are the natural modes of the powertrain for the natural 

frequencies in Table 5.3-1. On the y-axis is the relative comparison of the amplitude of all 

mass points in the powertrain and 1 is the highest value. After the gear pairs the deflection 

direction changes due to translation. All figures illustrating the inertia deflection have been 

therefore modified to compensate this effect.  

 

 

Figure 5.3.1 - f1 - for the 2nd gear – jerking natural mode (top), potential energy (bottom) 

In Figure 5.3.1 is the 1st powertrain natural mode for the 2nd gear shifted and potential 

energy for each stiffness. 

The shape for all 1st natural frequencies have the same deflection and only their value differs 

slightly. In the modal analysis has been found out that its main source are the side shafts and 

wheels. Due to its low value, which is in the ‘vibration range’, it will be perceived as jerking 
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and excitation appears predominantly during cycling or is road initiated. Excitation through 

engine rotational irregularities is excluded. 

 

 

Figure 5.3.2 - f2 - DMF natural mode (top), potential energy (bottom) 

f2 represents the DMF natural frequency (Figure 5.3.2). It is called DMF natural frequency 

due to the deflection node between the DMF primary and secondary mass. Mostly affected 

is the primary side of the DMF. This frequency is from high importance during idle and run-

up. For the 4-cylinder engine it will be passed only during start-up, since the relevant engine 

rotational speed n is 412.44 rpm, which is below the operating range.  

 

 

Figure 5.3.3 - f3 – side shafts and wheels twist against each other (top), potential energy (bottom) 

f3 (Figure 5.3.3) has the same value for all gears and is already in the speed range from 

importance for 2-cylinder engines (1008.6 rpm). Excitation of this frequency causes the right 
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and left side shaft and wheels to oscillate against each other. Mainly affected are the vehicle 

wheels and the source is the wheel-floor contact stiffness due to the potential energy 

(Figure 5.3.3 – bottom – Vehicle.Rad_Borden_vore/voli).  

 

 

Figure 5.3.4 – f6 - Wheels oscillate against transmission (top), potential energy (bottom) 

In SimulationX has been found out that f6 has mainly impact on the electric motor and 

wheels. The side shafts and wheel-floor contact have the most significant potential energy 

(Shaft_X, Vehicle.Rad_Boden_X). Through variation of the side shaft stiffness the natural 

frequency f6 can be shifted if needed. For the second engine order this frequency value still 

lies beneath the usual engine speed operation range (for the 4-cylinder engine) and has 

therefore no impact during normal operation. 

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

C
ra

n
k

sh
a

ft

D
M

F
 p

ri
m

D
M

F
 s

e
c

K
0

_
E

M

F
S

 1
1

F
S

 1
2

F
S

 1
3

H
S

_
2

1

H
S

_
2

2

H
S

_
2

3

G
1

G
2

G
3

G
4

G
5

G
6

G
R

O
S

_
1

1

O
S

_
1

2

O
S

_
1

3

O
S

_
2

1

O
S

_
2

2

O
S

_
2

3

D
if

fe
re

n
ti

a
l

S
h

a
ft

 r
ig

h
t_

d
u

m
m

y

S
h

a
ft

 r
ig

h
t_

in

S
h

a
ft

 r
ig

h
t_

o
u

t

S
h

a
ft

 l
e

ft
_

d
u

m
m

y

S
h

a
ft

 l
e

ft
_

in

S
h

a
ft

 l
e

ft
_

o
u

t

F
ro

n
tw

h
e

e
l 

ri
g

h
t

F
ro

n
tw

h
e

e
l 

ri
g

h
t 

2

F
ro

n
tw

h
e

e
l 

le
ft

F
ro

n
tw

h
e

e
l 

le
ft

 2

R
e

a
rw

h
e

e
ls

V
e

h
ic

le

P
re

-s
e

t

Natural mode for f6=23.21



 

 

70 

 

 

 

Figure 5.3.5 – f7 - Right and left side shaft and wheels twist against each other(top), potential energy (bottom) 

Similarly to f3 when excitement of f7 occurs (Figure 5.3.5), oscillation between the right and 

left side shaft and wheels arise with its most significant source of potential energy in the 

wheel stiffness (Vehicle_Reifen_X). f7 is the first natural frequency having relevance during 

normal operation for a 4-cylinder engine (for 51.99 Hz -> 1559.7 rpm). 

 

 

Figure 5.3.6 – f10 - Lower differential natural mode (top), potential energy (bottom) 
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For f10 (Figure 5.3.6) a twist of the transmission against the DMF, side shafts and wheels is 

visible. This state is referred to as differential natural frequency.  

 

 

Figure 5.3.7 – f12 - Side shaft swing against each other (top), potential energy (bottom) 

f12 (Figure 5.3.7) has similarly as f3 and f7 effect on the side shafts and is caused by the side 

shaft stiffness, mainly due to the left side shaft stiffness (Shaft_VL.c_SW).  

f11 is also gear dependent and caused by the input shaft stiffness. Due to this fact can be 

assumed that it will be from highest importance during time domain analysis. This 

presumption will be confirmed and described more in detail in section 5.4.4. 

5.4. Time domain analysis in hybrid specific operating conditions 

5.4.1. Idle - rattle 

The phenomena rattle often occurring during idle has been analysed. Whether rattle 

appears in the transmission or not can be found out when analysing the normal force on 

both tooth flanks. When the gear set is engaged, the force acts only on one of the tooth 

flank, depending on the drive source. In our case the drive source is either the 4-cylinder 

engine or the test bench, which is keeping the simulation model at a desired constant 

velocity.  

In Figure 5.4.1 are the difference in position (top) and forces (bottom) acting on the left and 

right tooth flank. The difference in the position difference between the left and right tooth 

flank has the magnitude of the backlash between them (80 µm). In case of rattle the position 
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difference would have to reach this value and interference of the two plotted parameters 

would be visible in Figure 5.4.1. Same accounts for the force acting on each tooth flank.  

 

According to Figure 5.4.1 – bottom no force acts on the left tooth flank indicating that no 

contact between the left and right tooth flank occurs. Therefore can be deduced that for the 

analysed 4-cylinder P2 hybrid no rattle has been detected. To figure out how much of an 

impact on this result the DMF has, another simulation without has been conducted (Figure 

5.4.1.-left). Also for a powertrain without DMF the same results were found. Although in 

both cases no rattle occurs, clear difference between the powertrain without and with DMF 

is apparent. Without the DMF, the normal force acting on the tooth flank has a significantly 

higher amplitude. Likewise a higher movement during idle is visible in the position difference 

diagram. From these two can be concluded that the DMF is already fulfilling its purpose in 

the powertrain.  

5.4.2. Hybrid start/tow launch 

The hybrid launch, when the crankshaft velocity is being raised from 0 to its firing velocity, 

has usually negative effect on the powertrain dynamics. To optimize the behaviour, various 

conditions for the hybrid launch have been tested. Three variables have been modified to 

analyse their effect on the system response. The clutch transition time, which defines the 

period in which the clutch is closing, second the clutch torque which defines how much 

torque can be transmitted by the clutch, and third the tow torque, which is the torque by 

which the electric motor torque will be raised during clutch closure.  

First the influence of the clutch press torque will be investigated. For the transition time 

tt=0.1 seconds will be set and for the tow torque Tt=0 Nm. The transmissible torque for the 

 

 

Figure 5.4.1 - Position difference and normal tooth flank force without DMF (left) and with DMF (right) 
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clutch in conventional vehicles has usually a magnitude up to 90 Nm during start-up 

operations and is then being raised to a value depending on the maximum engine torque 

after the engine is ignited. To show why awareness of the chosen value is important and its 

impact on the dynamics, two simulation for 15 Nm and 80 Nm have been proceeded.  

 

In Figure 5.4.2 influence of the clutch torque magnitude is visible. The short excitation after 

the 2nd second, when both masses reach the same velocity is caused by the torque 

difference between the torque provided by the clutch and needed by the engine. This effect 

is visible in Figure 5.4.3.  

 

After the DMF secondary side velocity balances, the torque withdrawal from the clutch 

decreases from 80 Nm to approximately 8-9 Nm according to Figure 5.4.3, increasing slowly 

again with increasing velocity. This torque difference causes oscillation at the clutch leading 

to the conclusion that higher clutch torque will lead to increased vibration. To completely 

avoid it, the clutch torque would have to be decreased again as soon as the secondary side 

reaches the same velocity as the electric motor and transmission side or the clutch torque 

would have to be decreased to an even lower value almost equal to the tow-torque 

according to Figure 5.4.3 (right). Latter has negative influence on the duration during which 

the electric motor and crankshaft velocities equalize, in this case ca. 2.5 seconds after clutch 

closure (for 15 Nm clutch torque) instead of 0.4 second (for 80 Nm clutch torque). The 

difference in time in which the crankshaft or DMF are being balanced and equalize to the EM 

velocity is according to the torque, which is being transmitted by the clutch, significantly 

shorter when 80 Nm are set (Figure 5.4.3). 

 

Figure 5.4.3 - Clutch torque withdrawal for 15 Nm (left) and 80 Nm (right) 

 

Figure 5.4.2 - Electric motor (light blue) and DMF secondary side (dark blue) angular velocity with 15 Nm (left) and 80 

Nm (right) clutch torque 
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When the clutch torque is being kept at 15 Nm, Tt=0 and only the clutch closing transition 

time is being modified from 0.1 to 1 second, the velocity of the secondary side changes more 

smoothly in the beginning of the engagement process. Besides the prolonged speed 

balancing time, no further difference is visible (Figure 5.4.4)  

 

What noticeably changes is the power loss process in the clutch according to Figure 5.4.5. 

The power loss is given by the relative velocity between the two shaft ends and the clutch 

torque, both in dependence on time. When the clutch is being closed quickly, the two clutch 

discs don`t have enough time to even out their velocity causing a sudden transfer of the 

maximum clutch torque. In this moment although the two sides are still slipping causing 

torque to ‘get lost’ due to dissipation by friction. When providing enough time, torque 

transmission occurs in a more even manner. The overall energy loss is given by the area 

below the curves and seems to be similar for 0.1 second and 1 second clutch closing time. It 

is clear, that when raising the clutch torque, the power loss curve will have a steeper ascent 

but at the same time sharper decline resulting in a similar power loss as for 15 Nm clutch 

torque.   

 

The last parameter modified is the tow torque. The tow torque mainly influences the 

acceleration, i.e. how fast the engine velocity increases. In powertrains where a higher tow-

torque is needed for the engine to reach its firing velocity, the torque provided from the 

electric motor has to be increased to ensure enough torque for the driving desire and engine 

start up. If the electric motor torque is not being increased a sudden velocity decrease at the 

 

Figure 5.4.5 - Power loss for 0.1 s (left) and 1 s (right) clutch closing time 

 

Figure 5.4.4 - Electric motor (light blue) and DMF secondary side (dark blue) angular velocity with 0.1 s (left) and 1 s 

(right) clutch closing time 
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time when the clutch starts to close would occur slowing further down the acceleration 

process.  

The clutch torque will be kept at 80 Nm, the clutch closing transition time at 0.1 second. As 

already mentioned before and visualized in Figure 5.4.3 (left), in case of the 4-cylinder 

engine the tow torque has a very low mean value of approximately 8 Nm. For this reason no 

considerable velocity decrease is visible in neither Figure 5.4.2 nor Figure 5.4.4 and only a 

slight oscillation can be seen as an example of this impact in Figure 5.4.6. (left), after the 2nd 

second, when the clutch starts to close. A dotted straight line has been inserted to highlight 

the decrease in acceleration. In Figure 5.4.6 (right) the electric motor torque has been raised 

at the same time as the clutch starts to close. Slight improvement of the dynamic behaviour 

market with a red circle and a stable acceleration is visible.  

 

To avoid all three mentioned occurences visible in Figure 5.4.3, Figure 5.4.4 and Figure 5.4.6 

during clutch closure a special procedure has been developed. The clutch torque is during 

closure being slowly raised to avoid losses and to keep the advantage of a quicker velocity 

equalization after it is closed. Also the tow torque is being raised simultaneously to avoid a 

velocity drop at the wheels and keep the transmitted torque constant. After engine ignition 

the electric motor torque is being lowered to a value for keeping the driving desire.  

5.4.3. Cycling 

The results presented in this section corresponds the driving state cycling when sudden load 

changes are being made by the driver. So called tip-in, which is the sudden adding of engine 

speed by stepping on the gas pedal, and tip-out or sometimes also called back-out, which is 

the abrupt removal of the foot from the gas pedal. Change of mind situations like this occur 

on a regular basis during operation, e.g. when the traffic light turns from red to green, during 

heavy traffic or during overtaking.  

For the analysis the 2ndgear and 5th gear have been chosen to understand how the 

transmitted output torque affects the system behaviour during cycling. Due to the higher 

translation in 2nd gear also the output torque is higher than for 5th gear. To include analysis 

of torque transmission through the full input shaft as well as through the hollow input shaft. 

The results are listed below. 

 

Figure 5.4.6 - Electric motor angular velocity for 0 Nm (left) and 15 Nm (right) torque increase during clutch closure 
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Second gear 

 

First, the arc spring is deflected in the opposite direction during zero load than during tip-in. 

This is given by the fact, that the system is first driven by the test bench visible in Figure 

5.2.4. When load is being increased, the engine cylinder pressure starts to increase 

transmitting more torque to the powertrain and the engine takes over the propulsion of the 

system, which is why the DMF spring is being deflected in the opposite direction. After tip-

out (zero load) from the 7th second the system is still driven by the engine and the spring 

stabilizes in a neutral position. These changes of load also have impact on the velocity 

development. Upswings with a frequency of ca. 3.5 Hz are visible when the load changes and 

stabilizes and indicates the occurrence of jerking (Figure 5.4.8).  

 

All inertias in the powertrain have been checked for further excessive torsional oscillation or 

strain. None has been detected. 

In Figure 5.4.9, the DMF inner torque and its characteristic curve is shown. During cycling in 

2nd gear, the DMF operates in its second stage.  

 

Figure 5.4.8 - Cycling 2nd gear - angular velocity at the DMF primary side and secondary side (left) and clutch (right) 

 

Figure 5.4.7 - Cycling - angle difference DMF arc spring – second gear 
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In the left corner of the DMF characteristic curve (Figure 5.4.9 - right) deflection in the 

opposite direction is visible (red circle) and verifies the test bench as a driving force in the 

first two seconds. The end stop is not being reached, the curve has a smooth course.  

Fifth gear 

The angle difference for the DMF during 5th gear is the same as for 2ndgear in Figure 5.4.7. 

 

Compared to acceleration in 2nd gear, the amplitude at the DMF secondary side is 

significantly smaller; oscillation amplitude appears lower but at higher frequency. The 

difference is noticeable when studying the angular velocity of the clutch and electromotor. 

According to Figure 5.4.8 in 2nd gear an amplitude of almost 30 rpm is being reached 

whereas in 5th gear only 10 rpm (Figure 5.4.10). This can be explained by the fact that during 

5th gear a torque of almost the same value as at the engine is being transmitted to the 

wheels resulting in lower load shocks during cycling. The system stabilizes faster.  

To ensure lower oscillation during load change, a development with a lower gradient would 

have to be chosen to lower the load shock, in other words the load change would have to be 

prolonged and thus the reaction time of the vehicle slowed down.  

Another possibility is to lower the spring stiffness of the DMF in second stage to lower the 

overall amplitude. A disadvantage would be slower settlement and a necessary redesign of 

the DMF since when lowering the second stage stiffness also the end stop would be reached 

earlier causing higher oscillation amplitudes. In Figure 5.4.11, #� has been lowered from 7.4 

Nm/deg to 3 Nm/deg. Due to this also the deflection angle had to be prolonged to ensure 

 

Figure 5.4.10 – Cycling 4th gear - angular velocity at the DMF primary side and secondary side (left) and clutch (right) 

 

Figure 5.4.9 - Cycling 2nd gear - DMF torque (left) and DMF characteristic curve (right) 
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operation in second stage. A slight decrease of the oscillation amplitude is apparent from the 

2nd second to the 8th second (Figure 5.4.11 – left). However the jerking amplitude stays 

almost the same. Confirmation of main operation in the second stage is in Figure 5.4.11 – 

(right).  

 

5.4.4. Run-up 

Linear run-upfrom 1000 rpm to 6300 rpm has been performed under full and half load for 

the 4th and 5th gear. The analysed values are angle, angular velocity and acceleration in all 

shafts as well as the inner deflection torque acting on the shafts. Further are the results of 

the analysis. 

Fourth gear 

Full load 

In fourth gear, the clutch K2 is engaged and torque is being transmitted via the hollow shaft 

to the 1. output shaft, see Figure 5.4.12 – blue path.  

 

To determine which natural frequencies are being excited during run-up, the data obtained 

from the simulation in SimulationX have been analysed in Matlab and presented via order 

analysis, Campbell diagram and amplitude analysis. It has been found out that the crucial 

frequency for the fourth gear is 188 Hz. This value is consistent with the values determined 

in the modal analysis (viz. Table 5.3-1).  

Figure 5.4.12 - Fourth gear power path 

 

Figure 5.4.11 - Cycling 5th gear – clutch angular velocity (left) and DMF characteristic curve (right) with c2=3Nm/deg 
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The full input shaft which is connected to K1 is divided into three inertias and lies inside the 

hollow shaft connected to K2 (Figure 5.2.5). Their mass depends on the gear position. In this 

case the gears are positioned closer to the end of the shaft. Due to the small distance 

between gear 3 and 5 is the shaft stiffness between them higher than the stiffness between 

the clutch and gear 3. Similarly at the remaining shafts. As visible in Figure 5.4.13, the cause 

of the deflection in this frequency is partly the stiffness on the output shaft between the first 

and second inertia and partly the one on the input shaft between the first and second 

inertia, thus the smaller stiffness. This assumption was confirmed by examination of the 

angular velocity between the shaft endings. According to Figure 5.4.13 and this context also 

the amplitude at the full shaft (input shaft) should be of highest value. This conjecture can 

be inspected via the Campbell diagram. 
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In Figure 5.4.14 the Campbell diagram and amplitude analysis for a full-load run-up is shown. 

A clear increase of the amplitude is visible at 188 Hz confirming the previous theory. The 

influence of the 2nd engine order followed by the 4th and 6th order can be seen in Figure 

5.4.15. Following is another excitation at ca. 51 Hz which is according to the modal analysis 

from section 5.3 caused by the wheel-floor contact. This frequency has greater influence on 

the angle difference as visible in Figure 5.4.15. 

 

 

 

Figure 5.4.14 - 4th gear full load Campbell diagram (top and middle) for DMF secondary side angle difference (top - left), 

speed difference (top - right), acceleration (middle – left); full shaft acceleration (middle – right) and amplitude analysis 

(bottom) - DMF (left), full shaft (right) 
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Even though the amplitude caused by 2nd order oscillation has the highest value, the 4th and 

6th order vibration are from bigger importance since they cause excitement at engine speeds 

lying in the usual operation range (1500-4000 rpm).  

Part Load 

Similar are the results for part load run-up: 

 

According to Figure 5.4.16, the excitement is as expected during full load stronger than 

during half load run-up. The frequency 188 Hz corresponds for the 2nd order to a speed of 

5640 rpm and won’t be reached often since normal vehicle operation usually occurs 

between 2000-4500 rpm. Because of this, the 4th and 6th order are of bigger importance, 

since they cause excitement at a speed of 2820 rpm and 1880 rpm.  

Fifth gear 

Full load 

In 5th gear is K1 engaged and the torque is being transmitted from the full shaft to the 

wheels over the second output shaft OS2 according to Figure 5.4.17. 

 

Figure 5.4.16 - 4th gear part load Campbell diagram - DMF (left), full shaft (right) 

 

Figure 5.4.15 - 4th gear full load order analysis 
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Excitation during 5th gear occurs at a frequency of 87 Hz corresponding to an engine speed of 

2610 rpm for 2nd engine order.  

 

The enlargement point of excitement is similarly as before the full shaft where torque is 

being transmitted and the deflection is then being increased by the second output shaft 

stiffness. Mainly affected are the first output shaft OS1 and second output shaft OS2. The 

transmission swings against the engine and side shafts. Since the excitement occurs at an 

engine speed lying in the usual operation range also for this gear an attempt for optimisation 

should be made.  

 

Figure 5.4.18 - Deflection and potential energy (5th gear) 

 

Figure 5.4.17 - Fifth gear power path 
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The highest vibration amplitude has been found at the output shaft and is mainly due to 2nd 

engine order. Its peak lies as mentioned before at 87 Hz. The 4th order has small influence at 

ca. 1300 rpm speed. 

Part Load 

 

According to Figure 5.4.20 the excitement at part load is visibly lower than at full load. To 

confirm this assumption likewise the amplitudes will be compared. 

 

Figure 5.4.20 – 5th gear part load Campbell diagram (left) order analysis (right) 

 

Figure 5.4.19 – 5th gear full load Campbell diagram (left) order analysis (right) 
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The maximal acceleration value during part load is 825.32 rad/s2, during full load 1169.74 

rad/s2. 

In this case the 4th and 6th engine order have almost no influence on the excitement. The 

input shaft stiffness has a significant role in both gears and their reconstruction should be 

therefore considered.  

5.4.5. Run-up – rattle 

Rattle has been also investigated for run-up again for the 2nd and 4th gear to compare the 

effect of the transmitted torque and drag torque on the system. The model for idle 

(appendix 3 and 4) can be used after removing the idle load-regulator and adding a velocity 

specification for normal run-up as described in section 5.2.4.  

Since during run-up the main clutch and one of the two secondary clutches are closed, 

torque is being transmitted and all gears spin at a certain velocity given by the shifted gear 

pair. Likewise the connection allows transmission of engine oscillation in the powertrain.  

As described in section 5.4.1, the normal force acting on the tooth flanks and the position 

difference have to be examined. 

Second gear 

For the second gear, different gear pairs for full load have been investigated to understand 

the effect of the gear pair resistance and velocity on rattle. 

 

Figure 5.4.21 – 5th gear amplitude - part load (left) vs. full load (right) 
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How to indicate whether rattle occurs has been described in section 5.4.1. The appearance 

of rattle is visible for both gear pairs in Figure 5.4.22. Position differences of bigger 

magnitude and bigger force acting on the left tooth flank is visible for the first gear pair. In 

the sixth second an angular velocity is being reached after which rattle settles and the 

normal force on the right tooth flank steadily increases indicating that the powertrain is 

being driven by the engine.  

Fourth gear 

In the fourth gear also the impact of load is being examined. Three different loads are being 

applied; 20%, 60% and 100% (Figure 5.4.23).  

 

 

 

Figure 5.4.23 - Position difference (top) and normal tooth flank force (bottom) at 20% (left), 60% (middle) and 100% 

(right) 1st gear pair 

 

Figure 5.4.22 - Position difference (left) and normal tooth flank force (right) for the 1st gear pair (top) and 5th gear pair 

(bottom) 
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Comparison 

When the 4th gear is shifted, all transmission shafts except of the hollow shaft (input shaft 2) 

rotate with a higher velocity than in 2nd gear. The bearing and synchro drag torque are 

dependent on the angular velocity difference between the gear wheel and output shaft. 

From this knowledge it can be concluded, that both drag torques have higher value in 4th 

gear than in 2nd gear and increase with higher angular velocity. Further they have higher 

value for the 1st gear pair than for the 5th gear pair. As already mentioned before, the 

splashing drag torque depends on the gear wheel tip radius, gear width and velocity. 

Although the loose gear velocity of the 1st gear is about 3.5 time lower than for the 5th gear, 

it has been found out that the splashing drag torque for the 1st gear pair is higher than for 

the 5th gear pair. The reason is the gear tip radius having a bigger impact on the splashing 

drag torque than the velocity. The bigger the gear tip radius, the more immerses the wheel 

into the oil causing higher resistance against the rotational movement. 

The inertia acting on the output side of the transmission varies depending on the shifted 

gear. With increasing gear ratio likewise increases the inertia having a damping effect and 

lowering rattle. 

Further dependence on load can be seen significant. Higher load causes an increase in the 

normal tooth flank force and also bigger position differences as visible in Figure 5.4.23. 

From this insight it can be concluded that the normal force acting on the teeth flanks is 

dependent on the torque which is dependent on the shifted gear. On the first gear pair act 

bigger forces than on the 5th gear pair in all situation. Additionally it seems that the position 

difference has the same dependency on the angular velocity.  

For the overall vehicle can be deduced that in 2nd gear rattle will occur at lower frequencies 

than in 5th gear and will be thus perceived as a humming noise whereas in 5th gear the 

transmitted noise will have a more sharp appearance.  

5.5. Chapter Conclusions 

The powertrain dynamic behaviour has been analysed in chapter 5. It has been found out, 

that the DMF with the initial settings is fulfilling its purpose. The excitement of the natural 

frequencies is mainly caused by input shaft 1 and could be therefore improved only by 

modifying its stiffness. In this case a higher stiffness would be favourable and could be 

achieved by moving the gears positioned in the middle of the shaft closer to the clutch, by 

increasing the shaft diameter or choosing a different material.  

No significant negative impact has been found for hybrid start and idle rattle which also 

indicates a sufficient DMF setting.  

For cycling in second gear the occurrence of jerking has been found, a for the passenger very 

inconvenient phenomena which can only be avoided by prolonging the load change 

gradient. Prolonging the load change would mean a slower vehicle reaction to the driving 
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demand and is insufficient for the driver. Further avoidance of jerking during load change 

can be only affected by the driver himself. 
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6. DMF optimization 

The current goal in the automotive industry is as mentioned before lowering the fuel 

consumption. This can be achieved e.g. by variable displacement. Variable displacement is a 

technology which enables improvement of engine fuel economy by deactivating cylinders 

and is used in multi-cylinder engines during light-load operation. The deactivation is ensured 

by keeping the intake and exhaust valves closed for particular cylinders. Besides lowering the 

amount of fuel pumped into the cylinders, pumping losses are minimized.  

The DMF will be optimized to ensure good decoupling in both operation with all cylinders 

working and during 2-cylinder activation. 

Since in the analysis before a premium DMF has been used and its parameters for the four 

cylinder engine are already showing favorable behavior (the DMF natural frequency is not 

being excited during general operating states), optimization possibilities for the 4-cylinder 

engine are low.   

To point out the difference in excitation between the 2-, and 4-cylinder engine, a 

comparison of the piston forces as function of the crankshaft angle behind the DMF will be 

made. The initial conditions are the same as for the 4-cylinder engine. After, the DMF will be 

adjusted for the 2-cylinder and 4-cylinder activation by modifying the given parameters. For 

2-cylinder activation, the maximum engine static torque is half of the 4-cylinder static 

torque, i.e. 125 Nm. All parameters for the transmission and side shafts stay the same. The 

initial stiffness and torque ranges for the DMF are: 

• J1= 7.5e-2kgm2 

• J2= 7.0e-3kgm2 

• k1=2.5 Nm/° from ca. 1° 

• k2=7.4 Nm/° from 5.5°/14 Nm 

• k3=23.7 Nm/° from 47.7°/326 Nm 

In general for torque fluctuation reduction the stiffness coefficients have to be reduced and 

the inertias increased. When increasing the inertia the natural frequency value decreases 

whereby the secondary inertia has a bigger influence than the primary one which could be 

due to the fact that for low values of inertia after an increase, the natural frequency value 

decreases exponentially (24). This cannot be done limitlessly. When increasing the inertia 

more space is needed and risk of flywheel wobble increases. When reducing the spring 

stiffness, the deflection angle increases and more installation space is needed for the spring.  

For this example both inertias will be kept at the initial value. The number of stages, their 

action length and stiffness are going to be modified. The analyzed parameters to evaluate 

the modification proceeded are: 

• the deflection angle between both flywheels  
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• acceleration of the secondary flywheel inertia  

• the DMF characteristic curve 

The influence of parameter modification will be compared for run-up since all frequencies 

are passed during it. The 5th gear will be analyzed since the DMF natural frequency achieves 

its highest value for it. Dynamic behavior at the DMF secondary side and thus its decoupling 

effect from engine oscillation is from importance and going to be inspected. The initial state 

will be analyzed to use it as a point for comparison for the modified values.  

To design a DMF with reasonable parameters the DMF calculation tool presented in section 

3.2.3 will be used. 

6.1. Comparison 2-cylinder- and 4-cylinder activated IC engine  

As already mentioned before, the excited order differs for the 2-cylinder and 4-cylinder 

engine. In 2-cylinder engines firing occurs once every revolution whereas in 4-cylinder 

engines twice every revolution. In case of cylinder deactivation act forces according to Figure 

6.1.1, in both a segment of 720° (1 cycle) is shown: 

 

From this statement can be already deduced, that with a rising number of cylinders 

rotational irregularities decrease. Orders of higher value excited during run-up are usually 

multiples of the basic order (e.g. for the 4-cylinder engine 2,4,6,8 order). For excitation this 

means a negative influence on the system since especially the natural frequencies of lower 

value determined in the modal analysis in section 5.3 are shifted into the normal operating 

range and gain on importance. According to equation (5.3.2) are for the 4-cylinder activation 

all frequencies in Table 5.3-1 up to �6 only for the start-up process from relevance since 

they are in a speed range below 1000 rpm. Differently for 2-cylinder activation. All 

frequencies from 16 Hz have to receive attention.  

Another important factor is the damping ratio. The 4-cylinder engine operation starts in the 

overcritical area (Figure 4.1.2– frequency ratio over √2) whereas for 2-cylinder engines in 

the critical area where the magnification factor reaches its highest value. To show this effect, 

different diagrams for angle, velocity and acceleration will be compared. As already 

mentioned, the 5th gear has been chosen to check the for the DMF most critical setting. 

 

Figure 6.1.1 - Forces acting on the pistons for 2-cylinder activation (left) and 4-cylinder activation (right) 
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In Figure 6.1.2 is the comparison of the angle difference amplitude between the primary and 

secondary DMF inertia for the 2-cylinder and 4-cylinder engine. According to it is the 1st 

engine order for the 2-cylinder engine and the 4th order for the 4-cylinder engine from 

greater importance. A significant increase of the amplitude is visible. The biggest influence of 

the engine order can be seen when comparing the angle difference amplitude of the 2-

cylinder and 4-cylinder engine. A clear contrast is apparent in Figure 6.1.3. 

 

 

Figure 6.1.2 – 5th gear comparison of angle, velocity and acceleration Campbell diagram for 4-cylinder activation (left) 

and 2-cylinder activation (right) 
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Irregularities at low engine speeds are even more significant for the 2-cylinder activation 

(about 25.85% higher amplitude according to the peak values visible in Figure 6.1.3) but 

even out with rising velocity.  

In this case the natural frequencies analyzed before should stay the same since the inertias 

included in the simulation model were maintained and only firing was disabled. Otherwise 

for a conventional 2-cylinder engine an increase of the natural frequency values would be 

expected due to the lower inertia of the crankshaft. 

The greatest risk sets the DMF natural frequency which should lay in a frequency range 

below idle. It has been found out to be in a range from 13.65-13.81 Hz for the 2nd to 5th gear 

according to Table 5.3-1. For the first engine order this means in the engine speed range 

from 818.94-828.42 rpm (equation (5.3.2)), which is still below the usual operating range 

and of relevance only during start-up. 

When changing the stiffness for the first state, the related change of the natural frequency 

has to be taken into consideration. For a higher stiffness also the natural frequency is 

increasing and opposite for lower stiffness. 

The excited frequency is according to Figure 6.1.4 (top) as expected for the 2-cylinder 

activation at the same value as for the 4-cylinder activation, 87 Hz. Its excitation amplitude 

can be lowered by optimizing the decoupling effect of the DMF. Besides the 1st engine order, 

which is from most significance with regard to the oscillation amplitude, also excitement of 

the 2nd and 3rd engine order is visible for the 2-cylinder engine.  

 

Figure 6.1.3 - 5th gear angle difference amplitude comparison for 2-cylinder and 4-cylinder activation 
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The DMF characteristic curve (Figure 6.1.4 (bottom)) shows that the end stop is not being 

reached during run-up and its main operating point is in second stage (end stop stiffness 

starts at 47.7°). The peaks in the first 10 seconds are due to the free angle between stopper 

and spring when the flange wings repeatedly hit the arc springs with unbraked force. As a 

countermeasure in some DMF additional friction devices are installed, which delays the 

rotation of the flange within a given working range. 

For side shaft dimensioning is knowledge about the acting torque from importance. 

Comparison of the filtered engine and side shaft torque is in Figure 6.1.5. 

 

Figure 6.1.4 – 2-cylinder activation order analysis (top) of secondary inertia acceleration and DMF characteristic curve 

for initial values (bottom) 5th gear 
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According to Figure 6.1.5 is the engine torque for the 2-cylinder activation as stated before 

half of the 4-cylinder torque, similarly for the right side shaft torque. The biggest difference 

is visible from the 14th second when almost the maximum engine velocity is reached. For 2-

cylinder activation torque has a significantly flatter course at high engine velocities with in 

contrary higher amplitudes due to the acting gas forces and latter indicating insufficient 

decoupling from the engine vibration. An attempt to improve the DMF will be made to 

increase the decoupling effect for 2-cylinder, 4-cylinder activation first separately to find 

then a DMF setting sufficient for both, i.e. for an engine with variable displacement.  

6.2. Adjustment for 2-cylinder activation  

In general for run-up, lowering the stiffness has positive effect in terms of engine vibration 

decoupling from the transmission. A one stage DMF with lowest possible stiffness is going to 

be tested. Figure 6.1.4 (bottom) has shown, that the maximum dynamic torque acting on the 

DMF is ca. 220 Nm. The spring is going to be adjusted to it, reaching its maximum deflection 

at this value. 

Using the Excel calculation file and considering the installation space parameters defined in 

section 3.2.3 a minimum stiffness value of 1.47 Nm/° for one spring results after adjusting 

the wire diameter to obtain a reasonable number of coils. Thus 3 Nm/° for the whole one 

stage DMF. 

1nd modification 2-cylinder: 

• k1=3 Nm/° from ca. 1° - 73.3°/220 Nm 

 

 

Figure 6.1.5 - Comparison engine torque (top) and right side shaft torque (bottom) for 4-cylinder (left) and 2-cylinder 

(right) activation 
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Figure 6.2.2 shows how angle difference is influenced. 

 

The maximum amplitude for the initial DMF setting is as visible in Figure 6.2.2	��-�5 =16.26° and after modification into a one stage DMF with # = 3	��/°, �R�K) = 13.07°. This 

means a 19.62% improvement of the dynamic behaviour.  

 

In Figure 6.2.3 is the acceleration amplitude comparison. The amplitude occurring at the 

resonance frequency analysed in section 5.4.4 is marked with a dotted line. For the initial 

state is the maximum amplitude in the given spot ��-�5� = 870.48 @/K��,g and for the modified 

 

Figure 6.2.3 – Comparison of the acceleration of the DMF sec. inertia - initial DMF vs. one stage DMF with k=3 Nm/° 

 

Figure 6.2.2 – Angle difference of the DMF sec. inertia with one stage DMF k=3 Nm/°  

 

Figure 6.2.1 - Determination of the lowest possible stiffness 
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DMF �R�K)� = 657.66 @/K��,g meaning a 24.45% improvement. Even bigger influence is 

apparent at low engine velocities; the acceleration amplitude lowers by ca. 30%. 

 

In Figure 6.2.4 is visible how the characteristic curve changes with modification. The end 

stop (from 73.33°) is not being reached, the setting is sufficient.  

6.3. Adjustment for 4-cylinder activation 

Same as in section 6.2 will be proceeded for 4-cylinder activation. The 3 stage DMF will be 

replaced by a single stage DMF with the minimum stiffness value determined using the DMF 

Excel calculation file presented in section 3.2.3. For the initial state a maximal applicable 

torque of 450 Nm was set.   

 

According to Figure 6.3.1 is the maximal torque reached during full load run-up ca. 325 Nm. 

Due to this a new maximal applicable torque of 350 Nm will be set.  

 

Figure 6.3.1 - Initial state DMF characteristic for 4-cylinder engine 

 

Figure 6.2.4 – Comparison DMF characteristic curve for initial state (left) and 1st modification (right) – 2-cylinder engine 
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The minimum stiffness is 2.38 Nm/°, i.e. k=4.8 Nm /° for the whole DMF.  

1nd modification 4-cylinder: 

• k1=4.8 Nm/° from ca. 1° - 72.92°/350 Nm 

 

 

Figure 6.3.3 – 1st modification DMF characteristic for 4-cylinder engine 

 

Figure 6.3.2 - Determination of the lowest possible stiffness for the 4-cylinder engine 
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When comparing Figure 6.1.3 (bottom) and Figure 6.3.4 (top) deterioration of the angle 

difference between ca. 1000-1500 rpm and almost no improvement in the rest of the 

rotational speed range is visible. The overall acceleration is showing improvement after 

modification of around 14.64%. 

6.4. Adjustment for 2- and 4-cylinder activation, variable displacement 

When combining the knowledge gained in the sections before, an attempt of adjustment for 

an engine with variable displacement can be made. In this case an optimisation to enable 

the deactivation of 2 of the 4 cylinders was chosen. The 3 stage DMF will be replaced by a 2 

stage DMF to gain more deflection space for the first and second stage. 

With addition of the second stage the lowest stiffness values for both stages have to be 

found similarly as in the previous section. The stage 2 torque will be first kept at the same 

value, i.e. 220 Nm. The minimal values are in Figure 6.4.1: 

 

 

Figure 6.3.4- Comparison of the angle difference (top) and acceleration (bottom) for initial state vs. 1st modification 

(one stage DMF) 
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With #�) = 1.8	��/° for spring 1 und #�� = 1.7	��/°  for spring 2 are the final stiffness’ 

deflection angles and torque stages due to the parallel arrangement (#� = #�) + #��): 

2nd modification: 

• k1=3.6 Nm/° from ca. 1° 

• k2=7 Nm/° from 60.1°/220 Nm 

#) is higher than for the initial settings since an increase of stage 1 stiffness had to be made 

to be able to transmit the maximum torque (350 Nm) chosen and can have a negative 

impact during lower velocities. 

 

In Figure 6.4.2 is the comparison of the angle difference of the initial DMF and the DMF after 

2nd modification for 2-, and 4-cylinder activation. For the 2-cylinder activation 14.82% 

 

Figure 6.4.2 – Comparison of the angle difference of the DMF sec. inertia for 2-cylinder (top) and 4-cylinder activation 

(bottom) - initial setting vs. 2nd modification  

 

Figure 6.4.1 - Determination of the lowest possible stiffness for engine with variable displacement 
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improvement has been attained. When 4-cylinders are activated, a clear deterioration is 

visible between 1000-1500 rpm caused as mentioned before by the stage 2 stiffness. 

 

Acceleration improves significantly according to Figure 6.4.3 for the 2nd modification when 

just 2 cylinders are activated. Significant improvement is visible especially during lower 

velocities up to 2000 rpm and during the resonance between 5000-6300 rpm. The lower 

stiffness ensures a better decoupling effect.  

 

As expected, almost no improvement has been made for the 4-cylinder engine and during 

low velocities the amplitude even worsens (Figure 6.4.4).  

The stiffness increase in stage one is given by the fact, that in case of the variable 

displacement option the overall applied torque increases limiting the minimum stiffness 

value. To be able to lower it again, stage 2 torque has to be varied. The static operating point 

is as mentioned before for the 4-cylinder engine at 250 Nm and for the 2-cylinder engine (or 

2-cylinder activation) at 125 Nm. Stage 2 torque should be a value in between to avoid 

multiple stage to stage transitions during normal operation. Two options have been tested:  

 

Figure 6.4.4 - Comparison of the acceleration for the DMF sec. inertia - initial vs. 2nd modification – 4-cylinder activated 

 

Figure 6.4.3 - Comparison of the acceleration for the DMF sec. inertia - initial vs. 2nd modification – 2-cylinder activated 
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3rd modification: 

• k1=2.8Nm/° from ca. 1° 

• k2=6 Nm/° from 53.57°/150 Nm 

4th modification: 

• k1=2.4 Nm/° from ca. 1° 

• k2=5.6Nm/° from 58.33°/140 Nm 

 

In Figure 6.4.5 are the characteristic curves for the initial state and all 3 modifications of the 

2 stage DMF. The results for all of them will be compared in the sections bellow.  

 

Figure 6.4.5 - DMF characteristic curve the initial state and all modifications 
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2-cylinder activation result comparison 

 

In Figure 6.4.6 is the comparison of the initial state with the 3rd and 4th modification for the 

angle difference and acceleration. A significant improvement compared to the initial state is 

visible for both values although the difference between the 3rd and 4th modification is very 

low. The 4th modification has in the amplitude comparison the lowest values and is therefore 

most suitable.  

All maximum amplitude values and the improvement percentage compared to the initial 

state are collected in Table 6.4-1. For acceleration the maximum amplitude at the resonance 

frequency was used. During lower velocities even greater improvement of about 40% has 

been achieved: 

Table 6.4-1 - Comparison of all modifications for 2-cylinders activated 

2-cylinder act. Angle difference 

[°] 

Improvement 

[%] 

Acceleration 

[rad/s2] 

Improvement 

[%] 

Initial state 16.26 -- 870.48 -- 

2nd modification 13.85 14.82 679.09 21.99 

Figure 6.4.6 - Comparison of the angle difference (top) and acceleration (bottom) for the DMF sec. inertia - initial vs. 3rd 

and 4th modification- 2-cylinder activated 
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3rd modification 12.89 20.73 650.23 25.30 

4th modification  12.56 22.75 636.38 26.89 

 

4-cylinder activation result comparison 

 

In Figure 6.4.7 (top) is the comparison of the angle difference, in the bottom of the 

acceleration for the initial state, 3rd and 4th modification for the 4-cylinder activation. 

Although the stiffness has been lowered considerably, for the angle difference is still a 

substantial deterioration visible. The best results for the angle difference between primary 

and secondary DMF inertia were achieved by the initial DMF settings with a first stage 

torque 14 Nm. This value is being overcome immediately after run-up and the DMF transfers 

to the second stage. Therefore for the 4-cylinder engine angle difference can be concluded 

that higher stiffness in the first stage is more favorable. Also the 1st modification with a 

higher stiffness in stage one was showing better results than the remaining modifications. 

The reasons will be discussed later. All modifications and the improvement compared to the 

 

Figure 6.4.7 - Comparison of the angle difference (top) and acceleration (bottom) for the DMF sec. inertia - initial vs. 3rd 

and 4th modification- 4-cylinder activated 
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initial state are in Table 6.4-2. As before, for acceleration the maximum amplitude at the 

resonance frequency was used: 

Table 6.4-2 - Comparison of all modifications for 2-, and 4-cylinders activated 

4-cylinder act. Angle difference 

[°] 

Improvement 

[%] 

Acceleration 

[rad/s2] 

Improvement 

[%] 

Initial state 4.20 -- 599.33 -- 

2nd modification 4.60 -9.52 565.33 5.57 

3rd modification 4.97 -18.33 536.72 10.45 

4th modification  5.00 -19.04 520.69 13.12 

 

The end stop has not been reached in neither of the modifications (Figure 6.4.8). 

6.5. Chapter Conclusions 

As expected are the optimization results for the 2-cylinder activation from bigger 

significance than for 4-cylinder activation. Improvement up to around 30% has been 

achieved by DMF modification and variation. For the 2-cylinder activation improvement for 

the angle difference between primary and secondary inertia is apparent as well as for 

acceleration. On the other hand for the 4-cylinder activation the result is somehow different. 

Angle differences have been found out to have better values for the initial DMF setting. This 

could be due to the two effects which start to emphasize when modifying the stiffness. 

When lowering the stiffness, the spinning movement between the primary and secondary 

DMF inertia increases. At the same time the natural frequency of the system is lowered 

resulting in a higher frequency ratio. This causes a shift of the powertrain in the overcritical 

area (Figure 4.1.2). For 2-cylinder activation is the described effect from bigger significance 

due to its initial position in the critical area. The 4-cylinder engine in contrast is already in the 

overcritical area. Decrease of the natural frequency has low potential effect and the 

increased spinning movement between primary and secondary DMF inertia starts to be from 

bigger importance. Resulting is a worsening angle difference as visible in Figure 6.3.4 (top), 

Figure 6.4.2 (bottom) and Figure 6.4.7 (top). Besides the angle difference a low improvement 

for the secondary inertia acceleration has been found.  

 

Figure 6.4.8 - 3rd (left) and 4th (right) modification DMF characteristic curve 
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For an engine with variable displacement, different settings have been tested. Even though a 

deterioration of 19% was noted for the 4th modification, for all other parameters greater 

improvement has been found. The angle differences during 2-cylinder activation are about 

three times larger compared to the 4-cylinder, therefore the degradation caused by the 

modification can be neglected. An average improvement of 15-20% has been achieved.  
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7. Conclusions 

In the first part of the master thesis an introduction to hybrid vehicles, passenger vehicle 

side shafts and dual-mass flywheels has been made. Dimensioning for both side shaft and a 

three stage DMF has been conducted depending on a given installation space and an excel 

file for calculation created to ease the dimensioning process. For the DMF parameters 

provided by the company IAV have been used and for these the dimensions of the DMF 

springs have been calculated.  

In the second part NVH in hybrid vehicle specific operating conditions (accounts mostly for 

the hybrid start) and components affecting NVH have been presented. A powertrain for 4-

cylinder engine passenger P2-hybrid vehicle in the program SimulationX has been created to 

simulate these operating conditions and to subsequently perform a modal analysis 

highlighting all powertrain natural frequencies. Time domain analysis for the chosen 

operating conditions has been conducted:  

• Idle (rattle) 

• Hybrid start/tow launch 

• Cycling 

• Run-up part load/full load&rattle 

During idle, two states with and without DMF have been tested to understand its influence. 

Although more oscillation and bigger forces acting on the teeth flanks are visible, no rattle 

for both has been detected. Therefore no action has to be taken. 

For the hybrid start different parameters having influence on the dynamic development 

have been analyzed and evaluated. When the clutch starts to close and torque transmission 

begins, influence of the clutch transition time, clutch torque and extra tow torque supplied 

by the electric motor is visible. To obtain as favorable behavior as possible, a compromise for 

the clutch transition time and appropriate regulation has to be integrated. A practicable 

possibility is a simultaneous development of the tow- and clutch torque, while the clutch 

torque should be slowly increasing during the closing process and reach its maximum value 

necessary for the engine torque transmission after the clutch is already completely engaged. 

How fast torque rises has to be defined whilst considering the performance loss depending 

on it. High torques in the starting phases of the engagement process cause oscillation and 

higher losses due to conversion into frictional energy.  

Cycling has been shown to excite vehicle jerking in both tip-in and tip-out situation in the 

second gear. As expected, the angular velocity amplitudes in the 2nd gear are much higher 

than for 5th gear. Dependency on the torque transmission to the wheels and gear dependent 

rising inertia can be used as an explanation. The easiest way to reduce these effects is to 

regulate the drivers wish before sending it to the actuator device to lower the load change 

gradient. This would have negative effect on the vehicle response dynamics and could be 
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negatively perceived by the driver. On the other hand jerking appears only during lower 

shifted gears in which the vehicle velocity is also low and a retard wouldn’t have as much 

impact as during higher shifted gears and vehicle velocities.  

A good method to detect natural frequencies affected and appearing during normal vehicle 

operation is the simulation of vehicle run-up. In this case the engine velocity range from 

1000-6300 rpm has been analyzed for the fourth and fifth gear. In fourth gear excitation of 

the natural frequency at 188 Hz for the 2nd, 4thand 6thengine order have been detected. 

From these is the 2nd order from lowest importance since for 188 Hz it appears at an engine 

velocity of 5640 rpm and therefore won’t be frequently reached during normal vehicle 

operation. The 4th and 6th engine order are in this case from bigger importance and 

modification should be considered. This could be done by increasing the hollow shaft (input 

shaft 2) and output shaft stiffness which have major influence.  

In 5th gear excitement at 87 Hz appears in this case only for the 2nd engine order which 

corresponds 2610 rpm. Similarly as before is the full shaft (input shaft 1) stiffness 

responsible for this natural frequency. This is due to the distance between the clutch and 

gears on the input shafts. An increase of the stiffness could be simply achieved by either 

rearrangement of the gears on the shafts, by choosing a different material or by increasing 

the shaft diameter.  

For the hybrid run-up rattle has been detected. Its cause has been analyzed in section 5.4.5. 

The biggest impact could be achieved by DMF modification. If the decoupling effect would 

be increased and thus the amplitude at the transmission input lowered also the loose gear 

movement could be decreased to a magnitude where no more rattle appears.  

In the last part of the master thesis and attempt of optimization of the DMF has been made. 

The given parameters for the 4-cylinder passenger vehicle powertrain where already 

optimized for operation and therefore only low improvement can be achieved. For this, 

operation of an engine with variable displacement has been included. The lowest possible 

stiffness values for all modifications have been detected using the excel DMF calculation file 

presented in section 3.2. A single stage DMF for 2-cylinder and 4-cylinder activation has been 

tested. For 2-cylinder activation improvement up to 30% has been achieved by modification. 

Other for 4-cylinder activation. As expected, lower improvements could be made by up to 

15%. When considering both operation possibilities, a two stage bow spring with three 

different stiffness and torque stage settings has been observed. Lowering stage 1 torque and 

the respective possibility to lower also stage 1 stiffness has shown even bigger improvement 

for 2-cylinder operation; about 40% compared to the initial setting. When all 4 cylinders are 

activated, deterioration of the angle difference increases with decreasing spring stiffness in 

stage 1. Since the angles compared to the 2-cylinder operation are significantly lower, this 

effect can be neglected. The acceleration amplitude has shown 13% improvement, a lower 

value than for the one stage DMF. This is due to the fact that the 4-cylinder engine operates 

in second stage at 250 Nm and in case of a one spring DMF a lower stiffness can be achieved 

than for the two stage DMF.  
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Another step would be to test the final DMF modification also for the remaining operating 

conditions mentioned in this thesis to inspect whether no deterioration occurs. Further 

optimization would show only slight improvement and other variants of DMF would have to 

be considered to improve the dynamic behavior especially during low engine velocities. 

DMFs are still a developed and researched component and probably many more varieties 

are going to be presented in the years to come. 
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Appendix 1 

Comparison of run-up simulation in 5th gear of powertrain with and without DMF. 
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Appendix 2 

Simulation model for the operating condition – idle – rattle and run-up – rattle, engine side 

 

 

Internal combustion engine 

Load regulation and angle signal 

Initial speed and cylinder mass initial regulation 

DMF 

Idle speed regulation 
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Appendix 3 

Simulation model for the operating condition – idle – rattle and run-up – rattle, transmission side 

 

Clutch and electric motor inertia 

Dual-clutch transmission 

Gear selection 

Half shafts, vehicle and test bench 

Drag torque definition 

Gear pairs with clearance 
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Appendix 4 

Simulation model for the operating condition – hybrid start, transmission side 

 

Clutch and electric motor inertia 

Dual-clutch transmission 

Gear selection 

Half shafts, vehicle and test bench 

Electric motor torque and clutch regulation 


