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Abstrakt

S r̊ustem popularity Otevřených strukturovaných dat, který je možné po-
zorovat např́ıklad na velikosti śıtě Linked Open Data (LOD), je nutné řešit
problémy škálovatelnosti a ř́ızeńı životńıho cyklu. V době vzniku této práce
neexistuje žádná z metod sledováńı změn a p̊uvodu která zároveň garantuje
integritu a dostupnost dat. Tyto problémy ohrožuj́ı stabilitu systému s propo-
jenými zdroji z r̊uzných domén sestavených z kř́ıžových referenćı URI, jakou je
např́ıklad model Sémantického webu: RDF.jené s decentralizaci. V této práci
prozkoumáme výhody a schopnosti řešeńı založeného na Blockchainu. Poskyt-
neme design, implementaci, test a vyhodnoceńı prototypu Distributed Ledgeru
který řeš́ı operace vytvořeńı, čteńı, úpravy, smazáńı (CRUD), oznámeńı o
propojeńı dat, a Publish/Subscribe Observer vzor. Naše řešeńı poskytuje
podporu pro sledováńı a p̊uvod verzovanych RDF tvrzeńı stranám, které si
vzájemně ned̊uvěřuj́ı, za použit́ı integrity a dostupnosti spojené s decentral-
izaci.

Kĺıčová slova Distribuovaná kniha, Sémantický Web, Blockchain, RDF,
Inteligentńı Smlouva, Corda
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Abstract

As Structured open data sees a growth in popularity evidenced by the size of
networks such as the Linked Open Data LOD cloud, aspects of its lifecycle
management and scalability have yet to be adressed. At the time of writing,
implementations of change tracking and provenance do not guarantee integrity
and availability, and depend upon individual domain owners to be deployed
and maintained. This represents a threat to the stability of a system in which
data is composed of cross-domain URI references such as the Semantic Web’s
de-facto model: RDF. In this paper we explore the advantages and capabil-
ities a solution based on Blockchain can provide when used as a support for
RDF. We provide the design, implementation, testing, and evaluation of a
Proof of Concept Distributed Ledger which addresses the use-cases of Cre-
ate, Read, Update, Delete (CRUD) operations, Linked Data Notifications,
and Publish/Subscribe Observer pattern. Our solution provides mutually dis-
trusting parties a support for traceability and provenance of versioned RDF
statements, leveraging integrity and availability with decentralization.

Keywords Distributed Ledger, Semantic Web, Blockchain, RDF, Smart
Contract, Corda
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Introduction

The efforts to develop infrastructure and technologies for efficient knowledge
provisioning and querying have allowed the Semantic Web, an extension of
the modern Web, to find increasing adoption. This is evidenced by the ever-
growing cloud of Linked Open Data 1.

Data in the Semantic Web carries richer information by itself than other
representation models or databases. The reason being meaning is not de-
rived from subjective application-specific interpretation, but a dereference-
able globally defined context and structure. The Semantic Web is a global,
structured representation of data entities with universal scope. The ultimate
goal being to empower its users with the ability to describe anything and
everything under one connected structural model, in a format designed for
both human and machine processing.

Naturally this endeavor is not short of challenges as it represents a funda-
mental leap from the traditional Web concept. Unfortunately the trade-offs
of such a change are not present or bear little significance in the modern
document-based Web. Amongst the major ones lies the coupling of cross-
domain data - the fact Semantic Web data is to be defined by resources ori-
ginating from foreign domains, which an agent must dereference but has no
control over. This raises questions about how will integrity and availability,
properties often found rather in databases, be ensured in such a system. A
proposed solution is the use of Change Tracking and Provenance as means
to provide integrity. This approach takes into account the evolving nature
of Web resources, and provides accountability for these changes. Several im-
plementations exist today [1–4]. Unfortunately, they all share the problem of
relying on the publisher’s good will to implement and maintain transparency,
in addition to expect the consumer to understand and adapt to each specific
mechanism. As of today, the responsibility for stable, transparent and reli-
able data sources lies in each owner/maintainer of data, which is not a scalable

1http://lod-cloud.net/#history
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Introduction

solution. It becomes clear that the successful Semantic Web requires a built-in
mechanism across all domains that provides change tracking, provenance, and
guarantees availability.

Our response to this problem is not a redesign of the Semantic Web, but
rather an alternative to its underlying management through the use of Block-
chain.

The concept of Blockchain was born along with its most famous use-case,
Crypto-currencies, and has drawn a lot of attention from the general public
due to its revolutionary approach to finance. Perhaps more interestingly, it
has sparked interest in the development of distributed systems capable of
guaranteeing integrity and reliable availability of records. A Blockchain can
be defined as a set of data blocks, each linked to the previous one forming a
chain, where new blocks can only be added, and no block can be removed nor
modified. A set of distributed entities called Ledgers keep track of the chain
and agree upon which block gets added next.

The objective of this thesis is to leverage the management of the Re-
source Description Framework RDF, Semantic Web’s de-facto data model,
with Blockchain-backed technology to provide a solution whereby users con-
sume, publish, and augment data that is enhanced with change tracking and
provenance.

Chapter 1 explores both background and related works. In Section 1.1
we provide a more in depth view of Semantic Web, Blockchain, and the ef-
forts towards bringing change tracking to RDF. Section 1.2 describes related
work involving Blockchain-supported RDF. Chapter 2 describes the solution
at hand, decomposed in conceptual overview, use cases, and a usage guide.
Chapter 3 presents the assessment of our work, both through conceptual com-
parison with existing solutions in Section 3.1, experimental storage scalability
in Section 3.2, and implementation testing in Section 3.3. Finally, we discuss
the results achieved and future works in Chapter 3.3.

2



Chapter 1

Background and Related Work

1.1 Background

1.1.1 The Semantic Web

The next step in the evolution of the Web as imagined by its original creator Sir
Tim Berners-Lee [5] consists of enhancing the representation of information as
structured knowledge, so that interlinked documents can bear meaning to both
humans and machines. The proposed mechanism to accomplish this relies on
identifying and organizing entities with Universal Resource Identifiers (URI)
[6]. By doing so, one can explore the meaning of an entity by dereferencing
the URIs composing it, hence the term Semantic Web [7].

One of Semantic Web’s most relevant design features is enabling applica-
tions to reason over knowledge and meaning so that the information returned
can be enriched by any inference the program was able to perform. Currently,
the vast majority of websites run under the form of Web 2.0 2 applications,
which in great part deliver content intended for human consumption. Altern-
atively, Web applications can be hard-coded to process, gather, produce, or
provide information, sometimes annotated with meta-data [8] through Applic-
ation Programming interfaces (API) for machine consumption. An arbitrary
application in Web 2.0 might be able to retrieve the current temperature of
Prague not because it knows what the concepts of Prague, Time, and Tem-
perature correspond to, nor the way they are related to one another. It only
knows the result of a specific request corresponds to the number obtained when
querying a particular Web service with the parameters Temperature, Prague
and Current Time with the correct structure (also specific to the applica-
tion). In Web 2.0, data is meaningless outside the context of the application
accessing it. In the Semantic Web, there exist models for the representation of
knowledge in abstract structures. Concepts such as Prague and Temperature

2http://www.paulgraham.com/web20.html
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1. Background and Related Work

can be described in existing specific representations of eg. City3 and Observ-
ableProperty 4 respectively, which bear properties of their own that link to
other information nodes. A major part of the logic in a Semantic Web Ap-
plication is embedded into the structure data has been given. The Semantic
Web is designed to organize concepts in such a way independently maintained
information sources across the Internet can enrich each other.

1.1.2 The Resource Description Framework

The Semantic Web Community has widely accepted the use of Resource De-
scription Framework (RDF) [9], a directed graph model. Datasets written in
RDF are composed of Statements, typically called Triples because of their 3
elementary parts: subject, predicate, and object. An RDF Subject can be
thought of as a node, which points to an Object (another node) through a
Predicate, the directed link between both. Alternatively, subjects can point
to Literals, non-node data from which it is impossible to establish predicates
- a leaf node in terms of graph representation. Common examples of literals
are Text and Numbers.

On top of the RDF set of predefined predicates which provide a basic
knowledge structure functionality, there exist more advanced constructs that
enable higher level abstractions. RDF constitutes a base for defining new en-
tities, but in order to model groups of similar resources and the relationship
between them, the RDF Schema (RDFS) [10] recommendation was created,
which is itself defined using RDF primitives. Its main purpose is to build
Vocabularies: descriptions of the characteristics of other resources, such as
the Range and Domain of properties (predicates). RDFS extends the capab-
ilities of RDF by providing a hierarchical class model to express information.
Subjects and Objects can be assigned a Class through the RDF Type predic-
ate. Another important abstraction of RDF is the Web Ontology Language
(OWL) [11]. OWL constructs allow developers to extend vocabularies based
off of existing ones by inferring parts of the latter. OWL provides a way to
express the subtle relationships between concepts. Eg. stating that Human is
an equivalentClass of Person, inferring any entity whose type points to Human
may also bear the same properties defined in the Person concept.

1.1.3 Linked Data

RDF in the Semantic Web is typically written following the 4 principles of
Linked Data [12]:

• Use URIs as names for Things

• Use HTTP URIs so they can be looked up

3https://pending.schema.org/City
4https://www.w3.org/2015/spatial/wiki/SOSA_Ontology
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1.1. Background

• Provide useful information when dereferencing the URI using standards
(eg. RDF)

• Include links to other URIs

The Linked Open Data (LOD) Cloud 5 represents the state of Linked
Data currently published with an open format. In order for a dataset to be
considered part of the LOD, it must obtain the 5 stars rating 6:

? Available on the Web with an open license.

?? Use of a structured data format (machine readable).

? ? ? This format must not be proprietary.

? ? ?? This format must use open standards from W3C such as RDF or SPARQL.

? ? ? ? ? It must be linked to other data in order to provide context.

Although the Semantic Web brings an evolved paradigm to describe and
share knowledge at a global scale, its underlying support is still based on the
stack that powers the modern Web. Consumers and Producers will still face
the following problems:

• Ensuring availability, which is more critical than in Web 2.0 where a
broken link to a 3rd party domain generally does not impact the in-
tegrity of the resource. In the Semantic Web, availability is critical for
consumers since the description of entities depends on it. This is es-
pecially troublesome taking into account Web pages and services can
go off-line without any notice, providing little to no support to handle
such eventuality. Efforts addressing this issue exist. Such is the case
of [13], where a database of back-links pointing at DBpedia 7 data is
periodically updated.

• Bad and good actors are very difficult to distinguish solely from data.
Both from the semantic and technical perspective, publishers can disturb
data that is linked to their own by deliberate tampering, wrong use of
vocabularies, etc. Data integrity needs to be protected from mis-use,
but also account for the potential modifications rightful owners might
introduce.

5http://lod-cloud.net
6https://www.w3.org/DesignIssues/LinkedData.html
7https://dbpedia.org
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1. Background and Related Work

1.1.4 SPARQL

So far we described the publication and enrichment of Linked Data. The final
use-case is consumption.

The SPARQL Protocol and RDF Query Language (SPARQL) [14] consti-
tutes the most popular way to fetch RDF. SPARQL is a query language with
similar utilities offered in NoSQL data models since RDF is comparable to key-
value stores, but rather using subject-predicate-object triple format. SPARQL
also shares some aspects of Relational Database Query languages such as SE-
LECT, WHERE and JOIN clauses. In fact, all RDF statements can be seen
as a table with 3 columns, one for each statement component (subject, pre-
dicate, object). But these similarities stop at a low level. In Relational Data-
bases, queries require previous knowledge of the database structure, whereas
we are certain all data in a SPARQL query follows the RDF statement format,
requiring users to instead have background of the vocabulary structure and
properties that can be expected from entities assigned to different classes.

In most SPARQL implementations, a client sends query data to a SPARQL
Endpoint running on a server where data is stored on. This means the availab-
ility of data in SPARQL is closely tied to the server’s uptime, and its capacity
to respond within a reliable delay. But the more a dataset grows, the more
inefficient similar queries become.

SPARQL does not keep track of changes directly either. Consumers will
often rely on the data being referenced to be immutable in content or structure
for the purpose of integrity, while publishers will modify existing datasets,
possibly altering their semantics with every change. Ideally, changes are driven
by rightful owners of the data, with a coherent, documented track of changes.
Unfortunately there is no inbuilt mechanism in SPARQL to verify this. Hence
the need for immutability, change tracking, and provenance in Linked Data.

1.1.5 Tracking Changes in RDF

Linked Data has many potential fields of applications. Consequently, there
is no one-size-fits-all guideline to maintain and update RDF. Some of the
currently in-use solutions include:

• Physical Snapshots: The technically simplest solution. Similarly to
what is done on hard drives, the maintainer of a dataset periodically
stores a full copy of the current data, a Snapshot. Advantages include
the ease of implementation and the availability of tools to do so. The
main disadvantages are its poor scaling power and granularity. Over
time, maintaining versions of increasingly heavy datasets becomes un-
sustainable. Even worse, not all changes may be reflected by a snapshot,
as short-lived statements (with a lifetime shorter than the snapshot in-
terval) may not be recorded at all, while on the other hand creating a
snapshot for every change is the worst case scenario in terms of storage

6



1.1. Background

efficiency. When compared to the following alternatives, physical snap-
shots are the only solution that does not include an inbuilt mechanism
for provenance. The DBpedia project [1] is an example implementation
of this approach.

• The Web Archive 8: an effort in the modern Web which is concerned
by the ephemeral nature of web pages and respond by creating an archive
for defunct sites, the Wayback Machine 9 . It uses Memento [15], a
framework to link current and past versions of the same URI through
Link headers in the Hypertext Transfer Protocol (HTTP) [2].

• Reification 10: the process by which RDF statements are backed by
RDF entities representing each of the components in every aforemen-
tioned statement as a resource in their own right. This allows for
example to describe additional information about the statement thus
opening the door to provenance. On the other hand it also implies a
creation of new resources for every change in every statement. It thus
has a heavy impact on storage since the records about past statements
are kept through their reification. It also takes a toll in the concep-
tual design of the data, and makes it more difficult to query [16]. The
Wikidata knowledge-base exemplifies the use of reification in [3].

• The PROV Ontology (PROV-O) [4]: a W3C recommended vocab-
ulary that defines a framework which can be used to describe the afore-
mentioned properties for data since it allows for the modeling of proven-
ance. At its core, it describes 3 main Classes. Entities: The things
holding value hence the reason of provenance. Entities are sub-classed
into Collections, Bundles, and Plan. Agents: The subject that holds
responsibility for the existence of an Entity. Agents are sub-classed in
Person, Organization, and SoftwareAgent. Activities: An action per-
petuated by an Agent on a certain Entity. PROV-O sub-classes feature
distinct graph patterns based on the number and type of links with the
other two basic Classes. The main disadvantage of this approach lies in
the burden of identifying and adapting the data to fit with the model in
a consistent manner, requiring additional care into its design. The W3C
provides an implementation report on PROV-O where active projects
using the ontology are referenced [17].

Although these models all offer a solution to the documentation of change
tracking, they unfortunately share the same dependency on the publisher’s
good will to implement responsible change tracking and guarantee the integrity
and availability of historic data records. Thus, if we wish to ensure verifiable

8https://archive.org/about/
9https://archive.org/web/

10https://www.w3.org/DesignIssues/Reify.html
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1. Background and Related Work

Figure 1.1: PROV-O starting point classes and properties

and immutable historic data, we need to find an alternative to individually
maintained data sources. The second part of this section covers Blockchain, a
technology that has recently gained a lot of attention for proposing a distrib-
uted system that guarantees immutability of asset records across a trust-less
network of peers.

1.1.6 Blockchain

Blockchain is a generalized term that was first used to describe the protocol
behind Bitcoin [18]. It is made of a list blocks containing data in which
new blocks can be added only to the tip of the chain, and no block can
be further modified or removed once added. Blockchains are decentralized
meaning multiple individuals, often called Ledgers, maintain an up-to-date
copy of the chain. A Consensus Mechanism helps the Ledgers agree over
which block to add next in order to always have all of the copies in sync.

In Bitcoin and other Cryptocurrencies, financial transactions are stored in
a block, and Ledgers publish new blocks to the network awaiting for consensus.
Today the most common decentralized consensus mechanism for Blockchain is
known as Proof of Work (PoW) [18], which gave Cryptocurrencies the possib-
ility to overcome trust concerns, and thus centralized entities such as banks.
Proof of Work involves a computationally expensive problem bundled with
every block, usually a one-way hash function. In order to append a new block
to the chain, its problem’s solution (the Proof) must be submitted as well.
The solution is made difficult enough so that there exist a non-negligible time
between each occurrence of a peer (often called miner) finding the solution to

8



1.1. Background

the PoW, which gives the network time to synchronize. The main incentive to
develop such a system is to make it very difficult for malicious actors to suc-
cessfully execute a Double Spend attack - where a node executes a transaction
twice before the network has time to catch up, or fork the chain, ie. create
a second competing version with illegitimate transactions. Finally, PoW re-
quires miners, users willing to solve the problems presented by new blocks.
Readers further interested in this topic may refer to [19].

Nevertheless, scalability of Bitcoin has started to be questioned [20]. The
initial vision for Bitcoin, where independent small unrelated nodes would be
in control of the PoW progressively vanished with the appearance of Min-
ing Pools. These sub-networks of miners acted as a common place to dedicate
computing power, effectively centralizing the decision making and thus endan-
gering the sanity of the network. Luckily, the success of Bitcoin allowed this
trend to get enough momentum so that other projects also flourished from the
pioneering idea, proposing distributed alternatives to Blockchain and PoW:
Directed Acyclic Graphs (DAGs) eg. [21], and Proof of Stake PoS [22] respect-
ively. Even more so, others focused on the potential of such a distributed
platform being provided to fulfill an arbitrary number of use-cases. Such is
the case of Ethereum [23] and the concept of Smart Contracts.

1.1.7 Smart Contracts

Smart Contracts [24] can be thought as digital operations that run autonom-
ously. As opposed to regular contracts, Smart Contract properties, conditions,
consequences and assets can be represented in a digital format. Ethereum [23]
is an application platform distributed over a network of nodes with data struc-
tured following the Blockchain model. Conceptually, it is a single computer,
ie. Turing-complete machine, capable of executing code on a per-request basis.
After writing the code blob of a contract, it is added to the chain in the same
way a payment is made on Bitcoin, by adding the representative Transaction
to a Block. In order to execute a Smart Contract, a new Transaction must
be issued with the result of the aforementioned code after execution and a
reference to it. This way, other nodes can also execute this transaction and
certify its result. In other words, Transactions in Ethereum represent the ex-
ecution of an aforementioned Smart Contract. Any parameters defined by the
Contract can be defined in meta-data of the transaction.

Smart Contracts in Ethereum contain the definition for one or more trans-
actions. The system relies on the Blockchain to keep track of executed trans-
action results, as well as the state of assets that were involved. Finally, the
system features its own digital currency, Ether, which can be used to purchase
Gas (a representation of the cost of executing lines of code). Any stateful
code execution, ie. that needs to record the change of state of the Blockchain
by submitting a transaction is charged a nominal amount of Gas. The re-

9



1. Background and Related Work

cipients are, similarly to Bitcoin’s miners, individuals who offer the necessary
computing resources to allow the aforementioned operations to run.

1.1.8 Corda

Corda [25] is the distributed ledger system of choice for this thesis. The under-
lying mechanisms powering Corda include Blockchain and a more centralized
consensus mechanism based on Public Key Infrastructure PKI through Cer-
tificate Authorities [26]. Some of the major conceptual difference between
Corda and other Distributed Ledgers is the way Blockchain is used, since in
Corda there exist multiple linked lists of transactions. Assets are segregated
throughout several chains, each of which involves only a small subset of nodes
in the network, eg. those who are interested in the assets contained in a par-
ticular chain. Consensus happens at several levels. Notary nodes, a service
provided by Corda and deployed on the network, help other Nodes approve
and order the proposed changes by using consensus mechanisms [27,28] when
necessary. Once all Nodes implicated in an asset agree a proposed change
is valid, the Notary service gives the final approval. Assets are represented
throughout their State - an immutable version of the asset linked to the pre-
vious one by a transaction. Transactions are proposals submitted by a node
to change the state of an asset. Before a Transaction is validated, nodes must
seek the approval of specific peers pointed by the State and a the Notary
service. Some important differences with other Distributed Ledger Solutions
are:

• In Ethereum an arbitrary program can be uploaded and executed imme-
diately once the Smart Contract ’s transaction is approved. Corda is less
dynamic. Nodes can support several simultaneous applications, com-
monly called CordApps, but they must be manually deployed on each
node.

• Corda provides services to its nodes such as Notaries, a set of nodes
charged of providing consensus for transaction approval, Network Map,
which helps nodes discover peers across the network, and a Permissioning
service, which automates the provisioning of TLS certificates.

• Application code execution happens only on the necessary nodes. This
does not mean nodes are isolated. Nodes can discover other peers
through a Network Map service, and are able to run procedures called
Flows that may involve more than one Node to complete. This allows
programmers to write protocol logic in both local and distributed scen-
arios.

• Data is not ubiquitous. Unlike more conventional Blockchain imple-
mentations, data is by default stored in the minimum amount of nodes

10



1.1. Background

necessary. Furthermore, each change of a State can only be approved if
it is proposed by a node referenced within the State. Corda abstracts
this behavior under the concept of Ownership.

• There is no Proof of Work. This is due to the reason the commitment
of the node in the network is not the same as a miner’s. Instead of
having a loose, identity-less, zero-cost relationship with the network as
is the case of miners, Corda is designed to keep track of long-lasting
identities, called Parties. One of the purposes of the Notary service is
to offload the approval and time-stamping of transactions. Although
this service follows the Interledger Crypto-Conditions specification [29],
more conventional consensus resolution algorithms such as [27, 28] can
be used in cases protocol compliance is at risk.

Corda provides developers with self-sufficient Nodes on top of which one
can develop and deploy applications. This gives programmers a lot of flexibil-
ity over the inter-node interactions and the distribution of data protocols. In
order to develop an application in Corda, one must define three main type of
components:

• States: The representation of assets in terms of their data structure,
including fields to specify which nodes are allowed to modify the data -
ownership.

• Contracts: The set of rules for a transaction to be validated by a node
is called a Contract. Nodes must be able to dereference Contracts in
order to verify a transaction.

• Flows: Corda orchestrates the activities of nodes in a CordApp thanks
to Flows. A flow defines a set of sequential actions to be taken by set of
nodes. A Flow may trigger several transactions. Flows are meant to be
composed into others by a subFlow function, and can be specified to run
locally or using distributed logic, by specifying Initiator and InitiatedBy
class decorators. Finally, Flows have the possibility to be called by
external agents through Remote Procedure Calls RPC.

Recently, Corda has developed a feature to allow any node to follow the
evolution of a state without being involved in its modification - an Observer
pattern 11. This implies applications can now define flows specifying the be-
havior of senders and recipients where the latter is not an owner of the data
but can still observe its evolution.

11https://www.corda.net/2017/12/observer-nodes/
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1.2 Related Work

Our main focus is to explore the use of a distributed system based on Block-
chain in order to service Linked Data in hopes it will mitigate the problems
of making and tracking changes which are inherited from the modern Web.
More specifically, we intend to address them by using a set of concepts around
Distributed Ledgers.

This section discusses efforts to use Blockchain as a support for RDF. Al-
though still in their early stages, it will help us evaluate our own contribution
later on. An interesting point of reference is given by [30], where the au-
thors explore several levels of Blockchain adoption, ranging from a common
centralized model to one relying fully on a Distributed Ledger. To do so, a
number of approaches between both extremes were classified in terms of dis-
tribution across different aspects such as verification, guarantee of integrity,
and cost of storage and querying. In [31], the authors benchmark previously
mentioned approaches in order to support the findings. For instance, accord-
ing to [30], our approach with Corda falls into the Base case + Distributed
Ledger Backend category.

1.2.1 Temporal Streaming of Graph Data on Distributed
Ledgers

In [32], Third et al. describe a system based on Ethereum Smart Contracts
registered in a private instance of the Ethereum Blockchain acting as an inter-
mediary to update a named graph RDF data store, triggered by timestamped
events.

RDF data generated is pushed to a Smart Contract which generates a veri-
fication hash, along with time stamp meta-data of the event. This information
is stored in the state of a new Smart Contract. Original data, along with the
address of this new Contract is pushed to a data store. Each event detected is
represented in RDF, and stored in a separate Smart Contract. This approach
fits into the Base case + Distributed Ledger model described in [30], with the
difference of having duplicated verification hashes.

The previously mentioned scenario responds to scenarios with highly dy-
namic data and the necessity of an effective storage solution with no major
compromise on integrity.

A second use-case scenario where a Distributed Ledger backed RDF data
store can offer a compelling solution involves sensitive static data whose in-
tegrity is vulnerable on otherwise classical web-servers.

1.2.2 Blockchain Enabled Privacy Audit Logs

In [33], challenges of Log Auditing in RDF are addressed by storing integrity
verification data into the Bitcoin Blockchain. In this approach, meta-data
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containing non-repudiation and provenance is generated after retrieval of se-
curity event log descriptions (annotated in RDF) from a centralized data store.
This meta-data is then signed by a certificate authority, and an integrity proof
is generated out of it. The digest of this integrity proof is stored on the
Blockchain and written back into the data store along with the signature, and
previously signed meta-data. This allows an auditor to verify whether logs of
the events on the system were altered thanks to the integrity proof and its
digest, by comparing it to the data present in the Blockchain.

Under both previously mentioned approaches, RDF data storage is sup-
ported by Blockchain indirectly through the use of an integrity proof or direct
hash of the data. The scenario in 1.2.2 does not leverage the storage of Se-
mantic Data on a Blockchain, in fact, one could argue that data availability
is sacrificed by centralizing the storage to a data store, although this can be
considered a side-effect of the use-case. In both scenarios, change tracking is
supported directly by the underlying Blockchain. But whereas 1.2.1 only has
provenance information coming from Ethereum accounts, 1.2.2 can retrieve
more precise and trustworthy provenance thanks to the signed meta-data.

1.2.3 A Document-inspired Way for Tracking Changes of
RDF Data

The previously mentioned related work can be thought as distributed solutions
for storage or at least verification of integrity for RDF with an inbuilt capacity
to track changes. Compared to change tracking models discussed in Section
1.1, we notice 1.2.1 authors store ever evolving data through new Named
Graphs [34] on an ever growing data store. In 1.2.2, the meta-data about event
logs is structured with the Log to Transparency, Accountability and Privacy
L2TAP [35] ontology, which is a similar approach to reification of RDF but
data logged refers to privacy events instead.

A different approach applied to RDF by means of a provenance ontology
such as PROV-O [4] was developed by Peroni et al. in [36]. Moving away
from the Blockchain environment, the authors tackle RDF change tracking
with a solution based on differential (incremental) snapshots. Inspired by the
problem of handling changes that will potentially be undone in text editors,
their work extends PROV-O in order to support the conceptualization of this
approach. The end result is a vocabulary that can be used to chain together
changes on a resource, themselves expressed in the form of a SPARQL query
composed of INSERT and DELETE clauses. Each snapshot references both
the entity they are attached to and the previous snapshot by the specializa-
tionOf and wasDerivedFrom properties respectively. The following are some
advantages we identified in comparison to the previously discussed approaches
to change tracking:

• Previous versions of the data can be easily reproduced by inverting the
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query in descending order (swapping the contents of INSERT and DE-
LETE ).

• The snapshot is invisible to the data since it is former which references
the later. It bears no conceptual burden on the publisher.

• Any provenance metadata supported by PROV-O can be part of a snap-
shot.

• There is a gain in storage efficiency by not repeating overlapping data
as in physical snapshotting.

• The representation of changes is atomic.

1.2.4 Summary

The contributions mentioned previously raise the question of what is the best
method to support Linked Data through Distributed Ledgers. RDF can be
organized in different levels of granularity - statements and named graphs,
which can be stored directly or indirectly (through a hashing function) on a
Blockchain. On top of this, data can be enriched by provenance information,
facilitated by the model of distribution.

In previously discussed works, change tracking and provenance of data is
provided either through RDF in Scenarios 1.2.2 and 1.2.3, or indirectly by
the underlying Blockchain implementation (the case of Scenario 1.2.1). Al-
though the use of Blockchain is preset, both Scenario 1.2.1 and 1.2.2 use it
for the purpose of verification, assuming centralized storage of data, ensuring
integrity but sacrificing availability. A hypothetical use of Blockchain as a
storage Backend would solve the previously mentioned issue, but it suggests
the storage consumption on each node of the network would not be scalable in
the context of the global Semantic Web as they would need to store all RDF
statements, including deleted and previous versions of records depending on
the implementation. These implementations do not explore is the possibility
to move away from a traditional unique-Blockchain approach - guaranteed
redundancy of data across the network, limiting the applicability analysis of
using other Distributed Ledger systems [21, 25]. Furthermore, most Block-
chain platforms still rely on an economical incentive to publish data, as is the
requirement in a Proof of Work based protocol. This introduces new roadb-
locks for the adoption of Semantic Web, should RDF be supported by these
platforms at scale.

In the following chapter we describe a solution that takes the previously
mentioned scenario leveraged by a different Blockchain platform which lets
individual nodes store a fraction of the data available in the network based on
their own preferences.
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Chapter 2

Blockchain based RDF
Management

This thesis addresses the challenges of implementing a distributed, efficient
RDF storage model to enable change tracking, provenance, data availability
and integrity. In this chapter we explore the design and implementation of such
a system, which allows for more efficient manipulation of RDF through the
use of Blockchain under a particular implementation. Although we focus on
storage capabilities, the word Management refers to the spectrum of possible
operations that an agent, human or software, can perform on an RDF dataset.

2.1 Overview

The high-level overview of our work consists of two main components: Backend
and Frontend Interceptor.

The Frontend Interceptor acts as an access point to users who wish to pub-
lish and consume RDF. In addition to its main role, it uses the information
available in the Backend to enhance and complement data submitted by issu-
ing requests through a Web Application Programming Interface (API). The
purpose of the Backend is to manage the storage of RDF Triples. By commu-
nicating with each other, multiple Backends form a distributed Ledger applic-
ation where Triples are stateful, traceable, and ownable. Finally, Corda [37],
the platform powering our application, requires a set of Network Services to
be instantiated. These include Network Map, Notaries, and Permissioning
services among the most important. Our Backends connect to these services,
often running in separate hosts, in order to offload certain procedures that in-
volve network level knowledge and authority. Figure 2.1 illustrates how these
components are connected to each-other.
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Figure 2.1: Architecture Overview

2.2 Backend

We developed a single application deployed on Corda nodes with the purpose
of managing RDF triple storage, defining rules and procedures by which triples
can be updated, and providing a Web API for client access.

In order to represent RDF triples in a way that features change tracking
and provenance, Corda allows our us to be model data, in this case RDF
Statements, in terms of States - versioned representations of data. The identi-
fiable agents present on a Backend are called Parties. Each State (of an RDF
Statement) includes additional meta-data about which Parties are interested
in it. As the Triple changes, both in RDF content as in meta-data, these
changes are not over-written. Instead, a new State is created and linked the
previous one through a Transaction, similar to blocks on a Blockchain. Triples
under this model are thus presented as follows:

• Subject: The Subject component of an RDF Triple.

• Predicate: The Predicate component of an RDF Triple.

• Object: The Object component of an RDF Triple.

• Owner: The Party responsible of the creation of this Triple. Along
with participants, the Owner participates in the consensus agreement
when an update is proposed. It is worth noting ownership changes are
allowed in Corda.

• Participants: The set of Parties who also participate in the consensus
agreement and have the power to propose updates to a State.
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• Observers: A set of Parties to which transactions concerning this state
are sent. The difference between an Observer and a Participant is the
former only observes data without participating in the consensus.

• Last Editor: A field denoting the last Party that triggered an update
on this state.

• Linear ID: A field uniquely identifying the Triple across all its States.

This is meant to directly relate Triples with the agents responsible for
their editing, while also offering a simple way to keep track of Parties that are
actively interested in the data, but can not participate in its modifications -
the Observers.

2.2.1 Flows

A Flow 12 is the term used in Corda to denote Classes that handle requests
coming from clients or other Peers. Some of them are exposed through a
Remote Procedure Call (RPC) [38] interface, or concealed, only to be called
by other Flows as a subFlow either locally or remotely. The latter case re-
quires the Flow to be divided into two classes, decorated as Initiating and
InitiatedBy.

Through Flows, we encode the protocols for creating, updating, and delet-
ing a State - the representation of an RDF Triple alongside relevant meta-data.
In the simplest scenario, a Party (an identified user of a particular Backend
in the network) who owns a Triple has the latter’s current and past States
stored locally. A Party can propose changes to the State of this Triple only
when it is part of the Participants list or is the Owner itself. In either case,
participants and owner are required to sign any proposed change, which will
then be approved by a Notary service and stored on each node. A State
can also contain Observers. These, although referenced in the meta-data, are
neither required to sign new changes, nor have the authority to propose them.
Still, they receive all updates on the particular Triples they are referred in.
Finally, Corda will only store a new State if it is signed by a Notary, part of
the Network Services. Notaries sign the proposed change-set once all parties
who are required to sign have done so. These mechanisms are illustrated in
Figure 2.2, where the owner of a Triple intends to change the State of a Triple
through an Update by proposing a new State with different Data. In this ex-
ample the new State is first verified locally. When approved, it is sent over to
any Participant Party in order to obtain its signature, signifying its approval
of the changes. Once both Participants and Owner have signed, it is up to
the Notary to verify signatures and forward the approved proposal to Owner
and Participants, finally, the Owner or other node who initiated the change

12https://docs.corda.net/key-concepts-flows.html
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Figure 2.2: Sequence diagram for Triple State Modification

broadcasts this notary-verified state to Observers. The procedure ends with
each Party storing the new State of the Triple locally.

This mechanism is used to both modify Triple RDF data, and meta-data.
As a consequence, the list of Participants and Owner can only be modified
by pre-existing ones. On the other hand, any Party can request to become
an Observer. When this happens, we choose to register the new Observer to
all Triples sharing the same Subject RDF resource. This allows Parties to
implicitly receive any information concerning the observed Subject thereafter.
Hence Observation is done at the Resource level rather than one specific Triple
at a time, allowing clients to perform fewer requests while enjoying automat-
ically updated local models of a Resource. Another advantage of Observers is,
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unlike Participants, Transactions do not depend on their signatures. In order
for a modification to be approved, the Owner and all Participants must sign
it, which can lock a Triple if only one Participant is unable or unwilling to
cooperate.

The Flows that enable Parties wishing to become Observers include a first
phase of Discovery, where the requesting Party queries other Backends in
order to find a copy of the resource. When successful, the meta-data returned
provides the identity of Parties able to propose Transactions. Hence the second
phase, Registration, by which a Party requests to be added on the Observers
list.

The Following Classes represent the set of Flows that govern the protocols
by which Triples are managed.

• CreateTriple: Creates a Triple based on given RDF parameters and
non-mandatory Observers or Participants. The Party responsible for
creating this Triple is the owner.

• UpdateTriple: Creates a new State based on an existing Triple with
any update to the data or meta-data.

• DeleteTriple: Ends the Triple life-cycle by making a Blank transaction
the next State of a Triple.

• DiscoveryRequest(Initiating), HandleDiscoveryRequest: The Ini-
tiating Flow takes data of a Triple as parameters and opens a session
with every other Backend (triggering in them the InitiatedBy Flow) until
a matching Triple State is found.

• ObserverRequest(Initiating), HandleObserverRequest: The ini-
tiating Party wishes to Observe a Resource. It thus opens a session
with a known Participant or Owner of such. The InitiatedBy part of
the Flow registers the requester as an Observer on all Triples with the
requested resource and returns the number of new Triples to expect from
this action.

• BroadcastToObservers(Initiating), ReceiveUpdateStatus: Used
by CreateTriple, UpdateTriple, and DeleteTriple, handles the selective
Broadcast to Observers originating from a new State where they are
referenced.

2.2.2 Contracts

Corda applications rely on Contracts in order to approve or reject proposed
operations 13. Contracts in Corda are sets of validation checks on the proposed

13https://docs.corda.net/key-concepts-contracts.html
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new State. When a Flow intends to modify a Triple, the operation must
reference a Contract so that other Backends can run the validation as well.
We implement 3 simple contracts for three operations:

• Create: An operation referencing this Contract must not originate from
a previously existing State ie. have no input, and return only one Triple
State.

• Update: One input and output pair. This represents either an update
of the RDF data or the attached Party meta-data.

• Delete: One input, no output. The end of a Triple life-cycle.

Since Contracts are verified by each individual Backend, their design pre-
vents them from reaching out to external facts and knowledge such as inform-
ation on other Triples, as such results are likely to change during the time all
Backends verify them, and may not be distributed across every Party’s local
storage. In some cases, one may use a Corda service called Oracle, which
allows to gather external knowledge to some extent. We did not use such a
feature. Contracts are thus restricted to read the information present by input
and output States. Any other validation must be performed previously by the
originating Flow.

2.2.3 RPC and Web API

A Remote Procedure Call (RPC) module which is able to call Flows and
provides a Web API endpoint for external agents serves as a bridge between
the Frontend and callable Flows in the Backend. The Web API accepts re-
quests containing JSON formatted RDF Triple data, and complements it with
any necessary meta-information in order to feed the underlying Flows with
unambiguous parameters. Also implemented are a number of search utilit-
ies, which allow retrieval of the information of any Triple, stored locally or
remotely in other Backends.

The following operations are provided by the Backend to the Frontend as
aggregations of the underlying RPC calls, summarized in Table 2.1.

GET /network-map-cache: Provides the list of active Parties.

GET /local-triples: Triples stored locally, with the option of filter by RDF
statement components through query parameters s, p, and o.

GET /triples: A wrapper around /local-triples which can also retrieve any
Triple statement in the network.

PUT /triple: Create a Triple by providing its JSON representation in the
payload.
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Table 2.1: Exposed Backend API resources and their operations

Method Location Payload Parameters

GET /network-map-cache None None

GET /local-triples None s, p, o, owner

GET /triples None s, p, o, owner

GET /historical None s, p, o

PUT /triple Triple None

POST /triple Triple (old), Triple(new) None

DELETE /triple Triple None

POST /observer Command, Subject, Party None

POST /triple: Update a Triple based on 2 JSON representations for the old
and new version.

DELETE /triple: Delete the specified Triple by starting a transaction with its
latest State as an input and no output.

GET /historical : Search for a Triple using URL query parameters, then return
all historical States matching its linearId, which correspond to its past
States.

POST /observer : Initiate a Flow from the Backend to request a peer Party
to either add or remove our own Party from the observer list in Triples
with the specified subject.

2.3 Frontend Interceptor

The second component constitutes a Web Application which runs alongside the
Corda Backend. It acts as a platform to run case specific mechanisms aimed
at complementing and improving insertions, and updates of RDF Triples, with
an API better designed for user interaction. Each Frontend is connected to
a single Backend by a Web API. Agents can use the Frontend as a bridge
to upload new RDF Triples, modify existing ones, or perform simple filtered
searches in a local or global context. This allows for data aggregation based
on specific elements and patterns such as the presence of a certain property in
a Triple, or tested against the Backend to extract information about similar
Triples. More advanced RDF management logic can be written in response to
specific use cases. For instance the issuance of Linked Data Notifications [39].
This and other experimental use-cases are discussed in further sections.

The API provided by the Frontend to agents features the following oper-
ations, summarized in Table 2.2:
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Table 2.2: Exposed Frontend API resources and their operations

Method Location Payload Parameters

GET /historical None s, p, o

POST /observer Command, Subject, Party

GET /triples None s, p, o, owner

PUT /triple Triple

POST /triple Triple (old), Triple(new)

DELETE /triple Triple

GET /historical : Returns, for given (subject, object, and/or predicate) query
parameters, the historical states of the corresponding Triple.

POST /observer : Requires an input JSON file containing a Command (either
add or remove), the subject whose meta-data we wish to update, and
the specific party which a session will be opened with. This operation
manages our observer status with the Triples referencing the previously
mentioned resource.

GET /triples: Returns all active States matching the query parameters from
the Backend’s local storage.

PUT /triple: By submitting a JSON representation of a Triple State in the
payload, this operation calls the Creation Flow in the Backend. Ad-
ditionally, the Frontend checks whether the request should be comple-
mented with Triples for Notifications, or whether Observer meta-data
should be edited.

POST /triple: By submitting 2 Triples, one old and partial meta-data of a
new one, the Frontend instructs the Backend to Update the old Triple
if found with the new one.

DELETE /triple: Specify a Triple, then make its new state blank, so no further
ones can reference it, effectively deleting the Triple. Naturally, all past
states are preserved as historical.

2.4 Network Services

Some provided network services are necessary for any application based on
Corda to function properly [37].

• Notaries: Charged of approving and ordering the changes requested on
all assets. They provide a signature which is necessary so that Backends
store locally the new State of a Triple. A single Notary can serve multiple
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Backends, and multiple Notaries can be arranged to perform Byzantine
Fault Tolerance consensus [27].

• Permissioning service: Meant to automate the Backend’s TLS cer-
tification by attributing every Party with an x.509 identity [26] that is
used to reference its participation in State meta-data.

• Network mapping: Publishing information about Parties on the net-
work, specifically the mapping from Party identity to Backend IP ad-
dress and port.

These services constitute useful utilities that enable the development of any
application written for Corda. The main advantage is they can be deployed
in a separate environment, provided they expose IP and ports reachable by
the Backend. On the other hand, this implies some degree of centralization
that has its own disadvantages. The presence of a single services node implies
a Single Point of Failure vulnerability. Luckily, multiple such nodes can be
deployed so that they form a distributed application in of themselves.

2.5 Use Cases

In addition to the basic Create, Read, Update, and Delete operations, use
cases implemented in this thesis include automation of RDF aggregation for
Observer status, as well as Linked Data Notifications [39]. Whenever a new
Triple is submitted, the Interceptor executes a number of requests to the
Backend in order to enrich the data before submission. They make effective
use of the Backend’s distributed system utilities and require no additional
knowledge from the publisher.

2.5.1 Create, Read, Update, Delete (CRUD)

The system is able to perform the basic operations as would be expected from
a non-distributed local storage system with a few improvements.

Create : Creation of a Triple registers the RDF data in addition to the meta-
data specific to the Backend such as the owning Party and eventual
observers and participants.

Read : Retrieval of Triples can occur in two contexts: local or remote. Locally
stored triples can be directly read from the local storage. A Backend
can do this with all Triples that reference a corresponding Party in their
meta-data. Remote Triples, ie. those that do not reference a Party
attached to the Backend, are retrieved by executing a queries to other
Parties. This retrieves the current State of all Triples matching the
query. A Party can then subscribe as an Observer in order to receive
State updates.
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Update : Local Triples owned by the Party in control of the Backend are up-
dated by active user action. Triples retrieved through the Observer
mechanisms are updated automatically (with no user interaction), or
semi-automatically after being approved by the Backend respectively.

Delete : Similar to Update, with the exception there is no new State, so new
potential Observers have no possibility to subscribe.

2.5.2 Change Tracking

The present solution does not rely on RDF to express change tracking. Rather,
each Triple is subject to an underlying Blockchain-like mechanism. Parties
mentioned in its State meta-data are the ones which store the Triple it-
self in their Backend. In the current implementation, a particular Backend
can only track changes of a Triple starting from the State the former was
first referenced in the latter’s meta-data. Tracking changes is possible since
each Triple has a Linear ID, which does not change during its life-time.
Thus, the Backend can be programmed to offer an API method for retriev-
ing past versions of a particular Triple based on its current State out of
which the Linear ID can be deduced. Every transition from one State to
the next is recorded by the Backend, along with a reference to the Party
proposing the update by using the lastEditor field. Note that, from the
Backend’s perspective, the only distinction between current and previous
States of Triples is the latter are marked as historical. Listing 2.1 depicts
an example response to this type of request. In it, we observe although
information inside the data field (lines 3-10 and 29-36) changes from one
version of the Triple to another, identical linearId fields (lines 11 and 37)
ensure the returned data corresponds to past versions of the same Triple.

24



2.5. Use Cases

Listing 2.1: JSON Response Payload of a historical states request

1 ” s t a t e s ” : [ {
2 ” s t a t e ” : {
3 ” data ” : {
4 ”owner” : ”C=GB, L=London ,O=PartyA” ,
5 ” s ” : ” h t tp : // example . com/Foo” ,
6 ”p” : ” h t tp : //www.w3 . org /1999/02/22− rd f−syntax−ns#type /” ,
7 ”o” : ” h t tp : // example . com/AnotherBar ” ,
8 ” o b s e r v e r s ” : [ ”O=PartyB , L=London ,C=GB” ] ,
9 ” l a s t E d i t o r ” : ”C=CZ , L=Prague ,O=PartyA” ,

10 ” p a r t i c i p a n t s ” : [ ”C=CZ , L=Prague ,O=PartyA” ] ,
11 ” l i n e a r I d ” : {
12 ” e x t e r n a l I d ” : n u l l ,
13 ” i d ” : ”85894 fc2−fed6 −4381−9344−8 a4 c f 0 c c f e e b ”
14 }
15 } ,
16 ” c o n t r a c t ” : ” org . b l o c k c h a i n r d f . backend . c o n t r a c t s . T r i p l eC on t r a c t ” ,
17 ” no ta r y ” : ”C=GB, L=London ,O=Co n t r o l l e r ,CN=corda . no ta r y . v a l i d a t i n g ” ,
18 ” encumbrance ” : n u l l ,
19 ” c o n s t r a i n t ” : {
20 ” at tachment Id ” : ” . . . ”
21 }
22 } ,
23 ” r e f ” : {
24 ” txhash ” : ” . . . ” ,
25 ” i ndex ” : 0
26 }
27 } , {
28 ” s t a t e ” : {
29 ” data ” : {
30 ”owner” : ”C=GB, L=London ,O=PartyA” ,
31 ” s ” : ” h t tp : // example . com/Foo” ,
32 ”p” : ” h t tp : //www.w3 . org /1999/02/22− rd f−syntax−ns#type /” ,
33 ”o” : ” h t tp : // example . com/AnotherBar ” ,
34 ” o b s e r v e r s ” : [ ] ,
35 ” l a s t E d i t o r ” : ”C=CZ , L=Prague ,O=PartyA” ,
36 ” p a r t i c i p a n t s ” : [ ”C=CZ , L=Prague ,O=PartyA” ] ,
37 ” l i n e a r I d ” : {
38 ” e x t e r n a l I d ” : n u l l ,
39 ” i d ” : ”85894 fc2−fed6 −4381−9344−8 a4 c f 0 c c f e e b ”
40 }
41 } ,
42 ” c o n t r a c t ” : ” org . b l o c k c h a i n r d f . backend . c o n t r a c t s . T r i p l eC on t r a c t ” ,
43 ” no ta r y ” : ”C=GB, L=London ,O=Co n t r o l l e r ,CN=corda . no ta r y . v a l i d a t i n g ” ,
44 ” encumbrance ” : n u l l ,
45 ” c o n s t r a i n t ” : {
46 ” at tachment Id ” : ” . . . ”
47 }
48 } ,
49 ” r e f ” : {
50 ” txhash ” : ” . . . ” ,
51 ” i ndex ” : 0
52 }
53 } ]
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2.5.3 Linked Data Notifications

We implement an automated procedure to issue notifications following the
Linked Data Notifications [39] protocol. Notification Triples are appended to
the input by the Interceptor whenever an update of a Triple which has ob-
servers and fulfills a certain criteria - in this case being part of a owl:sameAs
statement [11]. The Backend is able to retrieve existing inbox resource owned
by Observer Parties to the Interceptor, so that submitted data is comple-
mented with the corresponding new Triples. This mechanism is illustrated in
Listing A.2, extracted from the Frontend Interceptor component module.

1. When a user Creates a Triple, the Interceptor processes it before sub-
mission to the Backend.

2. The algorithm starts by retrieving meta-data about the resources in
Triples received as input. For every observer of the Subject resource,
it evaluates if a notification is necessary by verifying if other Backends
possess a Triple with the owl:sameAs property and the previously men-
tioned Subject in the place of Object. For each of those returned, if they
also feature an inbox property, a sample Notification is appended to the
original Triple added by the user.

3. Finally, the newly created Triples are returned as a response to the user.

2.5.4 Observer Subscription Management

There are two ways a user can subscribe as an Observer to a resource, one
implicit and another explicit. In the explicit way:

1. The user requests to observe a specific resource which is not in his/her
possession (the user is not the owner nor a participant) by submitting a
request with a JSON body containing three fields: resource, otherParty
(the Party which is the owner of the resource), and action (either add
or remove).

2. The request is processed by the User’s Interceptor and Backend. The
latter will contact the Backend which corresponds to the otherParty field
using the network Map service, and request the user’s Party be added
to the Observers.

3. If successful, the User has now all Triples with the previously requested
resource as Subject.

The second mechanism consists in whenever a Triple with the owl:sameAs
OWL property [11] is submitted, the Interceptor assumes two things: the
Party submitting this new Triple is the owner of the Subject resource, and, up
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to date versions of the full definition of the Object resource being referenced
are desired.

Upon submission, the Interceptor triggers a series of requests on the Backend.
It starts by searching for the referenced Object resource across the network.
If it finds one, it means this resource is registered in the network, and there
exists a Party that can modify its contents. The application is then capable
of requesting to be added as an Observer of this resource to the corresponding
Party present in the meta-data of previously retrieved information. Upon do-
ing so, all triples with the same RDF Subject (Object in the original submitted
Triple) are updated so that the new Observer is added. Upon approval, the
network forwards these Triple States to the originating Backend.

2.6 Build, Packaging and Execution

The source code included can be deployed on single or multiple computers, as it
spawns a Java Virtual Machine (JVM) for each node. Backends and Network
Services should be properly configured in such a way they have predetermined
IP addresses and port. The implementation is mostly written in Kotlin 14,
which is a language intended for the Java Virtual Machine. The following
software resources are required to compile and run the application:

• An Internet connection to automate the download of requirements

• The Java Development Kit (JDK) version 1.7 or later

The project can be provisioned, built and deployed with Gradle 15, a pop-
ular build automation tool. To install Gradle and compile the code, one must
simply execute the gradlew script with the build argument at the project root
folder as shown in Listing A.3. This will download all the required dependen-
cies and compile the source code.

The next step is to deploy Corda Nodes which run our Backend or Network
Services. We use Gradle to assist us once again with the definition of tasks.
Gradle tasks are passed on to the Cordform plugin provided by Corda, which
deploys the nodes to the specified directory. One can define his or her own
deployment tasks by following the example given in Listing A.4, placing them
in backend/build.gradle, and executing the task by calling for instance gradlew
:backend:deployAB. More information about using the command line interface
can be found in Gradle’s documentation 16.

The directory specified in the deployment hosts all deployable nodes. Each
node configuration can be further fine-tuned in each respective directory under
node.conf such as the IP address to allow nodes which are not in the localhost

14https://kotlinlang.org
15https://gradle.org
16https://docs.gradle.org/current/userguide/command_line_interface.html
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to communicate. A script called runnodes is also present to automate the
execution of a console for each respective node and its artifacts. This concludes
the steps to deploy operational Backends. A simple user Web interface is
present at the port corresponding to the webPort parameter for each respective
node.

The Frontend can, on the other hand, be run by simply executing the
corresponding main class, found under org/blockchain-rdf/frontend/Server.kt.
It communicates exclusively with a specific Backend, whose IP address and
port need be provided as arguments.

Both Frontend and Backend provide their own API, which accepts inform-
ation serialized in JSON format. A number of dependency conflicts during
implementation hindered the development of a more unified approach, hence
reliance on Web APIs for the Frontend-Backend communication was preferred.
Both Web APIs treat JavaScript Object Notation (JSON) payloads represent-
ing a copy of the fields which Triple States in the Backend are made of.

An example POST request to create a Triple can be found in Listing A.1,
along with its response, which contains the complete description of the State
as seen by the Backend.
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Chapter 3

Evaluation

Our work responds to the possibility of a change tracking and provenance
system for a decentralized Semantic Web by providing a tool to manage RDF
based on Blockchain. In this chapter we present both qualitative and quantit-
ative evaluations of its scalability, starting by analyzing conceptual differences
with both existing centralized and distributed solutions, and then proceed to
verify experimentally the achieved storage scalability. Finally, we describe the
tests that drove the implementation of such a tool.

3.1 Provenance and Change Tracking

Change Tracking and Provenance are properties of data that are often under-
mined. In previous chapters we described some examples of their implementa-
tions for RDF in centralized applications. Such mechanisms are distinguished
into those relying on RDF itself to leverage these functionalities - Reification,
PROV-O ontology, and those that do not - Physical Backups, HTTP Link
headers. Later, we described projects that implemented these features with
the help of Blockchain mechanisms.

In order to compare these solutions we decided to observe the number of
RDF Statements generated by each one of them. Indeed, change tracking
implies the system at hand is capable of representing both present and past
versions of data. Along with provenance, this makes for a meta-information
rich system prone to scalability issues due to sheer amount of Statements, his-
torical and currently used. In order to evaluate these systems, we will identify
when possible concrete implementations of modern-day change tracking and
provenance for RDF. Then, by observing the amount of Triples generated for
each of these implementations as a function of the number of Update and Cre-
ate operations, and factoring in the underlying storage solution, the resulting
analysis will yield a comparison of scalability.
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3.1.1 Models for Change Tracking

The following models represent meaningful work in the effort of bringing
change tracking and provenance to RDF. The particular case of Reification 17

is separated into three, since the original concept found little adoption.

• N-ary Relations (reification): rely on an intermediary resource x between
Subject and Object so that meta-data is associated to it instead of the
original statement. This model decomposes original (s,p,o) statements
into (s,ps,x), (x,pv,o), (ps, subjectProperty, p), and (pv, valueProperty,
p) where ps and pv are generated on the spot. In other words, Predicate
is extracted from the relationship, making it possible to identify different
versions of the same Statement based on pv and ps, and attach metadata
to x.

• Singleton property (reification): where statements’ predicate is replaced
by a unique property referencing the original in order to provide a solu-
tion to differentiate duplicate statements.

• Named Graphs (reification): encapsulating statements with a fourth
resource element called graph, effectively extending RDF. This model
differs from the other reification solutions as it is forming quadruples
(s,p,o,g) instead, where several statements can be encapsulated in a
graph g. Note that this model is used in [32], a solution whose integrity
is verified with the help of a Distributed Ledger.

• PROV-O Ontology : a model well suited for the description of proven-
ance. The particular implementation in [36] extends the ontology by
formalizing RDF change-tracking. The details of this work involve mak-
ing any subject resources a PROV Entity. From here, any change to
other statements with the same Entity can be tracked by incremental
snapshots, which evolve as a linked list containing two SPARQL quer-
ies. The incremental modifications on the original set of statements is
represented from one snapshot to another. This approach, illustrated in
Figure 3.1 bears some conceptual similarities with our own.

• Our solution: the resulting model, when observed on a single node, is
able to perform change tracking and provenance of RDF without relying
on meta-RDF statements, though it carries a footprint due to the fact
this information is still stored on the node. The fact RDF is not being
used to qualify these properties has its trade-offs. For instance, it is
convenient for publishers in the sense they have less data to maintain
and understand. On the other hand, an RDF reasoner or query engine
might find it useful to express queries that specify the provenance and
history of a certain Triple.

17https://www.w3.org/TR/rdf-primer/#reification
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Figure 3.1: Peroni et al.’s approach to change tracking

3.1.2 Analysis

Here, we present the analysis of each model’s internal structure and how
adding and updating RDF Statements influences the total amount of stor-
age needed. In order to later ease the comparison with our solution, when a
concrete implementation is not specified, we propose minimal necessary prop-
erties to express change tracking and provenance. A summary of the results
is presented in Figure 3.2.

• N-ary relations (reification): To cope with the model described in our
solution, we add hypothetical owner and originatingFrom properties
to x in order to provide a minimal implementation of provenance and
change tracking respectively. The resulting number of statements st for n
statements with m updates and k unique properties is st = 4m+3n+2k
with k < n.

• Singleton property (reification): A similar implementation under this
model (s,p,o) Triples becomes (s,x,o), where x, the unique property is
linked to p by the following statement: (x,singletonProperty,p). Attach-
ing our previously defined properties for provenance and change track-
ing to x for n statements with m updates results in a total number of
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statements st = 4m+ 3n, since in new statements our originatingFrom
property’s range is null.

• Named Graphs (reification): A viable implementation consists in se-
gregating statements into named graphs based on the initial value of the
subject resource s: (s,p,o,gs). This way, when we can offload provenance
and change-tracking of any statement contained in the graph to its fourth
resource gs - (gs, owner, gowner, gs), and (gs, originatingFrom, gold, gs).
Unfortunately, the consistency of the model can only be preserved if it is
rebuilt for each set of modifications. For a single named graph gs driven
by subject s ∈ S, the number of statements stored is given by the sum
of all statements for each version i ∈ Is of the graph. One can think
of it as graph snapshots. Thus, we denote the number of statements
introduced and removed in version i for subject s as ni,s and di,s. Note
that the amount of modified Statements is irrelevant. Naturally, n0,s
represents the initial number of statements in graph gs. We obtain the

total number of statements st =
∑
s∈S

Is∑
i=0

((Is− i+1)ni,s− (Is− i)di,s +2).

Simplified st =
∑
s∈S

Is∑
i=1

(Is − i)(ni,s − di,s) +
∑
s∈S

Is∑
i=0

(n0,s + 2)

• PROV-O Ontology : In terms of amount of statements, we obtain a
pattern similar to the Named Graphs approach described earlier. Every
new update of an Entity requires 4 new statements, but the triples them-
selves need not be replicated, which makes this approach comparatively
compact. For every Entity s ∈ S, and every new snapshot i ∈ Is we

obtain: st =
∑
s∈S

Is∑
i=0

(4 + δmi,s) +
∑
s∈S

ns, where δmi,s = ni,s − di,s is

the sum of statements added minus the ones removed from the observed
Entity s for a given change i, and ns is the initial number of statements.
Note that the information contained in δmi,s can be extracted from the
hasUpdateQuery property of each snapshot.

• Our solution: Each Triple has a State which evolves until the end of
its life-cycle. All modifications bear the same meaning, as updating a
Triple is equivalent to creating a new one, merely marking it as part
of a chain - a continuation of other preexisting. The equation to find
the number of Triples at any given time in the local storage of a node is
st = n+m, n the number of new Triples, and m the number of individual
modifications of a previously existing Triple. This is different from the
amount of query-able Triples, which is q = n − d, d being the number
of deleted Triples. Variable q is relatively constant. Finally, whereas
in previous cases n corresponds exactly to the amount of new Triples
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(a) Stored vs Created Statements (b) Stored vs Deleted Statements

(c) Stored vs Updated Statements

Figure 3.2: Total number of statements for different operations on an RDF
Dataset across proposed solutions

introduced by the user, our model breaks this rule, when seen as a whole
including use-case implementations such as notification generation.

Figure 3.2 presents the theoretical results for the number of Triples gen-
erated for each of the above solutions. In the case of Creation and Deletion
Operations, Named graphs suffer due to the amount of Triples needed to be
reproduced after each operation. Deletion of Statements affect only PROV-O
and Named Graphs, while all other solutions do not require additional Triples
to track these changes. Finally, Updating a Triple involves a linear increase in
the number of Generated Triples. Unfortunately it is impossible to determine
how many such Triples are necessary for the Named Graph pattern, as the
linear curve’s angle depends on the starting number of Triples.
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3.2 Storage Scalability

This section is dedicated to studying the evolution of storage used and its
resulting scalability analysis. Previously in this chapter we showed that our
solution is more efficient in terms of RDF Statement quantity thanks in part
to the fact change tracking and provenance are offloaded to the underlying
system. The goal of this experiment is to observe the evolution of real storage
requirements for one node in order to support our previous claims.

3.2.1 Setup

This experiment consists of a Backend controlled by the experimenter’s Party
along with its local storage, and a Notary service node, which is required
by the Corda implementation in order to approve incoming requests. Our
interest lies in the local storage, which in Corda-v2.0 is managed by an H2
SQL database engine 18. Its persistence, represented by a database file, can
be monitored in order to measure the size of stored data.

3.2.2 Implementation

The experiment is realized by a client RPC script. Randomized strings are
generated to craft Triples, which are then used to produce either the Creation
of a new State, or the Update of an existing one by executing the corresponding
RPC call. As means to extract results after each operation, an external system
shell command reads the size of the database. In conjunction with the tracked
amount and type of operations executed, we can evaluate the real impact they
have on concrete storage.

Some details of the experiment might include:

• The Randomized strings used for each part of the RDF statement are
always 10 characters long, ie. 10 Bytes.

• The order of operations is randomized as well. Conversely, the amount
of each operation is not. We chose to run 1000 operations series over an
increasing ratio of creations/updates.

• A major limitation of this experiment is the lack of a distributed comput-
ing environment at hand, which makes performance testing very difficult.
Additionally, we assume the number of Operations involving a change
in the meta-data of Triples are negligible compared to the amount of
changes to RDF data. For this reason, the dimension of impact due to
peer meta-data is not taken into consideration.

18https://h2database.com/html/main.html
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Figure 3.3: Size of the Database against the Number of Triples, classified by
ratio of Create Operations, complementary to the Update ratio

The experiment’s main loop is laid out in Listing A.5. Variables k and
j are setup in advance. Each new file generated contains the storage data
for a thousand randomly ordered but specifically numbered operations. The
create() and update() calls, shown in Listings A.6 and A.7, perform the re-
spective operation and return the database file’s size. The triple updated by
the update() function is chosen randomly as well from a list of currently active
Triples depicted by the global variable named activeTriples.

3.2.3 Results

In Figure 3.3 we can see the size of the database change according to the exe-
cution of Create and Update operations executed in random order. The total
maximum number of operation being constant, we perceive no exponential in-
crease in the required storage for a linearly increasing number of statements.
The data also suggests there is no at-scale difference in the storage consump-
tion from any particular operation more than the other. Finally, we notice
the database engine runs on-the-fly optimizations, evidenced by eventual sharp
drops in the disk space value read from the system.

Table 3.1 reveals the disk usage when several runs of the algorithm are
kept within the same ratio of operations for increasingly long executions.
Once again, we see no signs of exponential growth, with a disturbance in
the measurements caused by database optimization mechanisms.
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Table 3.1: Disk usage in MB for a series of increasing amounts of operations
with constant rate and randomized order

Total Created Updated Size [MB]

100 44 56 14,67

200 100 100 24,93

300 148 152 33,51

400 200 200 37,67

500 249 251 37,21

600 290 310 49,24

700 350 350 49,73

800 385 415 45,74

900 437 463 48,18

1000 500 500 65,39

3.3 Unit Testing

In order to assess whether the execution of Flows in the Backend corresponds
to the expected behavior, a number of Unit Tests were written. These tests
have the advantage they do not require any infrastructure to be executed - a
mock-up network with its services is emulated by the provided libraries. This
allows us to recreate possible interactions between two or more nodes, as well
as observing the data that is being manipulated and assessing the accuracy
of our algorithms through debugging. Naturally, the development of our work
was guided by the compliance with these tests. All RPC-callable Flows are
covered by them. The source code for these tests can be found in the enclosed
digital media at the following address: src/bbrm/backend/src/test/kotlin/or-
g/blockchainrdf/backend/flows/TripleTests.kt.

• CRUD (Create, Repeat, Update, Delete) operations: Testing all
basic management operations on Triples along with the correct replica-
tion of changes in relevant Nodes.

• Observer commands: Launching the set of requests to become an
observer for a certain set of Triples. Then verifying the contents can be
retrieved from local storage in the requesting node.

• Discovery: To certify that Triples are available for reading by any node
regardless if they are in local storage or not.

• Find Party by String: To identify a Party based on its string-serialized
X500 identifier.
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Conclusion

We set off to deliver a system that responds to the need of change tracking
and provenance in the Semantic Web, as well as guaranteeing its availability
and integrity. Inspired by the Blockchain technology trend and the parallels
between decentralized applications and Semantic Web, we developed, tested,
and evaluated a peer-to-peer application whose Blockchain based logic de-
livers inbuilt change tracking and provenance, requires minimal additional
knowledge from publishers, fewer RDF statements to be managed than al-
ternative change tracking systems, and scales reasonably in terms of storage
demands.

In addition to this, we explored some of the many use-case scenarios where
RDF aggregations can be applied on-the-fly to published RDF for improved
data quality and user experience. Such is the case of our Observer pattern
for owl:sameAs links, where issuers of such links get automatic updates of
entities of their interest pushed directly to their local storage, and the Linked
Data Notification pattern, where observers of a resource can be notified to
their available ldp:inbox of changes in a resource.

The underlying technology powering this project, Corda, constitutes a
promising alternative to traditional Blockchain systems as it lets programmers
define the inner workings of the communication between nodes to easily bring
into reality previously unimagined protocols. Compared to traditional Block-
chain implementations, the relationship users of such an application share
with the network itself is more significant and long-lasting. Since no miners
are required to run the network, parties enjoy a more transparent interaction
with other peers. Finally, the addition of an Observer Pattern as a predefined
mechanism to push changes on non-involved parties led to the implementation
of a selective broadcast, wherein publishers have the freedom to manage data
without depending on the consumers, effectively giving the latter a possibility
to store locally an always up-to-date copy of the changes in statements and
resources of their choice, ultimately contributing to the integrity and avail-
ability of all data across the network while, contrary to other solutions, not
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requiring to store the entirety of data to qualify as a node.
When compared to other implementations of RDF supported by Block-

chain, such as [32,33], we notice the difference in our approach which lies using
a Blockchain system not as a verification support, but as a true Backend for
the data we intend to decentralize. In such works, we once again come across
the notion of a single chain, whose entirety must be copied in all nodes. It
would only seem logical to rely on such a system for verification only, as using
it as storage would become quickly expensive and a non-scalable approach. In
response to this problematic, our solution spawns a separate chain for every
statement, and proves to be a lighter solution, as not all must be replicated on
every node, in some way finding a middle ground between storage demands
and replication.

Future Works

We believe the decentralization of the Semantic Web is an area that deserves
further attention and effort. Our solution may not be the only alternative in
this direction, but compels to some extent the feasibility of such a concept.
Future works might be divided into two categories:

• Backend Implementation: Some of the improvements that can be made
on Backends may include the adoption of a more RDF-friendly storage
in order to enable direct querying from a SPARQL endpoint, or even
the implementation of an inbuilt SPARQL service capable of querying
data outside the local storage and across versions of Triples.

• Frontend Interceptor: Many higher level RDF functions can be envi-
sioned. Linked Data Notifications and Observers are just use-case ex-
amples of the potential such a system has. Further developing this area
can prove relatively simple given how concise the design of communic-
ation with Backend functionalities is. We can imagine other use-cases
such as Validation of RDF and dataset merging.
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Appendix A

Code References

Listing A.1: Example payload for a PUT request/response during the creation
of a Triple

1 // Request
2 {
3 ” s ” : ” h t tp : // example . com/Foo” ,
4 ”p” : ” h t tp : //www.w3 . org /1999/02/22− rd f−syntax−ns#type /” ,
5 ”o” : ” h t tp : // example . com/Bar” ,
6 ” o b s e r v e r s ” : [
7 ”O=PartyB , L=London ,C=GB”
8 ]
9 }

10

11 // Response
12 ” s t a t e ” : {
13 ” data ” : {
14 ”owner” : ”C=CZ , L=Prague ,O=PartyA” ,
15 ” s ” : ” h t tp : // example . com/Foo” ,
16 ”p” : ” h t tp : //www.w3 . org /1999/02/22− rd f−syntax−ns#type /” ,
17 ”o” : ” h t tp : // example . com/Bar” ,
18 ” o b s e r v e r s ” : [ ”O=PartyB , L=London ,C=GB” ] ,
19 ” l a s t E d i t o r ” : ”C=CZ , L=Prague ,O=PartyA” ,
20 ” p a r t i c i p a n t s ” : [ ”C=CZ , L=Prague ,O=PartyA” ] ,
21 ” l i n e a r I d ” : {
22 ” e x t e r n a l I d ” : n u l l ,
23 ” i d ” : ”85894 fc2−fed6 −4381−9344−8 a4 c f 0 c c f e e b ”
24 }
25 } ,
26 ” c on t r a c t ” : ” org . b l o c k c h a i n r d f . backend . c o n t r a c t s . T r i p l eC on t r a c t ” ,
27 ” no ta r y ” : ”C=GB, L=London ,O=Co n t r o l l e r ,CN=corda . no ta r y . v a l i d a t i n g ” ,
28 ” encumbrance ” : n u l l ,
29 ” c o n s t r a i n t ” : {
30 ” at tachment Id ” : ” . . . ”
31 }
32 } ,
33 ” r e f ” : {
34 ” txhash ” : ” . . . ” ,
35 ” i ndex ” : 0
36 }
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A. Code References

Listing A.2: Input triples being complemented with Notifications

1

2 i n pu t . o b s e r v e r s ? . f o rEach { ob s e r v e r −>
3 // if conditions for creating a notification are met

4 i f ( v e r i f y C o n d i t i o n s ( s e r v i c e s , ob s e r v e r , i n pu t ) ) {
5 // Get foreign inbox information from Backend ’s local storage

6 v a l i nbox = f i ndOrSub s c r i b eTo Inbox ( o b s e r v e r )
7 i f ( i nbox != n u l l ) {
8 // Craft and add the notification

9 e x t r a T r i p l e s . add ( T r i p l eDa t aC l a s s (
10 s = inbox . o ,
11 p = "<http :// www.w3.org/ns/ldp#contains >" ,
12 o = inpu t . s + ": "+no t i f i c a t i o nMe s s a g e ,
13 owner = me ,
14 p a r t i c i p a n t s = emptyL i s t ( ) ,
15 o b s e r v e r s = l i s t O f ( i nbox . owner ! ! ) ,
16 l a s t E d i t o r = me
17 ) )
18 }
19 }
20 }
21 r e t u r n e x t r a T r i p l e s . p l u s ( i n pu t )

Listing A.3: Gradle commands to build the project binaries

1 # On Unix based
2 . / g rad l ew b u i l d
3 # On Windows
4 . / g rad l ew . bat b u i l d
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Listing A.4: Gradle definition of a task

1 t a s k deployAB ( type : ne t . co rda . p l u g i n s . Cordform , dependsOn : [ ’ j a r ’ ] ) {
2 d i r e c t o r y ” . / b u i l d / nodes ”
3 networkMap ”O=Con t r o l l e r , L=London ,C=GB”
4 node {
5 name ”O=Con t r o l l e r , L=London ,C=GB”
6 a d v e r t i s e d S e r v i c e s = [ ” corda . no ta r y . v a l i d a t i n g ” ]
7 p2pPort 10002
8 r p cPo r t 10003
9 co rdapps = [

10 ” $ p r o j e c t . group : sha r ed : $ p r o j e c t . v e r s i o n ” ,
11 ]
12 }
13 node {
14 name ”O=PartyA , L=Prague ,C=CZ”
15 a d v e r t i s e d S e r v i c e s = [ ]
16 p2pPort 10005
17 r p cPo r t 10006
18 webPort 10007
19 co rdapps = [
20 ” $ p r o j e c t . group : sha r ed : $ p r o j e c t . v e r s i o n ” ,
21 ” $ p r o j e c t . group : cordapp : $ p r o j e c t . v e r s i o n ” ,
22 ]
23 r p cUs e r s = [ [ u s e r : ” u s e r 1 ” , ” password ” : ” t e s t ” , ” p e rm i s s i o n s ” : [
24 ” Sta r tF l ow . org . remy . backend . f l ow s . C r e a t eT r i p l e ” ,
25 ” Sta r tF l ow . org . remy . backend . f l ow s . D i s cove r yReque s t ” ,
26 ” Sta r tF l ow . org . remy . backend . f l ow s . Upda t eTr i p l e ” ,
27 ” Sta r tF l ow . org . remy . backend . f l ow s . D e l e t eT r i p l e ” ,
28 ” Sta r tF l ow . org . remy . backend . f l ow s . ManageSe l fAsObserver ” ,
29 ” Sta r tF l ow . org . remy . backend . f l ow s . Hand l eObse rve rReques t ”
30 ] ] ]
31 }
32 node {
33 name ”O=PartyB , L=London ,C=GB”
34 . . .
35 }
36 . . .
37 }
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Listing A.5: Main loop of the storage data generation and collection script

1 fun main ( a r g s : Array<St r ing >)
2 {
3 proxy = CordaRPCCl ient ( NetworkHostAndPort . p a r s e ( a r g s [ 0 ] ) )
4 . s t a r t ( username = "user1" , password = "test" ) . p roxy
5 v a l f i l e = F i l e ( "results_$j_$k.csv" ) . p r i n tW r i t e r ( ) . use
6 { out −>
7 out . w r i t e ( "operation , created , updated , size\n" )
8 a c t i v e T r i p l e s . c l e a r ( )
9 v a l i n i t i a l S i z e = c r e a t e ( )

10 var c r e a t e d = 0
11 var updated = 0
12 f o r ( i : I n t i n 0 . . j )
13 {
14 i f ( c r ea t ed<k )
15 {
16 i f ( random . n e x t I n t (2 ) == 0)
17 {
18 c r e a t e d+=1
19 out . w r i t e ( "$created ,$updated ,${create () - initialSize }\n" )
20 }
21 e l s e
22 {
23 updated+=1
24 out . w r i t e ( "$created ,$updated ,${update () - initialSize }\n" )
25 }
26 }
27 e l s e
28 {
29 updated+=1
30 out . w r i t e ( "$created ,$updated ,${update () - initialSize }\n" )
31 }
32 }
33 }
34 }

Listing A.6: RPC client function for the creation of Triples

1 fun c r e a t e ( ) : Long
2 {
3 v a l f l ow = proxy ! ! . s t a r t F l ow
4 (
5 : : C r e a t eT r i p l e ,
6 genRandomStr ing (10 ) ,
7 genRandomStr ing (10 ) ,
8 genRandomStr ing (10)
9 )

10 v a l r e s u l t = f l ow . r e t u r nVa l u e . getOrThrow ( )
11 a c t i v e T r i p l e s . add
12 (
13 Pa i r ( r e s u l t . t x . outRef<Tr i p l e S t a t e >(0) . r e f ,
14 r e s u l t . t x . o u t pu tS t a t e s . f i r s t ( ) as T r i p l e S t a t e )
15 )
16 r e t u r n r e a dS i z e ( )
17 }
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Listing A.7: RPC client function for the update of Triples

1

2 fun update ( ) : Long
3 {
4 v a l i n d e x = random . n e x t I n t ( a c t i v e T r i p l e s . s i z e )
5 v a l randomTr ip l e : Pa i r<StateRe f , T r i p l e S t a t e> = a c t i v e T r i p l e s [ i nd e x ]
6 v a l newTr i p l eS t a t e = randomTr ip l e . second . copy
7 (
8 s = genRandomStr ing (10 ) ,
9 p = genRandomStr ing (10 ) ,

10 o = genRandomStr ing (10)
11 )
12 v a l f l ow = proxy ! ! . s t a r t F l ow
13 (
14 : : UpdateTr ip l e ,
15 randomTr ip leUpdate . f i r s t ,
16 newTr i p l eS t a t e
17 )
18 v a l r e s u l t = f l ow . r e t u r nVa l u e . getOrThrow ( )
19 a c t i v e T r i p l e s . removeAt ( i nd ex )
20 a c t i v e T r i p l e s . add
21 (
22 i ndex ,
23 Pa i r ( r e s u l t . t x . outRef<Tr i p l e S t a t e >(0) . r e f ,
24 r e s u l t . t x . o u t pu tS t a t e s . f i r s t ( ) as T r i p l e S t a t e )
25 )
26 r e t u r n r e a dS i z e ( )
27 }
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Appendix B

Acronyms

LOD Linked Open Data

RDF Resource Description Framework

RDFS RDF Schema

OWL Web Ontology Language

SPARQL SPARQL Protocol and RDF Query Language

RPC Remote Procedure Call
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Appendix C

Contents of enclosed SD Card

readme.txt ....................... the file with CD contents description
src.......................................the directory of source codes

bbrm........................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
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