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Abstrakt

Tato práce pojednavá o odlǐsném př́ıstupu k PPM kompresńımu algoritmu
založeném na succinct de Bruijnových grafech. Využ́ıvá dynamické binárńı
vektory a waveletové stromy sloučené do jediného stromu pro vytvořeńı vysoce
výkonné dynamické succinct datové struktury schopné reprezentovat grafy
použ́ıvané kompresorem. Přestože je algorithmus pomalý ve srovnáńı s os-
tatńımi běžně už́ıvanými kompresory, dosahuje dobrých kompresńıch poměr̊u
při využit́ı výrazně menš́ıho množstv́ı paměti.

Kĺıčová slova komprese dat, kontextové kompresńı metody, PPM, succinct
de Bruijnovi grafy, dynamické rank a select struktury
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Abstract

This thesis presents a slightly different approach to the PPM compression
algorithm based on the succinct de Bruijn graphs. It uses dynamic bit vec-
tors, and wavelet trees merged into a single tree to create a high performance
dynamic succinct data structure capable of representing graphs used by the
compressor. Even though the compressor is slow compared to other widely
used compressors, it achieves good compression ratios while using much less
memory.

Keywords data compression, context compression methods, PPM, succinct
de Bruijn graphs, dynamic rank and select structures
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Introduction

Due to the quickly increasing amount of data generated all the time by many
different sources, compression of such is an important research field. While
the computer memory is generally not an issue, it is still possible to meet a
system with, e.g., limited one due to a large number of memory dependent
processes or to encounter an input file with huge memory requirements.

Dynamic succinct structures can solve this problem by reducing the overall
memory needed by sometimes even several orders of magnitude [1]. While
in theory slower than their non-succinct counterparts, they can sometimes
achieve superior performance due to their ability to fit into small and fast
computer caches.

The goal of this thesis is to create a PPMC based compressor with the suc-
cinct de Bruijn graphs as an underlying structure. Since de Bruijn graphs are
today widely used in bioinformatics for genome assembly ([2] [3]), the method
and prototype compressor presented further is designed for DNA sequences.
However, it can be generalized for an arbitrary input alphabet without signif-
icant issues.

Trees (used by PPM compression) can be made into a succinct data struc-
ture with XBW transform. However, the method presented in this thesis is
not using trees to store the compression context, but rather graphs. By doing
so, it is possible to worsen the compression ratio slightly; however, resulting
graphs are much smaller than original trees resulting in even smaller memory
usage.

Structure of this thesis
Chapter one explores algorithms and structures needed for further design as
well as the previous related work in the fields of compression and de Bruijn
graphs. Chapter two focuses on the theory for later implementation of the de
Bruijn graph-based PPM compressor including merging of several dynamic bit
vectors and wavelet trees into a single one. It also includes time and memory
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Introduction

requirement analysis of such a compressor. The third chapter explores prac-
tical implementation, different ways of implementing parts of the compressor
and further smaller optimizations which can improve overall performance. The
Last chapter contains performance evaluation results for different approaches
described in previous sections as well as comparison with other compressor
using PPM compression method.
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Chapter 1
Theory

The first chapter introduces and further explores all data structures and con-
cepts used throughout this thesis.

1.1 Data compression
“Data compression is the process of encoding a body of data to reduce storage
requirements [4, page 7].” There are many different methods of achieving that,
generally attempting to use repeating symbols or patterns or frequencies of
symbols in similar texts to predict symbol that will follow.

Simple statistical compression methods use prediction models based on
similar inputs or the input alphabet in general (e.g., frequencies of each letter
in the English alphabet). Symbols with the highest probability of appear-
ance are then assigned the shortest codes. While this approach is reasonably
effective, it doesn’t consider already encoded part of the string in any way.

Explained with a short example: e is the most common letter in the English
alphabet and thus it will have the highest probability of appearing in the
given text. However, if we consider the previous letters, we can sometimes
determine that, given the context, the appearance of e is highly improbable.
For example, letter q is almost never followed by e and it will most likely
be followed by u. Context-based compression methods are “fixing” this by
assigning probabilities based on previous n characters (context of length n).

Adaptive compression with fixed length context can achieve better results
compared to simpler statistical methods [5]. However, it can be very inefficient
on shorter texts as it can take a long time to build a usable model. Hence the
compression is not ideal.

1.1.1 Prediction by partial matching
Prediction by partial matching (PPM) extends the aforementioned approach
by not necessarily matching the whole context of length n, but rather its

3
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AGAC GAC AC

Figure 1.1: Example of PPM context shortening

longest applicable suffixes. The compressor checks whether the currently com-
pressed symbol s was previously seen in the context of length k and otherwise
shorten the context to its suffix of length k − 1. Repeating this will result in
finding the longest context with symbol c already seen or it won’t find this
symbol at all (context will be shortened to an empty string) in which case it
will output c in its raw (not encoded) form. Note that this can happen only
when a never-before-seen symbol is introduced [6]. We can see this process in
Figure 1.1 where we want to encode symbol G, but current context doesn’t
have it yet. By shortening two times we get to shorter one where G was al-
ready seen before. Numbers on the end of each line are counters determining
the number of times the symbol was used for compression.

Partial matching only makes sense when used with adaptive compression
model (1). We add a frequency counter to each symbol, and when used, we
increase it, making its probability higher next time. We also add a missing
symbol to each visited context that was missing it.

1.1.2 Variants of PPM
Each time the context is shortened, the compressor must output a special
escape character so that deterministic decompression can be achieved later.
There are several PPM variants, each using a slightly different approach of
handling this event.

First two variants are today known as PPMA and PPMB and were origi-
nally proposed by John G. Cleary and Ian H. Witten in the paper introducing
PPM [6]. PPMA always gives escape character a probability of 1/(n + 1)
where n is the cumulative frequency of all other symbols in a given context
(its frequency is effectively always 1). PPMB will assign any probability to
a character only after seeing it for a second time. This is motivated by the
consideration that seeing a symbol once might be just an anomaly. Both of
these methods increase the probability of given symbol not only in the context
for the compression but also in all shorter contexts all the way to empty one.

(1)Adaptive model is one that changes itself during runtime based on the so far processed
input data rather than being constant for the whole compression.
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1.2. Arithmetic Coding

That results in a frequency of symbols in the empty context being equal to
their actual frequencies in the text.

PPMC increments frequency of an escape symbol each time it is used (same
as with any other symbol). Because each context is initially empty and we
have to shorten context (with escape symbol) each time we encounter never
before seen character, the frequency of escape symbol is equal to the number
of seen symbols. This approach was originally proposed by A. Moffat [7], and
it yields slight improvement compared to both A and B variants. Another
change introduced was making frequency increases only in the longest context
where it was successfully predicted and not shorter ones as in PPMA and
PPMB, improving compression ratio even little bit more [7, page 1919]. From
the implementation perspective, this makes compression slightly faster as we
are doing less work and also counters are filling slower.

Last discussed variant is PPMD, where the only difference compared to
PPMC is that the overall frequency increase per one symbol in a given context
is always one [4, page 108]. That means that the frequency of both new and
escape symbol is increased by half.

There are other variants of PPM (e.g., PPMP based on Poisson distri-
bution [8, page 7] or approximate PPMX [9, page 143]) but those are not
discussed further in this thesis.

1.2 Arithmetic Coding
Arithmetic coding is a method to effectively assign a code to whole input
instead of a single character. This makes it very efficient compared to other
encoding methods such as Huffman coding [10].

The static model requires a table of probabilities for each symbol. We start
with interval [0, 1) and divide it equally into sub-intervals based on symbol
probabilities (sorted by some arbitrary rule). Then when a symbol is read, its
sub-interval is used as a new base which is again divided into sub-intervals,
and the process repeats until the whole input is processed (see Figure 1.2).
The shortest number (with the smallest number of digits) from the last in-
terval is chosen as the result of encoding [10, s. 522]. We can make this
algorithm dynamic by updating frequencies (and therefore probabilities) after
each symbol.

Because of how the algorithm works, there is no way to guess during the
decoding, whether the whole message was already decoded or if we should
divide the current interval again. To resolve this, we have to either implement
EOI character or include the length of the input alongside the encoded text.

Since computers don’t work with unlimited precision floating point num-
bers needed to implement the described algorithm, there are integer only im-
plementations which work with much bigger intervals and dynamically output
parts of code when given part is guaranteed to remain unchanged.

5
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Figure 1.2: Example of encoding of string “cab” with static probabilities

1.3 Static succinct bit vector
Succinct data structures aim to achieve two things – reduce memory require-
ments of corresponding non-succinct structure close to the information-theoric
lower bound while allowing certain query operations to still be possible in O(1)
time [11, page 1].

Two basic query operations used by many succinct data stuctures are rank
and select. Given a sequence of bits v (binary vector) and integer argument
a, they are defined as follows:

• rank(v, a) returns number of set bits in vector v up to the position a (2).

• select(v, a) returns position of ath set bit in vector v.

Both rank and select can also be similarly used for querying zeroes (non
set bits). Note that while rank0 is equal to position a−rank1 (±1 depending
on the implementation), select cannot be done this way as the position of ath
set bit doesn’t generally hold any information about the actual position of nth
unset bit [12, page 3].

Thanks to Jacobson [13] and Clark [14] it is possible to perform both rank
and select queries on binary vectors in O(1) time. Reference implementa-
tion uses precalculated lookup tables over superblocks of the specified size to
achieve desired time complexity.

1.4 Dynamic succinct bit vector
Because rank and select capable structures used in this thesis are changing
during the runtime, we cannot directly use them as described above, because
they do not support operations insert and delete. Even though it would be

(2)Whether rank includes the bit on position a is implementation dependent.
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1.4. Dynamic succinct bit vector

0 1 1 0 0 0 1 1 1

p = 5 
r = 2 

p = 4 
r = 3 

p = 9 
r = 5 

Figure 1.3: Dynamic bit vector tree

possible to use static structure, we would have to rebuild its lookup tables each
time we insert new bit (which is very costly especially considering, that we
will be adding a lot of bits during the runtime). What we need is a dynamic
version of the same vector.

There are many proposed implementations of dynamic rank and select
structures ([15], [1]), this thesis assumes one build around the balanced red-
black tree (Section 1.6) proposed by Mäkinen and Gonzalo [12].

Dynamic bit vector with n elements is defined as a balanced tree with
depth of O(log(n)) where each leaf contains log(n) elements (bits). Each
internal node v contains two counters, p(v) and r(v), where p tells the number
of bits in the subtree rooted at v, and r holds number of set bits in the same
subtree (Figure 1.3). Together with the log(n) sized pointers it requires O(n)
bits of space [12, page 4]. Figure 1.3 shows an example of such dynamic bit
vector.

To perform rank, we traverse the tree from root using the p and r counters
in each internal node. If p of left child is bigger then queried rank, we know
that the last bit is in that subtree. In the other case, we subtract r of the left
child from the rank and continue to the right child.

Once we reach the desired leaf, we have to perform final rank above last
O(log(n)) elements. Note that because of the size of each leaf and depth of
the tree, the whole rank can be done in O(log(n)) time.

Get operation is identical except for the value it returns. To perform
select, we do the same except that the role of p and r counters is reversed.
Therefore, the time complexity of both is also O(log(n)).

To insert a new element, we first find the correct leaf and then insert the
bit itself into its place. Both p and r counters must be then updated to reflect
the change. To keep the leaves from growing indefinitely, we split them once
their size reaches 2 log(n). Delete operation is done similarly. Again, to keep
the leaves with roughly log(n) elements, we can merge them once element
count is less than log(n)/2 [12, page 5].
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Figure 1.4: Example Wavelet tree on alphabet Σ = {A,C,G, T}

Compared to the static structures we have lost the ability to query in O(1)
time, and we added a lot of memory overhead due to the addition of auxiliary
counters and whole tree in general. However, we are now able to add and
remove bits while retaining the ability to perform all the operations in better
than linear time (O(log(n))).

1.5 Wavelet trees
Wavelet tree is an extension of succinct bit vector for larger alphabets. To
construct one, we divide the whole alphabet Σ into two parts and assign each
part values either 0 or 1. Then we do the same process in each part and
its subtree until we end up with leaves each containing exactly one alphabet
symbol. This way we assign a code to each symbol σ ∈ Σ [16, page 10].

We then encode string T ∈ Σ∗ such that root wavelet tree vector of length
|T | will have 1 and 0 bits based on the first bit of the code of each symbol.
Zero elements will be represented in the left child vector and one elements in
the right one. Thus the length of both child vectors combined will be equal
to the length of their common parent. This is done recursively all the way to
the leaves (Figure 1.4).

Both rank and select operations for string V are extended by one additional
input specifying the query symbol:

• rank(v, a, c) returns number of cs in the string v up to the position a.

• select(v, a, c) returns position of ath c in the string v.

To perform rank, we traverse wavelet tree from top to bottom. In each
node we rank either 1 or 0 based on the code of given symbol c while using
the result of the rank operation as an a argument for subsequent ranks. The
result of the last rank is also the result of the entire operation.

Select is similar except that we traverse the tree from bottom to top and
use the result of child query as an a argument of subsequent select in its
parent.

8



1.6. Red black tree

1.6 Red black tree
A red-black tree is one of the self-balancing binary search trees. To balance
itself it adds an extra bit to each node, which determines whether it is colored
red or black (hence the name of the tree). To satisfy its balancing property,
following rules are introduced:

• each node is either red or black.

• the root node is always black

• all leaves are black

• red nodes always have black children

• every path from root (or any given node) to each leaf will contain the
same number of black nodes (this property is sometimes called black
height)

To adhere to these rules, the red-black tree uses tree rotations similar to
those of, e.g., AVL trees. During the insertion into the graph, the following
algorithm is used.

• Each newly inserted node N is red.

• If N is also a root node, repaint it black and end.

• If N is not black and its uncle is red, color both its parent and uncle
black, grandparent red and repeat the whole algorithm with N set to
the grandparent.

• If the uncle is black, rotations must occur. There are four different
configurations based on the position of uncle compared to grandparent
and N to its parent, each using different rotation order [17, page 1907].

Node deletion is a fairly complex operation involving similar operations
used in a different way.

Resulting tree strikes a delicate equilibrium between imbalance and per-
formance. Compared to more strictly balanced trees like AVL trees, it’s depth
can be bigger and as a result, queries will take more time. However, this is
offset by a smaller number of rebalancing operations, which result in the RB
tree being overall faster [17, page 1911].

9
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Figure 1.6: de Bruijn graph of string T = “ACC(TACC)*TAGA”

1.7 de Bruijn Graphs
K-dimensional de Bruijn graph with σ symbols is directed graph consisting
of σk nodes, each respresenting one possible combination of symbols of length
k from given alphabet Σ [18]. Transition between nodes u and v exists if the
suffix of node u of length k− 1 is equal to the prefix of length k− 1 of node v.
This graph is complete because it contains one node for each combination of
symbols of length k and also each transition satisfying above mentioned rule.
An example of complete de Bruijn graph for the alphabet Σ = {A,C} can be
seen in Figure 1.5.

For the purposes of this thesis, we are using a slightly different definition
where de Bruijn graph for string T is a subgraph of the complete de Bruijn
graph which contains all length-k substrings of T [19, page 227]. To represent
nodes with context shorter than k, we introduce a $ symbol which is used each
time the context is not long enough.

Figure 1.6 shows de Bruijn graph for a string T = “ACC(TACC)*TAGA”.
It is important to note that even though this graph doesn’t represent all
possible strings in a given alphabet, it still represents an infinite number of
strings.

10
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1.7.1 Succinct de Bruijn Graphs
Succinct de Bruijn graph is a low memory representation of de Bruijn graphs.
They are an extension of XBW transformation, which is used to represent
trees succinctly [20]. The representation discussed further in this thesis is
often called BOSS (from the authors’ initials(3)).

XBW doesn’t work with graphs because it cannot handle cycles. To sup-
port them, we have to introduce complement alphabet Σ′ with a set of special
symbols, each corresponding to a letter from the input alphabet Σ. To clearly
distinguish symbols while keeping information about their correspondence at
the same time, we will denote the complement symbol for symbol c as c' [19,
page 229].

During the following explanation you can refer to the Figure 1.7 which
corresponds to graph shown above (Figure: 1.6). Succinct de Bruijn graph
with m edges is represented with three vectors:

• vector W of length m consisting of symbols from both input alphabet
and its complement alphabet,

• vector L of length m on the binary alphabet {0, 1},

• array F of length of length |Σ|.

Whole succinct graph and its table representation are defined by edges.
Therefore, the table contains as many lines as is the number of edges in the
de Bruijn graph (with the exception of the dollar transitions explained later).
Nodes are, therefore, defined by their edges, nodes without any outgoing edges
use special empty transition denoted by the $ symbol. Lines in the table are
sorted in lexicographical order of reversals of node labels. Those are however
not explicitly stored.

“The string W is defined as follows. Each symbol W[i] represents an edge
label of the original de Bruijn graph G and each edge u → v of G is associated
with the node label of u [19, page 229, paraphrased].” Each arrow on the image
shows an edge between nodes u and v.

Because each node can have more outgoing edges and thus several lines
can correspond to a single node, we need to capture this relation in some way.
Vector L is used to determine whether two neighboring edges correspond to
the same node. By definition, L[i] = 0 if edges on indexes i and i+ 1 belong
to the same node, 1 otherwise. This vector is also referred to as last because
1 on position i means that given label is the last corresponding to its node.
Among other things, it can be used to determine an actual number of nodes
which is equal to the number of 1s in the L vector (sum of all elements of this
vector).

(3)Bowe, Onodera, Sadakane, Shibuya
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Figure 1.7: BOSS table representation of de Bruijn graph

Vector F is storing indexes of first labels ending with similar symbols. It
can also be interpreted as an array of cumulative frequencies of lexicographi-
cally previous symbols. As for the example image (Figure: 1.7), first line with
label C appears on line 5, which corresponds to 5 in array F. Our example
has five different symbols, but in reality, the $ symbol can be omitted as its
first occurrence is always at position 0 [19, page 230].

The last thing we can notice on the image is that complement symbol is
used for the second transition into the same node. It is important to never
have more than one edge with the actual symbol point to a given node; all
others must use the corresponding complement symbol instead. Why is this
the case is described below in Section 1.7.2.1.

1.7.2 Operations in de Bruijn graph

This subsection describes all further used operations above de Bruijn graphs,
namely forward, backward, outdegree, outgoing and label [21].

DeBruijn graph also supports other operations such as:

• indegree(v) returns the number of incoming edges to node v.

• incoming(v, c) returns the node w from which there is a transition to
v and its first symbol is c (or −1 if no such node exists).

• index(s) returns the index i of the node whose label is the string s of
length k.

However, these are not explored more here as they are not used anywhere
in the compression algorithm.
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1.7.2.1 Forward and backward

Simplest operations for de Bruijn graphs are forward and backward defined
as follows:

• forward(e) Follow edge e and return next node (index of one of its
edges).

• backward(e) Return to node from which there is a transition to node
corresponding to edge e.

While these operations (and many of the following ones as well) works
with nodes, we will assume that the argument given is one of the edge indexes
corresponding to desired node v. In this thesis, we are never working with
node indexes directly (even though that is possible with the use of vector F).

For this explanation let’s first assume trees and no complement alphabet
Σ′, and we will extend the algorithm for cyclic graphs later. For both forward
and backward we will utilize the property of graph of being lexicographically
sorted by reversals of its labels.

We know that appending the same symbol to all labels will not change
their ordering and neither will removal of their first symbol. Because of that,
we can implement forward operation by doing the following. Let’s assume
that we want to follow the edge labeled with symbol c. Because the graph is
sorted, we know that if this is the nth c transition from the top of the graph
table, it will lead to nth node ending with the symbol c [21].

To do the actual transition, we calculate the number of c transitions up
to our position. We can then find first node ending with c in F array. We
cannot simply add n to the base position, because several edges can belong to
the same node so instead of that we have to do rank and select above the L
vector to find the actual nth position.

Backward operation for symbol c works basically the same in reverse.
We find out where c begins, calculate n by subtracting rank to index i from
rank to base found in F and then select to nth c in vector W [21].

The reason, why this approach cannot be used for cyclical graphs, is that
several edges can point to the same node and therefore we cannot be sure that
nth c leads to nth node. That also means that the number of labels ending
with c can be smaller than the number of occurrences of symbol c in W (which
was not possible for trees). To address this problem, we will make use of the
complement alphabet by introducing a rule that if more edges point to the
same node, only single one of them (the uppermost) can be labeled with c
and the rest must use the complement c'. Because of that, there will be the
same number of labels ending with c and edges labeled c and the balance will
be restored once again.

Because of the ordering property, we know that smallest interval including
all edges labeled c (and complement c') pointing to the same node will not

13
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contain any other edges with the same label pointing to some other node. This
is because all labels in the interval must have the same prefix of length k− 1,
and an edge pointing to a different node would have to have a different one,
and therefore graph would not be correctly sorted.

This algorithm is now valid even for cycles because edges labeled with
actual c work the same as before and those with complement label will work,
because rank above W vector will count position of the topmost edge pointing
to the same node (the one labeled with c) but not any other complement
labeled edges thus leading to the same result.

1.7.2.2 Outdegree

Outdegree(v) returns number of edges leaving (outgoing) from given node.
To do such operations, all we need to do is find out the number of zeroes in F
array surrounding the given index. This can be done by using rank and two
selects. First, we rank to given edge v to find our number of nodes and then
subtract results of selects to given node and node right after [19, page 231].

For small alphabets, we can do this operation much faster by calculating
it on a lower layer. Instead of doing two selects and rank, we can traverse
the tree all the way to the leaf and linearly search for the number of zeroes
in vector L around this index. For prototype application with only four DNA
symbols, that means that instead of doing three O(log(n)) operations, we will
do one O(log(n)) (tree traversal) and than the actual calculation is done in
O(σ) where σ is the size of the input alphabet Σ.

With further optimizations like non-breaking leaf split, we can achieve this
even faster, because we are guaranteed to have whole de Bruijn node in one
wavelet tree leaf (see Section 3.2.2).

1.7.2.3 Outgoing

Outgoing(v, c) returns the node w pointed to by the outgoing edge of node v
with edge label c (or −1 if no such node exists). It works as a forward with
added functionality of finding edge labeled c before following it [19, page 231].

To find an edge, we can use rank and select above the W and L vector.
Note that approach used in outdegree operation, where we enter correct leaf
and linearly search, cannot be used here as we cannot determine the value
of the neighboring symbol in constant time and instead we have to traverse
wavelet tree for each one separately. However, this is possible with a proposed
merged structure described later in Section 2.2.

1.7.2.4 Label

Last important de Bruijn graph operation is label(v) which, given node (again
as one of the corresponding edge indexes), returns its label. Remember that
we are not storing labels itself which justifies the existence of this operation.

14
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We can find the last symbol of the label by looking into the F array and
search for the interval which includes current index i. To get the whole label,
all we need to do is call backward and k times and check F, in the same way,
each time again [21].

Because we are working with graphs, there might be more nodes which are
predecessors to the current one. However, it is not important which of them
is chosen by the backward operation as they all must, by definition, have the
same suffix of length k − 1 for current k.

1.7.3 Variable order graphs
To use de Bruijn graph for PPM, we have to support context shortening in
some way. We can, in theory, create several graphs for each context length up
to an n, however, that would be very inefficient, and we would be better of
with other non-succinct representation in both time and space requirements.

We can extend our graph with functionality to change contexts natively.
Shorter contexts of length k will not be represented by a single node, but
rather by a range of nodes with the same suffix of length k. Because of graph
ordering, we are guaranteed that all such suffixes will be next to each other.

To support such shortening, we will add one more wavelet tree L* to de
Bruijn graph where the value on position i represents the length of the longest
common suffix of labels of edges on positions i and i− 1.

To shorten the context of node at position i to length k, we will search
the L* for smallest i′ < i and biggest j′ > i such that all values l in interval
(i′, j′] satisfy l ≥ k. Resulting interval represents node with shorter context.

Original paper contains more information on how to do forward and back-
ward operations in shorter contexts (when a node is represented by an inter-
val), but we won’t need these for compressor implementation [22].

You can refer to Figure 1.8 to see how the interval is changing for different
context lengths. In this example, both contexts of length 3 and 2 are repre-
sented by same two lines (single node), because there is no other node with
the same suffix of length 2. The context of length zero increases this interval
over the whole graph because all labels have the same suffix of length 0. In
that case, the compressor will work pretty much the same as for non-context
methods.

1.7.4 Online de Bruijn construction
Everything about de Bruijn graphs described above assumed static structures
(4). We do however need to add new nodes into the graph during the runtime,
thus perform on-line construction.

(4)Static structures are those which cannot be changed after the original creation without
the need to rebuild them entirely. Because of that, they don’t support operations such as
insert.
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Figure 1.8: Example of changing of the graph order

The first step is to replace all underlying structures with dynamic binary
vectors and wavelet trees. That gives us the way to modify graph dynamically.
We must adhere to the rules of the succinct de Bruijn graph like lexicographi-
cally sorted nodes or complementary alphabet symbols. We can do that with
the use of the following algorithm.

Lets assume that we do want to append a symbol c (create new edge) from
node with edge index i. Since we are working with graphs, we need to check
whether the target node exists first. If it does, then that means that there
must be another edge with the same label c in the same context of length k−1.
If such a node exists in position < i, we will be inserting symbol complement
to c because of rule described previously (see Section 1.7.2.1). If we don’t find
it above, we must look bellow index i and if such an edge exists we change its
label to c' for the same reason. Note that if we already found similar edge
above, we don’t need to check bellow as the potential edge already must be
labeled with the complement symbol.

Now we have to handle a new edge with the given label. If current label
at position i is $, we change it to the new one, and we are done. Otherwise
we insert new edge on position i, effectively moving node previously found on
i to position i+ 1 (5).

If the target node doesn’t exist, we must perform additional insertion of
its empty edge (with dollar transition). To find its position, we have to find
edge g with label c above this one and forward from it. After that, we know
that we must insert the new edge right below g for the structure to remain
sorted. In case that there is no edge with the same label on lower indexes, we

(5)It is not really important whether we insert it above or below, however, form imple-
mentation perspective it is much simpler to insert above as we don’t need to check the L
vector and we can safely set it to 0.
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insert it at the position corresponding to symbol c in the F array [19, page
232].

Array F must be updated whenever we insert the new node (if we are
inserting more nodes, it must be updated after each insertion as the algorithm
is very dependent on it when looking for the position of other insertion).

While it is possible to delete nodes from the graph, it is also fairly complex,
and since it is not used for compression itself, it is not discussed further here.
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Chapter 2
Design

In this chapter we will design a PPM compression algorithm with structures
and algoritms described in chapter one.

2.1 Succinct graph based compressor
PPM algorithms are generally implemented with the use of tries (or prefix
trees), where depth corresponds to the length of the context and edge labels
of the path from the root to given node determine its context label. We then
attach frequency counter to each outgoing edge and use them to calculate
probabilities of symbols in a given context. For each new symbol we check if
there is an outgoing edge from the current node and if we find none, we shorten
context by following a suffix link to the node representing shorter context
(with the same shorter suffix). Each context we go through without desired
transition has a new one added (with the frequency equal to one). Frequency
is also increased for the transition that is finally used for the encoding.

You can see an example trie on Figure 2.1. Blue dotted lines show suffix
links used for context shortening. You can see that even though the depth
of the graph is 3, it only represents contexts of length 2 because we cannot
attach more nodes below leaf nodes in the last level.

To output the actual encoded character, we use frequencies to determine
the probability of each one. Each symbol has probability equal to its frequency
divided by the cumulative frequency of all symbols. We don’t have to explicitly
store the escape frequency, as it is equal to the number of outgoing edges
(PPMC, 1.1.2). With these frequencies calculated, we then use arithmetic
coding and output encoded string.

We, however, want to implement compressor with the use of de Bruijn
graphs and so we have to adapt this behavior for them. Each node in the
graph will represent one distinct context and will have attached corresponding
label of length k. Several other contexts (edges) can lead to this one (hence
creating the cycles). The only exception will be first k nodes which will have
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Figure 2.1: PPM trie for input T = ACCACGA and context length k = 2

contexts shorter, and missing symbols will be replaced with vicarious dollar
symbol.

Frequencies of symbols can remain in edges as it was in the trie version.
We must, however, handle context shortening differently as there are no suffix
links in the graph and multiple nodes can be considered previous. For this
we will make use of the variable order graph extension (see Section 1.7.3).
We can shorten context by scaling down the k by one. The result will be an
interval of nodes with the same suffix of length k− 1. You can refer to Figure
2.2 which corresponds to the trie version. Nodes with blue edges represent
context shortened to 1.

Calculation of frequencies can be trickier with graphs compared to tries.
With the longest context, we can use exactly the same approach, however
with shorter ones we are now working with not just a single node, but rather
with sets where multiple symbols can appear multiple times. Several ways of
shorter context frequency handling are discussed in the following subsection.
Once frequencies are calculated, the algorithm continues in the same way as
the trie version.

In the rest of the thesis, we will be using a DNA compressor as an example
program (which is also a prototype application implemented alongside this
thesis). DNA input alphabet consists of only four symbols Σ = {A,C,G, T}
and some parts are therefore easier to implement than for a general alphabet.

Including the complement alphabet and the escape symbol, we have to
support nine different symbols in total. That is not ideal as the wavelet tree
cannot be nicely balanced (it can be only for a number of symbols equal to
powers of two), but that is not possible for any input alphabet due to the
escape dollar character always making the total number of symbols odd.

Our wavelet tree will, therefore, have four levels, first tree full and last one
with only one node. Because of that two symbols will have longer query times
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Figure 2.2: de Bruijn graph for the same input as Figure 2.1

as the number of traversed dynamic binary vectors is higher. Ideally, we would
place not-as-often used symbols there, but while the first candidate is pretty
obvious (dollar symbol will be used sparingly compared to other symbols), the
second one cannot be generally determined. In the prototype application, we
will have $ and the complement T’ in the last level.

2.1.1 Frequencies in shorter contexts

As mentioned above, handling of frequencies in shorter contexts can be a
problem. In the graph, we no longer have each node corresponding to a single
frequency, and thus frequency counters are overlapping and we are using the
same ones for contexts of different sizes. This can result in worse compression
ratio as some of the information is lost. The most problematic is the escape
symbol, which can have several different frequencies.

The simplest way is to calculate the frequency of the escape symbol as
a number of outgoing edges in the same way it was done for a single node.
The other method is to include each character only once. The second way
more closely simulates the behavior of trie implementation as the frequency
of escape character is bounded by the size of the alphabet.

Another thing to consider is what frequencies to increase and how much.
When in shorter contexts, we can generally have more outgoing edges with
the same label. The way we increase their frequency can be very important.

One way is to add +1 to each edge with this label. This approach is
close to original PPMC where the increase is always by one, and therefore
the total increase can be two; one for escape and one for the actual symbol.
It is pretty easy to implement, but it can affect other contexts in a big way.
It may also seem that this approach increases the total frequency of lesser
used symbols by greater amounts because the context shortening occurs more
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often and therefore the interval of affected edges is bigger. This is offset by
the fact that lesser used symbols will not have that many edges. However,
total increases between symbols can still be very different resulting in very
non-uniform behavior.

Other more PPMD like behavior is to increase each counter proportionally
by 1 in total. That is pretty easy to implement in a single node, where we are
guaranteed, that half will go towards the escape symbol and the other half
to the actual one. We don’t want to use floating point numbers as probabil-
ities for several reasons; mostly because their range is much smaller with the
same size and operations with them can be more expensive. We can solve
this easily by multiplying all counters by two. However, this doesn’t work
as well for shortened contexts where we can have many outgoing edges and
dividing probability proportionally without the use of floating point numbers
is impossible without some hard rounding.

We can have frequency increase amounts scaled down as we shorten the
context. Scaling with factors of two is not feasible for long contexts where
increases directly in context nodes would be so big, that we would overrun
the counter really fast. Too small increases are not doing much for correctly
representing the actual probabilities. Finding a correct middle ground for this
scaling curve can be challenging.

Last way to increase by 1 in total is by choosing (e.g., randomly) one
of the edges and increase the frequency of only that one. This can have
negative effects on other contexts represented by only the random node or
different shortened contexts containing it. This bleed of probabilities from
other context occurs everywhere; however, it might be better to distribute it
equally rather than to skew only a handful in a big way.

2.2 Merging structures
Compressor, as explained above, has some problematic operations for com-
pression purposes. When running the compressor, we often need to change
the symbol of the empty transition to something else. However, that is not
very easy and fast. In the best case scenario we are changing symbols in
one wavelet tree leaf and then we can just flip bits and update r counter ac-
cordingly. The problem comes when symbols are in different branches. Some
vectors then need to add a new bit, some are flipping a bit, and some are
removing a bit. That results in several queries, each being logarithmic. It can
also lead to memory fragmentation when some dynamic vectors are deleting
entire leaves.

Another thing that would be desirable is to be able to determine the value
of neighboring symbols. Currently, we can determine them only by doing
another query above the structure. The only thing we can safely determine
is whether there is the same symbol somewhere in the graph before or after,
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which is not very helpful especially considering that we don’t know their posi-
tion, just that they are there. This can be very costly especially for frequency
related operations where we need to scan intervals of symbols.

The last problem can be memory usage of such structure. Note that each
bit vector has its own underlying tree with pointers (indexes), counters and
additional metadata which are all just memory overhead. Often these indexes
will be exactly the same for several of these structures because they are all
modified in the same way at the same time. Resulting program has therefore
extreme memory overhead with duplicate data, which is not the best thing
for a succinct application.

Because of all that, I propose a new merged structure which has greatly
reduced memory footprint, and it can optimize above-mentioned operations
while keeping asymptotic complexities of each operation the same as before.

2.2.1 Merged structure
From the definition of wavelet tree we can see that number of elements in both
child vectors combined is equal to number of elements in their parent. This
means that in balanced wavelet tree, each level contains the same number of
elements split into several bitvectors.

We can use this fact to our advantage and in new the use only number of
vectors equal to number of levels of the wavelet tree (that is four vectors for
the original eight). We interleave all vectors from a single level in a way, that
nth bit from left child vector will end up in the same position as nth zero in
its parent (and similarly for the right child). We do this not only for vectors
from wavelet tree W, but also for L, frequency counters P and we can extend
it with any possible addition vactor added later.

We can then determine all information about symbol on position n from
a single merged leaf. You can see an example of a merged structure in the
Figure 2.3. In the original tree, we need to check two vectors to determine a
single character. However, the merged structure does have a whole code of a
symbol in the same place. We can also quickly determine neighboring symbol
values which was not possible in the original one without additional queries.

We can no longer do rank and select directly on vectors (except for the root
one) as values on different positions belong to different vectors on the same
level in the original tree. We can, however, mask out bits we are interested in
by bitwise anding all higher vectors or their inverses.

As for the counters, we can get rid of some of them as well. While r
counters must be all preserved, we can remove all p counters except for the
root one, because we can calculate others in constant time. Counter p of the
right child is equal to r of it parent (because number of elements must be equal
of number of set bits in its parent) and p of left child is equal to p of parent −
r of its parent. In our case, even for the leftmost vector in the original wavelet
tree, we can get its p by just three subtractions.

23



2. Design

A A G C C T G A G A T C C A C G G T A T 
0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 

A A C C A A C C A C A 
0 0 1 1 0 0 1 1 0 1 0 

G T G G T G G T T 
0 1 0 0 1 0 0 1 1 

A A G C C T G A G A T C C A C G G T A T 
0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 
0 0 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 1 0 1 

Figure 2.3: Example of merging of vectors

We have also solved other problems described above. Each leaf now con-
tains parts of all the vectors where each position corresponds to the same
position in other vectors. That means that given some leaf we can get all the
symbols in it without any additional query in constant time by just masking
values on each position.

We can also improve the performance of operations working with an inter-
val of de Bruijn graph lines like getting frequencies. Before we had to query
the tree for each symbol separately, now we can do it just once and get all
frequency values. There is a slight problem when one de Bruijn node is stored
in separate wavelet tree leaves which is solved later in Section 3.2.2.

Last and one of the most powerful properties of the new merged structure
is that we can change a symbol on any position without the need to delete
it from one bit vector and add it to another one. All we need to do is find
the leaf with the to-be-changed symbol, change bits in vectors to the new
code and update r counters in this branch. This does not only reduces the
number of tree traversals from 2 to 1, but it also prevents possible memory
fragmentation because with this optimization we never have to delete nodes
during the compression.

2.3 Memory requirements

This section explores memory requirements of merged structure and compares
then with non-merged one. Whole memory requirements analysis considers
structure where all pointers and counters are 32-bit long.
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2.3.1 Array F

Array F is the smallest memory consumer from an entire graph. Because its
size is determined by the size of the alphabet only, its memory footprint is
|Σ| ·4 bytes. Because of that, this array is not really that important for overall
memory usage as even for big alphabets with reasonably big inputs it will be
small compared to other structures. Also, its size depends on the size of the
alphabet and not the input size. As noted before, dollar character doesn’t
need to be included because since we position it lexicographically before any
other symbol, its starting position in array F is always zero.

2.3.2 Main tree
Because we are using the red-black tree for balancing purposes, each node
should have a flag assigning it a color. We will, however, omit this from the
further analysis, because this flag can be “hidden” in highest bits of r counters
(specifically those representing lower levels of wavelet tree) and thus consume
no additional space. Also we are considering a wavelet tree with just three
levels without the dollar one as it can be removed with one of the proposed
optimizations (see Section 3.2.1)

Succinct de Bruijn graph representation is made out of graph edges, and
thus memory requirements are directly depended on the total number of edges
m in the graph. We can show that each new symbol increases the number of
edges at most by 1 with one exception.

Compression starts with an empty graph with a single empty transition.
With each added symbol s we change the $ to the s and add a new edge rep-
resenting new node with another empty transition $. This behavior changes
slightly once we add transition into an already existing node. In that case, we
don’t have to add anything; we only have to change the symbol of the tran-
sition. If we, however, later leave this node via different symbol than those
already present, we might need to add two lines; one for the new transition and
one for a new nonexistent node. Nevertheless, this can happen only if we pre-
viously entered an already existing node and by doing that we added nothing.
By distributing those two additions between two distinct graph movements,
we will again end up with just one addition per symbol.

In the worst case (which is a truly random and hence incompressible data),
the number of edges in the resulting de Bruijn graph is m = |T | where T is
the input string. Size of input is then also equal to the number of nodes, each
having just one outgoing edge.

Considering the worst case scenario where all leaves will be half full we
will need m/16 leaves to hold given graph(6). Each leaf of the merged struc-

(6)Full leaves are split into two equally sized halves, and since the algorithm never deletes
anything, they can never be more empty. The only exception is the first 16 edges of the
compressions before the root leaf is half filled
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ture consists of four bit vectors, eight counters and array with 32 frequency
aggregators, each 4B in size. That gives us the total size of leaves needed to
hold given graph equal to:

(4 + 8 + 32) ·max (1,
⌊
m

16

⌋
) · 4B = 176 ·max (1,

⌊
m

16

⌋
)B

As for the number of nodes, we can use the following lemma to calculate
their exact number.

Lemma 2.3.1. In graph G where all internal nodes have both of its children,
the total number of internal nodes is equal to l − 1 where l is a number of
leaves in the graph G.

Proof. If we consider a completely unbalanced tree, each node will have one
child as a leaf and second as another node except for the deepest internal node
where both of its children will be leaves. Therefore root will consist of one
node, each deeper level will contain one node and one leaf, and bottom most
one will contain only two leaves. Summing this gives us that the number of
nodes is equal to the number of leaves −1. Because any tree can be rebalanced
into such an unbalanced state and rotations used for such balancing don’t
remove any nodes or leaves or change the rules of the tree in any way, we can
safely assume, that this is true for any such graph.

Each node of the merged structure contains eight counters and two pointers
to both of its children giving us a total of 10 4B integers. The total size of all
nodes is thus equal to:

40 ·max (0,
⌊
m

16

⌋
− 1)B

Therefore, the total size of the entire structure is:

176 ·max (1,
⌊
m

16

⌋
) + 40 ·max (0,

⌊
m

16

⌋
− 1)B

That results in average space per graph line in infinity being equal to 13.5
Bytes in the worst case. If we consider a scenario where data are filling leaves
to their fullest, memory requirements are halved (6.75B per line). Note that
this is true only for random data where no transition in any context is used
more than once, which is almost never the case. See experimental evaluation
for more real-world results (Section 4.2.3).

In comparison, the non-merged structure uses the same vector F and then
several dynamic bit vectors. Each such vector has leaves with one vector and
two counters, and nodes with two indexes and two counters resulting in a size
of 12B per leaf and 16B per node. In addition to this, we must add frequency
vector which is not included as with merged structure, and which has a size
of 4B per edge!
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2.4. Time complexities

Considering again the worst possible memory usage, when all leaves are
half filled and roughly uniform distribution of each symbol, we need m/16
leaves for vector L and the topmost vector W, half of that for W vectors in
the second level and quarter for vectors in the third level. We will assume
that the dollar was removed here as well as it is not a unique feature of the
merged structure.

Each bitvector for given size m uses:

12 ·max (1,
⌊
m

16

⌋
) + 16 ·max (0,

⌊
m

16

⌋
− 1)B

We will assume that non-merged structure uses memory chunks for 32 fre-
quency counters without no additional overhead (which is already very gen-
erous claim). Each such chunk will then be 32 · 4B big, resulting in the total
size of frequency counters being equal to:

max (1,
⌊
m

16

⌋
) · 128B

Summing all the parts together (with decreasing average size of vectors as
the tree level increases in mind), we get the following equation:

2 · (12 ·max (1,
⌊
m

16

⌋
) + 16 ·max (0,

⌊
m

16

⌋
− 1))

+2 · (12 ·max (1,
⌊
m/2
16

⌋
) + 16 ·max (0,

⌊
m/2
16

⌋
− 1))

+4 · (12 ·max (1,
⌊
m/4
16

⌋
) + 16 ·max (0,

⌊
m/4
16

⌋
− 1))

(2.1)

That gives as an average memory needed for each line equal to 15B (or
again 7.5 for filled leaf vectors). This is not a huge increase compared to
the merged structure. However, it is not negligible when large inputs are
being compressed. Note that the biggest part of both versions (up to 75%)
are frequency counters. When we remove both those and also the bit vectors
itself as they hold the actual data, we can get memory overhead for each line,
which is equal to 4.5B for merged structure and 6B for simple one, which gives
us an overhead memory reduction of 25%.

2.4 Time complexities
Asymptotic time complexities in merged structure are identical to the non-
merged one (which are equal to O(log(n)) for each operation [12, page 227]).
What changes are constant factors.

All wavelet tree operations can be done faster with fewer queries than in
the original tree made by several distinct vectors. We can use the fact, that
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2. Design

all the information for a single position is saved in the same place to reduce
the number of tree traversals for each operation to just one.

Get can benefit from this improvement without bigger change. The query
is done just once to find the correct position and all other values are determined
in constant time from the same memory leaf. Same is true for both insert
and delete which can again shift all vectors at the same time in a single leaf.

Rank and select needs to be updated a little bit more to support single
query results.

To select, we start at the lowest dynamic vector, but we are not summing
its p counter, but rather the highest one corresponding to the topmost vector.
Because of how the data from all the vectors are interleaved, this will yield a
correct result after just one traversal.

For rank we do the similar thing, start at the lowest vector (which is a
bigger change as the original rank first queries the topmost vector) and while
summing its corresponding r counter, we decide to which subtree to continue
based on the overall p rather than the corresponding one.

This change yields significant speed improvements of the entire algorithm
while having no downside at all. Actual single query time can be slower in the
merged structure because, in the simple one, sizes of bit vectors decrease with
the depth and queries are faster deeper we reach (root vector being d levels
deep and each lower level vector being on average one level shallower. That is
not true for merged one as the vectors are interleaved and therefore have the
same size for each level, making their depth the same. Also, not all bits in the
final leaf belong to a given query, and they must be masked out. That can be
done in constant time, so the asymptotic complexity remains the same.

There are also other operations which can benefit from the related data
being in the same leaf. We can now linearly search the whole leaf and get
values of neighboring elements as well in constant time. That is used by
probability calculating function or outdegree operation (Section 1.7.2.2) and
made the best when leaves are split so that whole nodes remain in the same
one (more in Section 3.2.2.
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Chapter 3
Implementation

This chapter explores the implementation of more interesting parts of the algo-
rithm/program and introduces some optimizations which can further improve
the performance of theoretical concepts introduced in previous chapters.

3.1 Existing related software

Considering succinct data structures, there is a lot of research done in theory,
but often these are not implemented or not publicly available. Still, several
libraries including these can be found.

One of such libraries is SDSL (or Succinct Data Structure Library)(7). At
the time of writing (January 2019) it contains many different succinct data
structures including bit vectors and wavelet trees. However, it doesn’t contain
any dynamic structures that can change during the runtime [23]. Therefore,
it cannot be used for the purposes of this thesis.

All succinct data structures were implemented as the part of this thesis
from scratch.

Arithmetic coding is widely used by many different compression algo-
rithms, and because of that, there are many implementations of it. The one
used for the purposes of this thesis(8) was based on the work [24] and written
by several people already mentioned in this thesis, like I Witten, creator of
PPM [6] and A. Moffat, the creator of the PPMC variant [7].

3.2 Optimizing structures

This section explores several upgrades to the merged structure.

(7)https://github.com/simongog/sdsl-lite
(8)https://people.eng.unimelb.edu.au/ammoffat/arith coder/
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3. Implementation

3.2.1 Removing the $ symbol

Because vector in the last level of the merged wavelet tree is now used only
for $ and T ′, it wastes a significant amount of space.

Dollar symbol represents an edge which goes nowhere. BOSS representa-
tion stores only edge, and because we need a way to represent node with no
outgoing transitions, we are using a dollar symbol as an indicator of nonex-
isting edge. Because of how the compressor works, the only node without any
transitions can be the one added last. When new symbol c is being processed,
this empty transition is changed to c (or c') and the dollar symbol disappears.
Note that if new symbol takes the algorithm to the already existing node (by
creating a cycle in the graph), we do not add an empty edge and we will have
no dollar symbol at all.

Because we know that there can never be more than one dollar symbol,
we can update the proposed merged structure such that we will completely
remove the last level of wavelet tree and handle the dollar symbol some other
way. By doing so, we will achieve a structure with just eight symbols which
can be nicely split between only three levels. This change reduces memory
overhead of vectors itself to zero because all bits can be used for the tree
compared to the previous model where the last level was used only by two
symbols (one of which was almost never there).

We introduce a new variable dpos which will hold a position of the single
$ symbol in graph or −1 if it’s nonexistent. Then we choose a symbol x from
the alphabet Σ which will represent not only itself but also the $ symbol. To
make things as fast as possible, the least frequent symbol should be chosen
as x. Each time dollar symbol is being inserted into the graph, we insert x
instead and save this position into dpos.

Considering the operations, we can imediately return rank and select
queries for dollar symbol. Rank is 0 if symbol is not present or if position
a is smaller than dpos and 1 otherwise. Select can simply return dpos for
position a = 1 and −1 otherwise.

We must slightly adjust queries for symbol x. If rank position a is higher
or equal to dpos we must subtract one from the result. The worst operation is
select where we cannot determine before the query itself if dpos will be in the
searched interval or not. If select returns number bigger or equal to the dpos,
we must do it again with position a increased by one. We can start from the
leaf and check for the following element there, but in the worst case scenario,
the whole tree must be searched again.

This optimization can, in theory, be extended to more than just one $
symbols, but it very quickly loses advantages we got from it. Worst is the
select operation where we might re-query as many times as is the number of
symbols we track.
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3.2. Optimizing structures

3.2.2 Clever split of nodes
To address some problems noted above (see Section 1.7.2.2) and further stream-
line some operations, we can improve wavelet tree node splitting algorithm
where instead of splitting the node exactly in the middle, we can offset the
cut so that all labels corresponding to the same de Bruijn node will remain in
the same leaf.

This optimization can both increase and decrease memory usage. It in-
creases in the case where leaf with the larger part is filled more quickly (re-
sulting in the need to split it again) and decreases in the other case. Both of
these are, however, very small and doesn’t have a real noticeable effect. Also,
we cannot really predict this beforehand.

What we got in return is the ability to update some operations to work
faster, because all operations above single de Bruijn node are guaranteed to be
done in just one wavelet tree leaf. Implementation wise we can move the cut
position based on the values in the L vector, which is also stored in the same
leaf, so no more queries are required, and splitting can still be done in O(1)
time. We must also ensure that insertions are always guided to the correct
place when a new symbol is being inserted directly in between leaves. Because
each de Bruijn node has four edges at maximum, offset will be ≤ 2 (9).

Note that this optimization doesn’t help in shorter contexts as nodes rep-
resenting them can be in much bigger intervals than one leaf can hold.

3.2.3 Lookup cache
Almost all operations with the wavelet tree need to traverse the tree from
root to leaf and together are called many times for each new symbol being
inserted and encoded/decoded. The fact, that tree search is logarithmic (and
not constant as for static bit vectors) doesn’t help the performance at all. To
reduce the number of tree traversals, we can implement small lookup cache
which will store the query position and corresponding leaf and position within
it. Each time we call some tree search operation, it first checks the cache for
the index, and if one is found, whole tree traversal can be skipped.

Because these operations are called very often, the cache should resolve
possible result very fast. Cache implemented in the prototype application uses
a very simple buffer where the oldest value is always replaced with the new
one.

Size of the cache is also an important factor for the compressor perfor-
mance. Big caches can have a good hit rate; however, the time needed to
search them can overweight any performance benefit gained. Experimental

(9)Even though we have nine symbols in total, we can never have more than four in the
node at the same time. Dollar symbol can appear only if no other transition exists and both
c and c' symbols represent the same value and therefore cannot exist in one node at the
same time.
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evaluation below contains performance and hit rate results from several mea-
surements (Section 4.2.1).

3.3 Memory management

Memory management is an important aspect of any performance dependent
program because frequent allocations and deallocations can significantly affect
it. This section shows three different ways of using memory. All further
references to nodes are meant as both internal nodes and leaves except when
noted otherwise. All three models are depicted in Figure 3.1.

We are assuming implementation in some low-level language (like C) where
the programmer can directly influence memory allocation. Higher level lan-
guages can be handling memory allocation in their own way without the pos-
sibility to influence this process. The prototype application is written in C.

3.3.1 Direct node allocation

The simplest method is to allocate new memory each time a new node is
needed. While this is by far the easiest to implement, it can slow the program
down because the memory allocators are generally not very fast as they have
to handle many things like, e.g., fragmentation.

3.3.2 Indirect node allocation

Calling malloc() or similar function each time we need more memory can
be very resource consuming. A better approach is to allocate big chunks of
memory at the time and then give them to the application when needed (fig.
3.1).

Since our application never deallocates memory except for the end, we
don’t need to implement a fragmentation preventing method or handle free
blocks in a special way. We can merely linearly distribute parts of the preal-
located memory, and once we reach the end of the block, we allocate another
one.

There can be a problem where internal nodes and leaves have different
sizes, and because of that, we won’t use all the space allocated with a small
part left on the end of the block. This can be solved by allocating two distinct
memory chunks, each for one structure.

Even this is however not necessary, because as we have proven with lemma
2.3.1, number of internal nodes in the graph at any given time is equal to the
number of leaves minus one and thus we can determine exact memory layout
before the actual compression no matter the input.
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Figure 3.1: Three ways of memory management

3.3.3 Indirect memory indexing
While the previous approach improved on direct node allocation in a big way,
it is not perfect mainly because we are still using pointers which are always
the same size (e.g., 64-bit) To achieve much smaller memory consumption, it
would be nice to have pointers of logarithmic size which can change during
runtime based on the current requirements [12, page 4]. We can do that by
not using pointers, but rather an integer indexes into the same memory (fig.
3.1).

This approach, however, has some hindrances. Indexes are always offset by
the same margin, and because of that, we cannot have an array with elements
of different sizes (internal nodes and leaves). We can go around this with two
memory buffers, but then we have to employ some kind of mapping function
which will tell us, based on the index, to which buffer we want to look.

One way to do so is to save flag telling us which buffer to use into the
highest bit of the index. Then each time we want to access the memory, we
check this flag and access correct buffer with flag masked out. The example
application for this thesis uses this approach except that the flag is saved in
the lowest bit after the actual value is bit-shifted to the left.

To prevent the need to indirectly query memory via mapping function
each time we need it, we can remember actual addresses of the given memory
location in auxiliary pointer variables. That can help us when we are checking
the same memory place several times.

Next section details how we can change the sizes of pointers during the
runtime.

3.4 Changing log n

The research paper on dynamic bit vectors utilized in this thesis proposed
tree with log(n) size pointers [12, page 4]. While that works in theory, we are
not able to do it precisely that way in actual computers. Today, computers
generally have 32 or 64-bit pointers, and their size cannot be changed. We can
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go around this by not using actual pointers but instead indexes into the same
preallocated space (described in Section 3.3). While we can use indexes of any
arbitrary size, computers, as we know them today, can allocate in bytes and
not bits, and all extra unused space would be lost anyway. Because of that,
we consider pointers as indexes of sizes equal to multiples of eight. Pointers
and indexes will be thus used in the following section interchangeably.

Let’s consider that we start the graph with structure with 8-bit indexes. As
we add more elements to the graph, it is possible, that log(n) will change and
we will need more than 256 wavelet tree nodes. In the best case scenario, we
would know the size of pointers needed before compression starts and use that
size from the beginning. However, that is not possible to do. We can guess this
information from the size of the input, but different inputs of the same size
will need de Bruijn graphs of different sizes. For example, an input with only
one symbol repeating million times requires just a fraction of space compared
to a random input with million symbols from the whole English alphabet. We
can also determine a size of pointers based on the biggest possible de Bruijn
graph it can produce (by assuming that the input is effectively random) or
simply by the total number of possible nodes for given alphabet and context
size, but that number can be huge very fast. Because of that, we need to
be able to change the size of pointers during the compression based on the
current status. There are several ways of achieving that.

Note that this is not true only for pointers but also for all r and p counters
as their maximum size corresponds to sizes of pointers (even though we cannot
assume any correlation between a number of pointers and values saved in r
counters).

3.4.1 Non destructive methods
Easiest nondestructive (no information is lost during the process) way of man-
aging the size change is rebuilding entire tree each time we need bigger sized
pointers. Mäkinen notes that this can be done in O(n) amortized time [12,
page 9] and the same applies to our merged and extended structure as the tree
works the same. Another method also described by Mäkinen involves three
structures of different sizes with elements split between then and movement
of elements between each time new one is added or removed [12, page 10].

I propose another approach which doesn’t require us to move elements until
truly needed. In this example we assume indexed tree nodes where (to make
mapping as fast as possible) first 256 indexes point to 8-bit structures, rest up
to 65535 points to 16-bit structures and so on. We start the compression with
small structure elements (e.g., 8 bits). Once we will need more nodes than
256, we can start allocating nodes with 16-bit pointers. Those using smaller
8-bit structures will be left like that until one of the following events occurs:

• internal 8-bit node needs to point to the node on indexes higher than
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256

• internal node needs to increment p or r counter and overflow would
occur

• leaf needs to insert additional 9th bit

In all these cases we would transform these nodes into larger 16-bit struc-
tures. Note that because larger structure always has indexes bigger than 255,
the parent node and all other ancestors (all the way to the root) must be
converted as well. Lower level internal nodes and not-as-often used leaves can
remain smaller. We can reach a place where we are again out of the indexes,
but there are still some 8-bit nodes left. When this occurs, we can convert rest
of them and reclaim their indexes for 16-bit nodes, delaying the transition to
even bigger sizes.

3.4.2 Destructive methods
Following methods do not solve small pointer sizes by adding bigger ones but
instead try to free enough space to reuse existing ones.

One such way of solving the problem is by removing parts of the de Bruijn
graph which are not used often or were just anomaly, and their removal won’t
cause significant compression ratio decrease. It can be tricky to detect these
parts effectively, and removal of them is still not guaranteed the free up mem-
ory in places we need, and so some reshuffling of the graph between wavelet tree
leaves can occur. This makes this method fairly inefficient, non-transparent
and ultimately worse than many others.

The most destructive way can be used when we don’t have more memory
at all. We can simply delete the whole de Bruijn graph and start from the
beginning as if no compression occurred before. By doing so we are losing
the entire model, and thus the compression ratio will suffer, but it is more
evident than the previous method with selective pruning, and it can be done
very quickly.

3.5 Handling frequency
Compared to other variables, where we can at least guess required sizes based
on the size of the input, size needed by frequency counters cannot be easily
determined just from that information. We can estimate (sometimes exactly)
the total sum of all frequency counters based on the size of the input, but
not the distribution of this sum between individual ones. For input of million
symbols A, where we don’t even need more than one wavelet tree leaf, its
frequency value will be 1 million after whole input is processed. On the other
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Figure 3.2: Memory layout of single merged leaf

side for random input creating huge de Bruijn graph (and therefore allocat-
ing big wavelet tree) frequencies of individual symbols can depending on the
implementation of frequency handling end up very small.

It’s important to realize, that counters are the main memory consumer
in the whole structure. Considering again 32-bits for all leaf elements, each
will contain in our case 4 bit vectors (three for W and one for L), seven r
counters, one p counter and 32 32-bit integers for counting frequencies. That
means that leaf consists of a total of 44 integers and frequency takes more than
72% of that. Figure 3.2 shows the memory layout of a single leaf; white cells
correspond to frequency counters. Not wasting space on them is, therefore,
very important.

Another problem to solve is what to do when we reach the limit of some
frequency counter. We can do the same thing as with pointers (Section: 3.4)
and rebuild the whole tree with bigger ones. However, this is not feasible as
only several nodes often reach this limit while others keep their values low.
That means that enlarging frequency counter size for just a handful of nodes
will increase memory consumption of the whole program by a considerable
amount while gaining only a minimal benefit (or none at all for cases like
billion times the same symbol).

Other methods of solving such a problem won’t use any additional space
but will result in a possibly slightly worse compression ratio. One possibility
is to stop incrementing full frequency counter and keep it at maximum for
the rest of the compression. This approach is problematic because it can
eventually result in a very nonrealistic probability distribution. For example,
if symbol y is used twice as much as symbol z, it should have roughly two
times higher probability of appearing in a given context, however with this
method, after long enough time, both symbols will reach maximum value
and probabilities will be split evenly among them. That can, in theory, lead
to a point where all symbols in all contexts have the same probability of
appearing, completely negating any probability model (even though in reality
this scenario is highly unlikely to occur).

A better way of solving this problem is by halving all frequencies when one

36



3.6. Context shortening

counter reaches its maximum. We must do this for all counters (entire graph)
and not just to those belonging to the given node because context shortening
can reduce the whole graph into only one node. By doing it this way, we
are losing precision, because odd numbers are rounded and because frequency
increases after the shrink are effectively bigger than before. However, this
behavior doesn’t have to be a bad thing as the frequencies can faster adapt
to change in compresses text after this shrink. We can offset this behavior (if
undesired) by increasing probability by two instead of one, however that can
lead in frequency increases being very big after several context halvings.

Both of these approaches will make compression ratio worse, but they are
memory efficient, and as long as they are consistent between both compressor
and decompressor, they will work correctly. Because we know how to handle
overflows in frequencies, we can reduce the size of frequency counters to be
more memory efficient for the price of worse compression ratios. If small
memory usage is our main goal, we can use only 8-bit counters and reduce
overall size to just 40% of the original size of the leaf (considering 32-bit
pointers).

3.6 Context shortening
In this section, we look more deeply on the context shortening operation and
different methods of doing so.

3.6.1 Explicit context shortening

The first method explicitly calculates labels of two neighboring nodes by using
backward function up to k times each time they are being compared (same
as actual label function but with the immediate comparison). This method
has no memory overhead as it doesn’t store any additional data, it is however
very time consuming since we have to calculate and compare labels again each
time we need to know those values.

Calculation of one common suffix length can takes up to O(k · log(m))
time. In the worst case (when a symbol is found only in the context of length
0 or not at all) we will shorten context to include the whole graph. This means
it will be done up to m− 1 times where m is the current number of edges in
the graph. For the whole compression of uncompressible text, that can result
in time complexity equal to:

m∑
j=1

(j − 1) · O(log(j))

While this is a very unrealistic theoretical upper boundary, it is still linear
to the size of the graph per symbol, which is not very good.
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3.6.2 Shortening with integer array

The second method is based on the idea that common suffix lengths remain
the same for a long time. Because of that, we can save those values in an
additional array of small integers (we need only 8-bit integers for most used
contexts). The only time we have to check again for context length is when
the new edge is inserted.

We must then calculate common suffix length for newly inserted edge and
also for the edge below it. That results in 3 label queries for each insertion
except for those added to the last position.

The maximum number of label queries for the whole compression is, there-
fore, 3 ·m. This implementation slightly increases the size required for com-
pression because of the additional auxiliary array.

3.6.3 Shortening with wavelet tree

One problem with the previous method is that while we significantly reduced
the number of times, we have to calculate labels, context shortening is still
linear operation, and in the worst case, we must go through whole graph each
time we add a new symbol.

We can improve on this by using wavelet tree rather than an integer array,
and we can query intervals in logarithmic time instead of looking for them
with a linear search. The number of label queries remains the same, but
now, instead of doing up to m comparisons, we have only two logarithmic
query operations per shortening resulting in 2 ·k query operations per symbol
insertion at maximum.

We must, however, implement new query operation because we are not
querying the first node with the label of length k − 1, but the first node with
the label of length ≤ k − 1. Such an operation is more complex and requires
a query on each level of the wavelet tree. This method doesn’t change the
asymptotic complexity, and it might be the best one in theory for static data
structures with constant ranks and selects and also dynamic data structures
with logarithmic operations. However, for smaller alphabets and big graphs,
where the probability of shorter interval being long is small, this might not be
the best method.

Note that from memory perspective, dynamic wavelet tree holding at least
5-bit context lengths (for context sizes up to 32) will be much more inefficient
than 8-bit array from the previous method. Also, logarithmic queries can be
in reality slower as their complexity is always logarithmic to the size of the
graph while linear operations are only linear to the size of the longest interval.
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3.7 Compressor initialization
The last optimization suggested is pre-inserted parts of de Bruijn graph. As
we described in theory Section 1.1.1, if the symbol is completely new, we
cannot assign it any probability, and because of that, we must output it in its
raw unencoded form. This behavior can introduce additional complexity to
the algorithm and also reduce compression ratio a little bit.

We can eliminate this behavior by inserting all possible symbol into the
graph even before compression itself starts. For big alphabets and small in-
puts, this is not feasible as many of these symbols may never be really used
and also by giving them a probability we are reducing the compression ratio.
However, for small alphabets and huge inputs (like, e.g., DNA) we are guar-
anteed to encounter all symbols at least once, and thus this optimization can
be quiet beneficial.

We can go even further and not just insert each symbol once, but rather
start with complete de Bruijn graph of order k where k should be carefully
chosen constant so that every node in the complete graph will be used during
the compression. For huge DNA strings, this number can be pretty large.

Even though we know that all these nodes will appear during the com-
pression, it would not be wise to give a probability to each of them right from
the start as we would again skew the model in the wrong way. We can still,
however, gain some time by preallocating memory and inserting these nodes
in a way that can be much faster than during the compression, because we
are inserting a big chunk of static data and don’t need to use the classical
algorithm.

Whole wavelet tree initialization can be done with these data in mind and
all tree nodes/leaves allocated and initialized very effectively (for example
by placing neighboring leaves near each other in memory which cannot be
guaranteed during the runtime compression).
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Chapter 4
Experimental evaluation

This last chapter covers the experimental evaluation of chosen parts of the
program as well as the compressor as a whole.

Input data used further can be divided into two categories – random data
generated such that all tests for a given size are working with the same input
and real-world DNA sequences of chromosomes of various sizes.

All used DNA sequences contain symbol N, which means that the se-
quencing software was unable to identify given base. Implemented prototype
compressor is not able to work with more than four symbols and hence is un-
able to encode these in any way. To solve this, all input files were modified to
include another random symbol instead of the N. Used sequences, their sizes
and the percentages of N symbol can be seen in table 4.1.

Organism chr. no. # of N symbols size
Ciona Intestalis 1 3.42% 10035955
Ciona Intestalis 6 1.20% 2360661
Tribolium Castaneum 3 1.09% 31379387
Mus musculus 19 0.00033% 59031466

Table 4.1: List of chromosomes used for the evaluation

All measurements were done on the same computer with all outside influ-
ences reduced to a minimum (no GUI, no additional unnecessary processes).
All tests were performed on Intel Core i5-7200U CPU with 3.1GHz turbo
boost enabled all the time. Each time test was run several times (minimum 5
times).

Since compression and decompression algorithms are working almost the
same (the only difference is that they execute their operations in a slightly
different order), only compression time and memory requirements were mea-
sured.
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4.1 Compression and decompression

The following section evaluates several compressor configurations for frequency
handling and context shortening.

4.1.1 Frequency increases

As noted previously in Section 2.1.1, there are several ways of how to increase
the frequency. Since we are working with a graph where each node does
correspond to several contexts of different lengths while having just a single
counter, frequencies are influencing each other in a way that can damage
the compression ratio. Because of that and because each way of frequency
increases does take approximately the same time, it is in our best interest to
find the best increase method.

4.1.1.1 Escape character frequency

First decision to make is how to handle the frequency of escape character.
When working with an individual node (where context is not shortened), es-
cape character has a frequency equal to the number of outgoing edges, which
is also equal to the number of distinct labels existing in the current context.
When it is shortened, the number of outgoing edges can be much higher than
the number of labels.

We have two options on how to assign a probability to the escape symbol,
either as the number of distinct labels or as the number of outgoing edges.
Table 4.2 shows that the differences between these two strategies are very
small, almost negligible. For chromosomes, counting each edge only once
yields slightly better results.

Chromosome once (B) each (B)
Ciona 6 562852 562855
Ciona 1 2350141 2350143
Tribolium 3 7060958 7060959
Mouse 19 14137834 14137838

Table 4.2: Size of compressed chromosomes based on the counting algorithm

The same can be seen for larger random inputs. However, for smaller ones
and with larger contexts, where escapes are more common (and several can
occur for each symbol), the opposite is correct (table 4.3). The same behavior
can also happen for small genomes with long contexts.
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input size once (B) each (B)
1000 631 593
10000 5723 5636
20000 10317 10267
30000 14441 14445
40000 17954 17982
50000 21248 21285

Table 4.3: Output file size based on the counting algorithm and the input size

4.1.1.2 Shorter context frequency increases

Second frequency related factor is how to increase frequencies of the edges.
When the context is not shortened, we can simply increase the frequency of
used edge. However, in shorter contexts, we can have multiple edges with the
same label.

Three ways previously explored are to either not increase anything at all
(which results in increases being made only when the longest context has the
desired transition) increase random (first) edge with such label or increase all
of them. Table 4.4 shows that the first method of increasing nothing at all
results in the best compression ratio out of the three. The same is valid for
random data.

Chromosome none (B) first (B) each (B)
Ciona 6 562822 562845 562852
Ciona 1 2350092 2350126 2350141
Tribolium 3 7060912 7060944 7060958
Mouse 19 14137802 14137835 14137834

Table 4.4: Size of compressed chromosomes based on the frequency increase
method

4.1.2 Context length

Maximal length of context is the most significant factor in speed, memory
usage and also compression ratio. The complete possible graph grows expo-
nentially with each maximal context length increment. That does not only
increases the memory usage but also decreases the speed of the algorithm be-
cause the underlying tree is deeper and the query operations must work with
much more data.

Hardware CPU caches can also affect speed in a good way for small graphs
which can fit into them entirely.

43



4. Experimental evaluation

 0

 10

 20

 30

 40

 50

 60

 0  20  40  60  80  100

o
u
tp

u
t 

si
ze

 [
kB

]

input size (thousands of symbols)

context length 2
context length 4
context length 6
context length 8

Figure 4.1: Compressed output size based on the context length

Longer context can hold more information and can result in better com-
pression ratio. However, it doesn’t have to always be true, especially for
random data, where we cannot predict more with a longer context, and ad-
ditional escapes are negatively impacting the output size. We can see this in
the graph 4.1.

Since the counters are shared between all context lengths, they are influ-
encing each other, and that can impair the compression ratio, more so with
increasing context length.

Chromosome |ctx| = 2 |ctx| = 4 |ctx| = 6 |ctx| = 8
Ciona 6 564024 562852 574017 711379
Ciona 1 2375777 2350141 2340286 2537026
Tribolium 3 7155616 7060958 7002770 7213573
Mouse 19 14218452 14137834 14034791 14126814

Table 4.5: Compressed chromosome output size based on the context lengths

Though the DNA sequences are pretty random, we can still see better
compression ratios for longer contexts up to a point. Table 4.5 shows, that
three out of four chromosomes were compressed the most with context length
of 6, only the shortest chromosome of Ciona Intestalis was smaller with context
of length 4.

From the time perspective, compression required time increases fast be-
tween context lengths. The sole reason for that is the steeply growing number
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Figure 4.2: Time performance based on the context length

of graph nodes and logarithmic query operations. We can see this behavior
both for random data in the graph 4.2 and also later for chromosomes in the
table 4.8.

Lastly, we can see in the table 4.6, that memory usage increases with
input size only to a point when the underlying de Bruijn graph is complete
(or almost complete). The speed of this convergence is determined by the
maximum context length and also randomness if the input. For some, this
might never happen even if they are very long (e.g., the same symbol repeated
billion times).

Input size |ctx| = 2 |ctx| = 4 |ctx| = 6 |ctx| = 8
1000 772 7396 12088 12640
20000 772 12916 148156 249724
40000 772 12916 187348 466108
60000 772 12916 193972 674212
80000 772 11536 193696 861892
100000 772 11536 193696 1031356

Table 4.6: Memory usage (bytes) of different context lengths

Due to the exponential graph growth with increasing context length, size
differences between context lengths are rather big.

From the table, we can see that size decreases a little with increased input
size. This can occur because the input files are generated randomly and bigger
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Figure 4.3: Memory usage based on the context shortening algorithm

ones are not guaranteed to include smaller ones. Each can, therefore, include
a different subset of all possible context labels, and even smaller input can
have a bigger subset.

4.1.3 Context shortening
We have previously shown three possible ways of how to shorten the context
(Section 3.6). Here we examine their performance.

Graph 4.3 shows how memory consumption changes based on the context
shortening method. Explicit label calculation has no memory overhead and
therefore is the most efficient. Wavelet tree method, on the other hand, builds
another wavelet tree to store the common suffix lengths and thus increases
memory usage by a significant margin.

Note, that the prototype application doesn’t use a merged structure for
the suffix length wavelet tree, which makes overall memory usage higher than
the theoretical limit achievable by the structure merge.

Chromosome |ctx| = 2 |ctx| = 4 |ctx| = 6 |ctx| = 8
Ciona 6 0.452976 0.999199 1.971397 14.772380
Ciona 1 1.895726 4.147542 6.911424 22.600907
Tribolium 3 5.675636 12.469127 19.701212 40.715012
Mouse 19 11.372316 25.125801 39.375816 68.308766

Table 4.7: Label context shortening time (s) based on the context lengths
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Chromosome |ctx| = 2 |ctx| = 4 |ctx| = 6 |ctx| = 8
Ciona 6 0.460814 0.977023 1.627839 5.196431
Ciona 1 1.942459 4.069102 6.502764 12.149372
Tribolium 3 5.802763 12.233452 19.199808 30.009014
Mouse 19 11.602239 24.715759 38.705473 57.234317

Table 4.8: Integer context shortening time (s) based on the context lengths

Tables 4.7 and 4.8 show the difference between explicit label and integer
shortening algorithm. We can see that for short contexts, the explicit method
is the faster one. This is mostly for two reasons, first is that label calculation
is pretty fast because we don’t have to call backwards as many times.

The second reason is that for such small contexts we can quickly generate
complete graph and shortening is no longer needed. Integer algorithm will,
however, still update longest common suffix lengths even though they will
never be used.

For longer contexts, integer shortening wins as the shortening is needed
longer and explicit label calculation is slower.

4.2 Optimizations
This section evaluates additional optimizations of the base algorithm and data
structures. It contains memory related optimizations, cache related optimiza-
tions, and rank and select upgrades.

4.2.1 Cache related performance
Since the algorithm does a big amount of queries into the tree and often
for the same position, we can save results into the cache and skip the query
later. Graph 4.4 shows, that cache does decreases computation time by a
noticeable margin, but this does not scale for bigger caches. Because the
hit rate increase is small between cache sizes and query time scales roughly
linearly, the algorithm gets slower with bigger caches.

Input size cache size 1 cache size 2 cache size 3 cache size 4
1000 0.084503 0.147243 0.191467 0.239572
10000 0.278772 0.305036 0.325261 0.350568
25000 0.400176 0.417040 0.429241 0.444328
50000 0.467064 0.476437 0.483685 0.492843
75000 0.491390 0.498900 0.504520 0.510877
100000 0.513534 0.519151 0.523175 0.528589

Table 4.9: Cache hit rate based on the cache size for different sized inputs
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Figure 4.4: Time performance based on the cache size

Table 4.9 shows that for big enough inputs, even cache with the single
element can have hit rate over 50%. We can also see that the hit rate increase
is minimal for additional cache slots. That corresponds to the time graph
shown above.

For small inputs, the hit rate is much lower. That is caused by cache not
being as effective when new nodes are being inserted as many different nodes
are being queried. That also explains why the bigger cache is more efficient
for a small input file.

4.2.2 Performance of different structures
Performance wise, merged structure is faster in every operation by big margins.
That is mostly due to the single query operations compared to several queries
in the basic non-merged wavelet tree. Graphs 4.5 and 4.6 show the time
performance of wavelet tree operations.

Considering a merged structure with the dollar vector and without one,
time differences are very small. Dollar free structure (10) has little bit faster
ranks and access operations, select is slower because of additional logic han-
dling the dollar symbol. These differences are however very small.

From the memory point of view, we can see (Figure 4.7) that the overall
memory needed decreases a little with dollar vector removed. Considering
that this additional vector is only a small part of the wavelet tree leaf (which

(10)Dollar free here doesn’t mean that the structure cannot handle the $ symbol, but rather
that it doesn’t have an additional vector dedicated to it.
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Figure 4.5: Time performance of insert operation
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Figure 4.6: Time performance of rank and select operations
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Figure 4.7: Memory usage with and without the dollar vector

is mostly taken by the frequency counters), this change doesn’t introduce a
big change for the overall memory usage.

4.2.3 Performance of different memory models

In the optimization section, we introduced three different memory access mod-
els with slightly different properties.

From the graph 4.8 we can see that memory-wise, neither model yields
a substantial difference. The reference model is more memory consuming
than the indexed one because the size of pointers is always bigger. Simple
direct access is not preallocating any memory and therefore has no memory
overhead. However it uses pointers which is the reason why the indexed model
is sometimes better even though it preallocates.

With variably sized indexes (see 3.4), the indexed model can yield even
better results, however since the pointer sizes are only a small part of the
overall memory usage, they would not be much more noticeable.

From the time performance perspective (graph 4.9), simple and indexed
models are pretty similar. Since the underlying graphs are not very big, the
number of allocations is kept at a reasonable amount and the OS overhead of
each allocation is not big enough to show any substantial difference.

Indexed model is slower due to the indirect memory access. Even though
the mapping is pretty fast as it needs only one masking and bitshift, it still
introduces overhead compared to direct methods.
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Figure 4.10: Time performance based on the rank and select optimization

4.2.4 Fast rank and select
As was detailed above in Section 2.4, wavelet tree rank and select in the
merged structure can be modified such that both operations do only single
query instead of one for each level. Since both of them take a significant part
in overall time, this optimization is very noticeable.

As we can see in the graph 4.10, using both fast operations together reduce
the compression time approximately by one third. This optimization can be
even better for compressors capable of compressing larger alphabets. In the
DNA prototype application, we are reducing the number of queries from 3 to
1. E.g., ASCII capable variant would be reducing the number of queries from
8 to 1. Since the speedup is up to linear, we can get 8x speedup of rank and
select with no drawback.

4.3 Comparison with other compression method
In this section, we compare our experimental prototype compressor with an-
other already existing one. PPMC variant is not used in any widely available
program. PPM in its slightly changed ppmd variant is used as one possible
compression method by an open-source file archiver 7-Zip (11).

It is important to note that the comparisons made in this section are for
an overview only as these are not directly comparable. Each compressor is
made for a different purpose. 7-zip is a general purpose file archiver capable

(11)https://www.7-zip.org
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Figure 4.11: Comparison of different methods in terms of the compression
time

of compressing anything, our prototype compressor is specialized for the DNA
sequences only without the capability to process any other symbols and with
several optimizations made with DNA in mind.

Time measurements were done using GNU time (12) instead of more precise
methods because it’s not possible to measure accurate runtime of the 7-zip
archiver without some code changes. Since the results are mostly to show the
significant differences and not small nuances, this should be a valid approach.

As we can see from the graph 4.11, speed wise, 7-zip compressor wins by
huge margin, which is an expected result. Logarithmic operations are much
slower and smaller runtime sizes doesn’t help us here. 7-zip also contains many
speed optimizations developed over many years.

Output file sizes are comparable between both compressors (Figure 4.12).
7-zip achieves better results for longer contexts, which can be attributed to
non-precise frequency counting in our prototype due to the graph usage. Note
that the prototype is DNA optimized while 7-zip is not. For that reason,
better prototype compression ratios should not be taken as a significant result
as it is not fair to compare both compressors directly over small differences.

Measuring memory used by the 7-zip is not simple without the changes in
its code base. 7-zip allows setting maximum memory used by the compression,
which can yield worse compression ratios. However, there is a point from which
the compressor doesn’t reach this memory limit, and the compression ratio
stays the same no matter how much more we raise it. For that reason, the

(12)https://www.gnu.org/software/time/
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Figure 4.12: Comparison of different methods in terms of the compression
ratio

lowest memory limit which yields the best result was used as the test result.
Also, the limit cannot be set below a certain point (ca. 2.3MiB).

Memory wise, prototype shows that it is the most efficient in this depart-
ment. For short contexts, 7-zip cannot go below its limit of 2.3MiB. Even
for higher ones where we can more precisely measure the minimum memory
needed by 7-zip to achieve the best result, our compressor still requires almost
half the memory compared to 7-zip.

This comparison might suggest that the size is not reduced by that much;
however, note that most of the memory used by both compressors are the
frequency counters and even with other parts reduced to nothing, we cannot
reduce this size much more. With variably sized counters, we can very likely
achieve much better results. This can be expanded upon later in follow-up
work.
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Conclusion

A new version of ppm compression algorithm was developed and implemented
as a part of this thesis. The algorithm is designed for DNA string compression
with low memory usage. For that purpose, it uses succinct de Bruijn graphs
as an underlying structure.

The de Bruijn compressor was tested on several datasets including ran-
domly generated data and real chromosomes, each with different sizes and
properties. Despite being much slower than other widely used compressors,
it can deliver comparable compression ratios with much less memory usage.
Compared to 7-zip and its ppmd method, it achieves almost half memory
usage. Since the counters used to hold frequencies of the transitions are oc-
cupying the majority of the memory and their sizes are constant, we cannot
make the memory usage much lower without the changes in them.

Decompression uses the same algorithm and therefore has identical per-
formance specifics.

Alongside the compressor, new merged structure to represent a dynamic
wavelet tree with just single tree was presented and used. It achieves lower
memory consumption, much faster queries and it is scaling much better with
more symbols compared to the basic approach, where we have a distinct dy-
namic bit vector for each wavelet tree node.

Many parts of the compressor were evaluated and tuned to improve on all
three metrics (speed, memory usage, and compression ratio).

The resulting compressor is not directly PPMC compatible, because graphs
are not working with frequencies in the same way as the trees (generally used
for ppm) do.

Ideas for further development
The compressor does have many areas where it can be improved.

One of not explored parts of the algorithm is frequency counter handling.
The structure can be upgraded such that frequency counters will have variable
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Conclusion

sizes and grow with the graph. That can drastically lower memory require-
ments because they are by far the most significant part of it.

Memory locality of the prototype can also be improved such that blocks
of memory are ordered in the way they are in the de Bruijn graph. While this
kind of reshuffling would require additional computational power, the resulting
performance might be better.

One more improvement can be the addition of new symbols such as N,
which is used by the sequencing software when the base is unknown. To
support N symbol, we can add a new vector into the wavelet tree in the same
way we did for the dollar symbol. That would unbalance the tree again and
would probably result in worse performance.

Another way to solve this would be to include an additional list of positions,
which correspond to symbols N and not change the compressor structure in
any way. For files with an only small number of unidentified bases, this would
not increase the size of the compressed data in a significant way.
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Appendix A
Acronyms

ASCII American Standard Code for Information Interchange

CPU Central processing unit

DNA Deoxyribonucleic acid

EOI End of input

GUI Graphical user interface

PPM Prediction by partial matching

XBW Xml Burrows Wheeler
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Appendix B
Data from experimental

evaluation

This section contains data used to generate graphs for other parts of the thesis
(sorted by their order of occurrence).
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B. Data from experimental evaluation

size ctx length 2 ctx length 4 ctx length 6 ctx length 8
1000 313 526 636 649
6000 1594 2216 3586 3897
11000 2850 3615 6214 7107
16000 4108 4951 8507 10213
21000 5361 6279 10761 13440
26000 6614 7570 12735 16445
31000 7866 8876 14741 19641
36000 9121 10153 16583 22594
41000 10372 11447 18360 25780
46000 11622 12725 19985 28583
51000 12875 14001 21712 31727
56000 14127 15263 23370 34581
61000 15378 16548 24935 37640
66000 16631 17810 26516 40404
71000 17881 19088 28038 43420
76000 19131 20355 29572 46300
81000 20384 21604 31171 49069
86000 21635 22862 32454 51876
91000 22886 24133 34122 54671
96000 24136 25406 35413 57407
101000 25387 26658 37044 60206

Table B.1: Compressed output size based on the context length [B]
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size ctx length 2 ctx length 4 ctx length 6 ctx length 8
1000 0.000378 0.002787 0.006743 0.007628
6000 0.001409 0.006613 0.043470 0.067904
11000 0.002421 0.008835 0.070015 0.138597
16000 0.003397 0.011319 0.087074 0.212411
21000 0.004413 0.013346 0.102754 0.285379
26000 0.005393 0.015693 0.114010 0.360707
31000 0.006407 0.017765 0.123392 0.439677
36000 0.007400 0.020024 0.131546 0.504867
41000 0.008413 0.022241 0.137957 0.580084
46000 0.009406 0.024389 0.146047 0.645493
51000 0.010410 0.026666 0.149005 0.718550
56000 0.011460 0.029387 0.155852 0.786251
61000 0.012415 0.031078 0.158176 0.857102
66000 0.013248 0.033236 0.160485 0.914710
71000 0.014314 0.035524 0.166027 0.984657
76000 0.015391 0.038134 0.169757 1.043105
81000 0.016236 0.040167 0.174141 1.109451
86000 0.017149 0.042691 0.175247 1.141264
91000 0.018291 0.044603 0.181217 1.225896
96000 0.019455 0.047652 0.185046 1.285848
101000 0.020137 0.048961 0.188705 1.335088

Table B.2: Time performance based on the context length [s]
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B. Data from experimental evaluation

size label integer wavelet tree
300 3360 3808 10080
600 6044 6844 12764
900 9216 10432 16960
1200 12632 14296 21400
1500 16292 18436 25060
1800 17756 20092 27580
2100 22880 25888 34784
2400 24344 27544 38296
2700 27760 31408 41712
3000 28248 31960 42200
3300 31664 35824 48128
3600 34348 38860 52492
3900 38252 43276 56396
4200 40936 46312 60488
4500 43132 48796 64412
4800 46060 52108 67340
5100 47768 54040 70072
5400 49476 55972 72836
5700 52404 59284 76788
6000 54356 61492 80788
6300 56796 64252 83228
6600 60944 68944 87376
6900 62896 71152 89328
7200 64604 73084 94268
7500 65580 74188 94188
7800 68264 77224 97928
8300 70216 79432 101288
8600 69972 79156 102740
8900 74120 83848 107912
9200 77048 87160 110840
9500 78756 89092 112548
9800 80708 91300 115940

Table B.3: Memory usage based on the context shortening algorithm [B]
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size no cache cache size 1 cache size 2 cache size 3 cache size 4
1000 0.004102 0.004161 0.004211 0.004224 0.004163
11000 0.012786 0.011600 0.011870 0.011928 0.011871
21000 0.019167 0.016783 0.017215 0.017458 0.017391
31000 0.026172 0.021986 0.022593 0.022885 0.022875
41000 0.032179 0.027198 0.027982 0.028380 0.028394
51000 0.038796 0.032356 0.033393 0.033852 0.033886
61000 0.046309 0.038465 0.039704 0.042987 0.040357
71000 0.052943 0.043789 0.045216 0.045948 0.045960
81000 0.059545 0.047641 0.049360 0.049886 0.050007
91000 0.064043 0.052757 0.054727 0.055409 0.065722
101000 0.071977 0.058380 0.060484 0.064023 0.061405
111000 0.079071 0.063683 0.065997 0.067222 0.067149
121000 0.084609 0.068842 0.071333 0.072570 0.072805
131000 0.091189 0.073953 0.076758 0.078035 0.078216
141000 0.097119 0.079009 0.091983 0.088496 0.083364
151000 0.104097 0.084275 0.087453 0.088629 0.088952
161000 0.112886 0.092073 0.095034 0.096920 0.096949
171000 0.116391 0.093821 0.105902 0.099042 0.099254
181000 0.123487 0.100276 0.103806 0.105884 0.106009
191000 0.130952 0.106266 0.110127 0.111893 0.118720
201000 0.138304 0.111724 0.115522 0.117717 0.117908

Table B.4: Time performance based on the cache size [s]
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B. Data from experimental evaluation

basic merged
sequential random sequential random

1000 0.000327 0.000345 0.000073 0.000102
6000 0.002905 0.003137 0.000555 0.000716
11000 0.005910 0.006479 0.001088 0.001409
16000 0.009045 0.010085 0.001654 0.002144
21000 0.012445 0.013918 0.002235 0.002919
26000 0.015897 0.017807 0.002825 0.003754
31000 0.019264 0.021848 0.003451 0.004587
36000 0.022770 0.026015 0.004065 0.005498
41000 0.026415 0.030362 0.004688 0.006384
46000 0.030042 0.034704 0.005314 0.007309
51000 0.033841 0.039182 0.005969 0.008287
56000 0.037571 0.043858 0.006598 0.009251
61000 0.041264 0.048281 0.007238 0.010275
66000 0.045377 0.053157 0.007885 0.011385
71000 0.049382 0.058001 0.008618 0.012385
76000 0.053142 0.062732 0.009261 0.013386
81000 0.057194 0.067690 0.009946 0.014467
86000 0.061451 0.072638 0.010608 0.015535
91000 0.065448 0.077784 0.011286 0.016632
96000 0.069439 0.082924 0.011962 0.017811
101000 0.073668 0.088134 0.012710 0.018979

Table B.5: Time performance of different inserts [s]
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basic merged
rank select rank select

1000 0.002511 0.001850 0.000980 0.000846
6000 0.020939 0.015089 0.007865 0.006520
11000 0.043064 0.030745 0.015740 0.012738
16000 0.066061 0.047148 0.024233 0.019473
21000 0.092251 0.066041 0.033155 0.026431
26000 0.116876 0.083611 0.042695 0.034000
31000 0.143563 0.101945 0.053188 0.041629
36000 0.174824 0.124061 0.062983 0.050039
41000 0.205033 0.145806 0.073782 0.057924
46000 0.235905 0.167333 0.084776 0.066263
51000 0.267624 0.188663 0.096033 0.074790
56000 0.302904 0.214532 0.107671 0.083580
61000 0.334535 0.236544 0.118605 0.092439
66000 0.369478 0.260057 0.130471 0.101027
71000 0.404653 0.286095 0.142156 0.109888
76000 0.440067 0.310923 0.154858 0.119046
81000 0.475760 0.335507 0.167420 0.128617
86000 0.512800 0.361529 0.178892 0.137646
91000 0.552891 0.389332 0.191420 0.146797
96000 0.585820 0.413377 0.204876 0.156778
101000 0.623738 0.439702 0.217324 0.166225

Table B.6: Time performance of random operations [s]
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B. Data from experimental evaluation

size without dollar with dollar
100 1016 1048
1100 13076 13468
2100 23528 24232
3100 33980 34996
4100 43360 44656
5100 52204 53764
6100 60512 62320
7100 69624 71704
8100 75788 78052
9100 82756 85228
10100 89724 92404
11100 95620 98476
12100 100444 103444
13100 109556 112828
14100 114916 118348
15100 120276 123868
16100 124564 128284
17100 127244 131044
18100 129924 133804
19100 134480 138496
20100 137696 141808

Table B.7: Memory usage with and without the dollar vector [B]
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size simple referenced indexed
100 0.000399 0.000398 0.000494
1100 0.007608 0.007464 0.011647
2100 0.015695 0.015442 0.024440
3100 0.023569 0.023148 0.036919
4100 0.031132 0.030627 0.049059
5100 0.038059 0.037423 0.059806
6100 0.044835 0.043993 0.070489
7100 0.049760 0.048566 0.078632
8100 0.056313 0.055050 0.088577
9100 0.061674 0.060419 0.097092
10100 0.066558 0.064867 0.105155
11100 0.069786 0.068201 0.110282
12100 0.073698 0.072138 0.115808
13100 0.076713 0.075131 0.120513
14100 0.081372 0.079443 0.127949
15100 0.084941 0.082818 0.132871
16100 0.088240 0.086095 0.138478
17100 0.090668 0.088767 0.143142
18100 0.094000 0.091644 0.146987
19100 0.096832 0.094848 0.152234
20100 0.099760 0.097604 0.156475

Table B.8: Time performance based on the memory model [s]

73



B. Data from experimental evaluation

size simple referenced indexed
100 1048 8912 8656
1100 12640 17744 17232
2100 23680 26608 25840
3100 34444 35440 34416
4100 43276 44336 43056
5100 54316 62000 60208
6100 63700 70832 68784
7100 73084 79792 77488
8100 78052 79792 77488
9100 87160 88624 86064
10100 92404 97456 94640
11100 100132 106288 103216
12100 103720 106288 103216
13100 111448 115120 111792
14100 115312 123952 120368
15100 120832 123952 120368
16100 128284 132784 128944
17100 129940 132784 128944
18100 134356 141616 137520
19100 140980 141616 137520
20100 145120 150704 146352

Table B.9: Memory usage based on the memory model [B]
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size without fast RaS with fast RaS
1000 0.010912 0.006734
6000 0.069903 0.043561
11000 0.110575 0.069892
16000 0.136227 0.087093
21000 0.160037 0.102799
26000 0.176971 0.114009
31000 0.190371 0.123535
36000 0.202088 0.131834
41000 0.211619 0.137936
46000 0.221080 0.146254
51000 0.226289 0.148712
56000 0.235489 0.156204
61000 0.239048 0.157906
66000 0.242518 0.160675
71000 0.249738 0.166299
76000 0.254157 0.169678
81000 0.259875 0.174386
86000 0.261848 0.175224
91000 0.269947 0.181711
96000 0.274810 0.185187
101000 0.279290 0.188920

Table B.10: Time performance based on the rank and select optimization [s]

de Bruijn ppm 7-zip ppmd
ctx=2 ctx=4 ctx=8 ctx=2 ctx=4 ctx=8

ciona 6 0.4608 0.9780 5.1938 0.0658 0.0724 0.1922
ciona 1 1.9442 4.0746 12.0957 0.2494 0.2602 0.5866
Tribolium 3 5.7964 12.2213 29.9135 0.7234 0.738 1.6768
Mouse 19 11.5879 24.7528 57.0348 1.4366 1.4434 3.1618

Table B.11: Comparison of different methods in terms of the compression time [s]

de Bruijn ppm 7-zip ppmd
ctx=2 ctx=4 ctx=8 ctx=2 ctx=4 ctx=8

ciona 6 564.0 562.8 711.3 563.9 563.7 576.5
ciona 1 2375.7 2350.1 2537.0 2346.2 2345.0 2357.0
Tribolium 3 7155.6 7060.9 7213.5 7008.9 7002.7 7010.4
Mouse 19 14218.4 14137.8 14126.8 14210.4 14219.3 13969.0

Table B.12: Comparison of different methods in terms of the compression ratio [kB]
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B. Data from experimental evaluation

de Bruijn ppm 7-zip ppmd
ctx=2 ctx=4 ctx=8 ctx=2 ctx=4 ctx=8

ciona 6 748 12004 2892200 2306867 2306867 5557452
ciona 1 748 11468 3029952 2306867 2306867 5557514
Tribolium 3 748 11736 3021644 2411724 2411724 5557515
Mouse 19 748 12272 3041744 2411724 2411724 5557496

Table B.13: Comparison of different methods in terms of memory consumption [B]
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Appendix C
Compressor usage

• Building compressor with GNU make:

$ gmake compressor

• Running unit tests for the compressor and its structures:

$ cd t e s t s
$ gmake a l l

• Running compressor in the compression mode:

$ . / compressor −e input . in −o compressed . out

• Running compressor in the decompression mode:

$ . / compressor −d compressed . in −o r e s u l t . out

Note that tests are using unity testing framework, which is downloaded
the first time GNU make is ran in the tests folder.
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Appendix D
Content of enclosed CD

readme.txt ....................... the file with CD contents description
exe ..................................... the directory with executables
src.......................................the directory of source codes

compressor.................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text.............................................................text
MT Kulik Jakub 2019.pdf.............the thesis text in PDF format
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