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Department of Theoretical Computer Science
Supervisor: doc. Ing. Ivan Šimeček, Ph.D.
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Abstrakt

Tato práce popisuje proces vytvořeńı nového backendu pro architekturu DLX
pomoćı LLVM kompilátoru. Procháźı všemi nezbytnými součástmi tvorby
nového backendu pro kompilátory, jako např́ılkad výběr instrukćı nebo přǐra-
zeńı registr̊u a popisuje je v rámci LLVM. Analyzuje, jak optimalizace fun-
guj́ı v systému LLVM a implementuje několik optimalizaćı vhodných pro tuto
architekturu, např́ıklad plánováńı instrukćı. Výsledkem této práce je nový
LLVM backend s optimalizacemi pro architekturu DLX, který může být použit
pro kompilaci určitých vyšš́ıch programovaćıch jazyk̊u do DLX assembly kódu.

Kĺıčová slova DLX, kompilátor, backend, LLVM, optimalizace
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Abstract

This thesis describes the process of creating a new LLVM compiler system
backend for the DLX architecture. It goes through all the necessary parts
of creating a new compiler backend such as instruction selection or register
allocation and describes them in terms of LLVM. It looks into how optimiza-
tions work in the LLVM system and implement several optimizations suitable
for the DLX architecture such as instruction scheduling. The result of this
thesis is a new working LLVM backend for the DLX architecture with several
optimizations in place. This backend can be used to compile several high-level
languages to the DLX assembly code.

Keywords DLX, compiler, backend, LLVM, optimizations
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Introduction

DLX is a RISC processor load/store architecture which is mostly used in uni-
versities to study the instruction pipelining technique in computer processors.
There is no physical DLX processor for the DLX architecture as the architec-
ture was mainly invented to study computer processor design. For this reason,
the DLX architecture is very simple and uses a very simple instruction set to
allow the understanding of how computer processors work and it is the reason
why many universities around the world have been using this architecture to
study a computer processor design, mainly focused on the pipelining tech-
nique. The pipelining technique is a technique where multiple instructions
are overlapped in execution to speed up the program.

To understand how the pipelining technique works and how a computer
processors work in general, it might be useful to see how some high-level
programming languages (for example, the C programming language) which
better describe the functionality of a program and are much more readable, get
transferred to a simple low-level language like the DLX assembly code. This
DLX assembly code can be put into a DLX simulator which can show how
instructions are executed through the instruction pipeline and further improve
the understanding of computer processors and of the pipelining technique.
This means that some compiler is needed to translate the high-level language
code to the DLX assembly code. This can be achieved by using the LLVM
compiler system. The LLVM compiler system is a modern modular system
built around the LLVM IR (LLVM intermediate language representation) and
is lately gaining popularity as a compiler for C/C++ languages (for example,
LLVM is used to compile Chrome on Windows). The LLVM design is divided
into three main parts to support many source languages and many target
architectures. The first part is a frontend which translates the input source
code into the LLVM IR (Clang is a frontend for C/C++ languages). The
second part is a backend which translates the LLVM IR into the machine code.
To achieve the goal of compiling high-level languages to the DLX assembly
code, a new backend for the DLX architecture needs to be created. The
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Introduction

process of creating a new LLVM backend can get quite complicated as the
LLVM documentation is not always reliable and existing backends are for
much more complicated architectures. Those backends are usually harder to
understand when somebody is trying to implement a new LLVM backend but
sometimes, they are the only place where to find out how the code generation
process works in the LLVM system. So it might be quite useful to create a new
LLVM backend for such a simple architecture which is what this thesis tries
to accomplish. The goal of this thesis is to compile C programming language
codes to the DLX assembly code.

The last part of LLVM is the LLVM optimizer which optimizes the LLVM
IR. This optimizer is both source code and target code independent and thus
could be used to optimize the code when compiling C programming language
codes to DLX assembly codes. Apart from the LLVM optimizer, there are
other places where the code can get optimized in the LLVM system. This
thesis’s second goal is to analyze how optimizations work and where the op-
timizations can occur in the LLVM system and to implement some of those
optimizations for the DLX architecture.

The DLX backend, along with optimizations should then be tested and
evaluated using C programming languages codes to check the correctness of
the backend and to show that implemented optimizations can speed up the
DLX assembly code.

2



Chapter 1
DLX Architecture

DLX (pronounced ”Deluxe”) is a RISC processor architecture designed by
John L. Hennessy and David A. Patterson in an early 90’s who introduced
DLX as a simple architecture to study computer design. DLX is a simple load-
store architecture which emphasizes design for pipelining efficiency as well as
efficiency as a compiler target and uses a fixed instruction set encoding. The
name DLX was derived from an average expressed in Roman numerals (AMD
29K, DECstation 3100, HP 850, IBM 801, Intel i860, MIPS M/120A, MIPS
M/1000, Motorola 88K, RISC I, SGI 4D/60, Sparcstation-1, Sun-4/110, Sun-
4/260)/13 = 560 = DLX[1].

1.1 DLX Registers

DLX architecture has 32 32-bit General-purpose registers (GPRs) named
R0, R1, ..., R31 and 32 32-bit Single-precision floating-point registers
(FPRs) named F0, F1, ..., F31 which can be used to store single-precision
floating-point values or they can be used as even-odd pairs holding double-
precision floating-point values. Thus, the 64-bit Double-precision floating-
point registers (DFPRs) are named F0, F2, F4, ..., F30. Register R0 is
always zero which can be useful for accessing memory or loading constants to
registers[1].

There are also 3 miscellaneous registers: Program Counter (PC) which
contains the address of an instruction currently being retrieved from memory
for execution. The PC register can be altered by branches and jumps; Inter-
rupt Address Register (IAR) that maintains the 32-bit return address of
the interrupted program when a TRAP instruction is encountered; Floating-
Point Status Register (FPSR) that provides for conditional branching
based on the result of floating-point compare instructions. This register is
used by floating-point branch instructions[2]. The table 1.1 shows all registers
available in the DLX architecture and their sizes.

3



1. DLX Architecture

Table 1.1: DLX Registers[1]

Register type Size Note
General-purpose (R0, R1, ..., R31) 32-bit
Floating-point (F0, F1, ..., F31) 32-bit

(64-bit)
can be used to store
double-precision values
(F0, F2, F4, ..., F30)

Program Counter (PC) 32-bit
Interrupt Address Register (IAR) 32-bit
Floating-Point Status Register (FPSR) 1-bit

1.2 DLX Data Types

The DLX architecture supports three data types for integers and two for
floating-point numbers. The integer data types are an 8-bit byte, 16-bit half
word, and 32-bit word. For floating-point numbers, a 32-bit value is used for
single-precision floating-point numbers and a 64-bit value is used for double-
precision floating-point numbers[1].

DLX instructions work either with 32-bit integers or 32-bit (64-bit) floating-
point numbers. Bytes and half words are loaded into registers with either zero
or the sign bit replicated to fill the 32 bits of the register. Once loaded, they
are operated on as if they were 32-bit[1].

Table 1.2: DLX Data Types[1]

Data Type
8-bit (byte) integer
16-bit (half word) integer
32-bit (word) integer
32-bit single-precision floating-point number
64-bit double-precision floating-point number

1.3 DLX Addressing Modes

The DLX architecture supports two addressing modes: displacement and im-
mediate. Both of them are using 16-bit fields to specify either the displace-
ment offset or the immediate constant. The register deferral addressing can
be accomplished simply by placing zero in the 16-bit displacement field and
absolute addressing with a 16-bit field is accomplished by using the register
R0 as the base register. That means that there are four ways how to address
memory although only two are supported in the architecture[1].

The DLX memory is addressable by bytes with 32-bit addresses and is
stored as Big Endian which indicates the most significant byte of the data is
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1.4. DLX Instruction Set

placed at the byte with the lowest address[3]. As it is a load-store architecture,
every memory cell can be loaded and stored using either GPRs, FPRs or
DFPRs. Loading or storing the register R0 has no effect. To support all data
types, memory access involving the GPRs can be to a byte, to a half word or
to a word. All memory accesses must be aligned; access to an object of size S
bytes at byte address A is aligned if A mod S = 0[4]. The table 1.3 shows all
addressing modes mentioned above and their usage[1].

Table 1.3: DLX Adressing Modes[1]

Adressing mode Example instruction Meaning
Displacement LW R1, 30(R2) R1 ← Mem[30+R2]
Immediate ADDI R1, R2, #3 R1 ← R2 + 3
Register deferral LW R1, 0(R15) R1 ← Mem[R15]
Absolute addressing LW R1, 400(R0) R1 ← Mem[400]

1.4 DLX Instruction Set

Every instruction in the DLX architecture is 32-bit wide with a 6-bit primary
opcode and can be encoded using one of three formats: immediate (I-type) for-
mat, register-register (R-type) format or jump (J-type) format. These formats
are very simple while providing 16-bit fields for displacement addressing and
immediate constants and 16-bit fields (26-bit for J-type format) for branch and
jump addresses. The figure 1.1 shows the exact layout for all those formats[1].

DLX instructions can be divided into four classes depending on their pur-
pose: arithmetic/logical (ALU) instructions, floating-point instructions, data
transfer instructions and control instructions. To describe single instructions
in different classes, some symbols need be defined first[1]:

• ←8 - a subscript to the symbol ← indicates how many bits are being
transferred (in this case 8 bits are transferred).

• R18..16 - a subscript to a register is used to indicate selection of only
certain bits. Bits are labeled from the most-significant bit started at 0.
The value can be a single value R40 or a subrange R424..31, which yield
the least significant byte of R4.

• Mem stands for main memory, is indexed by a byte address and may
transfer any number of bytes.

• A superscript is used to replicate a field (024 replicates zero to 24 zeros).

• The symbol ## concatenates two fields.
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Figure 1.1: DLX Instruction Layout[1]

ALU instructions represent simple operations such as add, subtract, multiply,
divide, AND, OR, XOR and various shifts: left logical, right logical and right
arithmetic. Both register-register and register-immediate forms are provided.
The LHI (load high immediate) instruction loads the top half of a register
and sets the lower half to zero, for example, this allows a full 32-bit address
to be built. There are also compare instructions that compare either two
registers or a register and a 16-bit immediate constant (=, 6=, <,≤, >,≥). In
case a condition is true, the instruction places one into the designated register
to represent true otherwise, it places zero to represent false. The result of
compare instructions can be tested with two branch instructions: branch equal
zero (BEQZ) and branch not equal zero (BNEZ). The branch target address
is specified with a 16-bit offset that is set to the program counter if the branch
is taken. The table 1.4 shows some examples of ALU instructions[1].

Floating-point instructions operate only on floating-point registers and
come both in a single-precision variant and a double-precision variant. A suffix
D is used to indicate double-precision floating-point registers are used and
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1.4. DLX Instruction Set

Table 1.4: Examples of DLX ALU Instructions[1]

Instruction Description Meaning
ADD R1, R2, R3 Add R1 ←32 R2 + R3
ADDI R1, R2, #3 Add immediate R1 ←32 R2 + 3
LHI R1, #42 Load high immediate R1 ←32 42 ## 016

SLLI R1, R2, #5 Shift left logical R1 ←32 R2 « 5
SLT R1, R2, R3 Set less then if (R2 < R3) R1 ←1 1

else R1 ←1 0

a suffix F is used for single-precision floating-point registers. Floating-point
instructions consist of add, subtract, multiply and divide (e.g., ADDD, ADDF,
SUBD, SUBF, MULTD, MULTF, DIVD, DIVF). There are also instructions
to compare floating-point numbers such as LTD (lower than double), GEF
(greater equal float) and so on. Those instructions set the FPSR register that
can be tested with a pair of branch instructions: branch floating-point true
(BFPT) and branch floating-point false (BFPF)[1]. Floating-point numbers
use a format defined in The IEEE Standard for Floating-Point Arithmetic
(IEEE 754)[5].

It is also possible to copy between floating-point registers using MOVF and
MOVD instructions and convert registers using CVTx2y instructions, where
x, y can stand for: I (integer), F (single-precision floating-point register) or
D (double-precision floating-point register). Those convert instructions only
take floating-point registers as operands so to actually convert an integer to
a floating-point value, the integer register must be first moved to a floating-
point register using the MOVI2FP instruction[1]. The figure 1.5 shows some
examples of floating-point instructions.

Table 1.5: Examples of DLX Floating-point Instructions[1]

Instruction Description Meaning
ADDD F2, F4, F6 Add two double-precision

floating-point numbers
F2 ←64 F4 + F6

DIVF F1, F3, F2 Divide two single-precision
floating-point numbers

F1 ←32 F3 / F2

CVTF2I F1, F0 Convert a single-precision
floating-point number to
an integer

F1 ← F0

EQF F0, F5 Compare two single-precision
floating-point numbers and
accordingly set the FPSR register

if (F0 = F5)
FPSR ←1 1

else FPSR ←1 0

The DLX architecture provides load and store instructions for all data types
mentioned in the section 1.2. Loading a byte or a half word from memory can

7



1. DLX Architecture

be done either as signed or unsigned. In the case of the signed loading, the
signed bit will be replicated to the corresponding bits, in case of the unsigned
loading the zero bit will fill the corresponding bits[1]. Some examples of data
transfer instructions are shown below in the table 1.6.

Table 1.6: Examples of DLX Data Transfers Instructions[1]

Instruction Description Meaning
LW R1, 30(R2) Load world R1 ←32 Mem[R2 + 30]
LB R1, 40(R3) Load byte R1 ←32 (Mem[R3 + 40]0)24

## Mem[R3 + 40]
LBU R1, 40(R3) Load byte unsigned R1 ←32 024 ## Mem[R3 + 40]
LF F0, 60(R3) Load float F0 ←32 Mem[R3 + 60]
LD F0, 60(R4) Load double F0##F1 ←64 Mem[R4 + 60]
SW 200(R4), R3 Store world Mem[R4 + 200] ←32 R3
SD 40(R3), F0 Store double Mem[R3 + 40] ←32 F0 ;

Mem[R3 + 44] ←32 F1
SB 44(R1), R5 Store byte Mem[R1 + 44] ←8 R524...31

Control flow is handled through a set of jumps and a set of branches. The four
jump instructions are differentiated by the two ways to specify the destination
address and by whether or not a link is made. Two of those jumps use a 26-bit
offset to set the program counter. The other two use a register that contains
the destination address. There are two flavors of jumps: plain jump and jump
and link (used for procedure calls). The latter places the return address - the
value PC + 4 in the register R31[1]. The table 1.7 gives some examples of
control instructions[1]. The whole instruction set is specified on the figure 1.8.

Table 1.7: Examples of DLX Control Instructions[1]

Instruction Description Meaning
J name Jump PC ← name;

name ≥((PC+4)−225) &&
name < ((PC+4)+225)

JAL name Jump and link PC ← name; R31 ← PC + 4;
name ≥ ((PC+4)−225) &&
name < ((PC+4)+225)

JR R3 Jump register PC ← R3
BEQZ R6, name Branch equal zero if(R6 = 0) PC ← name;

name ≥ ((PC+4)−215) &&
name < ((PC+4)+215)

BFPT name Branch floating-point
true

if(FPSR = 1) PC ← name;
name ≥ ((PC+4)−215) &&
name < ((PC+4)+215)
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Table 1.8: DLX Instruction Set[1]

Instruction type/opcode Instruction meaning
Arithmetic/logical Operations on integer or logical data in GPRs
ADD, ADDI, ADDU, ADDUI Add, add immediate (all immediates are 16 bits); signed

and unsigned
SUB, SUBI, SUBU, SUBUI Subtract, subtract immediate; signed and unsigned
MULT, MULTU, DIV, DIVU Multiply and divide; signed and unsigned; all operations

take and yield 32-bit values
AND, ANDI And, and immediate
OR, ORI, XOR, XORI Or, or immediate, exclusive or, exclusive or immediate
LHI Load high immediate; loads upper half of registers with

immediate
SLL, SRL, SRA, SLLI,
SRLI, SRAI

Shifts; both immediate (S I) and variable form (S ); shifts
are shift left logical, right logical and right arithmetic

S , S I Set conditional: ” ” may be LT, GT, LE, GE, EQ, NE
Floating-point FP operations on DP and SP numbers
ADDD, ADDF Add DP, SP floating-point numbers
SUBD, SUBF Subtract DP, SP floating-point numbers
MULTD, MULTF Multiple DP, SP floating-point numbers
DIVD, DIVF Divide DP, SP floating-point numbers
CVTF2D, CVTF2I, CVTD2F,
CVTD2I, CVTI2F, CVTI2D

Convert instructions; CVTx2y converts from type x
to type y. Both operands are FPRs or DFPRs

D, F DP and SP compares; ” ” may be LT, GT, LE,
GE, EQ, NE; sets bit in the FP status register

Data transfers Move data between registers and memory, or
between registers

LB, LBU, SB Load byte, load byte unsigned, store byte
LH, LHU, SH Load half word, load half word unsigned, store half word
LW, SW Load word, store word
LF, LD, SF, SD Load float, load double, store float, store double
MOVF, MOVD Copy one FP register or DP pair to another register or pair
MOVFP2I, MOVI2FP Move 32 bits from/to FP registers to/from integer registers
Control Conditional branches and jumps; PC-relative

or through registers
BEQZ, BNEZ Branch GPRs equal/not equal to zero; 16-bit address
BFPT, BFPF Test comparison bit in the FP status register

and branch; 16-bit address
J, JR Jumps; 26-bit address or target in register (JR)
JAL, JALR Jump and link; save PC + 4 in the register R31,

target is an address (JAL), or a register(JALR)
TRAP Transfer to operating system at a vectored address
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1. DLX Architecture

1.5 DLX Memory Layout

DLX is a very simple architecture and uses a very simple memory layout which
divides the memory into three segments: stack segment, data segment, and
text segment. Figure 1.2 shows the exact memory layout used by the DLX
architecture[1].

匀琀愀挀欀 猀攀最洀攀渀琀

䐀愀琀愀 猀攀最洀攀渀琀

吀攀砀琀 猀攀最洀攀渀琀

　砀　⸀⸀　

　砀䘀⸀⸀䘀

Figure 1.2: DLX Memory Layout

• Text segment - This is where the machine language of user code is
stored. Text segment has fixed length.

• Data segment - This holds data that the program operates on. Data
can be divided into two types: static and dynamic. Static data does
not change its size during execution and their size is known during com-
pilation. Dynamic data are allocated and deallocated as the program
executes and their size is not known during compilation. Data segment
grows from lower addresses to higher addresses[6].

• Stack segment - Stack segment is used to store stack frames which
contain local variables, return addresses and arguments of procedure
calls. Stack segment grows from higher addresses to lower addresses. It
is necessary to keep track of the size of the stack segment, for that, the
register R30 is used (stack pointer).
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1.6 DLX Calling Convention

A calling convention is an agreement about how procedures (functions) are
called and how control is returned to the caller. A procedure is a subrou-
tine, consisting of several lines of code that performs a specific task based on
arguments that it has been provided with and might or might not return a
result. Every procedure also needs some local memory associated with it to
hold incoming arguments, local variables, return address and any other data
that the procedure needs to properly run. This part of memory is called a
stack frame[7]. Each time a procedure is called, a new stack frame is created
(called function prologue) and at the end of a procedure, the stack frame must
be destroyed (called function epilogue). Stack frames are mainly needed for
nested calls as all the data needed to run a procedure, such as a return address
or a frame pointer, are saved in a stack frame and will not get overwritten by
a nested call. The form of a stack frame is important as it defines how the
callee and the caller pass its data. The figure 1.3 shows the exact layout of a
stack frame in DLX[8].

A Frame pointer will point to the memory location of the first argument
which is handy because the stack pointer might change during the execution
of a procedure but the frame pointer cannot. This means that during the
execution of a procedure, arguments and local variables can be addressed by a
fixed offset from the frame pointer. The frame pointer is stored in the register
R29[8].

䰀漀挀愀氀 瘀愀爀椀愀戀氀攀猀

    匀愀瘀攀搀
 瀀爀攀瘀椀漀甀猀 
    昀爀愀洀攀
  瀀漀椀渀琀攀爀

䘀爀愀洀攀 瀀漀椀渀琀攀爀 ⠀䘀倀⤀匀琀愀挀欀 瀀漀椀渀琀攀爀 ⠀匀倀⤀

 刀攀琀甀爀渀
愀搀搀爀攀猀猀 䄀爀最甀洀攀渀琀猀

Figure 1.3: DLX Stack Frame Layout

Both the caller and the callee must abide by the defined calling convention
in order to correctly pass data and control flow. When calling a procedure,
the caller must first place arguments that the callee requires on the stack and
to call the procedure it must use the JAL (JALR) instruction which places
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the value of PC + 4 to the register R31. The callee must then perform the
following tasks to properly run and to return control flow back to the caller[8]:

1. Initialize a new stack frame.

2. Store the return address from the register R31 to the stack frame; DLX
architecture does not provide direct access to the PC register so it must
be the callee who stores the return address after the jump and link
instruction placed it in the register R31.

3. Save the previous frame pointer to the stack frame.

4. Set the new frame pointer to point at the first argument.

5. Allocate the space for local variables.

6. Execute its code using arguments referenced by the frame pointer.

7. If the procedure returns a value, place it in a defined register; for integer
values, registers R1 to R4 are used, allowing to return values up to 128
bits. The register F0 is used to return floating-point values.

8. Load the return address from the stack frame and restore the previous
frame pointer.

9. Return the control flow to the caller by jumping to the return address.

1.7 DLX Directives

Assembler directives are defined as a dot followed by a name and are used to
direct the assembler on how to exactly translate a program. A directive is
not translated into any specific machine language instructions[8]. DLX uses
following directives[2]:

• .align n - Cause the next data/code loaded to be aligned at the next
higher address with the lower n bits zeroed.

• .ascii ”string1”, ”...” - Store the strings listed on the line in memory as
a list of characters. The strings are not terminated by a 0 byte.

• .asciiz ”string1”, ”...” - Similar to .ascii except each string is terminated
by a 0 byte.

• .byte byte1, byte2 - Store the bytes listed on line sequentially in memory.

• .data [address] - Cause the following code to be stored in .data segment.
It allows to set the exact memory location.
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• .double number1, ... - Store the numbers listed on the line sequentially
in memory as double-precision floating point numbers.

• .float number1, ... - Store the numbers listed on the line sequentially in
memory as single-precision floating point numbers.

• .global label - Make the label available for reference.

• .space size - Move the current storage pointer forward size bytes (to
leave some space in memory)

• .text [address] - Cause the following code to be stored in the text(code)
area.

• .word word1, word2 - Store the word listed on the line sequentially in
memory

1.8 DLX Simulators

Since there is no real physical DLX (at least not a fully functioning one)
processor, a simulator is needed for running and testing the DLX assembly
code. The following DLX simulators were tested to decide which simulator is
the most suitable:

• DLXOS[9]

– Small operating system running on DLX simulator (DLXSim).
– Implements DLX instruction set exactly as defined.
– Very outdated - 20 years old, does no compile on Solaris or Debian.
– Not much of a documentation.
– Uses traps to support functions open(), close(), read(), write() and

printf().

• WinDLX[10]

– WinDLX is a 16-bit Windows-based simulator for DLX.
– Implements DLX instruction set exactly as defined.
– It needs to be installed on Windows 98 or less - works fine on

Windows 95 (OSR2).
– Uses traps to support functions open(), close(), read(), write() and

printf().
– Low memory limit which can only be set between 0x200 and 0x1000000;

maximum 16 MB.
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• DLX Simulator[11]

– Created by David Viner as a final project at the University of East
Anglia in Norwich.

– Does not always follow the DLX architecture.

• OpenDLX[12]

– A DLX/MIPS processor simulator written in Java.
– Does not fully support DLX instruction set.
– Does not have floating-point registers or floating-point instructions.

• DLXsim[13]

– Does not compile on Solaris or Debian.
– No source code documentation.

• DLXwsim[14]

– On-line compiler at the Department of Computer Science at the
University of Salzburg.

– Only source codes available, no documentation.
– Appears to be an edited version of the older DLXsim[13] working

on current Unix systems.
– Does not allow setting up the pipeline configuration - could be set

in the code but that might cause some unexpected behavior.

After testing these DLX simulators, the WinDLX simulator seems to be
the best choice for running and testing DLX assembly codes. For once it
completely respects the DLX architecture as defined in J. Hennessy and D.
Patterson’s book[1], allows setting up the pipeline configuration, has the best
visualization of the pipeline and is stable. However, there are two setbacks
of using WinDLX. Since it has to be run on Windows 98 or less, writing
automated tests might be quite difficult and some parts of testing might have
to be done manually. Also, the memory limit is quite low but 16 MB should
be enough to run basic programs. The figure 1.4 shows the WinDLX GUI.

1.9 WinDLX Traps

WinDLX has 5 traps to build an interface between DLX programs and I/O.
Zero is an invalid argument for a trap instruction, used to terminate pro-
gram[15].

• Trap #0: Invalid
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Figure 1.4: WinDLX GUI[10]

• Trap #1: Open File

• Trap #2: Close File

• Trap #3: Read Block from File

• Trap #4: Write Block to File

• Trap #5: Formatted Output to Standard-output

For all defined traps:

• They match UNIX/DOX system calls resp. C-library functions open(),
close(), read(), write() and printf()

• The file descriptors 0, 1 and 2 are reserved for the stdin, stdout and
stderr.

• The address of required arguments for system calls must be loaded in
the register R14. The result is returned into the register R1.

• All arguments must be 32-bit long (except for DFPRs). Strings are
referenced with their begin address.
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1.10 DLX Assembly Code Example

The example below shows a simple computation of factorial using the DLX
assembly code and the usage of WinDLX traps. The example reads one in-
teger number from stdin using trap 3 (read() call), converts the input integer
string to an actual integer value using the inputLoop subroutine, calculates
the factorial and writes the result to stdout using trap 5 (printf() call). This
example contains no error handling for bad inputs.

. data

. a l i g n 2
FormatStrOutput : . a s c i i z ” F a c t o r i a l :%d\n”

. a l i g n 2
FormatStrInput : . a s c i i z ” Enter i n t e g e r \n”

. a l i g n 2
ParStrOutput : ; arguments f o r the p r i n t f ( ) c a l l

. word FormatStrOutput ; p r i n t i n g the r e s u l t

. space 4

. a l i g n 2
ParStrInput : ; arguments f o r the p r i n t f ( ) c a l l

. word FormatStrInput ; ask ing f o r the input

. a l i g n 2
Buf f e r : ; b u f f e r f o r the input

. space 8

. a l i g n 2
ParRead : ; arguments f o r the read ( ) c a l l

. word 0

. word Buf f e r

. word 8

. t ex t

. g l o b a l main
main :

l h i r14 , ParStrInput >> 16 ; address o f the ParStrInput
addui r14 , r14 , ParStrInput & 0 x 0 0 0 0 f f f f

t rap 5 ; p r i n t f ( ) c a l l

l h i r14 , ParRead >> 16 ; address o f the ParRead
addui r14 , r14 , ParRead & 0 x 0 0 0 0 f f f f

t rap 3 ; read ( ) c a l l

l h i r7 , Bu f f e r >> 16 ; address o f the Buf f e r
addui r7 , r7 , Buf f e r & 0 x 0 0 0 0 f f f f

; code cont inues on the next page
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addi r19 , r0 , 10 ; number base = 10
addi r4 , r0 , 0

inputLoop : ; reads byte a f t e r byte
lbu r20 , 0( r7 ) ; from input and conver t s
s e q i r21 , r20 , 10 ; the s t r i n g to an
bnez r21 , f a c t ; i n t e g e r va lue
sub i r20 , r20 , 48
multu r4 , r4 , r19
add r4 , r4 , r20
addi r7 , r7 , 1
j inputLoop

f a c t : ; f a c t o r i a l computation
sne r8 , r4 , r0
beqz r8 , endZero
add r5 , r0 , r4
sub i r5 , r4 , 1

loop :
sg t r6 , r5 , r0
beqz r6 , end
multu r4 , r4 , r5
sub i r5 , r5 , 1
j loop

endZero :
addi r4 , r0 , 1 ; 0 ! = 1

end :
l h i r14 , ParStrOutput >> 16 ; address o f the ParStrOutput
addui r14 , r14 , ParStrOutput & 0 x 0 0 0 0 f f f f f

sw 4( r14 ) , r4 ; s t o r e the r e s u l t

trap 5 ; p r i n t f ( ) c a l l

t rap 0 ; terminate program
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Chapter 2
Pipelining Technique

Pipelining is a technique where multiple instructions are overlapped in exe-
cution. A Pipeline can be thought of as an assembly line, for example in an
automobile assembly line, there are many steps contributing to the construc-
tion of a car, each step operating in parallel on a different car. The same
process is used in a computer pipeline where every step in the pipeline com-
pletes part of an instruction. Each of these steps is called a pipe stage. The
stages are connected one to next to form a pipe - an instruction enters at one
end, progress through the stages, and exit at the other end, just as cars would
in an assembly line.

In an automobile assembly line throughput is defined as the number of cars
produced per hour and is determined by how often a completed car exits the
assembly line. Likewise, the throughput of an instruction pipeline is deter-
mined by how often an instruction exits the pipeline. Because pipe stages are
connected together, they all must be ready to proceed at the same time, just
as it is required in an automobile assembly line. The time required between
moving an instruction one step down the pipeline is a machine cycle. Because
all stages proceed at the same time, the length of a machine cycle is deter-
mined by the time required for the slowest pipe stage, just as in an automobile
assembly line. In a computer, this machine cycle is usually one clock cycle. If
stages are perfectly balanced, then the time per instruction on the pipelined
machine in ideal conditions is equal to[1]:

Time per instruction on unpipelined machine

Numbers of pipe stages

Under those conditions, the speedup from pipelining equals the number of pipe
stages, just as an automobile assembly line with n stages can ideally produce
cars n times as fast. However, pipe stages usually cannot be perfectly balanced
and furthermore pipelining does involve some overhead. Thus, the time per
instruction on the pipelined machine will not have its minimum possible value,
yet it can be close[1].
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2.1 DLX Pipeline

The figure 2.1 shows how the pipeline works in the DLX architecture. It
starts with the Instruction fetch (IF) stage which loads an instruction
from memory and begins its execution. The following Instruction Decode
(ID) stage decodes the loaded instruction and its operands. After decoding
the instruction, the execution is performed in the Execution (EX) stage.
The next Memory access (MEM) stage performs access to memory if the
instruction requires it and the last stage called Write Back (WB) is used for
storing the result of that instruction to a register if the instruction needs it.
Theoretically, if an instruction is started every clock cycle, the performance
will be five times a machine that is not pipelined[1].

Figure 2.1: DLX Pipeline[1]

The figure 2.2 shows a simplified hardware scheme that performs the described
DLX pipeline. The path on that scheme flows from left to right with all stages
being active at the same time. A register is added between each stage to convey
value and control information from one stage to another. The DLX pipeline
can also be thought of as a series of datapaths shifted in time as shown on
the figure 2.3. To summarize the DLX pipeline, the DLX pipe stages must
perform the following tasks[1]:

Instruction fetch (IF)

• Fetch instruction from memory.

• Increment the PC by 4 to address the next sequential instruction.

Instruction decode (ID)

• Decode the instruction and its operands.

• Fetch values of registers.

• Test to zero for branching instructions.
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Figure 2.2: DLX Pipeline Hardware Scheme[1]

• Calculate the branch address if the instruction is a branch.

• Replace the program counter if the instruction branches.

• Extend the sign of the lower 16 bits of immediate value and pass it for
use in the next stage.

Execution (EX)

• Perform ALU operation.

• The ALU operation is specified by the Opcode value or by the Func
value in case of the R-type format instruction.

Memory access (MEM)

• Access memory if needed.

Write-back (WB)

• Write the result to the designated register.

• The result might be a result of an ALU operation or a load from memory.
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Figure 2.3: DLX Pipeline Datapath[1]

2.2 Pipeline Hazards

There are situations, called hazards that prevent the next instruction in the
instruction stream from execution during its designated clock cycle. Hazards
reduce the performance from the ideal speedup gained by pipelining. There
are three types of hazards[1]:

1. Structural hazards arise from resources conflicts when the hardware
cannot support all possible combinations of instructions in simultaneous
overlapped execution.

2. Data hazards arise when an instruction depends on the result of previ-
ous instructions in a way that is exposed by the overlapping of instruc-
tions in the pipeline.

3. Control hazards arise from pipelining of branches and other instruc-
tions that change the PC.

Hazards in pipelines can make it necessary to stall the pipeline at the instruc-
tion which causes the hazard. When an instruction is stalled, all instructions
issued later than the stalled instruction are also stalled. Instructions issued
earlier than the stalled instruction must continue since otherwise, the hazard
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will never clear. As a result, no new instructions are fetched during the stall
which reduces the overall performance of the pipeline[1].

2.2.1 Structural Hazards

If some combination of instructions cannot be accommodated because of re-
source conflict, the machine is said to have a structural hazard. The most com-
mon structural hazard arises when some functional unit is not fully pipelined.
Then a sequence of instructions using that unpipelined unit cannot proceed
at the rate of one per clock cycle. Another common way that structural haz-
ards appear is when resources have not been duplicated enough to allow all
combinations of instructions in the pipeline to execute[1].

For example, a machine might have a shared single-memory pipeline for
data and instructions. As a result, when an instruction contains a data-
memory reference, it will conflict with loading the next instruction from mem-
ory. To resolve this, the pipeline must be stalled for one clock cycle when the
data memory access occurs as the figure 2.4 shows[1].

Figure 2.4: A pipeline stalled for a structural hazard - a load with one memory
port[1]

2.2.2 Data Hazards

A major effect of pipelining is that it changes the relative timing of instruc-
tions by overlapping their execution which can introduce data hazards. Data
hazards occur when the pipeline changes the order of read/write accesses to
operands so that the order differs from the order by sequential execution.
Consider this example:

ADD R1, R2, R3
SUB R4, R1, R5
AND R6, R1, R7
OR R8, R1, R9

XOR R10, R1, R11
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All the instructions after the ADD instruction use the result of that instruc-
tion. As shown on the figure 2.5, the ADD instruction writes its result to the
register R1 in its WB stage, but the SUB instruction needs the result value
during its ID stage. This problem is called a data hazard and without taking
some precautions to prevent that, the SUB instruction would read the wrong
value and try to use it. The AND and OR instructions are also affected as
the write of the result to the register R1 does not complete until the end of
clock cycle five. The first instruction that would work correctly is the XOR
instruction. The next section discusses a technique to reduce stalls for data
hazards[1].

Figure 2.5: DLX Pipeline with data hazards[1]

2.2.3 Forwarding

The problem with data hazards can be solved using a simple hardware tech-
nique called forwarding (also called bypassing or short-circuiting). Consider-
ing the previous example, the key insight in forwarding is that the result is not
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really needed by the SUB instruction until after the ADD instruction actually
produces it. If the result can be moved from where the ADD instruction pro-
duces it to where the SUB instruction needs it, then the need for stall can be
avoided. Generally, forwarding can be generalized to include passing a result
directly to any functional unit that requires it. A result is forwarded from the
output of one unit to the input of another[1].

The figure 2.6 shows the previous example with the bypasses in place to
solve data hazards using the forwarding technique. The SUB instruction and
the AND instruction get its input from registers after the ALU and the MEM
stage. The OR instruction receives its result by forwarding inside the WB
stage, which is easily accomplished by reading registers in the second half
of the stage and writing them in the first half as the dashed lines indicate.
With these bypasses, the previous example can now run without any need for
stalls[1].

Figure 2.6: DLX Pipeline with solved data hazards using forwarding[1]

Data hazards may be classified as one of three types, depending on the order
of read and write accesses in the instruction. Consider two instructions: X
and Y, with X occurring before Y. The possible data hazards are[1]:
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• Read after write (RAW) - Y tries to read a source before X writes
it, so Y gets an old value. This is the most common hazard.

• Write after write (WAW) - Y tries to write an operand before it
is written by X. The writes end up being performed in the wrong or-
der, leaving the value written by X rather than the value by Y in the
destination.

• Write after read (WAR) - Y tries to write a destination before it is
read by X, so X incorrectly gets a new value.

There are also some cases where stalls are inevitable and cannot be handled
by forwarding. Consider the following sequence of instructions:[1]:

LW R1, 0(R2)
SUB R4, R1, R5
AND R6, R1, R7
OR R8, R1, R9

The LW instruction does not have the loaded data until at the end of the MEM
stage, while the SUB instruction needs to have the data from the previous
instruction by the beginning of its EX stage. The data hazard from using the
result of a load instruction cannot be eliminated with simple hardware because
such a bypassing path would have to operate backward in time. Instead, new
hardware, called a pipeline interlock, needs to be added to preserve the correct
execution order. In general, a pipeline interlock detects a hazard and stalls
the pipeline until the hazard is cleared[1].

2.2.4 Control Hazards

Control hazards are caused by instructions that change the program counter
such as branches or jumps. The decision whether the branch is taken or not
taken is usually done later in the pipeline, so for a certain number of cycles
it is unknown which instruction should be loaded next into the pipeline and
thus the pipeline must be stalled.

The DLX pipeline makes the decision whether the branch is taken or not
taken in the ID stage and uses a never-taken scheme to minimize stalls. This
scheme treats every branch as not taken and allows the pipeline to continue
fetching instructions as if the branch was not taken and is careful not change
the machine state until the branch outcome is definitely known. The benefit
of using the never-taken scheme comes when the branch is not taken as the
pipeline can continue without any stalls. However, if the branch is taken,
the loaded instruction is aborted as seen on the figure 2.7 and the pipeline
continues at the target address, which basically means that the pipeline was
stalled for one cycle. On the other hand, the reverse always-taken scheme
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would not work in the DLX architecture as the decision whether the branch
is taken or not taken and the computation of the target address happens in
the same stage[1].

Figure 2.7: DLX Pipeline using a never-taken scheme when a branch is taken[1]

2.3 Floating-point Operations

It would be impractical to require that all DLX floating-point operations (also
integer multiply and integer divide) complete in one clock cycle. Doing so
would mean accepting a slow clock or using enormous amounts of logic in
floating-point functional units or both. Instead, the pipeline allows for a
longer latencies for certain operations in the EX stage. The EX stage may be
repeated as many times as needed to complete the operation as shown on the
figure 2.8. The DLX architecture also uses four separate functional units to
perform different operations[1]:

• Integer unit - The main integer unit that handles loads and stores,
integer ALU operations and branches.

• FP/integer multiply unit - Floating-point and integer multiply unit.

• FP Adder unit - Floating-point adder unit that handles floating-point
adding and subtracting.

• FP/integer divider unit - Floating-point and integer divider unit.

Each of these functional units can be described using two parameters[1]:

• Number of stages - Specifies how many stages are in a functional unit,
in other words, how many instructions can concurrently use this unit in
a pipeline.

• Delay - Specifies how many clock cycles are needed to finish the oper-
ation in this unit.
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Figure 2.8: DLX Pipeline Functional Units[1]

The figure 2.10 shows the DLX pipeline with one stage for the integer unit,
seven stages for the FP/integer multiply unit, four stages for the FP adder
unit and twenty-four stages for the FP/integer divider unit. Delays are the
same as the number of stages for all units. The use of different functional units
introduces hazards [1]. For example, the following code causes a hazard when
using the multiply unit with two stages and with the delay of four cycles:

MULTD F0, F2, F4
MULTD F6, F8, F10

MULTD F12, F14, F16
As the figure 2.9 shows, the first two MULTD instructions work as expected
but the third one needs to be stalled until the first MULTD instruction finishes
its EX stage. This is an example of a structural hazard where the hardware
cannot accommodate this combination of instructions because the multiply
unit has only two stages.

Figure 2.9: DLX Pipeline stalled for a structural hazard in the EX stage
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Figure 2.10: DLX Pipeline with different number of stages for different func-
tional units[1]

The next example shows that a structural hazard can also occur outside the
EX stage. Considering the following code when using the multiply unit with
two stages and with the delay of two cycles and the integer unit with one stage
and the delay of one cycle:

MULTD F0, F2, F4
ADD R1, R2, R3

As seen on the figure 2.11, the ADD instruction must be stalled for one cycle
because it arrives at the MEM stage at the same time as the previous in-
struction MULTD. This hazard arose from having units with varying running
times.

Figure 2.11: DLX Pipeline stalled for a struc-
tural hazard outside of the EX stage[1]

Using units with varying running time also brings some new problems con-
cerning data hazards. Since instructions no longer reach WB stage in order,
it can cause WAW hazards[1]. Consider the following code when using the
multiplication unit with four stages and with delay of four cycles and the FP
adder unit with two stages and the delay of two cycles:

MULTD F0, F2, F4
ADDD F0, F6, F8
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The ADDD instruction wants to write the result to the register F0 before the
MULTD instruction. The ADDD instruction must be stalled in the ID stage
until the MULTD instruction finishes its EX stage because otherwise, the F0
register would end up with a value from the MULTD instruction which would
not be correct as the register F0 should contain a result from the ADDD
instruction as shown on the figure 2.12

Figure 2.12: DLX Pipeline with a WAW hazard[1]

2.4 Pipeline Configuration in WinDLX

WinDLX allows setting up the number of stages and delays for all functional
units except for the integer unit which always has one stage and the delay of
one cycle. Only the terminology is a bit different. WinDLX calls the number
of stages as the Number of units in each class and the functional units are
named[15]:

• Addition unit (FP adder unit)

• Multiplication unit (FP/integer multiply unit)

• Division unit (FP/integer divider unit)

These functional units can be set with the limits defined in the following 2.1
table:

Table 2.1: WinDLX Pipeline Configuration

Configuration Value
Number of units in each class 1 ≤ M ≤ 8
Delay (Clock cycles) 1 ≤ M ≤ 50
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Chapter 3
LLVM System

The LLVM Project is a collection of modular and reusable compiler and
toolchain technologies. LLVM began as a research project at the University
of Illinois, with the goal of providing a modern compiler capable of compi-
lation of arbitrary programming language with a focus on modularity. Since
then LLVM has grown to be an umbrella project consisting of a number of a
compiler related subprojects[16].

The LLVM compiler design can be divided into three fundamental parts
as shown on the figure 3.1 and described below. Each part consists of several
phases that little by little transform the input source code to the final machine
code[17]:

• Fronted that is responsible for converting the input source code to
the LLVM intermediate code (LLVM IR) and usually contains those
phases[18]:

1. Lexical analysis
2. Syntax analysis (Parser)
3. Semantic analysis
4. LLVM intermediate code generation

• Optimizer which runs machine independent optimizations on the LLVM
intermediate code.

• Backed that transforms the LLVM intermediate code to the final ma-
chine code and performs the following tasks[18]:

1. Instruction selection
2. Instruction scheduling
3. Register allocation
4. Late machine dependent optimizations
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Figure 3.1: LLVM Compiler Design[17]

With this design, adding support to a new source language only requires im-
plementing a new LLVM frontend, but the LLVM optimizer with all existing
optimizations and all LLVM backends can be reused. Also, only a backend
part needs to be created to support a new machine target. If those parts were
not separated it would take N*M compilers to support N source languages and
M machine targets as opposed to N frontends plus M backends when using
the LLVM compiler structure[17].

LLVM itself comes in three pieces. The first is the LLVM suite. This
contains all of the tools, libraries, and header files needed to use the LLVM
system. The second piece is Clang, an LLVM fronted for C, C++, Objective-C
and Objective-C++ and the third piece is called LLVM Test suite and contains
programs and tools to test LLVM’s functionality and performance[19].

3.1 LLVM IR

The LLVM IR is an intermediate code representation that is used in the LLVM
system. It is a linear code that somewhat reminds an assembly code where
some things look like a high-level language such as functions or strong typing
when other looks more like a low-level language such as branching or basic-
blocks[20]. It has an infinite number of registers, uses an SSA (Single Static
Assignment) form and provides type safety, low-level operations, flexibility and
capability of representing all high languages[21]. The LLVM IR is generated
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by a frontend and is used throughout the entire optimizer part of the LLVM.
After the optimizations are done, the LLVM IR code is sent to a backend
where it is transformed into the target machine code.

The LLVM intermediate code can be represented in three different ways:
as in-memory compiler IR, as on-disk bitcode representation or as a human
readable assembly language representation[21].

3.1.1 SSA

Single static assignment is a form of a code representation where all of the
following conditions are true[22].

SSA conditions:

• Each variable is defined exactly once.

• Each variable’s definition dominates all of its uses.

• Each variable is defined before it is used.

Converting a code into an SSA form is primarily a simple matter of replacing
the target of each assignment with a new variable, and replacing each use of
a variable with the version of the variable reaching that point. For example,
consider the following code[23]:

X = 1 X1 = 1
X = 5 → X2 = 5
Z = X Z1 = X2

The only thing that changed is that each variable got a version based on the
order of its usage. This is fairly simple as the example was just a sequential
code. But usually, variables can have multiple values depending on the previ-
ous control flow. As the example below shows, the variable Y can either have
a value of X1 or X2 depending on the condition of the if statement. In that
case, some sort of control is needed to determine where the control flow came
from and what the value of Y will be[23].

if(...) if(...)
X = 2 X1 = 2

else → else
X = 3 X2 = 3

Y = X Y1 = ?????

To resolve this, a special statement is inserted, called a φ (PHI) function. A φ
function generates a new value by selecting the proper value based on where
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the control flow arrived from. The following code shows the transformation
to the code in an SSA form using the φ function. A φ function translates into
no instructions in the machine code because the control flow is known during
the execution[23].

if(...) if(...)
X = 2 X1 = 2

else → else
X = 3 X2 = 3

Y = X X3 = phi(X1, X2)
Y1 = X3

The biggest advantage of an SSA form comes from simplifying certain opti-
mizations. The ones which are most enhanced by the SSA form, mainly from
its property that each variable is assigned only once are, for example, constant
propagation, dead code elimination, dead instruction elimination or strength
reduction[23].

3.1.2 Basic Block

A basic block is a linear sequence of code which has exactly one entry point
(the first instruction executed) and exactly one exit point (the last instruction
executed - called the terminator instruction). This ensures that if a basic
block is executed, it will be executed from the first instruction to the last
instruction without jumping or branching anywhere in the middle of the basic
block. Basic blocks may have many predecessors and many successors which
represents the control flow of the code. The control flow can be captured in a
directed control flow graph (CFG) where nodes represent basic blocks and
edges represent control flow paths. The control flow graph specifies all possible
execution paths[24]. Example of such graph can be seen on the figure 3.2 which
shows a CFG constructed for a simple C programming language function foo
that counts from a to b as shown below.

i n t foo ( i n t a , i n t b)
{

whi le ( a<=b)
{

a++;
}
re turn a ;

}
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entry:
 %a.addr = alloca i32, align 4
 %b.addr = alloca i32, align 4
 store i32 %a, i32* %a.addr, align 4
 store i32 %b, i32* %b.addr, align 4
 br label %while.cond

while.cond: 
 %0 = load i32, i32* %a.addr, align 4
 %1 = load i32, i32* %b.addr, align 4
 %cmp = icmp sle i32 %0, %1
 br i1 %cmp, label %while.body, label %while.end

T F

while.body: 
 %2 = load i32, i32* %a.addr, align 4
 %inc = add nsw i32 %2, 1
 store i32 %inc, i32* %a.addr, align 4
 br label %while.cond

while.end: 
 %3 = load i32, i32* %a.addr, align 4
 ret i32 %3

Figure 3.2: Control Flow Graph constructed for the foo function

3.2 LLVM IR Language

This section describes the LLVM IR language constructs such as identifiers,
modules, functions, types, and instructions. Due to limited space, the con-
structs are simplified only to necessary parts. The full description of the
LLVM IR language can be obtained in the LLVM Language Reference Man-
ual document[21].

3.2.1 Identifiers

LLVM identifiers come in two basic types: global and local. Global identifiers
begin with a prefix @ and local identifiers begin with a prefix %. Additionally,
there are three different formats for identifiers, for different purposes[21]:

• Named values are represented as strings with their prefixes (%foo,
@bar).

• Unnamed values are represented as unsigned numeric values with their
prefixes (%12, @6).
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• Constants - LLVM has several different types of constants: boolean
constants (true, false), integer constants, floating-point constants and a
null pointer constant (null).

3.2.2 Modules

LLVM programs are composed of modules, each of which is a translating unit
of the input program. Each model consists of functions, global variables and
symbol table entries[21].

3.2.3 Functions

A function contains a list of basic blocks, forming a CFG. The first basic block
in a function is specific in two ways: it is immediately executed on entrance
to the function, and it is not allowed to have any predecessor basic blocks.

LLVM function definition consists of the define keyword and parameters
such as linkage type, visibility style, calling convention type and argument
list. The syntax with the example is shown below[21].

d e f i n e [ l i n k a g e ] [ v i s i b i l i t y ] [ cconv ] <ResultType> @<FunctionName>
( [ argument l i s t ] ) { . . . }

; Example :
d e f i n e i 32 @mul add ( i32 %x, i 32 %y, i 32 %z) {
entry :

%tmp = mul i32 %x, %y
%tmp2 = add i32 %tmp, %z
r e t i 32 %tmp2

}

3.2.4 Type System

The LLVM IR is a very strongly-typed language and pretty much everything
has some sort of type. The types consist of void type, numeric types, function
types, pointer types and aggregate types such as array types and structure
types[21].

Void Type

The void type does not represent any value and has no size[21].

Integer Type

The integer type is a simple type that specifies an arbitrary bit width for the
integer type desired. Any bit from 1 to 223 − 1 can be specified. The LLVM
does not make a distinction between signed and unsigned types but uses dif-
ferent instructions for signed and unsigned values when needed[21].
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Syntax:
iN ; The N s p e c i f i e s the b i t width f o r the i n t e g e r type

; Examples :
i 1 ; A s i n g l e b i t i n t e g e r
i 32 ; A 32−b i t i n t e g e r

Floating-point Type

LLVM uses several types for floating-point numbers[21]:

• half - 16-bit floating-point value

• float - 32-bit floating point value

• double - 64-bit floating-point value

• fp128 - 128-bit floating-point value

Pointer Type

The pointer type is used to specify memory locations, pointers are commonly
used to reference objects in memory[21].

Syntax:
<type> ∗

; Examples :
i 32 ∗ ; A po in t e r to a 32−b i t i n t e g e r
[ 4 x i23 ]∗ ; A po in t e r to an array o f f our i 32 va lue s
i 32 ( i 32 ∗) ∗ ; A po in t e r to a func t i on that takes an i32 ∗

; po in t e r and re tu rn s an i32 value

Array Type

The array type is a very simple aggregate type that arranges elements of the
same type sequentially in memory. The array type requires a size (number of
elements) and an underlying data type. The number of elements is a constant
integer value and the element type may be any type with a size[21].

Syntax:
[<#elements> x <type >]

; Examples :
[ 40 x i32 ] ; An array o f 40 32−b i t i n t e g e r s
[ 12 x [10 x f l o a t ] ] ; A two−dimens iona l 12x10 array o f

; 32−b i t f l o a t i n g−point va lue s
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Structure Type

The structure type is used to represent a collection of data members together
in memory. The elements of the structure may be any type with a size. Struc-
tures in memory are accessed using load a store instructions by getting a
pointer to a field with the getelementptr instruction[21].

Syntax:

%t = type { <type l i s t > }

; Examples :
{ i32 , i32 , i 32 } ; A s t r u c t u r e with three i 32 va lue s
{ f l o a t , i 32 ∗} ; A s t r u c t u r e with a f l o a t and a po in t e r to an

; i 32 value
{ i8 , i 32 } ; A s t r u c t u r e with an i 8 value and an i32 value

Function Type

The function type can be thought of as a function signature. It consists of the
return type and a list of formal parameter types[21].

Syntax:

<re turn type> ( <parameter l i s t > )

; Examples :
i 32 ( i32 , i 32 ) ; A func t i on that takes two i32 va lue s and

; r e tu rn s a s i n g l e i 32 value
i 32 ( i 8 ∗) ; A func t i on that takes an i 8 ∗ po in t e r and

; r e tu rn s an i32 value
{ i32 , i 32 } ( i 32 ) ; A func t i on that takes an i32 value and re tu rn s

; a s t r u c t u r e with two i32 va lue s

3.3 LLVM IR Instructions

This section describes the LLVM IR instruction set which consists of sev-
eral different classes of instructions: terminator instructions, binary instruc-
tions, bitwise binary instructions, memory instructions, and some other in-
structions[21].

3.3.1 Terminator Instructions

As mentioned previously, every basic block in a program ends with a ter-
minator instruction that indicates which block should be executed after the
current block is finished. These terminator instruction yield a void value as
they produce control flow, not values[21].
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ret instruction

The ret instruction is used to return the control flow from a function back
to the caller. It may or may not return a value. If it does return a value, it
accepts a single argument, the return value[21].

Syntax:
r e t <type> <val> ; Return a value from a non−void func t i on
r e t void ; Return a void

; Examples :
r e t i 32 5 ; Return an i32 value 5
r e t void ; Return void
r e t { i32 , i 8 } { i 32 4 , i 8 2} ; Return a s t r u c t with an

; i 32 value 4 and an i 8 value 2

br instruction

The br instruction is used to cause the control flow to transfer to a different
basic block in the current function. There are two forms of this instruction,
corresponding to a conditional branch and an unconditional branch. The con-
ditional form evaluates an i1 argument and if the value is true, control flows
to the iftrue label argument and if the value is false, control flows to the iffalse
label argument. The unconditional form simply transfers the control flow to
the destination label.

Syntax:
br i 1 <cond >, l a b e l < i f t r u e >, l a b e l < i f f a l s e > ; Cond i t iona l branch
br l a b e l <de s t ina t i on > ; Uncondit iona l branch

; Example :
t e s t :

%cond = icmp eq i32 %a %b

; Branch on l a b e l I fEqua l i f the cond i t i on i s true , o therw i s e
; branch on l a b e l IfUnEqual
br i 1 @cond , l a b e l %IfEqual , l a b e l %IfUnEqual

I fEqua l :
r e t i 1 1

IfUnEqual
r e t i 1 0

switch instruction

The switch instruction is used to transfer the control flow to one of several
different places. It is a generalization of the br instruction, allowing a branch
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to one of many possible basic blocks. It specifies a table of values and basic
blocks. When the switch instruction is executed, this table is searched for
the given value. If the value is found, the control flow is transferred to the
corresponding basic block. Otherwise, the control flows to the default basic
block[21].

Syntax:
switch <type> <val >, l a b e l <de fau l t >

[<type> <val >, l a b e l <dest> . . . ]
; Example :
; The c o n t r o l f low braches to e i t h e r onzero , or to onone , or to
; o therwi se based on the value o f the va l v a r i a b l e
switch i32 %val , l a b e l %otherwise [ i 32 0 , l a b e l %onzero

i32 1 , l a b e l %onone ]

3.3.2 Binary instructions

Binary instructions are used to do the most computing in a program. They
require two arguments of the same type and produce a single value as a re-
sult of the operation. The operation opcode can be: add, fadd, sub, fsub,
mul, fmul, udiv, sdiv, fdiv, urem (a reminder of an unsigned division), srev (a
reminder of a signed division), frev (a reminder of a floating-point division).
The f prefix signifies a floating-point operation[21].

Syntax:
<r e s u l t > = <opcode> <type> <val1> <val2>

; Examples :
%res = mul i 32 %x, 2
%res = fadd f l o a t %x, 4 .0

3.3.3 Bitwise binary instructions

Bitwise binary instructions are used to do various bit-twiddling in a program
and they are usually very efficient. They require two arguments and return
a single value as a result of the bitwise operation. The operation opcode can
be: shl (shift left), lshr (logical shift right), ashr (arithmetic shift right), and,
or, xor[21].

Syntax:
<r e s u l t > = <opcode> <type> <val1> <val2>

; Examples :
%res = s h l i 32 4 , 2
%res = xor i32 4 , %x
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3.3.4 Memory instructions

This section describes how to read, write and allocate memory in LLVM.

alloca instruction

The alloca instruction allocates memory on the stack frame of the currently
executing function. The instruction allocates sizeof(type) ∗#elements bytes
of memory and returns a pointer of an appropriate type[21].

Syntax:
<r e s u l t > = a l l o c a <type> [ , <type> <#elements >]

; Examples :
%ptr = a l l o c a i32 ; A l l o ca t e one i32 value
%ptr = a l l o c a i32 , i 32 4 ; A l l o ca t e four i 32 va lue s

load instruction

The load instruction is used to read from memory. The argument pointer to
the load instruction specifies the memory address from which to load[21].

Syntax:
<r e s u l t > = load <type >, <type>∗ <pointer >

; Example :
%val = load i32 , i 32 ∗ %ptr

store instruction

The store instruction is used to write to memory. There are two arguments to
the store instruction: the value to store and the address of memory at which
to store. The store instruction returns a void value[21].

Syntax:
s t o r e <type> <val >, <type>∗ <pointer >

; Example :
s t o r e i 32 3 , i 32 ∗ %ptr

getelementptr instruction

The getelementptr instruction is used to get the address of an element of an
aggregate object such as an array or a structure. It performs address calcula-
tion only and does not access memory[21]. The first argument is a type which
is used as the basis for the calculations, the second argument is a pointer which
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is the base address. The remaining arguments are indices that indicate which
of the elements of an aggregate object are indexed. In the example below,
the first indice indexes through the pointer and the second indice indexes the
fields of the t str structure[25].

Syntax:
<r e s u l t > = gete l ementptr <type >, <type>∗ <pointer >{,<type> <idx >}∗

; Example :
%struct . t s t r = type { i32 , i 32 }

; Compute the address o f the second element o f the t s t r s t r u c t
%x = gete l ementptr %struct . t s t r , %struct . t s t r ∗ %0, i 32 0 , i 32 1

; Store the i 32 value 8 to the second element o f the t s t r s t r u c t
s t o r e i 32 8 , i 32 ∗ %x

3.3.5 Conversion instructions

The following instructions perform various conversion between types. All of
these instructions take a single value argument and a type to which convert
the value argument[21].

Syntax:
<r e s u l t > = c o n v i n s t <type> <val> to <type>

Where the conv inst may be one of the following:

• trunc - Truncates integer value to a smaller type.

• zext - Zero extends integer value to a larger type.

• sext - Sign extends integer value to a larger type.

• fptrunc - Truncates a floating-point value to a smaller type.

• fpext - Extends a floating-point value to a larger type.

• fptoui - Converts a floating-point value to its unsigned integer equiva-
lent of the desired type.

• fptosi - Converts a floating-point value to its signed integer equivalent
of the desired type.

Examples:
%res = trunc i32 123 to i 1 ; Return i 1 : t rue
%res = zext i 1 t rue to i32 ; Return i32 : 1
%res = f p t o s i double −123.0 to i 32 ; Return i32 :−123
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3.3.6 Other instructions

This section describes some more instructions in the LLVM instruction set
that defy better classification[21].

icmp and fcmp instruction

LLVM has two compare instructions, one for integer values (icmp) and other
for floating-point values (fcmp). Both of these instructions return a boolean
value based on a comparison of its arguments which must be of the same type.
These instructions also take a condition code argument to indicate which com-
parison condition should be used[21].

Syntax:
<r e s u l t > = icmp <cond> <type> <val1 >, <val2>
<r e s u l t > = fcmp <cond> <type> <val1 >, <val2>

; Examples :
<r e s u l t > = icmp eq i32 4 , 5 ; i 32 : 4 == i32 : 5
<r e s u l t > = icmp ne f l o a t ∗ %x, %y ; f l o a t ∗ :%x != f l o a t ∗ :%y
<r e s u l t > = icmp u l t i 16 4 , 5 ; i 16 : 4 < i 16 : 5
<r e s u l t > = fcmp one f l o a t 4 . 0 , 5 . 0 ; f l o a t : 4 . 0 != f l o a t : 5 . 0
<r e s u l t > = fcmp ueq double 1 . 0 , 2 . 0 ; double : 1 . 0 == double : 2 . 0

select instruction

The select instruction is used to choose one value based on a condition without
IR-level branching. This instruction takes an i1 value indicating the condition
and two value arguments of the same type. If the condition evaluates to one,
the instruction returns the first value argument. Otherwise, it returns the
second value argument.

Syntax:
<r e s u l t > = s e l e c t i 1 <cond >, <type> <val1 >, <type> <val2>

; Example :
%res = s e l e c t i 1 true , i 8 17 , i 8 42 ; Return a i 8 value 17
%res = s e l e c t i 1 %val , f l o a t %x, f l o a t %y

phi instruction

The phi instruction is used to implement the φ function. The first argument
specifies types of incoming values. After this, the instruction takes a list of
predecessors of the current basic block and their associated values. The phi
instruction must be the first instruction in a basic block[21].

43



3. LLVM System

Syntax:
<r e s u l t > = phi <type> [<val1 >, <l abe l 1 > ] , [<val2 >, <l abe l 2 > ] , . . .

; Example :
; Return a true value i f the c o n t r o l f low came from the b a s i c
; b lock entry1 or re turn the v a r i a b l e x i f the c o n t r o l f low
; came from the b a s i c b lock entry2
%retval = phi i 1 [ true , %entry1 ] , [ %x, %entry2 ]

call instruction

The call instruction represents a simple function call. This instruction is used
to cause the control flow to transfer to a specified function with its arguments
bound to specific values. Upon ret instruction in the called function, control
flow continues with the instruction after the function call[21].

Syntax:
<r e tva l > = c a l l <type> <funct ion > (< f unc t i on args >)

; Example :
%retval = c a l l i 32 @test ( i 32 %x)

3.4 LLVM Tools

LLVM has numerous tools to deal with various parts of the compilation pro-
cess:

• LLVM static compiler - The l lc command compiles LLVM source
inputs (LLVM IR) into the assembly language for a specified target[26].

• LLVM optimizer - The opt command is the LLVM optimizer and
analyzer. It takes the LLVM source files (LLVM IR) as input, runs the
specified optimizations or analyses on it, and then outputs the optimized
files or the analysis results[26].

3.5 Clang

Clang provides a language frontend for the LLVM system and tooling in-
frastructure for languages in the C language family (C, C++, Objective-
C/C++, OpenCL, CUDA, and RenderScript). Both a GCC-compatible com-
piler driver (clang) and an MSVC-compatible compiler driver (clang-cl.exe)
are provided[27]. The main features of clang are[28]:

• Fast compile time and low memory use - The major focus of clang
is to be fast, light, scalable and to save memory.
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• Expressive diagnostics - Clang aims to be extremely user-friendly by
making error and warning messages as useful and human-readable as
possible.

• GCC compability - GCC is currently the defacto standard open source
compiler today, and it routinely compiles a huge volume of code. GCC
supports a huge number of extensions and features (many of which are
undocumented) and a lot of code and header files depend on these fea-
tures in order to build. All the gcc extensions are put in clang because
many users just want their code to compile and they don’t care to argue
about whether it is pedantically by the standard or not.

3.5.1 Clang Example

The following code shows the LLVM IR generated by clang for the foo func-
tion from the section 3.1.2 which counts from a to b. Basic blocks are rep-
resented as labels. Clang allocates variables on the stack and they are later
transformed into SSA variables and phi functions in the Promote Memory to
Register (mem2reg) pass during optimizations[29].

d e f i n e d s o l o c a l i 32 @ Z3foo i i ( i 32 %a, i 32 %b) #0 {
entry :

%a. addr = a l l o c a i32 , a l i g n 4
%b. addr = a l l o c a i32 , a l i g n 4
s t o r e i 32 %a, i 32 ∗ %a. addr , a l i g n 4
s t o r e i 32 %b, i 32 ∗ %b. addr , a l i g n 4
br l a b e l %while . cond

whi l e . cond : ; preds = %while . body , %entry
%0 = load i32 , i 32 ∗ %a. addr , a l i g n 4
%1 = load i32 , i 32 ∗ %b. addr , a l i g n 4
%cmp = icmp s l t i 32 %0, %1
br i 1 %cmp, l a b e l %while . body , l a b e l %while . end

whi l e . body : ; preds = %while . cond
%2 = load i32 , i 32 ∗ %a. addr , a l i g n 4
%inc = add nsw i32 %2, 1
s t o r e i 32 %inc , i 32 ∗ %a. addr , a l i g n 4
br l a b e l %while . cond

whi l e . end : ; preds = %while . cond
%3 = load i32 , i 32 ∗ %a. addr , a l i g n 4
r e t i 32 %3

}
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Chapter 4
LLVM Backend for DLX

This chapter describes the process of creating an LLVM compiler backend
that converts the LLVM Intermediate Representation (LLVM IR) to assembly
code for the described DLX architecture.

4.1 Analysis of Existing Backends

Before creating the backend, these following backends were analyzed to get
a sense of how LLVM backends work and what approach should be taken to
create a new LLVM backend. Also, the LLVM documentation does not always
describe LLVM backend constructs in full detail and existing backends provide
a lot of useful information on the process of creating a new LLVM backend.
These backends were chosen based on the fact that they are RISC architectures
as is the DLX architecture and also that they are quite simple which allows
the understanding of the structure of an LLVM backend. Alongside the three
main backends below, ARM, x86 and Cpu0 backends were also studied for
some information.

Lanai Backend

The Lanai architecture is the simplest RISC architecture for which an LLVM
backend is implemented. Its instruction set is quite similar to the DLX in-
struction set although it contains some advanced instructions like select. It
is an architecture that only uses integer registers and integer instructions[30].
This backend can serve as a good stepping stone to create a new RISC LLVM
backend.

Mips Backend

The Mips architecture is a bit more complicated architecture that is to some
extent a superset to the DLX architecture which means it has some features
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that are needed in the DLX backend[31].

Sparc Backend

Sparc is a pretty typical RISC architecture that has almost everything that
the DLX architecture uses and some more but not too much like the Mips
architecture which is quite complicated to be a starting point for creating a
new LLVM backend[32]. This means that the Sparc backend contains almost
all the necessary parts for creating a new DLX backend. The Sparc back-
end source codes are quite well documented and the source codes comments
contain very useful information about LLVM backend constructs. The Sparc
backend is also used as an example in parts of the LLVM text Writing an
LLVM Backend[33].

4.2 Target Description

The LLVM target description files (the .td files) provide a description of the
target machine. These files are designed to capture the properties of the target
architecture (such as instructions and registers it has), and do not incorporate
any particular pieces of code generation algorithms. These files use a TableGen
syntax and the tool to translate these files is also called TableGen[34].

4.2.1 TableGen

TableGen’s purpose is to help a human develop and maintain records of
domain-specific information. It is specifically designed to allow writing flexi-
ble descriptions and for common features of these records to be factored out.
This reduces the amount of duplication in the description, reduces the chance
of error, and makes it easier to structure domain-specific information. Table-
Gen files are interpreted by the TableGen tool which generates .inc files and
those files can be included in C++ source files the same way as C++ header
files[35].

4.2.2 DLX Target Description

The DLX backend uses TableGen files to describe registers, instruction set
and calling conventions of the architecture. DLX uses the following files to
describe the architecture (every class and every TableGen file that belongs to
the DLX target has a ZR prefix which is an alias used to create a new DLX
backend):

• ZR.td - Describes information about the architecture such as the Pro-
cessorModel or the InstPrinter. It serves as a base class for the TableGen
tool when generating DLX target machine files.
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• ZRRegisterInfo.td - Describes registers and their properties.

• ZRInstrInfo.td - Describes the whole instruction set, operands and
other classes that are mainly used in the instruction selection stage.

• ZRCallingConv.td - Describes calling conventions.

These files are then processed by the TableGen tool which generates the ZR-
GenInstrInfo.inc, ZRGenAsmWriter.inc, ZRGenCallingConv.inc, ZRGenReg-
isterInfo.inc, ZRGenDAGISel.inc and ZRGenSubtargetInfo.inc files which are
then included in several DLX backed files to help the translation to DLX
assembly codes.

4.3 Target Machine

The LLVMTargetMachine class is designed to be a base class for all backends
implemented in the LLVM system. To actually create a concrete LLVM back-
end this class must be specialized by a concrete backend class that implements
various virtual methods. This class provides virtual methods that are used
to access the backend specific implementations of backend descriptions via
get*Info() methods. The DLX backend uses the following: getInstrInfo(), get-
FrameLowering(), getRegisterInfo(), getTargetLowering() and getSelectionD-
AGInfo()[33].

4.3.1 DataLayout

DataLayout specifies information about how the target lays out memory for
structures, the alignment requirements for various data types, the size of point-
ers in the target, and whether the target is little-endian or big-endian[21]. The
layout specification consists of a list of specifications separated by the minus
sign character (‘-‘). The DLX backend uses the following list of specifications.

”E” // Big endian
”−p : 3 2 : 3 2 ” // 32−b i t po in te r s , 32 b i t a l i gned
”−i 32 : 32 ” // 32−b i t i n t e g e r s , 32 b i t a l i gned
”−f 32 : 32 ” // 32 b i t f l o a t i n g−point numbers , 32 b i t a l i gned
”−f 64 : 64 ” // 64−b i t f l o a t i n g−point numbers , 64 b i t a l i gned
”−a : 0 : 3 2 ” // 32 b i t al ignment o f o b j e c t s o f an aggregate type
”−n32” // 32 b i t nat ive i n t e g e r width
”−S32” // 32 b i t natura l s tack al ignment

4.4 Defining Registers

DLX registers are defined in the ZRRegisterInfo.td TableGen file. This file
starts with the definition of base register classes for representing an integer
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register and a floating-point register as shown below. Each register has a seven
bit number for identification and the specified string n becomes the name of
a register.
// Base c l a s s f o r i n t e g e r r e g i s t e r s
c l a s s RI<b i t s <7> num, s t r i n g n , l i s t <Regi s ter > subregs = [ ] ,

l i s t <s t r i ng > altNames = [] > : Reg i s te r <n , altNames> {
f i e l d b i t s <7> Num; l e t Num = num;
l e t Namespace = ”ZR” ; l e t SubRegs = subregs ;

}
c l a s s RF . . . // Base c l a s s f o r f l o a t i n g−point r e g i s t e r s

As shown below, every register in DLX is defined using one the base register
class. There is a definition of all integer registers, floating-point registers (both
single-precision and double-precision) and the FPSR register.
// I n t e g e r r e g i s t e r s
f o r each i = 0−31 in {

de f R#i : RI<i , ” r ”#i >, DwarfRegNum<[ i ] > ; }

// S ing le−p r e c i s i o n f l o a t i n g−point r e g i s t e r F0
de f F0 : RF<32, ”F0”>, DwarfRegNum< [32] > ; de f F1 . . .

// Double−p r e c i s i o n f l o a t i n g−point r e g i s t e r D0 that has two
// s u b r e g i s t e r s F0 and F1
de f D0 : RF<64, ”F0” , [ F0 , F1] > , DwarfRegNum< [64] > ; de f D1 . . .

// Float ing−point s t a t u s r e g i s t e r
de f FPSR : RI<0, ”FPSR”>, DwarfRegNum< [80] > ;

In the same TableGen file, the RegisterClass is used to define an object that
represents a group of related registers and also defines the default allocation
order. In the DLX backend, four RegisterClass objects are defined: GPRegs,
FPRegs, DFPRegs, and StatusRegs (contains only the FPSR register) as can
be seen below.
de f GPRegs : Reg i s t e rC la s s <”ZR” , [ i 32 ] , 32 ,

( add R0 , R1 , R2 , R3 , R4 , R5 , R6 , R7 , R8 , R9 , R10 , R11 , R12 , R13 ,
R14 , R15 , R16 , R17 , R18 , R19 , R20 , R21 , R22 , R23 , R24 , R25 ,

R26 , R27 , R28 , R29 , R30 , R31) >;

de f FPRegs : Reg i s t e rC la s s <”ZR” , [ f32 ] , 32 ,
( sequence ”F%u” , 0 , 31) >;

de f DFPRegs : Reg i s t e rC la s s <”ZR” , [ f64 ] , 64 ,
( add D0 , D1 , D2 , D3 , D4 , D5 , D6 , D7 , D8 ,

D9 , D10 , D11 , D12 , D13 , D14 , D15) >;

de f StatusRegs : Reg i s t e rC la s s <”ZR” , [ i 32 ] , 32 , ( add FPSR)> {
l e t CopyCost = −1; // Don ’ t a l low copying o f FPSR
l e t i s A l l o c a t a b l e = 0 ; // Don ’ t a l low a l l o c a t i n g o f FPSR

}
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4.5 Defining Instructions

The DLX instruction set is defined in two TableGen files: ZRInstrFormat.td
and ZRInstrInfo.td. The ZRInstrFormat.td file defines the base class for all in-
structions and defines format base classes which follow formats of instructions
defined in the 1.4 section. Also, the Pseudo base class is defined for pseudo
instructions that are later used mainly in the instruction selection stage.

c l a s s ZRInst<dag outs , dag ins , s t r i n g asmstr , l i s t <dag> pattern ,
s t r i n g ops t r = ””> : I n s t r u c t i o n {

f i e l d b i t s <32> I n s t ;
b i t s <6> Opcode = 0 ;
l e t I n s t {31−26} = Opcode ;
s t r i n g BaseOpcode = opst r ;
l e t OutOperandList = outs ; // A DAG with the MI de f operand l i s t
l e t InOperandList = i n s ; // A DAG with the MI use operand l i s t
// The . s format to p r i n t the i n s t r u c t i o n with
l e t AsmString = asmstr ;
l e t Pattern = pattern ; // A DAG pattern f o r t h i s i n s t r u c t i o n
l e t Namespace = ”ZR” ;

}

The ZRInst is the base class for all instructions used in the DLX target.
It creates a 32-bit field to store the binary representation in which the first
six bits are used for an instruction Opcode. Every instruction has a prepared
structure to store its binary representation even though the DLX target sets all
bits to zero as there is no need for an object file writer. The OutOperandList,
InOperandlist and the pattern fields are used in the instruction selection stage.
The format base classes and the pseudo base class are then defined using this
ZRInst base class as shown below[33]:

// I−type format base c l a s s
c l a s s FI<b i t s <6> op , dag outs , dag ins , s t r i n g asmstr , l i s t <dag>

pattern> : ZRInst<outs , ins , asmstr , pattern> {

// Binary r e p r e s e n t a t i o n o f i n s t r u c t i o n s
b i t s <5> r t ; b i t s <5> r s ; b i t s <16> imm16 ; l e t I n s t {25−21}= r s ;
l e t I n s t {20−16}= r t ; l e t I n s t {15−0}= imm16 ; l e t Opcode = op ;

}

c l a s s FR : ZRInst { . . . } // R−type format
c l a s s FJ : ZRInst { . . . } // J−type format

// Base c l a s s f o r pseudo i n s t r u c t i o n s
c l a s s Pseudo<dag outs , dag ins , s t r i n g asmstr , l i s t <dag> pattern>

: ZRInst<outs , ins , asmstr , pattern> {
l e t isCodeGenOnly = 1 ; l e t i sPseudo = 1 ;

}

Before defining DLX instructions, operands of those instructions must be de-
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fined first. Operands along with instructions are defined in the ZRInstrInfo.td
file. As shown below, the DLX target defines several types of operands for
different instructions. It defines call target operand, branches and jumps tar-
get operands, immediate operands (both signed and unsigned), an immediate
operand for shifts, an immediate operand for LHI instruction and a condi-
tion code operand which is used for floating-point conditions. LO16 and HI16
operands are used to get the high and low 16 bits of immediates. The Com-
plexPattern ADDri is a special operand used for memory accesses that need
custom handling during the instruction selection stage[33].
de f Cal lTarget : Operand<i32> { } // Cal l operand
de f BrTarget16 : Operand<OtherVT> { } // Branch 16−b i t operand
de f BrTarget26 : Operand<OtherVT> { } // Branch 26−b i t operand
de f simm16 : Operand<i32> { l e t PrintMethod= ”printSImm16Operand” ;}
de f zimm16 : Operand<i32> { l e t PrintMethod= ”printZImm16Operand” ;}
de f CCOp: Operand<i32> { l e t PrintMethod = ”printCCOperand” ; }

de f LO16 : SDNodeXForm<imm, [{ re turn CurDAG−>getTargetConstant (
( u i n t 6 4 t )N−>getZExtValue ( ) & 0 x f f f f , SDLoc(N) , MVT: : i 32 ) ; } ] > ;

de f HI16 : SDNodeXForm<imm, [{ re turn CurDAG−>getTargetConstant (
( u i n t 6 4 t )N−>getZExtValue ( ) >> 16 , SDLoc(N) , MVT: : i 32 ) ; } ] > ;

de f immShift : Operand<i32 >, PatLeaf <(imm) , [{ i n t Imm =
N−>getSExtValue ( ) ; r e turn Imm >= 0 && Imm <= 31;} ] > ;

de f SETHIimm : PatLeaf <(imm) , [{
re turn i sSh i f t edUInt <16, 16>(N−>getZExtValue ( ) ) ; } ] , HI16 >;

de f MEMri : Operand<i32> { l e t PrintMethod = ”printMemRIOperand” ;
l e t MIOperandInfo = ( ops GPRegs , i32imm ) ; }

de f ADDRri : ComplexPattern<i32 , 2 , ” se lectAddrRi ” , [ frameindex ] , [ ] > ;

The example below shows the definition of two DLX instructions. As every
instruction in the DLX target, both of those instructions are defined using
one of the format base class, namely the I-type format base class. The ADDI
instruction uses a signed 16-bit immediate operand and one register operand
as inputs and one register operand as output. The BNEZ instruction uses
one register operand and a BrTarget16 operand as inputs and has no output
operands.
de f ADDI : FI < 0b000000 , ( outs GPRegs : $dst ) ,

( i n s GPRegs : $src1 , simm16 : $c ) , ” addi $dst , $src1 , $c ” ,
[ ( s e t i 32 : $dst , ( add i32 : $src1 , immSExt16 : $c ) ) ] > ;

l e t i sBranch = 1 , i sTerminator = 1 in {
de f BNEZ : FI<0b000000 , ( outs ) ,

( i n s GPRegs : $src1 , BrTarget16 : $addr ) , ” bnez $src1 , $addr ” ,
[ ( brcond GPRegs : $src1 , bb : $addr ) ] > ;

}
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4.6 Defining Calling Conventions

DLX calling conventions are defined in the ZRCallingConv.td TableGen file
and they specify[33]:

• Where parameters and return values are placed.

• Which registers may be used for parameters or return values.

• The order of parameter allocation.

// DLX c a l l i n g convent ion
de f CC ZR : CallingConv <[

CCIfType<[ i8 , i 16 ] , CCPromoteToType<i32 >>,
CCIfType<[ i32 , f32 ] , CCAssignToStack <4, 4>>,
CCIfType<[ f 64 ] , CCAssignToStack<8,4>>

] > ;

// DLX return value c a l l i n g convent ion
de f RetCC ZR : CallingConv <[

CCIfType<[ i 32 ] , CCAssignToReg<[R1 , R9 , R10 , R11]>>,
CCIfType<[ f 32 ] , CCAssignToReg<[F0]>>,
CCIfType<[ f 64 ] , CCAssignToReg<[D0]>>

] > ;

As seen above, the DLX target defines two types of calling conventions: one
for calling a function and the second one for returning a value from a function.
The CC ZR calling convention places all values on the stack with the specified
alignment and promotes all i8 and i16 values to i32 values. The RetCC ZR
calling convention specifies in which registers, values should be returned. It
specifies four registers for integer values to allow returning values up to 128
bits. Float values and double values are returned in the F0 (D0) register.

4.7 Target Code Generation

The target code generation in LLVM is done using numerous stages where
every stage performs a different task which gradually transforms the input
LLVM IR into the final machine code (the DLX assembly code in this case).
It is divided into the following stages (also demonstrated on the figure 4.1)[34]:

• Build initial SelectionDAG - Performs a simple translation from the
input LLVM IR to an illegal SelectionDAG.

• Legalize SelectionDAG Types - Transforms a SelectionDAG to elim-
inate any types that are unsupported by the target.
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Figure 4.1: Code Generation Stages

• Legalize SelectionDAG Operations - Transforms a SelectionDAG
to eliminate any operations that are unsupported by the target.

• SelectionDAG instruction selection - Matches the DAG opera-
tions to target instructions and translates the input SelectionDAG into
another SelectionDAG of target instructions.

• SelectionDAG scheduling - Assigns a linear order to instructions
from the input SelectionDAG.

• Build MachineInstr - Converts the scheduled target instruction Se-
lectionDAG into the list of MachineInstrs.

• Register allocation - Performs mapping virtual registers to physical
registers.

• Prologue/Epilogue code insertion - Inserts the prologue and epi-
logue of functions.

• Build MCInst - Translates the MachineInstr list to the list of MCInsts.

• Code emission - Emits the machine assembly code (object file).

Each stage usually contains a several passes. The LLVM system performs
around 70 passes to translate the LLVM IR into the final machine code. Some
of these passes work independently but others require some additional custom
code to handle the DLX target specifics. Additionally, the LLVM system
performs some optimizations in certain stages and passes. The next chapter 5
gives more details about optimizations in the LLVM system[34].
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4.8 Build Initial SelectionDAG

The first stage creates the initial SelectionDAG structure. The SelectionDAG
is a directed acyclic graph whose nodes are instances of the SDNode class. The
SDNode consists of operation code (Opcode) that indicates what operation
the node performs and the operands to the operation which are edges to the
nodes defining the used value. Each value produced by an SDNode has an
associated MVT (Machine Value Type) indicating what the type of the value
is. The edges may represent two kinds of values: those that represent data
flow and those that represent control flow dependencies called chain edges.
These chain edges provide ordering between nodes and by convention they
are always the first operand. The glue operand glues nodes together to avoid
separation in SelectionDAG stages[34]. Usually, the LLVM SelectionDAG
SDNodes are not enough to represent the target machine constructs entirely
and some custom SDNodes must be defined as is the case of the DLX target.
DLX defines several custom SDNodes to represent target dependent constructs
in the ZRISD namespace in the ZRISelLowering.h file and their description is
in the 4.10 section.

This stage performs a simple translation from the input LLVM IR to an
illegal SelectionDAG and is mostly hard-coded, an LLVM IR ”add” turns to
an SDNode add, while instructions like ”getelementptr” are expanded into
the appropriate arithmetics. This stage also requires target specific hooks to
handle calling conventions, in particular, it needs custom code to handle calls,
returns, and formal arguments. For these, the TargetLowering interface is
used[34]. The DLX target utilize the TargetLowering interface in the ZRISel-
Lowering.h file where three of the TargetLowering methods are overridden to
properly handle DLX calling conventions:

• LowerFormalArguments() - This method lowers the incoming (for-
mal) arguments and either assigns them to registers or creates for them
a space on stack according to the used calling convention. It also handles
variable-length argument lists[36].

• lowerReturn() - This method lowers the return based on the specified
calling convention. It creates a custom ZRISD::RetFlag SDNode glued
to a resulting value to represent the return.

• lowerCall() - This method lowers calls into specified SelectionDAG
SDNodes. It creates a custom ZRISD::Call SDNode to represent the
call and also creates a ZRISD::CALLSEQ START SDNode and a ZRI-
SD::CALLSEQ START SDNode to mark the beginning and the end of
the function call.

The following LLVM IR code is used to illustrate how the target code gen-
eration process works. It is one simple function that takes one integer and

55



4. LLVM Backend for DLX

one floating-point number and adds them together along with a floating-point
constant 5.00. The integer argument is converted to a floating-point value
first. Due to limited space, the LLVM IR code example must be this small
because the resulting SelectionDAGs are quite large.

d e f i n e f l o a t @addFPandINT( f l o a t , i 32 ) {
%3 = s i t o f p i32 %1 to f l o a t
%4 = fadd f l o a t %3, %0
%5 = fadd f l o a t %4, 5 .000000 e+00
r e t f l o a t %5

}

The figure 4.2 shows the initial SelectionDAG built for the LLVM IR ex-
ample above. The SelectionDAG has some nodes with the same Opcodes
(LLVM is not too consistent - the Opcodes are usually slightly different)
as the input LLVM IR (fadd, sint to fp) but has some others nodes which
came from lowering the calling convention. Firstly, the LowerFormalArgu-
ments() method placed the function arguments on the stack and also generated
corresponding loads. Secondly, the lowerReturn() method created a custom
ZRISD::RET FLAG SDNode glued together with the resulting value which is
placed in the register F0. This exactly follows the DLX calling convention.
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Figure 4.2: SelectionDAG of the addFPandINT function after construction
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4.9 Legalize SelectionDAG Types

This legalize stage is in the charge of converting a SelectionDAG to only use
the types that are natively supported by the target. A target implementation
tells the LLVM system which types are supported and which register classes
to use for them by calling the addRegisterClass() method[34].

DLX target supports three types of registers and calls the addRegister-
Class() method for each of them in ZRTargetLowering class constructor in the
ZRISelLowering.cpp file which tells the LLVM legalizer to fit all values in one
of these registers. The usage of the addRegisterClass() in the DLX target is
shown below. There are two main ways of converting values of unsupported
types to values of supported types: converting small types to larger types
called promoting (for example i1 or i8 value will become i32 value and will be
stored in an integer register), and breaking up large types into smaller ones
called expanding (for example i64 and i128 values will be expended to 2 and
4 i32 values and they will be stored in multiple integer registers)[34].

addReg i s te rClas s (MVT: : i32 , &ZR : : GPRegsRegClass ) ;
addReg i s te rClas s (MVT: : f32 , &ZR : : FPRegsRegClass ) ;
addReg i s te rClas s (MVT: : f64 , &ZR : : DFPRegsRegClass ) ;

4.10 Legalize SelectionDAG Operations

This stage transforms a SelectionDAG to eliminate any operations that are
unsupported by the target. A target must tell the LLVM legalizer which op-
erations are not supported and what to do with them using the setOperation-
Action() method. The setOperationAction() method takes three arguments:
SDNode Opcode that represents the operation, a type that may refer to either
the type of a result or that of an operand and an action which may be one
the following[33]:

• Expand - The operation is expanded into multiple operations by the
LLVM system, for example, the SREM operation is expanded into the
SDIV operation and the appropriate arithmetics to get the reminder.
The DLX target expends BR CC, BRCOND, BR JT, SELECT, STACK-
SAVE, STACKRESTORE, FNEG operations and many others that can
be found along with the types for which they are expanded in the ZRISel-
Lowering.cpp file. This has its limitations and cannot handle all cases.

• Legal - The legal action simply indicates that an operation is supported
by the target. Since the legal action is the default action for all oper-
ations, it is rarely used. Basically, the only usage of this action is to
override the action when using subtargets. The DLX target does not
use this action.
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• Custom - For some operations expansion may be insufficient and some
custom code must be implemented to properly handle the operation.

The DLX target provides custom handling for the following operations and
types. For each operation registered with the custom action, a case state-
ment is added in the LowerOperation() method to indicate what function to
call to handle the operation. The DLX target names these functions as Low-
erXXX() methods where XXX stands for the SDNode Opcode, for example
when legalizing the BR CC operation, the LowerBR CC() method gets called.

setOperat ionAct ion ( ISD : : BR CC, MVT: : f32 , Custom) ;
setOperat ionAct ion ( ISD : : BR CC, MVT: : f64 , Custom) ;
setOperat ionAct ion ( ISD : : SELECT CC, MVT: : i32 , Custom) ;
setOperat ionAct ion ( ISD : : SELECT CC, MVT: : f32 , Custom) ;
setOperat ionAct ion ( ISD : : SELECT CC, MVT: : f64 , Custom) ;
setOperat ionAct ion ( ISD : :VASTART, MVT: : Other , Custom) ;

setOperat ionAct ion ( ISD : : GlobalAddress , MVT: : i32 , Custom) ;
setOperat ionAct ion ( ISD : : BlockAddress , MVT: : i32 , Custom) ;
setOperat ionAct ion ( ISD : : JumpTable , MVT: : i32 , Custom) ;
setOperat ionAct ion ( ISD : : ConstantPool , MVT: : i32 , Custom) ;

setOperat ionAct ion ( ISD : :DYNAMIC STACKALLOC, MVT: : i32 , Custom) ;

f o r (MVT VT : MVT: : i n t e g e r v a l u e t y p e s ( ) ) {
setOperat ionAct ion ( ISD : : SINT TO FP , VT, Custom) ;
setOperat ionAct ion ( ISD : : FP TO SINT , VT, Custom) ;

}

All of these SDNodes with custom handling are transformed to one or multiple
custom SDNodes (except for VASTART SDNode which is transferred into a
simple store SDNode). The DLX target uses the following custom SDNodes:

• ZRISD::CALL - A necessary custom SDNode to represent call. It is
used in the lowerCall() method when building a SelectionDAG.

• ZRISD::HI - Used to represent the high 16 bits of addresses.

• ZRISD::LO - Same as ZRISD::HI but represents the lower 16 bits.

• ZRISD::ADJDYNALLOC - Represents a dynamic size allocation on
stack.

• ZRISD::RET FLAG - Another necessary custom SDNode to repre-
sent return. It is used in the lowerReturn() method when building a
SelectionDAG.

• ZRISD::FBR CC - Represents a floating-point branch and it is always
glued together with a ZRISD::FSET FLAG SDNode.
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• ZRISD::FSET FLAG - Represents a floating-point compare. The
FSET FLAG SDNode has three operands, two representing the values
to compare and a condition code operand that represents the condition.
The condition codes are defined in the ZRCondCodes.h file.

• ZRISD::MOVE - This SDNode is used to represent move instructions.
It is also a part of conversion between a floating-point value and an
integer value.

• ZRISD::CONVERTI2F - Represents a conversion from an integer
value to a floating-point value.

• ZRISD::CONVERTF2I - Represents a conversion from a floating-
point value to an integer value.

• ZRISD::XSELECTX CC - This is a collection of SDNodes that rep-
resent a select cc SDNode. Select cc is not a real instruction in LLVM
but comes from expanding a select operation. The expansion of a se-
lect operation merges the condition and the operands together into one
SDNode. Thus, a select cc SDNode has five operands: two values to
compare, two values to choose from and a condition to compare the val-
ues with. There are four types based on the types of values which is nec-
essary because DLX handles differently integer conditions and floating-
point conditions:

– ZRISD::FSELECTF CC - Choose a floating-point value based
on a floating-point condition. This SDNode has two floating-point
operands to choose the value from and it is glued together with the
FSET FLAG SDNode which represents a floating-point compare.

– ZRISD::ISELECTI CC - Choose an integer value based on an
integer condition. This SDNode has two integer operands to choose
the value from and another operand that represents an integer com-
pare (setcc SDNode).

– ZRISD::ISELECTF CC - Choose an integer value based on a
floating-point condition.

– ZRISD::FSELECTI CC - Choose a floating-point value based
on an integer condition.

The example below illustrates a custom code that transforms a floating-point
BR CC SDNode into two custom SDNodes that are glued together: ZRISD::F-
SET FLAG and ZRISD::FBR CC. The ZRISD::FSET FLAG SDNode takes
two values to compare (LHS, RHS) and a condition code (TargetCC). The
ZRISD::FBR CC only takes a basic block (Dest) which is a target address
when the branch is taken.
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SDValue
ZRTargetLowering : : LowerBR CC( SDValue Op, SelectionDAG &DAG) const {

SDValue Chain = Op. getOperand (0) ;
ISD : : CondCode CC= cast<CondCodeSDNode>(Op. getOperand (1) )−>get ( ) ;
SDValue LHS = Op. getOperand (2) ; SDValue RHS = Op. getOperand (3) ;
SDValue Dest = Op. getOperand (4 ) ;
SDLoc DL(Op) ;

i f (LHS. getValueType ( ) . i s F l o a t i n g P o i n t ( ) && RHS. getValueType ( )
. i s F l o a t i n g P o i n t ( ) ) {

LPCC : : CondCode ZRCC = FPCondCCodeToFCC(CC) ;
SDValue TargetCC = DAG. getConstant (ZRCC, DL, MVT: : i 32 ) ;
SDValue Flag =
DAG. getNode (ZRISD : : FSET FLAG,DL,MVT: : Glue , LHS, RHS, TargetCC ) ;

re turn DAG. getNode (ZRISD : : FBR CC, DL, LHS. getValueType ( ) ,
Chain , Dest , Flag ) ; }

}

The figure 4.3 shows the legalized SelectionDAG for the addFPandINT func-
tion. The sint to fp SDNode was transformed to a custom ZRISD::MOVE
SDNode and a custom ZRISD::CONVERTI2F SDNode which closely corre-
sponds to DLX instructions used to convert integer values to floating-point
values. The constant pool value 5.00 was transformed to a ZRISD::HI SDNode
and a ZRISD::LO SDNode to retrieve the high 16 bits and the low 16 bits of
the address and a load SDNode to load the constant.
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Figure 4.3: SelectionDAG of the addFPandINT function after legalization
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4.11 SelectionDAG Instruction Selection

The instruction selection stage takes a legalized SelectionDAG as an input,
pattern matches the instructions supported by the target and produces a new
SelectionDAG of target instructions. A legalized SelectionDAG can also be
matched by pseudo instructions which are transformed into target instructions
in ensuing stages because they require some information not known in this
stage. Most of the selection process is handled using the TableGen instruction
selector which reads target instruction patterns in the ZRInstInfo.td TableGen
file and automatically builds parts of the pattern matching code for the DLX
target. The following code shows some examples of such patterns used in the
DLX target (the pattern is specified in square brackets)[34].

de f ADD : FR< . . . , [ ( s e t i 32 : $dst , ( add i32 : $src1 , i 32 : $ s r c2 ) ) ] > ;
de f ADDUI: FI < . . . , [ ( s e t i 32 : $dst , ( add i32 : $src1 , immZExt16 : $c ) ) ] > ;
de f ADDF : FR< . . . , [ ( s e t f32 : $dst , ( fadd f32 : $src1 , f32 : $ s r c2 ) ) ] > ;
de f LWri : FI < . . . , [ ( s e t i 32 : $dst , ( load ADDRri : $addr ) ) ]> { . . . }
de f LFri : FI < . . . , [ ( s e t f32 : $dst , ( load ADDRri : $addr ) ) ]> { . . . }
de f CVTF2I : FR< . . . , [ ( s e t f32 : $rd , ( ConvertF2I f32 : $ r s ) ) ] > ;
de f MOVI2FP : FR< . . . , [ ( s e t f32 : $rd , (Move i32 : $ r s ) ) ] > ;

As shown above, the ADD instruction pattern matches a simple add SDNode
with two i32 operands, the ADDUI instruction pattern matches one i32 opera-
nd and a 16-bit unsigned immediate operand. The LWri and LFri instruction
patterns match loads from memory with corresponding types. The CVTF2I
instruction pattern matches a custom ZRISD::CONVERTF2I SDNode and
the MOVI2FP instruction pattern matches a ZRISD::MOVE SDNode. As
mentioned earlier, a legalized SelectionDAG is not only matched by real target
instructions but can also be matched by pseudo instructions. The following
code shows some pseudo instructions that are used in the DLX target.

l e t i s C a l l =1, Uses=[R30 ] , Defs =[R31 ] in {
de f CALLI : Pseudo<(outs ) , ( i n s Cal lTarget : $addr ) , ”” , [ ] > ;
de f CALLR: Pseudo<(outs ) , ( i n s GPRegs : $Rs1 ) , ”” , [ ( Ca l l i 32 : $Rs1 ) ] > ;
}

l e t i sReturn =1, i sTerminator =1, i s B a r r i e r =1, Uses=[R2 ] in {
de f RET: Pseudo<(outs ) , ( i n s ) , ” j r r2 ” , [ ( RetFlag ) ] > ;
}

l e t Defs = [ R30 ] , Uses = [ R30 ] in {
de f ADJDYNALLOC: Pseudo<(outs GPRegs : $dst ) , ( i n s GPRegs : $ s r c ) , ”” ,

[ ( s e t GPRegs : $dst , ( ZRAdjDynAlloc GPRegs : $ s r c ) ) ] > ;
}

The first two pseudo instructions match function calls, the RET pseudo in-
struction matches a custom ZRISD::RetFlag SDNode and the ADJDYNAL-
LOC pseudo instruction matches an another custom ZRISD::ADJDYNALLOC
SDNode. The DLX target also uses ADJCALLSTACKDOWN and ADJ-
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CALLSTACUP pseudo instructions to match the function beginning and the
function end and ZRISD::XSELECTX CC SDNodes are also matched by
pseudo instructions with the same names as those SDNodes have.

The previous code also shows that some additional properties must be set
to instructions to tell the LLVM system how to handle them. For example,
the ”isCall” property tells the LLVM system that the instruction is a call and
cannot simply be removed during optimizations. The ”Uses” property is a list
of non-operand registers that the instruction uses and the ”Defs” property is a
list of non-operand registers which are modified by the instruction. There is a
whole bunch of these prosperities than can (or must) be set to an instruction
like whether the instruction stores to memory or loads from memory, if it has
side effects if it is a branch or a terminator instruction and etc[37].

In addition to instructions patterns, targets can specify arbitrary patterns
to the TableGen instruction selector that map to one or more instructions
using the Pat class. The following code shows the Pats defined in the DLX
target[34].

de f : Pat<( i 32 imm: $imm) , (ORI ( SETHIi ( HI16 imm: $imm) ) ,
(LO16 imm: $imm) ) >;

de f : Pat<( e x t l o a d i 8 ADDRri : $ s r c ) , ( i 32 ( LBri ADDRri : $ s r c ) ) >;
de f : Pat<( e x t l o a d i 1 6 ADDRri : $ s r c ) , ( i 32 ( LHri ADDRri : $ s r c ) ) >;

de f : Pat<(Ca l l t g l oba l addr : $dst ) , (CALLI tg l oba l addr : $dst ) >;
de f : Pat<(Ca l l texterna l sym : $dst ) , (CALLI texterna lsym : $dst ) >;

de f : Pat<(HI t con s tpoo l : $dst ) , ( SETHIi t con s tpoo l : $dst ) >;
de f : Pat<(LO tcons tpoo l : $dst ) , (ORI ( i 32 R0) , t con s tpoo l : $dst ) >;

de f : Pat<(HI tg l oba l addr : $dst ) , ( SETHIi tg l oba l addr : $dst ) >;
de f : Pat<(LO tg loba laddr : $dst ) , (ORI ( i 32 R0) , t g l oba l addr : $dst ) >;

The first Pat class maps an arbitrary i32 value to an ORI instruction (or a 16-
bit immediate) and a SETHIi instruction (set a 16-bit immediate, where the
immediate is shifted to the left 16 bits). The second Pat maps extload SDNode
(extend load where the top bits are undefined) with signed load instructions.
The rest of Pat classes handle different types of symbols. Those symbols
that are represented as ZRISD:HI and ZRISD:LO SDNodes from the previous
stage, get translated to a SETHi and an ORI instruction to load the 32-bit
symbol address to a register. The last two Pat classes are also defined for
texternalsym, tblockaddress and tjumptable symbols.

While the TableGen instruction selector has many strengths, the DLX tar-
get still needs some custom code to properly match all legalized SDNodes with
target instructions. For example, the TableGen instruction selector cannot
handle ComplexPatterns that support complex addressing modes or handle
matching stack frame values[34]. The selection of a ComplexPattern ADDRri
is done in the selectAddrRi() method in the ZRISelDAGtoDAG.cpp file and
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it matches the memory address with a base register and an appropriate offset
to get the value from memory. Stack frame values are matched with a new
TargetFrameIndex object in the selectFrameIndex() method in the same file.

The figure 4.4 shows the SelectionDAG of target instructions for the addF-
PandINT function after the instruction selection stage. As can be seen, every
legalized SDNode was matched by some target instruction except for the Ret-
Flag SDNode which was matched by the RET pseudo instruction. The address
of the constant value 5.00 is loaded using the SETHi instruction and the ORI
instruction. Loads turned into LWri and LFri instructions based on the type
of the value they load.
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Figure 4.4: SelectionDAG of the addFPandINT function after instruction se-
lection

4.12 SelectionDAG Scheduling

The scheduling stage takes a SelectionDAG of target instructions and assigns
them a linear order. The LLVM system takes care of the whole process of
assigning an order to instructions based on the information contained in the
SelectionDAG. The order of instructions will not be optimal and can further
be optimized which is described in the following chapter 5. The order of
instructions for the addFPandINT function can be seen on the figure 4.5.
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Figure 4.5: SelectionDAG of the addFPandINT function after scheduling

4.13 Build MachineInstr

In this stage, a scheduled SelectionDAG is transformed into a machine specific
representation formed out of MachineFunctions, MachineBasicBlocks, and
MachineInstrs. This representation is an extremely abstract way of repre-
senting machine instructions, in particular, it only keeps track of an opcode
number, a set of operands and certain flags to describe the instruction. The
opcode number is a simple unsigned integer that only has meaning to a specific
target. MachineInstrs are initially created in an SSA form and are maintained
in an SSA form until register allocation happens. For the most part, this is
trivially simple since the LLVM IR is already in an SSA form and LLVM PHI
nodes become machine code PHI nodes, and virtual registers are only allowed
to have a single definition. This stage is mostly hardcoded in the LLVM sys-
tem and relies on the information generated from the ZRInstInfo.td TableGen
file to generate the MachineInstrs but there are still certain things that need
to be handled specifically.

XSELECTX CC pseudo instructions are lowered into target instructions in
this stage. Those pseudo instructions are marked with a ”usesCustomInserter”
flag as shown below to tell the LLVM system that those instructions need spe-
cial support when converting to MachineInstrs. The specified MachineInstrs
for those instructions are created anyway but they are not inserted into any
basic blocks. This causes the EmitInstrWithCustomInserter() method in the
ZRISelLowering.cpp file to get called to handle the conversion, generally this
method can expand the MachineInstrs into a sequence of instructions, poten-
tially creating new basic blocks and control flow[38].
de f FSELECTF CC : Pseudo <(outs FPRegs : $dst ) ,

( i n s FPRegs : $src1 , FPRegs : $ s r c2 ) , ”” ,
[ ( s e t f32 : $dst , ( ZRFSelectFCC f32 : $src1 , f32 : $ s r c2 ) ) ]>
{ l e t usesCustomInserter = 1 ; }
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Those XSELECTX CC pseudo instructions represent choosing a value based
on a condition. Because the DLX target does not have a select instruction they
are transformed to target instructions using the following triangle control-flow
pattern.

ThisMBB
| \
| IfFalseMBB
| /
NextMBB

This triangle control-flow pattern causes the control flow to change based
on the condition from the XSELECTX CC instruction by inserting a branch
instruction into the ThisMMB block. The value is then chosen either in the
ThisMBB basic block or in the IfFalseMBB basic block. Target PHI node with
ThisMBB and IfFalseMBB as predecessors is inserted into the NextMBB basic
block to keep the code in an SSA form.

The following code shows the list of MachineInstrs for the addFPandINT
function. The COPY instruction was generated by the LLVM system and
is handled in the following stage. The last instruction is the RET pseudo
instruction. Besides instructions, it also shows frame objects (objects stored
in the function stack frame) which were created in the instruction selection
stage and constants used in the function.
Frame Objects :

f i #−2: s i z e =4, a l i g n =4, f i xed , at l o c a t i o n [ SP+4]
f i #−1: s i z e =4, a l i g n =4, f i xed , at l o c a t i o n [ SP ]

Constant Pool :
cp#0: 5 .000000 e+00, a l i g n=4

bb . 0 ( %ir−block . 2 ) :
%0: f p r e g s = LFri %fixed−s tack . 1 , 0 : : ( load 4 from %fixed−s tack . 1 )
%1: gpregs = LWri %fixed−s tack . 0 , 0 : : ( load 4 from %fixed−s tack . 0 )
%2: f p r e g s = MOVI2FP k i l l e d %1: gpregs
%3: f p r e g s = CVTI2F k i l l e d %2: f p r e g s
%4: f p r e g s = ADDF k i l l e d %3: fpregs , k i l l e d %0: f p r e g s
%5: gpregs = ORI $r0 , target−f l a g s (<unknown>) %const . 0
%6: gpregs = SETHIi target−f l a g s (<unknown>) %const . 0
%7: gpregs = ADD k i l l e d %6: gpregs , k i l l e d %5: gpregs
%8: f p r e g s = LFri k i l l e d %7: gpregs , 0 : : ( load 4 from constant−pool )
%9: f p r e g s = ADDF k i l l e d %4: fpregs , k i l l e d %8: f p r e g s
$ f0 = COPY %9: f p r e g s
Pseudo i m p l i c i t $r2 , i m p l i c i t $ f0

4.14 Register Allocation

This stages takes a list of MachineInstrs and assigns physical registers to
virtual registers or spill registers to memory if all physical registers are occu-
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pied[39]. Firstly, the LLVM system must be told how to copy registers. This
is done using the copyPhysReg() method in the ZRInstrInfo.cpp file which
tells the LLVM system what instructions should be used to copy registers.
The ORI instruction is used to copy integer registers and FMOV, DMOV
instructions are used to copy floating-point registers.

There are two ways to map virtual registers to physical registers (or to
memory slots) in LLVM. The first way is called direct mapping and relies
on the VirtRegMap class in order to insert loads and stores sending and get-
ting values to and from memory. The second way is called indirect mapping
and it is based on the use of methods of the TargetRegisterClass class and
it is what the DLX target uses. The DLX target implements several meth-
ods to help the LLVM system to allocate registers such as storeRegToStack-
Slot(), loadRegFromStackSlot(), expandPostRAPseudo(), isLoadFromStack-
Slot(), isStoreToStackSlot, getReservedRegs(), eliminateFrameIndex(), requ-
iresRegisterScavenging() and trackLivenessAfterRegAlloc(). These methods
specify which registers can be allocated, which are reserved to special use
(R0, R2 - return value, R29 - frame pointer, R30 - stack pointer, R31 - JAL
instructions) and what to do when registers need to be spilled to memory.
The LLVM system then assigns the actual registers using one of the register
allocators described in the 5.11 section. The order of register allocation is
defined in the ZRRegisterInfo.td TableGen file.

The following code shows the list of MachineInstrs for the addFPandINT
function after the register allocation stage. It shows that all ten virtual reg-
isters were assigned into seven physical registers. The LLVM system tries
to map those efficiently as shown on the mapping of the return register F0.
It already loads the float argument to that register and then performs both
ADDF instructions inside that register to save registers.

Frame Objects :
f i #−2: s i z e =4, a l i g n =4, f i xed , at l o c a t i o n [ SP+4]
f i #−1: s i z e =4, a l i g n =4, f i xed , at l o c a t i o n [ SP ]

Constant Pool :
cp#0: 5 .000000 e+00, a l i g n=4

bb . 0 ( %ir−block . 2 ) :
$ f0 = LFri %fixed−s tack . 1 , 0 : : ( load 4 from %fixed−s tack . 1 )
$r1 = LWri %fixed−s tack . 0 , 0 : : ( load 4 from %fixed−s tack . 0 )
$r3 = ORI $r0 , target−f l a g s (<unknown>) %const . 0
$r4 = SETHIi target−f l a g s (<unknown>) %const . 0
$r3 = ADD k i l l e d $r4 , k i l l e d $r3
$ f1 = LFri k i l l e d $r3 , 0 : : ( load 4 from constant−pool )
$ f2 = MOVI2FP k i l l e d $r1
$ f2 = CVTI2F k i l l e d $ f2
$ f0 = ADDF k i l l e d $f2 , k i l l e d $ f0
$ f0 = ADDF k i l l e d $f0 , k i l l e d $ f1
Pseudo i m p l i c i t $r2 , i m p l i c i t $ f0
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4.15 Prologue/Epilog Code Insertion

This stage inserts the prologue and the epilogue code to all functions and
happens in the ZRFrameLowering.cpp file. It begins with the calculation of
the stack frame size which is done by the determineFrameLayout() method.
Before the actual Prologue/Epilogue insertion, the DLX target takes care
of some pseudo instructions, namely ADJDYNALLOC, ADJCALLSTACK-
DOWN, and ADJCALLSTACKUP. The ADJDYNALLOC pseudo instruction
is replaced by the ADDI instruction with maximum calculated call stack frame
size in the replaceAdjDynAllocPseudo() method. The ADJCALLSTACKUP
pseudo instruction and the ADJCALLSTACKDOWN pseudo instruction are
simply removed because their usage was to indicate a place for other target
code generation process. The prologue code insertion is done by the emitPro-
logue() method and consists of the following instructions:

BuildMI (MBB, MBBI, DL, LII . get (ZR : :NOP) ) ;
BuildMI (MBB, MBBI, DL, LII . get (ZR : :NOP) ) ;

BuildMI (MBB, MBBI, DL, LII . get (ZR : : STri ) )
. addReg (ZR : : R30) . addImm(0) . addReg (ZR : : R31) ;

BuildMI (MBB, MBBI, DL, LII . get (ZR : : STri ) )
. addReg (ZR : : R30) . addImm(−4) . addReg (ZR : : R29) ;

BuildMI (MBB, MBBI, DL, LII . get (ZR : : SUBI) , ZR : : R30)
. addReg (ZR : : R30) . addImm(4) ;

BuildMI (MBB, MBBI, DL, LII . get (ZR : : ADDI) , ZR : : R29)
. addReg (ZR : : R30) . addImm(8) ;

i f ( StackS ize != 0) {
BuildMI (MBB, MBBI, DL, LII . get (ZR : : SUBI) , ZR : : R30)

. addReg (ZR : : R30) . addImm( StackS ize )
}

The first two NOP instructions are used to stall the pipeline until the JAL
(JALR) writes the return address into the register R31. Next instructions
sequentially push a return value on the stack, push an old frame pointer on
the stack, adjust a stack pointer, generate a new frame pointer and allocate a
new space on the stack if needed. The epilogue code insertion is done by the
emitEpilogue() method and consists of the following instructions.

BuildMI (MBB, MBBI, DL, LII . get (ZR : : ADDI) , ZR : : R30)
. addReg (ZR : : R29) . addImm(0) ;

BuildMI (MBB, MBBI, DL, LII . get (ZR : : LWri) , ZR : : R2)
. addReg (ZR : : R29) . addImm(−4) ;

BuildMI (MBB, MBBI, DL, LII . get (ZR : : LWri) , ZR : : R29)
. addReg (ZR : : R29) . addImm(−8) ;
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The epilogue firstly restores the stack pointer using the callee’s frame pointer
value, then loads the return address from the stack frame to the register R2
and at the end, it restores the old frame pointer.

The next code shows the addFPandINT function with inserted function
prologue (flagged as frame-setup) and function epilogue (flagged as frame-
destroy).

Frame Objects :
f i #−4: s i z e =4, a l i g n =4, f i xed , at l o c a t i o n [ SP−8]
f i #−3: s i z e =4, a l i g n =4, f i xed , at l o c a t i o n [ SP−4]
f i #−2: s i z e =4, a l i g n =4, f i xed , at l o c a t i o n [ SP+4]
f i #−1: s i z e =4, a l i g n =4, f i xed , at l o c a t i o n [ SP ]

Constant Pool :
cp#0: 5 .000000 e+00, a l i g n=4

bb . 0 ( %ir−block . 2 ) :
frame−setup NOP
frame−setup NOP
frame−setup STri $r30 , 0 , $r31
frame−setup STri $r30 , −4, $r29
$r30 = frame−setup SUBI $r30 , 4
$r29 = frame−setup ADDI $r30 , 8
$r30 = frame−setup SUBI $r30 , 8
$ f0 = LFri $r29 , 0 : : ( load 4 from %fixed−s tack . 3 )
$r1 = LWri $r29 , 4 : : ( load 4 from %fixed−s tack . 2 )
$r3 = ORI $r0 , target−f l a g s (<unknown>) %const . 0
$r4 = SETHIi target−f l a g s (<unknown>) %const . 0
$r3 = ADD k i l l e d $r4 , k i l l e d $r3
$ f1 = LFri k i l l e d $r3 , 0 : : ( load 4 from constant−pool )
$ f2 = MOVI2FP k i l l e d $r1
$ f2 = CVTI2F k i l l e d $ f2
$ f0 = ADDF k i l l e d $f2 , k i l l e d $ f0
$ f0 = ADDF k i l l e d $f0 , k i l l e d $ f1
$r30 = frame−dest roy ADDI $r29 , 0
$r2 = frame−dest roy LWri $r29 , −4
$r29 = frame−dest roy LWri $r29 , −8
Pseudo i m p l i c i t $r2 , i m p l i c i t $ f0

4.16 Build MCInst

The MC layer is used to represent code at the raw machine code level, de-
void of any high-level information like constant pools or global variables. At
this level, LLVM handles things like label names, machine instructions, and
sections. The code in this layer is used for writing assembly files or object
files. This layer consists of: MCSymbols which represents labels, MCInsts
which represents instructions and MCSections that represents sections such
as data or text sections. DLX target declares a custom .data section. The

68



4.16. Build MCInst

other section .text is handled automatically by the LLVM system. The .data
section is defined in ZRTargetObjectFile.cpp file as follows.

DataSect ion = getContext ( ) . getELFSection (
” . data ” , ELF : : SHT PROGBITS, ELF : : SHF WRITE | ELF : : SHF ALLOC

)

The code in this file also tells the LLVM system that all sections that it
produces for the default ELF format (.bss, .rodata, etc.)[40] should be placed
in the .data section as DLX does not have those sections.

Another important part of the MC layer is the MCStreamer API which
is best thought of as an assembler API. It is an abstract API which is im-
plemented in different ways (e.g. to output a .s file, output a .o file, etc).
There are two major implementations: one for writing out a .s file (MCAsm-
Streamer), and one for writing out a .o file (MCObjectStreamer). The DLX
target implements both of these streamers even thought the ZRMCObject-
Streamer is never used and the ZRMCAsmStreamer relies mostly on the de-
fault implementation of the LLVM system. DLX MCStreamers are defined in
the ZRTargetStreamer.cpp file in the MCTargetDesc folder. This folder con-
tains files with properties of the target assembly code: the ZRMCExpr.cpp
file handles assembly expressions such as high and low parts of the addresses
of labels; the ZRMCBaseInfo.cpp file defines certain flags used by the DLX
target and the ZRMCTargetDesc.cpp file contains registration of necessary
target description components for the DLX target as shown below.

extern ”C” void LLVMInitializeZRTargetMC ( ) {
// Reg i s t e r the MC asm i n f o .
RegisterMCAsmInfo<ZRMCAsmInfo> X( getTheZRTarget ( ) )

// Reg i s t e r the MC i n s t r u c t i o n i n f o .
TargetReg i s t ry : : Reg i s terMCInstr In fo ( getTheZRTarget ( ) , . . . )

// Reg i s t e r the MC r e g i s t e r i n f o .
TargetReg i s t ry : : RegisterMCRegInfo ( getTheZRTarget ( ) , . . . )

// Reg i s t e r the o b j e c t t a r g e t streamer .
TargetReg i s t ry : : Reg is terObjectTargetStreamer ( getTheZRTarget ( ) , . . . )

// Reg i s t e r the asm streamer .
TargetReg i s t ry : : RegisterAsmTargetStreamer ( getTheZRTarget ( ) , . . . )

// Reg i s t e r the MC subtarge t i n f o .
TargetReg i s t ry : : RegisterMCSubtargetInfo ( getTheZRTarget ( ) , . . . )

// Reg i s t e r the MCInstPrinter .
TargetReg i s t ry : : Reg isterMCInstPr inter ( getTheZRTarget ( ) , . . . )

The last ZRMCAsmInfo.cpp file contains assembler specific information about
the DLX target. The DLX target uses the following assembler settings.

69



4. LLVM Backend for DLX

Pr iva t eGloba lPre f i x = ”” ;
Pr iva t eLabe lPre f i x = ”” ;
L inke rPr iva t eGloba lPre f i x = ”” ;
ExceptionsType = ExceptionHandling : : None ;
Data32b i t sD i r e c t i v e = ”\ t . word\ t ” ;
HasMachoZeroFi l lDirect ive = f a l s e ;
Ze roD i r e c t i v e = ”\ t . space \ t ” ;
Has IdentDi rec t ive = f a l s e ;
UseIntegratedAssembler = true ;
HasDotTypeDotSizeDirective = f a l s e ;
HasSingleParameterDotFi le = f a l s e ;
CommentString = ” ; ” ;
G loba lD i r e c t i v e = ”\ t . g l o b a l \ t ” ;
SupportsDebugInformation = f a l s e ;
UsesNonexecutableStackSect ion = f a l s e ;

bool ZRMCAsmInfo : : shou ldOmitSect ionDirect ive ( St r ingRef
SectionName ) const {
re turn true ;

}

As shown above, the DLX target does not use any prefixes for any type of
labels, does not use any labels for debugging, has no .ident and .zerofill direc-
tive. It sets the 32-bit directive to .word and the global directive to .global.
It also overrides the method shouldOmitSectionDirective() to omit .section
directive before all sections.

The actual lowering from MachineInstrs to MCInsts is then done in the
ZRMCInstLower.cpp file using the Lower() method. This method takes Ma-
chineInstr instructions one by one and creates for them a new MCInst instruc-
tion. The conversion is pretty straightforward as only the Opcode is copied
and operands are lowered using the LowerOperand() method which either
creates a register, an immediate or a symbol.

The MC layer is highly coupled with the target assembly (target object file)
and therefore is highly coupled with the next code emission stage. Basically,
the MC layer’s main purpose is to be an underlying layer for emitting either
a .s file (.o file).

4.17 Code Emission

The last stage is responsible for writing the target assembly code (.s file).
There are two main classes which are responsible for emitting the DLX as-
sembly code: the ZRAsmPrinter class and the ZRInstPrinter class. Firstly, the
ZRAsmPrinter utilizes the underlying MC layer and invokes the EmitInstruc-
tion() method which causes the ZRInstPrinter class to print the instruction.
This method also transforms the CALLI (CALLR) pseudo instruction into
two instructions: ”SUBI R30, R30, 4” instruction to make room for a return
address and ”JAL (JALR) CallTarget” instruction to perform the call.
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The ZRInstPrinter class is responsible for the actual .s file being emit-
ted. It uses the TableGen ZRGenAsmWriter.inc file which contains printing
methods generated from the instruction print patterns as shown below.

de f ADD : FR < . . . , ”add $dst , $src1 , $ s r c2 ” , . . . >;
de f LFri : FI < . . . , ” l f $dst , $addr ” , . . . > { . . . }
de f CVTF2I : FR< . . . , ” c v t f 2 i $rd , $ r s ” , . . . >;
de f MOVI2FP : FR< . . . , ” movi2fp $rd , $ r s ” , . . . >;

TableGen generates two methods based on these instruction print patterns:
getRegisterName() method which returns the assembler name for the speci-
fied register and the printInstruction() method which prints the instruction
based on the instruction pattern. The DLX target still needs to imple-
ment routines to print custom operands such as: printZImm16Operand(),
printSImm16Operand(), printCCOperand() and printMemRIOperand(). The
following code shows the final assembly code for the addFPandINT function
which can be run on a DLX simulator. The floating-point constant is labeled
as CPI0 0 and is stored using the .word directive which is more general than
using the .float directive. The ”CPI0 0 » 16” is used to get the high 16 bits
of CPI0 0 and the ”CPI0 0 & 0x0000ffff” is used to get the low 16 bits.

. t ex t

. data

. a l i g n 2
CPI0 0 :

. word 1084227584

. t ex t

. g l o b a l addFPandINT
addFPandINT :

nop
nop
sw 0( r30 ) , r31
sw −4( r30 ) , r29
sub i r30 , r30 , 0x4
addi r29 , r30 , 0x8
sub i r30 , r30 , 0x8
l f f0 , 0( r29 )
lw r3 , 4( r29 )
o r i r4 , r0 , ( CPI0 0 & 0 x 0 0 0 0 f f f f )
l h i r5 , ( CPI0 0 >> 16)
add r4 , r5 , r4
l f f1 , 0( r4 )
movi2fp f2 , r3
c v t i 2 f f2 , f 2
addf f0 , f2 , f 0
addf f0 , f0 , f 1
addi r30 , r29 , 0x0
lw r2 , −4( r29 )
lw r29 , −8( r29 )
j r r2
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4.18 Target Registration

In order to use the new DLX backend in LLVM tools like llc or clang, it needs
to be registered, so LLVM tools can look up and use the target at runtime.
Firstly, the DLX source codes must be inserted in the lib/Target/ folder where
LLVM expects to find the DLX backend. Secondly, all targets must declare a
global Target object which is used to represent the target during registration.
This is done using the RegisterTargetMachine template as shown below.

extern ”C” void LLVMInitial izeZRTarget ( ) {
RegisterTargetMachine<ZRTargetMachine>r e g i s t e r e d t a r g e t (

getTheZRTarget ( ) ) ;
}

Additionally, these following files must be edited to fully register a new back-
end:

• CMakeLists.txt - The DLX target must be added to the list of com-
piled targets.

• llvm/lib/Target/LLVMBuild.txt - The ZR folder must be added to
the list of folders that are visited when LLVM looks for source code files.

• llvm/include/llvm/ADT/Triple.h - A new target triple must be
created in ArchType enum (a triple is a string that describes the target).

• llvm/lib/Support/Triple.cpp - The DLX target must add function-
ality to the following methods:

– getArchTypeName() - Return string ”zr” for the Triple::ZR.
– getArchTypePrefix() - Also return string ”zr” for the Triple::ZR.
– getArchTypeForLLVMName() - Return Triple::ZR for given string

”zr”.
– parseArch() - Does exactly the same as the previous method.
– getDefaultFormat() - Return a format of an object file. The DLX

target currently returns an ELF format because there is no support
for generating object files in the DLX target and some format must
be specified.

– getArchPointerBitWidth() - Return integer 32.
– get32BitArchVariant() - Say that the DLX target is already 32-bit.
– get64BitArchVariant() - Say there is no 64-bit variant of the DLX

target.
– getLittleEndianArchVariant() - Say there is no little-endian variant

of the DLX target.
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• llvm/include/llvm/BinaryFormat/ELF.h - A new value in the enum
describing machine architectures must be created. This value needs to
have a unique number. The DLX target currently uses a 250 integer.
Because the DLX target will not be part of an official LLVM distribu-
tion, this number might need to be changed if other backend starts to
use it[41].

This list only covers a target that generates .s files. If a new target needs to
support generating object files, there are several other files that need to be
modified.

4.18.1 Clang registration

The DLX target can also be registered into Clang. Clang is a very powerful
tool which can adjust the output LLVM IR based on some information about
the target. To register a DLX target two new files were created, namely the
ZR.h file and the ZR.cpp file in the clang/lib/Basic/Targets folder. Those files
expose information about the target such as CPUKind or DataLayout (this
DataLayout must be kept in sync with the one used in the DLX backend).
There are also some other files which need to be modified (most of these files
just require copy and paste from some existing target as most of the code is
just letting clang know that there is a new target):

• clang/lib/Basic/CMakeLists.txt - The DLX target must be added
to the list of compiled targets.

• clang/lib/CodeGen/TargetInfo.cpp - A new class describing the
ABI implementation of DLX target must be inserted. This class inherits
DefaultABIInfo class and relies on the default implementation.

• clang/lib/Driver/Driver.cpp - Allows DLX target to be used in the
Clang Driver which is a tool encapsulate logic for constructing compila-
tion processes from a set of gcc-driver-like command line arguments[42].

• clang/lib/Driver/ToolChains/Clang{.cpp, .h} - Adds new argu-
ments for the Clang Driver. The DLX target does not add any. This
also needs a new class defined in the in the ZR.h file in the clang/lib/-
Driver/ToolChains folder.

• clang/lib/Driver/ToolChains/CommonArgs.cpp - Pass the Tar-
getCPU value to the Clang Driver.

4.19 Notes

This section describes four modifications that were made in the source codes
of LLVM. This was necessary because the DLX architecture is very simple
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but LLVM expects something little more advanced that contains common fea-
tures. According to the LLVM review[43], LLVM uses a hardcoded .p2align
directive to indicate the alignment in sections. This had to be changed in
the lib/MC/MCAsmStreamer.cpp file because DLX uses a simple .align direc-
tive. The second modification was to tell LLVM not to print .comm (.lcomm)
directive (directive used for common symbols) which was done in the same
file by commenting out the printing of this directive. The third modification,
also in the same file, was made because LLVM assumes that every target has
directives for 8-bit, 16-bit, 32-bit and 64-bit values but DLX only has an 8-bit
directive .byte and a 32-bit directive .world. Those directives can be renamed
but not removed. Luckily it is quite easy to fix it as only two lines in a simple
switch need to be commented out as the code below shows.

const char ∗D i r e c t i v e = n u l l p t r ;
switch ( S i z e ) {

d e f a u l t : break ;
case 1 : D i r e c t i v e = MAI−>g e t D a t a 8 b i t s D i r e c t i v e ( ) ; break ;
// case 2 : D i r e c t i v e = MAI−>ge tDa ta16b i t sD i r e c t i v e ( ) ; break ;
case 4 : D i r e c t i v e = MAI−>ge tDa ta32b i t sD i r e c t i v e ( ) ; break ;
// case 8 : D i r e c t i v e = MAI−>ge tDa ta64b i t sD i r e c t i v e ( ) ; break ;

}
i f ( ! D i r e c t i v e ) {

// LLVM comment
/∗ We couldn ’ t handle the reques ted i n t e g e r s i z e so we f a l l b a c k
by breaking the reques t down in to s eve ra l , smal l e r , i n t e g e r s .
S ince s i z e s g r e a t e r or equal to ” S i z e ” are inva l i d , we use
the g r e a t e s t power o f 2 that i s l e s s than ” S i z e ” as our l a r g e s t
p i e c e o f g r a n u l a r i t y . ∗/ }

This will allow splitting up 16-bit directives into two 8-bit directives and
anything above 32-bit can be split into multiple 32-bit directives.

The last fix was made in the clang frontend because it uses fancy names
to name values. It names everything with its name and a prefix and connects
them with a dot which results in names like ”main.array”. The LLVM target
does not have a simple way of changing those name and they end up in the
final assembly code. For testing purposes, the dot was removed because the
WinDLX simulator does not handle dots in label names. The following code
shows the change made in the tools/clang/lib/CodeGen/CGDecl.cpp file.

i f ( const auto ∗FD = dyn cast<FunctionDecl >(DC) )
ContextName = CGM. getMangledName (FD) ;

e l s e i f ( const auto ∗BD = dyn cast<BlockDecl >(DC) )
ContextName = CGM. getBlockMangledName ( GlobalDecl ( ) , BD) ;

e l s e i f ( const auto ∗OMD = dyn cast<ObjCMethodDecl>(DC) )
ContextName = OMD−>g e t S e l e c t o r ( ) . getAsStr ing ( ) ;<

ContextName += ”” + D. getNameAsString ( ) ; // ”” in s t ead o f ” . ”
re turn ContextName ;
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Optimizations

The term optimizations in compilers refer to the attempts that a compiler
makes to produce a code that is more efficient than the obvious code. Opti-
mization is thus a misnomer since there is no way that the code produced by
a compiler can be guaranteed to be as fast or faster than any other code that
performs the same task[18].

Compiler optimizations must meet the following design objectives. The
most important objective in writing a compiler optimization is that it is cor-
rect because if the optimized code is not correct, it does not matter how fast
the code is. The second objective is that the compiler optimization must
be effective in improving the performance of many input programs. Nor-
mally, performance means the speed of the program execution but sometimes
it might the size of the generated code or any other measurable criteria. Be-
sides performance, usability aspects such as error reporting and debugging
are also important and the compilation time also must be kept reasonable[18].
Compiler optimizations can be divided into the following categories[44]:

• High-level optimizations - Operate at a level close to that of source
code and they are often source language dependent.

• Intermediate-level optimizations - Majority of compiler optimiza-
tions falls here. They are typically language independent and performed
on a intermediate code representation.

• Low-level optimizations - Usually specific to each architecture and
performed at a code close to a target code.

• Link-time optimizations - Type of optimizations performed by the
compiler (linker) at the link time[45].

Optimizations can also be divided by the scope of a optimization: local - con-
cerning only one basic block, global - across basic blocks in a function, based
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on an analysis of a whole function and inter-procedural - across functions,
based on an analysis of a whole module[46].

5.1 Analysis of LLVM Optimizations

The LLVM system provides a whole selection of optimizations. Due to its
modularity, it performs several optimizations on every code representation
from the source code to the target code. LLVM optimizations can be divided
into these four categories[47]:

• LLVM frontend optimizations - Various frontends can perform lan-
guage dependent optimizations. For example, Clang performs Return
value optimization (RVO), Named RVO (NRVO) or Copy-Elision opti-
mization[48].

• LLVM IR optimizations - These optimizations perform optimizations
on the LLVM IR and they are both source language and target code in-
dependent[29]. They are closely described in the following 5.1.1 section.

• LLVM backend optimizations - An LLVM backend performs sev-
eral optimizations close to a target code. Those optimizations can be
divided into two groups. The first group performs optimizations on Se-
lectionDAGs called DAG Combiner optimizations and they are described
in the 5.1.2 section. The second group performs optimizations on lists
of MachineInsrts and contains optimizations such as Optimize machine
instruction PHIs, Remove dead machine instructions, Machine Common
Subexpression Elimination or Machine Copy Propagation Pass[34].

• Target specific optimizations - An LLVM backend can perform target-
specific optimizations.

5.1.1 LLVM IR Optimizations

This category of optimizations is performed by the LLVM Optimizer which
reads the LLVM IR in, chews on it a bit, then emits another LLVM IR, which
hopefully will execute faster. In LLVM, the optimizer is organized as a pipeline
of distinct optimization passes each of which is run on the input and has a
chance to do something with the LLVM IR[49]. Those passes can either collect
some information for other passes or transform the program. LLVM optimiza-
tion passes can be divided into three categories: analysis passes, transform
passes and utility passes. Analysis passes compute information that other
passes can use or for debugging or program visualization purposes. This cat-
egory contains passes like Basic CallGraph Construction (-basiccg) pass or
Dependence Analysis (-da) pass. Transform passes can use (or invalidate) the
analysis passes. Transform passes all mutate the program in some way and
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contain passes like Aggressive Dead Code Elimination (-adce) pass, Combine
redundant instructions (-instcombine) pass or Unroll and Jam loops (-loop-
unroll-and-jam) pass. Utility passes provide some utility but don’t otherwise
fit categorization. For example passes to verify modules (-verify) or assign
names to anonymous instructions (-instnamer) are neither analysis nor trans-
form passes[29]. A lot of these passes are also run multiple times. Those
LLVM IR optimizations are used by the opt tool which uses the following op-
tions to determine which passes it should run (it is also possible to run single
passes by this tool)[50][51]:

• O0 level - This level means ”no optimization” and it compiles the fastest
and generates the most debuggable code (11 passes).

• O1 level - This level is the basic level for optimization as it tries to
optimize the code without expanding code size (245 passes).

• O2 level - This level is a moderate level of optimization which enables
most optimizations. This level tries not to explode too much in code
size nor consume all resources while compiling (264 passes).

• O3 level - This level is like the O2 level, except that it enables opti-
mizations that take longer to perform or that may generate larger code
(in an attempt to make the program run faster) (267 passes)

• Os level - Os level is like O2 with some optimizations dropped to reduce
the code size (251 passes).

• Oz level - Like Os but reduces code size further. Does not even try to
run things that could potentially increase code size (247 passes).

5.1.2 LLVM Backend Optimizations - the DAG Combiner

The DAG Combiner optimization pass is run two times for the target code gen-
eration process on the SelectionDAG representation, immediately after a Se-
lectionDAG is built and the second pass is run after the legalization stage[34].

The first run of this pass allows the initial code to be cleaned up (e.g.
performing optimizations that depend on knowing that the operators have
restricted type inputs). In other words, the initial SelectionDAG is built to
support an arbitrary target without knowing anything about the actual target
and this pass allows to eliminate things which are not relevant to the actual
target. The second run of this pass cleans up the messy code generated by
the legalization stage, which allows the legalization stage to be very simple as
it can focus on making code legal instead of focusing on generating good and
legal code. Both of these runs of this pass take target specific information
into account. One important class of optimizations performed by the DAG
Combiner is optimizing inserted sign and zero extension instructions. Consider
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the following LLVM IR example which is a simple function that takes two bytes
and adds them together[34].

d e f i n e i 8 @addBytes ( i8 , i 8 ) {
%3 = add i 8 %0, %1
r e t i 8 %3

}

The figure 5.1 shows the initial SelectionDAG built for the addBytes function.
It contains an SDNode for a truncate operation after loading the arguments
and truncates the loaded values to bytes. Those bytes are then added together
and an SDNode any extend is inserted to extend the result byte to a 32-bit
integer value to fit into an integer register. Clearly, this is not needed in the
DLX architecture as it operates on bytes as if they were 32-bit values.
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i32

undef
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Figure 5.1: Initial SelectionDAG for the addBytes function

The figure 5.2 then shows the SelectionDAG after the first DAG combine op-
timization pass which takes target specific information into account. Because
it now knows how the DLX target handles byte values, the DAG combine pass
removed the truncate SDNode and also removed the any extend SDNode as
they are no longer needed. AssertSext SDNodes record if a register contains
a value that has already been zero or sign extended from a narrower type.
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Figure 5.2: SelectionDAG for the addBytes function after the first DAG com-
bine optimization pass

5.1.3 DLX Optimizations

This section describes which optimizations would be suitable for the DLX
architecture when using the LLVM system. When compiling some source
language to the DLX assembly code using the LLVM system, the code will
get optimized in several places along the way. Firstly, the source language
will get optimized in the frontend for that source language. That being said,
there is no point in writing optimizations for DLX in frontends.

The second place where the code will be optimized is in the LLVM Opti-
mizer if the optimizer is used. This is the place where all heavy optimizations
are done using numerous passes on the LLVM IR. This set of passes provides
a good chunk of optimizations for DLX as they these optimizations are source
code and target code independent. A lot of these passes who handle standard
optimizations on intermediate codes are already written by people who focus
on optimizations and it is not very likely that those passes could be made
better for the DLX target. This means that all of these passes will contribute
to making the final DLX target assembly code faster.

The code will also be optimized in the LLVM backend for DLX and will
have all the advantages from LLVM backend optimizations which are based
on target specific information.

On the other hand, DLX can use numerous target specific optimizations.
Two major ones are instruction selection and mainly instruction scheduling
which can probably make most of the benefits. Then there is a lot of smaller
optimizations like removing unnecessary labels, branch folding, register rema-
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terialization, passing variables in registers or adding callee-saved registers and
the function prologue could also be optimized to take fewer instructions.

5.2 Instruction Selection

The LLVM instruction selection process is very powerful but can be further
optimized using specific patterns to tell LLVM how to select certain patterns
as sometimes, there are several ways how to handle specific patterns and the
LLVM instruction selector cannot know which of these patterns is better for
the target. For example, the DLX target uses these following patterns to
optimize the selection of immediate values[52].

de f : Pat<( i 32 immZExt16 : $imm) , (ADDUI ( i32 R0) , imm: $imm) >;
de f : Pat<( i 32 immSExt16 : $imm) , (ADDI ( i32 R0) , imm: $imm) >;

Those two patters above handle 16-bit immediate values as they match them
with ADDI (ADDUI for unsigned) instructions. Consider the following func-
tion which only returns a value 8.

d e f i n e i 32 @retIntConst ( ) {
r e t i 32 8

}

Without these patterns, LLVM would always use two instructions to load the
constant into a register, one for loading the top half of a register and a second
one for loading the bottom half of a register which generally supports loading
of an arbitrary constant to a register. This is shown on the following code
which shows the relevant part of the example without these patterns used.

. . .
l h i r1 , 0x0
o r i r1 , r1 , 0x8
. . .

As mentioned, these patterns fit the immediate value into the ADDUI in-
struction if the value fits (the value 8 fits in a 16-bit value) as shown below.
The order of these patterns is also important as LLVM will match the first
one (ADDUI is matched in this case as the value 8 will fit in the ADDUI
immediate).

. . .
addui r1 , r0 , 0x8
. . .

The second set of optimizing patterns used in the DLX target focuses on
building target addresses. Those patterns match an add (or) SDNode with
one register as the operand and a ZRISD::LO SDNode as the second operand
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with the ADDUI instruction. The patterns are shown below and they are also
defined for tglobaladdr, texternalsym, tblockaddress and tjumptable symbols.
de f : Pat<(add GPRegs : $r , (LO tcons tpoo l : $ in ) ) ,

(ADDUI $r , t con s tpoo l : $ in ) >;

de f : Pat<(or GPRegs : $r , (LO tcons tpoo l : $ in ) ) ,
(ADDUI $r , t con s tpoo l : $ in ) >;

To illustrate how these patterns help optimize the target code, consider the
following LLVM IR function which returns a floating-point constant. The
constant will be stored in the .date section with a label.
d e f i n e f l o a t @mainFloatConst ( ) {

r e t f l o a t 0x4013851EC0000000
}

The following code shows a snippet of the assembly code for the mainFloat-
Const function which builds the address of the constant in memory. The
address is built using two instructions, the ORI instruction is used to get the
low part of the address and the LHI instruction is used to get the high part
of the address. Those parts are then added together to get the full address of
that constant.
CPI0 0 :

. word 1083975926

. . .
o r i r1 , r0 , ( CPI0 0 & 0 x 0 0 0 0 f f f f )
l h i r3 , ( CPI0 0 >> 16)
add r1 , r3 , r1
. . .

It is obvious that the ORI instruction and the ADD instruction can be merged
together which is exactly what those patterns do as shown on the following
code, saving one instruction and one register.
CPI0 0 :

. word 1083975926

. . .
l h i r3 , ( CPI0 0 >> 16)
addui r3 , r3 , ( CPI0 0 & 0 x 0 0 0 0 f f f f )
. . .

5.3 Utilizing Register R0

This optimization utilizes the target specific register R0. The register R0
is always zero which can be used to optimize certain constructs. This opti-
mization happens in the selection instruction stage where the zero value is
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matched using the following code. It materializes zero constants as copies
from the register R0 which allows the coalescer to propagate these into other
instructions.
ConstantSDNode ∗ConstNode = cast<ConstantSDNode>(Node ) ;

i f ( ConstNode−>i sNu l lVa lue ( ) ) {
SDValue New = CurDAG−>getCopyFromReg (CurDAG−>getEntryNode ( ) ,

SDLoc(Node ) , ZR : : R0 , MVT: : i 32 ) ;
r e turn ReplaceNode (Node , New. getNode ( ) ) ;

}

To demonstrate this optimization, consider the following C language code that
sets a global variable to a zero value.
i n t a = 15 ;

i n t main ( ) {
a = 0 ;
re turn 0 ;

}

Without this optimization, a zero value must first be first loaded to a register
using the LHI instruction as shown below and then the store instruction can
use this register to set the global variable to a zero value.
a :

. word 15

. . .
l h i r1 , 0x0
o r i r3 , r0 , ( a & 0 x 0 0 0 0 f f f f )
l h i r4 , ( a >> 16)
or r3 , r4 , r3
sw 0( r3 ) , r1
. . .

The following code shows the DLX assembly code with the utilization of the
R0 register as the store can now directly use the register R0 as zero instead
of loading zero to another register. This optimized code also has one more
advantage and that it saves one register (this code would also be optimized
by instruction patterns from the previous section).
a :

. word 15

. . .
o r i r3 , r0 , ( a & 0 x 0 0 0 0 f f f f )
l h i r4 , ( a >> 16)
or r3 , r4 , r3
sw 0( r3 ) , r0
. . .
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5.4 Instruction Scheduling

Scheduling is a process of reordering instructions to take the best advantage
of the pipeline to improve performance. This optimization is among the most
important for most programs. The scheduling mechanism tries to find the
optimal ordering of instructions which has a minimal number of hazards and
thus, has a minimal number of stalls[53]. The problem of scheduling instruc-
tions is generally an NP-complete task[54], meaning heuristics are needed to
find a better ordering in a reasonable time such as register pressure, cluster-
ing, critical resources or list scheduling which are same examples of heuristics
used by the LLVM system[55].

There are two types of processors: in-order and out-of-order processor.
An in-order processor means that the processor will execute instructions in-
order as scheduled by the compiler. Out-of-order processors can dynamically
rearrange instructions in execution. DLX is an in-order processor and must
rely on static scheduling by the compiler[56].

The scheduling in LLVM is divided into two parts: Pre-RA scheduling
which happens before register allocation (after the instruction selection stage)
and Post-RA scheduling after register allocation. There are many approaches
how to handle scheduling in LLVM: ScheduleDAGRRLists, Itineraries, and
the newest Machine Scheduler which is used by the DLX target[55][57].

5.4.1 Machine Scheduler

The Machine Scheduler is mainly based on TableGen files which model the
target processors and need to do the following steps to describe a machine
model describing the target pipeline[57].

• Define description of the pipeline and resources.

• Define own operand categories. The Machine Scheduler works in ope-
rands: input operands (what instructions need) and output operands
(what instructions produce). Output operands are then associated with
processor resources.

• Associate operand categories with actual instructions.

5.4.2 DLX Processors

Firstly, the DLX target must define processors it supports using the Proces-
sorModel class and assign them scheduling models of the pipeline. The DLX
target at this moment supports these four following processors.
de f : ProcessorModel<” g e n e r i c ” , NoSchedModel , [ ] > ;
de f : ProcessorModel<” gener i c−v1” , ZR1SchedModel , [ ] > ;
de f : ProcessorModel<” gener i c−v2” , ZR2SchedModel , [ ] > ;
de f : ProcessorModel<” gener i c−v3” , ZR3SchedModel , [ ] > ;
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The first one is the generic processor with no instruction scheduling as indi-
cated by the NoSchedModel property. The generic-v1 is a processor which
has all units fully pipelined. Generic-v2 and generic-v3 are processors without
having all units fully pipelined. The exact number of stages for all units and
their delays is described in the table 5.1.

Table 5.1: DLX Processors
Processor Unit Number of stages Delay

generic-v1

ALU Unit 1 1
FP Add Unit 2 2
FP Multiply Unit 4 4
FP Divide Unit 8 8

generic-v2

ALU Unit 1 1
FP Add Unit 1 4
FP Multiply Unit 1 4
FP Divide Unit 1 8

generic-v3

ALU Unit 1 1
FP Add Unit 2 2
FP Multiply Unit 2 4
FP Divide Unit 2 8

5.4.3 DLX Target Scheduling Model

This section describes the scheduling model for the generic-v1 processor. As
mentioned before this processor has all units fully pipelined and is the easiest
to describe but the changes to allow not fully pipelined units are very simple
and are described in the next 5.4.4 section. This scheduling model is defined
in the ZRGenericV1.td TableGen file.

The basic class which defines the scheduling model is shown below, it
defines the top level features of the pipeline[58](the other two processors also
uses this setting for their scheduling models).

de f ZR1SchedModel : SchedMachineModel {
l e t MicroOpBufferSize = 0 ; // ZR1 i s an in−order p r o c e s s o r
l e t IssueWidth = 1 ;
l e t LoadLatency = 1 ;
l e t CompleteModel = 0 ;
l e t PostRAScheduler = 1 ;

}

The MicroOpBufferSize property set to zero indicates an in-order processor.
The issueWidth property says only one instruction can be issued in a single
clock cycle as DLX does not support multiple instruction issue. Load latency is
set to one as DLX simulators can handle loads from memory in one clock cycle
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(in real physical processors this number is much higher). It is not a complete
model as pseudo instructions do not have any scheduling information. It
allows scheduling after register allocation. After the description of the top
level features of the pipeline, processor functional units must be defined using
the ProcResource class[58]. The following code shows units used in the DLX
target. They are all set to one as all units are fully pipelined.

l e t SchedModel = ZR1SchedModel in {
de f ZR1UnitALU : ProcResource<1> { l e t B u f f e r S i z e = 0 ; }
de f ZR1UnitMEM : ProcResource<1> { l e t B u f f e r S i z e = 0 ; }
de f ZR1UnitFPALU : ProcResource<1> { l e t B u f f e r S i z e = 0 ; }
de f ZR1UnitFPMUL : ProcResource<1> { l e t B u f f e r S i z e = 0 ; }
de f ZR1UnitFPDIV : ProcResource<1> { l e t B u f f e r S i z e = 0 ; }

}

The following code shows the operands defined for the generic-v1 processor.
As DLX processors are in-order and each instruction always goes through the
same pipeline, the output operands (SchedWriteRes) can represent a whole
pipeline or in other words, the EX stage is the only interesting stage as it
differs for certain instructions. It sets delays for all units using latencies. The
store instruction uses the ZR1WriteMEM output operand which takes two
cycles, meaning that there needs to be at least one instruction issued after
the load before the loaded register can be used (load produces values in the
WB stage). With forwarding in mind, the only input operand ZR1Read EX
(SchedReadAdvance) can be set to zero as the input operand starts at the EX
stage.

l e t SchedModel = ZR1SchedModel in {
de f ZR1WriteMEM : SchedWriteRes <[ZR1UnitMEM]>{ l e t Latency= 2 ;}
de f ZR1WriteALU : SchedWriteRes <[ZR1UnitALU]>{ l e t Latency= 1 ;}
de f ZR1WriteFPALU : SchedWriteRes <[ZR1UnitFPALU]>{ l e t Latency= 2 ;}
de f ZR1WriteFPMUL : SchedWriteRes <[ZR1UnitFPMUL]>{ l e t Latency= 4 ;}
de f ZR1WriteFPDIV : SchedWriteRes <[ZR1UnitFPDIV]>{ l e t Latency= 8 ;}

de f ZR1Read EX : SchedReadAdvance<0>;
}

After the definition of operands, they are associated with the corresponding
instructions using the InstRW which associates the output operands and input
operands with the instructions as shown on the code below. Other instructions
use the units according to the 2.3 section.

l e t SchedModel = ZR1SchedModel in {
de f : InstRW<[ ZR1WriteALU , ZR1Read EX , ZR1Read EX ] ,

( i n s t r s ADD, SUB, XOR, OR, AND, SLL , SRA, SRL) >;
. . .
}

For example, the ADD instruction must go through the ALU EX stage of
the pipeline a uses two ZR1Read EX operands which read registers. To illus-
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trate that this model of the generic-v1 pipeline works, consider the following
example.
d e f i n e i 32 @plus ( i32 , i32 , i32 , i 32 ) {

%5 = mul i32 %0, %0
%6 = mul i32 %5, %5
%7 = add i32 %2, %2
%8 = add i32 %1, %1
%9 = add i32 %3, %3
%10 = add i32 %8, %7
%11 = add i32 %10 , %9
%12 = add i32 %11 , %6
r e t i 32 %12 }

This is a function that takes four integer arguments and does some simple
operations using only ADD and MUL instructions. The important part of this
code are the first two MUL instructions where the second MUL instruction
depends on the first one and would need to be stalled until the first one writes
its result. This is a result of the MUL instruction using the multiplication
unit which takes 4 cycles to complete. Without the custom scheduler, the
DLX assembly code will be in the same order as the input LLVM IR as shown
below. Function arguments are stored in registers R17, R18, R19 and R20.
. . .
mult r3 , r17 , r17
mult r3 , r3 , r3
add r4 , r19 , r19
add r5 , r18 , r18
add r6 , r20 , r20
add r4 , r5 , r4
add r4 , r4 , r6
add r1 , r4 , r3
. . .

It is easy to check that this code could be rearranged to minimize stalls as
the first five instructions after the second MULT instruction do not depend
on that MULT instruction a could be moved between the first two MULT
instructions as shown on the following code which uses a custom scheduler.
. . .
mult r3 , r17 , r17
add r4 , r19 , r19
add r5 , r18 , r18
add r4 , r5 , r4
mult r3 , r3 , r3
add r6 , r20 , r20
add r4 , r4 , r6
add r1 , r4 , r3
. . .

Three ADD instructions were moved between the two MULT instructions to
do some work until the first MULT instruction finishes its work. As shown,
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the instruction scheduling optimization can save many stalls in programs and
thus improve their performance.

5.4.4 DLX Target Scheduling Model - not fully pipelined
units

This section describes the changes made to the previous scheduling model to
allow not fully pipelined units. The DLX provides two processors with not
fully pipeline units as described previously. The following code shows the
description of the scheduling model for the generic-v3 processor.
l e t SchedModel = ZR3SchedModel in {

de f ZR3UnitALU : ProcResource<1> { l e t B u f f e r S i z e = 0 ; }
de f ZR3UnitMEM : ProcResource<1> { l e t B u f f e r S i z e = 0 ; }
de f ZR3UnitFPALU : ProcResource<2> { l e t B u f f e r S i z e = 0 ; }
de f ZR3UnitFPMUL : ProcResource<2> { l e t B u f f e r S i z e = 0 ; }
de f ZR3UnitFPDIV : ProcResource<2> { l e t B u f f e r S i z e = 0 ; }

de f ZR3WriteMEM : SchedWriteRes <[ZR3UnitMEM]> { l e t Latency = 2 ;}
de f ZR3WriteALU : SchedWriteRes <[ZR3UnitALU]> { l e t Latency = 1 ;}
de f ZR3WriteFPALU : SchedWriteRes <[ZR3UnitFPALU]>

{ l e t Latency = 2 ; l e t ResourceCycles = [ 2 ] ; }
de f ZR3WriteFPMUL : SchedWriteRes <[ZR3UnitFPMUL]>

{ l e t Latency = 4 ; l e t ResourceCycles = [ 4 ] ; }
de f ZR3WriteFPDIV : SchedWriteRes <[ZR3UnitFPDIV]>

{ l e t Latency = 8 ; l e t ResourceCycles = [ 8 ] ; }
}

The ProcResource is now set to the number of stages in a functional unit and
the actual pipeline stages use a ResourceCycles information which says that
the pipeline stage is occupied for that number of cycles. To illustrate how this
works, consider the following LLVM IR example which is a function with four
arguments and some ADD and MUL instructions. The important part are
again the MUL instructions which in this case do not depend on each other.

d e f i n e i 32 @plus ( i32 , i32 , i32 , i 32 ) {
%5 = mul i32 %0, %0
%6 = mul i32 %2, %2
%7 = mul i32 %3, %3
%8 = add i32 %0, %0
%9 = add i32 %1, %1
%10 = add i32 %2, %2
%11 = add i32 %9, %10
%12 = add i32 %11 , %8
%13 = add i32 %12 , %7
%14 = add i32 %13 , %6
%15 = add i32 %14 , %5
r e t i 32 %15 }

The following code shows the code with no scheduling model which naturally
results with the instructions in the same order as the input LLVM IR.
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. . .
mult r3 , r17 , r17
mult r4 , r19 , r19
mult r5 , r20 , r20
add r6 , r17 , r17
add r7 , r18 , r18
add r8 , r19 , r19
add r7 , r7 , r8
add r6 , r7 , r6
add r5 , r6 , r5
add r4 , r5 , r4
add r1 , r4 , r3
. . .

With the generic-v3 pipeline setting, the third MULT instruction must be
stalled because there is no other multiplication unit to handle it but the sched-
uler can see that some ADD instructions can be reordered between the second
and the third MULT instruction to reduce stalls as shown below.

. . .
mult r5 , r20 , r20 ; scheduled f o r the gener i c−v3 p r o c e s s o r
mult r4 , r19 , r19
add r7 , r18 , r18
add r8 , r19 , r19
mult r3 , r17 , r17
add r6 , r17 , r17
add r7 , r7 , r8
add r6 , r7 , r6
add r5 , r6 , r5
add r4 , r5 , r4
add r1 , r4 , r3
. . .

The code below shows the same code scheduled for the generic-v2 processor
which only has one multiplication unit. In this case, the scheduler rearranges
the ADD instructions not just between the second and the third MULT in-
struction but also between the first and the second MULT instruction.

. . .
mult r5 , r20 , r20 ; scheduled f o r the gener i c−v2 p r o c e s s o r
add r7 , r18 , r18
add r8 , r19 , r19
mult r4 , r19 , r19
add r6 , r17 , r17
add r7 , r7 , r8
mult r3 , r17 , r17
add r6 , r7 , r6
add r5 , r6 , r5
add r4 , r5 , r4
add r1 , r4 , r3
. . .
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5.4.5 Adding a new processor to the DLX target

Adding a new schedule model to support a new processor with a different
number of stages and different delays is a simple matter of copying an exist-
ing DLX schedule model and changing the values of stages and delays. Adding
a new processor only means adding a processor the list of processors and as-
signing it a scheduling model (it also needs to be added to the list of processors
in clang).

5.5 Removing Unnecessary Labels

This optimization does not speed up the computation but can decrease the size
of the output assembly code with removing unnecessary labels. It happens in
the isBlockOnlyReachableByFallthrough() method in the ZRAsmPrinter.cpp
file which checks if the basic block is a fallthrough by checking its predecessors
and their terminator instructions. To demonstrate how this works, consider
the following DLX assembly code with a simple function that only contains a
single select instruction.

. t ex t
main :

. . . ; f unc t i on pro logue
lw r3 , 4( r29 )
lw r1 , 0( r29 )
s l t r4 , r1 , r3
bnez r4 , BB0 2

BB0 1 : ; t h i s b a s i c b lock i s f a l l t h r o u g h
o r i r1 , r3 , 0x0

BB0 2 :
. . . ; f unc t i on e p i l o g u e
j r r2

It is evident that the BB0 1 label is useless as it never gets jumped on and
the only way how to reach it is by fallthrough from the previous block if the
BNEZ branch instruction is not taken, also the basic block is not marked as
global. This means that it can be simply removed as the following code shows.

. t ex t
main :

. . . ; f unc t i on pro logue
lw r3 , 4( r29 )
lw r1 , 0( r29 )
s l t r4 , r1 , r3
bnez r4 , BB0 2
o r i r1 , r3 , 0x0

BB0 2 :
. . . ; f unc t i on e p i l o g u e
j r r2
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5.6 Branch Folding

Performance can be improved by eliminating instructions that are never rea-
ched or are useless in the sense that the code would do the same without
those instructions. The AnalyzeBranch() method in the ZRInstrInfo.cpp file
is implemented to examine branch instructions at the of basic blocks and to
remove unnecessary instructions if needed. It looks at the end of a machine
basic blocks for opportunities for improvement. In the simplest case, if a block
ends without a branch instruction, then it falls through to the successor block.
If a block ends with a single unconditional branch instruction, it is removed
if it is a fallthrough. If a block ends with two or more unconditional branch
instructions, then every branch after the first one is never reached and is
simply removed. If a block ends with both a conditional branch and an ensuing
unconditional branch, then the ensuing unconditional branch is removed if it
is a fallthrough. If a block ends with indirect branch instruction followed by
an unconditional branch instruction that the unconditional branch instruction
is also removed. The implementation of branch folding in the LLVM system
also requires implementation of the insertBranch() method to insert branch
instructions and the implementation of the removeBranch() method to remove
branch instructions[33].

Consider the following DLX assembly code generated from a function with
a floating-point select instruction. The first block ends with a floating-point
conditional branch instruction followed by an unconditional branch instruc-
tion.

. . .
g e f f2 , f 1
b fpt BB0 2
j BB0 1 ; t h i s i n s t r u c t i o n i s u s e l e s s

BB0 1 :
addf f0 , f0 , f 1

BB0 2 :
addi r30 , r29 , 0x0

. . .

The unconditional branch instruction is not necessary as it is only a fall-
through and can be simply removed. The label was also removed by the
previous removing unnecessary labels optimization. This assumes that there
was no other jump to the BB0 1 basic block.

. . .
g e f f2 , f 1
b fpt BB0 2
addf f0 , f0 , f 1

BB0 2 :
addi r30 , r29 , 0x0
. . .
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5.7 Register Rematerialization

Certain values in functions can be recomputed at any point, as the required
source operands will always be available for the computation. Such values are
called never killed values. During global register allocation pass, if such never
killed values cannot be kept in registers and need to be spilled, the register
allocator should recognize when it is cheaper to recompute the value i.e. to
rematerialize it, rather than to store and reload it from stack[59]. The LLVM
can be told which instructions are allowed to rematerialize values by using the
isReMaterializable property. The DLX target uses this property for following
instructions: LWri, LBri, LHri, LBUri, LHUri, LFri and LDri. To demonstrate
how this rematerialization can optimize the DLX assembly code, consider the
following LLVM IR example with two functions. The main function takes one
argument, call the plus function with that one argument and to the result, it
adds the same argument. It is not important what the plus function does.
d e f i n e i 32 @main( i 32 ) {

%2 = c a l l i 32 @plus ( i 32 %0)
%3 = add i32 %0, %2
r e t i 32 %3

}

d e f i n e i 32 @plus ( i 32 ) {
. . .

}

The following code shows a snippet of the relevant piece of the DLX assembly
code generated from the LLVM IR above to show how register rematerializa-
tion works. The argument is first loaded to the register R1, is saved to the
stack to be preserved during the call of the function plus and after the call it
must be loaded back to be added to the result of the plus call.

main :
. . .
lw r1 , 0( r29 )
sw −12( r29 ) , r1 ; save R1 to the s tack frame
sw 0( r30 ) , r1 ; argument to the func t i on c a l l p lus
sub i r30 , r30 , 0x4
j a l p lus
lw r3 , −12( r29 ) ; load R1 back from the stack frame
add r1 , r3 , r1
. . .

It is easy to notice, that the argument is still in the same place in the stack
frame (as an argument of the function main) after the function call and there
is no need to save it and restore it to/from the stack frame and can be easily
be loaded from the stack frame again (as an argument of the function main)
when it is needed to be added to the result of the function call plus as shown
on the code below. This saves one store instruction (it only saves the store
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instruction as the load instruction still needs to happen just from a different
place).

main :
. . .
lw r1 , 0( r29 )
sw 0( r30 ) , r1
sub i r30 , r30 , 0x4
j a l p lus
lw r1 , 0( r29 ) ; r e m a t e r i a l i z a t i o n o f the argument
add r1 , r3 , r1
. . .

5.8 Passing Values in Registers

Passing function arguments in registers can be a very useful optimization as
it can substantially save loads and stores from/to memory. The DLX target
reserves four integer registers to pass arguments: R17, R18, R19, and R20[60].
Every other argument is passed on the stack the same way as before. Those
registers must be added to the definition of the DLX calling convention, shown
below, before assigning values on the stack in the ZRCallingConv.td TableGen
file as the assigning order is important.
// ZR Ca l l i ng convent ion .
de f CC ZR : CallingConv <[

. . .
CCIfNotVarArg<CCIfType<[ i 32 ] , CCAssignToReg<[R17 , R18 , R19 , R20]>>>,
CCIfType<[ i32 , f32 ] , CCAssignToStack <4, 4>>,
. . .

] > ;

Passing arguments in registers must also be added to the implementation
when building the initial SelectionDAG, e.g in the LowerFormalArguments()
method and the LowerReturn() method. To illustrate passing arguments in
registers, consider the following LLVM IR example where the main function
calls the plus function with one integer argument.

d e f i n e i 32 @main( i 32 ) {
%2 = c a l l i 32 @plus ( i 32 %0)
r e t i 32 %2

}

d e f i n e i 32 @plus ( i 32 ) {
%2 = add i32 %0, %0
r e t i 32 %2

}

The following code shows the plus function before the passing values in regis-
ters optimization where arguments are placed on the stack.
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plus :
. . .
lw r1 , 0( r29 )
add r1 , r1 , r1 ; r e turn value o f the func t i on p lus
. . .

The following code shows the optimized version and it assumes that the main
function placed the argument in the register R17 as the calling convention
states. This code saves one instruction as the plus function does not have
to perform a load instruction to get the argument (this assumes the main
function already had the value in the R17 register, for example, did some
computation and the result was put directly in the R17 register)

plus :
. . .
add r1 , r17 , r17 ; r e turn value o f the func t i on p lus
. . .

5.9 Calee-saved Registers

Another register oriented optimization is to use callee-saved registers. Callee-
saved registers are registers where the caller does not expect the callee to
change them and it is the responsibility of the callee to save/restore those
registers if it wants to use them. Callee-saved registers are used to hold long-
lived values that should be preserved across calls[61].

The DLX target defines callee-saved registers in the ZRCallingConv.td
TableGen file where it creates a list which is then used by the getCalleeSave-
dRegs() method in the ZRRegisterInfo.cpp file. The definition of callee-saved
registers in the DLX target is below.
de f CSR : CalleeSavedRegs <(add R19 , R20 , R21 , R22 , R23 , R24 , R25 , R26) >;

To illustrate this optimization, consider the following LLVM IR example. It is
a function that takes two arguments, adds them together and then multiplies
them by results of three foo functions. It is not important what those foo
functions do.
d e f i n e i 32 @main( i32 , i 32 ) {

%3 = add i32 %0, %1
%4 = c a l l i 32 @foo ( i 32 %0, i 32 %1)
%5 = mul i32 %3, %4
%6 = c a l l i 32 @foo2 ( i 32 %0, i 32 %1)
%7 = mul i32 %5, %6
%8 = c a l l i 32 @foo3 ( i 32 %0, i 32 %1)
%9 = mul i32 %7, %8
r e t i 32 %7

}
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The following code shows the unoptimized version of the main function above
in the DLX assembly code. Before each call, the commutated value must be
stored to the stack frame because otherwise it might get overridden by the
call of foo functions.

. . .
lw r3 , 4( r29 ) ; get arguments
lw r1 , 0( r29 )
add r4 , r1 , r3
sw −20( r29 ) , r4 ; s t o r e the value to the s tack frame

sw 0( r30 ) , r1 ; c a l l f oo
addui r1 , r30 , 0x4
sw 0( r1 ) , r3
sub i r30 , r30 , 0x4
j a l foo

lw r3 , −20( r29 )
mult r1 , r3 , r1
sw −20( r29 ) , r1 ; s t o r e the value to the s tack frame

lw r1 , 0( r29 ) ; c a l l foo2
sw 0( r30 ) , r1
addui r1 , r30 , 0x4
lw r3 , 4( r29 )
sw 0( r1 ) , r3
sub i r30 , r30 , 0x4
j a l foo2

lw r3 , −20( r29 )
mult r1 , r3 , r1
sw −20( r29 ) , r1 ; s t o r e the value to the s tack frame

lw r1 , 0( r29 ) ; c a l l foo3
sw 0( r30 ) , r1
addui r1 , r30 , 0x4
lw r3 , 4( r29 )
sw 0( r1 ) , r3
sub i r30 , r30 , 0x4
j a l foo3

lw r3 , −20( r29 )
mult r1 , r3 , r1
. . .

The next code shows the optimized version with callee-saved registers. The
main function starts with saving callee-saved registers to the stack frame which
is important because the main function is the caller in this case but it can
also be the callee and thus cannot change the value of those registers. The
main function can make use of callee-saved registers as it does not have to save
them to the stack frame before every function call and can rely on the callee
not to change them. This can save many loads and writes to/from memory.
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It also loads arguments to callee-saved registers which means that arguments
do not have to be read again and again as it happens in the version without
callee-saved registers and that also removes a significant number of memory
instructions.

. . .
sw −12( r29 ) , r17 ; save c a l l e e−saved r e g i s t e r s
sw −16( r29 ) , r18
sw −20( r29 ) , r19

lw r17 , 4( r29 ) ; get arguments
lw r18 , 0( r29 )

add r19 , r18 , r17

sw 0( r30 ) , r18 ; c a l l f oo
addui r3 , r30 , 0x4
sw 0( r3 ) , r17
sub i r30 , r30 , 0x4
j a l foo

mult r19 , r19 , r1

sw 0( r30 ) , r18 ; c a l l foo2
addui r3 , r30 , 0x4
sw 0( r3 ) , r17
sub i r30 , r30 , 0x4
j a l foo2

mult r19 , r19 , r1

sw 0( r30 ) , r18 ; c a l l foo3
addui r3 , r30 , 0x4
sw 0( r3 ) , r17
sub i r30 , r30 , 0x4
j a l foo3

mult r1 , r19 , r1

lw r19 , −20( r29 ) ; load c a l l e e−saved r e g i s t e r s
lw r18 , −16( r29 )
lw r17 , −12( r29 )
. . .

This optimized code shows that seven instructions were saved by adding callee-
saved registers and the number would grow with more foo functions. This
assumes that foo functions took the same number of instructions as they did
before this optimization.
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5.10 Function Prologue

In the process of creating the DLX backend, the prologue of function was
implemented exactly as the DLX calling convention states with no regards to
optimizations. The code below shows a function prologue before this opti-
mization.

nop
nop
sw 0( r30 ) , r31
sw −4( r30 ) , r29
sub i r30 , r30 , 0x4
addi r29 , r30 , 0x8
sub i r30 , r30 , 0x8
lw r1 , 0( r29 )
. . .

As seen above, those instructions can be reordered to eliminate nop instruc-
tions. The new function prologue, which saves two instructions, is shown
below.

sw −4( r30 ) , r29
sub i r30 , r30 , 0x4
sw 4( r30 ) , r31
addi r29 , r30 , 0x8
sub i r30 , r30 , 0x8
lw r1 , 0( r29 )
. . .

5.11 Register Allocation

The register allocation can be optimized by rearranging the order of register
allocation in the ZRRegisterInfo.td file as shown below.

// Reg i s t e r c l a s s f o r i n t e g e r r e g i s t e r s
de f GPRegs : Reg i s t e rC la s s <”ZR” , [ i 32 ] , 32 ,

( add R3 , R4 , R5 , R6 , R7 , R8 , R12 , R13 , R14 , R15 , R16 ,
R17 , R18 , R19 , R20 // r e g i s t e r used f o r pas s ing va lue s
R21 , R22 , R23 , R24 , R25 , R26 , R27 , R28 // c a l l e e−saved reg .
R1 , R9 , R10 , R11 , // re turn va lue s
R29 , // frame po in t e r
R30 , // s tack po in t e r
R0 // constant 0
R2 // used f o r s t o r i n g re turn address

) >;

This order helps the register allocator to start with general registers and to
only use the special ones if all general registers are occupied, possibly saving
some spilling to memory. The LLVM system also comes with several register
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allocators which can be chosen when compiling code to the DLX assembly,
possibly producing a faster code[34]:

• pbqp - A Partitioned Boolean Quadratic Programming (PBQP) based
register allocator. This allocator works by constructing a PBQP problem
representing the register allocation problem under consideration, solving
this using a PBQP solver, and mapping the solution back to a register
assignment.

• greedy - The default allocator. This is a highly tuned implementation
of the Basic allocator that incorporates global live range splitting. This
allocator works hard to minimize the cost of spill code.

• fast - This register allocator is the default for debug builds. It allocates
registers on a basic block level, attempting to keep values in registers
and reusing registers as appropriate.

• basic - This is an incremental approach to register allocation. Live
ranges are assigned to registers one at a time in an order that is driven by
heuristics. Since code can be rewritten on-the-fly during allocation, this
framework allows interesting allocators to be developed as extensions.
It is not itself a production register allocator but is a potentially useful
stand-alone mode for triaging bugs and as a performance baseline.
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Chapter 6
Testing

This chapter describes the process of testing the implemented DLX backend
for the LLVM system and testing optimizations that were implemented for
it. Testing was performed on the WinDLX Simulator. It also contains the
evaluation of optimizations.

6.1 Testing DLX Backend

The first part of testing the LLVM backend consists of 50 C++ files that
generate LLVM IR using the C++ LLVM API[62]. Those tests generate 50
test files with LLVM IR used as an input to the llc tool and they consist of basic
ALU operations both on integer types and floating types, branches, passing
values with all types to functions, returning values of all types from functions,
definition and usage of variables, converting between types, calling functions,
nested calls, spilling to memory or select instructions. These tests are usually
quite simple just to test that single functionality in the DLX backend and
they cover pretty much the custom implementation of the DLX backend and
they test how the LLVM IR is translated to the DLX assembly code.

The second part of testing consists of 39 C programming language code
files that are fed to clang to generate the LLVM IR. The first 27 tests start
with testing the basic functionality but in a little more complicated way. They
continue by testing the constructs of the C language such as loops, while loops,
dynamic size arrays, pointers or structs. At the end they test mathematical
functions like power, gcd, factorial using both iteration and recursion, sqrt,
listing first n prime numbers, computing the Euler totient function which
returns a number of prime numbers lower than the input or dijkstra algorithm
for finding the shortest path in a weighted graph. The last 12 tests contain a
lot of computation on two-dimensional arrays and they are mainly used later
for evaluating optimizations, especially scheduling. The job of these tests is
to show that the LLVM system with the DLX backend can compile C codes
to the DLX assembly code. This would probably deserve a little more testing
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but without the implementation of standard C functions (malloc, free) and
with the need of manually running the tests, this is very limited.

To actually run these tests, some environment must be set up first to
initialize the stack pointer, initial stack frame, frame pointer and to store the
proper arguments to memory in the right places. The following code shows
the setup for a main function with two integer arguments.

. data

. a l i g n 2
Name :

. a s c i i z ” t e s t ”

. a l i g n 2
Arg1 :

. a s c i i z ”15”

. a l i g n 2
Arg2 :

. a s c i i z ”20”

. a l i g n 2
Array :

. space 12

. t ex t
s t a r t :

l h i r2 , (Name >> 16)
addui r2 , r2 , (Name & 0 x 0 0 0 0 f f f f )
l h i r3 , ( Arg1 >> 16)
addui r3 , r3 , ( Arg1 & 0 x 0 0 0 0 f f f f )
l h i r4 , ( Arg2 >> 16)
addui r4 , r4 , ( Arg2 & 0 x 0 0 0 0 f f f f )
l h i r5 , ( Array >> 16)
addui r5 , r5 , ( Array & 0 x 0 0 0 0 f f f f )

sw 0( r5 ) , r2 ; s t o r e arguments to memory
sw 4( r5 ) , r3
sw 8( r5 ) , r4
addi r30 , r30 , 0 x 7 f f c ; s tack po in t e r
addi r29 , r29 , 0 x 7 f f c ; frame po in t e r

addi r18 , r18 , 3 ; prepare arugments f o r the func t i on c a l l
add r19 , r19 , r5
sw 0( r30 ) , r19
sw −4( r30 ) , r18
sub i r30 , r30 , 8

j a l main ; c a l l main func t i on

end :
trap 0 ; terminate program

This environment places the stack to the highest position (for testing, the
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WinDLX memory was set to 0x8000). It places the arguments to memory in
a C programming language manner (argc argument, argv argument consisting
of the name of the program and other arguments as strings) and then jumps
to the main function. After returning from the main function, it only executes
a trap 0 instruction which indicates the end of the program.

To simplify testing, several functions were created to allow printing values
in the WinDLX simulator such as printI (print one integer), printUI (print one
unsigned integer), pringF (print float) and printD (print double). Those are
regular functions which can be called from a C programming language code
(they only need to be declared, for example, to use the printI function: ”void
printI(int i);”). They all use trap 5 to print the value which uses R14 register
and therefore this register must be saved to the stack frame along with any
other registers that these functions use, to not change values for the caller.
The code below shows the code of the printI function.

. data

. a l i g n 2
FormatStrOutput : . a s c i i z ”Output i :%d\n”

. a l i g n 2
ParStrOutput :

. word FormatStrOutput

. space 4

. t ex t
p r i n t I :

nop
nop
sw 0( r30 ) , r31
sw −4( r30 ) , r29
sw −8( r30 ) , r14
sw −12( r30 ) , r3
sub i r30 , r30 , 0xc
addi r29 , r30 , 0x10
sub i r30 , r30 , 0x10

lw r3 , 0( r29 ) ; load the value to p r i n t

l h i r14 , ParStrOutput >> 16
addui r14 , r14 , ParStrOutput & 0 x 0 0 0 0 f f f f

sw 4( r14 ) , r3 ; s t o r e the value to the proper p lace

trap 5 ; p r i n t the i n t e g e r va lue

addi r30 , r29 , 0x0
lw r2 , −4( r29 )
lw r14 , −12( r29 )
lw r3 , −16( r29 )
lw r29 , −8( r29 )
j r r2
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To automatize these tests, a script was created which acts as a very simply
linker. The job of this script is to generate files which can be run on the
WinDLX simulator. It needs to add the proper environment setup code and
add printing functions if the test requires it.

6.2 Testing and Evaluating Optimizations

The DLX target with all implemented optimizations was tested using the same
tests to ensure that the produced code is still valid and correct. In the process
of generating the DLX target code of these tests, the opt tool was used to
run O2 level of optimizations to optimize the LLVM IR. These tests were all
run for all processors and their scheduling models defined in the DLX target.
The environment setup codes had to be changed a little to use the optimized
prologue and passing arguments in registers. The printing functions also had
to be changed to load arguments from registers and not from the stack frame.

After making sure optimizations did not change the validity or correct-
ness of the code, optimizations were evaluated to show if optimizations can
make the DLX assembly code run faster as opposed to the code without op-
timizations. The evaluation was done using the 39 C programming languages
codes only as the previous LLVM IR tests are too simple to offer any place
for optimizations. Every test was measured with a number of clock cycles it
takes and a number of stalls. As shown on the table 6.1 and 6.2, these tests
were run without any optimizations, with optimizations (meaning O2 level of
optimization and target specific optimizations) and with optimizations and
scheduling at the same time. Columns of these tables are described below:

• No opti - no optimizations, generic-v1 setting of the pipeline.

• Opti - optimizations without scheduling, generic-v1 setting of the pipeline.

• V1 sched - optimizations with scheduling, generic-v1 setting of the
pipeline.

• V2 - optimizations without scheduling, generic-v2 setting of the pipeline.

• V2 sched - optimizations with scheduling, generic-v2 setting of the
pipeline.

• V3 - optimizations without scheduling, generic-v3 setting of the pipeline.

• V3 sched - optimizations with scheduling, generic-v3 setting of the
pipeline.
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Table 6.1: Evaluation of the generic-v1 processor

Test Case No opti Opti V1
000 empty main 35 [5] 28 [5] 28 [5]
001 atoi function 259 [68] 134 [36] 129 [31]
002 plus function 289 [73] 157 [41] 152 [36]
003 nested call 389 [87] 158 [41] 153 [36]
004 integers 478 [104] 231 [56] 226 [51]
005 floats 674 [157] 315 [93] 299 [75]
006 branches 314 [87] 168 [49] 163 [44]
007 switch 204 [49] 120 [30] 115 [25]
008 for 852 [237] 514 [129] 510 [125]
009 while 496 [137] 280 [74] 275 [69]
010 array 568 [147] 51 [10] 51 [10]
011 array dynamic size 904 [308] 330 [73] 311 [54]
012 pointers 369 [90] 201 [48] 196 [42]
013 pointers2 320 [78] 157 [41] 152 [36]
014 infinite loop N/A N/A N/A
015 struct 324 [80] 163 [47] 155 [39]
016 struct pointers 317 [78] 163 [47] 155 [39]
017 global variables 150 [28] 112 [22] 112 [22]
018 unsigned 298 [75] 160 [41] 155 [36]
019 gcd 384 [110] 194 [61] 189 [56]
020 power 505 [144] 217 [55] 209 [47]
021 sqrt 633 [204] 259 [98] 248 [85]
022 prime numbers 17386 [8390] 9229 [5438] 9225 [5434]
023 factorial iteration 291 [78] 138 [32] 131 [28]
024 factorial recursive 405 [104] 142 [32] 138 [33]
025 euler totient 2644 [1042] 1045 [532] 1041 [529]
026 graph dijkstra 7267 [2109] N/A N/A
s000 data 14994 [3981] 1449 [44] 1445 [40]
s001 data 16195 [4381] 1606 [62] 1597 [52]
s002 data 28925 [7764] 2730 [63] 2726 [59]
s003 data 30125 [8164] 2815 [80] 2807 [72]
s004 data 38926 [10564] 4297 [1182] 3647 [512]
s005 data 36236 [11364] 6359 [1471] 6350 [1462]
s006 data 35226 [9784] 7535 [1243] 7131 [839]
s007 data 22366 [7124] 4931 [1663] 3627 [59]
s008 data 23166 [7704] 5251 [1763] 3787 [59]
s009 data 24445 [8604] 6071 [2303] 4207 [99]
s010 data 30845 [12184] 13014 [6143] 10290 [2979]
s011 data 24485 [7944] 6155 [1783] 4851 [119]
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Table 6.2: Evaluation of the generic-v2 and generic-v3 processor

Test Case V2 V2 sched V3 V3 sched
000 empty main 28 [5] 28 [5] 28 [5] 28 [51]
001 atoi function 134 [36] 129 [31] 134 [36] 129 [31]
002 plus function 157 [41] 152 [36] 157 [41] 152 [36]
003 nested call 158 [41] 153 [36] 158 [14] 153 [36]
004 integers 231 [56] 226 [51] 231 [56] 226 [51]
005 floats 316 [94] 300 [76] 315 [93] 299 [75]
006 branches 168 [49] 163 [44] 168 [49] 163 [44]
007 switch 120 [30] 115 [25] 120 [30] 115 [25]
008 for 514 [129] 510 [125] 514 [129] 510 [125]
009 while 280 [74] 275 [69] 280 [74] 275 [69]
010 array 51 [10] 51 [10] 51 [10] 51 [10]
011 array dynamic size 330 [73] 311 [54] 330 [73] 311 [54]
012 pointers 201 [48] 196 [43] 201 [48] 196 [43]
013 pointers2 157 [41] 152 [36] 157 [41] 152 [36]
014 infinite loop N/A N/A N/A N/A
015 struct 163 [47] 155 [39] 163 [47] 155 [39]
016 struct pointers 163 [47] 155 [39] 163 [47] 155 [39]
017 global variables 112 [22] 112 [22] 112 [22] 112 [22]
018 unsigned 160 [41] 155 [36] 160 [41] 155 [36]
019 gcd 194 [61] 189 [56] 194 [61] 189 [56]
020 power 219 [58] 210 [49] 217 [55] 209 [47]
021 sqrt 259 [98] 248 [85] 259 [98] 248 [85]
022 prime numbers 9229 [5438] 9225 [5434] 9229 [5438] 9225 [5434]
023 factorial iteration 138 [32] 131 [28] 138 [32] 131 [28]
024 factorial recursive 142 [32] 138 [33] 142 [32] 138 [33]
025 euler totient 1045 [532] 1041 [529] 1045 [532] 1041 [529]
026 graph dijkstra N/A N/A N/A N/A
s000 data 1449 [44] 1445 [40] 1449 [44] 1445 [40]
s001 data 1661 [121] 1645 [105] 1622 [80] 1612 [69]
s002 data 2730 [63] 2726 [59] 2730 [63] 2726 [59]
s003 data 2815 [80] 2807 [72] 2815 [80] 2807 [72]
s004 data 4297 [1182] 3647 [512] 4297 [1182] 3647 [512]
s005 data 6359 [1471] 6350 [1462] 6359 [1471] 6350 [1462]
s006 data 7535 [1243] 7131 [829] 7535 [1243] 7131 [839]
s007 data 5051 [1783] 4167 [859] 4931 [1663] 3847 [519]
s008 data 5451 [2023] 4227 [739] 5251 [1763] 4087 [439]
s009 data 6271 [2563] 5007[1179] 6071 [2303] 4467 [619]
s010 data 13194 [6223] 10470[3219] 13014 [6143] 10310 [3059]
s011 data 6275 [1903] 5131 [519] 6155 [1783] 4891 [159]
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6.2. Testing and Evaluating Optimizations

The results of the 014 test are not available for obvious reasons as the loop runs
forever. The optimized versions for the 026 test are not available as LLVM
optimizes the static definition of the two-dimensional array representing the
graph with a memset operation which is not implemented for the DLX target.

The first 6.1 table measures how optimizations sped up the assembly code.
For this comparison, the generic-v1 processor was used and it shows that the
optimized code can run significantly faster in comparison with the unopti-
mized versions. For example, the computation of the first n prime numbers
takes roughly half the clock cycles it takes without optimizations and the com-
putation of the Euler’s totient function takes less than the half of clock cycles
then the unoptimized variant. The third column then adds scheduling and
also shows that scheduling can further optimize the code as every test case
was sped up at least a little. The biggest speedup from scheduling happened
in last 12 tests because they have the most room for scheduling as they contain
many alu operations and were designed that way to test that the implemented
schedulers work.

The second table 6.2 is focused on scheduling the generic-v2 and generic-
v3 processors. It compares the scheduled code with the unscheduled code
for those two processors and shows that the scheduled variants are indeed
faster. The overall scheduling results are as expected, with the comparison,
the generic-v1 processor produces the fastest code as it is a fully pipelined
processor and the generic-v2 is a little slower than the generic-v3 as it has
a lower number of stages in functional units. The good thing is that the
scheduler works for all processors as the code is always faster with scheduling
that the code without scheduling.
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Conclusion

This thesis analyzed the DLX architecture and its pipeline and based on that
it created a new working backend for the DLX architecture which can be
used in the LLVM system. This allows numerous programming languages,
meaning languages that have a frontend implemented for the LLVM system,
to be compiled into the DLX assembly code. It also gives a guideline on how
to create a new LLVM backend for a simple RISC architecture.

It analyzed how optimizations work in the LLVM system and analyzed
different places where optimizations can occur. It implemented several target
specific optimizations like instruction selection or instruction scheduling and
few others to speed up the DLX assembly code. It created three different
types of processors with a different number of stages in functional units with
different scheduling models to schedule the DLX assembly according to the
used processor.

At the end, the backend was successfully tested using LLVM IR inputs to
ensure that the backend produces a valid DLX assembly code. The backed
was also successfully tested using C code languages inputs to show that the
LLVM system now can compile C programming language codes to the DLX
assembly code. Optimizations were first tested using the same tests as the
backend to ensure that optimizations did not change the meaning of the code.
The evaluation proved that the implemented optimizations along with LLVM
optimizations can speed up the DLX assembly code.

What to improve

The DLX backend could be extended to compile into object files but that
would require a new DLX simulator which would allow such a thing. A new
DLX simulator would be handy either way as it could support dots in labels,
support .p2align directive, support .comm directive and would implement di-
rectives for storing 16-bit and 64-bit values to memory. Those changes would
remove the custom changes made in LLVM source codes which would make
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Conclusion

for a much cleaner solution. Some sort of implementation of standard C func-
tions would be very helpful, most importantly, functions used to dynamically
allocate memory such as malloc and free would really widen the group of C
programming language codes to be compiled into the DLX assembly code. It
would also be nice if the number of stages in units and delays could be set
using arguments to the llc tool. At this moment, the LLVM system allows
passing target specific arguments to the llc tool but does not fully support
passing those arguments to the TableGen files which are used for schedul-
ing models. Lastly, as there is never too many optimizations in a compiler,
additional optimizations could be implemented for the DLX target.
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Appendix A
Install

This appendix describes how to set up and use the LLVM backend for DLX
and how to use LLVM optimizations, different DLX processors and how to
run tests.

A.1 Build DLX Backend

In order to build this project, these following prerequisites are needed:

• CMake >= 3.4.3 - CMake is an open-source, cross-platform family of
tools designed to build, test and package software.

• Ninja (tested on version 1.7.2) - Ninja is a small build system with a
focus on speed.

• GNU Make (tested on version 3) - Makefile/build processor.

• GCC >= 4.8.0 - GNU C/C++ compiler.

The source code folder contains two subfolders:

• llvm - Contains all the LLVM source codes with the DLX target with
all optimizations and with all DLX processors.

• llvm un - Contains all LLVM source codes with the DLX target without
any target optimizations and does not use any DLX processors.

LLVM source codes are of this versions:

• LLVM - Version 9.0 Revision: 341764

• Clang - Version 8.0 Revision 341764
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A. Install

To build the LLVM system with the DLX target, these following steps must
be performed:

1. Make a new directory where the llvm will live.

2. Run the two commands printed below to either compile the debug ver-
sion or the release version. The llvm source can be either the version
with optimizations or the version without optimizations.

Release version:

cmake −G ” Ninja ” −DLLVM OPTIMIZED TABLEGEN=1 −DLLVM ENABLE RTTI=1
−DCMAKE BUILD TYPE=”Release ” −DLLVM TARGETS TO BUILD=”ZR”
−DLLVM ENABLE ASSERTIONS=1 l l vm source

n in j a

Debug version:

cmake −G ” Ninja ” −DLLVM OPTIMIZED TABLEGEN=1 −DLLVM ENABLE RTTI=1
−DLLVM TARGETS TO BUILD=”ZR” −DCMAKE BUILD TYPE=”Debug”
−−enable−debug−symbols −−with−o p r o f i l e l l vm source

n in j a

Options[63]:

• DLLVM OPTIMIZED TABLEGEN:BOOL - If enabled and building a
debug or asserts build the CMake build system will generate a Release
build tree to build a fully optimized tablegen for use during the build.
Enabling this option can significantly speed up build times especially
when building LLVM in Debug configurations.

• DLLVM ENABLE RTTI:BOOL - Build LLVM with run-time informa-
tion.

• CMAKE BUILD TYPE:STRING - Possible values are Release, Debug,
RelWithDebInfo and MinSizeRel.

• LLVM USE LINKER:STRING - Build LLVM using a specified linker.
The gold linker can save substantial amount of memory especially when
building debug version.

• DLLVM TARGETS TO BUILD - Specifies which targets should be built.

• DLLVM ENABLE ASSERTIONS:BOOL - Enables code assertions. This
also allows the release version produce SelectionDAG graphs.
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A.2. Use DLX Backend

A.2 Use DLX Backend

The DLX backend is integrated into LLVM tools such as clang, opt, or llc
tool. The following code gives some examples of how to run the DLX target
with these tools. These tools are created inside the bin folder when the LLVM
system is built.

CLANG PATH −O2 −S −emit−l lvm −−t a r g e t=zr −mcpu=gener i c−v1 s r c −o
out

OPT PATH −O2 −S −march=zr −mcpu=gener i c−v1 s r c −o out

LLC PATH −march=zr −mcpu=gener i c−v1 −asm−verbose=f a l s e s r c −o out

The first command takes a C programming language code and compiles it into
the LLVM IR. The second tool takes the LLVM IR and optimizes it and the
llc tool compiles the LLVM IR into the DLX assembly code for the generic-v1
processor. The asm-verbose argument at the llc tool might be necessary as,
for example, the WinDLX simulator cannot handle comments after directives.

A.3 Tests

Tests can be generated using two bash scripts described below. These scripts
generate the final DLX assembly codes which can be run on a DLX simulator.
Both scripts must be run from the test root directory and the paths to the
tools must be specified by a full path.

• runS.sh - Create DLX assembly codes without any optimizations (this
test should use the DLX target in the llvm un folder). This test takes
two arguments: a path to clang (-c) and a path to llc (-l). Creates a
new inputS folder that contains the tests.

• runO.sh - Create DLX assembly codes with optimizations (this test
should use the DLX target in the llvm folder). It uses the -O2 level for
optimizations. It uses the same arguments but also needs a path to opt
tool (-o) and a type of processor (-p). Creates a new inputO folder that
contains the tests.

The examples of using both scripts are shown below.
. / runO . sh −o opt path −c c lang path − l l l c p a t h −p p r o c e s s o r

. / runS . sh −c c lang path − l l l c p a t h
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Appendix B
Acronyms

ALU Arithmetic Logical Unit

CFG Control Flow Graph

DAG Directed Acyclic Graph

DLX Deluxe

FP Floating-point

FSPR Floating-point Status Register

PC Program Counter

SSA Single Static Assignment
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Appendix C
Contents of Enclosed Data

Storage

readme.txt.........brief description of contents of enclosed data storage
src

llvm src.tar.gz.....LLVM source codes with the unoptimized DLX
backend and the DLX optimized backend
tests ......................................... source codes of tests
thesis ................... source codes of this thesis in LATEX format

text............................................................thesis
DP Bures Michal 2019.pdf................thesis in the PDF format
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