
MASTER’S THESIS

CZECH
TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Computer Science

Reactive GitLab API library for Apple
platforms

Bc. Anh Duc Tran

Supervisor: Ing. Jakub Průša
Field of study: Software Engineering
January 2019

ii

ZADANI DIPLOMOVE PRACE
1. OSOBNI A STUDIJNI UDAJE

Piijment: Tran Jméno: Anh Duc

§Fakulta elektrotechnické

Katedra/istav: Katedra pocitaté

Studijni program: Informatika

Studijni obor: Softwarové inzenyrstvi

ll. UDAJE K DIPLOMOVE PRACI

Nazev prace:
Reaktivni GitLab API knihovna pro Apple platformy

Nazev diplomové prace anglicky:

Reactive GitLab API library for Apple platforms

Pokyny pro vypracovani:

1. Provedite knihoven pro komunikaci s GitLab API. Zaméite se na nasledujici majoritn! Apple piatformy: iOS,

macOS, watchOSs, tvOS.
2. Navrhnéte viastni knihovnu, bude fungovat na zminénych Apple platformach. Navrh musi byt modularni, aby bylo

modné jednodusé dopinit

ostatni Casti API. (napf. Ci, CD, Award Emoji, ?)

3. Vzhledem k rozsahlosti Gitiab AP! nen! cilem implementovat celé API, ale pouze cast API (tzv. endpointy). implementujte

andpointy, které souvis! s
autentizacl, repazitaii, reviz! a autory. Pii implementaci pouzijte reaktivnl pfistup programovani.
4. Funkénost knihovny demonstrujte pouzitim ve vami nové vytvofené aplikaci na platormé iOS. Aplikace bude zobrazovat

viechny do kterych ma uZivatel pfistup. Zaroveli bude u zobrazovat vSechny jeho revize |
a detail kaidé revize. UZivatel bude mit mozZnost v nastaven! aplikace vypinit své jméno a heslo pro pouzitf API.

Knihovnu otestujte pomoc! unit testi. Dale provédte méfeni rychlosti a srovnejte naméfené vysledky s existujicimi

knihovnami pro Apple piatformy

Seznam doporutene literatury: wee
}OS Apprentice: Beginning iOS development with Swift 4 - Matthijs Hollemans,

Fenizn Farook

[2] RxSwift. Reactive Programming with Swift - Florent Piltet, Junior Bontognali,
Marin Todorov, Scott Gardner

[8] Design Patterns by Tutorials: Learning design patterns in Swift 4 - Joshua
: Greene, Jay Strawn ; ;

Jméno a pracoviéié vedouci(ho) diplomovéprace;

Ing. Jakub Prida, katedra softwarového FIT

Jméno a druhé(ho) vedouci(ho) nebo konzultanta(ky) diplomové

Datum zadént diplomové price: 25.06.2018 Termin odevedani diploma

Pp i prace:

ert

prioe

CVUT-CZ-ZDP-2015.1 Swana1z2 © CVUT ¥ Prazs, Design: CVUT v Praze, VIC

222 © CVUT v Praze, Design: CVUT ¥ Preze, VIC

Acknowledgements
I would like to show a deep gratitude and
many thanks to Ing. Jakub Průša and
mobile development team from Quanti s.
r. o. for all suggestions, consultations,
and feedback during the creation of this
thesis. Furthermore, I want to thank my
parents and all people that supported and
motivated me during my studies. Thank
you very much.

Declaration
I hereby declare that the presented thesis
is my own work and that I have cited all
sources of information in accordance with
the Guideline for adhering to ethical prin-
ciples when elaborating an academic final
thesis. I acknowledge that my thesis is
subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the
Copyright Act, as amended, in particular
that the Czech Technical University in
Prague has the right to conclude a license
agreement on the utilization of this the-
sis as school work under the provisions of
Article 60(1) of the Act.

In Prague on 7st January 2019

v

Abstract
This master’s thesis aims at the creation
process of a reactive library for commu-
nication with GitLab API for Apple plat-
forms, demonstrating the functionality in
an iOS demo application and comparison
of the current solutions. This library for
communication simplifies future use in ap-
plications that need to communicate with
GitLab API. This library and the demo
application are available as open source
for the community for usage or for adding
new functionalities.

Keywords: GitLab, Reactive
Extensions, RxSwift, API, Networking,
Apple platforms, iOS, macOS, tvOS,
watchOS

Supervisor: Ing. Jakub Průša

Abstrakt
Tato práce se zaměřuje na proces vytvá-
ření reaktivní knihovny pro komunikaci
s GitLab API pro Apple platformy, ná-
sledné na použití této knihovny ve zku-
šební iOS aplikaci a poté na porovnání
se stávajícímí řešeními. Knihovna pro ko-
munikaci usnadní budoucí použití v apli-
kacích, které potřebují komunikovat s
GitLab API. Tato knihovna i demo apli-
kace je dostupná jako open source komu-
nitě pro použítí či případné rozšíření o
další funkcionality.

Klíčová slova: GitLab, Reactive
Extensions, RxSwift, API, Networking,
Apple platforms, iOS, macOS, tvOS,
watchOS

Překlad názvu: Reaktivní GitLab API
knihovna pro Apple platformy

vi

Contents
1 Introduction 1
2 Requirements 3
2.1 Library requirements 3
2.2 Demo application requirements . . 4
2.3 Additional requirements 4
3 Analysis 5
3.1 GitLab API 5
3.1.1 Endpoint groups to be
implemented 5

3.1.2 Additional aspects to consider 9
3.2 Programming languages for Apple
platforms . 9
3.2.1 Objective-C 9
3.2.2 Swift Language 10

3.3 Available GitLab API clients . . . 12
3.3.1 Swift . 14
3.3.2 Other languages/technologies 14
3.3.3 Key findings 17

3.4 Programming paradigms 18
3.4.1 Functional programming 18
3.4.2 Reactive programming 21
3.4.3 Functional reactive
programming 21

3.4.4 Conclusion 21
3.5 FRP in Swift 21
3.6 RxSwift . 22
3.6.1 Observables and Subjects . . . 23
3.6.2 Subjects 24
3.6.3 Operators 26
3.6.4 Schedulers 30

3.7 Architecture patterns for iOS
applications . 31
3.7.1 MVC . 31
3.7.2 MVVM 32
3.7.3 VIPER 33
3.7.4 Conclusion 34

3.8 Chapter summary 34
4 Design 37
4.1 Library Design 37
4.1.1 Structure 37
4.1.2 API Definition 39

4.2 Demo application design 39
4.2.1 Screens 40
4.2.2 Application Transitions 41

5 Implementation 45
5.1 RxGitLabKit implementation . . 45
5.1.1 Networking 45
5.1.2 Data models and parsing 48
5.1.3 Paginator 48

5.2 Demo application implementation 49
5.2.1 UI element positioning 49
5.2.2 Screen description 50
5.2.3 RxSwift in MVVM 51

5.3 Dependency management 52
5.3.1 CocoaPods 53
5.3.2 Carthage 53
5.3.3 Swift Package Manager 54

5.4 Documentation 54
5.5 Chapter summary 55
6 Testing 59
6.1 Test driven development 59
6.2 Unit Testing 59
6.2.1 Mocking 60
6.2.2 XCTest 60

6.3 Integration Testing 60
6.3.1 Creating a GitLab instance . . 61
6.3.2 Creating mock data 61
6.3.3 Testing code 61

6.4 Chapter summary 61
7 Comparison with other GitLabAPI
clients written in Swift 63
7.1 Technologies comparison 63
7.2 Performance comparison 63
7.2.1 Potential limitations 64
7.2.2 Benchmarking scenarios 64
7.2.3 Experiment circumstances . . . 65
7.2.4 Measurements and comparison 66

7.3 Chapter summary 67
8 Conclusion 69
A Bibliography 71
B Acronyms and Abbreviations 75
C CD Contents 77
D Figures 79
E Tables 81
F Code samples 85

vii

Figures
3.1 An example marble diagram . . . 22
3.2 Life-cycle of an observable 23
3.3 Observing a PublishSubject . . 25
3.4 Observing a BehaviourSubject 25
3.5 Observing a ReplaySubject . . . 25
3.6 A marble diagram with an
operator . 26

3.7 An example of map behavior . . . 27
3.8 An example of flatMap behavior 27
3.9 An example of filter behavior 28
3.10 An example of
distinctUntilChanged behavior . 28

3.11 An example of merge behavior 29
3.12 An example of combineLatest
behavior . 29

3.13 An example of zip behavior . . 30
3.14 Original MVC 32
3.15 Apples MVC 32
3.16 MVVM . 33
3.17 VIPER . 34

4.1 Simplified diagram of
RxGitLabKit 38

4.2 iPhone wireframes 42
4.3 iPad wireframes 43

5.1 Projects screen objects structure 52

7.1 Measurement result example . . . 67

D.1 Extended diagram of
RxGitLabKit. 80

Tables
3.1 GitLab API Enterprise Edition
Endpoint Groups 5

3.2 Pagination . 9

7.1 Hardware specification 66
7.2 Software specification 66
7.3 Summary for executions times.
Times in seconds. 67

E.1 GitLab API Endpoint Groups . . 82
E.2 Time measurements from
performance testing. Times in
seconds. 83

viii

Chapter 1
Introduction

Version control (also known as source control or revision control) systems
are software tools that help a software team manage source code changes
over time. Every modification is saved in this system so that it is possible to
recall specific versions later. It is also a way how to collaborate with other
team members and work on the same files without the members rewriting
each other’s files. The main benefits of VCS are a long-term change history
of every file with information, a possibility to work concurrently on the same
code and traceability of changes. Nowadays some of the most used VCS are
Apache Subversion (SVN), Mercurial and Git[1].

Git is an open-source system for distributed version control and nowadays is
by far the most widely used modern VCS. One of the best hosted open-source
Git repositories is GitLab [2]. GitLab hosts user accounts like GitHub, but it
also offers software to be used on third-party servers. Users can communicate
with this application using a web application or an REST API.

The web application allows users to do some tasks easier, but when it comes
to automation, it is not very fast and effective. Therefore these applications
provide a REST API which allows developers to communicate with the
application using commands. These commands can be used to automate
tasks and therefore save time and money.

The communication uses HTTP requests and responses. The requests must
be specially created and sent to a correct API URL in order to receive the
desired response. Manual creation of these requests is a complex, repetitive
and time-consuming process. Therefore using a library, which makes this
process faster and more straightforward is beneficial. After the request is
created, the communication takes place. The communication is asynchronous
and requires advanced techniques to handle this problem. One of the technique
is to use a Functional Reactive Programming (FRP), which many developers
nowadays prefer to use when developing new applications. At this moment,
there is no library for communication with GitLab API created with support
on all Apple platforms and which uses FRP. Therefore the primary goal of
this master’s thesis is to create a library for communication with GitLab API
which is supported on all Apple platforms and is implemented using FRP. An
iOS demo application must also be created to demonstrate the functionality of
the library. The subgoal of this master’s thesis is to use software engineering
principles and processes during the creation of this library and the application.

1

2

Chapter 2
Requirements

As stated in the introduction, the goal of this thesis is to create a library for
communication with GitLab API with the support of all Apple platforms
such as iOS, macOS, watchOS and tvOS. The whole GitLab API provides in
total hundreds of endpoints. The goal is not to implement the communication
with all endpoints. The goal is to create a modular library so that adding
components for communication with new endpoints is simple and doesn’t
require many changes in the existing code. The created library must contain
endpoints related to authentication, projects, repositories, commits, and
authors.

2.1 Library requirements

The functional and nonfunctional requirements are mostly related to the spec-
ification of this master’s thesis. Functional requirements define the internal
workings of the software and its functionality. Nonfunctional requirements are
related to the constraints on the design or implementation [3]. The functional
requirements for this library are the followings:..1. Communication with different GitLab hosts..2. User authenticate using username and password or a private key or an

OAuth token

The goal of this library is not to implement all endpoints but to be open for
new endpoint implementation. Therefore a modular approach must be used.
The main endpoints, that need to be implemented are..1. Authentication..2. Repositories..3. Commits..4. Authors/Users

The non-functional requirements for this library are the followings:..1. Use a functional reactive approach..2. Covered by unit tests

3

2. Requirements.......................................3. Work on these Apple platforms: iOS, macOS, watchOS and tvOS...4. The API of the library should be intuitive..5. Design must be modular

2.2 Demo application requirements

The functional requirements for this application are the followings:..1. Communication with different GitLab hosts..2. The user can log in using a username and a password..3. Show all repositories the user has access to..4. In each repository, the user can view all commits the user has access to..5. The user can show a detail of each commit he has access to

The non-functional requirements for this application are the followings:..1. Works on iOS 12 and newer..2. Works on iPhone and iPads..3. Must use RxGitLabKit to demonstrate its functionality..4. Use a functional reactive approach

2.3 Additional requirements..1. The code must be documented..2. The code is open source

4

Chapter 3
Analysis

The aim of this chapter is to analyse the areas that help reaching the goal
of this thesis. The main topics discussed in this chapter are GitLab API
with available API clients, programming languages for Apple platforms,
programming paradigms and architecture patterns.

3.1 GitLab API

GitLab API is a REST API and is divided into Community Edition (CE)
and Enterprise Edition (EE). Nowadays only version 4 of the API is available.
The version v3 was removed in GitLab 11.0. In the future, the API will start
moving to GraphQL which will bring many benefits. For example, avoiding
the maintenance of two different APIs, callers can request only for data which
is needed, and it is versioned by default [4]. The Community Edition API has
hundreds of endpoints which are divided 68 groups which are shown in table
E.1 included in appendix section. An endpoint group is a set of endpoints
related to a certain functionality category. For example a Commits endpoint
group includes endpoints which work with related operations to a commit.
The implemented endpoint groups in this thesis are highlighted with bold
font.

The Enterprise edition has additional endpoint groups to the Community
edition. These endpoint groups are shown in the table 3.1:

Epics License
Epic Issues Managed licences
Geo Nodes Merge Request Approvals
Issue Links

Table 3.1: GitLab API Enterprise Edition Endpoint Groups

3.1.1 Endpoint groups to be implemented

Because the goal is not to implement whole GitLab API (because it contains
hundreds of endpoints), five endpoint groups were chosen to be implemented.
This subsection summarizes the information about the endpoint groups
regarding commits, projects, repositories, users, and authentication.

5

3. Analysis
Authentication

There are three ways to authenticate with the GitLab API:..1. OAuth2 tokens..2. Personal access tokens..3. Session cookie..4. username and password

For admins who want to authenticate with the API as a specific user, or who
want to build applications or scripts that do so, two options are available:..1. Impersonation tokens..2. Sudo

How to obtain the tokens is not covered in this thesis.

Projects

Projects API provides endpoints allowing developers to work with projects.
GitLab offers three visibility options [5]:. private: Project access must be granted explicitly for each user.. internal: The project can be cloned by any logged in user.. public: The project can be accessed without any authentication.

This API group offers 23 endpoints which allow the developers to do these
actions: 1

. List all projects. List user projects. Create, read, update and delete a single project.Get project users. Create read, update and delete a single project for user.Get project events. Fork project. List forks of a project. Star and unstar a project
1https://docs.gitlab.com/ee/api/projects.html

6

https://docs.gitlab.com/ee/api/projects.html

..................................... 3.1. GitLab API

.Get languages. Archive and unarchive a project. Upload a file. Share project with a group. Delete a shared project link within a group. Hooks. Fork relationship. Search for projects by name. Start the Housekeeping task for a Project. Push Rules. Transfer a project to a new namespace. Branches. Project Import/Export. Project members. Start the pull mirroring process for a Project. Project badges. Issue and merge request description templates

Repositories

Repositories API provides endpoints allow developers to work with repositories.
This API group offers 7 endpoints which allow the developer to do these
actions: 2. List repository tree.Get a blob from repository.Get a file archive. Compare branches, tags or commits. Contributors.Merge base

2https://docs.gitlab.com/ee/api/repositories.html

7

https://docs.gitlab.com/ee/api/repositories.html

3. Analysis
Commits

Commits API provides endpoints allow developers to work with commits in
repositories. This API group offers 10 endpoints which allow the developer
to do these actions: 3. List repository commits. Create a commit with multiple files and actions.Get a single commit.Get references a commit is pushed to. Cherry pick a commit. Revert a commit.Get the diff of a commit. Add and read the comments of a commit. Commit status. List Merge Requests associated with a commit

Users

Users API provides endpoints allow developers to work with users. Some
endpoints allow to change the state of another user, but it requires admin
privileges. This API group offers 21 endpoints which allow the developer to
do these actions: 4. List users. Creation, update, read, delete of a user.Get and set a status of a user. List user projects. List SSH keys of a user. Create, delete and read an SSH key a user. Create, delete and read a GPG key a user. List emails for the current or given user. Add or delete an email of the current or given user. Block or Unblock user. Read all impersonation tokens of a user. Create, delete and read an impersonation token of a user

3https://docs.gitlab.com/ee/api/commits.html
4https://docs.gitlab.com/ee/api/users.html

8

https://docs.gitlab.com/ee/api/commits.html
https://docs.gitlab.com/ee/api/users.html

....................... 3.2. Programming languages for Apple platforms

3.1.2 Additional aspects to consider

Pagination

Some endpoints return a list of objects. Sometimes the number of objects
is too large to be returned at once - for example a list of all projects on
the server. GitLab deals with this problem using pagination. It returns
objects in pages which contain up to a specific number of the desired objects.
For this purpose the query parameters page and per_page are used. The
default page number is 1 and the default number of objects per page is 20
and maximum 100. Each response to a request to endpoints which paginate
the result includes a pagination header. The header contains data about the
total number of items, total number of pages and more useful information.
The number of pages and number of items is a useful information, that can
be used for downloading all items if needed. The list of parameters contained
in the header is shown in table 3.2.

Header Description
X-Total The total number of items
X-Total-Pages The total number of pages
X-Per-Page The number of items per page
X-Page The index of the current page (starting at 1)
X-Next-Page The index of the next page
X-Prev-Page The index of the previous page

Table 3.2: Pagination Headers [6]

3.2 Programming languages for Apple platforms

Nowadays the applications for Apple products are written in two main
programming languages: Objective-C and Swift. The focus of this section is
to analyze and decide which programming language (or both) will be used in
the GitLab API library.

3.2.1 Objective-C

Objective-C, also known as ObjC is an object-oriented programming language
created as an extension of C to which a messaging system from Smalltalk
programming language was added. The development of this language began
in 1986 and it is used in Mac OS X, iOS and GNU.

This language isn’t a fast language because it uses the runtime code
compilation. That involves an extra level of indirection when calling another
object from an object which when performing many times can slow down the
execution. The language also uses null pointers which can cause a security
vulnerability. Maintenance of the code is also complicated, because the

9

3. Analysis
developers must manage two files (header files and implementation files) for
each class. The syntax of the language uses many symbols like @, semicolons,
parentheses. [7]

Overall Objective-C has many downsides and this language is nowadays
not considered to be used in a new project anymore. There is a newer and
better language for Apple platforms called Swift which is described in the
next subsection 3.2.2.

3.2.2 Swift Language

Swift is an open-source programming language developed by Apple Inc.
for iOS, macOS, watchOS, tvOS and Linux which was announced at the
Developer conference WWDC 2014. It is a multi-paradigm programming
language, which took ideas from Objective-C, Rust, Haskell, Ruby, Python,
C#, CLU, D [8] and more languages.

Swift offers many features [9]:. Support for functional programming (filter, map, reduce). Native error handling using try, catch, throw.Generics. Tuples and multiple return values. Protocols and extensions

Swift is a relatively new programming language and the latest release
version is Swift 4.2. Swift is in comparison to Objective-C faster, safer, more
readable and open-source [10]. These are the reasons, why this language was
chosen for the implementation of the library developed during this thesis.

Further subsubsections describe some of the functionalities of Swift, which
was used in the development phase.

Optionals

Swift is a type-safe programming language, which ensures the data type of the
variable doesn’t change. For example if the variable is of type Bool it is not
possible to change it to Int. The variables are declared using the keyword
var and constants using let. The variables must be initialized before usage
and they can not be nil. For oparation with the nil values in Swift, a type
Optional is used.

An Optional is a wrapper around object types (Float, Int, String ...),
which represents two states - the optional has a value set or it is nil. If the
value of the Optional is set, the operation unwrap optional can be performed
to retrieve this value. If the value is not set, then it behaves like nil.

The code example 1 shows the initialization of the Optional value with nil.
The question mark (?) indicates an Optional value inside the variable. First
the code prints "text is nil". Then after setting the value, it performs

10

....................... 3.2. Programming languages for Apple platforms

an unwrap using optional binding which saves the optional value into
another constant (unwrappedText in the example 1), which can be then used
in the block scope (inside the curly braces) as a value which is not nil.
A declaration without using the question mark (var text:String = nil)
leads to a compilation error.

var text:String? = nil

if text != nil {
print(text)

} else {
print("text is nil")

}
OUTPUT:
text is nil

text = "I have a value now."
if let unwrappedText = text {
// unwrappedText has the text value and is not nil
print(unwrappedText)

} else {
print("text is nil")

}
OUTPUT:
I have a value now.

Listing 1: An Optional example

Extensions

Extensions allow adding new functionality and attributes to existing classes,
structures and protocols. They can also be used on the classes, in which
the source code cannot be changed as shown in example 2, where the Date
from Apple’s Foundation was extended by a computed type property and
an initializer. This feature can reduce and make the code cleaner to use.

Extensions enable adding the followings: [11]. Adding computed type properties. Adding new initializer. Definition of subscripts. Definition of new methods.Making an existing type conform to a protocol

11

3. Analysis
extension Date {
public init?(from string: String, using formatter: DateFormatter) {
if let date = formatter.date(from: string) {
self = date

} else {
return nil

}
}

var asISO8601String: String {
let formatter = ISO8601DateFormatter()
return formatter.string(from: self)

}
}

Listing 2: An Extension of Date class example

Protocols

Protocols in Swift represents a blueprint set of methods, properties and
other requirements which are necessary for the functionality. The protocol
can be adopted by classes, structures and enumerations by implementing the
requirements. When a type implements these requirements, it is said that
the type conforms to the protocol [12]. Essentially a protocol is very similar
to an interface in Java, but a protocol can be extended by an implementation
even on source code which cannot be changed as described in 3.2.2. The code
listing 3 illustrates an example of the protocol and protocol extension.

Subscripts

Subscripts are shortcuts for accessing member elements of a collection, list
or a sequence. An example usage is to access an Array element on a certain
index like this: arrayOfData[index] [13]. They can be defined on classes,
structures and enumerations and the interesting part is that they can be
manually defined to do whatever the developer desires. That means that the
subscript doesn’t have to operate on a collection, list or a sequence, it can
for example return a computed value as shown in code listing 4.

3.3 Available GitLab API clients

There are many API clients for GitLab in many different languages such as
Swift, Ruby, R, Pearl, Python, Go, PHP, Clojure, Java, and technologies such
as Backbone, Node.js, .NET and PowerShell. It is useful to examine these
clients to get the inspiration for designing the new library. In this section,
firstly the available libraries for Swift are shown, and then a summary of the
maintained libraries for other languages is shown. In this thesis, a library

12

.............................. 3.3. Available GitLab API clients

protocol APIRequesting {
var method: HTTPMethod { get }
var path: String? { get }
var parameters: QueryParameters { get }
var jsonDictionary: JSONDictionary? {get}
var data: Data? { get }

func buildRequest(with hostURL: URL,
header: Header?,
apiVersion: String?,
page: Int?,
perPage: Int?) -> URLRequest?

}

extension APIRequesting {
public func buildRequest(with hostURL: URL,
header: Header?,
apiVersion: String?,
page: Int?,
perPage: Int?) -> URLRequest? {
// Implementation of the method

}
}

Listing 3: Protocol method implementation using an extension

struct Power {
let base: Double
subscript(index: Int) -> Double {
return pow(base, Double(index))

}
}

let base = Power(base: 2)
print("The 3rd power is \(base[3])")
print("The 10th power is \(base[10])")

OUTPUT:
The 3rd power is 8.0
The 10th power is 1024.0

Listing 4: Definition of subscript example

that supports the latest GitLab API version 4, and the latest release was in
the year 2018 is considered to be a maintained library. At the end of this
section, there is a summary of the key findings, which can be used in the

13

3. Analysis
design phase. Note, that the information is up to date in time of writing this
thesis, which is December 2018 and there may be new updates in the future.

3.3.1 Swift

Here is a summary of available Swift clients and a deeper comparison with
RxGitLabKit can be found in chapter 7.

GitLabKit

GitLabKit is an API client library for GitLab API, written in Swift.

Project link: https://github.com/toricls/GitLabKit
Language: Swift 3.0
Platforms: macOS
Latest release: -
GitLab API v4 support: Yes
Last commit date: 18 Jun 2017

TanukiKit

A Swift 2.0 API Client for the GitLab API.

Project link: https://github.com/nerdishbynature/TanukiKit
Language: Swift 2.0
Platforms: iOS, macOS, tvOS, watchOS
Latest release: v0.5.2 (4 Aug 2017)
GitLab API v4 support: No
Last commit date: 4 Aug 2017

3.3.2 Other languages/technologies

There are many clients implemented in other technologies 5. This is a summary
of the most maintained libraries.

NARKOZ/Gitlab

Ruby wrapper and CLI for the GitLab REST API https://narkoz.github.
io/gitlab

5https://about.gitlab.com/partners/#api-clients

14

https://github.com/toricls/GitLabKit
https://github.com/nerdishbynature/TanukiKit
https://narkoz.github.io/gitlab
https://narkoz.github.io/gitlab
https://about.gitlab.com/partners/#api-clients

.............................. 3.3. Available GitLab API clients

Project link: https://github.com/toricls/GitLabKit
Language: Ruby 2.0+
Latest release: v4.7.0 (7 Nov 2018)
GitLab API v4 support: Yes

GitLab-API-v4

A complete GitLab API v4 client. https://metacpan.org/pod/GitLab::
API::v4

Project link: https://github.com/bluefeet/GitLab-API-v4
Language: Pearl
Latest release: v0.14 (6 Dec 2018)
GitLab API v4 support: Yes

python-gitlab

Python wrapper for the GitLab API

Project link: https://github.com/gpocentek/python-gitlab
Language: Python
Latest release: v1.6.0 (25 Aug 2018)
GitLab API v4 support: Yes

go-gitlab

A GitLab API client enabling Go programs to interact with GitLab in a
simple and uniform way

Project link: https://github.com/xanzy/go-gitlab
Language: Go
Latest release: v0.11.7 (15 Nov 2018)
GitLab API v4 support: Yes

php-gitlab-api

GitLab API client for PHP

15

https://github.com/toricls/GitLabKit
https://metacpan.org/pod/GitLab::API::v4
https://metacpan.org/pod/GitLab::API::v4
https://github.com/bluefeet/GitLab-API-v4
https://github.com/gpocentek/python-gitlab
https://github.com/xanzy/go-gitlab

3. Analysis
Project link: https://github.com/m4tthumphrey/php-gitlab-api
Language: PHP
Latest release: v9.9.0 (16 Nov 2018)
GitLab API v4 support: Yes

Gitlab Java API Wrapper

A wrapper for the Gitlab API written in Java.

Project link: https://github.com/timols/java-gitlab-api
Language: Java
Latest release: v4.1.0 (5 Oct 2018)
GitLab API v4 support: Yes

GitlLab API for Java (gitlab4j-api)

GitLab API for Java (gitlab4j-api) provides a full featured and easy to
consume Java API for working with GitLab repositories via the GitLab REST
API.

Project link: https://github.com/gmessner/gitlab4j-api
Language: Java
Latest release: v4.9.1 (5 Oct 2018)
GitLab API v4 support: Yes

GitLabApiClient

GitLabApiClient is a .NET rest client for GitLab API v4 (https://docs.
gitlab.com/ce/api/README.html).

Project link: https://github.com/nmklotas/GitLabApiClient
Language: .NET Standard 2.0.
Latest release: v1.0.2 (4 Nov 2018)
GitLab API v4 support: Yes

PSGitLab

An interface for administering GitLab from the PowerShell command line.

16

https://github.com/m4tthumphrey/php-gitlab-api
https://github.com/timols/java-gitlab-api
https://github.com/gmessner/gitlab4j-api
https://docs.gitlab.com/ce/api/README.html
https://docs.gitlab.com/ce/api/README.html
https://github.com/nmklotas/GitLabApiClient

.............................. 3.3. Available GitLab API clients

Project link: https://github.com/ngetchell/PSGitLab
Language: PowerShell
Latest release: v3.0.1 (3 Oct 2018)
GitLab API v4 support: Yes

3.3.3 Key findings

The main focus when looking for key findings was how the API of the clients
looks like for the developers. The implementation details were not analyzed,
because the clients were mostly written in other languages and the ideas are
not always transferable between the languages.

Most of the approaches to using the client is to create an instance of the
client and providing the host URL with some sort of authorization. This
instance was then used to establish the communication with the GitLab API.
If rewritten to Swift, the code would look like this:

let client = GitLabAPIClient("https://example.gitlab.com",
"PRIVATE_TOKEN")

// or
let client = GitLabAPIClient("https://example.gitlab.com")
client.login("USERNAME", "PASSWORD")

The approach the libraries took for reaching the endpoints were mainly
separated in two directions. In some of the libraries (3.3.2, 3.3.2, 3.3.2),
all the API calls are directly in the client, making the client contain many
functions which communicate with the API. The other set of libraries (3.3.2,
3.3.2, 3.3.2, 3.3.2) have the functions grouped by the API endpoint groups as
discussed in section 3.1. The second approach is more preferable because of
the modular nature of the approach. The code of these ideas rewritten to
Swift:

// The first approach
let project: Project = client.getProject(1)

// The second approach - modular
let project: Project = client.projects.get(1)

Some GitLab API endpoints contain a large number of objects which can
potentially overload processing. To deal with this problem, pagination is used
as introduced in 3.1.2. The libraries also implement a class which handles
pagination. The instance of this class is returned instead of an array of objects
when requesting endpoints containing a list of those objects. An example of
this behavior is shown in this code:

// The paginator
let projectsPaginator: Paginator = client.projects.getAll()

17

https://github.com/ngetchell/PSGitLab

3. Analysis
// Getting the project
let projects: [Project] = projectsPaginator.load(page: 2, perPage: 100)

The key takeaway from this analysis is to create one instance of the client
with authorization and the host URL, group endpoints into modules and use
paginators when accessing a list of objects.

3.4 Programming paradigms

Before the design phase takes place, it is worth considering which approach
will be used in the development, because it can save time while making the
implementation simpler and cleaner. One of the considerations to be made is
which programming paradigm to use for the problem.

A programming paradigm is a philosophy, style, or general approach to
programming. Each paradigm is composed of a set of concepts that makes it
the best for a certain kind of problem [14].

Two common programming paradigms are imperative and declarative.
Imperative programming describes computation as a list of instructions which
change the computers state. On the other hand, declarative programming
describes the logic of a computation without describing its control flow.

These programming paradigms include: [15] [16] [17]. Imperative.Procedural - groups of instructions are grouped into procedures.Object-oriented - groups instructions with part of the state.Declarative. Functional - the desired result is declared as the output of a series
of function applications.Reactive - the desired result is declared as a composition of data
streams and the propagation of change which update the result
when the values change. Logical - the desired result is declared as the answer to a question
about a system of facts and rules.Mathematical - the desired result is declared as the solution of
an optimization problem

In this thesis, only Functional, Reactive paradigms are described because the
others are not relevant for this thesis or are well known.

3.4.1 Functional programming

Functional programming (also known as FP) is a declarative programming
paradigm that describes computation as an evaluation of a mathematical

18

................................3.4. Programming paradigms

function. It is based on lambda-calculus, and many functional programming
languages can be considered as an extension of lambda-calculus. The keystone
of this approach is that using pure functions prevents side-effects which makes
reasoning about the code easier. [18]

The main concepts of FP.Higher-order functions and first class
In mathematics and computer science, a higher-order function is a
function that does at least of the following:. takes one or more functions as arguments (i.e., procedural parame-

ters). returns a function as its result

Functions in functional programming languages are first class citizens,
which means functions can be used as an argument and return another
function as an output. This inherently means that they can also be
higher-order. The difference between higher-order and first-class citizen
is that higher-order describes a mathematical function applied on another
function and first class in a given programming language is a computer
science term describing an entity which supports all the operations
generally available to other entities. The typical operations include
being passed as an argument, modified, assigned to a variable and being
returned from a function. [19].Pure functional and referential transparency Pure functional pro-
grams don’t have any side-effects. This makes the behavior simpler for
understanding and to write the code. The output of a pure function on
a pure argument doesn’t depend on the order of evaluation.
Because pure functions don’t mutate the shared variables of the program,
the variables can be parallelly accessed without being influenced by each
other. This means that pure functions are thread-safe.
Pure functional programming languages typically require referential
transparency. Referential transparency means that if two expressions
have the same value, one can be input as the other one in any other
expression without influencing the result..Recursion Looping (iteration) in functional programming languages is
usually achieved using recursion. Recursive functions invoke themselves,
which lets the program repeat itself. Tail recursion can be detected and
optimized by the compiler into the same code used to implement loops
in imperative languages.. Strict and non-strict evaluation Functional programming languages
can be categorized based on the evaluation strategy. In strict (eager)
evaluation the arguments of the function are processed before the function

19

3. Analysis
is invoked. On the other hand, non-strict (lazy) evaluation leaves the
arguments in a function unevaluated, and the outer function invocation
decides when the values will be computed. Let’s consider the next
example of functions f and g:

f:= x^2 - x + 5
g:= x * y

// Evaluate expression
f(g(2, 4))

The strict evaluation of the expression looks like this:

f(g(2, 4)) -> f(2 * 4) -> f(8) -> 8^2 - 8 + 5 -> 61

On the otherhand the non-strict evaluation the inner function are com-
puted when they are needed.

f(g(2, 4)) -> g(2, 4)^2 - g(2,4) + 5
-> (2 * 4)^2 - (2 * 4) + 5 -> 8^2 - 8 + 5 -> 61

From the example above, it is noticeable that in poorly implemented
non-strict evaluation a the argument g(2, 4) is computed multiple times
and in strict evaluation only one time. Strict evaluation is, therefore,
more efficient.

Although non-strict evaluation is not very efficient, it is also used and
mostly in definition languages. These languages support infinite data
structures like an array of all negative numbers of type integer or an
array of all prime numbers. Non-strict evaluation is then used only on
context with non-infinite length. This lead to the development of lazy
evaluation, which is a type of non-strict evaluation, where the result of
the initial evaluation of any argument can be shared across an evaluation
sequence so that the arguments are evaluated at most only once.

Comparison of functional and imperative programming

Imperative functions can have side-effects, which change the global state of the
program. This means that they lack referential transparency - the same input
can have a different output because of a different state. On the other hand,
functional programming prevents side-effects by using pure functions. A pure
function is a function which given the same inputs, always returns the same
output, and has no side-effects. This fact supports referential transparency.

In conclusion, referential transparency of pure functions leads to the elimi-
nation of side-effects, which can lead to better understanding and reasoning
about the code and makes verification, optimization and parallel programs
easier to do. These are the key motivations for using functional programming.

20

.....................................3.5. FRP in Swift

3.4.2 Reactive programming

Reactive programming is a programming paradigm that describes program-
ming with asynchronous data streams or event streams which propagate the
changes. Using this paradigm expressing static or dynamic data streams
is possible, and the changes are automatically propagated to the execution
model.

For example, in an imperative programming x := y + z means that x is
set to the result of y + z in the moment the expression is evaluated. After
this moment y and z can be changed but the change doesn’t propagate to x.
Hoewer in reactive programming, whenever y or z is updated, the value x is
also automatically updated without the need of new execution of x := y +
z.

Reactive programming was designed as a way to make the creation of
interactive user interfaces and real-time animations easier. For example, in
MVC architecture, reactive programming can allow changes to the underlying
model and the changes are automatically reflected in the view and vice versa.
[20]

More examples and concrete implementation can be found in section 3.6
RxSwift.

3.4.3 Functional reactive programming

Functional reactive programming is a combination of functional and reactive
programming. The basic usage is that functions are applied to event streams
or data streams, and the result is observed and reacted upon.

3.4.4 Conclusion

The core functionality of the developed library is to send and receive data
from GitLab API using the network. The data usually must be transformed
from one format to another (for example from JSON to an object).

Network communication in its core requires asynchronous data handling.
For asynchronous streams of data, the reactive programming approach is suit-
able. Also because the sent/received data from the API must be transformed,
the functional approach is appropriate. In conclusion, the best paradigm to
use for the library of this thesis is functional reactive.

3.5 FRP in Swift

Swift offers native functions like filter, map and reduce and also can use
NSNotificationCenter or Key-Value Observing (KVO) to make the code
functional and reactive. NSNotificationCenter is a singleton and can make
the code hardly traceable when debugging because it is globally accessible
and can notify or be notified anywhere from code [21]. KVO in Swift has an
API which is not easy to use and can bring much boilerplate code to observe
one variable. Using the native Swift components to implement FRP is a

21

3. Analysis
x zy

Time
0:00 0:10 0:20 0:30 0:40

Figure 3.1: An example marble diagram

process which can take much time, and the maintainability of the code can
be difficult.

Using FRP frameworks for implementation is therefore a better idea. Most
popular frameworks for FRP are ReactiveSwift and RxSwift [22]. The RxSwift
framework is a part of ReactiveX family. ReactiveX is a family of libraries
for composing asynchronous and event-based programs by using observable
sequences. It extends the observer pattern to support sequences of data or
events and adds operators that allow you to compose sequences together
declaratively while abstracting away concerns about things like low-level
threading, synchronization, thread-safety, concurrent data structures, and
non-blocking I/O. It was developed by Microsoft Corp. and nowadays is open-
source.This API is implemented in many languages such as Swift(RxSwift),
Java (RxJava), JavaScript(RxJS), C#(Rx.NET), Python(RxPY). For this
thesis, the library RxSwift is the most important because out of the ReactiveX
family, it is the only one used for developing on Apple platforms. RxSwift
was, therefore, was chosen over ReactiveSwift for the implementation because
the knowledge of RxSwift API can be transferable to other programming
languages in which the ReactiveX is supported. The framework is described
in the next section 3.6.

3.6 RxSwift

In this section, the main building components of RxSwift are described. A
basic knowledge of these components can give an idea, how FRP works. The
main components are Observables, Operators and Schedulers. One of the best
ways of visualizing the behaviour is using marble diagrams. As illustrated in
figure 3.1, a marble diagram shows values plotted on a timeline. The left to
right arrow represents time, and the circles with values represent elements of
a sequence. Element x is emitted and after some time elements y and z will
be emitted.

The time between emission of the values can vary, and it could be at any
point in the life of the observable. Every observable has a life-cycle which is
further described in the subsection below.

22

....................................... 3.6. RxSwift

3.6.1 Observables and Subjects

An Observable (also know as observable sequence or sequence) is an object
that asynchronously emits a sequence of events that carry values of a given
type. [23] An instance of Observable<T> allows one or more observers to
listen to the events and react on these events in real time. In RxSwift, an
Event is an enumeration type of 3 possible states:..1. .next(value: T) - An event that contains the latest data value. This

is how observers can receive the actual data...2. .error(error: Error) - If an Error has occured, the Observable
will emit an error event and terminate the sequence. No other next
events will be emitted after the termination...3. .completed - This event occurs when a sequence terminates sucessfully.
It means the Observable completed its life-cycle normally and will not
emit any other events.

These states determine the life-cycle of an Observable. The .next event
can be emitted any time before the Observable is terminated. An Observable
can terminate in 2 ways .error or .completed. After the termination of the
Observable no events can be emitted anymore. The life-cycle is depicted in
the figure 3.2

1 32

a cb

.next
.completed

.error

sequence A:

sequence B:

Figure 3.2: Life-cycle of an observable

The events of an Observable can be observed by observers using subscribe(on:
(Event<T>)->()) method. After the subscription the observer can then react
on the values of the sequence. An example of this action is shown in the code
snippet 5.

The Observable doesn’t emit data until it receives a subscription. The
first subscription triggers the sequence to begin emitting events until it is
terminated. The subscription can manually be canceled by calling dispose()
on it or adding the subscription to a DisposeBag which cancels the subscrip-
tion automatically on its deinitialization. If there are no subscriptions on the

23

3. Analysis
let sequence = Observable.from(["T", "E", "S", "T", "!"])

let subscription = sequence.subscribe { event in
switch event {
case .next(let value):
print(value)

case .error(let error):
print(error)

case .completed:
print("completed")

}
}

OUTPUT:
T
E
S
T
!
completed

Listing 5: A subscription example

Observable, it terminates automatically. The subscriptions also live until
the Observable has terminated or until the subscription has been disposed.
If the subscription is not disposed and not used anymore, it remains in the
memory, and that can lead to memory leaks. Therefore adding a subscription
to a DisposeBag or disposing it manually using dispose() is very important
to prevent this unwanted effect.

3.6.2 Subjects

Subjects can act as an observable of an observer. [24] That means that it
is possible to subscribe to a subject and also dynamically add events to it.
There are four diffirent types of Subjects in RxSwift:. PublishSubject: When an observer subscribes to this subject, only the

events after the subscription occurred are received by the observer. The
behavior is shown in figure 3.3.. BehaviourSubject: This subject gives any subscriber the last recent
element and every event that is emitted by this sequence after the
subscription happened. The behaviour can be seen in the figure 3.4.. ReplaySubject: This subject gives the option to replay more than one
recent element to new subscribers. The behaviour can be seen in the
figure 3.5.

24

....................................... 3.6. RxSwift

1 32

2Observer A

3Observer B

3

Figure 3.3: Observing a PublishSubject

1 32

1 2Observer A

32Observer B

3

BehaviourSubject

Figure 3.4: Observing a BehaviourSubject

1 32

1 2

Observer A

32Observer B

3

ReplaySubject ­ buffer size: 3

1

Figure 3.5: Observing a ReplaySubject

. Variable: A Variable only wraps a BehaviourSubject, it preserves
its current value and replays this value to new subscribers.

25

3. Analysis
3.6.3 Operators

Operators can be used to transform, filter, combine, process and react to
events emitted by observables [23]. They don’t change the values in the
sequence they are applied to, they create a new observable which contains
changed values. The operators can be composed together in a chain to
express a complex app logic. Currently, there are 74 operators which are
not the focus of this thesis therefore only some basic transforming, filtering
and combining operators are described. The description of all operators can
be found in the ReactiveX online documentation 6 To better understand
the output observable after using an operator, an extended marble diagram
is used. The observable on the top is the original observable, below this
observable is an operator and below the operator is a new observable with
the operator applied. If an operator has a function, usually the $0 refers to
the value, that is passed into the function. The extended marble diagram is
illustrated in 3.6.

1 32

10 20

Observable
with an
applied
operator

30

Observable A

map { $0 * 10 } Operator

Figure 3.6: A marble diagram with an operator

Transforming Operators

The values coming from the observables may not always be in the format
that is needed. By using a transformation operator, a new observable with
the needed output data can be created. Two of the most used transforming
operators are map and flatMap which work like Swifts standard map and
flatMap except they operate on observables.. map - this operator takes each emitted event and transforms its value

using a transform function . An example of the transformation is shown
in figure 3.7.. flatMap - this operator can be used when the observable emit other
observables, and the values of those observables are needed. The flatMap
operator merges the emission of these resulting observables and merges
them into one sequence. This operator a little bit difficult to understand
by reading what it does. The example marble diagram 3.8 and the code

6http://reactivex.io/documentation/operators.html

26

http://reactivex.io/documentation/operators.html

....................................... 3.6. RxSwift

1 32

10 20

Observable
after the
operator is
applied

30

Observable A

map { $0 * 10 } Operator

Figure 3.7: An example of map behavior

snippet 6 should make the understanding of this operator a little bit
clearer.

S1 S2

10 40

FlatMapped
Observable

30

Observable of observables

flatMap { $0 * 10 }

1 3

4 3

30

Figure 3.8: An example of flatMap behavior

Filtering Operators

Not every eve coming from the observable is useful for the subscriber. Filtering
operators are used for passing through only the values that pass through
certain criteria to the subscriber. In this part, the main filtering operator
filter and operator distinctUntilChanged are illustrated.. filter - this operator passes through only elements, that fulfill a condi-

tion (the result of condition is true). An example of the filter operator
is shown in figure 3.9.. distinctUntilChanged - this operator passes through an element only

27

3. Analysis
let sequence1 = Observable<Int>.of(1, 3)
let sequence2 = Observable<Int>.of(2, 4)

let sequenceOfSequences = Observable.of(sequence1, sequence2)

sequenceOfSequences
.flatMap { $0.value * 10}
.subscribe (onNext: {
print($0)

})

OUTPUT:
10
20
30
40

Listing 6: An example code of flatMap

1 23

1 2

Observable A

filter { $0 < 3 }

Filtered
Observable

4

Figure 3.9: An example of filter behavior

if the value changed from the previous one. An example of the filter
operator is shown in figure 3.10.

1 21

1

Observable A

Filtered
Observable

2

2

distinctUntilChanged()

Figure 3.10: An example of distinctUntilChanged behavior

28

....................................... 3.6. RxSwift

Combining Operators. merge - this operator merges the output of multiple observables into a
single observable with all emitted events from the individual observables.
An example of the merge operator is shown in figure 3.11.

1

1 2

Observable A

Observable.of(A, B)

4

23
Observable B

3 4

merge()

Figure 3.11: An example of merge behavior

. combineLatest - this operator combines the latest values from multiple
observables into a single observable. Each time one of the observables
emitts an event, a new combined value is also emitted from the resulting
observable. An example of the combineLatest operator is shown in
figure 3.12.

1

Observable A

Combined
Observable

Observable B

2 3

A B

1A 2B

C D

2C 3C 3D

combineLatest(A, B) { $0 + $1}

Figure 3.12: An example of combineLatest behavior

. zip - this operator combines the latest values from multiple observables
into a single observable. It operates in strict sequence, meaning that the
first combined value emitted by zip is emitted after all of the observables
emit the first element. Each time a new value is emitted from an
observable, zip waits until all the observables emit a new value until it
emits the combined value. This means that this operator emits as many

29

3. Analysis
elements as the number of elements of the source observable with fewest
values. An example of the zip operator is shown in figure 3.13.

1

Observable A

Zipped Observable

Observable B

2 3

A B

1A 2B

C D

3C

zip { $0 + $1}

Figure 3.13: An example of zip behavior

3.6.4 Schedulers

A scheduler is a context where a process takes place. This context can be a
thread, dispatch queue or similar entities [23]. Operators work on the same
thread on which the subscription is created unless this behavior is changed. In
RxSwift to force operators to do their work on a specific queue, the schedulers
are used. The thread of a subscription can also be forced using schedulers.
The two main operators for doing this are observeOn and subscribeOn.

Serial and concurrent schedulers

Because a scheduler is a context, which could be anything (thread, dispatch
queue, custom context), and all operators which transform sequences must
preserve implicit guarantees, it is necessary to use the right scheduler. There
are two types of schedulers - serial or concurrent:. serial scheduler - using this scheduler, RxSwift does the computations

serially. When a serial dispatch queue is used, the schedulers perform
some optimizations underneath.. concurrent scheduler - RxSwift tries to run the jobs simultaneously.
The operators observeOn and subscribeOn preserve the order in which
the tasks need to be performed in order to ensure that the subscription
is on a correct scheduler.

Built-in schedulers

These are the 5 built-in schedulers in RxSwift [25]:. Serial

30

........................ 3.7. Architecture patterns for iOS applications

. MainScheduler - this scheduler abstracts the work that needs to
be executed on MainThread. UI work is usually performed by this
scheduler.. CurrentThreadScheduler - this scheduler schedules units of work
on the current thread and is the default scheduler for operators
generating elements.. SerialDispatchQueueScheduler - this scheduler abstracts the
work on a serial DispatchQueue and is suitable for processing
background jobs which are better scheduled serially. This scheduler
has several optimizations when using observeOn..Concurrent. ConcurrentDispatchQueueScheduler - this scheduler abstracts
the work on a concurrent DispatchQueue and is suitable for multi-
ple, long-running tasks that are performed in the background and
need to finish at the same time.. OperationQueueScheduler - this scheduler abstracts the work on
a NSOperationQueue and is used when more control over the con-
current jobs. A maximum number of concurrent jobs cah be defined
by setting maxConcurrentOperationCount.

3.7 Architecture patterns for iOS applications

One part of this thesis is to create an iOS demo application showing the
functionality of the library. Nowadays mobile applications are getting more
complex and more significant hence architecture patterns are needed for
maintainability and reusability of the code. There are more architecture
patterns to choose from [26], in this section, only the popular patterns [27]
MVC, MVVM and VIPER architecture patterns are described.

3.7.1 MVC

The architecture pattern MVC is based on three components: Model, View,
Controller. This architecture pattern is very often used for developing appli-
cations with user interfaces [28]..Model defines the data which the application contains and if the model

data changes, it notifies the Controller or the View.. View is presented to the user. It presents the application data and
observes the user interaction and notifies the Controller. Controller is a layer between the View and the Model. It is in charge of
the logic of the application. It manages the state updates from Model
to View and updates the Model based on the interaction of the user on
View layer.

31

3. Analysis

Controller

View Model

User actions

Replaces

Notifies about updates

Updates

Receives the updated state

Figure 3.14: Original MVC (originaly taken and recreated from 7)

View Model

Owns and updates

Notifies

Controller

UIViewControllerUIView

Life - cycle

Figure 3.15: Apples MVC (originaly taken and recreated from 8)

Apples form of MVC is a little bit different from the original which can
be seen on figures 3.14 and 3.15. The difference is that the View and Model
never communicate with each other directly. This enables the reusability of
the View without the coupling with the Model. On the other hand, View and
Controller are very tightly coupled which brings more code to Controller [29]
and therefore fails to separate the concerns [26]. This architecture is however
good for building small projects because it is easy to learn and doesn’t bring
much boilerplate code.

3.7.2 MVVM

The MVVM architecture pattern has a similar concept to MVC. This pattern
is composed of three components: Model, View and ViewModel, therefore the
abbreviation MVVM stands for M̈odel-View-ViewModel̈. [30].Model has the same function as in MVC, hence it defines the data the

application contains.. View presents the data to the user and forwards user inputs to ViewModel.
This component contains a minimum amount of application logic and
reacts mainly on ViewModel. [31]. ViewModel connects view and model and contains the main logic of the

32

........................ 3.7. Architecture patterns for iOS applications

ViewModel

View Model

Owns

Notifies about updates

Owns and
updates

Updates through binding

UIView and/or
UIViewController

Figure 3.16: MVVM (originaly taken and recreated from 9)

application. It communicates with Model and prepares data for View. It
also reacts on user interaction forwarded from View.

When comparing MVC and MVVM architecture patterns used in iOS it is
necessary to note, that the implementation of iOS MVC practically has only
two components - View/Controller and Model. A lot of the application and
presentation logic is contained in the View/Controller component, which lead
to view controllers with a lot of code (also known as Massive View Controller
[32]). The MVVM pattern, the component View/Controller is considered to
be as one View and between this component and Model a new component
ViewModel is added. The ViewModel connects the two components and the
most of the appliation logic. The architecture pattern is depicted in figure
3.16.

The main benefits of MVVM are followings:. Separation of concerns - The view just presents the data.Avoiding Massive View Controllers.Better testability of the code improves due separation of code into
smaller pieces.Reusable code

3.7.3 VIPER

This architecture has a different approach from MVC and MVVM architecture.
It is composed of five layers: View, Interactor, Presenter, Entity and Router
which makes the separation of responsibilities more granular.. View presents the data to the user and forwards user inputs to Presenter.. Interactor contains the application logic related to the data Entities.. Presenter contains the View related logic. It reacts on user inputs and

communicates with Interactor from which it receives updated data.. Entities are plain data structures which can be accessed only by Interac-
tor.

33

3. Analysis

PresenterView

Entity

Router

Interactor

Owns and sends
user actions

Updates

UIView and/or
UIViewController

Owns and asks for
updates

UIKit independent
mediator

Notifies

Knows about

Manipulates data and use
cases

Figure 3.17: VIPER (originaly taken and recreated from 10)

. Router is responsible for interaction between the VIPER modules.

The main benefits of VIPER are followings:. Separation of concerns.Better testability.Reusable code

The downsides of VIPER are that it bring a lot of boilerplate code and a
lot of complexity to the code. More complex architectures can lead to large
development and maintenance overhead in the beginning in the project but
it can save time in the future if the application gets bigger. VIPER is not
suitable for smaller applications.

3.7.4 Conclusion

The architecture pattern MVVM was chosen for the development of the demo
application because it brings separation of concerns and better testability while
not being too complex as VIPER architecture. Also MVVM architecture is
often used in conjunction with FRP frameworks, because they bring bindings,
which is one of the main aspects of MVVM.

3.8 Chapter summary

To sum up this chapter, some key ideas were extracted from the examination
of the GitLab API and existing API clients. After reviewing the programming
paradigms, the FRP approach was chosen for the implementation because it
suits the final products needs. Swift 4.2 was selected as the primary program-
ming language in which the library will be implemented because of many
benefits over Objective-C such as performance, safety, and simpler cleaner
syntax. As FRP framework, RxSwift was favored over other frameworks
and solutions because of the knowledge transferability to other programming

34

.................................. 3.8. Chapter summary

languages. This framework was also examined and described to show an
example of the FRP concept implementation and to get familiar with the
API before the implementation phase. The demo application will follow the
MVVM architecture pattern due to its synergy with RxSwift.

35

36

Chapter 4
Design

This chapter describes the library and demo application design. The section
Library design describes how the library is structured and what are the
main entities. Application design section covers the architecture design and
shows wireframes of the demo application. The library developed during
this thesis is further referred to as RxGitLabKit and the demo application
as RxGitLabKitDemoApp. The library is named RxGitLabKit because it is
created for GitLab, uses reactive extensions (Rx) and the suffix ’Kit’ is
widely used in iOS framework naming (to name few of them: UIKit, ARKit,
MapKitCallKit).

4.1 Library Design

As stated in the analysis part, the GitLab API is divided into groups E.1. The
design follows this division and is created with modularity and extensibility
in mind.

4.1.1 Structure

The main class of the library is a class called RxGitLabAPIClient, which
represents the main entry point for using this library. The client provides child
classes of EndpointGroup. These child classes then offer concrete methods for
the communication with GitLab API group. The implemented child classes
are the following:. AuthenticationEndpointGroup. RepositoriesEndpointGroup. UsersEndpointGroup. ProjectsEndpointGroup. CommitsEndpointGroup
HostCommunicator is used for the underlying HTTP communication with

the GitLab API Server. Some of the of the methods of the EndpointGroup
child classes return a Paginator which is used when there is a larger amount
of returned objects in a list. For a clearer picture a simplified class diagram
is presented in figure 4.1 and the extended class diagram can be seen in the
appendix section D.1.

37

4. Design..
RxGitLabKit

RxGitLabAPIClient

hostCommunicator: HostCommunicator

+ hostURL: URL {readOnly}

+ oAuthToken: String?

+ privateToken: String?

+ currentUserObservable: Observable<User?> {readOnly}

+ authentication: AuthenticationEndpointGroup {readOnly}

+ commits: CommitsEndpointGroup {readOnly}

+ projects: ProjectsEndpointGroup {readOnly}

+ repositories: RepositoriesEndpointGroup {readOnly}

+ users: UsersEndpointGroup {readOnly}

+ changeHostURL(hostURL: URL): Void

+ logIn(username: String, password: String): Void

+ logIn(privateToken: String): Void

+ logIn(oAuthToken: String): Void

+ logOut(): Void

HostCommunicator

- network: Networking

/ authorizationHeader: Header {readOnly}

+ hostURL: URL

+ privateToken: String?

+ oAuthTokenVariable: Variable<String?>

+ response(APIRequesting): (HTTPURLResponse, Data?)

+ header(APIRequesting): Header

+ data(APIRequesting): Data

+ object<T>(APIRequesting): T

+ httpURLResponse(APIRequesting): HTTPURLResponse

HTTPClient

- session: URLSessionProtocol

+ response(request: URLRequest): (HTTPURLResponse, Data?)

+ header(request: URLRequest): Header

+ data(request: URLRequest): Data

+ object<T: Codable>(request: URLRequest) : T

<<Interface>>
Networking

+ header(URLRequest): Header

+ object<T: Codable>(URLRequest) : T

+ response(URLRequest): (HTTPURLResponse, Data?)

+ data(URLRequest): Data

UseUse

EndpointGroup

hostCommunicator: HostCommunicator

Endpoints: Enum

httpURLResponse(APIRequesting): HTTPURLResponse

object<T>(APIRequesting): T

data(APIRequesting): Data

header(APIRequesting): Header

response(APIRequesting): (HTTPURLResponse, Data?)

AuthenticationEndpointGroup

Use

CommitsEndpointGroup

UsersEndpointGroup

ProjectsEnpointGroup

RepositoriesEndpointGroup

Paginator<T>

- apiRequest: APIRequest

- communicator: HostCommunicator

- perPage: Int

+ totalPages: Int

+ totalItems: Int

- loadPage(page: Int): [T]

+ subscript(index: Int): [T]

+ subscript(ClosedRange<Int>): [T]

+ loadAll(): [T]

Use

Models

Structures for
JSON objects.
Conforming
Codable protocol.

Use

Figure 4.1: Simplified diagram of RxGitLabKit

HostCommunicator

All HTTP communication with GitLab API host goes through this class. It
uses a HTTPClient for HTTP communication and contains the host URL,
private and OAuth token for authenticated communication.

HTTPClient

This class provides the following basic networking functions:. response(for request: URLRequest). header(for request: URLRequest). data(for request: URLRequest). object(for request: URLRequest)

These functions are wrapped by a Rx extension so that the functions return
an Observable to which can be then subscribed to.

RxGitLabAPIClient

This is the root class of RxGitLabKit library. This class acts as a hub for all
EndpointGroup classes and is responsible for authentication. An instance of
this class can be created with a GitLab host URL and a private or OAuth

38

............................... 4.2. Demo application design

token. If no token is provided, a manual authorization using an username and
password (func logIn(username: String, password: String)) must
be then called which results in acquiring an OAuth token from the server.
This OAuth token is then used for the authorized communication between
the host and the library.

EndpointGroup

An EndpointGroup is a superclass for all endpoint groups. The children
of this class provide the endpoint URLs for a given endpoint group and
related methods for communication with those API endpoints. For the
communication with GitLab API server, an instance of HostCommunicator
is used. Most of the functions return an Observable of the desired objects,
allowing further asynchronous processing. Some of the functions return a
Paginator which deals with pagination of endpoints that can return a large
amount of items.

Paginator

It communicates with a concrete endpoint and uses parameters page and
perPage to retrieve the desired page from the server. Paginator is used when
the concrete endpoint can provide a large amount of objects and only a part
of the objects are needed. Paginator also provides a function loadAllItems
which concurrently loads all items from the given endpoint.

4.1.2 API Definition

As found in the analysis chapter 3.3.3, the basic usage of this library should
look like this:

let hostURL = URL(string: "gitlab.test.com")!
let client = RxGitLabAPIClient(with: hostURL,
privateToken : "mockprivtkn12345")

let commitObservable = client.commits.getCommits(projectID: 10)
commitObservable

.subscribe(onNext: { commits in
// do something with commits

},
onError: { error in

// do something with the error if it occures
})

4.2 Demo application design

In this section, the demo application UI and functionality is described. The
design of the screens is following the common practices of MVVM architecture
discussed in section 3.7.2, and for this reason, it is not described in this part.

39

4. Design..
The design follows requirements stated in section 2.2 and common practices
of UI development taken from Apples Human Interface Guidelines [33].

4.2.1 Screens

First, it must be considered which screens should this application be consisted
of and then decide how to transition between these screens. If two or more
screens can transition between each other, they are further referred to be in
one "navigation stack". In summary, the user must be able to log in, see a
table of repositories, in those repositories, see a list of commits and then be
able to see a detail of a commit.

In total the application must have these screens:. Log In. User detail with log out option. List of repositories. List of commits. Commit detail

The screen navigation stacks of the application can be divided into two:..1. List of repositories <-> List of commits <-> Commit detail..2. Log In <-> User Detail

For multiple navigation stacks using a Tab navigation stack is a suitable
choice because it organizes information at the app level and the navigation
stacks are then easily accessible [34].

The first tab consists of two lists and then one detail. For this usage, there
is a suitable component called UISplitViewController which shows a list
of objects on one part of the screen and the detail on the second part. This
works only on devices with higher resolution such as iPads and on smaller
devices (iPhones) it works like a normal UINavigationController. A table
component is fitting for showing a list of objects or a list of information. All
the screens in the first tab therefore include a table to show the information.

The second tab manages the logged in user and the GitLab API server to
be used. If the user is not logged in, the Log In screen is shown first, User
Detail screen is shown otherwise.

List of repositories

This screen shows a list of repositories the user has access to. It can also
show a list of public repositories. The user has a choice to show the list of
public repositories or to show his repositories. The user can also use a search
bar to filter the results.

After taping on a repository name a new screen with a list of commits of
that repository is shown.

40

............................... 4.2. Demo application design

List of commits

This screen shows a list of commits of the previously selected repository. The
user must have privileges in order to see the commits.

After taping on a commit name a new screen with a commit detail is shown.

Commit detail

Commit detail shows the information about the commit.

Log In

On this screen, there is an input for username, password, and a GitLab URL.
The user can also input a private token or OAuth token for authorization.
The last component is a button which initiates the login process.

The logic of this screen is to take take the user input, try to log in with
the information given by the user, and if successful, transition to the User
Detail screen. If unsuccessful, show an Error message.

User Detail

This screen shows the most important user information like username, OAuth
or Private Token, e-mail address. The user details are shown in a table
component.

Furthermore, it shows a log out button which initiates a logout process
when pressed. After logging out, this screen transitions to Log In screen.

4.2.2 Application Transitions

The figure 4.2 shows wireframes for iPhone size and also shows all transitions
in the application. The wireframes of the iPad version is shown in figure 4.3.
The wireframes for iPad don’t include the Login / Profile section because the
layout is the same, only it is displayed on a bigger screen.

41

4. Design..

Figure 4.2: iPhone wireframes

42

............................... 4.2. Demo application design

Figure 4.3: iPad wireframes

43

44

Chapter 5
Implementation

In this chapter, the implementation of the library and the demo application is
described, and some interesting parts of the code are shown. The development
of the RxGitLabKit followed the TDD principles. Networking, object parsing,
and pagination are shown as the interesting parts of the code.

The RxGitLabKitDemoApp describes the implementation of the MVVM
architecture with the RxGitLabKit and the usage of RxSwift and RxCocoa.

The code was developed in Xcode 10.1 which is the latest version of Xcode
at the time of writing this thesis. Xcode is the main Integrated Development
Environment (IDE) for developing software for macOS, iOS, watchOS, and
tvOS.

5.1 RxGitLabKit implementation

5.1.1 Networking

One of the most popular library for networking in Swift is Alamofire with
over 29 thousand stars and over 5 thousand forks on GitHub. This library
provides a lot of features like chainable request/response methods, URL /
JSON/ plist parameter encoding, authentication with URLCredential, HTTP
Response Validation and many more.[35]. This library does not support
Reactive extensions in its core, but there is a library called RxAlamofire that
wraps Alamofire in order to use the benefits of RxSwift. These libraries
provide some of the functionalities needed for GitLab API library, however,
adding these libraries increases the number of dependencies and brings much
unused code to this project.

Therefore a lightweight custom networking layer was created using native
Cocoa library components and wrapped with RxSwift in order to minimize
dependencies and provide a reactive networking component for this project.

Custom networking layer

The custom networking layer was created using Cocoa core libraries and
RxSwift. That makes this layer lightweight and depends only on RxSwift
which is used in most parts of this project. Cocoa networking components
allow the code to communicate over the network and RxSwift makes this com-
munication reactive. The main classes for networking in Cocoa library are URL,
URLRequest/HTTPURLResponse, URLSession, HTTPURLResponse and Data.

45

5. Implementation....................................
. URL

The URL class represents a local or remote URI. It can be anything from
a local file to an HTML webpage. An URL in Swift is specified like this:

let httpURL: URL? = URL(string: "https://gitlab.test.com")

Note that the initializer returns an optional value, because the string
provided to the initializer can be in a non-compatible format such as
URL(string:"5-a.b.c"), which results in returning nil.. URLRequest
The URLRequest represents a request for an URL, and its instance has
an HTTP method (GET, POST, DELETE ...), a body and a header. A
definition of an URLRequest for a POST request sending and asking for
a JSON response is depicted in the following example:

let postURL = URL(string: "https://gitlab.com/oauth/token")!
var postRequest = URLRequest(url: postURL)
postRequest.httpMethod = "POST"
postRequest.setValue("application/json",
forHTTPHeaderField: "Content-Type")

postRequest.httpBody = try? JSONSerialization
.data(withJSONObject:
["grant_type" : "password",
"username" : "mockUserName",
"password" : "mockPassword123"]). URLSession

The URLSession is a class that performs an URLRequest. In most cases
a singleton URLSession.shared is used. The most important method is
func dataTask(with:completionHandler:). This method takes the
URLRequest and handles it by a defined completion handler. The basic
usage of getting the content of a website looks like the followings:

let httpURL = URL(string: "https://gitlab.com")!
let httpTask = URLSession.shared.dataTask(with: httpURL) {
(data, response, error) in
guard let validData = data,
let results = String(data: validData, encoding: .utf8),
error == nil else {
print("Error getting GitLab website")
return

}
}
httpTask.resume()

First an URL is defined, then an URLSessionDataTask is created. The
completion handler has response parameters (Data?, URLResponse?,

46

..............................5.1. RxGitLabKit implementation

Error?) as input which represent an actual response from the server.
All inputs are optional, meaning that the data, response or error can be
nil, which is needed when for example an valid response is returned,
there should be no error returned. The URLSessionDataTask is not
invoked upon creation, for running the task the function resume() must
be called.

. Response
The response from server is represented by 3 variables of these types:
Data, URLResponse and Error. The Data represents body of the re-
sponse. Usually, the data is transformed into a string or being used
for JSON parsing. The URLResponse represents a response header from
server. It contains response headers, status code and the URL of the
request. The Error represents an error response, for example when the
server does not respond.

. Reactive wrapper
As seen in the code of 5.1.1, the code is not reactive. The program
state can be only changed in the dataTask completion handler. Reactive
wrapper allows the developer to observe the response and when it comes,
react upon it and change the state. One of the benefits is that there can
be more observers that can react to the same action without changing
the completion handler.

The main idea is to create an Observable which pushes URLResponse
and Data from dataTask completion handler. The wrapped function
looks like this:

func response(for request: URLRequest)
-> Observable<(response: HTTPURLResponse, data: Data?)> {
return Observable.create { observer in
let task = URLSession.shared.dataTask(with: request)
{ (data, response, error) in
guard let response = response else {
observer.on(.error(error ?? HTTPError.noResponse))
return

}
observer.on(.next((httpResponse, data)))
observer.on(.completed)

}

task.resume()
return Disposables.create(with: task.cancel)

}
}

47

5. Implementation....................................
5.1.2 Data models and parsing

Data models were created using the provided JSON examples from GitLab
API docs and instead of manually creating the models from JSON format,
quicktype.io and json4swift.com were used. These applications allow the
user to insert a JSON and it creates a Swift struct. The generated code is
not perfect and needed to be refactored, but overall using these tools saved
a lot of time when creating the models. The data models are structs and
conform to Codable protocol. Codable protocol allows easy JSON encoding
and decoding. Let’s assume that an object of type Commit is needed to be
decoded and encoded.

// Decoding
let commitData = ... // some commit data
let decoder = JSONDecoder()
let commit = try? decoder.decode(Commit.self, from: commitData)

// Encoding
let commit = Commit(....)
let encoder = JSONEncoder()
let commitData = encoder.encode(commit)

5.1.3 Paginator

Paginator is a class that handles pagination of the GitLab API results. It
uses an instance of APIRequest to create the desired URLRequest and uses
HostCommunicator as a communicator with GitLab API. It provides variables
to determine the total number of pages and the total number of items. These
values must be fetched from the GitLab API and are included in the response
header. The interesting part of this class is using a subscript (explained in
the analysis chapter 3.2.2) to fetch a page or multiple pages. Fetching pages
from 2 to 5 is shown in the following code:

let paginator = client.users.getUsers()
let usersObservable = p[2...5]
usersObservable.subscribe(onNext: { users in
// do something with users

})

The implementation of the subscript uses the potential of the RxSwift
and its operators. The basic idea is to take a range of numbers and for each
number create a request for that page. Then merge all results into one array.
Fetching the responses for each page is asynchronous, and the order of the
responses is not guaranteed. Therefore a page number for the request is
added to later be used for sorting of the result. The final stage of the pipe is
to get the values from observables. This is done using .flatMap. The code
of the implementation is shown here:

48

........................... 5.2. Demo application implementation

public subscript(range: Range<Int>) -> Observable<[T]> {
let arrayOfObservables: [Observable<(Int, [T])>] = range
.map { page in self.loadPage(page: page).map {(page, $0)}}

let mergedObjects: Observable<[T]> = Observable
.zip(arrayOfObservables)
.map { arrayOfTuples -> [(Int, [T])] in
arrayOfTuples.sorted(by: { (lhs, rhs) -> Bool in
return lhs.0 < rhs.0

})}
.map { arrayOfTuples -> [T] in
arrayOfTuples.flatMap {$0.1}

}

return mergedObjects
}

Loading all pages is then simple to implement. From total pages create a
range, and then the subscript is used. The code is depicted here:

public func loadAll() -> Observable<[T]> {
return totalPages.flatMap { $0 > 1 ? self[1...$0] : self[1] }

}

5.2 Demo application implementation

The demo application implementation follows the MVVM architecture chosen
in the analysis part 3.7.4 and is based on the Demo application design section
4.2. It also uses RxSwift and RxCocoa for data binding between view models
into views/view controllers. The UI of the application can be done in a GUI
using Storyboard or to write the UI in code. Although the Storyboard approach
gives a faster visual feedback when designing the screens, it is not very flexible.
Because of the lack of flexibility, the UI is created programmatically in code.

5.2.1 UI element positioning

In iOS, the UI elements can be positioned using auto layout. Auto layout
dynamically computes the dimensions and the positions of the views in the
view hierarchy. These computations are based on constraints that are placed
on the views [36]. For example, a constraint on an image can be placed so that
the image is centered with its parent view and the edges of the images are
inset by 16 points. If the parent view of the image changes size, the image size
also automatically adjusts in order to meet the constraints. This is also very
beneficial when creating a UI for more screen sizes. If the constraints are set
correctly, the application will look the same on devices with different screen
sizes. This option reduces the development time when creating applications
for iPhone or iPad. However, the work with native UIKit constraints is not

49

5. Implementation....................................
intuitive a library called SnapKit was used. SnapKit is a DSL to make Auto
Layout on iOS and macOS easy. [37]. It provides an intuitive API and makes
creating UI much faster.

5.2.2 Screen description

The screens are represented by a base UIViewController class included in
UIKit (UIKit is a library for creating UI for iOS applications [38]). Because
the application has two navigation stacks as discussed in the design section
4.2 a UITabBarController was chosen as the root view controller. Each
navigation stack has its base component. The navigation stack which includes
repositories, commits and commit detail, has a UISplitViewController as
a base component. UISplitViewController is a container view controller
that handles two child view controllers as master-detail. Two view controllers
can be arranged side-by-side. Usually, the master view controller contains a
list of objects and the detail view controller details about the object. The
object can be selected in the master view controller, and the detail is shown
in the detail view controller. The benefit of using UISplitViewController
is that the user does not need to navigate back from the detail and then select
another object. On smaller devices, only one view controller is visible [39].
The difference is depicted in the figures 4.2 and 4.3. The second navigation
stack has its first view controller wrapped in a UINavigationController
because it enables easy transitions between the screens in a navigation stack.

Each screen is implemented as a view controller with its view model. Only
Projects screen has a model class, the rest of screens don’t have a separate
model, because it consists of one object or one list of objects. Therefore the
model is directly included in the view model. The implemented screens are
the followings:. Projects

The ProjectsViewController is composed from UITableView and a
UISearchBar. The UITableView shows a list of the projects and the
UISearchBar takes text as an input and forwards the input into the
ProjectsViewModel. The UISearchBar also provides two scopes - All
Projects and User Projects. Switching between these two scopes enables
the user to select whether he wants to show all projects or just the projects
he has on his profile. Based on the input, the ProjectsViewModel fetches
the projects with the search term and scope and shows the projects names
in the table view. Fetching is done using RxGitLabAPIClient. After
taping on the project table cell, a CommitsViewController is shown.. Commits
The CommitsViewController is composed from just UITableView which
shows a list of the commits. The commits are fetched in the CommitsViewModel
and shown in this table view. When the commit table cell is tapped, a
CommitDetailViewController is shown.

50

........................... 5.2. Demo application implementation

. CommitDetail
The CommitDetailViewController is composed just from UITableView
which shows the information about the commit. The CommitsDetailViewModel
fetches more details about the commit, prepares them into a presentable
format and forwards the data into the table view.. Login
The LoginViewController contains input fields and a log in button.
After the button is tapped, the data from input fields are forwarded to
LoginViewModel which then initiates the authorization process. If the
login went successfully, a ProfileViewController with user details is
shown. An alert is shown otherwise.. Profile
The ProfileViewController is similar to CommitsViewController be-
cause it is also composed from UITableView which shows the information
about the user. There is a log out button which when tapped, forwards
the action to ProfileViewModel which clears the user details and sends
the signal back to ProfileViewController which then closes while
showing the LoginViewController.

5.2.3 RxSwift in MVVM

This subsection shows an example of MVVM architecture and RxSwift usage
on Projects screen. This screen was selected as an example because from all
screens, it is the most complex one. RxSwift helps with data binding and
the propagation of change. The object structure of this screen is illustrated
in the figure 5.1.

For communication between the UITableView/UISearchBar and the view
controller uses the delegate pattern [40]. The setup of the delegate pattern
requires the view controller to be expanded by delegate methods and then
be assigned to the respective views. On the other hand RxSwift allows to
use the methods directly without the need of this setup. A sample code
showing the difference of setting up connection between a UITableView and
a ProjectsViewController is illustrated in code 8 and 9. The difference
of the whole setup is shown in code listings 14 and 13 in the appendix
section. As can be observed from the code samples, using RxSwift for data
binding removes much boilerplate code and makes the code easier to write
and read. It is also worth noting, that when the data source is changed,
in the version without RxSwift the table view must be reloaded by calling
tableView.reloadData() but with the usage of RxSwift binding, the table
view updates automatically.

An another example of RxSwift usage is using operators. The search bar
sends a new text every time the value has changed, which triggers a request
to the server. This behavior can overflow the server with requests which
is undesired. An operator throttle(dueTime:) can be used to take the

51

5. Implementation....................................
ProjectsViewController

TableView SearchBar

ProjectsViewModel

ProjectsModel

DataSource
Fetching logic

RxGitLabClient

Data transformation

Updates through binding

Updates

Load next page trigger Search term
Scope change

Communication

GitLab API server

Figure 5.1: Projects screen objects structure

change in the interval specified by the dueTime argument which can reduce
the number of requests. The sample code is shown in listing 7

// Text search
let searchTextObservable = searchTextVariable.asObservable()
.throttle(0.2, scheduler: MainScheduler.instance)
.subscribe(onNext: { searchText in
// Fetch data using textSearch
}

Listing 7: Example usage of throttle operator

5.3 Dependency management

Using third party libraries and frameworks can speed up the development
and reduce the costs. When the application requires more libraries and each
library has other dependencies, it can be to maintain the dependencies up
to date. For this reason, using a dependency manager is nowadays a part of
development. A dependency manager is a tool for automated declaration and
resolution of dependencies required by the project [41]. The three dependency
managers for Swift used today are CocoaPods, Carthage and Swift Package
Manager (SPM). Because the main focus of this thesis is to create a library,
which can be used in other projects, allowing other developers to integrate this

52

............................... 5.3. Dependency management

library into their application using a dependency manager is essential. Support
for mentioned dependency managers was added. This section introduces the
three dependency managers, briefly describes how they work and then shows
how to integrate the RxGitLabKit can be integrated into other projects using
the manager.

5.3.1 CocoaPods

CocoaPods1 is a third-party centralized dependency manager for Swift and
Objective-C projects. It was the first dependency manager for iOS, and at
at the time of writing this thesis, it is most widely used. [42] CocoaPods
can simply be set up by creating a Podfile which contains the list of the
dependencies and then run pod install in the Terminal and it creates a new
Xcode Workspace file that contains the project and all other dependencies
linked and ready for usage. Although the set up is uncomplicated, the
disadvantage is that it modifies the project files in a non-transparent manner,
which can make future changes to the project structure difficult. These
changes are however not very common, that is why this con is acceptable.

To integrate the RxGitLabKit using CocoaPods, these steps must be taken:..1. Adding the following code to Podfile

Podfile
use_frameworks!

target 'YOUR_TARGET_NAME' do
pod 'RxGitLabKit'

end..2. Replacing YOUR_TARGET_NAME with the target name..3. Run pod install in the terminal

5.3.2 Carthage

Carthage 2 is a third-party decentralized dependency manager and currently
supports these dependency sources: Git public open source repositories and
binary links using public HTTPS [43]. The set up consists of creating a
Cartfile with a list of dependencies and running carthage update. Carthage
clones the repository and builds the code locally or downloads the binary if
it is provided. The binaries must be then manually added to the project. In
comparison to CocoaPods, Carthage does not change the project structure,
but a manual binary linking is needed. This dependency manager was used
when creating the RxGitLabKit library because of the cleaner approach to
project structure.

1https://cocoapods.org/
2https://github.com/Carthage/Carthage

53

5. Implementation....................................
Adding Carthage support for RxGitLabKit is simple. The code must be

publicly accessible on a git repository, and the developers need to the following
line add into the Cartfile and run carthage update in a terminal.

git "https://gitlab.com/dagytran/RxGitLabKit.git"

5.3.3 Swift Package Manager

SPM 3 is a tool for managing the distribution of Swift code. It is an official
dependency manager, but currently supports only macOS platform [44]. The
installation of the RxGitLabKit using SPM follows these steps:..1. Creating a Package.swift file with the following code:

// swift-tools-version:4.2
import PackageDescription

let package = Package(
name: "YOUR_PROJECT_NAME",
dependencies: [
.package(url: "https://gitlab.com/dagytran/RxGitLabKit.git",
from: "1.0.0")

],
targets: [
.target(name: "YOUR_PROJECT_NAME",
dependencies: ["RxGitLabKit"],
path: "SOURCE_PATH")

]
)..2. Replacing YOUR_PROJECT_NAME with the target name and SOURCE_PATH

with the sources path name..3. Run swift build in the terminal..4. Run swift package generate-xcodeproj in the terminal

5.4 Documentation

The code was documented using the official recommendations. Also a
README.MD file containing basic information was added. The documention
in HTML format is included on the CD in folder documentation and is
also provided online on https://dagytran.gitlab.io/RxGitLabKit/. The
documentation was generated using Jazzy 4.

3https://swift.org/package-manager/
4https://github.com/realm/jazzy

54

https://dagytran.gitlab.io/RxGitLabKit/

.................................. 5.5. Chapter summary

5.5 Chapter summary

In summary, the implementation followed the ideas stated in the design
chapter 4 and used TDD principles. The main components of RxGitLabKit
were thoroughly described, and some sample code was shown. The components
of screens in RxGitLabKitDemoApp were described and an example usage of
RxSwift in MVVM architecture was shown. After the implementation, the
support for dependency managers was added, and the HTML documentation
generated using Jazzy was released online and is also included on the CD in
the documentation folder.

55

5. Implementation....................................

class ProjectsViewController: UIViewController, UITableViewDelegate,
UITableViewDataSource, UISearchBarDelegate {
// ... ViewController setup ...
override func viewDidLoad() {
super.viewDidLoad()
// ... view setup code - adding, layout etc. ...
searchBar.delegate = self
tableView.dataSource = self
tableView.delegate = self
tableView.register(ProjectsTableViewCell.self,
forCellReuseIdentifier: "ProjectsCell")

}

// UITableViewDataSource delegate functions
func numberOfSections(in tableView: UITableView) -> Int {
return 1

}

func tableView(_ tableView: UITableView,
numberOfRowsInSection section: Int) -> Int {
return viewModel.dataSource.count

}

func tableView(_ tableView: UITableView,
cellForRowAt indexPath: IndexPath) -> UITableViewCell {
let cell = tableView.dequeueReusableCell(withIdentifier: "ProjectsCell",
for: indexPath)

// ... configure the cell using viewModel.dataSource
return cell

}
}

Listing 8: Setting up a UITableView data source without RxSwift

56

.................................. 5.5. Chapter summary

class ProjectsViewController: UIViewController {
// ... ViewController setup ...
override func viewDidLoad() {
super.viewDidLoad()
// ... view setup code - adding, layout etc. ...
tableView.register(ProjectsTableViewCell.self,
forCellReuseIdentifier: "ProjectsCell")

// ViewModel binding to the tableView
viewModel.dataSource
.bind(to: tableView.rx.items(cellIdentifier: "ProjectsCell",
cellType: ProjectsTableViewCell.self)) { row, element, cell in
// ... configure the cell using the element directly

}
.disposed(by: disposeBag)

}
}

Listing 9: Setting up a UITableView data source with RxSwift

57

58

Chapter 6
Testing

Testing is the process of evaluating a system or its components with the intent
to find whether it satisfies the specified requirements or not. Testing is execut-
ing a system to identify any gaps, errors, or missing requirements in contrary to
the actual requirements. [45] The demo application RxGitLabKitDemoApp was
tested manually by the developer on a real GitLab server such as gitlab.com
and gitlab.fel.cvut.cz. Because the demo application was not complex,
automated tests were not necessary. Therefore this chapter only describes
how the RxGitLabKit was tested to ensure the quality of the software. As a
testing technique, unit testing and integration testing were chosen and they
were used to support the development using the TDD principles.

6.1 Test driven development

TDD stands for Test Driven Development. The basic idea is to write a failing
test, then write the code so that the test passes and then refactor the code.
Repeat until the code meets certain standards.

This approach takes more time at the beginning of development, but in
the long run, the tests can help to identify bugs created by modifying some
parts of the code.

This library contains a large amount of data serialization from JSON format
to Swift objects and vice versa. This example is perfect for using TDD. If the
objects or JSON data from the server is incompatibly modified, the failed
tests point out to the error.

6.2 Unit Testing

The main functionality of RxGitLabKit is to create and send a HTTP request
to the GitLab API server and from the response of the server create a Swift
structure containing the recived data. This chain is composed of multiple
functions which can be tested separately using unit tests. First the networking
layer was tested using a mocked URLSession and then tests to ensure the
correct data transformation from JSON to Swift data structures and vice-versa
were conducted.

59

gitlab.com
gitlab.fel.cvut.cz

6. Testing
6.2.1 Mocking

Because unit tests should be isolated from other systems, mocked data instead
of live data from server were created and used. Mocking is creating objects
that simulate the behaviour of real objects. These objects are then used to
test the rest of the tested code.

Networking layer mocking

Networking layer was mocked by using a custom-made MockURLSession class.
MockURLSession enables providing the mocked data which should be returned
in the response before a request is called. This enables testing the rest of the
code without having to communicate with a real server. The testing code
also tests whether the initial request is in the correct format.

Data Mocking

The mocking data (JSON Objects) was copied from the GitLab API examples
and used as mocking data. The JSON string was serialized to Data format
using UTF-8 standard. These mocked objects were then used for parsing and
decoding JSON objects into actual Swift structures.

6.2.2 XCTest

The main framework for testing is XCTest and the tested classes are usually
child classes of XCTestCase class. Two of the main functions are setUp and
tearDown. The setUp function is called before every test method in the class
is called and the tearDown is called at the end of every test method.

Unit testing often needs to compare an expected and actual values, testing
whether a condition is true or false. For these tests, the framework XCTest of-
fers functions like XCTAssertEqual(expression1: T, expression2: T),
XCTAssert(expression: Bool). XCTAssert has many variations.

Because of the nature of the library, a lot of code is asynchronous. This made
testing a little bit tricky, because the testing function usually finished sooner
before the response arrived. Fortunately RxSwift provides a .toBlocking()
method, which makes working with Observables synchronous. This is perfect
for testing asynchronous code.

An example of a unit test is depicted in listing 10.

6.3 Integration Testing

RxGitLabKit provides a client for GitLab API server, therefore the whole
functionality depends on the server. During the development of RxGitLabKit
the written code depended on the GitLab documentation [4]. It can happen
that the real system behaves differently in comparison to the documentation.
To ensure correct behavior on the client side according to the real system,
integration tests must be conducted and the found bugs must be fixed.

60

.................................. 6.4. Chapter summary

6.3.1 Creating a GitLab instance

For integration tests, a local GitLab instance was used. A private local
GitLab server instance provides full control over the access privileges and
the data stored on the server. GitLab state can be backed up and recovered.
This is useful when executing integration tests with destructive instances
(for example deleting a project). The GitLab server instance was created
using Docker 1. The integration tests depend on a concrete mocked state
of the GitLab server. For the purpose of the integration tests recreation,
the server state is stored in form of a backup on the provided CD with this
thesis. The backup file was done on GitLab version 11.4 EE ais named
gitlab_backup.tar and the server state can be restored using a restoration
process described on 2.

6.3.2 Creating mock data

To be able to simulate a GitLab server, some mock data was needed. 12 mock
users were created in admin mode and then 7 projects cloned from GitHub.com
and added manually. Additional 60 randomly generated projects with random
commits were created to show more projects in the RxGitLabKitDemoApp.

6.3.3 Testing code

The testing code was very similar to unit tests. In unit tests, the networking
layer was mocked, in integration tests, the real data from the server were
returned.

6.4 Chapter summary

The RxGitLabKit was tested using unit tests and integration tests on a local
GitLab server. Unit tests were mainly used for data transformation validation
and URLRequest validation and integration tests for networking and also data
transformation validation. These tests helped revealing many bugs which
were then fixed.

The RxGitLabKitDemoApp was tested only manually by the developer
because the application was not complex and was sufficient enough.

1https://docs.gitlab.com/omnibus/docker/
2https://docs.gitlab.com/ee/raketasks/backup_restore.html#restore

61

https://docs.gitlab.com/omnibus/docker/
https://docs.gitlab.com/ee/raketasks/backup_restore.html#restore

6. Testing
func testAuthenticate() {
// Mocking the response dataAhoj,
mockSession.nextData = AuthenticationMocks.oAuthResponseData

// Calling the request
let result = client.authentication
.authenticate(username: "root", password: "admin12345")
.toBlocking()
.materialize()

// Asserting results
switch result {
case .completed(elements: let elements):

// Request asserts
if let body = mockSession.lastRequest?.httpBody,
let dict = try? JSONSerialization.jsonObject(with: body,
options: .mutableContainers) as! [String: String]

{
XCTAssertNotNil(dict["grant_type"])
XCTAssertNotNil(dict["username"])
XCTAssertNotNil(dict["password"])

} else {
XCTFail("Body data is corrupted")

}
if let lastURL = mockSession.lastURL,
lastURL.pathComponents.count == 3 {
XCTAssertEqual(lastURL.pathComponents[0], "/")
XCTAssertEqual(lastURL.pathComponents[1], "oauth")
XCTAssertEqual(lastURL.pathComponents[2], "token")

} else {
XCTFail("Number of path components doesn't match.")

}

// Response asserts
XCTAssertEqual(elements.count, 1)
if let authentication = elements.first {
XCTAssertNotNil(authentication.oAuthToken)
XCTAssertEqual(authentication.tokenType, "bearer")
XCTAssertNotNil(authentication.refreshToken)
XCTAssertEqual(authentication.scope, "api")
XCTAssertNotNil(authentication.createdAt)

} else {
XCTFail("Authentication is nil.")

}
case .failed(elements: _, error: let error):
XCTFail(error.localizedDescription)

}
}

Listing 10: Authentication unit testing

62

Chapter 7
Comparison with other GitLabAPI clients
written in Swift

This chapter compares RxGitLabKit with other available Swift solutions
for communication with GitLab API. As listed in 3.3.1 there are only two
available libraries namely GitLabKit 1 and TanukiKit2. The comparison was
done on these parameters: technologies used, support of technologies and
performance.

7.1 Technologies comparison

RxGitLabKit was written in the latest Swift 4.2 supporting the latest version
of GitLab API v4 and all Apple platforms (iOS, macOS, tvOS, watchOS).
It provides a reactive API using RxSwift. No other dependencies (besides
SnapKit, which is needed in the demo application) are used.
TanukiKit is a library written in Swift 2.0 and the last release v0.5.2 was

on August 4th 2017 and supports only GitLab API v3, which is no longer
supported by GitLab. The supported platforms are not described in the
documentation. No more in-depth analysis of this library was conducted,
because of lack of maintenance and no future usability.
GitLabKit was written in Swift 3.0, supports GitLabAPI v4 and only

macOS platform. There is no release, and time of writing this thesis, the last
commit date is June 18th 2017. It dependens on Alamofire3 and Mantle 4.
It has implemented almost all communication with GET API endpoints but
has no implementation for POST, DELETE and PUT endpoints. Although
this library is not maintained anymore, it can be used in an application if
few changes are made and no other API endpoints than GET are needed.
Therefore this library can be used in a performance comparison.

7.2 Performance comparison

Because TanukiKit is written in an older version of Swift and because it doesn’t
support GitLab API v4, it was excluded from this comparison. Therefore
only the performance of RxGitLabKit and GitLabKit is compared in this

1https://github.com/toricls/GitLabKit
2https://github.com/nerdishbynature/TanukiKit
3https://github.com/Alamofire/Alamofire
4https://github.com/Mantle/Mantle

63

https://github.com/toricls/GitLabKit
https://github.com/nerdishbynature/TanukiKit
https://github.com/Alamofire/Alamofire
https://github.com/Mantle/Mantle

7. Comparison with other GitLabAPI clients written in Swift
section. Although RxSwift used in RxGitLabKit brings a cleaner and easier
to understand codebase, it can bring some overhead because of the reactive
implementation which may negatively influence the performance. The goal is
to determine whether RxGitLabKit is not significantly slower in performance
in comparison to other usable Swift clients.

7.2.1 Potential limitations

When comparing the performance of the clients, some potential limitations
arise. The limitation might be the fact, that the measured code includes
the time which it takes the server to get the request, process it, and return
a response. The times measured can be heavily dependant on the server
performance instead of the client performance. Therefore the same requests
should be requested by both clients and the server should have as stable
performance as possible. These two focus areas are discussed later in this
section.

7.2.2 Benchmarking scenarios

The benchmarking scenarios consist of fetching all commits from a project
from the GitLab server. For this scenario, a project containing 3112 commits
is used. GitLab limits the number of elements using pagination as described
in 3.1.2. One scenario is fetching all commits using the default GitLab
API per_page 20 and the other scenario is to use the maximum per_page
100. Using lower per_page results in more requests which negatively impact
the performance, but it can show the performance differences of the tested
implementations of the clients. This scenario was specifically chosen because
it includes using multiple asynchronous requests to the server which can be
run concurrently and the result must be then merged. The benchmarking code
for per_page = 20 RxGitLabKit can be seen in the listing 12 and GitLabKit
in the listing. The code for per_page = 100 has only parameter per page
set to 100 and the number of iterations in 12 is 32 instead of 156.

func testPerformancePerPage20() {
self.measure {
let commitsPaginator = self.client.commits

.getCommits(projectID: 3, perPage: 20)
let commits = commitsPaginator.loadAll()
.toBlocking()
.single()

}
}

Listing 11: RxGitLabKit measured block of code (per_page = 100)

64

................................7.2. Performance comparison

func testPerformancePerPage20() {
let totalCommitCount = 3112
self.measure {
let expectation = XCTestExpectation(description: "load")
let params = ProjectCommitQueryParamBuilder(projectId: 3)
_ = params.perPage(100)
var allCommits = [Commit]()
for i in 1...156 {
_ = params.page(UInt(i))
self.client
.get(params, handler:
{ (response: GitLabResponse<Commit>?, error: NSError?) in
guard let commits = response?.result else { return }
allCommits.append(contentsOf: commits)
if allCommits.count == totalCommitCount {
expectation.fulfill()

}
})

}
self.wait(for: [expectation], timeout: 1000)

}
}

Listing 12: GitLabKit measured block of code (per_page = 100)

7.2.3 Experiment circumstances

To minimize random variables of the experiment, they were carried out under
the same or very similar circumstances (the same HW, same current load on
the machine). The client and GitLab API communicate over the network
which can heavily influence the results of the experiment. Therefore a local
instance of GitLab server has been created using Docker to minimize the
dependency on a stable network connection. The same instance was used in
integration testing 6.3.

The measurements were executed on the same machine as the running
GitLab server instance. For these measurements, the platform macOS was
chosen because it is the native operating system of the machine on which
the measurements were done, and no simulators needed to be used, which
minimized some random variables. Also GitLabKit is only supported on
macOS. To minimize the hardware load differences, the machine was rebooted
to clear all unnecessary programs and allowed only Docker and XCode to run
on this machine. The full hardware specification of the computer is shown in
table 7.1 and the software used for performance measuring is in 7.2.

65

7. Comparison with other GitLabAPI clients written in Swift
Model Name: MacBook Pro 2016 (13-inch)
Operating system: macOS High Sierra Version 10.13.3
Processor: 2,9 GHz Intel Core i5
Number of Processors: 1
Total Number of Cores: 2
L2 Cache (per Core): 256 KB
L3 Cache: 4 MB
Memory: 8 GB 2133 MHz LPDDR
Graphics: Intel Iris Graphics 550 1536 MB

Table 7.1: Hardware specification

XCode: Version 10.1 (10B61)
Docker: Docker Engine - Community version 18.09.0
GitLab: GitLab Enterprise Edition version 11.4.0-ee
Swift: Apple Swift version 4.2.1 (swiftlang-1000.11.42 clang-1000.11.45.1)

Table 7.2: Software specification

7.2.4 Measurements and comparison

The performance was measured by execution time of a block of code. As
stated before, the experiment had many random variables, therefore the
execution time was measured repeatedly to acquire enough measurements to
obtain a narrow confidence interval from the measured data.

The execution times were measured on two levels. In the first level, the
program ran in a loop and on the second level, the program itself was executed
several times. For this measurement, a method measure(_:) the class XCTest
was used. This method measures the performance of a block of code. By
default, the method measures the number of seconds the block of code takes to
execute [46]. It runs the block of code 10 times and each time it measures the
execution time of each iteration and generates a small graph as can be seen in
7.1. This measurement was executed 20 times, and in each measurement, the
code was measured 10 times and the average execution time from these 10
iterations was taken for further analysis. The running of the measurements
was executed on each client alternatively to minimize the difference of the state
of the machine during each measurement. From the measured data, means,
averages and variance were used to determine, whether the performance of
the clients was significantly different. From the results of the measurements
presented in table 7.3 (the full measurements table is shown in the appendix
E.2) and using the two-sided 95% confidence level of Student’s t-distribution
for 20 values qt(20)(.975) = 2.086 was calculated that for per_page = 100
RxGitLabKits execution times were lower by 0.31 ± 0.04s (10.39% ± 1.46%)
lower and for per_page = 0 the RxGitLabKits execution times were lower

66

.................................. 7.3. Chapter summary

Figure 7.1: Measurement result example

Library (per_page Median Average Std. dev. Confidence
GitLabKit (100) 2.94 2.83 0.12 2.83 ± 0.12
RxGitLabKit (100) 2.585 2.60 0.09 2.60 ± 0.09
GitLabKit (20) 6.875 6.97 0.022 6.97 ± 0.22
RxGitLabKit (20) 6.58 6.64 0.20 6.64 ± 0.20

Table 7.3: Summary for executions times. Times in seconds.

by 0.329 ± 0.13s (4.72% ± 1.95%).

7.3 Chapter summary

There are two other libraries for GitLab API communication written in Swift,
and both are not maintained anymore. The latest contribution to these
libraries is in the year 2017. Only GitLabKit supports GitLab API v4 and can
still be used but only on macOS platform. On the other hand RxGitLabKit
was developed in the latest version of Swift 4.2 with the support of all Apple
platforms.

The goal of performance comparison was to conclude whether the perfor-
mance of RxGitLabKit library is not significantly worse than the existing
GitLabKit library because of the concern with the overhead reactive exten-
sions might bring. The execution time measurements were conducted under
the same hardware and software circumstances using two-level executions:
20 executions with 10 iterations each. Thus the measurement results are
considered to be representable. The executed block of code differed in the
implementation, while RxGitLabKit provides a function to load all objects
from all pages, GitLabKit doesn’t provide any. The measured times and
calculated average and standard deviation values cannot be used to determine
the relative speed between the libraries because of the limitations stated

67

7. Comparison with other GitLabAPI clients written in Swift
in subsection 7.2.1. Howewer, it can be concluded that the RxGitLabKit
performed better in the tested cases with 95% confidence.

A clean reactive API of RxGitLabKit makes this library more natural to
use, the modular design is easy to expand and the performance is even slightly
better than the current solutions. These variables make RxGitLabKit a better
choice for future use in applications.

68

Chapter 8
Conclusion

The goal was to create a library for communication with GitLab API supported
on all latest Apple platforms and compare it with existing solutions. The
subgoal was to follow the software engineering principles and procedures when
approaching the goal.

Firstly the functional and nonfunctional requirements were stated and
then the analysis chapter introduced the necessary information about the
GitLab API and available libraries. These libraries were summarized, and
some key ideas were extracted for the design phase. Furthermore, after the
summary of programming paradigms and programming languages for Apple
platforms, a functional reactive paradigm with Swift language was chosen for
the development because of the asynchronous nature of the communication
between GitLab API server and the library and because Swift is a more
modern programming language than Objective-C. In the second half of the
analysis, possibilities of using FRP in Swift were described, and in the end,
RxSwift was chosen as the FRP framework for the created library and demo
application. To illustrate the FRP concepts, essential elements of RxSwift
were described. After this section, the widely used architecture patterns for
iOS app creation were described resulting in choosing the MVVM design
pattern as the most suitable pattern for the demo application, because it
synergizes well with the FRP approach.

The requirements were kept in mind while designing the library. The
main focus was on modularity, intuitive API and using FRP approach. The
central decomposition of the problem was to separate the networking part
and the encoding and decoding part. In the implementation part, a detailed
approach and some of the interesting parts of the code was shown. During
the development part, a TDD approach has been used because a large part
of the library deals with encoding/decoding objects to JSON and vice versa.
The encoding/decoding unit tests assured that encoding and decoding behave
as expected when code modifications have been made, which in return saved
much time searching for bugs. The whole library was then tested using
integration tests on a local GitLab server instance with manually created
mock data.

The implementation of the demo application followed a standard pattern
for iOS application development. Using MVVM architecture with RxSwift
and RxCocoa enabled fast and intuitive implementation that shows the basic
functionality of RxGitLabKit. The functionality was tested manually by the
developer.

69

8. Conclusion......................................
The result of this master’s thesis is a GitLab API client library called

RxGitlabKit written in Swift that supports all Apple platforms - iOS, ma-
cOS, tvOS and watchOS. This library provides a reactive API for com-
munication with a GitLab API server. The user can choose a GitLab
server using an URL and can log in using a username and password, a
private token or an OAuth token. Because the number of all endpoints
is too large, only endpoint groups containing the endpoints concerning
Projects, Repositories, Commits, Users, and Authentication were imple-
mented. An application called RxGitlabKitDemoApp was created to demon-
strate the functionality of the library. Future integration of this library into
other projects was simplified by adding support for the three most used
dependency managers (CocoaPods, Carthage and SPM. The source code of
RxGitlabKit and RxGitlabKitDemoApp is provided on the CD in the folder
sources/implementation and is also uploaded on GitLab (https://gitlab.
com/dagytran/RxGitLabKit) as a public open-source project under MIT li-
cense. Documentation to accompany the source code is available in the folder
documentation and online https://dagytran.gitlab.io/RxGitLabKit/.
All functional and nonfunctional requirements for both the library and the
demo application are thus met.

The library was created because there wasn’t any reactive library for
communication with GitLab API with the support for all Apple platforms.
The closest solution is GitLabKit which is not maintained anymore, has only
a few endpoints implemented, supports only macOS and doesn’t provide a
reactive API. In comparison to GitLabKit, RxGitLabKit is written in the
latest Swift 4.2 with the support of all Apple platforms, supports the latest
GitLab API v4 and provides a nice and clean reactive API while according
to the performance tests, RxGitLabKit performs slightly better. The only
downside may be a dependency on RxSwift. However, although it is not
a native framework, it has a large supporting community which makes the
framework reliable. This RxGitLabKit library can be a cornerstone for a
GitLabAPI Client with an GUI. Alternatively, it can be used for example in
a repository monitoring application, which monitors the information about
builds, commits, contributors and other information about the repositories.

Because the library has 5 of the total 68 endpoint groups implemented, the
future work can be directed towards expanding the support for other API
endpoint groups. Because of the modular nature of this library, implementing
other endpoint groups and incorporating it into the client is straightforward.
Another future work can be creating a similar library for Android, which
could also be beneficial for Android developers.

70

https://gitlab.com/dagytran/RxGitLabKit
https://gitlab.com/dagytran/RxGitLabKit
https://dagytran.gitlab.io/RxGitLabKit/

Appendix A
Bibliography

[1] R. Rawson. 2018 Version Control Software Comparison: SVN, Git,
Mercurial. url: https://biz30.timedoctor.com/git-mecurial-
and-cvs-comparison-of-svn-software/ (visited on Nov. 13, 2018).

[2] slant.co. What are the best hosted version control services? url: https:
//www.slant.co/topics/153/~best-hosted-version-control-
services (visited on Sept. 18, 2018).

[3] J. G. Andrew Stellman. Applied Software Project Management. O’Reilly
Media, 2005. Chap. Chapter 6: Software requirements, p. 110. isbn:
978-0596009489.

[4] GitLab Developers. GitLab API. url: https://docs.gitlab.com/ee/
api/README.html (visited on Nov. 13, 2018).

[5] GitLab Developers. Project visibility level. url: https://docs.gitlab.
com/ee/api/projects.html#project-visibility-level (visited
on Nov. 13, 2018).

[6] GitLab Developers. Pagination. url: https://docs.gitlab.com/ee/
api/#pagination (visited on Nov. 13, 2018).

[7] altexsoft. Swift vs Objective-C: Out with the Old, In with the New. June
2018. url: https://www.altexsoft.com/blog/engineering/swift-
vs-objective-c-out-with-the-old-in-with-the-nw/ (visited on
Dec. 18, 2018).

[8] Apple Developers. Building assert() in Swift, Part 2: FILE and LINE.
Sept. 2014. url: https://developer.apple.com/swift/blog/?id=
15 (visited on Oct. 25, 2018).

[9] Apple Developers. Swift 4. url: https://developer.apple.com/
swift/ (visited on Dec. 20, 2018).

[10] A. Lastovetska. Swift vs Objective-C. Which iOS Language To Choose.
Oct. 2018. url: https://mlsdev.com/blog/51-7-advantages-of-
using-swift-over-objective-c (visited on Dec. 18, 2018).

[11] Apple Developers. Extensions. url: https://docs.swift.org/swift-
book/LanguageGuide/Extensions.html (visited on Dec. 20, 2018).

[12] Apple Developers. Protocols. url: https://docs.swift.org/swift-
book/LanguageGuide/Protocols.html (visited on Dec. 20, 2018).

[13] Apple Developers. Subscripts. url: https://docs.swift.org/swift-
book/LanguageGuide/Subscripts.html (visited on Dec. 20, 2018).

71

https://biz30.timedoctor.com/git-mecurial-and-cvs-comparison-of-svn-software/
https://biz30.timedoctor.com/git-mecurial-and-cvs-comparison-of-svn-software/
https://www.slant.co/topics/153/~best-hosted-version-control-services
https://www.slant.co/topics/153/~best-hosted-version-control-services
https://www.slant.co/topics/153/~best-hosted-version-control-services
https://docs.gitlab.com/ee/api/README.html
https://docs.gitlab.com/ee/api/README.html
https://docs.gitlab.com/ee/api/projects.html#project-visibility-level
https://docs.gitlab.com/ee/api/projects.html#project-visibility-level
https://docs.gitlab.com/ee/api/#pagination
https://docs.gitlab.com/ee/api/#pagination
https://www.altexsoft.com/blog/engineering/swift-vs-objective-c-out-with-the-old-in-with-the-nw/
https://www.altexsoft.com/blog/engineering/swift-vs-objective-c-out-with-the-old-in-with-the-nw/
https://developer.apple.com/swift/blog/?id=15
https://developer.apple.com/swift/blog/?id=15
https://developer.apple.com/swift/
https://developer.apple.com/swift/
https://mlsdev.com/blog/51-7-advantages-of-using-swift-over-objective-c
https://mlsdev.com/blog/51-7-advantages-of-using-swift-over-objective-c
https://docs.swift.org/swift-book/LanguageGuide/Extensions.html
https://docs.swift.org/swift-book/LanguageGuide/Extensions.html
https://docs.swift.org/swift-book/LanguageGuide/Protocols.html
https://docs.swift.org/swift-book/LanguageGuide/Protocols.html
https://docs.swift.org/swift-book/LanguageGuide/Subscripts.html
https://docs.swift.org/swift-book/LanguageGuide/Subscripts.html

A. Bibliography.....................................
[14] P. Smyth. An Introduction to Programming Paradigms. url: https:

/ / digitalfellows . commons . gc . cuny . edu / 2018 / 03 / 12 / an -
introduction-to-programmig-paradigms#orgheadline2 (visited
on Nov. 5, 2018).

[15] K. Nørmark. Overview of the four main programming paradigms. Sept.
2012. url: http://people.cs.aau.dk/~normark/prog3-03/html/
notes/paradigms_themes-paradigm-overviw-section.html (vis-
ited on Nov. 5, 2018).

[16] F. Coenen. Characteristics of declarative programming languages. Oct.
1999. url: http://cgi.csc.liv.ac.uk/~frans/OldLectures/
2CS24/declarative.html#detail (visited on Nov. 5, 2018).

[17] M. A. Covington. CSCI/ARTI 4540/6540: First Lecture on Symbolic
Programming and LISP. Aug. 2010. url: https://web.archive.
org/web/20120307124013/http://www.ai.uga.edu/mc/LispNots/
FirstLectureOnSymbolicProgramming.pdf (visited on Nov. 5, 2018).

[18] W. P. Bird Richard. An Introduction to Functional Programming. Hert-
fordshire, UK, UK: Prentice Hall International (UK) Ltd., 1988, p. 1.
isbn: 978-0134841892.

[19] M. L. Scott. Programming Language Pragmatics. CA: Morgan Kauf-
mann Publishers, 2006, p. 140. isbn: 978-8131222560.

[20] Tellis, Tele community. Model-View-Controller and the "Observer" Pat-
tern. url: http://peak.telecommunity.com/DevCenter/Trellis#
model-view-controller-and-the-observer-pattern (visited on
Dec. 16, 2018).

[21] A. Naumov. Callbacks, Part 1: Delegation, NotificationCenter, and
KVO. Jan. 2017. url: https://nalexn.github.io/blog/2017/
01/28/callbacks-part-1-delegation-notificationcenter-kvo/
(visited on Dec. 22, 2018).

[22] C. Eberhardt. ReactiveSwift. Apr. 2016. url: https://www.raywenderlich.
com/1190-reactivecocoa-vs-rxswift (visited on Dec. 18, 2018).

[23] F. Pillet, J. Bontognali, M. Todorov, S. Gardner. RxSwift: Reactive
Programming with Swift, Second Edition. 2017. isbn: 978-1942878469.

[24] N. Singh. Reactive Programming with Swift 4: Build asynchronous reac-
tive applications with easy-to-maintain and clean code using RxSwift and
Xcode 9. Feb. 2018. Chap. Chapter 2. FRP Fundamentals, Terminology,
and Basic Building Blocks, p. 56. isbn: 978-1787120211.

[25] RxSwift Developers. Schedulers. url: https://github.com/ReactiveX/
RxSwift/blob/master/Documentation/Schedulers.md (visited on
Dec. 10, 2018).

[26] A. Mugo. Architecture patterns in iOS. May 2018. url: https://
medium.com/the-andela-way/architecture-patterns-in-ios-
a01780e271e8 (visited on Dec. 16, 2018).

72

https://digitalfellows.commons.gc.cuny.edu/2018/03/12/an-introduction-to-programmig-paradigms#orgheadline2
https://digitalfellows.commons.gc.cuny.edu/2018/03/12/an-introduction-to-programmig-paradigms#orgheadline2
https://digitalfellows.commons.gc.cuny.edu/2018/03/12/an-introduction-to-programmig-paradigms#orgheadline2
http://people.cs.aau.dk/~normark/prog3-03/html/notes/paradigms_themes-paradigm-overviw-section.html
http://people.cs.aau.dk/~normark/prog3-03/html/notes/paradigms_themes-paradigm-overviw-section.html
http://cgi.csc.liv.ac.uk/~frans/OldLectures/2CS24/declarative.html#detail
http://cgi.csc.liv.ac.uk/~frans/OldLectures/2CS24/declarative.html#detail
https://web.archive.org/web/20120307124013/http://www.ai.uga.edu/mc/LispNots/FirstLectureOnSymbolicProgramming.pdf
https://web.archive.org/web/20120307124013/http://www.ai.uga.edu/mc/LispNots/FirstLectureOnSymbolicProgramming.pdf
https://web.archive.org/web/20120307124013/http://www.ai.uga.edu/mc/LispNots/FirstLectureOnSymbolicProgramming.pdf
http://peak.telecommunity.com/DevCenter/Trellis#model-view-controller-and-the-observer-pattern
http://peak.telecommunity.com/DevCenter/Trellis#model-view-controller-and-the-observer-pattern
https://nalexn.github.io/blog/2017/01/28/callbacks-part-1-delegation-notificationcenter-kvo/
https://nalexn.github.io/blog/2017/01/28/callbacks-part-1-delegation-notificationcenter-kvo/
https://www.raywenderlich.com/1190-reactivecocoa-vs-rxswift
https://www.raywenderlich.com/1190-reactivecocoa-vs-rxswift
https://github.com/ReactiveX/RxSwift/blob/master/Documentation/Schedulers.md
https://github.com/ReactiveX/RxSwift/blob/master/Documentation/Schedulers.md
https://medium.com/the-andela-way/architecture-patterns-in-ios-a01780e271e8
https://medium.com/the-andela-way/architecture-patterns-in-ios-a01780e271e8
https://medium.com/the-andela-way/architecture-patterns-in-ios-a01780e271e8

..................................... A. Bibliography

[27] K. Zabłocki. Good iOS Application Architecture: MVVM vs. MVC
vs. VIPER. May 2017. url: https://academy.realm.io/posts/
krzysztof - zablocki - mDevCamp - ios - architecture - mvvm - mvc -
viper/ (visited on Dec. 16, 2018).

[28] Mozilla and individual contributors. MVC architecture. url: https:
//developer.mozilla.org/en-US/docs/Web/Apps/Fundamentals/
Modern_web_app_architectue/MVC_architecture (visited on Dec. 16,
2018).

[29] B. Orlov. iOS Architecture Patterns - Demystifying MVC, MVP, MVVM
and VIPER. Nov. 2015. url: https://medium.com/ios- os- x-
development/ios-architecture-patterns-ecba4c38de52 (visited
on Dec. 16, 2018).

[30] M. D. Network. The MVVM Pattern. url: https://docs.microsoft.
com/en-us/previous-versions/msp-n-p/hh848246(v=pandp.10)
(visited on Dec. 16, 2018).

[31] M. S. John Morrison. iOS Design Patterns: MVC and MVVM. url:
https://www.captechconsulting.com/blogs/ios-design-patterns-
mvc-and-mvvm (visited on Dec. 16, 2018).

[32] B. Jacobs. Three Strategies to Keep View Controllers Skinny. Aug. 2017.
url: https://cocoacasts.com/three-strategies-to-keep-view-
controllers-skinny (visited on Dec. 16, 2018).

[33] Apple Developers. Human Interface Guidelines. url: https://developer.
apple . com / design / human - interface - guidelines/ (visited on
Dec. 18, 2018).

[34] Apple Developers. Tab Bars. url: https://developer.apple.com/
design/human-interface-guidelines/ios/bars/tab-bars/ (vis-
ited on Dec. 18, 2018).

[35] Alamofire Software Foundation. Alamofire Docs. url: https://alamofire.
github.io/Alamofire/.

[36] Apple Developers. Understanding Auto Layout. url: https://developer.
apple.com /library/archive /documentation/UserExperience/
Conceptual/AutolayoutG/index.html (visited on Dec. 18, 2018).

[37] SnapKit contributors. SnapKit. url: https://github.com/SnapKit/
SnapKit (visited on Dec. 18, 2018).

[38] Apple Developers. UIKit. url: https://developer.apple.com/
documentation/uikit (visited on Dec. 18, 2018).

[39] Apple Developers. UISplitViewController. url: https://developer.
apple.com/documentation/uikit/uisplitviewcontroller (visited
on Dec. 18, 2018).

[40] Apple Developers. Using Delegates to Customize Object Behavior. url:
https://developer.apple.com/documentation/swift/cocoa_
design_patters/using_delegates_to_customize_object_behavior.

73

https://academy.realm.io/posts/krzysztof-zablocki-mDevCamp-ios-architecture-mvvm-mvc-viper/
https://academy.realm.io/posts/krzysztof-zablocki-mDevCamp-ios-architecture-mvvm-mvc-viper/
https://academy.realm.io/posts/krzysztof-zablocki-mDevCamp-ios-architecture-mvvm-mvc-viper/
https://developer.mozilla.org/en-US/docs/Web/Apps/Fundamentals/Modern_web_app_architectue/MVC_architecture
https://developer.mozilla.org/en-US/docs/Web/Apps/Fundamentals/Modern_web_app_architectue/MVC_architecture
https://developer.mozilla.org/en-US/docs/Web/Apps/Fundamentals/Modern_web_app_architectue/MVC_architecture
https://medium.com/ios-os-x-development/ios-architecture-patterns-ecba4c38de52
https://medium.com/ios-os-x-development/ios-architecture-patterns-ecba4c38de52
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/hh848246(v=pandp.10)
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/hh848246(v=pandp.10)
https://www.captechconsulting.com/blogs/ios-design-patterns-mvc-and-mvvm
https://www.captechconsulting.com/blogs/ios-design-patterns-mvc-and-mvvm
https://cocoacasts.com/three-strategies-to-keep-view-controllers-skinny
https://cocoacasts.com/three-strategies-to-keep-view-controllers-skinny
https://developer.apple.com/design/human-interface-guidelines/
https://developer.apple.com/design/human-interface-guidelines/
https://developer.apple.com/design/human-interface-guidelines/ios/bars/tab-bars/
https://developer.apple.com/design/human-interface-guidelines/ios/bars/tab-bars/
https://alamofire.github.io/Alamofire/
https://alamofire.github.io/Alamofire/
https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/AutolayoutG/index.html
https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/AutolayoutG/index.html
https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/AutolayoutG/index.html
https://github.com/SnapKit/SnapKit
https://github.com/SnapKit/SnapKit
https://developer.apple.com/documentation/uikit
https://developer.apple.com/documentation/uikit
https://developer.apple.com/documentation/uikit/uisplitviewcontroller
https://developer.apple.com/documentation/uikit/uisplitviewcontroller
https://developer.apple.com/documentation/swift/cocoa_design_patters/using_delegates_to_customize_object_behavior
https://developer.apple.com/documentation/swift/cocoa_design_patters/using_delegates_to_customize_object_behavior

A. Bibliography.....................................
[41] Gradle developers. Introduction to Dependency Management. url:

https://docs.gradle.org/current/userguide/introduction_
dependency_management.html (visited on Dec. 24, 2018).

[42] S. Jagtap. Carthage or CocoaPods: That is the question. Mar. 2018. url:
http://shashikantjagtap.net/carthage-cocoapods-question/
(visited on Dec. 23, 2018).

[43] Y. Brigance. Choosing the Right iOS Dependency Manager. Oct. 2017.
url: https://aimconsulting.com/insights/blog/choosing-the-
right-ios-dependency-manager/ (visited on Dec. 23, 2018).

[44] Apple developers. Swift Package Manager Project. url: https://
github.com/apple/swift- package- manager (visited on Dec. 23,
2018).

[45] T. point. Software Testing Tutorial. url: https://www.tutorialspoint.
com/software_testing/ (visited on Dec. 18, 2018).

[46] Apple Developers. Developer Documentation - measure(_:) url: https:
/ / developer . apple . com / documentation / xctest / xctestcase /
1496290-measure (visited on Dec. 11, 2018).

74

https://docs.gradle.org/current/userguide/introduction_dependency_management.html
https://docs.gradle.org/current/userguide/introduction_dependency_management.html
http://shashikantjagtap.net/carthage-cocoapods-question/
https://aimconsulting.com/insights/blog/choosing-the-right-ios-dependency-manager/
https://aimconsulting.com/insights/blog/choosing-the-right-ios-dependency-manager/
https://github.com/apple/swift-package-manager
https://github.com/apple/swift-package-manager
https://www.tutorialspoint.com/software_testing/
https://www.tutorialspoint.com/software_testing/
https://developer.apple.com/documentation/xctest/xctestcase/1496290-measure
https://developer.apple.com/documentation/xctest/xctestcase/1496290-measure
https://developer.apple.com/documentation/xctest/xctestcase/1496290-measure

Appendix B
Acronyms and Abbreviations

API Application Programming Interface. 1, 5, 6, 17, 21, 22, 34, 35, 39, 50,
63, 69, 70

CD Compact Disc. 54, 55, 61, 70

DSL Domain Specific Language. 50

FP Functional Programming. 18

FRP Functional Reactive Programming. 1, 21, 22, 34, 35, 69

GUI Graphical User Interface. 49, 70

HTML Hypertext Markup Language. 46, 54, 55

HTTP Hypertext Transfer Protocol. 1, 37, 38, 45, 46, 59

HTTPS Hypertext Transfer Protocol Secure. 53

IDE Integrated Development Environment. 45

JSON JavaScript Object Notation. 45–48, 59, 60, 69

KVO Key-Value Observing. 21

MVC Model-View-Controller. 31–33

MVVM Model-View-ViewModel. 31–35, 39, 45, 49, 51, 55, 69

REST Representational State Transfer. 1, 5

SPM Swift Package Manager. 52, 54, 70

SVN Apache Subversion. 1

TDD Test Driven Development. 45, 55, 59, 69

UI User Interface. 49

75

B. Acronyms and Abbreviations
URI Uniform Resource Identifier. 46

URL Uniform Resource Locator. 1, 17, 18, 38, 39, 45–47

VCS Version Control Systems. 1

VIPER View-Interactor-Presenter-Entity-Router. 31, 34

76

Appendix C
CD Contents

.
documentationsource code HTML documentation folder
gitlab_backup.tar GitLab Server instance backup
readme.txt......................brief summary of the CD Contents
sources
implementationsource code folder of the implementation
thesissource code folder of the thesis in LATEX format

tran_anh_duc_masters_thesis.pdfthesis in PDF format

77

78

Appendix D
Figures

79

D
.Figures.......................................

RxGitLabKit

RxGitLabAPIClient

hostCommunicator: HostCommunicator

+ hostURL: URL {readOnly}

+ oAuthToken: String?

+ privateToken: String?

+ currentUserObservable: Observable<User?> {readOnly}

+ authentication: AuthenticationEndpointGroup {readOnly}

+ commits: CommitsEndpointGroup {readOnly}

+ projects: ProjectsEndpointGroup {readOnly}

+ repositories: RepositoriesEndpointGroup {readOnly}

+ users: UsersEndpointGroup {readOnly}

+ changeHostURL(hostURL: URL): Void

+ logIn(username: String, password: String): Void

+ logIn(privateToken: String): Void

+ logIn(oAuthToken: String): Void

+ logOut(): Void

HostCommunicator

- network: Networking

/ authorizationHeader: Header {readOnly}

+ hostURL: URL

+ privateToken: String?

+ oAuthTokenVariable: Variable<String?>

+ response(apiRequest: APIRequesting): Observable<(HTTPURLResponse, Data?)>

+ header(apiRequest: APIRequesting): Observable<Header>

+ data(apiRequest: APIRequesting): Observable<Data>

+ object<T>(apiRequest: APIRequesting): Observable<T>

+ httpURLResponse(apiRequest: APIRequesting): Observable<HTTPURLResponse>

HTTPClient

- session: URLSessionProtocol

+ response(request: URLRequest, session: URLSessionProtocol): Observable<(HTTPURLResponse, Data?)>

+ header(request: URLRequest, session: URLSessionProtocol): Observable<Header>

+ data(request: URLRequest, session: URLSessionProtocol): Observable<Data>

+ object<T: Codable>(request: URLRequest, session: URLSessionProtocol) : Observable<T>

+ response(request: URLRequest): Observable<(HTTPURLResponse, Data?)>

+ header(request: URLRequest): Observable<Header>

+ data(request: URLRequest): Observable<Data>

+ object<T: Codable>(request: URLRequest) : Observable<T>

<<Interface>>
Networking

+ header(request: URLRequest): Observable<Header>

+ object<T: Codable>(request: URLRequest) : Observable<T>

+ response(request: URLRequest): Observable<(HTTPURLResponse, Data?)>

+ data(request: URLRequest): Observable<Data>

Use
Use

EndpointGroup

hostCommunicator: HostCommunicator

Endpoints: Enum

httpURLResponse(apiRequest: APIRequesting): Observable<HTTPURLResponse>

object<T>(apiRequest: APIRequesting): Observable<T>

data(apiRequest: APIRequesting): Observable<Data>

header(apiRequest: APIRequesting): Observable<Header>

response(apiRequest: APIRequesting): Observable<(HTTPURLResponse, Data?)>

AuthenticationEndpointGroup

Use

CommitsEndpointGroup

Endpoints: Enum

+ getCommits(projectID: Int, parameters: QueryParameters, page: Int, perPage: Int): Observable<[Commit]>

+ getCommits(projectID: Int, parameters: QueryParameters, perPage: Int): Paginator<Commit>

+ createCommits(projectID: Int, newCommit: NewCommit): Observable<Commit>

+ getCommit(projectID: Int, sha: String): Observable<Commit>

+ getReferences(projectID: Int, sha: String, parameters: QueryParameters, page: Int, perPage: Int): Observable<[Reference]>

+ getReferences(projectID: Int, sha: String, parameters: QueryParameters, perPage: Int): Paginator<Reference>

+ cherryPick(projectID: Int, sha: String, branch: String): Observable<Commit>

+ revert(projectID: Int, sha: String, branch: String): Observable<Commit>

+ getDiff(projectID: Int, sha: String): Observable<Diff>

+ getComments(projectID: Int, sha: String, page: Int, perPage: Int): Observable<[Comment]>

+ postComment(comment: Comment, projectID: Int, sha: String): Observable<Comment>

+ getStatuses(comment: Comment, sha: String): Observable<[CommitStatus]>

+ postStatus(status: BuildStatus, sha: String): Observable<CommitStatus>

+ getMergeRequests(projectID: Int, sha: String): Observable<[MergeRequests]>

UsersEndpointGroup

ProjectsEnpointGroup

RepositoriesEndpointGroup

Paginator<T>

- apiRequest: APIRequest

- communicator: HostCommunicator

- perPage: Int

+ totalPages: Observable<Int>

+ totalItems: Observable<Int>

- loadPage(page: Int): Observable<[T]>

+ subscript(index: Int): Observable<[T]>

+ subscript(closedRange: ClosedRange<Int>): Observable<[T]>

+ loadAll(): Observable<[T>

Use

Models

Structures for
JSON objects.
Conforming
Codable protocol.

Use

Figure D.1: Extended diagram of RxGitLabKit.

80

Appendix E
Tables

81

E. Tables..

Authorization Project milestones
Award Emoji Group milestones
Branches Namespaces
Broadcast Messages Notes (comments)
Project-level Variables Discussions (threaded comments)
Group-level Variables Resource Label Events
Code Snippets Notification settings
Commits Open source license templates
Custom Attributes Pages Domains
Deployments Pipelines
Deploy Keys Pipeline Triggers
Dockerfile templates Pipeline Schedules
Environments Projects including setting Webhooks
Epics Project Access Requests
Epic Issues Project Badges
Events Project import/export
Feature flags Project Members
Geo Nodes Project Snippets
Gitignore templates Project Templates
GitLab CI Config templates Protected Branches
Groups Protected Tags
Group Access Requests Repositories
Group Badges Repository Files
Group Members Runners
Issues Search
Issue Boards Services
Issue Links Settings
Group Issue Boards Sidekiq metrics
Jobs System Hooks
Keys Tags
Labels Todos
License Users
Managed licenses Validate CI configuration
Markdown V3 to V4
Merge Requests Version
Merge Request Approvals Wikis

Table E.1: GitLab API Endpoint Groups

82

.. E. Tables

Execution
Number

GitLabKit
(per_page =
100)

GitLabKit
(per_page =

20)

RxGitLabKit
(per_page =
100)

GitLabKit
(per_page =

20)

1 2.83 7.46 2.51 6.93
2 2.88 6.86 2.75 6.9
3 2.76 6.87 2.68 6.71
4 2.83 7.24 2.73 6.72
5 2.74 6.87 2.6 6.55
6 2.73 7.18 2.61 6.97
7 2.78 6.84 2.71 6.75
8 3.29 7.34 2.68 6.92
9 2.73 7.00 2.56 6.91
10 2.8 7.24 2.51 6.42
11 2.86 6.88 2.47 6.57
12 2.85 6.87 2.49 6.43
13 2.85 6.72 2.72 6.53
14 2.88 7.01 2.53 6.37
15 2.8 6.81 2.66 6.58
16 2.9 7.02 2.64 6.36
17 2.86 6.66 2.57 6.55
18 2.68 6.71 2.52 6.40
19 2.83 7.03 2.56 6.63
20 2.81 6.75 2.57 6.58
Min 2.68 6.66 2.47 6.36
Max 3.29 7.46 2.75 6.97
Median 2.83 6.87 2.585 6.58
Average 2.83 6.96 2.60 6.63
Std. dev. 0.12 0.22 0.09 0.20

Table E.2: Time measurements from performance testing. Times in seconds.

83

84

Appendix F
Code samples

class RxViewController: UIViewController {
let searchBar = UISearchBar()
let tableView = UITableView(frame: .zero)
var viewModel: ViewModel!
let disposeBag = DisposeBag()

override func viewDidLoad() {
super.viewDidLoad()
// ... view setup code - adding, layout etc.

tableView.register(CustomTableViewCell.self, forCellReuseIdentifier: "Cell")

viewModel.dataSource
.bind(to: tableView.rx.items(cellIdentifier: "Cell",
cellType: CustomTableViewCell.self)) { row, element, cell in
cell.project = element

}
.disposed(by: disposeBag)

tableView.rx.itemSelected
.subscribe(onNext: { [unowned self] indexPath in
// do something with the selected item

})
.disposed(by: disposeBag)

searchBar.rx.selectedScopeButtonIndex
.bind(to: viewModel.scopeIndex)
.disposed(by: disposeBag)

searchBar.rx.text
.bind(to: viewModel.searchText)
.disposed(by: disposeBag)

}
}

Listing 13: Setting up a UITableView and UISearchBar with RxSwift

85

F. Code samples
class NoRxViewController: UIViewController, UITableViewDelegate,
UITableViewDataSource, UISearchBarDelegate {
let searchBar = UISearchBar()
let tableView = UITableView(frame: .zero)
var viewModel: ViewModel!

override func viewDidLoad() {
super.viewDidLoad()
// ... view setup code - adding, layout etc.
searchBar.delegate = self
tableView.dataSource = self
tableView.delegate = self
tableView.register(CustomTableViewCell.self,
forCellReuseIdentifier: "Cell")

}

// UITableViewDataSource delegate functions
func numberOfSections(in tableView: UITableView) -> Int {
return 1

}

func tableView(_ tableView: UITableView,
numberOfRowsInSection section: Int) -> Int {
return viewModel.dataSource.count

}

func tableView(_ tableView: UITableView,
cellForRowAt indexPath: IndexPath) -> UITableViewCell {
let cell = tableView.dequeueReusableCell(withIdentifier: "Cell",
for: indexPath)

// ... configure the cell using viewModel.dataSource
return cell

}

// UITableViewDelegate delegate function
func tableView(_ tableView: UITableView,
didSelectRowAt indexPath: IndexPath) {
// do something with the selected item

}

// UISearchBarDelegate functions
func searchBar(_ searchBar: UISearchBar,
textDidChange searchText: String) {
// send the search text to viewModel

}

func searchBar(_ searchBar: UISearchBar,
selectedScopeButtonIndexDidChange selectedScope: Int) {
// send the search scope to viewModel

}
}

Listing 14: Setting up a UITableView and UISearchBar without RxSwift

86

	Introduction
	Requirements
	Library requirements
	Demo application requirements
	Additional requirements

	Analysis
	GitLab API
	Endpoint groups to be implemented
	Additional aspects to consider

	Programming languages for Apple platforms
	Objective-C
	Swift Language

	Available GitLab API clients
	Swift
	Other languages/technologies
	Key findings

	Programming paradigms
	Functional programming
	Reactive programming
	Functional reactive programming
	Conclusion

	FRP in Swift
	RxSwift
	Observables and Subjects
	Subjects
	Operators
	Schedulers

	Architecture patterns for iOS applications
	MVC
	MVVM
	VIPER
	Conclusion

	Chapter summary

	Design
	Library Design
	Structure
	API Definition

	Demo application design
	Screens
	Application Transitions

	Implementation
	RxGitLabKit implementation
	Networking
	Data models and parsing
	Paginator

	Demo application implementation
	UI element positioning
	Screen description
	RxSwift in MVVM

	Dependency management
	CocoaPods
	Carthage
	Swift Package Manager

	Documentation
	Chapter summary

	Testing
	Test driven development
	Unit Testing
	Mocking
	XCTest

	Integration Testing
	Creating a GitLab instance
	Creating mock data
	Testing code

	Chapter summary

	Comparison with other GitLabAPI clients written in Swift
	Technologies comparison
	Performance comparison
	Potential limitations
	Benchmarking scenarios
	Experiment circumstances
	Measurements and comparison

	Chapter summary

	Conclusion
	Bibliography
	Acronyms and Abbreviations
	CD Contents
	Figures
	Tables
	Code samples

