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Abstract
In this thesis we propose a simple but ef-
fective method for clustering faces in a
video. The proposed method is composed
of three main building blocks. Firstly, we
extract feature descriptor for each face in
the track by Convolutional Neural Net-
work pre-trained on still images. Sec-
ondly, we describe each track by a single
feature vector obtained by aggregating
feature descriptors previously extracted
from the faces of the track. Thirdly, we
group the track descriptors by a cluster-
ing algorithm. We have systematically
tested several different implementations
of the three building blocks in order to find
the best performing setup. Experiments
on real-life data show that the resulting
method outperforms most of the state-of-
the-art approaches. The output of this
thesis is an open source implementation
of the proposed method which is modular
to allow easy changes of the individual
components.

Keywords: video face clustering,
convolutional neural networks, face
recognition, face attribute extraction

Supervisor: Ing. Vojtěch Franc, Ph.D.
Department of Cybernetics

Abstrakt
V této práci navrhujeme jednoduchou a
přesto efektivní metodu pro shlukování
tváří ve videu. Tato metoda se skládá ze
tří hlavních bloků. Nejprve extrahujeme
příznaky z obličejů detekovaných ve vi-
deu pomocí konvoluční neuronové sítě na-
trénované na statických obrázcích. Poté
z těchto příznaků vytvoříme deskriptory
pro jednotlivé tracky agregací deskriptorů
extrahovaných pro jednotlivé obrázky. Na
závěr tyto deskriptory spojíme do shluků
dle identit. V této práci systematicky tes-
tujeme více různých implementací jednot-
livých částí naší metody za účelem nale-
zení nejlepší kombinace extrakce příznaků,
agregace deskriptorů a shlukovacího algo-
ritmu. Experimenty ukazují, že námi navr-
žená metoda je na testovaných datasetech
lepší než většina současných prací na toto
téma. Výstup této práce je open source
implementace navržené metody, která je
modulární a umožňuje jednoduché nahra-
zení jednotlivých komponent.

Klíčová slova: shlukování obličejů ve
videu, konvoluční neuronové sítě,
rozpoznávání obličejů, predikce atributů
z obličeje

Překlad názvu: Shlukování tváří ve
videu
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Chapter 1
Introduction

Video Face Clustering concerns itself with grouping of faces occurring in a
video to disjoint subsets according to their visual characteristics and/or their
spatial-temporal constraints. The ultimate goal of Video Face Clustering is
to be able to identify different identities in videos. The Video Face Clustering
has many applications, for example, it is possible to do an interaction analysis
of characters in a movie, compute identity occurrence statistics in videos from
surveillance cameras, or it enables creation of large face datasets [35].

In this work we focus on face clustering in movies and TV series. In this
scenario the Video Face Clustering method requires a lot of computing power
due to the large amount of data that needs to be processed. Besides the
computational demands, the face clustering is challenging due to substantial
variation of a character appearance during the movie (or TV episode) caused
by changes of light conditions, make-up, or even the change of the character’s
age (e.g. in Harry Potter movies [15] used as one of our benchmarks). In
contrast to processing of still face images, the faces extracted from videos
are often more affected by motion blur, occlusions and image compression
making the Video Face Clustering even more challenging.

During the last years it has become clear that the Video Face Clustering
methods using handcrafted features for face representation [36][35] are out-
performed by recent works that employ deep learning for feature extraction
[40, 30]. The deep learning has been popularized by the work of Krizhevsky
et al. [17] whose Convolutional Neural Network (CNN) trained from millions
of examples outperformed traditional computer vision approaches in the task
of image classification by outstanding margin. Since then the methods based
on deep learning have become the state-of-the-art in many other computer
vision tasks including face recognition. The video clustering method proposed
in this thesis also exploits deep CNNs trained from millions of examples.

This thesis attempts to develop a state-of-the-art video clustering method
assembled using contemporary open source implementations of computer
vision and machine learning algorithms. The input of our method is a set of
face tracks, that is, sequences of faces extracted from a video by a common face
tracker. The method outputs clusters of the face tracks each corresponding
to a single identity. The proposed method itself is composed of three main
building blocks. Firstly, we extract feature descriptor for each face in the track.
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1. Introduction .....................................
Secondly, we describe each track by a single feature obtained by aggregating
feature descriptors previously extracted from individual faces of the track.
Thirdly, the track feature descriptors are grouped by a clustering algorithm.
We have systematically tested several different implementations of the three
building blocks in order to find the best performing setup. In particular,
we considered VGG-Face [26], RESNET50 [16] for face feature extraction,
template selection and median representation for feature aggregation, and K-
Means, Hierarchical clustering [23] and Spectral clustering algorithm [38, 34]
to find clusters. We evaluated our method using evaluation protocols widely
used in the community. Namely we used the B-Cubed Precision/Recall and
classification Accuracy [3, 30] to measure the clustering precision obtained by
the method on episodes of the TV series Buffy the Vampire Slayer [11] and
the Accio dataset [15] composed of Harry Potter movies. The results showed
that our method, which is a well tuned simple framework assembled from
publicly available libraries, achieved state-of-the-art accuracy while able to
process the videos in real-time on a standard PC.

The proposed method was evaluated in a commonly used scenario which
assumed that the input video tracks did not contain outliers, i.e. tracks
containing non-faces or faces of more than one identity. To get such input,
one needs either a perfect tracker or a reliable detector of the outlier tracks.
We propose a simple detector which uses the extracted feature descriptors
and Logistic Regression. A preliminary empirical evaluation presented in this
thesis shows promising results.

The other output of this thesis is an open source implementation of the
proposed method and the evaluation framework written in Python. The code
is well documented and modular in order to allow easy testing of different
implementations of individual components of the method.

The thesis is divided into six chapters. Chapter 2 consists of a short
description of the related works. Chapter 4 describes the proposed method
and details of its individual components. In Chapter 3 we describe the datasets
used as our benchmarks. Chapter 5 is devoted to experiments, evaluation
against state-of-the-art and visualization of the results. Conclusions and
future work are given in Chapter 6.
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Chapter 2
Related work

2.1 Video Face Clustering methods

This chapter provides a brief overview of video clustering methods. The
overview is not meant to be exhaustive, instead it concentrates only on the
works most related to the proposed approach.

Traditionally, the face clustering techniques were aiming at still images,
such as in photo albums, where it was used to order the images according
to person appearance [42, 13]. To this end, it was essential to develop a
function measuring similarity between two face images, so that the similarity
of images of the same identity is high while the similarity of images of different
identities is low. Having the similarity function defined, multitude of generic-
purpose clustering algorithms can be used. Development of the face similarity
functions has a long history. Originally, the face similarity was measured by
Euclidean distance between vectors representing linear projection of pixel
intensities of the compared face images [22]. The next era covering more
than a decade of research was devoted to development hand-crafted feature
descriptors tailored to the face images, e.g. [19, 5]. Finally, after the advent
of deep learning the face similarity is typically implemented by Convolutional
Neural Networks learned from examples [37].

The methods for face clustering in still images are not directly applicable to
videos for several reasons. The faces extracted from video have often a lower
resolution and they are affected by motion blur, occlusions or compression
artifacts. In addition, in the video track clustering we have additional prior
knowledge about the temporal and spatial information from the face tracks
which should be incorporated into the clustering algorithm.

Analogically to clustering in the still images, the first works on video face
clustering were using hand-crafted features for face representation. Among
the historically first are the methods proposed in [12, 13]. For example, the
work [13] proposes the Joint Manifold Distance (JMD) which measures the
distance between two sub-spaces defined by pixel intensities extracted from
the faces of tracks to be compared. The tracks are grouped by agglomerative
clustering. The work [10] proposes an unsupervised method for learning
face similarity function which was than applied in a hierarchical clustering
algorithm to obtain the track clusters. The faces are represented by SIFT
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2. Related work.....................................
features computed around a set of automatically detected landmarks. The
positive example pairs needed to learn the similarity function are faces
occurring at the same track, while the negative example pairs are selected
from tracks that appear at the same time in the scene hence capturing different
identity. The main advantage of the method is its ability to adapt the face
similarity to the processed images without the need to annotate the tracks.
The authors of [20] propose the Penalized Probabilistic Clustering algorithm
which allows to incorporate soft as well as hard preference constraints on
pairs of tracks that should be (or should not be) assigned to the same
cluster. The work [35] proposes a generative clustering model based on the
Hidden Markov Random Fields. Application of the sparse vector clustering
algorithm to cluster faces extracted from video is proposed in [36]. This
method simultaneously clusters faces into tracks and tracks into clusters while
it allows to incorporate prior knowledge on which faces should appear in
the same track and which tracks should not be assigned to the same cluster.
Method of the same flavour have been proposed in [24, 8]. Both methods use
RGB pixel intensities as image features.

The most recent works rely on features extracted by deep CNN. Namely,
in [40] the authors formulate a joint face representation adaptation and
clustering approach in a deep learning framework. The method allows face
representation to gradually adapt from an external source domain to a
target video domain without using any strong supervision. The authors
of [39] explore the visual constraints among the face tracks to generate online
training samples and then learn CNN with triplet-loss.

The closest work to the approach proposed in this thesis is the paper [30]
which uses the same framework composed of three steps: feature extraction by
CNN trained on still images, feature aggregation and clustering. In contrast
to them, we use more sophisticated features (we use combination of VGG-Face
and RESNET50 instead of only VGG-Face), different aggregation method (we
use median aggregation instead of averaging) and different clustering algorithm
(we use spectral clustering instead of K-means). We show experimentally
that our implementation leads to a significant improvement of the clustering
accuracy regardless which evaluation metric is used.

2.2 Evaluation metrics

It is interesting that until today there is not a strong consensus on which
evaluation metrics should be used to evaluate the face clustering algorithms.
Table 2.1 shows which evaluation metrics were applied in papers describing
methods we use as baselines in this thesis.

When evaluating the clustering algorithms we usually have two agnostic
criteria in mind i) cluster purity (i.e. each cluster should contain only one
identity) and ii) a spread of the identities over different clusters (i.e. one
identity should be assigned to one cluster only).

One of the most frequently used evaluation metrics is the B-Cubed metrics
family [3] developed in 1998 which enables balancing the number of clusters
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.................................. 2.2. Evaluation metrics

with their purity using two counter-posing metrics. Firstly, the B-Cubed
Precision penalizes classification of two different identities as one but does not
take into consideration the number of clusters. Secondly, the B-Cubed Recall
which penalizes for not putting two tracks of the same identity together in
one cluster. In order to express these two metrics by a single number, their
harmonic mean, so called F1 score, is usually used. The F1 score has been
also recommended already in 1974 by Van Rijsbergen [28] as a standard way
of combining two different metrics.

The other metric is the classification Accuracy which is computed from the
confusion matrix between the predicted cluster labels and the ground truth
labels under most optimistic permutation. A disadvantage of the Accuracy
metric is that it requires the tested method to return the correct number
of clusters. Despite its disadvantages this metric is most frequently used in
literature.

Other metrics are the Cluster Purity, also referred to as the Weighted
Cluster Purity (WCP), and the Cluster Inverse Purity [21, 31]. The two
metrics have similar meaning as the B-Cubed Precision and Recall, however,
they have less favourable theoretical properties [3].

We believe that the B-Cubed metrics will be used much more widely on
the expense of the others because they were chosen as the main evaluation
criteria for clustering algorithms in the recent NIST Challenge [14].

Metrics / Article DF
R
[30

]
JF
AC

[40
]

CS
R
[41

]
VF

SC
[24

]
W
BS

LR
R
[36

]
HM

RF
[35

]
UL

DM
L
[10

]
B-cubed precision NO YES NO NO NO NO NO
B-cubed recall NO YES NO NO NO NO NO
F1 score NO YES NO NO NO NO NO
Accuracy YES YES YES YES YES YES YES
WCP YES NO NO NO NO NO NO

Table 2.1: Table of metrics used in state-of-the-art articles on Face Clustering
in Videos which we used as baselines in our empirical evaluation. The reffered
methods are Discriminant Metric Learning (ULDML) [10], Hidden Markov
Random Field based Clustering (HMRF) [35], Weighted Block-Sparse Low Rank
Representation clustering (WBSLRR), Very Fast Sparse Clustering [24], Joint
Face Adaptation Representation clustering method (JFAC) [40], Deep Face
Representation clustering (DFR) [30] and Constrained Sparse Clustering (CSR)
[41]

5



6



Chapter 3
Databases and evaluation protocols

3.1 Summary of databases

In our work we use two different databases with four videos in total. In all the
videos, there is a huge difference between the minimum and maximum number
of tracks per identity, resulting in problems with using various clustering
techniques relying on at least comparably large resulting clusters. Both
databases were originally created for a slightly different purpose yet they
have become the standard benchmark of video face clustering used by the
computer vision community. The much older Buffy the Vampire Slayer [11]
(2006) dataset was created for the demonstration of the benefit gained by
using face and cloth matching to the use of automatically aligned subtitles and
script text for identity labelling [11]. The Harry Potter (Accio) database [15]
was created for the investigation of automatic face matching of the identity
across age.

In the databases, a track is defined as a sequence of positions of bounding
boxes and their frame numbers.

Database Nu
m
be
r o

f t
ra
ck
s

Nu
m
be
r o

f i
de
nt
iti
es

Av
g.

nu
m
be
r o

f t
ra
ck
s p

er
id
en
tit
y

M
ax
im
um

tra
ck
s p

er
id
en
tit
y

M
in
im
um

tra
ck
s p

er
id
en
tit
y

Va
ria

nc
e

Harry Potter 1 5249 36 145 2006 2 362
Harry Potter 2 5335 42 127 1874 2 318
Buffy S05E02 2088 19 109 982 6 212
Buffy S05E05 1532 16 96 655 2 160

Table 3.1: Statistics of datasets. Variance is calculated for the number of tracks
per identity.
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3. Databases and evaluation protocols ...........................
3.1.1 Buffy database

Buffy the Vampire Slayer database [11] consists of two annotated episodes, 2
and 5 from season 5. In our work, we use the episode 5 as our training set,
therefore all parameter setting and/or tuning is done on this dataset. Later
in this work, we will refer to Buffy the Vampire Slayer S05E02 as to BF2 and
to Buffy the Vampire Slayer S05E05 as to BF5.

The face detection for this database was done using Boosted Cascade of
Simple Features detector [33]. Then, the tracks were created using spatial-
temporal locations of the detected faces. The labelling of the tracks was done
manually. The labeled tracks fall into three categories: a name of one of
the main characters, false-positive for tracks not containing any facial image,
and "other" for any tracks containing facial images with unknown person
(i.e. someone other than the main character). The histogram of identity
occurrence in this database is shown in Figure 3.1.

Figure 3.1: Occurrence of identities in Buffy the Vampire Slayer databases.

3.1.2 Accio database

Accio [15] database consists of 8 annotated movies, Harry Potter 1-8, from
whose we use only 1 and 2 for evaluation purposes as only the two episodes have
been used in the relevant literature. This dataset is much more challenging
than the Buffy dataset [11] due to its higher number of tracks, identities, and
a lot of dark scenes throughout the movies. Later in this work, we will refer
to the Harry Potter databases as to HP1 and HP2.

Detection and tracking used for the creation of this database was a Particle
filter tracker method proposed in [4], which also indicated initial labelling.
The final labelling was done manually and consist of two main options: a
name of one of the known characters and a false-positive for the tracks with
images containing everything else but the known identities. The histogram of
identity occurrence for this database is shown in Figure 3.2

8



................................. 3.2. Evaluation protocols

Figure 3.2: Histogram of tracks identities in Harry Potter 1 and 2 databases

3.2 Evaluation protocols

Let y ∈ Y = {1, . . . , Y } denote the identity of a person captured in the track
described by a feature x ∈ X . Let h : X → C = {1, . . . C} be a clustering
strategy that assigns tracks to clusters. The clusters correspond to the
identities.

Let {(xi, yi) ∈ X ×Y | i = 1, . . . ,m} be a test set containing pairs of tracks
along with their true y. Let further denote by Iy = {i ∈ {1, . . . ,m} | yi = y}
a set containing indices of test tracks with the identity y. Given a strategy h,
we can assign each test track xi to a cluster h(xi). Let us represent the cluster
assignment by sets Îc = {i ∈ {1, . . . ,m} | h(xi) = c}, c ∈ C, containing
indices of test tracks assigned by h to the respective cluster.

In most experiments (except when comparing WCP score in Table 5.10)
we assume that the correct number of clusters C is known a priory. This
assumption has been used in all the related works to which we compare our
results, namely, in [10, 20, 35, 24, 40, 30].
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3. Databases and evaluation protocols ...........................
B-cubed Precision

B-cubed precision is the average fraction of the track pairs assigned to a
cluster with matching class labels. The B-cubed precision is defined as:

Precision(h) = 1
m

m∑
i=1

1
|Îh(xi)|

∑
j∈Îh(xi)

[[yi = yj [] . (3.1)

For example, the B-cubed precision will be 1 if we put every track into its
own cluster. In case that in all clusters there are 2 different identities (labels)
the precision will 0.5 and so on.

B-cubed recall

B-cubed recall is an average fraction of the track pairs belonging to the same
class which assigned to the same cluster. It says how many clusters there are
per label on average. The B-cubed recall is defined as

Recall(h) = 1
m

m∑
i=1

1
|Iyi |

∑
j∈Îyi

[[h(xi) = h(xj)[] . (3.2)

For example, if all identities are distributed over 4 clusters (each identity in 4
different clusters) than the recall will be 0.25. The recall will be 1 if we put
all tracks in one cluster.

F1 score

F1 score is defined as the harmonic mean of the B-cubed recall and the
B-cubed precision:

F1(h) = 2 Precision(h)Recall(h)
Precision(h) + Recall(h) (3.3)

Accuracy

The classification Accuracy (as defined in [30]) is calculated from the confusion
matrix between predicted and ground truth classes for tracks and is given in
percentage of how many predictions were correct. The accuracy is measured
on track-level and it requires the knowledge of the number of true classes
(clusters).

For the calculation of accuracy it is necessary to find an optimal matching
between the predicted labels and the true labels by solving a linear assignment
problem. In our work, this is done using an Scipy [25] implementation of the
Hungarian Algorithm [18].

The Accuracy is defined as

Accuracy(h) = 100 min
π∈Π

(
1
m

m∑
i=1

Jyi 6= π
(
ŷi
)
K

)
(3.4)

where Π stands for all possible permutations between the assigned and true
labels.
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................................. 3.2. Evaluation protocols

Cluster Purity and Weighted Cluster Purity

Weighted Cluster Purity (WCP) and Cluster Purity are mathematically
equivalent. Their value is analogical to the B-Cubed Precision, because it
covers the cases where tracks with different labels are put into one cluster.
The Cluster Purity (and Weighted Cluster Purity) is defined as

Purity(h) =
∑
c∈C

|Îc|
m

(
max
y∈Y

|Îc ∩ Iy|
|Îc|

)
= 1
m

∑
c∈C

max
y∈Y
|Îc ∩ Iy| . (3.5)

The purity penalizes clusters with more identities but it ignores if tracks with
the same label are put in different clusters. The purity is maximal, if there is
no cluster containing 2 or more different identities.

Cluster Inverse-Purity

We do not report any results using Cluster Inverse-Purity in our work, but it
is deemed necessary to mention it, because it is the counter-part of Cluster
Purity. The Cluster Inverse-Purity is analogical to the B-Cubed Recall,
because it deals with tracks of one label putted to multiple clusters. The
Cluster Purity and Cluster Inverse-Purity metrics are dominant in works
related to face clustering in still images, but they are seldom used in face
clustering in videos.

The Cluster inverse-purity is defined as

InvPurity(h) =
∑
y∈Y

|Iy|
m

(
max
c∈C

|Îc ∩ Iy|
|Iy|

)
= 1
m

∑
y∈Y

max
c∈C
|Îc ∩ Iy| . (3.6)

The inverse-purity rewards if faces with the same labels are put to the same
cluster but it ignores if the clusters contain more labels. The Inverse Purity
is maximal, if there is no label in two or more clusters.
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Chapter 4
Method

4.1 Framework

Our method takes as input a set of face tracks, which are sequences of faces
extracted from a video by a common tracker. The output are clusters of the
tracks, where each cluster corresponds to an identity. The method consists of
three main parts: feature extraction from single face images using pre-trained
CNN, feature aggregation for the track representation by a single feature,
and clustering. We used a CNN trained on still images because the face
recognition in still images is more developed - the CNNs for face recognition
in still images are trained on databases whose size is at least a magnitude
larger then the databases of annotated videos.

In our work we do not propose any method or approach for the face tracking.
Our clustering method assumes that the tracks are provided and that they
are correct, i.e. they contain only tracks that correspond to a single identity.
However, at the end of this chapter, we propose a simple detector of outlier
tracks.

Figure 4.1: General framework of our method. The tracking algorithm is not
part of our work, but is added for the purpose of clarity.

Figure 4.1 illustrates the main building blocks of the proposed method
(including the tracking part). At the beginning there is the input video in
which the tracking algorithm finds faces and merges them into tracks.

Afterwards, we extract features from every face image using one of the
methods described in Section 4.3. We represent every track by a single
feature vector, later referred to as track representative, by one of the two
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4. Method .......................................
aggregation methods described in Section 4.4. The last part of our framework
is clustering into disjoint identities groups using one of the methods described
in Section 4.5.

For evaluation of our method we used videos which already come with the
face tracks [11] [15], i.e. sequences of bounding boxes. In Section 4.6, we
propose a simple method for outlier detection.

4.2 Tracking

The input of tracking part is a video file and the output is a set of tracks,
each consisting of any number of images (at least one image per track). As
mentioned before, for our experiments we used annotated video sources. Our
first dataset, Buffy the Vampire Slayer episodes 2 and 5 from the 5th series,
was created using Boosted cascade of simple features detector [33] used for
the detection. The organizing into tracks was done with the spatial-temporal
location of the faces and the annotation was done manually.

The second dataset we use, Accio [15], was created by performing tracking-
by-detection using a particle filter [4] with the use of multi-pose detectors for
the covering of the entire range of pan and roll face angles.

4.3 Feature extraction

In our work we used several different approaches for feature extraction. The
basis for all of them was a convolutional neural network - for our first two
methods we used VGG-Face [26], for the third approach we used residual
convolutional neural network RESNET50 [16] and for the fourth one we
used combination of VGG-Face and RESNET50. We employed both of these
networks using Keras-VGGFace [27], running on Keras [9] on Tensorflow
backend [1]. The weights for these networks were the ones published by
the authors of [26] and [16] respectively, only imported for the use in Keras
framework. The CNNs used for the feature extraction required a fixed-size
image on the input. For the best result, the face-area shown in the image
had to be as close as possible to the data, on which the CNN was trained.
Due to that, we had to resize the the bounding boxes of the detected faces
to fit the requirements of the CNN. Details are provided in Experiments in
Section 5.1.1.

14



................................. 4.4. Feature aggregation

4.3.1 VGG-Face

From this network we used responses of two different layers for feature
extraction. In the first approach we used the response of the last layer (fc8 )
of VGG-Face network [26], resulting in 2,622 features per image. In the
second approach we used the response of the fc7 layer (it is two layers above
the last layer). We used the fc7 layer in order to be able to compare the
results of this work with the work of the authors of [30]. This setting resulted
in 4,096 features per image. The detailed architecture of the network is shown
in Figure 4.2.

Figure 4.2: Detail of VGG-Face network architecture

4.3.2 RESNET50

In this approach we used the residual CNN RESNET50 [16] pretrained on the
VGG-Face2 dataset [7]. The network model and weights were taken from the
same paper [7]. The architecture of this model allowed it to be much deeper
than the VGG-Face [26] without loosing accuracy. It was expected that this
network would perform better than VGG-Face, because it is the most recent
work of the same authors and it is even trained on a superior dataset [7]
compared to the one VGG-Face was trained on. This setting results in 2,048
features per image.

4.3.3 Combination of RESNET50 and VGG-Face

We planed on using this combination at the beginning, the idea to make it was
born while we were doing experiments on the feature extraction approaches.
We combined the features obtained by RESNET50 and VGG-Face by simply
appending VGG-Face (responses from fc7 layer) features to RESNET50,
which resulted in total of 6,144 features per image.

4.4 Feature aggregation

By feature aggregation is meant the aggregation of the sequence of face features
extracted for all images in one track into a single feature describing the whole
track. The resulting feature set (later referred to as track representative) has
the same number of features as a single picture. This can be achieved using
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4. Method .......................................
various techniques, in our work we tested the Template selection and the
Median computation.

As shown in Section 5.1, it is desirable to perform dimension reduction on
the set of the track representatives. For this task we used standard Principal
Component Analysis (PCA) to project the features to space with significantly
lower dimension. Details are provided in Section 5.1.

4.4.1 Template selection

Template selection means selecting one of the face images in the the track as
a track representative. We evaluated the median value m (coordinate-wise)
for the features of images inside one track. After that, we selected (as the
track representative) the L2 norm of the feature having the smallest euclidean
distance to the median value m.

4.4.2 Median computation

Here we computed L2 norm of all features of images contained in one track
and then computed the coordinate-wise median value m for the features of
images inside that track. This median value m was then the representative
of the track.

4.5 Clustering algorithms

The input of this clustering part are the track representatives reduced to a
feature space with lower dimension by PCA. The output are clusters of tracks,
each cluster corresponding to one identity. In our work, we tested three
different clustering algorithms - Hierarchical clustering using average linkage,
K-Means and Spectral clustering on k-nearest neighbors (KNN) manifold.

4.5.1 Hierarchical clustering

We used agglomerative (bottom-up) approach. We used average linkage
clustering algorithm [23] with cosine metrics - the distance between two faces
is defined as the cosine value of the angle between them from the origin of
the coordinates. The distance between two clusters, 1 and 2, is defined as the
average pairwise distance between tracks in cluster 1 and tracks in cluster 2.
At the beginning, the algorithm marks all tracks as clusters containing a
single track. At every step, it takes two clusters having the smallest distance
between each other and puts them together in one cluster. Therefore, after
each step the number of clusters is decreased by one. It stops when it reaches
the desired number of clusters.

4.5.2 K-Means clustering

K-Means [2] object is to partition the examples into k clusters. The initial-
ization of the algorithm may vary depending on implementation, in our work
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................................... 4.6. Outlier detection

we seeded k random points having the same dimension as our feature space,
referred to as centroids. After that, the initial assignment of every track to a
cluster represented by its nearest centroid is made. Each step has two parts:
in the first one the coordinates of every centroid are recalculated, so that the
within-cluster variance is minimized (the centroids are put in the center of
the cluster) and in the second one the tracks whose centroid has changed are
put to the cluster belonging to their closest centroid. The stopping criterion
is when the coordinates of the centroids are not changed (or the change is
below given threshold) in the first part of the step. The main problem of this
algorithm is the necessity of multiple runs as it is very prone to stopping at
local optimum. The objective function is to minimize the within-cluster sum
of squares, formally the objective is:

arg min
µ1,...,µk

m∑
i=1

min
j=1,...,k

‖xi − µj‖2 (4.1)

where µj is the centroid of cluster j.

4.5.3 Spectral clustering

The spectral clustering algorithm [38][34] is capable of exploiting more infor-
mation (than the Hierarchical clustering and K-Means), because the clustering
itself is done not in the original space, but in a transformed space, a kernel.
In our work we used k-nearest neighbor kernel. The run of the algorithm
consists of three main parts: firstly, creating a similarity matrix - we used
k-nearest neighbor method, the size of k was a tuning parameter for us (the
k selection is in Section 5.1). The second step is the computation of the first
k eigenvectors of the Laplacian matrix to define a feature vector for every
track, and the last step is to run K-Means on those features.

After the creation of similarity matrix, we detected if the resulting graph
had more than one connected component. If it did, we increased the k by one
and repeat the similarity matrix creation. (This detection step was omitted
on experiments on our training dataset, because for this dataset we used
precisely tuned k (see Figure 5.8))

4.6 Outlier detection

In this section we used our track representation to perform outlier detection.
For this purpose, we used the Logistic Regression to separate the tracks to
outliers and to tracks composed of images containing only faces. This means,
our detector does not deal with tracks containing multiple identities, only
the ones without any facial images, i.e. track containing one or more. The
Logistic Regression model was fitted on BF5, our training database.
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Chapter 5
Experiments

We have structured this chapter into seven main parts: hyper-parameter
tuning in Section 5.1, evaluation of the proposed method in Section 5.2,
visualization of the obtained results in Section 5.3, error analysis for the
detection of the weak part of our method in Section 5.4, proposition of the
cannot-link constraints incorporation and corresponding visualizations in
Section 5.5, time requirement analysis in Section 5.6, and proposition of
outlier detection based on our track representation in Section 4.6.

In Section 5.1, devoted to hyper-parameter tuning, we show that the
reduction of the features dimension significantly improves the clustering
results. We then find the optimal settings for all combinations of our feature
extraction techniques (see Section 4.3) with all selected clustering algorithms
(see Section 4.5).

In Section 5.2, with all the parameters set, in the evaluation part we test the
different feature extraction - clustering algorithm combinations on 4 datasets,
BF2 and BF5 [11] and on HP1 and HP2 from the Accio dataset [15]. We
then compare our results to the state-of-the-art on Buffy the Vampire Slayer
S05E02 dataset in terms of the accuracy and F1 score.

In the visualization part, we employ t-SNE [32] method for dimension reduc-
tion to 2. Then we plot the results of our method compared to ground truth
and visualize the differences between the individual clustering algorithms.

In Error Analysis section we show a simple track-length based misclassifi-
cation analysis. The constraints section shows the possible benefits emerging
from the incorporation of the cannot-link constraints and we show the related
visualizations. In Time requirements section we describe the computational
demands of our method. In the last section we propose a new, very successful
approach for outlier detection with the use of our track description.

5.1 Hyper-parameter tuning

Our method has three hyper-parameters, tuning of which is presented in
this section: the bounding box size for the input of the CNN, the number
of components for the PCA dimension reduction and the size k of the k-
nearest neighborhood kernel used in the Spectral clustering algorithm. The
hyper-parameters were tuned on the BF5 selected for training.
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5. Experiments .....................................
5.1.1 Bounding-box size

Given the general framework, at first it was necessary to extract facial images
from the videos. Frame number and position, where the face was located,
was given by the databases we have used in this work - for Buffy the Vampire
Slayer it was [11] and for Harry Potter it was [15]. For the actual image
extraction, we have used methods implemented in OpenCV library [6].

Both databases were created using different face-tracking algorithm (as
mentioned in Section 4.2), their bounding box sizes (area selected to contain
the desired face) had different settings. In order to unify that we extracted
faces in 10 different sizes, beginning from 10% larger than the original settings
and going up by 10% up to 2 times the original size (as shown in Figure 5.2)
- this has been done for a large part of the BF5 dataset. After that we
extracted features from all images using the VGG-Face [26] and median
computation (Section 4.4.2) for feature aggregation. Given these feature-
vectors, we calculated the variance between vectors belonging to the same
identity (further referred to as Inner variance), then medians of the vectors
for every identity and afterwards the variance between these medians (further
referred to as Outer variance). Our goal was to minimize the Inner/Outer
variance ratio, as this shows how good the selected features are in describing
the facial characteristics of individual identities. In other words this means
fine-tuning the bounding box size for the VGG-Face [26] neural network.

In Figure 5.1 we show the results of this test. In our work we used the
150% resizing ratio.

Figure 5.1: Bounding box size comparison of the variance for extracted facial
images.
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................................5.1. Hyper-parameter tuning

Figure 5.2: Examples of extracted images using different bounding box sizes.

5.1.2 Dimension of the track feature descriptor

As shown in Figure 5.3 and in Figure 5.4, it is unnecessary to use all di-
mensions of the feature space. We propose selecting only certain number of
dimensions by the means of PCA using our training dataset BF5 to maximize
the class separability in terms of the F1 (Section 3.2) score using Hierar-
chical clustering, K-Means and Spectral clustering on features extracted by
VGG-Face (Section 4.3.1), RESNET50 (Section 4.3.2) and Combined (4.3.3)
networks. The results of this optimization are shown in Figure 5.6, Figure 5.7
and in Figure 5.5.

Figure 5.3: Impact of dimension reduction of features on the variance lost by
the reduction.
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5. Experiments .....................................

Figure 5.4: Mean squared error of PCA transformation given number of compo-
nents.

Table 5.1 summarizes the best results for all clustering algorithms - feature
extraction combinations from experiments in Figure 5.6, Figure 5.7 and from
Figure 5.5. It is clear that the Spectral clustering performs superior to the
other clustering techniques regardless of feature extraction method used. It
is also probable that the results on the training dataset may suffer from
over-fitting, as can be seen mainly from Figure 5.6, but partially also from
Figure 5.5 due to the oscillation in the results.

VGG-Face RESNET50 Combined
Algorithm F1 NC F1 NC F1 NC

Hierarchical clustering 0.77 131 0.85 201 0.80 71
K-Means 0.81 32 0.77 32 0.83 26

Spectral clustering 0.90 21 0.95 35 0.95 31

Table 5.1: Summary of results of parameters optimization on Buffy the Vampire
Slayer S05E05, where F1 stands for F1 score (3.2) and NC for number of
components for PCA.

The results showed very significant changes in the optimal number of
components for different feature extraction methods. The most substantial
changes were for the Hierarchical clustering, where the optimal dimension was
131 for VGG-Face, 201 for RESNET50 and 71 for the Combined extraction
method. Most interestingly, the use of combination of the features from VGG-
Face and RESNET50 gave the best results using significantly less dimensions
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than any of VGG-Face and RESNET50 alone. The same applies for the
K-Means clustering algorithm, where both the VGG-Face and RESNET50
performed optimally on 32 dimensions, while their combination reached the
best score on 26 dimensions. This observation did not apply to Spectral
clustering, because Spectral clustering performed best on 21 dimensions for
VGG-Face, 35 for RESNET50 and 31 for the Combined extraction method.

Figure 5.5: Visualization of F1 score given number of components when using
Spectral Clustering on KNN manifold with K=7 for VGG-Face and K=6 for
RESNET50 and Combined feature extraction methods
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Figure 5.6: Visualization of F1 score given number of components when using
Hierarchical agglomerative clustering (average linkage with cosine metrics).

Figure 5.7: Visualization of F1 score given number of components when using
K-Means clustering.
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5.1.3 Neighborhood size for Spectral clustering

Spectral clustering algorithm is the only algorithm - from the three we are
using - requiring additional parameters then just the number of clusters:
due to the use of k-nearest neighbors kernel (manifold), we need to select
appropriate size of k for every feature extraction method. However, with
selection of the desirable size of k arises the need to perform dimension
reduction with the newly selected k. We use a block-wise ascent approach
towards this problem. As step a), we fix the k (we have started with k equal
to 30 for all feature extraction methods) and we find the optimal number of
components for PCA. Then, as step b), we fix the number of components
and select optimal k, then repeat from step a). The dimension optimization
results shown in Figure 5.5 and the k size neighborhood optimization results
are the last step a) and b), when both the number of components and size of
k already converged to the results reported in Table 5.2 and in Table 5.1 on
the last row, respectively.

VGG-Face RESNET50 Combined
Algorithm F1 K F1 K F1 K

Spectral clustering 0.90 7 0.95 6 0.95 6

Table 5.2: Results of k size optimization for k-nearest neighbor manifold in
Spectral clustering. F1 stands for F1 score of the resulting clusters and K stands
for the size of k inside the manifold.

The results show the k does not differ much with different feature extrac-
tion methods. For VGG-Face, the optimal size of k is 7 and for both the
RESNET50 and the Combined extraction method the optimal size of k is 6.

Figure 5.8: Visualization of dependence of F1 score on size of k-neighborhood
in spectral clustering.
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5.2 Evaluation of the proposed method

Tables 5.3, 5.4 and 5.5 show the results for all combinations of clustering
algorithm (Section 4.5), feature aggregation (Section 4.3) and feature aggrega-
tion (Section 4.4) sorted from the most successful one to the least successful
one. For every evaluation metrics (F1 score, Accuracy and WCP) there is
one table and in all the tables the testing dataset is printed in red. All
results were generated using the proposed setting unique to each clustering
algorithm - feature extraction combination shown in Table 5.1.

Algorithm combination Dataset RankBF2 BF5 HP1 HP2
Spectral clustering-combined-median 0.86 0.95 0.79 0.71 1.
Spectral clustering-resnet50-median 0.82 0.95 0.77 0.66 2.
Spectral clustering-combined-template 0.81 0.87 0.75 0.65 3.
Hierarchical-resnet50-median 0.79 0.85 0.63 0.68 4.
Spectral clustering-resnet50-template 0.77 0.86 0.74 0.65 5.
Spectral clustering-vgg fc7 -median 0.84 0.9 0.71 0.56 6.
Spectral clustering-vgg fc7 -template 0.74 0.85 0.61 0.66 7.
Hierarchical-combined-median 0.73 0.8 0.63 0.67 8.
Spectral clustering-vgg ll-median 0.69 0.84 0.72 0.65 9.
K-Means-combined-template 0.76 0.75 0.57 0.61 10.
K-Means-combined-median 0.76 0.78 0.55 0.61 11.
Hierarchical-vgg fc7 -median 0.71 0.77 0.58 0.59 12.
Hierarchical-combined-template 0.68 0.71 0.61 0.65 13.
Hierarchical-resnet50-template 0.7 0.69 0.61 0.64 14.
Spectral clustering-vgg ll-template 0.61 0.84 0.66 0.56 15.
K-Means-resnet50-median 0.75 0.76 0.52 0.58 16.
K-Means-vgg fc7 -median 0.75 0.75 0.56 0.55 17.
Hierarchical-vgg fc7 -template 0.67 0.68 0.55 0.63 18.
K-Means-vgg fc7 -template 0.67 0.77 0.54 0.58 19.
Hierarchical-vgg ll-median 0.65 0.66 0.58 0.61 20.
K-Means-resnet50-template 0.73 0.75 0.52 0.56 21.
Hierarchical-vgg ll-template 0.63 0.66 0.51 0.56 22.
K-Means-vgg ll-median 0.62 0.66 0.5 0.53 23.
K-Means-vgg ll-template 0.53 0.67 0.49 0.51 24.

Table 5.3: Algorithms comparison in terms of F1 score. The ordering is based
on the average rank computed over the datasets. The results on the training
dataset are printed in red.
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Algorithm combination Dataset RankBF2 BF5 HP1 HP2
Spectral clustering-combined-median 89.4 96.7 81.2 68.8 1.
Spectral clustering-resnet50-median 86.8 96.7 79.4 60.6 2.
Spectral clustering-combined-template 83.9 87.9 77.8 62.2 3.
Spectral clustering-resnet50-template 80.4 86.2 76.3 65.3 4.
Hierarchical-resnet50-median 83.1 88.2 61.3 64.4 5.
Spectral clustering-vgg ll-median 72.7 86.9 75.3 65.6 6.
Spectral clustering-vgg fc7 -median 88 93.9 73.2 46.5 7.
Hierarchical-combined-median 77.4 82.8 58.2 61.1 8.
Spectral clustering-vgg fc7 -template 76.5 88.9 62.3 52.7 9.
Hierarchical-vgg fc7 -median 76.4 81.3 52.4 62.8 10.
Spectral clustering-vgg ll-template 60 88.4 71 54.8 11.
K-Means-combined-median 81.6 79.5 49.9 53.5 12.
K-Means-combined-template 79.8 72.8 53.7 55.8 13.
Hierarchical-resnet50-template 73.9 66 63.5 57.9 14.
Hierarchical-combined-template 73.3 66.9 58.3 58.5 15.
Hierarchical-vgg fc7 -template 74.3 65.1 52.7 61.2 16.
K-Means-vgg fc7 -median 79.1 78 48.9 53 17.
Hierarchical-vgg ll-median 70.5 61.8 54.9 55.8 18.
K-Means-resnet50-median 80.1 71.8 46 48.8 19.
K-Means-resnet50-template 77.3 68.4 47.5 49.4 20.
K-Means-vgg fc7 -template 69.2 77.4 48.2 52.2 21.
Hierarchical-vgg ll-template 69.6 63.7 46.3 51.3 22.
K-Means-vgg ll-median 66.3 60.8 46.4 47.8 23.
K-Means-vgg ll-template 54.6 63.4 45.5 45.4 24.

Table 5.4: Algorithms comparison in terms of Accuracy. The ordering is based
on the average rank computed over the datasets. The results on the training
dataset are printed in red.
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Algorithm combination Dataset RankBF2 BF5 HP1 HP2
Spectral clustering-combined-median 0.93 0.98 0.9 0.88 1.
Spectral clustering-resnet50-median 0.91 0.98 0.88 0.88 2.
Spectral clustering-combined-template 0.88 0.92 0.87 0.87 3.
Hierarchical-resnet50-median 0.87 0.92 0.87 0.87 4.
Spectral clustering-vgg fc7 -median 0.9 0.95 0.88 0.83 5.
K-Means-combined-median 0.87 0.92 0.85 0.86 6.
K-Means-combined-template 0.86 0.91 0.86 0.85 7.
K-Means-vgg fc7 -median 0.87 0.91 0.85 0.85 8.
Spectral clustering-resnet50-template 0.85 0.91 0.86 0.85 9.
Spectral clustering-vgg fc7 -template 0.83 0.93 0.84 0.85 10.
Hierarchical-combined-median 0.85 0.91 0.84 0.86 11.
K-Means-resnet50-median 0.85 0.93 0.83 0.84 12.
K-Means-resnet50-template 0.83 0.94 0.81 0.83 13.
K-Means-vgg fc7 -template 0.81 0.9 0.84 0.84 14.
Spectral clustering-vgg ll-median 0.79 0.9 0.85 0.83 15.
Hierarchical-resnet50-template 0.8 0.88 0.84 0.85 16.
Hierarchical-combined-template 0.78 0.91 0.83 0.84 17.
Hierarchical-vgg fc7 -median 0.8 0.89 0.83 0.84 18.
Spectral clustering-vgg ll-template 0.73 0.92 0.83 0.79 19.
Hierarchical-vgg ll-median 0.8 0.88 0.81 0.82 20.
Hierarchical-vgg fc7 -template 0.81 0.88 0.78 0.73 21.
K-Means-vgg ll-median 0.78 0.88 0.8 0.8 22.
K-Means-vgg ll-template 0.7 0.89 0.79 0.78 23.
Hierarchical-vgg ll-template 0.77 0.86 0.77 0.79 24.

Table 5.5: Algorithms comparison in terms of WCP. The ordering is based on
the average rank computed over the datasets. The results on the training dataset
are printed in red.

The final algorithm ranking (based on the results for the F1 score, Accuracy
and WCP, shown in Table 5.3, Table 5.4 and Table 5.5) is shown in Table 5.6.
Based on the obtained results we can draw the following conclusions:. The Spectral clustering algorithm is consistently superior to the other

clustering algorithms regardless of the feature extraction and aggregation
method.. The best feature extraction method is the Combined method regardless
of the clustering algorithm and aggregation method.. The best aggregation method is the median computation (regardless of
the feature extraction method and clustering algorithm.. According to the results in Table 5.6, it can be seen that the three
metrics, i.e. F1, WCP and Accuracy, are consistent in the sense that
they lead to the same best (up to the third) configuration.
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Algorithm combination / Rank F1 Accuracy WCP
Spectral clustering-combined-median 1 1 1
Spectral clustering-resnet50-median 2 2 2
Spectral clustering-combined-template 3 3 3
Hierarchical-resnet50-median 4 5 4
Spectral clustering-vgg fc7 -median 6 7 5
Spectral clustering-resnet50-template 5 4 9
Spectral clustering-vgg fc7 -template 7 9 10
Hierarchical-combined-median 8 8 11
K-Means-combined-median 11 12 6
Spectral clustering-vgg last layer-median 9 6 15

Table 5.6: Rank of the first 10 algorithms in terms of their evaluation score
with respect to F1, Accuracy and WCP.

We used the metrics evaluated on training dataset (see Tables 5.3, 5.4
and 5.5) to select the best configuration of the three components (note that
the same best configuration was selected regardless the used metric):. Face feature descriptor: Combination of RESNET50 and VGG-Face. Aggregation method: Median. Clustering algorithm: Spectral clustering

The performance of the best configuration evaluated on the test datasets is
summarized in Table 5.7. As mentioned in Section 5.1, our method slightly
over-fits to the training dataset, but the extremely high scores on the training
dataset may be partially caused by the fact that training dataset BF5 is the
simplest one concerning the number of tracks and light conditions.

Dataset Precision Recall F1 score Accuracy WCP
BF2 0.87 0.85 0.86 89.4 0.93
BF5 0.95 0.95 0.95 96.7 0.98
HP1 0.86 0.73 0.79 81.2 0.90
HP2 0.84 0.67 0.71 68.8 0.88

Table 5.7: Summary of the results on all tested datasets using our proposed
method.

5.2.1 Comparison with other studies

In this section we compare our work to the state of the art in terms of Accuracy
and WCP using BF2[11] dataset and in terms of B-Cubed precision, B-Cubed
recall and their F1 score using HP1 dataset [15]. In Table 5.8 we show the
results of our method compared to the Unsupervised Logistic Discriminant
Metric Learning (ULDML) [10], Penalized Probabilistic Clustering (PPC)
[20], Hidden Markov Random Field based Clustering (HMRF) [35], Weighted
Block-Sparse Low Rank Representation clustering (WBSLRR), Very Fast
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5. Experiments .....................................
Sparse Clustering [24], Joint Face Adaptation Representation clustering
method (JFAC) [40], and Deep Face Representation clustering (DFR) [30].
It is important to mention that these studies tuned their methods using the
BF2 dataset, but we used it only as a testing dataset.

The results for PPC, ULDML and HMRF, shown in Table 5.8, are reported
in [24] - in this paper the VFSC method was presented. In Table 5.8 all the
results (except possibly for JFAC and DFR, because the authors did not
report details of the evaluation metrics) are for the Accuracy measured per
track, i.e. percentage of the misclassified tracks (as defined in Section 3.2).
This setting was in [24] named Acc. 2, whereas the Accuracy measured
per image was named Acc. 1. For completeness, the result of our method
measured using the Accuracy per image (Acc. 1 in [24]) was 95.69%.

Comparison of clustering accuracy

Method Year Accuracy
PPC [20] 2007 40.11 ± 4.03

ULDML [10] 2011 48.28 ± 0.00
HMRF [35] 2013 48.52 ± 3.49

WBSLRR [36] 2014 62.76 ± 1.10
VFSC [24] 2016 66.37 ± 0.00
JFAC [40] 2016 92.13 ± 0.90
DFR [30] 2017 87.46 ± 0.00

Our method 2018 89.40 ± 0.00

Table 5.8: Comparison with the state-of-the-art in terms of Accuracy on BF2
dataset. The works written in blue use convolutional neural networks in their
method.

5.2.2 Comparison of F1 score

Algorithm Precision Recall F1 score
JFAC [40], 2016 0.69 0.35 0.46
Our method 0.86 0.73 0.79

Table 5.9: Comparison with state-of-the-art in terms of B-Cubed Precision,
B-Cubed Recall and F1 score on HP1 database.

In Table 5.9 we show the comparison of our method with the state-of-the-art
Joint Face Representation Adaptation (JFAC) [40] method in terms of the
F1 score on the HP1 from the Accio dataset. This method is the number
one in terms of Accuracy on Buffy the Vampire Slayer dataset, but on Accio
dataset our method is significantly superior. We outperform the JFAC method
by 33% in F1 score, which is a really big improvement considering that the
JFAC is - to our best knowledge - the most successful method for clustering
in videos so far.
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Comparison of weighted cluster purity

Interestingly, none of the works devoted to this topic reported WCP for the
desired number of clusters (identities). Only two [31] [30] reported this score,
but for a very high number of clusters.

BF2 BF5
Method NC WCP NC WCP
DFR [30] 688 0.965 575 0.946

HAC-Neg [31] 688 1.000 575 0.999
Ours 688 1.000 575 0.997

DFR [30] 598 0.950 507 0.946
SLC [31] 598 1.000 507 0.998
Ours 598 0.999 507 0.997

Table 5.10: Comparison of WCP on BF2 and BF5 dataset. NC stands for
number of clusters.

In Table 5.10 we compare our Hierarchical agglomerative approach (on
VGG-Face fc7 ) with the SIFT based Fisher encoding using Hierarchical
Agglomerative Clustering with Negative Constraints (HAC-Neg) [31], Scene-
level clustering (SLC) [31] and the corresponding results from [30], both of
which use the same method, only with different number of clusters (NC).
The number of clusters for each episode was set in [31] for the purpose of
demonstration of their method. The authors of [30] only used this number of
clusters for comparability to [31], as we did. It is important to mention, that
the number of clusters here was irrationally high, because the total number of
tracks containing faces was 1067 for BF2 and 727 for BF5, while the number
of identities was 16 for BF2 and 13 for BF5.
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5.3 Visualization of clustering results using t-SNE
method

Figure 5.9 shows the visualization of BF5, the colors correspond to identities
in the legend of the visualization. The x and y locations of the tracks were
obtained via two steps from features extracted using the combined settings
(Section 4.3.3), the first one was PCA used to select 31 components with the
largest variance, the second was t-SNE [32] method, reducing it effectively
from 31 to 2. The number 31 for the number of components selected by PCA
was chosen because we were using the same data obtained from PCA for
clustering by Spectral clustering in Figure 5.10, where we show the results.
The clustering accuracy of the depicted result was 96.7%, meaning that only
24 tracks were misclassified. We used the track length-based size of the tracks
to point out that our method misclassified mainly tracks containing one or
two faces - the track-length based distributions are shown later, in Figure 5.12
in Section 5.4.

Figure 5.9: Visualization of identities in BF5 using Combined features (Sec-
tion 4.3.3). The labels (colors) are ground truth.
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...................5.3. Visualization of clustering results using t-SNE method

Figure 5.10: Visualization of Spectral clustering results with the track size based
on the number of faces inside that track. The color coding corresponds to the
legend in Figure 5.9. The top diagram shows the ground truth labelling, the
middle diagram shows clustering result of our method and in the lowest diagram
we show the misclassified tracks (in red).

In Figure 5.11 we show the differences between the Hierarchical clustering,
K-Means and Spectral clustering, while using the same track positions (layout)
as in Figure 5.10. This was done for all these graphs in order to be visually
comparable to each other. The clustering accuracy was obviously much lower
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in the first two approaches, namely for the Hierarchical clustering the accuracy
was 70.7% and for K-Means it was 60%. From Table 5.4 it is obvious that
the accuracy for both of them could be slightly higher, but we ran them on
the same number (31) of components as the Spectral clustering.

Figure 5.11: Results of all three clustering algorithms. The color coding corre-
sponds to the legend in Figure 5.9.
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5.4 Error analysis

We performed a series of tests to analyze our misclassification errors and
to propose improvements to our method that would eliminate significant
percentage of the errors in the future. The implementation of these im-
provements is beyond the scope of our work. In Figure 5.12 we show the
track-length distributions of errors, correctly classified, and all tracks for the
BF2 movie. On the x-axis is the track length and on the y-axis is the number
of occurrences. It is obvious that most errors are made on the single face
tracks but even without normalization it is clear that all the distributions
are almost the same, so it is not possible to conclude any results based only
on the track length.

Nevertheless, the probability of misclassification of the track is smaller
when the number of facial images in the track is bigger, so for our method it
would be desirable to set the tracker to prefer longer tracks. That naturally
increases the probability of having outliers inside the face tracks, but this is
solved by our feature aggregation method.

Figure 5.12: Histogram to visualize length distribution of the well classified,
misclassified, and of all tracks.

In Figure 5.13 we show all errors, i.e. incorrect classifications of tracks,
made by our method on BF5 dataset. In the columns A there are the
representatives of the incorrectly clustered tracks, column B shows identities
into which our method clustered the tracks from column A, column C shows
the ground truth identities whom they should have been clustered to. On the
left side there are 6 incorrect classifications of the same person (a guy (Ben)
classified as a woman with lot of makeup (Anya-demon)). This happened,
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because Anya-demon identity has only six tracks in the entire dataset and
the features representing her are closer to the features extracted for Buffy
identity (a girl shown in four middle pictures on the left side, one picture from
bottom) than these six tracks of Ben are to the features belonging to any other
identity, including his own. This can be seen right beneath these six incorrect
classifications, where the tracks of Anya-demon are merged by our algorithm
together with Buffy. On the right side of the Figure 5.13 it is obvious that
our method has troubles correctly recognizing blurred, low-resolution images.

In summary there are two types of errors: i) low quality images caused by
low resolution, bad light conditions and/or extreme head-pose and ii) errors
is the database annotation.

5.5 Constraints

In our work we did not use the spatial-temporal constraints because we opted
for general-purpose clustering algorithms. These constraints are obtained
from overlapping tracks in frames, i.e. the tracks occur at the same time, as
used e.g. in [35] [41] [8]. In this section we estimate the potential drop in the
performance due to neglecting these constraints by our method.

In BF2 there are total of 1282 pairwise constraints (the cannot-link con-
straints are symmetrical - if there is a constraint between track A and track
B then there is a constraint between track B and track A, therefore the total
number of one-way constraints is 2564). In Figure 5.14 we show only the
constraints relevant to this clustering. By relevant we mean constraints be-
tween track A and track B, where our method erroneously clustered the track
A and B into one cluster, but due to the existing constraints this merging
should not have been permitted. If we were to incorporate these constraints
into algorithm, the optimal improvement would be near 16% decrease in
errors, meaning 1.9% improvement in the Accuracy score. The 16% is the
upper bound, because it means we place all the incorrectly clustered (and
now divided) tracks to their true cluster. The cannot-link constraints are
most useful in movies where most of the time there are more main actors on
scene simultaneously, such as in many sitcom series.
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Figure 5.13: All misclassified tracks on BF5 dataset. In columns A there are
representatives of incorrectly clustered tracks, column B shows identities to
whom our method clustered the tracks from column A. Column C shows the
ground truth identities to whom they should have been clustered.
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Figure 5.14: Visualization of the impact of utilizing constraints on BF2 dataset.
The color coding corresponds to the legend in Figure 5.9. On all three diagrams
the lines depict the tracks that have been misclassified, but whose misclassification
could have been avoided using the cannot-link constraints. The top diagram
shows the ground truth labelling, the middle shows our clustering result, and
the bottom diagram shows all the misclassified tracks in red.
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5.6 Time requirements

If a video is encoded in .mp4 format, such as a movie, our method takes
approximately 42 minutes for 45 minutes of video footage on medium range
graphic card - we used NVidia Quadro M4000 with 8GB dedicated memory.
Video decompression and extraction of face images takes approximately 30
minutes. Feature extraction from the images takes 12 minutes for the same
movie with the same card. The final feature reduction and clustering takes
generally 1.5 seconds on Intel Core i7 7700 processor, which is a neglactable
timespan.

As stated above most of the time is used for image and feature extraction.
These can be parallelized to shorten the total amount of running time. The
clustering itself takes only fraction of the time, 1.5 seconds for BF5 dataset.

Based on the above, we imply that our method runs approximately the
same time as is the length of the video it is run on.

5.7 Outlier detection

Figure 5.15: Outlier detection using Logistic Regression. This visualization is
created using PCA to reduce the features of the representatives to 31 dimensions,
after that the t-SNE method is used to produce 2 dimensional coordinates for
each track. The outliers are shown in red, the tracks containing faces are blue.
The positions of the tracks are the same in both pictures, the result is expressed
in color-coding of the tracks.

The outlier detection was tested on BF2 dataset. The Logistic Regression
model was fitted on our training dataset, BF5. The graphs in Figure 5.15 show
the result of this method - the position of individual tracks was computed
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using t-SNE method from our track representatives reduced by PCA to 31
dimensions. The color coding depicts the outlier tracks in red and tracks
with face images in blue. The left diagram is labelled using the ground truth,
the right one using the Logistic Regression model.

Using this method, a very high score was achieved, although there was
an issue in the database itself, as it contained multiple tracks annotated
as outliers, where in fact these tracks contained easily recognizable facial
images, as shown in Figure 5.16. According to the Buffy the Vampire Slayer
database annotations, tracks containing images in Figure 5.16 are outliers,
or specifically the annotation says "false positive", meaning the hit of the
used face tracker on these was wrong. Based on this observation, our method
might perform in fact much better than the results written bellow, because
faces on these images are clearly recognizable. Therefore on large number
of the tracks our method was technically not wrong, even if the database
annotation said so.

Figure 5.16: Examples of facial images selected by Logistic Regression as faces,
yet according to database annotation they are outliers.

In Figure 5.17 we show the distribution of the coordinates in features for a
track representatives of two tracks: an outlier track (shown red) and a track
containing face images (shown blue), both extracted using RESNET50. As
better seen in the zoomed-in image in Figure 5.18, most of the coordinates
of the outlier feature representation were 0 meaning that the corresponding
neurons in the layer (whose response we used) were not excited. It seems the
distributions for the outlier track and for the face track may be distinguishable
by some statistical approach based on the frequency of not-excited neurons in
the layer whose responses we observed. For the features of the outlier track
even applied that the median value across all coordinates was 0, while for a
face track it was not. In this work we do not propose such method, but we
believe it to be worthy of exploration in the future.

We fitted the Logistic Regression model on our training dataset. The result
on the testing database, BF2, was 93.07% accuracy, i.e. less than 7% of track
were incorrectly classified as being outliers when in fact they contained face
images (or being classified as face containing tracks when being outliers),
which is a very high score given the annotation issues mentioned above.
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Figure 5.17: Distribution of features extracted using RESNET50. The red line
corresponds to features extracted from outlier, i.e. image not containing any
face. The blue line corresponds to features extracted from a face image. Detailed
zoom is shown in Figure 5.18.

Figure 5.18: Detail of graph in Figure 4.6. The red line corresponds to features
extracted from outlier, i.e. image not containing any face. The blue line
corresponds to features extracted from a face image. The most interesting here
is that most of the feature coordinates belonging to the outlier are 0, that is, the
corresponding neurons in the last layer were not excited.
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Chapter 6
Conclusions

In this thesis we have proposed a method for clustering identities in videos
based on information extracted solely from facial images. In thorough experi-
mental evaluation we have found that our method performs nearly as good
as the current state-of-the-art video clustering algorithm of [40] while it is
significantly simpler to implement.

The input to our method are faces extracted from a video by an ordinary
face tracker. The output are clusters of face tracks corresponding to individual
identities. Our method is composed of three main steps the optimal implemen-
tation of which was tuned experimentally. In the first step, we extract features
from each detected face independently. The best face feature extractor turned
out to be a combination of the VGG-Face [26] and RESNET50 [16] which
are both CNNs pre-trained offline on millions of still images. In the second
step, we aggregate the face features to a track descriptors. The coordinate-
wise median was found to be the be most efficient method for the feature
aggregation. We also found that the performance can be significantly boosted
by reducing dimension of the track descriptors to only 31 components via
PCA. Finaly, in the third step we group the track descriptors by the Spectral
Clustering algorithm [38] that uses (k = 6)-nearest neighborhood kernel.

Our method is assembled from Open Source components and implemented
in Python [29]. We use OpenCV [6] for basic manipulation with images and
videos. The CNN face feature extractors, VGG-Face [26] and RESNET50
[16], were implemented in KERAS [9]. The tested clustering algorithms were
imported from the Scipy [25] library.

Following the evaluation protocol used by the community, we used Buffy
the Vampire Slayer [11] and Accio [15] dataset in our experiments. The hyper-
parameters were tuned on the S05E05 episode of Buffy the Vampire Slayer
while all the other episodes/movies were used solely for testing. Our method
scored second to the state-of-the-art on Buffy the Vampire Slayer S05E02
dataset in terms of classification Accuracy, achieving 89.53% compared to the
best 92.13% [40]. Our method took the first place by a large margin when
compared to the state-of-the-art on Accio [15] database in terms of F1 score,
where our method got the score of 0.79 compared to the score 0.46 of the
second best method [40]. Interestingly, the second method on Accio [15] was
the first one on Buffy the Vampire Slayer S05E02 database.
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We have also implemented a simple detector of outlier tracks, i.e. those

composed of non-faces or containing multiple identities. The detector is based
on the Logistic Regression and on the same track features which we used
for clustering. A preliminary empirical evaluation show promising results as
the detector is able to distinguish correct tracks from outliers with 92.07%
accuracy.

6.1 Future work

In this section we outline three directions of a potential future work:. The most straightforward improvement would involve using the spatial-
temporal constraints as discussed in Section 5.5. A naive incorporation
of the constraints would change the optimization task solved by the
clustering algorithm into NP hard problem. Hence we recommend
incorporation of of the constraints into Spectral clustering as it was done
e.g. in [41] who proposed so called Constrained Spectral Clustering..We also believe that there is a large room for improvements in the
used method for feature aggregation. Currently, we use coordinate-wise
median of L2-normalized face features to represent the track by a single
feature vector. However, we hypothesize that a significant improvement
might be achieved by replacing the single vector track descriptor with a
more flexible representation of the faces in the track, e.g. using a set of
descriptors.. The proposed outlier detection method is preliminary. The main reason
for putting relatively less energy to outlier detection is that the established
evaluation protocol currently used for video clustering does not require
us to deal with the outliers at all. However, development of a better
track outlier detector as well as defining an evaluation protocol taking
existence of outliers into account needs to be done in the future.
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Appendix A
Contents of the Attached Medium

. thesis.pdf. source_thesis.zip: LATEXsource code of the text of this thesis. source_code.zip: developed scripts in form of compressed git repository
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