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Abstract
This thesis aims to propose a model inte-
grating a project scheduling and personnel
staffing problem along with an algorithm
solving it. A bilevel optimization frame-
work is utilized to formulate the problem,
modelling interaction between different
entities each pursuing individual objec-
tives.

A novel algorithm solving the bilevel
model based on lazy constraints genera-
tion is proposed. The algorithm employs
two types of lazy constraints, where both
are used to restrict the solution space to
comply with the concept of bilevel feasibil-
ity. However, only the first type is neces-
sary, the second type is used as a speed-up
technique utilizing the previously discov-
ered solutions.

The proposed problem is compared
with the single-level approaches solving
the same combination of objectives to
show the uniqueness of the bilevel ap-
proach. Experimental evaluation is con-
ducted to show the influence of the in-
stance and algorithm properties on the al-
gorithm’s performance and solution qual-
ity.

Keywords: project scheduling, RCPSP,
bilevel programming, optimization, lazy
constraints

Supervisor: doc. Ing. Přemysl Šůcha,
Ph.D.

Abstrakt
Cíl této práce je navrhout model integru-
jící rozvrhování projektů a najímání za-
městanců spolu s algoritmem, který by
tento problém řešil. Pro formulaci pro-
blému je využito dvojúrovňové programo-
vání, které modeluje interakce mezi růz-
nými entitami, kdy se každá snaží dosáh-
nout individuálního cíle.

Je navrhnut algoritmus založený na
tvorbě tzv. “líných” omezujících podmí-
nek řešící tento dvojúrovňový model. Al-
goritmus využívá dva typy těchto ome-
zujících podmínek, kde oba jsou použity
k omezení prostoru řešení tak, aby spl-
ňoval koncept dvojúrovňové přípustnosti.
Nicméně jen první typ těchto omezujících
podmínek je nutný, druhý je použit pro
zrychlení algoritmu a využívá předchozí
řešení.

Navržený problém je porovnán s jedno-
úrovňovými přístupy řešící stejnou kom-
binaci kritérií, aby se ukázala unikátnost
dvojúrovňového přístupu. Je provedena
experimentální evaluace pro ukázání vlivu
vlastností instancí a algoritmu na výkonu
a kvalitě řešení.

Klíčová slova: rozvrhování projektů,
RCPSP, dvojúrovňová optimalizace,
optimalizace, lazy constraints
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Chapter 1

Introduction

Project scheduling is a widespread problem occurring in various areas from
building industry to software development. The cornerstone of a successful
project management from the business point of view is balancing the time,
quality and cost triangle which is directly connected to human resources
management [13]. The quality of a project schedule can be evaluated by
different performance measures [11], e.g., by completion time, additional
employees hired, levelling of the resource demand, financial objectives and
many others. The common approach to approximate the decision making
process is to formulate the problem either as a single-level optimization with
single or multiple objective functions or to employ some kind of sequential
scheme solving one objective after another to come to a final schedule.

However, both single-level and sequential formulations fail to model a
real-world scenario, where multiple entities pursue different objectives and
need to come to an agreement on the resulting project schedule, as the former
case models the problem with a single entity having all the knowledge and
optimizing the linear combination of goals, and the latter models a scenario
with different entities, where the entity solved previously overrules the other
ones remaining in the sequence.

The thesis tries to model the interaction of different entities, which need to
come to an agreement on the result, by formulating the problem by means of
bilevel programming framework while showing that using the other approaches
can lead to different solutions. The detailed description of the considered
scenario is given below.

Every project requires a team for executing the project’s activities, its
management and decision making regarding the project schedule [11]. The
team may have various structures to suit the specifics of the company and/or
the project. The thesis considers a project-based team structure [7] as it pro-
vides solid background for formulating the problem as a bi-level optimization
problem while following a real-world scenario. The considered team structure
is hierarchical and consists of three position types: a team leader, a project
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1. Introduction .....................................
manager and employees of various skills. The team leader is standing at the
top of the team hierarchy and determines whether to hire additional employ-
ees of certain skill while trying to keep the workload of employees (resource
requirements) as leveled as possible. At the lower layer of the hierarchy is the
project manager, who addresses the project scheduling, i.e., who is responsible
for determining the start and end times of project’s activities and who tries to
minimize the project’s makespan. The project’s activities are then executed
by the lowest level of the hierarchy, the employees already present in the team
or hired by the team leader.

The aim of this thesis is to

. formulate the problem integrating both personnel staffing and project
scheduling by making use of the problem’s hierarchical structure. propose an algorithm providing both project schedule and employees
composition. benchmark the algorithm with state-of-the-art results

The thesis contributes to the existing literature on project scheduling and
personnel staffing by modelling the problem via bilevel optimization, thus,
presenting a novel point of view on the problem, where exists a competition
between the different entities involved.

Also, the thesis contributes significantly to the existing algorithms solving
integer bilevel problems as to the best of our knowledge, a lazy constraint
approach to solving bilevel problems has not yet been used.

1.1 Related work

The relevant literature can be divided into two parts. The first part considers
the problem from the view of project scheduling and gives an overview of a
relevant literature to be found on the topic of resource-constrained project
scheduling (RCPSP) and integrated project scheduling and personnel staffing.
The second part gives relevant literature regarding bilevel optimization tech-
niques while focusing on algorithms applicable on discrete bilevel problems.

1.1.1 Project scheduling

From the point of view of project scheduling, dealing with workforce with-
out taking into account days-on/days-off schedules of employees occurs in

2



.....................................1.1. Related work

resource-constrained project scheduling [8], [23] where the project needs re-
sources for its activities execution and employees can be considered as one of
the possible resources.

Surveys of resource-constrained project scheduling methods can be found in
[34, 24, 26]. The most common type of the RCPSP [11] tries to minimize the
overall project makespan while satisfying the constraints given by resources
availability. In [22], the possible extensions of the RCPSP as multi-mode
activities, minimal lags, time-varying resource demands etc. are surveyed.
In [45], the authors proposed a method solving the RCPSP with logical
constraints employing SAT solvers. Heuristics solving the RCPSP and their
experimental evaluation are presented in [25]. Use of genetic algorithms to
solve various project scheduling problems are proposed in [42, 32, 21].
Other problems belonging in the RCPSP framework are given below. The
resource availability cost problem (RACP) considers resources having associ-
ated costs and tries to minimize the resource cost while satisfying a pre-given
project deadline [43]. Multi-skilled workforce is considered in [4], where
activities require that a person with certain skill level is available during
the activity duration. The RCPSP with discounted cashflow (RCPSPDC)
assumes cash inflows and outflows during the project, where inflows occur
usually when some milestone is achieved and outflows are given by using the
resources and workforce. The objective of these problems is to optimize the
net present value of the project and its description and algorithm for solving
both single and multi-mode RCPSPDC problems is presented in [28].

Some papers try to solve the integrated project scheduling and personnel
staffing problem in more detailed manner providing both project schedule
and employee roster while satisfying conditions regarding maximal length of
consecutive working days, minimal number of working days per time period
and introducing possibility to assign overtime to employees. Example of
this approach can be found in [29], where the authors used a branch and
price algorithm [3] to solve the combined problem of project and personnel
scheduling. In [30], the authors examine the influence of various factors in the
integrated scenario, comparing cyclic and non-cyclic resources and measuring
the impact of using overtime and temporary workforce on the schedule cost.

1.1.2 Bilevel programming

The idea of modelling with using two hierarchical optimization levels first
appeared in [50] and comes from the notion of a Stackelberg game [49]. The
Stackelberg game assumes two types of players – a leader and followers.
In a Stackelberg game, the leader moves first and the followers react on
its decisions. The leader has information about the followers’ objectives,
therefore, it can anticipate their responses and adjust its strategy accordingly.
Therefore, the leader’s optimization problem is a nested one, where the lower
level optimization problems represent the best responses of the followers
to the leader’s decision. From the perspective of mathematical modelling,
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1. Introduction .....................................
bilevel approaches started to draw attention with the rise of computers in
nineteen-eighties with first survey being [27].

Bilevel programming is used for modelling problems that employ the
hierarchical structure appearing in the Stackelberg game or when a single-
level optimization cannot be utilized, e.g. in toll setting problem given in [10],
where the leader representing the road management needs to determine which
roads should be tolled and the follower simulates the behaviour of the drivers
trying to minimize the travel costs including tolls along with other factors as
duration, length of the journey, etc. Methods for solving continuous bilevel
problems are given in [10]. In [41], the author also surveys algorithms that
can be used for bilevel problems involving integrality of some variables along
with utilization of genetic algorithms for solving bilevel problems. More
methods and references for solving the bilevel problems are presented in the
next chapter as the algorithms usually relate to the specific type of the bilevel
problem determined by integrality of variables, which is described in more
detail there.

Literature considering project scheduling in the bilevel framework is sparse.
The problem of interaction between the project owner and the contractor in
a fuzzy environment is considered in [51], which is solved by a particle swarm
optimization technique. Multi-mode RCPSP with uncertainty is formalized as
a bilevel multi-objective problem and solved by another swarm optimization
algorithm in [17].

1.2 Thesis outline

The thesis is organized as follows. Chapter 2 gives a theoretical background
on core concepts of the RCPSP and bilevel programming, which is crucial
for understanding the problem formulation given in Chapter 3. Algorithm
proposed for solving the problem is presented in Chapter 4. Proofs that
the bilevel approach differs from the single-level approaches are given in
Chapter 5. Experimental evaluation of the algorithm is given in Chapter 6.
Finally, concluding remarks and comments about future work are dedicated
to Chapter 7.
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Chapter 2

Theoretical Background

Aim of this chapter is to provide the necessary background for understanding
the problem formulation and the algorithm proposed to solve the problem.
The chapter is divided into two sections, one describing the basics of resource
constrained project scheduling problems (RCPSP) and the other the core
concepts of bilevel optimization.

2.1 Resource constrained project scheduling

Definition of a project by the ISO standard [16] is following:

Project is an unique process consisting of a set of coordinated
and controlled activities with start and finish dates, undertaken to
achieve an objective conforming to specific requirements, including
the constraints of time, cost and resources.

Following subsections give a brief overview of the essential parts of a
project as given in the definition and the options that could be considered
for modelling it.

2.1.1 Project components

As mentioned in the project definition, a project consists of a set of co-
ordinated activities. Activities have to be executed according to a set of
various precedence relation constraints and require certain resources for their
execution. Non-preemption of the project activities is usually considered,
meaning once an activity of a project starts, it cannot be interrupted until it
is completed. The description of a process that breaks down a project into a
set of activities is beyond the scope of this thesis and can be found in [11].
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2. Theoretical Background ................................
Precedence relations

Precedence relation defines a relation between two activities specifying con-
straints for the project schedule. Precedence relations types are: start-start
(SS), start-finish (SF), finish-start (FS) and finish-finish (FF). All of the above
mentioned precedence relations belong to so called generalised precedence
relations [14] and represent either minimal or maximal time lag between two
activities i and j in a project.

Minimal time lag relations (SSmin
ij (x), SFmin

ij (x), FSmin
ij (x), FFmin

ij (x))
specify the minimal time x that needs to pass between the start/end of activity
i and the start/end of activity j. Maximal time lag relations (SSmax

ij (x),
SFmax

ij (x), FSmax
ij (x), FFmax

ij (x)) specify the maximal time x that is allowed
to pass between the start/end of activity i and the start/end of activity j.

It is easy to come up with real-world scenarios for each of the relations
described above and on top of that, some of the relations can be combined
together, e.g., SSmax

ij (x) and FFmax
ij (x) specifying that the time-lag between

activities i and j should never exceed x time units.

Within this notation, the simplest and the most commonly used relation
type is denoted as FSmin

ij (0) meaning that activity j can start as soon as all
its predecessors are finished. This relation type is the only one considered in
the thesis, i.e., this is the type meant by precedence relation in the rest of
the text.

Resources

Activities in a project may require resources for their execution. Many of
different resources can be considered, e.g., manpower, machine availability,
money, space, energy consumption, etc. In terms of renewability of the
resource, three resource categories can be distinguished.

First, the renewable resources are available by the full amount at each time
step. In order for the project schedule to be feasible, the overall resource
requirement of activities must not to exceed the resource availability at
any time step. The best example of renewable resource is personnel, where
multiple disjoint employee types exist and each activity requires a certain
number of employees with the given skills working on it. Renewable resource
type is denoted as k ∈ K, where K is the set of all the renewable resource
types used in the problem. Constant Rk determines how many resources
of type k are available at each time step and finally, rik is the amount of
renewable resource of type k activity i requires at each time step of its
execution.

Second, non-renewable resource availability is given for the whole project
and the activities have to be scheduled in such a way the project fits within
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......................... 2.1. Resource constrained project scheduling

the resource limit. Money is an example of non-renewable resource, where a
project has to fit into specified budget.

Third, doubly-constrained resources are a combination of the previous two
types. This resource category is constrained by both time step availability
of the renewable resource and overall limitation of the non-renewable one.
Example of this can be available workforce along with maximum number of
man-days spent on a project.

Activity duration

Each activity has a specified duration or an estimation of the duration. There
are different possibilities of modelling the activity duration, where some
considers the duration fixed and others take probability and chance into
account drawing the duration from a probability distribution.

Deterministic activity duration assumes that each activity of a project can
be estimated with absolute certainty. Activities can either be executed in
a single-mode scenario, where the duration and the resource usage is given
for each activity i by constant di, or in a multi-mode scenario, where the
activity duration is a function of resources used. This allows to investigate
resource-time trade-offs determining how expensive would be to decrease the
project makespan. Example of solving the multi-mode resource constrained
problem is given in [1].

Stochastic activity estimation assumes that the duration cannot be set with
absolute confidence and that uncertainty needs to be included in the models.
The PERT (Project Evaluation and Review Technique) model [31] propose the
use of three estimates for each activity duration – the optimistic, pessimistic,
and most likely approach. Another option is to model the durations with
simple probability density functions – uniform and triangular – as proposed
in [15]. Last but not least, modelling with fuzzy sets and fuzzy numbers
is possible in order to account for the imprecision in the activity length
estimation. The examples of using fuzzy approach in project scheduling can
be found in [2, 20].

2.1.2 Objectives

Aside from constructing a feasible schedule, which is a schedule complying
with both precedence and resource constraints, there is usually additional
objective representing the important features of the schedule.

The most common objective is to minimize project completion time as it
reflects the real-world scenario where reducing the project makespan minimizes
the risk of violating a deadline. Other time-related objectives were suggested
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2. Theoretical Background ................................
as well, e.g., minimizing lateness, which is a difference between the task
completion time and its due date, minimizing tardiness, earliness, or some
alterations of these measures, e.g., minimizing maximal tardiness.

Apart from the previous performance measures which are also called time-
based objectives, there also exist objectives based on resources. A resource
availability cost problem (RACP) solves the minimal amount of renewable re-
source hired in order to comply with a pre-specified project deadline. Another
example is a resource levelling problem (RLP), where the level of resource
requirement throughout the considered time should be as flat as possible
without violating the project deadline. The levelling problem can be modelled
in different ways, e.g., by minimizing the total number of resource jumps,
by minimizing the squared deviations of the resource requirements from the
average, etc.

Last major type of project scheduling performance measures are financial
objectives. Cash inflows and outflows are considered in maximization of net
present value, where completion of certain activities result in cash inflow and
using resources and executing the project activities results in cash outflow.
Example of this approach can be found in [38, 47].

All the project performance measures can be divided into two categories –
regular and non-regular. A regular measure of performance is a non-decreasing
function of the activity completion times, and therefore, these measures imply
the shortest project makespan possible. On the other hand, non-regular
measures of performance, also referred to as free completion measures, have
no such implication, thus, making the project longer may decrease the project
objective value.

More detailed description about the performance measure and their exam-
ples can be found in [23, 11].

2.1.3 Graph representation

Projects can be represented as a graph G = (N,A), where N is the set
of activities and A is the set of edges containing the precedence relations
of type FSmin

ij (0), i.e., if there exists an edge from node i ∈ N to j ∈ N ,
then j can start only after the activity i is finished. This representation is
called Activity on Node representation and allows to visualize the project in
a human-readable form and work with the project within the context of a
well defined data structure. The Activity on Node representation uses two
additional nodes, which are called dummy nodes and are used to model the
project start and the project end both having zero-length duration. This
way, it is possible to model parallel activities in the start or in the end of
the project. The thesis uses the Activity on Node representation exclusively.
An example of a project instance graphical representation can be found in
Figure 2.1.
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......................... 2.1. Resource constrained project scheduling
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Figure 2.1: Example of an Activity on Node project representation. The nodes
represent the activities with activity 0 and 13 being the dummy activities. The
number at the top of the node denotes the activity duration. The project instance
is taken from [44].

The other possibility of representing a project via graph is to use Activity
on Arc format, switching the context of nodes and edges. The details about
constructing the Activity on Arc representation can be found in [11].

2.1.4 Linear programming representation

The thesis follows the formulation of the RCPSP originally presented in [37],
however, instead of using variables to denote the fact activity has finished,
variables that are used – vit – denote that the activity started at a given time.

vit =
{

1 if activity i starts at time t
0 else

(2.1)

The common parts of the RCPSP are following:

min f(x) (2.2)
s.t.

∑
t∈T

vit = 1 ∀i ∈ N (2.3)

∑
t∈T

tvjt −
∑
t∈T

tvit ≥ di ∀(i, j) ∈ A (2.4)

∑
i∈N

t∑
t′=t−di

rikvit′ ≤ Rk ∀k ∈ K,∀t ∈ T (2.5)

vit ∈ {0, 1} ∀i ∈ N, ∀t ∈ T (2.6)

9



2. Theoretical Background ................................
Function f(x) denotes the objective function, which differs according

to the selected objective for the schedule as discussed previously. Vector
of all variables of the problem is denoted as x and consists of v and other
variables needed for the specific problem and performance measure formulation.
Equation (2.3) forces all the activities to be executed in the schedule. The
precedence constraints are enforced in Equation (2.4). The compliance with
the renewable resource requirements is given in Equation (2.5).

Note that the specific form of the constraints and additional variables used
in the model fully depends on the performance measure and the problem that
is being modelled. As an example, if a RACP problem were to be solved,
the model would contain variables denoting the number of resources bought
and would also require changes in the equations formulating the resource
requirements compliance. To solve the resource levelling problem, the model
would require additional variables to represents the resource “levelness” both
in the performance measure function and the constraints.

2.2 Bilevel optimization

The bilevel programming is essentially an optimization problem with another
optimization problem nested in the constraints of the first one. The outer
level is also called upper level and the inner level is called lower level. Each
level has its own set of variables it controls. The two levels of the model are
hierarchically organized with each level representing one entity (player) – the
upper level player is called a leader and it communicates the variables it con-
trols to the lower level entities – the followers. The leader’s objective function
can contain variables from both levels, whereas the follower optimizes only
among its own variables with the leader’s variables influencing its constraints.

2.2.1 Bilevel formalism

The thesis restricts the bilevel programming problems considered only to the
linear cases, i.e., all objective functions and constraints are linear. Details
about optimizing non-linear bilevel problems can be found in [9, 19, 40].
The formulation uses the following notation to formalize the bilevel linear
programming problem (BLPP):

. x, y – decision vectors of the upper and lower level, respectively.. F (x,y), f(y) – objective functions of the upper and lower level, respec-
tively.. cU

x , cU
y – cost vectors for the upper level objective function associated

with upper and lower level variables, respectively.

10



..................................2.2. Bilevel optimization

. cL
y – cost vector of the lower level objective function.. gx(x), gy(y), gx,y(x,y) – constraints given for the upper, lower and

both levels of the optimization problem, respectively, with associated
right-sides vectors bx, by, bxy.

With the notation being introduced, it is possible to formulate the BLPP
with Equations (2.7)-(2.12). Note that the vector multiplication used in the
formulation is a dot product of the vectors involved.

min F (x,y) = min cU
x x + cU

y y (2.7)
s.t. x ∈ X = {x : gx(x) ≥ bx} (2.8)

min f(y) = min cL
yy (2.9)

s.t. gxy(x,y) ≥ bxy (2.10)
y ∈ Y = {y : gy(y) ≥ by} (2.11)
x ≥ 0,y ≥ 0 (2.12)

In order to define the optimal solution of the bilevel linear programming
problem, following regions and sets are defined based on [33]:

. Bilevel linear programming problem constraint region Ω is a set of all
pairs (x,y) satisfying all the constraints.

Ω = {(x,y) : x ∈ X,y ∈ Y, gxy(x,y) ≥ bxy} (2.13)

. Projection of Ω to leader variable space Ω(X) is a subset of the leader’s
search space such that there exists a pair (x,y) in Ω for each vector x
inside the set.

Ω(X) = {x ∈ X : ∃y such that (x,y) ∈ Ω} (2.14)

. Follower’s feasible region Ω(x) for specific leader’s decision vector x ∈ X
is a subset of possible responses of the follower to the given leader’s
decision vector.

Ω(x) = {y ∈ Y : gxy(x,y) ≥ bxy} (2.15)

. Follower’s best response set M(x) for a given leader’s decision vector x
contains all the follower’s variable vectors in the follower’s feasible region
for that vector that are optimal in terms of its objective function.

M(x) = {y ∈ Y : argminy′fy(y′) where y′ ∈ Ω(x)} (2.16)
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2. Theoretical Background ................................
. Inducible region IR consists of all pairs (x,y) such that there exists a

solution vector y for each x and y belongs to the follower’s best response
set.

IR = {(x,y) : x ∈ Ω(X),y ∈M(x)} (2.17)

Pairs (x,y) that belong to the inducible region are also called bilevel
feasible. With the introduced notation it is finally possible to define the
optimal solution of the bilevel linear programming problem:

Pair (x∗,y∗) is called bilevel optimal solution if it is bilevel feasible
and F (x∗,y∗) ≤ F (x,y) for all (x,y) ∈ IR.

2.2.2 Classification of the BLPP

Optimistic vs pessimistic position

Consideration of two optimization levels can bring additional ambiguity to the
problem, namely when the follower has multiple optimal solutions of the lower
level optimization objective. In such cases two approaches are recognized, the
optimistic and pessimistic position.

Most articles assume the optimistic position as it is more tractable com-
pared to the pessimistic position [41]. The optimistic position assumes some
cooperation of the players. The leader expects that the follower, who has
multiple choices of y ∈M(x) for the decision vector x selected by the leader,
chooses one that benefits the leader the most.

In case of the pessimistic position, leader optimizes for the worst case that
could happen, i.e., it assumes that the follower selects such decision vector
from its best response set, which is least beneficial for the leader’s problem.
Pessimistic positions are harder to solve, as some of the techniques from
dealing with optimistic positions cannot be used (e.g. single level reduction of
lower-level problems) and generally the pessimistic formulations have stricter
assumptions regarding the existence of the optimal solution [41].

Integrality

Another possible categorization of the BLPP raises from imposing integrality
on the variables. From this perspective, four categories can be distinguished
(not including the mixed-cases):

. continuous-continuous – the problem contains only continuous variables,
i.e., x ∈ R,y ∈ R

12



..................................2.2. Bilevel optimization

. continuous-discrete – the leader’s variables are continuous and the fol-
lower’s variables are discrete: x ∈ R,y ∈ Z. discrete-continuous – the leader’s variables are discrete and the follower’s
variables continuous: x ∈ Z,y ∈ R. discrete-discrete – both levels are discrete: x ∈ Z,y ∈ Z

An example used in [48] is used to illustrate difficulties introduced by
integer variables. The example optimizes the following lower level objective

min
y

y (2.18)

s.t. x+ y ≤ 2 (2.19)
− x+ y ≤ 2 (2.20)
5x− 4y ≤ 10 (2.21)
− 5x− 4y ≤ 10 (2.22)

The inducible regions of the different bilevel problems with integer variables
are shown in Figure 2.2, where blue areas denote the inducible region. The
figure shows how introducing integrality changes the shape of the inducible
region and how it can lead to a disconnected search space. For these reasons,
the algorithms developed for solving the bilevel problems usually uses the
specific features of each category.

Continuous-continuous category is studied the most as it allows the re-
searchers to use the nice properties of the problems. Survey of methods
for solving this type of problems is given in [10, 41]. One of the earliest
work considering the mixed integer linear bilevel problem proposed a Branch
and Bound scheme [33]. However, most of the fathoming rules cannot be
used in these problems and the algorithm’s nested structure is not scalable
beyond few integer variables. In [12], algorithm utilizing Chvátal-Gomory
cuts was proposed for solving the continuous-discrete problems. For problems
containing integers in the upper level, a Benders decomposition algorithm [5]
was presented in [39], with single-level reformulation of the slave problem.
For discrete-continuous problems, it is also possible to use a single level
reformulation by using Kerash-Kuhn-Tucker conditions or a duality based
reformulation as given in [18].
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Figure 2.2: Inducible regions of different linear bilevel problem categories. Blue
lines/dots represent the inducible region of the problem.

14



Chapter 3

Problem Formulation

The considered problem tries to capture a real-world scenario, where project
scheduling is not done on a single level, but instead multiple entities try to
agree on a schedule feasible for all the parties involved. The problem considers
two hierarchically organized entities in order to model the relations between a
team leader representing the upper level and a project manager representing
the lower level. The individual parties have the following objectives:

. The team leader considers staffing requirement and oversees hiring new
people in case it is beneficial for resource levelling within reasonable
costs, thus, the performance measure of this entity consists of a resource
levelling and a resource hiring problem. In order to balance between
the resource levelling and resource hiring costs, a weights representing
the importance of the individual objectives are introduced – α for the
resource levelling and β for the resource hiring.

. The project manager’s objective is to make the project makespan as
short as possible by minimizing the start time of the last dummy project
activity. The makespan is its only interest and the agreement with the
team leader can only be made when there is no possibility of coming up
with a shorter schedule given the available workforce.

The notation used to describe the problem instance follows the notation
presented in the previous chapter. Graph (N,A) represents the project net-
work, where N denotes the set of activities and A the precedence constraints
between activities. Set K contains the employee types and the considered set
of discrete time steps is denoted as T . The duration of activity i is denoted
as di with its requirement for personnel of type k denoted as rik.

The formulation of the problem is as follows:
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3. Problem Formulation .................................

minF = min α
T−1∑
t=1

∑
k∈K

(j+
tk + j−tk) + β

∑
k∈K

yk (3.1)

s.t. yk =
∑
b∈B

2bykb ∀k ∈ K,∀b ∈ Bk (3.2)

yk ≤ RUB
k ∀k ∈ K (3.3)

yk ∈ Z+
0 ∀k ∈ K (3.4)

ykb ∈ {0, 1} ∀k ∈ K,∀b ∈ Bk (3.5)
min f = min

∑
t∈T

vntt (3.6)

s.t.
∑
t∈T

vit = 1 ∀i ∈ N (3.7)

∑
t∈T

tvjt −
∑
t∈T

tvit ≥ di ∀(i, j) ∈ A (3.8)

ok,t ≤ Rk + yk ∀k ∈ K,∀t ∈ T (3.9)

ok,t + j+
tk − j

−
tk ≤ ok,t+1 +M

t∑
t′=0

vnt′ ∀k ∈ K,∀t ∈ T (3.10)

M
t∑

t′=0
vnt′ + ok,t + j+

tk − j
−
tk ≥ ok,t+1 ∀k ∈ K,∀t ∈ T (3.11)

vit ∈ {0, 1} ∀i ∈ N, ∀t ∈ T (3.12)
j+

tk, j
−
tk ∈ R+

0 ∀t ∈ T, ∀k ∈ K (3.13)

Variable ok,t, denoting the total resource k requirements at a time step t,
is used to increase the readability of the problem formulation and is defined
as follows:

ok,t =
∑
i∈N

t∑
t′=t−di

rikvit′ (3.14)

The leader controls integer variables yk determining the number of addi-
tional personnel of type k ∈ K hired. The resource levelling is represented by
variables j+

tk and j−tk, where the former represents jump at time t of resource
k if the resource requirement of the next time step is higher, and the latter
represents a jump in the opposite direction. In addition, the leader “controls”
variables ykb, which are directly determined from yk as their binary represen-
tation. Apart from the additional personnel hired by the team leader, the
team consists of stable employees represented by Rk for each resource type k.
The maximum number of addition resource k units hired is given by RUB

k ,
from which the set of bits Bk needed to represent yk as a binary number is
computed.

The follower controls binary variables vit representing activity start at a
given time for each activity i in project’s activities and each time step t in the
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.................................. 3. Problem Formulation

considered time period T . The follower also determines the resource jump
variables j+

tk, j
−
tk as those are directly determined from the schedule given by

the follower.

The team leader’s optimization task is given in Equation (3.1), where
α determines the importance of resource levelling and β the importance of the
additional workforce costs. Equation (3.2) creates the binary representation of
variables yk. Hired resources upper bound is given in Equation (3.3). Setting
these bounds as tightly as possible may improve the algorithm runtime as it
prunes the search space.

The follower’s objective in Equation (3.6) consists of one term minimizing
the project makespan. Constraints in Equation (3.7) make sure that all
activities in the project start at some point. Compliance with the precedence
relations of the project’s activities is given in Equation (3.8). Satisfaction of
the activity resource requirements at each discrete time step t is provided in
Equation (3.9). Resource jump variables are determined in Equations (3.10)
and (3.11). The M constant used in those constraints in combination with
the minimization of the objective allows the jump variables to be set to 0
when the project is already finished, i.e., the project’s last dummy activity
has already started.

It can be easily seen that parameters α and β have a great influence on the
problem structure. If α is set to a very low value compared to β, the problem
basically collapses into a variation of the RACP, i.e., into finding a shortest
possible feasible project schedule, where additional personnel is hired only
when the current pool of workers is insufficient to create a feasible schedule.
On the other hand, when α is set to a very large value compared to β, the
problem changes into the resource levelling problem (RLP) where resources
are to be set in a way so the project makespan of the follower’s best response
would equal to the one determined by the leader.

In conclusion, the problem of the team leader is to find the best schedule
according to his or her combined performance measure of resource levelling
and resource costs which at the same time has the shortest possible makespan
across all other schedules achievable with the available resources.
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Chapter 4

Proposed Algorithm

The algorithm for solving the stated problem needs to conduct a search in the
inducible region in order to come with the optimal solution, but construction
of inducible region beforehand is a hard task. For this reason, a different
approach is fabricated. The core idea of the proposed approach is to search
through the BLPP constraint region Ω and to continuously add constraints
restricting the region so that the leader has to respect the requirements of
the follower.

The idea of presenting additional constraints, also called lazy constraints,
after an integral solution is found is already well-known and it is implemented
in most modern solvers like Gurobi, IBM CPLEX and others. Example of the
lazy constraints application can be found in [36], where the travelling salesman
problem is solved with a subtour elimination, adding additional constraints
that forbid cycles not spanning over the whole graph, if the solution does not
cover all of the vertices.

The algorithm uses a mapping BR (best responses) to store the results of
the computed lazy constraints for further use and speed-up of the algorithm. It
maps a particular resource vectors ya to the follower’s best response objective
value fF P

a , i.e., it stores the best achievable project makespan for each vector
of hired resources when the follower’s problem is solved. The mapping is
denoted as BR and is formalized as follows:

BR : ya → fF P
a (4.1)

The overall scheme of the proposed algorithm is shown in Figure 4.1 with
individual parts of the algorithm explained in detail in the next sections.

4.1 Initialization

The goal of the initialization process is to determine the considered time
range in the optimization, i.e. the set of discrete time steps T and the upper
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4. Proposed Algorithm..................................

High Point Problem (HPP): 
solve the MILP created by omitting the

lower level optimization function 

Does there exist BR(y) with ya >= y  
element-wise for all k 

Constraint Generation  
- 

 Type 1

Bilevel Feasibility Callback: 
when solver finds an integer solution to the

HPP with resource vector ya, check
whether it is bilevel feasible.  

Denote the project makespan found by the
HPP as fHPPa 

Problem instance initialization: 
determine |T|, RUBk, Bk, BR = {} 

Solve the follower problem to
obtain its best response with

a project makespan fFPa.  
Set BR(ya) = fFPa Does there exist BR(y) with ya == y

element-wise for all k 

Get best response bound
on the project makespan

fBRBa 

Constraint Generation  
- 

 Type 2

fHPPa <= fBRBa 

Figure 4.1: Flow chart of the proposed Lazy constraints algorithm. Rectangular
cells stand for algorithm steps, circular cells stand for flow control with green
arrows denoting “Yes” and red arrows “No”. The area below the gray line belongs
to the callback execution flow.

bounds on the additional employees hired in order to determine the number
of bits needed for their representation.

The minimal time step considered Tmin can be found by solving the RCPSP
for minimal makespan without the resource requirements taken into account.
The maximal time step considered (Tmax) can be found by solving a simple
RCPSP given below in Equations (4.2)-(4.6). Considering longer time span
is unnecessary as even though dealing with longer time range could result
in better upper level objective, such solutions would never belong to the
inducible region as they would not be bilevel feasible.

Tmax = min vntt (4.2)
s.t.

∑
t∈T

vit = 1 ∀i ∈ N (4.3)

∑
t∈T

tvjt −
∑
t∈T

tvit ≥ di ∀(i, j) ∈ A (4.4)

∑
i∈N

t∑
t′=t−di

rikvit′ ≤ Rk ∀k ∈ K,∀t ∈ T (4.5)

vit ∈ {0, 1} ∀i ∈ N, ∀t ∈ T (4.6)

The upper bound on the resources of type k hired is denoted as RUB
k . The
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..................................4.2. High point problem

bound is computed from the project activities’ resource requirements and it is
needed for determining the number of bits in the binary representation of yk.
The resource upper bounds are computed by summing over the activities’
resource demands as given below.

RUB
k =

∑
i∈N

rik ∀k ∈ K (4.7)

The numbers of bits |Bk| required to represent the variable yk is then equal
to the number of bits needed to represent RUB

k .

4.2 High point problem

The notion of using the high point problem (HPP) as a part of solving the
bilevel problems was first presented in [6] and is also used in the general branch
and bound scheme for mixed-integer bilevel linear programming in [33].

The HPP relaxes the original bilevel problem by omitting the lower level
objective, thus, the HPP is an instance of a single level mixed-integer program-
ming problem, where the leader gets to control both decision vectors. The
optimal solution found for the HPP does not necessarily lie in the inducible
region and to address this fact, a callback checking the bilevel feasibility is
added, executed every time the solver finds an integer solution to the HPP.
The callback is presented in the next section.

4.3 Bilevel feasibility callback

The goal of the callback is to check whether the solution found by the high
point problem is valid in terms of bilevel feasibility. The callback extracts
the project makespan from the high point integer solution denoted as fHP P

a

with a resource hire vector ya, and makes sure that there does not exist
a schedule with shorter makespan with the provided resource limits. The
shortest possible schedule is obtained by solving a simplified instance of the
follower’s RCPSP problem given below. Note that ya

k used in the formulation
now pose as constants, not variables.
min vntt (4.8)
s.t.

∑
t∈T

vit = 1 ∀i ∈ N (4.9)

∑
t∈T

tvjt −
∑
t∈T

tvit ≥ di ∀(i, j) ∈ A (4.10)

∑
i∈N

t∑
t′=t−di

rikvit′ ≤ Rk + ya
k ∀k ∈ K,∀t ∈ T (4.11)

vit ∈ {0, 1} ∀i ∈ N, ∀t ∈ T (4.12)
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4. Proposed Algorithm..................................
After obtaining the optimal follower’s objective value fF P

a for an integer
solution a, which is the minimal project makespan for the particular vector
resource hired by the leader ya, a verification that the project makespan of the
HPP and the follower problem (FP) are equal needs to be done. It is not always
necessary to solve the follower’s problem as previously computed solutions
can provide information about bilevel infeasibility. The best responses already
solved are utilized providing a second type of lazy constraints without the
computational burden of the first lazy constraint type that uses the optimal
follower’s solution.

Notation needed for the introduction of the lazy constraints’ equations
is given below. Let YBR be defined as a set of resource hire vectors, for
which the follower’s problem was solved to optimality and therefore, the best
response of the follower is known. In other words, YBR denote the current
domain of BR – the best responses mapping defined previously. Also, define
Y ′(ya) as the subset of the BR domain, where all the hired resources are
element-wise greater or equal than ya and at least one resource is strictly
greater. The case when all of the hired resources are element-wise all equal
should not occur as the lazy constraint with the given best response was
already introduced to the problem.

Y ′(ya) = {y ∈ YBR : ya
k ≥ yk ∀k ∈ K ∧ ∃z such that ya

z > yz} (4.13)

Then, if Y ′(ya) 6= ∅, it is possible to define the best response bound (BRB)
fBRB

a for the vector ya according to the subproblems solved so far as

fBRB
a = min

y′∈Y ′(ya)
BR(y′) (4.14)

Given the previous notation, the different cases of the callback procedure
can finally be presented. The vector ya and the project makespan of the
HPP fHP P

a are considered as the callback’s input:..1. Y ′(ya) = ∅ ∨ fHP P
a ≤ fBRB

a :
Solve the follower’s problem to determine the shortest project makespan
fF P

a , store ya → fF P
a to BR and add a lazy constraint of type 1 as given

in Equation (4.15) to the HPP model...2. Y ′(ya) 6= ∅ ∧ fHP P
a > fBRB

a :
Add a lazy constraints of type 2 as given in Equation (4.16) to the HPP
model...3. Else:
The solver found a bilevel feasible solution. Continue to solve the HPP
without adding additional constraints.

The lazy constraints added to the problem use the binary representation
of the leader’s vector of resources hired and are formalized below. The first
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lazy constraint type is following:

1−

 ∑
k∈K

 ∑
b:ya

kb
=1

(ya
kb − ykb) +

∑
b:ya

kb
=0

(ya
kb + ykb)

 ≤ vnfF P
a

(4.15)

The second lazy constraint type is following:

1−
∑
k∈K

∑
b:ya

kb
=1

(ya
kb − ykb) ≤

t=fBRB
a∑

t=0
vnt (4.16)

The lazy constraints of type 1 forces the model to discard all the solutions
which does not comply with the best response of the follower for the given
resource vector ya. The left side of Equation (4.15) is equal to zero if the
binary representation of vector y is not equal to ya, not enforcing the project
end at the specific time fF P

a . When y equals to ya, the left side will be
equal to one, forcing the project to end at time fF P

a according to the optimal
project makespan of the follower.

The principle behind lazy constraint of type 2 given in Equation (4.16)
is similar, only now the enforced time is not exact, as with more resources
shorter makespan can be achieved. This is represented by replacing the
exact time variable with the sum at the right side of the equation. Also, the
0-bits are omitted from the left side of the equation as the constraint can cut
solution with greater number of hired resources than ya.

The pseudo-code of the callback algorithm is given in Algorithm 1 and the
procedure of finding the best possible bound according to the already solved
follower’s problems is given in Algorithm 2.

Algorithm 1 The callback used for checking bilevel feasibility of integral
solutions and adding lazy constraints

1: function BilevelFeasibilityCallback(ya, fHP P
a )

2: fBRB
a ← getBestResponseBound(ya)

3: if (fBRB
a is None or fHP P

a ≤ fBRB
a ) then

4: fF P
a ← solveFollowerProblem(ya)

5: addLazyConstraintType1(fF P
a )

6: BR.add(ya → fF P
a )

7: else if (fHP P > fBRB
a ) then

8: addLazyConstraintType2(fBRB
a )

9: return

4.4 Algorithm summary

The proposed algorithm uses the single level high point problem formulation
so it could be solved with modern-day solvers. By the solver’s implicit
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4. Proposed Algorithm..................................
Algorithm 2 The algorithm obtaining best response bound from the stored
solutions of the follower’s problem

1: function getBestResponseBound(ya)
2: fBRB

a ← None
3: for all y in BR.domain() do . Go through all the best responses
4: if ya

k ≥ yk for all k ∈ K then
5: if (fBRB

a = None or BR(y) < fBRB
a ) then

6: fBRB
a ← BR(y)

7: return fBRB
a

branch-and-bound algorithm along with the addition of the lazy constraints,
the algorithm eventually constraints the solution space of the HPP such
that it corresponds to the inducible region and arrives with the bilevel
optimal solution. The algorithm utilizes the fact that the follower’s problem
optimization objective contains only one variable, therefore, with the binary
representation of the leader’s decision vector, it is possible to come up with
effective lazy constraints restricting the search space to correspond to the
inducible region of the bilevel problem.
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Chapter 5

Comparison with Single-level Approaches

The problem presented in previous chapter is essentially concerning three
objectives – resource levelling, workforce hiring and project makespan mini-
mization – within the bilevel framework. This chapter tries to give a proof
that the bilevel problem cannot be formulated with single-level approaches
as those could yield different solutions in some of the instances. The single-
level approaches examined are a sequential one, solving one objective at a
time, dividing the problem into smaller well-defined ones, and an integrated
one, trying to arrive at the same solution with the means of multi-objective
formulation of the problem.

5.1 Sequential approach

The sequential approach consists of three steps. The first step enumerates all
the possible makespans and stores them in a set D. The lowest makespan
is computed as a minimal project makespan without taking the resource
requirements into account and the highest makespan as a minimal project
makespan with no additional resources hired. For each makespan δ, the
other two steps are executed in a sequence with one of them being the
resource-availability cost problem (RACP) solving the minimum number of
employees needed to achieve the given makespan, and the second being the
resource levelling problem (RLP) trying to shuffle the activity starts in order
to minimize the number of resource jumps. The RLP and the RACP have
the objective functions of hSEQ,RLP , hSEQ,RACP respectively.

hSEQ,RACP =
∑
k∈K

yk (5.1)

hSEQ,RLP =
T−1∑
t=1

∑
k∈K

(j+
tk + j−tk) (5.2)

These steps can be interchanged based on whether the importance is set
on the resource levelling or workforce cost. The results computed for each
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Enumerate all

possible deadlines
and put them in set D

Return the best
solution

δ

δ = δ + 1

δ < max(d in D)

y

Solve the RLP for
given δ and y 

Solve the RACP for
given δ 

(a) : RACP before RLP

Enumerate all
possible deadlines

and put them in set D

Return the best
solution

δ

δ = δ + 1

δ < max(d in D)

Σ(j+ + j-)
Solve the RACP for

given δ and 
Σ(j++ j-) 

Solve the RLP for
given δ 

(b) : RLP before RACP

Figure 5.1: Schemas of the different sequential algorithms. The algorithm on
the left solves the RACP first, the algorithm on the right solves the RLP first.
Circular cells denotes flow control with green arrow denoting “Yes” and red
arrows “No”.

makespan are stored and after evaluating all the makespans, the best result
is selected according to the leader’s objective given in the bilevel approach
(Equation (3.1)), denoted as FSEQ with its optimal value of FSEQ,∗.

F = FSEQ = α
T−1∑
t=1

∑
k∈K

(j+
tk + j−tk) + β

∑
k∈K

yk (5.3)

The schemes of the sequential algorithms can be seen in Figure 5.1.

Counter-example giving a proof that the sequential approaches can arrive to
different solution is easy to construct. A simple network of three activities (five
if we also count the dummy activities) with a parallel structure is considered.
All of the activities have duration di = 1 and workforce requirement ri,1 = 1
(K = 1). The number of available resources is R1 = 2. Three makespans are
possible in such a scenario with the schedules achieving them given below.

. δ = 1: All activities start at time step 0, the resulting schedule has 0
jumps and 1 hired resource.. δ = 2: One activity starts at time step 0, the other two start at 1 or vice
versa. Both of these cases arrive at 0 hired resource and 1 jump.
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................................. 5.1. Sequential approach

. δ = 3: One activity starts at each time step achieving 0 jumps and 0
hired resources.

As there does not exist multiple options for each makespan that would arrive
to different solutions when solving the separate problems (RLP, RCPSP),
the order of the problems in the sequential approach does not matter. The
results are summarized in Table 5.1.

Table 5.1: Results pointing out the difference between the sequential and bilevel
approach. FSEQ shows the value of the leader’s objective and the last columns
says, whether the schedule is bilevel feasible.

δ
∑

t(j+
t + j−t ) y FSEQ Bilevel Feasible

1 0 1 c Yes
2 1 0 α Yes
3 0 0 0 No

One of the points showing why the sequential approach fundamentally
differs from the bilevel one can be seen from the table. The sequential
approach always ends up with solution having δ = 3, as it has no jumps and
hires no additional resources, thus, has the minimal objective value for the
leader (considering positive values of α and β). However, this solution does
not belong to the inducible region as the makespan with no hired resources
can be made shorter. This shows that the sequential approach may arrive
to solutions that are not bilevel feasible, and therefore does not model the
interaction between the two entities as the bilevel approach.

The second point proving the difference between the approaches can not be
seen on the simple example presented. It is connected with the information
and the objective value lost by addressing the objectives separately. If the
RACP is solved first for each makespan, then the number of jumps can be high
as the RACP does not consider them and in some instances it is beneficial to
hire additional resources just to make the workforce utilization more leveled.
The same principle applies when we switch the order of the problems in the
sequence. By solving solely the resource levelling first, a schedule with a large
number of resources that are not needed to achieve the given makespan may
be hired.

In conclusion, the sequential approach differs from the bilevel one because
it does not concern the bilevel feasibility of the schedules and because it may
arrive at suboptimal solutions by solving one objective at a time. The gap
between the objective value of the approaches can be arbitrary and depends
on the order of the problems in the sequence, on the weights of the objectives
in the bilevel approach and on the problem instance.
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5.2 Multi-objective approach

Another approach representing the bilevel problem via combination of three
objectives is the multi-objective single-level approach. The problem com-
bines all of the three objectives (resource levelling, workforce hiring and
makespan minimization) into one and assigns weights (α, β, γ) to each ob-
jective respectively. The objective of the integrated approach is given in
Equation (5.4). The rest of the formulation follows the high point model
excluding the constraints defining the binary variables.

min hINT = minα
T−1∑
t=1

∑
k∈K

(j+
tk + j−tk) + β

∑
k∈K

yk + γ
∑
t∈T

vntt (5.4)

Let us denote the leader’s objective function as F and F INT , where the
former represents the objective of the bilevel approach and the latter the
objective of the integrated approach with the optimal solution values of F ∗
and F INT,∗, respectively.

F = F INT = α
T−1∑
t=1

∑
k∈K

(j+
tk + j−tk) + β

∑
k∈K

yk (5.5)

To show that the integrated approach differs from the bilevel one, the
following statement needs to be contradicted by finding a counter-example:

For every instance of the bilevel problem with α and β given by the
bilevel problem, there exists a γ achieving the same schedule as the
bilevel approach.

For the counter-example, it must hold that there does not exist γ such that
the optimal solution of the integrated approach would be the same as the
bilevel one. Let us denote the project makespan of the optimal solution of
the bilevel approach as f∗. To find the appropriate value of γ arriving at
the same makespan as the bilevel approach, a bisection method is used. The
algorithm starts with an interval [γmin, γmax] and sets the current value of γ
as

γ = γmax + γmin

2 . (5.6)

After obtaining γ, the algorithm solves the integrated problem to optimality
with a project makespan of the integrated solution denoted as f INT,∗. Three
cases are then distinguished according to the difference between the makespans
of the different approaches...1. f INT,∗ < f∗: The value of γ forced the schedule to have a shorter

makespan than the bilevel program. Set γmax = γ, compute new γ
according to the updated interval and solve the integrated problem
again.
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............................... 5.2. Multi-objective approach..2. f INT,∗ > f∗: The value of γ forced the schedule to have a higher
makespan than the bilevel program. Set γmin = γ, obtain new γ according
to the updated interval and solve the integrated problem again...3. f INT,∗ = f∗: The makespans are equal, if the leader’s objectives are
equal for both of the approaches (F ∗ = F INT,∗), then the current γ
arrives at the same solution (or there exist a solution having the same
makespan which is identical to the bilevel one and have the same optimal
objective value). However, if the leader’s objective values differs, the
counter-example is found...4. (γmax − γmin) < ε: Algorithm stopping criterion for the cases, where
there is no γ arriving at the same project’s makespan as the bilevel
problem.

The network of the counter-example found is given in Figure 5.2. The
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Figure 5.2: The problem instance used for proving the difference between the
bilevel and integrated approach.

parameters of the bilevel problem are set to α = 25, β = 100. The iterations
of the integrated algorithm are shown in Table 5.2 along with the results of
the bilevel approach. The optimal schedules for both approaches are displayed
in Figure 5.3 The results show that even after achieving the same makespan
the solution may not be identical. This is caused by the same principle
which was presented in the sequential approaches – the integrated approach
solution space is less restricted and does not need to comply with the bilevel
feasibility. In the provided counter-example, the final step of the integrated
approach hired an additional employee, however with the additional employee
the project can be scheduled to a project makespan of 58, which is the reason
why it is not the solution of the bilevel approach. Following observation can
be made based on the counter-example.
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(b) : Integrated optimal schedule

Figure 5.3: Optimal schedules of the bilevel and integrated approaches for the
counter-example.

Table 5.2: Iterations of the integrated approach trying to find the same solution
as the bilevel one. The algorithm stops after finding γ achieving the same project
makespan as the bilevel approach.

Integrated approach
γ f INT,∗ ∑

t,k(j+
tk + j−tk) y F INT,∗ [γmin, γmax]

950.00 39 98 [0, 5, 6] 3550 [−100, 2000]
425.00 39 98 [0, 5, 6] 3550 [−100, 950]
162.50 40 86 [0, 5, 6] 3250 [−100, 425]
31.25 59 88 [0, 0, 1] 2300 [−100, 162.5]
-34.38 60 88 [0, 0, 1] 2300 [−100, 31.25]
Bilevel approach

f∗
∑

t,k(j+
tk + j−tk) y F ∗

- 60 94 [0, 0, 0] 2350 -
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Observation 5.1. Given an instance of the RCPSP and its solution
by the bilevel approach with its final project makespan of f∗ and
the leader’s objective value of its optimal solution F ∗. If γ such
that f INT,∗ = f∗ exists, then F INT,∗ ≤ F ∗.

Another experiment with the example aims to investigate whether the
integrated approach can achieve arbitrary makespan just by setting the
parameter γ, with α and β given by the bilevel approach. The experiment
consists of iterating over all possible makespans and trying to reach the
makespan with the same method used previously, only now the makespan
is not set by the bilevel solution. The experiment shows that it not always
possible to find γ achieving certain makespan as for some of the makespans
the solution tends to oscillate between two different solutions – one achieving
a longer makespan and other achieving a shorter makespan. The example of
such behaviour is given in Table 5.3, where the network used previously is
utilized and the algorithm tries to achieve a makespan of δ = 55. Following
observation can be made according to the results:

Observation 5.2. For a non-zero α and β and a makespan δ,
there does not always exists γ such that the optimal solution of the
integrated problem with makespan f INT,∗ = δ.

5.3 Comparison of all approaches

To achieve better insights into the differences of all the approaches, a final
experiment comparing the properties of all the approaches is conducted. It
consists of taking all the possible makespans of the example in Figure 5.2
and adding a constraint forcing the makespan for all the approaches, e.g., the
project has to end precisely at the given makespan. This allows us to see the
optimal solutions and feasibility per makespan per approach, allowing us to
make further assumption about the different behaviours and properties of the
approaches. The results displaying the leader’s objective value of the optimal
solution per makespan per approach are shown in Figure 5.4.

The figure allows to make another observation about the properties of the
solution space of the approaches:

Observation 5.3. Existence of an integrated solution for makespan
δ does not provide information about the existence of bilevel solution
for that makespan and vice versa.

This means that there are makespans for which exists a bilevel solution but
not an integrated one (e.g. δ = 53 in Figure 5.4) and at the same time there
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5. Comparison with Single-level Approaches.........................
Table 5.3: Iterations of the integrated approach trying to achieve a makespan
of δ = 55. The makespan of the optimal solution is denoted as f INT,∗, the
leader’s objective value F and the objective value of the optimal solution for the
integrated approach as hINT,∗.

γ f INT,∗ ∑
t,k(j+

tk + j−tk)
∑

k yk F ∗ hINT,∗ [γmin, γmax]
0.00 59 1 88 2300 2300.00 [-10000, 10000]

5000.00 39 11 98 3550 198550.00 [0.0, 10000]
2500.00 39 11 98 3550 101050.00 [0.0, 5000.0]
1250.00 39 11 98 3550 52300.00 [0.0, 2500.0]
625.00 39 11 98 3550 27925.00 [0.0, 1250.0]
312.50 39 11 98 3550 15737.50 [0.0, 625.0]
156.25 40 11 86 3250 9500.00 [0.0, 312.5]
78.12 40 11 86 3250 6375.00 [0.0, 156.25]
39.06 51 5 82 2550 4542.19 [0.0, 78.125]
19.53 59 1 88 2300 3452.34 [0.0, 39.0625]
29.30 59 1 88 2300 4028.52 [19.531, 39.063]
34.18 51 5 82 2550 4293.16 [29.297, 39.063]
31.74 51 5 82 2550 4168.65 [29.297, 34.180]
30.52 59 1 88 2300 4100.54 [29.297, 31.738]
31.13 59 1 88 2300 4136.55 [30.518, 31.738]
31.43 51 5 82 2550 4153.09 [31.128, 31.738]
31.28 51 5 82 2550 4145.31 [31.128, 31.433]
31.20 59 1 88 2300 4141.05 [31.128, 31.281]
31.24 59 1 88 2300 4143.30 [31.204, 31.281]
31.26 51 5 82 2550 4144.33 [31.242, 31.281]
31.25 51 5 82 2550 4143.85 [31.242, 31.261]
31.25 59 1 88 2300 4143.58 [31.242, 31.252]
31.25 59 1 88 2300 4143.72 [31.247, 31.252]
31.25 51 5 82 2550 4143.79 [31.250, 31.252]

are makespans for which exists an integrated solution but not a bilevel one
(e.g. δ = 59 in Figure 5.4).

Also, it can be easily seen from the description of the approaches that
by solving the problems in sequence in comparison to solving the problems
combined in the integrated approach, following inequality must hold:

FSEQ,∗ ≥ F INT,∗ (5.7)

Furthermore, no relation can be established between F ∗ and FSEQ,∗ as the
sequential approach can achieve a better objective value when arriving at
the same solution as the integrated approach, but can also arrive at worse
solution due to the sequentionality of the problems.
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Figure 5.4: Leader’s objective value of the different approaches for each makespan
of the counter-example.

5.4 Summary

This section showed that the bilevel problem is unique and cannot be easily
replaced by a single-level formulations which are most common when solving
project scheduling problems. The single-level approaches fail to incorporate
the best response of the follower, thus, simplifying the model and ignoring the
interaction between different entities each pursuing its own interests. More
experiments evaluating and comparing the approaches are provided in the
next chapter.
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Chapter 6

Experiments

This chapter presents the results of the algorithm’s experimental evaluation
and the influence of parameter setting on the computational performance,
efficiency and solution quality.

The conducted experiments can be grouped into two categories – external
and internal validation. The external validation tries to compare the presented
approach with the current state-of-the-art algorithms. However, as the
presented problem as well as the algorithm are novel and algorithms solving
the problem cannot be found in the literature (the bilevel Branch and Bound
scheme is not suitable for this amount of integer variables), the comparison
will be done with the single-level approaches presented in the previous chapter.
The internal validation focuses on evaluating the present algorithm in terms
of computational performance, possible speed-ups, cuts efficiency and the
influence of the instance parameters and objective weights on various metrics.

The parameters of the problem in the experiments are set as follows if not
stated otherwise: the weight of the RLP is α = 25 and the resource cost
is β = 100. The solver used for the experiments is Gurobi 8.0.1 including
its Python wrapper. All the computations are done on a computer having
Intel(R) Core(TM) i7-7600U CPU and 8 GB of memory.

6.1 Datasets

Two datasets are used to conduct the experiments. The first one is the
well-known Patterson dataset [35] containing 110 problem instances. The
second type of data instances used are generated by the RANGEN2 network
generator presented in [46]. The RANGEN2 generates resource constrained
project scheduling problems instances according to the input parameters,
providing more control of the instances generated.

1http://www.gurobi.com/
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6. Experiments .....................................
6.1.1 RANGEN2

The parameters that are possible to use when generating new project instances
are following:

. Number of activities I1.. Series-Parallel indicator I2 ∈ [0, 1], where 0 represents all activities (not
including the dummies) in parallel and 1 represents all activities in a
sequence. The indicator is computed as follows:

I2 = m− 2
n− 3 , (6.1)

where n is the number of activities including the dummies and m is the
progressive level of the end dummy activity. The progressive level PLi

of activity i is computed as

PLi =
{

0 if Pi = ∅
maxj∈Pi PLj + 1 else

, (6.2)

where Pi is the set of direct predecessors of activity i.. Resource use (RU) specifying how many resource types each activity
uses.. Resource constrainedness (RC) specifying how much resources does an
activity need in average with respect to the available resource pool.

The following notation is used to name the datasets generated by the
RANGEN2: RGxx_yy is a dataset where xx stands for the number of activities
not including the dummies, and yy denotes the value of the series-parallel
indicator with which the network was generated.

6.1.2 Patterson dataset

Even though the Patterson dataset in not frequently used nowadays as the
instances are too easy for solving the single-level problems, it is suitable
for evaluation of the proposed algorithm as the bilevel approach is more
computationally demanding.

The properties of the dataset are depicted in Figure 6.1. The figure
shows that the instances are rather homogeneous, most of them having 20-30
activities, with majority using all of the resource types. Furthermore, most
of the networks in the dataset are rather parallel with the series-parallel
indicator being around 0.3.
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Figure 6.1: Patterson dataset properties

6.2 External validation

The experiments that belong to the external validation aim to compare the
bilevel approach with other existing approaches in terms of both computational
performance and solution quality. As there currently does not exist other
method of solving the presented problem, the comparison is done with the
sequential and integrated approaches presented in the previous chapter. The
experiments are conducted on datasets: RG10_03, RG10_05 and RG10_07,
where each of those contain 100 problem instances. The bilevel algorithm
with both types of lazy constraints is also referred to as the baseline algorithm.

The sequential approach assumes two algorithm variants – SEQ_RACP and
SEQ_RLP – where the former solves first the resource availability cost before
the resource levelling problem and the latter vice versa. In the integrated
approach, the weight minimizing the project makespan is set to γ = 0.1, so
the algorithm tries to minimize the leader’s objective first and the makespan
second, to imitate the bilevel scenario.

Computational comparison showing the runtime difference between the
baseline algorithm and the other approaches can be seen in Figure 6.2. The
results show that the integrated approach processing time is comparable to
the bilevel problem. Also, the processing time of the sequential approaches
differs based on which of the objectives is solved first – the results clearly
show that solving the RACP task first for each deadline is faster than both
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6. Experiments .....................................
the bilevel approach and the sequential approaches prioritizing the RLP.
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Figure 6.2: Runtime comparison of different approaches. The values shown are
a subtraction of the other approaches runtime from the runtime of the baseline
algorithm.

The comparison of the solution quality is depicted in Figure 6.3, which
shows the percentage of the baseline objective value for each other approach,
i.e., values above 100% denote worse objective value and values below 100%
denotes improvement. The results show that the integrated approach always

rg10_03 rg10_05 rg10_07
Datasets

70

80

90

100

110

120

130

140

150

Ob
j. 

va
lu

e 
(in

t x
 se

q/
ba

se
lin

e)
 [%

]

Leader's objective value comparison
Integrated
Sequential - RACP
Sequential - RLP

Figure 6.3: Comparison of leader’s objective value for different approaches. The
values are the ratio of the different approach and the baseline algorithm.

results in either the same or better objective value, further supporting the
observations claimed in the previous chapter. Furthermore, it can be seen
that the objective value of the sequential approach can be both better or
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............................. 6.3. Internal validation – speed-ups

worse than the bilevel one. The exact location of the bars of the sequential
algorithms depends greatly on the α and β ratio. More detailed comparison
of the solutions’ components is given in Figure 6.4. The figure shows that the
sequential approach with the RLP solved first tends to hire more resources
than the bilevel approach, which can be seen in the left part of the figure.
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Figure 6.4: Solution components comparison. The values shown are a subtraction
of the other other approaches results from the results of the baseline algorithm.

The comparison summary in terms of how many instances achieved a
bilevel solution, how many arrived at the same solution as the bilevel one,
etc. is given in Table 6.1. The table shows that within the weight setting
used, the best approximation is given either by the integrated approach or
by the sequential approach solving the RACP first. The integrated approach
arrived at the same solution in more than 70 out of 100 cases in all of the
considered datasets. The results also show, that bilevel feasibility and equality
of the solutions of the bilevel and other approach increases with increasing I2
indicator, which is caused by the fact that the more the network resembles
series, the less options there are for constructing the schedules, i.e., the
schedule is more constrained by the precedence constraints.

6.3 Internal validation – speed-ups

This sections discusses the efficiency of the algorithm and its possible speed-
ups. The efficiency of the second type of lazy constraint (LC2) is evaluated
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6. Experiments .....................................
Table 6.1: Summary of the results. Number of instances with the optimal
solution being also bilevel feasible is given in column BF. Number of instances
arriving at the same solution as the bilevel approach is given in the column
SS. The comparison operators are used to compare the result of the different
approaches with the bilevel solution, e.g., column Makespan < denotes the
number of instances where the sequential or integrated approach arrived at a
result having smaller makespan than the bilevel solution.

Dataset Approach Makespan Objval BF SS= < > = < >

rg10_03
INT 79 15 6 78 22 0 75 72
SEQ_RACP 73 19 8 70 12 18 81 65
SEQ_RLP 52 44 4 44 13 43 61 40

rg10_05
INT 78 15 7 74 26 0 75 71
SEQ_RACP 75 16 9 73 13 14 81 64
SEQ_RLP 48 45 7 37 21 42 49 32

rg10_07
INT 93 3 4 92 8 0 90 90
SEQ_RACP 94 3 3 89 6 5 93 88
SEQ_RLP 73 24 3 57 7 36 77 53

by running the algorithm without using it and comparing the processing time,
total time spent in the lazy constraint callback and nodes explored in the
search tree with the baseline algorithm. Another experiment discusses possible
speed-up of the algorithm by utilizing a specific variable branching priority.
The last experiment in this section tries to utilize additional information
obtained from the network and constraint the variables further by using the
earliest and latest start times of the activities that can be computed from
the network.

The results of the experiments comparing the performance of the baseline
algorithm and the bilevel algorithm not utilizing the second lazy constraint
type are presented in Figure 6.5. The plot comparing the runtime shows that
adding the LC2 makes the algorithm approximately twice as fast while also
generally decreasing the number of explored nodes as can be seen in the plot
showing the ratio of explored nodes. Furthermore, not utilizing the LC2 leads
to increase in number of the LC1 generated by the algorithm and as a LC1
needs to solve an MIP model to be generated, it greatly increases the time
spent in callbacks as can be seen in the plot showing the callback runtime
ratio.

Another experiment tries to explore the influence of using variables branch-
ing priority in the algorithm. The branching strategy in the baseline algorithm
is determined by the solver. Two other branching strategies are investigated,
where one prioritizes the resource hiring y and the other prioritizes branching
on the activity start variables v. The results of the experiment are presented
in Figure 6.6. The results show that enforcing the branching priority does
not yield improvement as the results are either slightly worse or similar to
using the implicit branching strategy determined by the solver.
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Figure 6.5: Results summarizing the improvements achieved by utilizing the
second type of lazy constraint (LC2). The plots show a comparison of the
baseline algorithm and the bilevel algorithm not using the LC2.

The last experiment in this section employs the information about earliest
and latest start time (EST, LST) of each activity. The earliest start time of
an activity is the earliest time activity can start considering only precedence
constraints without the resource requirements. The latest start time of an
activity is the latest time activity can start in order the project schedule
would fit into the considered time period. The investigated speed-up scenario
considers utilizing the EST and LST by setting

vit = 0 if t < ESTi ∨ t > LSTi, (6.3)

where ESTi is the earliest start time of activity i and LSTi is the latest start
time of activity i. The results of comparison of the presented scenario with
the baseline is given in Figure 6.7. The results show that the runtime have
improved by using the additional activity start times information. Interest-
ingly, the other indicators as the number of lazy constraints generated and
number of nodes explored did not change much by employing the EST and
LST, even though the runtime improved.

In conclusion, scenarios investigating possible speedups were conducted
in this section along with an evaluation of the second lazy constraint type
efficiency. The results show that utilizing the LC2 improves the computa-
tional time significantly, prioritizing certain variable does not yield visible
improvements and that further runtime improvement can be achieved by
utilizing the earliest and latest start time of the project’s activities.
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Figure 6.6: Comparison of different branching strategies with the baseline
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Figure 6.7: Comparison of a scenario using the EST and LST with the baseline
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6.4 Internal validation – parameter setting

The algorithm has several parameters that can be set including the weights of
the objectives α, β and the number of available resources Rk for each employee
type. This section aims to investigate the influence of these parameters on
the algorithm’s performance. The dataset used for the evaluation is the
RG_10_05.

The first experiment sets the objective weights α, β. The weights combina-
tion are drawn from a Cartesian product of W ×W , where

W = {0, 1, 10, 100, 1000} (6.4)

The first element of the product is set as α and the second as β. Some
combinations as (0, 0) or (10, 100) are omitted as they would not make sense
or they are duplicates of previously explored combination (e.g. (10, 100)
would yield the same results as (1, 10)). The final combinations explored are
as follows

(α, β) ∈ {(0, 1), (1, 0), (1, 1), (1, 10), (1, 100),
(1, 1000), (10, 1), (100, 1), (1000, 1)}

(6.5)

The results of the experiment is given in Figure 6.8. Note that all of the
y-axis of the plots are logarithmic as otherwise some of the bars would not
be readable. The figure shows that when the leader’s objective does not
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Figure 6.8: The algorithm’s performance under various combinations of α and β
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contain the resource levelling objective, i.e. (α, β) = (0, 1), the algorithm
runs much faster as it does not have to deal with the non-regular objective.
When the objective consists only of the RLP, i.e., (α, β) = (0, 1), the runtime
is comparable to the other cases where the objective contains both problems.
However, as this case contains no term trying to minimize the hired resources,
the number of lazy constraints generated explodes compared to the other
cases. The results also show, that the algorithm tends to run faster when the
RACP weight α outweights the RLP weight β, even though the amount of
generated lazy constraints generated is similar. This is caused by the solver
being able to solve the high point problem more efficiently and cut off the
search tree by its implicit procedures.

The second experiment sets the number of available workforce Rk for all
resource types as R. The results are presented in Figure 6.9. The results
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Figure 6.9: The algorithm’s performance with different values of R

show that the performance is similar until reaching a threshold of R = 10,
the runtime then drops with increasing value of R until reaching a second
threshold R = 18. Increasing the value of R above the second threshold does
not yield significant performance improvement. The results also show that
no additional employees are hired in all of the instances when R ≥ 28 and
the algorithm always arrives at the shortest makespan possible when R ≥ 24.
Note that the results highly depend on the network generator parameters
like the resource use, resource constrainedness and the objective weights,
therefore, the results cannot be generalized.
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6.5 Internal validation – problem instances

The last experiments section investigates the influence of the network pa-
rameters on the algorithm’s performance. The examined parameters are the
number of activities, number of resource types used in the project scheduling
and value of the series-parallel indicator of the network.

The number of activities were evaluated on the Patterson dataset with the
results presented in Figure 6.10. The plot shows that the activity number
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Figure 6.10: The algorithm’s performance with different number of activities

is not the most important factor determining the computational speed as
the results show no visible correlations between the number of activities
and the performance indicators. Furthermore, running the experiments with
RANGEN2 generated instances having more than 20 activities resulted in
reaching the time limit in most of them. This further supports the claim that
the complexity is not in the activity number as the algorithm could solve
problems with more than 50 activities in the Patterson dataset.

Another experiment evaluated the effect of the series-parallel indicator
with the results depicted in Figure 6.11. The results clearly show that with
increasing parallelness of the network (lower values of the S-P indicator) the
solution becomes harder to be found. This follows the fact that there are
more options how to construct the schedule when the network resembles a
parallel one more.
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Figure 6.11: The algorithm’s performance with different values of the series-
parallel indicator
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Figure 6.12: The algorithm’s performance with different number of resource types
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...................................... 6.6. Summary

The last experiments explores the influence of the number of resource types
used in the instances. The dataset used in the scenario is the RG10_05 with the
S-P indicator set to I2 = 0.5 and various resource types number. The outputs
of the algorithm are shown in Figure 6.12 and shows that the complexity of
finding the solution increases with increasing the number of resource types
used. This follows the common-sense reasoning as increasing the number of
resource types increases the problem size (the number of variables used).

6.6 Summary

Various experiments exploring the algorithm’s properties were conducted and
presented in this chapter. The experiments compared the bilevel algorithm
with single-level solutions to provide idea on how much the bilevel problem
differs from the single-level ones. Possible speed-up techniques were evaluated
and showed that the second type of lazy constraint doubles the computational
speed of the algorithm proving the efficiency of the constraint. Changing
the variable branching strategy did not improve the algorithm’s computa-
tional time and some improvement can be achieved by employing additional
information about the network structure (the earliest and latest start time of
activities). Further experiments shown the influence of various parameters
setting of the algorithm and of the project network instances on the overall
performance.
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Chapter 7

Conclusion and Future Work

In this thesis, a model representing a decision making process within a context
of resource contrained project scheduling in a hierarchically organized team is
proposed. The model represents two entities – a team leader who is in charge
of hiring additional employees and at the same time tries to make the resource
usage as levelled as possible, and a project manager trying to minimize the
project makespan. A bilevel programming formulation is proposed to model
the interaction between the distinct entities pursuing their individual goals.
The bilevel model puts the objective of the project manager to the constraints
of the team leader’s problem, creating a novel point of view to the project
scheduling problem.

An algorithm based on lazy constraints generation is proposed to solve the
devised model. The algorithm solves the high-point problem, while executing
callbacks on the discovered integer solutions. The callback checks whether the
project schedule complies with the requirements on the makespan introduced
by the project manager. If it is possible to make the project makespan shorter
with the employees hired by an integer solution of the high point problem,
a lazy constraint is added to cut the solution. Thus, the algorithm always
arrives at a solution satisfying both entities.

A comparison with sequential and integrated single-level approaches is
made to show that the bilevel formulations cannot be easily replaced by a
single-level algorithm and that the proposed problem is unique. Furthermore,
experiments evaluating and benchmarking the algorithm are conducted to
show the performance and properties of the algorithm.

7.1 Future work

The application of the bilevel optimization techniques introduces a new point
of view on the project scheduling problems as it has not been used before. The
idea can be applied further to other problems in operation research, where
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7. Conclusion and Future Work ..............................
the possible interaction between entities pursuing different goals have been
omitted so far and the problems were simplified as a single-level problems.

Regarding the algorithm, a lazy constraints generation has not yet been
utilized in solving integer bilevel problems. Therefore, the algorithm should be
further examined on other problems to see whether it is possible to generalize
it.
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Appendix A

CD Contents

. /thesis.pdf – The thesis in a pdf format. /specification.pdf – The thesis specification. /src/ – Folder containing the Python source codes. /src/results/ – Folder containing the results of the conducted experi-
ments. /src/datasets/ – Folder containing the datasets used for experiments
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Appendix B

Abbreviations

RCPSP resource-constrained scheduling problem

RACP resource availability cost problem

RCPSPDC resource-constrained scheduling problem with
discounted cashflow

BLPP bilevel linear programming problem

IR inducible region

RLP resource leveling problem

HPP high point problem

FP folower’s problem

LC1, LC2 lazy constraint of type 1, 2, respectively

MIP mixed-integer program

EST, LST earliest, latest start time, respectively
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